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Abstract. We propose simple, realistic protocols for polling that allow the
responder to plausibly repudiate his response, while at the same time allow
accurate statistical analysis of poll results. The protocols use simple physical
objects (envelopes or scratch-off cards) and can be performed without the aid
of computers. One of the main innovations of this work is the use of techniques
from theoretical cryptography to rigorously prove the security of a realistic,
physical protocol. We show that, given a few properties of physical envelopes,
the protocols are unconditionally secure in the universal composability frame-
work.

1. Introduction

In the past few years, a lot of attention has been given to the design and analysis
of electronic voting schemes. Constructing a protocol that meets all (or even most)
of the criteria expected from a voting scheme is generally considered to be a tough
problem. The complexity of current protocols (in terms of how difficult it is to
describe the protocol to a layperson) reflects this fact. A slightly easier problem,
which has not been investigated as extensively, is that of polling schemes.

Polling schemes are closely related to voting, but usually have slightly less ex-
acting requirements. In a polling scheme the purpose of the pollster is to get a
good statistical profile of the responses, however some degree of error is admissible.
Unlike voting, absolute secrecy is generally not a requirement for polling, but some
degree of response privacy is often necessary to ensure respondents’ cooperation.

The issue of privacy arises because polls often contain questions whose answers
may be incriminating or stigmatizing (e.g., questions on immigration status, drug
use, religion or political beliefs). Even if promised that the results of the poll will be
used anonymously, the accuracy of the poll is strongly linked to the trust responders
place in the pollster. A useful rule of thumb for polling sensitive questions is “bet-
ter privacy implies better data”: the more respondents trust that their responses
cannot be used against them, the likelier they are to answer truthfully. Using
polling techniques that clearly give privacy guarantees can significantly increase
the accuracy of a poll.

A well-known method for use in these situations is the “randomized response
technique” (RRT), introduced by Warner [25]. Roughly, Warner’s idea was to tell
responders to lie with some fixed, predetermined, probability (e.g., roll a die and
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lie whenever the die shows one or two). As the probability of a truthful result is
known exactly, statistical analysis of the results is still possible1, but an individual
answer is always plausibly deniable (the respondent can always claim the die came
up one).

Unfortunately, in some cases this method causes its own problems. In pre-
election polls, for example, responders have a strong incentive to always tell the
truth, ignoring the die (since the results of the polls are believed to affect the out-
come of the elections). In this case, the statistical analysis will give the cheating
responders more weight than the honest responders. Ambainis, Jakobsson and Lip-
maa [1] proposed the “Cryptographic Randomized Response Technique” to deal
with this problem. Their paper contains a number of different protocols that pre-
vent malicious responders from biasing the results of the poll while preserving the
deniability of the randomized response protocol. Unlike Warner’s original RRT,
however, the CRRT protocols are too complex to be implemented in practice with-
out the aid of computers. Since the main problem with polling is the responders’
lack of trust in the pollsters, this limitation makes the protocols of [1] unsuitable
in most instances.

The problem of trust in complex protocols is not a new one, and actually exists
on two levels. The first is that the protocol itself may be hard to understand, and its
security may not be evident to the layman (even though it may be formally proved).
The second is that the computers and operating system actually implementing the
protocol may not be trusted (even though the protocol itself is). This problem is
more acute than the first. Even for an expert, it is very difficult to verify that a
computer implementation of a complex protocol is correct.

Ideally, we would like to design protocols that are simple enough to grasp intu-
itively and can also be implemented transparently (so that the user can follow the
steps and verify that they are correct).

1.1. Our Results. In this paper we propose two very simple protocols for cryp-
tographic randomized response polls, based on tamper-evident seals (introduced in
a previous paper by the authors [18]). A tamper-evident seal is a cryptographic
primitive that captures the properties of a sealed envelope: while the envelope is
sealed, it is impossible to tell what’s inside, but if the seal is broken the envelope
cannot be resealed (so any tampering is evident). In fact, our CRRT protocols are
meant to be implemented using physical envelopes (or scratch-off cards) rather than
computers. Since the properties of physical envelopes are intuitively understood,
even by a layman, it is easy to verify that the implementation is correct.

