
An Optimally Fair Coin Toss

Tal Moran∗ Moni Naor∗† Gil Segev∗

Abstract

We address one of the foundational problems in cryptography: the bias of coin-flipping pro-
tocols. Coin-flipping protocols allow mutually distrustful parties to generate a common unbiased
random bit, guaranteeing that even if one of the parties is malicious, it cannot significantly bias
the output of the honest party. A classical result by Cleve [STOC ’86] showed that for any two-
party r-round coin-flipping protocol there exists an efficient adversary that can bias the output
of the honest party by Ω(1/r). However, the best previously known protocol only guarantees
O(1/

√
r) bias, and the question of whether Cleve’s bound is tight has remained open for more

than twenty years.
In this paper we establish the optimal trade-off between the round complexity and the bias

of two-party coin-flipping protocols. Under standard assumptions, we show that Cleve’s lower
bound is tight: we construct an r-round protocol with bias O(1/r).

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
Email: {tal.moran,moni.naor,gil.segev}@weizmann.ac.il. Research supported in part by a grant from the Israel
Science Foundation.

†Incumbent of the Judith Kleeman Professorial Chair.

1 Introduction

A coin-flipping protocol allows mutually distrustful parties to generate a common unbiased random
bit. Such a protocol should satisfy two properties. First, when all parties are honest and follow the
instructions of the protocol, their common output is a uniformly distributed bit. Second, even if
some of the parties collude and deviate from the protocol’s instructions, they should not be able to
significantly bias the common output of the honest parties.

When a majority of the parties are honest, efficient and completely fair coin-flipping protocols are
known as a special case of general multiparty computation with an honest majority [6] (assuming
a broadcast channel). When an honest majority is not available, and in particular when there
are only two parties, the situation is more complex. Blum’s two-party coin-flipping protocol [8]
guarantees that the output of the honest party is unbiased only if the malicious party does not
abort prematurely. This satisfies a rather weak notion of fairness in which once the malicious party
is labeled as a “cheater” the honest party is allowed halt without outputting any value. Blum’s
protocol can rely on the existence of any one-way function [18, 24], and Impagliazzo and Luby [19]
showed that one-way functions are in fact essential even for such a seemingly weak notion. While
this notion suffices for some applications, in many cases fairness is required to hold even if one of the
parties aborts prematurely (consider, for example, an adversary that controls the communication
channel and can prevent communication between the parties). In this paper we consider a stronger
notion: even when the malicious party is labeled as a cheater, we require that the honest party
outputs a bit.

Cleve’s impossibility result. The latter notion of fairness turns out impossible to achieve in
general. Specifically, Cleve [10] showed that for any two-party r-round coin-flipping protocol there
exists an efficient adversary that can bias the output of the honest party by Ω(1/r). Cleve’s lower
bound holds even under arbitrary computational assumptions: the adversary only needs to simulate
an honest party, and decide whether or not to abort early depending on the output of the simulation.
However, the best previously known protocol (with respect to bias) only guaranteed O(1/

√
r) bias

[5, 10], and the question of whether Cleve’s bound was tight has remained open for over twenty
years.

Fairness in secure computation. The bias of coin-flipping protocols can be viewed as a partic-
ular case of the more general framework of fairness in secure computation. Typically, the security
of protocols is formalized by comparing their execution in the real model to an execution in an ideal
model where a trusted party receives the inputs of the parties, performs the computation of their
behalf, and then sends all parties their respective outputs. Executions in the ideal model guarantee
complete fairness: either all parties learn the output, or neither party does. Cleve’s result, however,
shows that without an honest majority complete fairness is generally impossible to achieve, and
therefore the formulation of secure computation (see [13]) weakens the ideal model to one in which
fairness is not guaranteed. Informally, a protocol is “secure-with-abort” if its execution in the real
model is indistinguishable from an execution in the ideal model allowing the ideal-model adversary
to chose whether the honest parties receive their outputs.

Recently, Katz [20] suggested an alternate relaxation: keep the ideal model unchanged (i.e., all
parties always receive their outputs), but relax the notion of indistinguishability by asking that
the real model and ideal model are distinguishable with probability at most 1/p(n) + ν(n), for
a polynomial p(n) and a negligible function ν(n) (we refer the reader to Section 2 for a formal
definition). Protocols satisfying this requirement are said to be 1/p-secure, and intuitively, such
protocols guarantee complete fairness in the real model except with probability 1/p. In the context

1

of coin-flipping protocols, any 1/p-secure protocol has bias at most 1/p. However, the definition of
1/p-security is more general and applies to a larger class of functionalities.

1.1 Our Contributions

In this paper we establish the optimal trade-off between the round complexity and the bias of
two-party coin-flipping protocols. We prove the following theorem:

Theorem 1.1. Assuming the existence of oblivious transfer, for any polynomial r = r(n) there
exists an r-round two-party coin-flipping protocol that is 1/(4r− c)-secure, for some constant c > 0.

We prove the security of our protocol under the simulation-based definition of 1/p-security1,
which for coin-flipping protocols implies, in particular, that the bias is at most 1/p. We note that
our result not only identifies the optimal trade-off asymptotically, but almost pins down the exact
leading constant: Cleve showed that any r-round two-party coin-flipping protocol has bias at least
1/(8r + 2), and we manage to achieve bias of at most 1/(4r − c) for some constant c > 0.

Our approach holds in fact for a larger class of functionalities. We consider the more general
task of sampling from a distribution D = (D1,D2): party P1 receives a sample from D1 and party P2

receives a correlated sample from D2 (in coin-flipping, for example, the joint distribution D produces
the values (0, 0) and (1, 1) each with probability 1/2). Before stating our result in this setting we
introduce a standard notation: we denote by SD(D,D1 ⊗ D2) the statistical distance between the
joint distribution D = (D1,D2) and the direct-product of the two marginal distributions D1 and D2.
We prove the following theorem which generalizes Theorem 1.1:

Theorem 1.2. Assuming the existence of oblivious transfer, for any polynomially-sampleable distri-
bution D = (D1,D2) and polynomial r = r(n) there exists an r-round two-party protocol for sampling
from D that is SD(D,D1⊗D2)

2r−c -secure, for some constant c > 0.