The second important contribution of this paper, differentiating it from pre-
vious works concerning human-implementable protocols, is that we give a formal
definition and a rigorous proof of security for the protocols. The security is uncon-
ditional: it relies only on the physical tamper-evidence properties of the envelopes,
not on any computational assumption. Furthermore, we show that the protocols

1 For instance, suppose p > 1
2

is the probability of a truthful response, n is the total number of
responses, x is the number of responders who actually belong in the “yes” category and R is the
random variable counting the number of “yes” responses. R is the sum of n independent indicator
random varables, so R is a good estimation for E(R) = px+(1− p)(n−x) = x(2p− 1)+n(1− p).
Therefore, given R, we can accurately estimate the actual number of “yes” responders: x =
E(R)−n(1−p)

2p−1
.
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are “universally composable” (as defined by Canetti [3]). This is a very strong no-
tion of security that implies, via Canetti’s Composition Theorem, that the security
guarantees hold even under general concurrent composition

Our protocols implement a relaxed version of CRRT (called weakly secure in
[1]). We also give an inefficient strong CRRT protocol (that requires a large num-
ber of rounds), and give impossibility results and lower bounds for strong CRRT
protocols with a certain range of parameters (based on Cleve’s lower bound for
coin flipping [8]). These suggest that constructing a strong CRRT protocol us-
ing scratch-off cards may be difficult (or even impossible if we require a constant
number of rounds).

1.2. Related Work.

Randomized Response Technique. The randomized response technique for polling
was first introduced in 1965 [25]. Since then many variations have been proposed
(a survey can be found in [6]). Most of these are attempts to improve or change the
statistical properties of the poll results (e.g., decreasing the variance), or changing
the presentation of the protocol to emphasize the privacy guarantee (e.g., instead
of lying, tell the responders to answer a completely unrelated question). A fairly
recent example is the “Three Card Method” [14], developed for the United States
Government Accountability Office (GAO) in order to estimate the size of the illegal
resident population. None of these methods address the case where the responders
maliciously attempt to bias the results.

To the best of our knowledge, the first polling protocol dealing explicitly with
malicious bias was given by Kikuchi, Akiyama, Nakamura and Gobioff. [17], who
proposed to use the protocol for voting (the protocol described is a randomized
response technique, although the authors do not appear to have been aware of the
previous research on the subject). Their protocol is still subject to malicious bias
using a “premature halting” attack (this is equivalent to the attack on the RRT
protocol in which the responder rolls a die but refuses to answer if result of the
die is not to his liking). A more comprehensive treatment, as well as a formal
definition of cryptographic randomized response, was given by Ambainis et al. [1].
In their paper, Ambainis et al. also give a protocol for Strong CRRT, in which the
premature halting attack is impossible. In both the papers [17, 1], the protocols
are based on cryptographic assumptions and require computers to implement.