1.2 Related Work

Coin-flipping protocols. Simple variations of Blum’s protocol are the most commonly used
coin-flipping protocols whenever security with abort is sufficient. Specifically, an r-round protocol
with bias O(1/

√
r) can be constructed by sequentially executing Blum’s protocol O(r) times, and

outputting the majority of the intermediate output values [5, 10]. We note that in this protocol
an adversary can indeed bias the output by Ω(1/

√
r) by simply aborting prematurely. One of the

most significant results on the bias of coin-flipping protocols gave reason to believe that the optimal
trade-off between the round complexity and the bias is in fact Θ(1/

√
r) (as provided by the latter

variant of Blum’s protocol): Cleve and Impagliazzo [11] showed that in the fail-stop model, any
two-party r-round coin-flipping protocol has bias Ω(1/

√
r). In the fail-stop model adversaries are

computationally unbounded, but they must follow the instructions of the protocol except for being
allowed to abort prematurely. In this model commitment schemes exist in a trivial fashion2, and
therefore the Cleve–Impagliazzo bound also applies to any protocol whose security relies commitment
schemes in a black-box manner, such as Blum’s protocol and its variants.

Coin-flipping protocols were also studied in a variety of other models. Among those are collective
coin-flipping in the “perfect information model” in which parties are computationally unbounded
and all communication is public [2, 7, 12, 25, 26], and protocols based on physical assumptions, such
as quantum computation [1, 3, 4] and tamper-evident seals [23].

1In a very preliminary version of this work we proved our results with respect to the definition of bias (see Section
2), and motivated by [14, 20] we switch to the more general framework of 1/p-secure computation.

2The protocol for commitment in the fail-stop model is simply to privately decide on the committed value and send
the message “I am committed” to the other party.

2

Fair computation. Some of the techniques underlying our protocols found their origins in a
recent line of research devoted for achieving various forms of fairness in secure computation. The
technique of choosing a secret “threshold round”, before which no information is learned, and after
which aborting the protocol is essentially useless was suggested by Moran and Naor [23] as part of a
coin-flipping protocol based on tamper-evident seals. It was later also used by Katz [20] for partially-
fair protocols using a simultaneous broadcast channel, and by Gordon et al. [15] for completely-fair
protocols for a restricted (but yet rather surprising) class of functionalities. Various techniques for
hiding a meaningful round in game-theoretic settings were suggested by Halpern and Teague [17],
Gordon and Katz [16], and Kol and Naor [21]. Katz [20] also introduced the technique of distributing
shares to the parties in an initial setup phase (which is only secure-with-abort), and these shares
are then exchanged by the parties in each round of the protocol.

Subsequent work. Our results in the two-party setting were very recently generalized by Gordon
and Katz [14] to deal with the more general case of randomized functions, and not only distributions.
Gordon and Katz showed that any efficiently-computable randomized function f : X×Y → Z where
at least one of X and Y is of polynomial size has an r-round protocol that is O

(
min{|X|,|Y |}

r

)
-secure.

In addition, they showed that even if both domains are of super-polynomial size but the range
Z is of polynomial size, the f has an r-round protocol that is O

(|Z|√
r

)
-secure. Gordon and Katz

also showed a specific function f : X × Y → Z where X, Y , and Z are of size super-polynomial
which cannot be 1/p-securely computed for any p > 2 assuming the existence of exponentially-hard
one-way functions.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review several notions and
definitions that are used in the paper (most notably, the definition of 1/p-secure computation). In
Section 3 we describe a simplified variant of our protocol and prove its security. In Section 4 we
describe a more refined and general variant of our protocol which settles Theorems 1.1 and 1.2.
Finally, in Section 5 we pose several open problems.

2 Preliminaries

In this section we review the definitions of coin-flipping protocols, 1/p-indistinguishability and 1/p-
secure computation (taken almost verbatim from [14, 20]), and one-time message authentication.

2.1 Coin-Flipping Protocols

A two-party coin-flipping protocol is defined via two probabilistic polynomial-time Turing machines
(P1, P2), referred to as parties, that receive as input a security parameter 1n. The parties exchange
messages in a sequence of rounds, where in every round each party both sends and receives a message
(i.e., a round consists of two moves). At the end of the protocol, P1 and P2 produce outputs bits
c1 and c2, respectively. We denote by (c1|c2) ← 〈P1(1n), P2(1n)〉 the experiment in which P1 and
P2 interact (using uniformly chosen random coins), and then P1 outputs c1 and P2 outputs c2. It
is required that for all sufficiently large n, and every possible pair (c1, c2) that may be output by
〈P1(1n), P2(1n)〉, it holds that c1 = c2 (i.e., P1 and P2 agree on a common value). This requirement
can be relaxed by asking that the parties agree on a common value with sufficiently high probability3.

3Cleve’s lower bound [10] holds under this relaxation as well. Specifically, if the parties agree on a common value
with probability 1/2 + ε, then Cleve’s proof shows that the protocol has bias at least ε/(4r + 1).

3

The security requirement of a coin-flipping protocol is that even if one of P1 and P2 is corrupted
and arbitrarily deviates from the protocol’s instructions, the bias of the honest party’s output
remains bounded. Specifically, we emphasize that a malicious party is allowed to abort prematurely,
and in this case it is assumed that the honest party is notified on the early termination of the
protocol. In addition, we emphasize that even when the malicious party is labeled as a cheater, the
honest party must outputs a bit. For simplicity, the following definition considers only the case in
which P1 is corrupted, and an analogous definition holds for the case that P2 is corrupted:

Definition 2.1. A coin-flipping protocol (P1, P2) has bias at most ε(n) if for every probabilistic
polynomial-time Turing machine P ∗

1 it holds that
∣∣∣∣Pr [(c1|c2) ← 〈P ∗

1 (1n), P2(1n)〉 : c2 = 1]− 1
2

∣∣∣∣ ≤ ε(n) + ν(n) ,

for some negligible function ν(n) and for all sufficiently large n.

2.2 1/p-Indistinguishability and 1/p-Secure Computation

1/p-Indistinguishability. A distribution ensemble X = {X(a, n)}a∈Dn,n∈N is an infinite se-
quence of random variables indexed by a ∈ Dn and n ∈ N, where Dn is a set that may de-
pend on n. For a fixed polynomial p(n), two distribution ensembles X = {X(a, n)}a∈Dn,n∈N and

Y = {Y (a, n)}a∈Dn,n∈N are computationally 1/p-indistinguishable, denoted X
1/p≈ Y , if for every

non-uniform polynomial-time algorithm D there exists a negligible function ν(n) such that for all
sufficiently large n ∈ N and for all a ∈ Dn it holds that

|Pr [D(X(a, n)) = 1]− Pr [D(Y (a, n)) = 1]| ≤ 1
p(n)

+ ν(n) .