Independently of this work, Stamm and Jakobsson show how to implement the
protocol of [1] using playing cards [24]. They consider this implementation only as
a visualization tool. However, if we substitute envelopes for playing cards (and add
a verification step), this protocol gives a Responder-Immune protocol (having some
similarities to the one described in Section 3.2).
Deniable and Receipt-Free Protocols. The issues of deniability and coercion have
been extensively studied in the literature (some of the early papers in this area
are [2, 22, 4, 5, 15]). There are a number of different definitions of what it means
for a protocol to be deniable. Common to all of them is that they protect against
an adversary that attacks actively only after the protocol execution: in particular,
this allows the parties to lie about their random coins. Receipt-Free protocols
provide a stronger notion of security: they guarantee that even if a party is actively
colluding with the adversary, the adversary should have no verifiable information
about which input they used. Our notion of “plausible deniability” is weaker than
both “traditional” deniability and receipt-freeness, in that we allow the adversary to
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gain some information about the input. However, as in receipt-freeness, we consider
an adversary that is active before and during the protocol, not just afterwards.
Secure Protocols Using “Real” Objects. The idea of using real objects to provide
security predates cryptography: people have been using seals, locks and envelopes
for much of history. Using real objects to implement protocols that use them in
non-obvious ways is a newer notion. Fagin, Naor and Winkler [16] propose protocols
for comparing secret information that use various objects, from paper cups to the
telephone system. In a more jocular tone, Naor, Naor and Reingold [19] propose
a protocol that provides a “zero knowledge proof of knowledge” of the correct
answer to the children’s puzzle “Where’s Waldo” using “low-tech devices” (e.g.,
a large newspaper and scissors). In all these works the security assumptions and
definitions are informal or unstated. Crépeau and Kilian [10] show how to use a
deck of cards to play “discreet” solitary games (these involve hiding information
from yourself). Their model is formally defined, however it is not malicious; the
solitary player is assumed to be honest but curious.

A related way of using real objects is as aids in performing a “standard” calcu-
lation. Examples in this category include Schneier’s “Solitaire” cipher [23] (imple-
mented using a pack of cards), and the “Visual Cryptography” of Naor and Shamir
[21] (which uses the human visual system to perform some basic operations on im-
ages). The principles of Visual Cryptography form the basis for some more complex
protocols, such as the “Visual Authentication” protocol of Naor and Pinkas [20],
and Chaum’s human verifiable voting system [7].
Tamper-Evident Seals. This work can be viewed as a continuation of a previous
work by the authors on tamper-evident seals [18]. In [18], we studied the pos-
sibility of implementing basic cryptographic primitives using different variants of
physical, tamper-evident seals. In the current work we focus on their use in realistic
cryptographic applications, rather than theoretical constructs (for instance, there
is a very sharp limit on the number of rounds and the number of envelopes that
can be used in a protocol that we expect to be practical for humans). We limit
ourselves to the “distinguishable envelope” (DE) model, as this model has a number
of intuitive physical embodiments, while at the same time is powerful enough, in
theory, to implement many useful protocols2 (an informal description of this model
is given in Section 2.3; for a formal definition see [18]).
Overview of Paper. In Section 2, we give formal definitions of the functionalities we
would like to realize and the assumptions we make about the humans implementing
the protocols. Section 3 gives an informal description of the CRRT protocols. In
Section 4, we show how to amplify a weak CRRT protocol in order to construct a
strong CRRT protocol, and give some impossibility results and lower bounds for
strong CRRT protocols. Finally, a discussion and some open problems appear in
Section 5.

The formal protocol specification and proof of security for our Pollster-Immune
CRRT protocol appears in Appendix A. Due to space constraints, the complete
specifications and formal proofs for the other protocols will appear only in the full
version of this paper.

2Although the “indistinguishable envelope model” (also defined in [18]) is stronger (e.g., obliv-
ious transfer is possible in this model), it seems to be very hard to devise a secure, physical
realization of this functionality.
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2. The Model

Ideal Functionalities. Many two-party functionalities are easy to implement using
a trusted third party that follows pre-agreed rules. In proving that a two-party
protocol is secure, we often want to say that it behaves “as if it were performed
using the trusted third party”. The “Universal Composability” framework, defined
by Canetti [3], is a formalization of this idea. In the UC model, the trusted third
party is called the ideal functionality. If every attack against the protocol can
also be carried out against the ideal functionality, we say the protocol realizes
the functionality. Canetti’s Composition Theorem says that any protocol that is
secure using the ideal functionality, will remain secure if we replace calls to the
ideal functionality with executions of the protocol.