1/p-Secure computation. A two-party protocol for computing a functionality F = {(f1, f2)}
is a protocol running in polynomial time and satisfying the following functional requirement: if
party P1 holds input (1n, x), and party P2 holds input (1n, y), then the joint distribution of the
outputs of the parties is statistically close to (f1(x, y), f2(x, y)). In what follows we define the
notion of 1/p-secure computation [14, 20]. The definition uses the standard real/ideal paradigm
[9, 13], except that we consider a completely fair ideal model (as typically considered in the setting
of honest majority), and require only 1/p-indistinguishability rather than indistinguishability (we
note that, in general, the notions of 1/p-security and security-with-abort are incomparable). We
consider active adversaries, who may deviate from the protocol in an arbitrary manner, and static
corruptions.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
party to whom the parties send their inputs. The trusted party computes the functionality on the
inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if any
adversary interacting in the real protocol (where no trusted party exists) can do no more harm than
if it was involved in the above-described ideal computation.

4

Execution in the ideal model. The parties are P1 and P2, and there is an adversary A who has
corrupted one of them. An ideal execution for the computation of F = {fn} proceeds as follows:

Inputs: P1 and P2 hold the security parameter 1n and inputs x ∈ Xn and y ∈ Yn, respectively.
The adversary A receives an auxiliary input aux.

Send inputs to trusted party: The honest party sends its input to the trusted party. The cor-
rupted party controlled by A may send any value of its choice. Denote the pair of inputs sent
to the trusted party by (x′, y′).

Trusted party sends outputs: If x′ /∈ Xn the trusted party sets x′ to some default element
x0 ∈ Xn (and likewise if y′ /∈ Yn). Then, the trusted party chooses r uniformly at random and
sends f1

n(x′, y′; r) to P1 and f2
n(x′, y′; r) to P2.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing, and A outputs any arbitrary (probabilistic polynomial-time computable)
function of its view.

We let IDEALF ,A(aux)(x, y, n) be the random variable consisting of the output of the adversary
and the output of the honest party following an execution in the ideal model as described above.

Execution in the real model. We next consider the real model in which a two-party protocol
π is executed by P1 and P2 (and there is no trusted party). In this case, the adversary A gets the
inputs of the corrupted party and sends all messages on behalf of this party, using an arbitrary
polynomial-time strategy. The honest party follows the instructions of π.

Let π be a two-party protocol computing F . Let A be a non-uniform probabilistic polynomial-
time machine with auxiliary input aux. We let REALπ,A(aux)(x, y, n) be the random variable con-
sisting of the view of the adversary and the output of the honest party, following an execution of π
where P1 begins by holding input (1n, x), and P2 begins by holding input (1n, y).

Security as emulation of an ideal execution in the real model . Having defined the ideal
and real models, we can now define security of a protocol. Loosely speaking, the definition asserts
that a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows:

Definition 2.2 (1/p-secure computation). Let F and π be as above, and fix a function p = p(n).
Protocol π is said to 1/p-securely compute F if for every non-uniform probabilistic polynomial-time
adversary A in the real model, there exists a non-uniform probabilistic polynomial-time adversary S
in the ideal model such that

{IDEALF ,S(aux)(x, y, n)}(x,y)∈X×Y,aux∈{0,1}∗
1/p≈ {REALπ,A(aux)(x, y, n)}(x,y)∈X×Y,aux∈{0,1}∗ .

2.3 One-Time Message Authentication

Message authentication codes provide assurance to the receiver of a message that it was sent by a
specified legitimate sender, even in the presence of an active adversary who controls the communi-
cation channel. A message authentication code is defined via triplet (Gen, Mac, Vrfy) of probabilistic
polynomial-time Turing machines such that:

1. The key generation algorithm Gen receives as input a security parameter 1n, and outputs an
authentication key k.

5

2. The authentication algorithm Mac receives as input an authentication key k and a message
m, and outputs a tag t.

3. The verification algorithm Vrfy receives as input an authentication key k, a message m, and a
tag t, and outputs a bit b ∈ {0, 1}.

The functionality guarantee of a message authentication code is that for any message m it holds
that Vrfy(k, m,Mac(k,m)) = 1 with overwhelming probability over the internal coin tosses of Gen,
Mac and Vrfy. In this paper we rely on message authentication codes that are one-time secure. That
is, an authentication key is used to authenticate a single message. We consider an adversary that
queries the authentication algorithm on a single message m of her choice, and then outputs a pair
(m′, t′). We say that the adversary forges an authentication tag if m′ 6= m and Vrfy(k, m′, t′) = 1.
Message authentication codes that are one-time secure exist in the information-theoretic setting,
that is, even an unbounded adversary has only a negligible probability of forging an authentication
tag. Constructions of such codes can be based, for example, on pair-wise independent hash functions
[27].

3 A Simplified Protocol

In order to demonstrate the main ideas underlying our approach, in this section we present a
simplified protocol. The simplification is two-fold: First, we consider the specific coin-flipping
functionality (as in Theorem 1.1), and not the more general functionality of sampling from an
arbitrary distribution D = (D1,D2) (as in Theorem 1.2). Second, the coin-flipping protocol will
only be 1/(2r)-secure and not 1/(4r)-secure.

We describe the protocol in a sequence of refinements. We first informally describe the protocol
assuming the existence of a trusted third party. The trusted third party acts as a “dealer” in a
pre-processing phase, sending each party an input that it uses in the protocol. In the protocol we
make no assumptions about the computational power of the parties. We then eliminate the need for
the trusted third party by having the parties execute a secure-with-abort protocol that implements
its functionality (this can be done in a constant number of rounds).

The protocol. The joint input of the parties, P1 and P2, is the security parameter 1n and a
polynomial r = r(n) indicating the number of rounds in the protocol. In the pre-processing phase
the trusted third party chooses uniformly at random a value i∗ ∈ {1, . . . , r}, that corresponds to
the round in which the parties learn their outputs. In every round i ∈ {1, . . . , r} each party learns
one bit of information: P1 learns a bit ai, and P2 learns a bit bi. In every round i ∈ {1, . . . , i∗ − 1}
(these are the “dummy” rounds) the values ai and bi are independently and uniformly chosen. In
every round i ∈ {i∗, . . . , r} the parties learn the same uniformly distributed bit c = ai = bi which
is their output in the protocol. If the parties complete all r rounds of the protocol, then P1 and P2

output ar and br, respectively4. Otherwise, if a party aborts prematurely, the other party outputs
the value of the previous round and halts. That is, if P1 aborts in round i ∈ {1, . . . , r} then P2

outputs the value bi−1 and halts. Similarly, if P2 aborts in round i then P1 outputs the value ai−1

and halts.
4An alternative approach that reduces the expected number of rounds from r to r/2 + 1 is as follows. In round i∗

the parties learn their output c = ai∗ = bi∗ , and in round i∗ + 1 they learn a special value ai∗+1 = bi∗+1 = NULL
indicating that they should output the value from the previous round and halt. For simplicity (both in the presentation
of the protocol and in the proof of security) we chose to present the protocol as always having r rounds, but this is
not essential for our results.

6

More specifically, in the pre-processing phase the trusted third party chooses i∗ ∈ {1, . . . , r}
uniformly at random and defines a1, . . . , ar and b1, . . . , br as follows: First, it choose a1, . . . , ai∗−1 ∈
{0, 1} and b1, . . . , bi∗−1 ∈ {0, 1} independently and uniformly at random. Then, it chooses c ∈ {0, 1}
uniformly at random and lets ai∗ = · · · = ar = bi∗ = · · · = br = c. The trusted third party creates
secret shares of the values a1, . . . , ar and b1, . . . , br using an information-theoretically-secure 2-out-
of-2 secret sharing scheme, and these shares are given to the parties. For concreteness, we use the
specific secret-sharing scheme that splits a bit x into (x(1), x(2)) by choosing x(1) ∈ {0, 1} uniformly
at random and letting x(2) = x⊕x(1). In every round i ∈ {1, . . . , r} the parties exchange their shares
for the current round, which enables P1 to reconstruct ai, and P2 to reconstruct bi. Clearly, when
both parties are honest, the parties produce the same output bit which is uniformly distributed.

Eliminating the trusted third party. We eliminate the need for the trusted third party by rely-
ing on a possibly unfair sub-protocol that securely computes with abort the functionality ShareGenr,
formally described in Figure 1. Such a protocol with a constant number of rounds can be constructed
assuming the existence of oblivious transfer (see, for example, [22]). In addition, our protocol also
relies on a one-time message authentication code (Gen, Mac, Vrfy) that is information-theoretically
secure. The functionality ShareGenr provides the parties with authentication keys and authenti-
cation tags so each party can verify that the shares received from the other party were the ones
generated by ShareGenr in the pre-processing phase. A formal description of the protocol is provided
in Figure 2.

Functionality ShareGenr

Input: Security parameter 1n.

Computation:

1. Choose i∗ ∈ {1, . . . , r} uniformly at random.
2. Define values a1, . . . , ar and b1, . . . , br as follows:

• For 1 ≤ i ≤ i∗ − 1 choose ai, bi ∈ {0, 1} independently and uniformly at random.
• Choose c ∈ {0, 1} uniformly at random, and for i∗ ≤ i ≤ r let ai = bi = c.

3. For 1 ≤ i ≤ r, choose
(
a
(1)
i , a

(2)
i

)
and

(
b
(1)
i , b

(2)
i

)
as random secret shares of ai and bi, respectively.

4. Compute ka
1 , . . . , ka

r , kb
1, . . . , k

b
r ← Gen(1n). For 1 ≤ i ≤ r, let tai = Macka

i

(
i||a(2)

i

)
and tbi =

Mackb
i

(
i||b(1)

i

)
.

Output:

1. Party P1 receives the values a
(1)
1 , . . . , a

(1)
r ,

(
b
(1)
1 , tb1

)
, . . . ,

(
b
(1)
r , tbr

)
, and ka = (ka

1 , . . . , ka
r).

2. Party P2 receives the values
(
a
(2)
1 , ta1

)
, . . . ,

(
a
(2)
r , tar

)
, b

(2)
1 , . . . , b

(2)
r , and kb = (kb

1, . . . , k
b
r).

Figure 1: The ideal functionality ShareGenr.

7

Protocol CoinFlipr

Joint input: Security parameter 1n.

Preliminary phase:

1. Parties P1 and P2 run protocol π for computing ShareGenr(1n) (see Figure 1).
2. If P1 receives ⊥ from the above computation, it outputs a uniformly chosen bit and halts. Likewise, if

P2 receives ⊥ it outputs a uniformly chosen bit and halts. Otherwise, the parties proceed.

3. Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
r ,

(
b
(1)
1 , tb1

)
, . . . ,

(
b
(1)
r , tbr

)
, and ka = (ka

1 , . . . , ka
r).

4. Denote the output of P2 from π by
(
a
(2)
1 , ta1

)
, . . . ,

(
a
(2)
r , tar

)
, b

(2)
1 , . . . , b

(2)
r , and kb = (kb

1, . . . , k
b
r).

In each round i = 1, . . . , r do:

1. P2 sends the next share to P1:

(a) P2 sends
(
a
(2)
i , tai

)
to P1.

(b) P1 receives
(
â
(2)
i , t̂ai

)
from P2. If Vrfyka

i

(
i||â(2)

i , t̂ai

)
= 0 (or if P1 received an invalid message or

no message), then P1 outputs ai−1 and halts (if i = 1 it outputs a uniformly chosen bit).

(c) If Vrfyka
i

(
i||â(2)

i , t̂ai

)
= 1 then P1 reconstructs ai using the shares a

(1)
i and â

(2)
i .

2. P1 sends the next share to P2:

(a) P1 sends
(
b
(1)
i , tbi

)
to P2.

(b) P2 receives
(
b̂
(1)
i , t̂bi

)
from P1. If Vrfykb

i

(
i||b̂(1)

i , t̂bi

)
= 0 (or if P2 received an invalid message or

no message), then P2 outputs bi−1 and halts (if i = 1 it outputs a uniformly chosen bit).

(c) If Vrfykb
i

(
i||b̂(1)

i , t̂bi

)
= 1 then P2 reconstructs bi using the shares b

(1)
i and b

(2)
i

Output: P1 and P2 output ar and br, respectively.

Figure 2: The coin-flipping protocol CoinFlipr.