Defining the security guarantees of our protocols as ideal functionalities has an
additional advantage as well: it is usually easier to understand what it means for
a protocol to satisfy a definition in this form than a definition given as a list of
properties. Below, we describe the properties we wish to have in a CRRT protocol,
and give formal definitions in the form of ideal functionalities.

2.1. Cryptographic Randomized Response. A randomized response protocol
involves two parties, a pollster and a responder. The responder has a secret input
bit b (this is the true response to the poll question). In the ideal case, the pollster
learns a bit c, which is equal to b with probability p (p is known to the pollster) and
to 1 − b with probability 1 − p. Since p is known to the pollster, the distribution
of responders’ secret inputs can be easily estimated from the distribution of the
pollster’s outputs.

The essential property we require of a Randomized Response protocol is plausible
deniability: A responder should be able to claim that, with reasonable probability,
the bit learned by the pollster is not the secret bit b. This should be the case even
if the pollster maliciously deviates from the protocol.

A Cryptographic Randomized Response protocol is a Randomized Response pro-
tocol that satisfies an additional requirement, bounded bias : The probability that
c = b must be at most p, even if the responder maliciously deviates from the proto-
col. The bounded bias requirement ensures that malicious responders cannot bias
the results of the poll (other than by changing their own vote). Note that even in
the ideal case, a responder can always choose any bias p′ between p and 1 − p, by
randomly choosing whether to vote b or 1 − b (with the appropriate probability).

2.1.1. Strong p-CRRT. In a strong CRRT protocol, both the deniability and bounded
bias requirements are satisfied. Formally, this functionality has a single command:

Vote b: The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin c, such that c = 0 with
probability p. It then outputs b ⊕ c to the pollster and the adversary.

Unfortunately, we do not know how to construct a practical strong CRRT pro-
tocol that can be implemented by humans. In Section 4, we present evidence to
suggest that finding such a protocol may be hard (although we do show an imprac-
tical strong CRRT protocol, that requires a large number of rounds). The protocols
we propose satisfy relaxed conditions: The first protocol is immune to malicious
pollsters (it is equivalent to strong CRRT if the pollster is honest), while the second
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is immune to malicious responders (it is equivalent to strong CRRT if the responder
is honest).

2.1.2. Pollster-Immune p-CRRT (adapted from Weak CRRT in [1]). This is a weak-
ened version of CRRT, where a malicious pollster cannot learn more than an honest
pollster about the responder’s secret bit. A malicious responder can bias the result
by deviating from the protocol (halting early). A cheating responder will be caught
with fixed probability, however, so the pollster can accurately estimate the number
of responders who are cheating (and thus bound the resulting bias). When the
pollster catches the responder cheating, it outputs ⊠ instead of its usual output.
Formally, the ideal functionality accepts the following commands:

Query: The issuer of this command is the pollster, the other party is the
responder. The functionality ignores all commands until it receives this
one. On receiving this command the functionality chooses a uniformly
random bit r and a bit v, such that v = 1 with probability 2p − 1. If
the responder is corrupted, the functionality then sends both bits to the
adversary.

Vote b: On receiving this command from the responder, the functionality
checks whether v = 1. If so, it outputs b to the pollster, otherwise it
outputs r to the pollster.

Halt: This command captures the responder’s ability to cheat. On receiving
this command from a corrupt responder, the functionality outputs ⊠ to the
pollster and halts.

The functionality is slightly more complex (and a little weaker) than would
appear to be necessary, and this requires explanation. Ideally, the functionality
should function as follows: the responder casts her vote, and is notified of the
actual bit the pollster would receive. The responder then has the option to halt
(and prevent the pollster from learning the bit). Our protocol gives the corrupt
responder a little more power: the responder first learns whether the pollster will
receive the bit sent by the responder, or whether the pollster will receive a bit fixed
in advance (regardless of what the responder sends). The responder can then plan
her actions based on this information. The functionality we describe is the one that
is actually realized by our protocol (for p = 3

4 ).