Proof of security. The following theorem proves that the protocol is 1/(2r)-secure. We then
conclude the section by showing the our analysis is in fact tight: there exists an efficient adversary
that can bias the output of the honest party by essentially 1/(2r).

Theorem 3.1. For any polynomial r = r(n), if protocol π securely computes ShareGenr with abort,
then protocol CoinFlipr is 1/(2r)-secure.

Proof. We prove the (1/2r)-security of protocol CoinFlipr in a hybrid model where a trusted party for
computing ShareGenr with abort is available. Using standard techniques (see [9]), it then follows that
when replacing the trusted party computing ShareGenr with a sub-protocol that security computes
ShareGenr with abort, the resulting protocol is 1/(2r)-secure.

Specifically, for every polynomial-time hybrid-model adversary A corrupting P1 and running
CoinFlipr in the hybrid model, we show that there exists a polynomial-time ideal-model adversary
S corrupting P1 in the ideal model with access to a trusted party computing the coin-flipping
functionality such that the statistical distance between these two executions is at most 1/(2r)+ν(n),
for some negligible function ν(n). For simplicity, in the remainder of the proof we ignore the aspect
of message authentication in the protocol, and assume that the only malicious behavior of the
adversary A is early abort. This does not result in any loss of generality, since there is only a
negligible probably of forging an authentication tag.

8

On input (1n, aux) the ideal-model adversary S invokes the hybrid-model adversaryA on (1n, aux)
and queries the trusted party computing the coin-flipping functionality to obtain a bit c. The ideal-
model adversary S proceeds as follows:

1. S simulates the trusted party computing the ShareGenr functionality by sending A indepen-
dently and uniformly chosen shares a

(1)
1 , . . . , a

(1)
r , b

(1)
1 , . . . , b

(1)
r . If A aborts (i.e., if A sends

abort to the simulated ShareGenr after receiving the shares), then S outputs A’s output and
halts.

2. S chooses i∗ ∈ {1, . . . , r} uniformly at random.

3. In every round i ∈ {1, . . . , i∗ − 1}, S chooses a random bit ai, and sends A the share a
(2)
i =

a
(1)
i ⊕ ai. If A aborts then S outputs A’s output and halts.

4. In every round i ∈ {i∗, . . . , r}, S sends A the share a
(2)
i∗+1 = a

(1)
i∗+1⊕ c (recall that c is the value

received from the trusted party computing the coin-flipping functionality). If A aborts then
S outputs A’s output and halts.

5. At the end of the protocol S outputs A’s output and halts.

We now consider the joint distribution of A’s view and the output of the honest party P2 in the
ideal model and in the hybrid model. There are three cases to consider:

1. A aborts before round i∗. In this case the distributions are identical: in both models the view
of the adversary is the sequence of shares, and the sequence of messages up to the round in
which A aborted, and the output of P2 is a uniformly distributed bit which is independent of
A’s view.

2. A aborts in round i∗. In this case A’s view is identical in both models, but the distributions
of P2’s output given A’s view are not identical. In the ideal model, P2 outputs the random bit
c that was revealed to A by S in round i∗ (recall that c is the bit received from the trusted
party computing the coin-flipping functionality). In the hybrid model, however, the output of
P2 is the value bi∗−1 which is a random bit that is independent of A’s view. Thus, in this case
the statistical distance between the two distributions is 1/2. However, this case occurs with
probability at most 1/r since in both models i∗ is independent of A’s view until this round
(that is, the probability that A aborts in round i∗ is at most 1/r).

3. A aborts after round i∗ or does not abort. In this case the distributions are identical: the
output of P2 is the same random bit that was revealed to A in round i∗.

The above three cases imply that the statistical distance between the two distributions is at
most 1/(2r), and this concludes the proof.

Claim 3.2. In protocol CoinFlipr there exists an efficient adversarial party P ∗
1 that can bias the

output of P2 by 1−2−r

2r .

Proof. Consider the adversarial party P ∗
1 that completes the pre-processing phase, and then halts

in the first round i ∈ {1, . . . , r} for which ai = 0. We denote by Abort the random variable
corresponding to the round in which P ∗

1 aborts, where Abort = ⊥ if P ∗
1 does not abort. In addition,

we denote by c2 the random variable corresponding to the output bit of P2. Notice that if P ∗
1 aborts

9

in round j ≤ i∗ then P2 outputs a random bit, and if P ∗
1 does not abort then P2 always outputs 1.

Therefore, for every i ∈ {1, . . . , r} it holds that

Pr [c2 = 1 | i∗ = i] =
i∗∑

j=1

Pr [Abort = j | i∗ = i] Pr [c2 = 1 | Abort = j ∧ i∗ = i]

+Pr [Abort = ⊥ | i∗ = i] Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = i]

=
i∗∑

j=1

Pr [a1 = · · · = aj−1 = 1, aj = 0]Pr [c2 = 1 | Abort = j ∧ i∗ = i]

+Pr [a1 = · · · = ai∗ = 1] Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = i]

=
i∗∑

j=1

1
2j
· 1
2

+
1

2i∗ · 1

=
1
2

+
1

2i+1
.

This implies that

Pr [c2 = 1] =
r∑

i=1

Pr [i∗ = i] Pr [c2 = 1 | i∗ = i]

=
r∑

i=1

1
r

(
1
2

+
1

2i+1

)

=
1
2

+
1− 2−r

2r
.

4 The Generalized Protocol

In this section we prove Theorems 1.1 and 1.2 by presenting a more refined and generalized protocol.
The improvements over the protocol presented in Section 3 are as follows:

• Improved security guarantee. In the simplified protocol party P1 can bias the output of party
P2 (by aborting in round i∗), but party P2 cannot not bias the output of party P1. This is due
to the fact that party P1 always learns the output before party P2 does. In the generalized
protocol the party that learns the output before the other party is chosen uniformly at random
(i.e., party P1 learns the output before party P2 with probability 1/2). This is achieved by
having the parties exchange a sequence of 2r values (a1, b1), . . . , (a2r, b2r) (using the same
secret-sharing exchange technique as in the simplified protocol) with the following property:
for odd values of i, party P1 learns ai before party P2 learns bi, and for even values of i party
P2 learns bi before party P1 learns ai. Thus, party P1 can bias the result only when i∗ is odd,
and party P2 can bias the result only when i∗ is even. The key point is that the parties can
exchange the sequence of 2r shares in only r+1 rounds by combining some of their messages5.