2.1.3. Responder-Immune p-CRRT. In this weakened version of CRRT, malicious
responders cannot bias the results more than honest responders, but a malicious
pollster can learn the responder’s secret bit. In this case, however, the responder
will discover that the pollster is cheating. When the responder catches the pollster
cheating, it outputs ⊠ to signify this. The functionality accepts the following
commands:

Vote b: The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin c, such that c = 0 with
probability p. It then outputs b ⊕ c to the pollster and adversary.

Reveal: The command may only be sent by a corrupt pollster after the Vote
command was issued by the responder. On receiving this command, the
functionality outputs b to the adversary and ⊠ to the responder.

Test x: : The command may only be sent by a corrupt pollster, after the
Vote command was issued by the responder. On receiving this command:
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• if x = b, then with prob. 1
2 it outputs b to the adversary and ⊠ to

the responder, and with prob. 1
2 it outputs ⊥ to the adversary (and

nothing to the responder).
• if x = 1− b the functionality outputs ⊥ to the adversary (and nothing

to the responder).

Ideally, we would like to realize responder-immune CRRT without the Test com-
mand. Our protocol realizes this slightly weaker functionality (for p = 2

3 ). It may
appear that a corrupt pollster can cheat without being detected using the Test

command. However, for any corrupt pollster strategy, if we condition on the poll-
ster’s cheating remaining undetected, the pollster gains no additional information
about the responder’s choice (since in that case the response to the Test command
is always ⊥).

2.2. Modelling Humans. The protocols introduced in this paper are meant to be
implemented by humans. To formally prove security properties of the protocols, it
is important to make explicit the abilities and limitations we expect from humans.
Following Instructions. The most basic assumption we make about the parties par-
ticipating in the protocol is that an honest party will be able to follow the instruc-
tions of the protocol correctly. While this requirement is clearly reasonable for
computers, it may not be so easy to achieve with humans (e.g., one of the problems
encountered with the original randomized response technique is that the respon-
ders sometimes had difficulty understanding what they were supposed to do). The
ability to follow instructions depends on the complexity of the protocol (although
this is a subjective measure, and hard to quantify). Our protocols are secure and
correct only assuming the honest parties are actually following the protocol. Un-
fortunately, we do not know how to predict whether this assumption actually holds
for a specific protocol without “real” experimental data.
Random Choice. Our protocols require the honest parties to make random choices.
Choosing a truly random bit may be very difficult for a human (in fact, even
physically tossing a coin has about 0.51 probability of landing on the side it started
on [13]). For the purposes of our analysis, we assume that whenever we require
a party to make a random choice it is uniformly random. In practice, a random
choice may be implemented using simple physical means (e.g., flipping a coin or
rolling a die). In practice, the slight bias introduced by physical coin flipping will
not have a large effect on the correctness or privacy of our protocols.
Non-Requirements. Unlike many protocols involving humans, we do not assume
any additional capabilities beyond those described above. We don’t require parties
to forget information they have learned, or to perform actions obliviously (e.g.,
shuffle a deck without knowing what the permutation was). Of particular note, we
don’t require the parties to watch each other during the protocol: this means the
protocols can be conducted by mail.

2.3. Distinguishable Envelopes. Our CRRT protocols require a physicial as-
sumption: tamper-evident envelopes or scratch-off cards. Formally, we model these
by an ideal functionality we call “Distinguishable Envelopes” (defined in [18]).
Loosely speaking, a distinguishable envelope is an envelope in which a message
can be sealed. Anyone can open the envelope (and read the message), but the
broken seal will be evident to anyone looking at the envelope.
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Figure 3.1. Sample execution of pollster-immune protocol

3. An Informal Presentation of the Protocols

It is tempting to try to base a CRRT protocol on oblivious transfer (OT), since
if the responder does not learn what the pollster’s result is, it may be hard to
influence it (in fact, one of the protocols in [1] is based on OT). However, OT is
impossible in the DE model [18]. As we show in Section 4.1, this proof implies that
in any CRRT protocol using distinguishable envelopes, the responder must learn a
lot about the pollster’s result. In both our protocols, the responder gets complete
information about the final result.