• A larger class of functionalities. We consider the more general task of sampling from a dis-
tribution D = (D1,D2): party P1 receives a sample from D1 and party P2 receives a cor-
related sample from D2 (in coin-flipping, for example, the joint distribution D produces the

5Recall that each round consists of two moves: a message from P2 to P1 followed by a message from P1 to P2.

10

values (0, 0) and (1, 1) each with probability 1/2). Our generalized protocol can handle any
polynomially-sampleable distribution D.

In the following we describe the generalized protocol Samplingr (Section 4.1), and then prove its
security (Section 4.2).

4.1 Description of the Protocol

Joint input: Security parameter 1n, and a polynomially-sampleable distribution D = (D1,D2).

Preliminary phase:

1. Parties P1 and P2 run protocol π for computing ShareGenr(1n,D) (see Figure 3).
2. If P1 receives ⊥ from the above computation, it outputs a random sample from D1 and halts.

Likewise, if P2 receives ⊥ it outputs a random sample from D2 and halts. Otherwise, the
parties proceed.

3. Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
2r ,

(
b
(1)
1 , tb1

)
, . . . ,

(
b
(1)
2r , tb2r

)
, and ka

1 , . . . , ka
2r.

4. Denote the output of P2 from π by
(
a

(2)
1 , ta1

)
, . . . ,

(
a

(2)
2r , ta2r

)
, b

(2)
1 , . . . , b

(2)
2r , and kb

1, . . . , k
b
2r.

In round 1 do:

1. P2 sends a share to P1:

(a) P2 sends
(
a

(2)
1 , ta1

)
to P1.

(b) P1 receives
(
â

(2)
1 , t̂a1

)
from P2. If Vrfyka

1

(
1||â(2)

1 , t̂a1

)
= 0, then P1 outputs a random

sample from D1 and halts. Otherwise, P1 reconstructs a1 using the shares a
(1)
1 and â

(2)
1 .

2. P1 sends a pair of shares to P2:

(a) P1 sends
(
b
(1)
1 , tb1

)
and

(
b
(1)
2 , tb2

)
to P2.

(b) P2 receives
(
b̂
(1)
1 , t̂b1

)
and

(
b̂
(1)
2 , t̂b2

)
from P1. If Vrfykb

1

(
1||b̂(1)

1 , t̂b1

)
= 0, then P2 outputs

a random sample from D2 and halts. Otherwise, P2 reconstructs b1 using the shares b
(1)
1

and b
(2)
1 .

(c) If Vrfykb
2

(
2||b̂(1)

2 , t̂b2

)
= 0, then P2 outputs b1 and halts. Otherwise, P2 reconstructs b2

using the shares b
(1)
2 and b

(2)
2 .

In each round j = 2, . . . , r do:

1. P2 sends a pair of shares to P1:

(a) P2 sends
(
a

(2)
2j−2, t

a
2j−2

)
and

(
a

(2)
2j−1, t

a
2j−1

)
to P1.

(b) P1 receives
(
â

(2)
2j−2, t̂

a
2j−2

)
and

(
â

(2)
2j−1, t̂

a
2j−1

)
from P2. If Vrfyka

2j−2

(
2j − 2||â(2)

2j−2, t̂
a
2j−2

)
=

0, then P1 outputs a2j−3 and halts. Otherwise, P1 reconstructs a2j−2 using the shares
a

(1)
2j−2 and â

(2)
2j−2.

(c) If Vrfyka
2j−1

(
2j − 1||â(2)

2j−1, t̂
a
2j−1

)
= 0, then P1 outputs a2j−2 and halts. Otherwise, P1

reconstructs a2j−1 using the shares a
(1)
2j−1 and â

(2)
2j−1.

11

2. P1 sends a pair of shares to P2:

(a) P1 sends
(
b
(1)
2j−1, t

b
2j−1

)
and

(
b
(1)
2j , tb2j

)
to P2.

(b) P2 receives
(
b̂
(1)
2j−1, t̂

b
2j−1

)
and

(
b̂
(1)
2j , t̂b2j

)
from P1. If Vrfykb

2j−1

(
2j − 1||b̂(1)

2j−1, t̂
b
2j−1

)
= 0,

then P2 outputs b2j−2 and halts. Otherwise, P2 reconstructs b2j−1 using the shares b
(1)
2j−1

and b
(2)
2j−1.

(c) If Vrfykb
2j

(
2j||b̂(1)

2j , t̂b2j

)
= 0, then P2 outputs b2j−1 and halts. Otherwise, P2 reconstructs

b2j using the shares b
(1)
2j and b

(2)
2j .

In round r + 1 do:

1. P2 sends a share to P1:
(a) P2 sends

(
a

(2)
2r , ta2r

)
to P1.

(b) P1 receives
(
â

(2)
2r , t̂a2r

)
from P2. If Vrfyka

2r

(
2r||â(2)

2r , t̂a2r

)
= 0, then P1 outputs a2r−1 and

halts. Otherwise, P1 reconstructs a2r using the shares a
(1)
2r and â

(2)
2r .

2. P1 and P2 output the values a2r and b2r, respectively, and halt.

Functionality ShareGenr

Input: Security parameter 1n, and a polynomially-sampleable distribution D = (D1,D2).

Computation:

1. Choose i∗ ∈ {1, . . . , 2r} uniformly at random.
2. Define values a1, . . . , a2r and b1, . . . , b2r as follows:

• For 1 ≤ i ≤ i∗ − 1 sample ai ← D1 and bi ← D2 independently.
• Sample (c(1), c(2)) ← D, and for i∗ ≤ i ≤ r let (ai, bi) = (c(1), c(2)).

3. For 1 ≤ i ≤ 2r, choose
(
a
(1)
i , a

(2)
i

)
and

(
b
(1)
i , b

(2)
i

)
as random secret shares of ai and bi, respectively.

4. Compute ka
1 , . . . , ka

2r, k
b
1, . . . , k

b
2r ← Gen(1n). For 1 ≤ i ≤ 2r, let tai = Macka

i

(
i||a(2)

i

)
and tbi =

Mackb
i

(
i||b(1)

i

)
.

Output:

1. Party P1 receives the values a
(1)
1 , . . . , a

(1)
2r ,

(
b
(1)
1 , tb1

)
, . . . ,

(
b
(1)
2r , tb2r

)
, and ka = (ka

1 , . . . , ka
2r).

2. Party P2 receives the values
(
a
(2)
1 , ta1

)
, . . . ,

(
a
(2)
2r , ta2r

)
, b

(2)
1 , . . . , b

(2)
2r , and kb = (kb

1, . . . , k
b
2r).

Figure 3: The ideal functionality ShareGenr of the generalized two-party protocol.

4.2 Proof of Security

We remind the reader that SD(D,D1⊗D2) denotes the statistical distance between the joint distri-
bution D = (D1,D2) and the direct-product of the two marginal distributions D1 and D2. We prove
the following theorem which implies Theorems 1.1 and 1.2:

Theorem 4.1. For any polynomially-sampleable distribution D = (D1,D2) and polynomial r = r(n),
if protocol π securely computes ShareGenr with abort, then Samplingr is SD(D,D1⊗D2)

2r -secure.

12

Proof. As in the proof of Theorem 3.1 we prove the security of the protocol in a hybrid model
where a trusted party for computing ShareGenr with abort is available. For every polynomial-time
hybrid-model adversary A corrupting P1 and running Samplingr in the hybrid model, we show
that there exists a polynomial-time ideal-model adversary S corrupting P1 in the ideal model with
access to a trusted party that samples from D such that the statistical distance between these two
executions is at most SD(D,D1⊗D2)

2r + ν(n), for some negligible function ν(n). The proof for the case
that P2 is corrupted is essentially identical, and therefore is omitted. For simplicity we ignore the
aspect of message authentication, and assume that the only malicious behavior of A is early abort.
This does not result in any loss of generality, since there is only a negligible probably of forging an
authentication tag.

On input (1n, aux) the ideal-model adversary S invokes the hybrid-model adversaryA on (1n, aux)
and queries the trusted party who sends to the parties a sample (c1, c2) drawn from the joint
distribution D = (D1,D2). At this point S receives the value c1 which was sent to the corrupted P1.
S simulates the trusted party computing the ShareGenr functionality by sending A independently
and uniformly chosen shares a

(1)
1 , . . . , a

(1)
2r , b

(1)
1 , . . . , b

(1)
2r . If A aborts at this point then S outputs

A’s output and halts. Otherwise, S chooses i∗ ∈ {1, . . . , 2r} uniformly at random, and proceeds
by sending A shares a

(2)
1 , . . . , a

(2)
i∗+1 (in the order defined by the rounds of the protocol), where the

shares are defined as follows:

1. For every i ∈ {1, . . . , i∗ − 1}, S samples a random ai ← D1 and sets a
(2)
i = a

(1)
i ⊕ ai.

2. For every i ≤ {i∗, . . . , r}, S sets a
(2)
i∗ = a

(1)
i∗ ⊕ c1 where c1 is the value received from the trusted

party.

If at some point during the simulation A aborts, then S outputs A’s output and halts.
We now consider the joint distribution of the adversaries view and the output of the honest party

P2 in the ideal model and in the hybrid model, and show that the statistical distance between the
two distributions is as most SD(D,D1⊗D2)

2r . As in the proof of Theorem 3.1, note that the adversary’s
view is always identically distributed in both cases, and therefore we only need to consider the
distribution of P2’s output given the adversary’s view. There are two cases to consider, depending
on whether i∗ is even or odd.

Case 1: i∗ = 2j∗ for some j∗ ∈ {1, . . . , r}. In this case P2 learns its output in round j∗ and
P1 learns its output in round j∗ + 1, and we show that the two distributions are identical. There
are two cases to consider:

1. A aborts before round j∗ + 1. In both models if A aborts before round j∗ + 1 then he does
not receive the share a

(2)
i∗ = a

(2)
2j∗ since this share is sent by P2 only in round j∗+1. Therefore,

A’s view is independent of P2’s output.

2. A aborts in round j∗ + 1 or does not abort. In this case in both models A learns c1 and P2

outputs c2, where (c1, c2) are sampled from the joint distribution D = (D1,D2).

Case 2: i∗ = 2j∗ − 1 for some j∗ ∈ {1, . . . , r}. In this case both parties learn their outputs
in round j∗ but P1 learns its output first. Informally, P1 can bias P2’s output only by aborting in
round j∗ after receiving P2 messages for this round. More formally, there are three cases to consider:

1. A aborts before round j∗. In this case the distributions are identical: in both models the view
of the adversary is the sequence of shares, and the sequence of messages up to the round in

13

which A aborted, and the output of P2 is a random sample from D2 that is independent of
A’s view.

2. A aborts in round j∗. In this case A’s view is identical in both models, but the distributions of
P2’s output given A’s view are not identical. In the ideal model, P2 outputs the value c2 that
is correlated to the value c1 that was revealed to A by S in round i∗ (i.e., (c1, c2) is sampled
from the joint distribution D = (D1,D2)). In the hybrid model, however, the output of P2 is
the value bi∗−1 which is a random sample from D2 that is independent of A’s view. Thus, in
this case the statistical distance between the two distributions is SD(D,D1 ⊗ D2). However,
this case occurs with probability at most 1/2r since in both cases i∗ is odd with probability
exactly 1/2 and is independent of A’s view until this round (that is, the probability that A
aborts in round j∗ is at most 1/r).

3. A aborts in round j∗+1 or does not abort. In this case the distribution are identical: in both
models A learns c1 and P2 outputs c2, where (c1, c2) are sampled from the joint distribution
D = (D1,D2).

This implies that the statistical distance between the two distributions is at most SD(D,D1⊗D2)
2r

and concludes the proof of the theorem.

We conclude this section by showing that Theorem 4.2 is tight for the coin-flipping functionality:
there exists an efficient adversary that can bias the output of the honest party by essentially 1/(4r).
This adversary is a natural generalization of the adversary presented at the end of Section 3.

Claim 4.2. In protocol Samplingr instantiated with the distribution D that outputs the values (0, 0)
and (1, 1) each with probability 1/2, there exists an efficient adversarial party P ∗

1 that can bias the
output of P2 by 1−2−r

4r .

Proof. Consider the adversarial party P ∗
1 that completes the pre-processing phase, and then halts

in the first round j ∈ {1, . . . , r} for which a2j−1 = 0. We denote by Abort the random variable
corresponding to the round in which P ∗

1 aborts, where Abort = ⊥ if P ∗
1 does not abort. In addition,

we denote by c2 the random variable corresponding to the output bit of P2. Notice that if i∗ is even,
then P2 outputs 1 with probability 1/2. Now, suppose that i∗ = 2j∗ − 1 for some j∗ ∈ {1, . . . , r},
then there are two cases to consider:

• If P ∗
1 aborts in round j ≤ j∗ then P2 outputs a random bit.

• If P ∗
1 does not abort then P2 always outputs 1.

14

Therefore, for every j∗ ∈ {1, . . . , r} it holds that

Pr [c2 = 1 | i∗ = 2j∗ − 1]

=
j∗∑

j=1

Pr [Abort = j | i∗ = 2j∗ − 1] Pr [c2 = 1 | Abort = j ∧ i∗ = 2j∗ − 1]

+Pr [Abort = ⊥ | i∗ = 2j∗ − 1] Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = 2j∗ − 1]

=
j∗∑

j=1

Pr [a1 = · · · = a2j−3 = 1, a2j−1 = 0]Pr [c2 = 1 | Abort = j ∧ i∗ = 2j∗ − 1]

+Pr [a1 = · · · = a2j∗−3 = a2j∗−1 = 1]Pr [c2 = 1 | Abort = ⊥ ∧ i∗ = 2j∗ − 1]

=
j∗∑

j=1

1
2j
· 1
2

+
1

2j∗ · 1

=
1
2

+
1

2j∗+1
.

This implies that

Pr [c2 = 1] = Pr [i∗ is even] Pr [c2 = 1 | i∗ is even]

+
r∑

j∗=1

Pr [i∗ = 2j∗ − 1] Pr [c2 = 1 | i∗ = 2j∗ − 1]

=
1
2
· 1
2

+
r∑

j∗=1

1
2r

(
1
2

+
1

2j∗+1

)

=
1
2

+
1− 2−r

4r
.

5 Open Problems

Identifying the minimal computational assumptions. Blum’s coin-flipping protocol, as well
as its generalization that guarantees bias of O(1/

√
r), can rely on the existence of any one-way

function. We showed that the optimal trade-off between the round complexity and the bias can be
achieved assuming the existence of oblivious transfer, a complete primitive for secure computation.
A challenging problem is to either achieve the optimal bias based on seemingly weaker assumptions
(e.g., one-way functions), or to demonstrate that oblivious transfer is in fact essential.

Identifying the exact trade-off. The bias of our protocol almost exactly matches Cleve’s lower
bound: Cleve showed that any r-round protocol has bias at least 1/(8r + 2), and we manage to
achieve bias of at most 1/(4r − c) for some constant c > 0. It will be interesting to eliminate the
multiplicative gap of 1/2 by either improving Cleve’s lower bound or by improving our upper bound.
We note, however, that this cannot be resolved by improving the security analysis of our protocol
since there exists an efficient adversary that can bias our protocol by essentially 1/(4r) (see Section
4), and therefore our analysis is tight.

15

Efficient implementation. Our protocol uses a general secure computation step in the prepro-
cessing phase. Although asymptotically optimal, the techniques used in general secure computation
often have a large overhead. Hence, it would be helpful to find an efficient sub-protocol to compute
the ShareGenr functionality that can be used in a practical implementation.

References

[1] D. Aharonov, A. Ta-Shma, U. V. Vazirani, and A. C. Yao. Quantum bit escrow. In Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, pages 705–714, 2000.

[2] N. Alon and M. Naor. Coin-flipping games immune against linear-sized coalitions. SIAM
Journal on Computing, 22(2):403–417, 1993.

[3] A. Ambainis. A new protocol and lower bounds for quantum coin flipping. Journal of Computer
and System Sciences, 68(2):398–416, 2004.

[4] A. Ambainis, H. Buhrman, Y. Dodis, and H. Rohrig. Multiparty quantum coin flipping. In
Proceedings of the 19th Annual IEEE Conference on Computational Complexity, pages 250–259,
2004.

[5] B. Averbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement Bracha’s
O(log n) byzantine agreement algorithm. Manuscript, 1985.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pages 1–10, 1988.

[7] M. Ben-Or and N. Linial. Collective coin flipping. Randomness and Computation, pages 91–115,
1989.

[8] M. Blum. Coin flipping by telephone - A protocol for solving impossible problems. In Proceedings
of the 25th IEEE Computer Society International Conference, pages 133–137, 1982.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[10] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, pages 364–369, 1986.

[11] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete control processes.
http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps, 1993.

[12] U. Feige. Noncryptographic selection protocols. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 142–153, 1999.

[13] O. Goldreich. Foundations of Cryptography – Volume 2: Basic Applications. Cambridge Uni-
versity Press, 2004.

[14] D. Gordon and J. Katz. Partial fairness in secure two-party computation. Cryptology ePrint
Archive, Report 2008/206, 2008.

16

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

[15] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party com-
putation. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
413–422, 2008.

[16] S. D. Gordon and J. Katz. Rational secret sharing, revisited. In Proceedings on the 5th Inter-
national Conference on Security and Cryptography for Networks, pages 229–241, 2006.

[17] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation. In Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing, pages 623–632, 2004.

[18] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[19] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptogra-
phy. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science,
pages 230–235, 1989.

[20] J. Katz. On achieving the “best of both worlds” in secure multiparty computation. In Proceed-
ings of the 39th Annual ACM Symposium on Theory of computing, pages 11–20, 2007.

[21] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In Proceedings of the 5th Theory of Cryptography Conference, pages 320–339,
2008.

[22] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. Journal of
Cryptology, 16(3):143–184, 2003.

[23] T. Moran and M. Naor. Basing cryptographic protocols on tamper-evident seals. In Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming, pages 285–
297, 2005.

[24] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, 1991.

[25] A. Russell and D. Zuckerman. Perfect information leader election in log∗ n + O(1) rounds.
Journal of Computer and System Sciences, 63(4):612–626, 2001.

[26] M. Saks. A robust noncryptographic protocol for collective coin flipping. SIAM Journal on
Discrete Mathematics, 2(2):240–244, 1989.

[27] M. N. Wegman and L. Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

17

	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Coin-Flipping Protocols
	1/p-Indistinguishability and 1/p-Secure Computation
	One-Time Message Authentication

	A Simplified Protocol
	The Generalized Protocol
	Description of the Protocol
	Proof of Security

	Open Problems