To make the presentation more concrete, suppose the poll question is “do you
eat your veggies?”. Clearly, no one would like to admit that they do not have a
balanced diet. On the other hand, pressure groups such as the “People for the
Ethical Treatment of Salad” have a political interest in biasing the results of the
poll, making it a good candidate for CRRT.

3.1. Pollster-Immune CRRT. This protocol can be implemented with pre-printed
scratch-off cards: The responder is given a scratch-off card with four scratchable
“bubbles”, arranged in two rows of two bubbles each. In each row, the word “Yes”
is hidden under one bubble and the word “No” under the other (the responder
doesn’t know which is which). The responder scratches a random bubble in each
row. Suppose the responder doesn’t eat her veggies. If one of the rows (or both)
show the word “No”, she “wins” (and the pollster will count the response as ex-
pressing dislike of vegetables). If both bubbles show “Yes”, she “loses” (and the
pollster will count the response as expressing a taste for salad). In any case, before
returning the card to the pollster, the responder “eliminates” the row that shows
the unfavored answer by scratching the entire row (she picks one of the rows at ran-
dom if both rows show the same answer) Thus, as long as the responder follows the
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protocol, the pollster receives a card that has one “eliminated” (entirely scratched)
row and one row showing the result he will count. An example of protocol execution
appears in Figure 3.1.
Security Intuition. Note that in exactly 3

4 of the cases the counted result will match
the responder’s intended result. Moreover, without invalidating the entire card,
the responder cannot succeed with higher probability. On the other hand, this
provides the responder with plausible deniability: she can always claim both rows
were “bad”, and so the result didn’t reflect her wishes. Because the pollster doesn’t
know which were the two bubbles that were scratched first, he cannot refute this
claim. An important point is that plausible deniability is preserved even if the
pollster attempts to cheat (this is what allows the responder to answer the poll
accurately even when the pollster isn’t trusted). Essentially, the only way the
pollster can cheat without being unavoidably caught is to put the same answer
under both bubbles in one of the rows. To get a feeling for why this doesn’t help,
write out the distribution of responses in all four cases (cheating/honest, Yes/No).
It will be evident that the pollster does not get any additional information about
the vote from cheating in this way.

On the other hand, the responder learns the result before the pollster, and can
decide to quit if it’s not to her liking (without revealing the result to the pollster).
Since the pollster does not know the responder’s outcome, this has the effect of bi-
asing the result of the poll. However, by counting the number of prematurely halted
protocol executions, the pollster can accurately estimate the number of cheating
responders.

The formal protocol specification and proof appear in Appendix A.
Generalizing to any rational p. The protocol above realizes Pollster-Immune 3

4 -
CRRT. In some cases we require a p-CRRT protocol for different values of p. In
particular, if we need to repeat the poll, we need the basic protocol to have p closer
to 1

2 (in order to maintain the plausible deniability).

The following protocol will work for any rational p = k
n

(assume k > 1
2n): As in

the former protocol, the pollster generates two rows of bubbles. One row contains
k “Yes” bubbles and n − k “No” bubbles in random order (this row is the “Yes”
row), and the other contains k “No” bubbles and n − k “Yes” bubbles (this row is
the “No” row). The rows are also in a random order. The responder’s purpose is
to find the row matching her choice. She begins by scratching a single bubble in
each row. If both bubbles contain the same value, she “eliminates” a random row
(by scratching it out completely). Otherwise, she “eliminates” the row that does
not correspond to her choice. The pollster’s output is the majority value in the row
that was not eliminated. The probability that the pollster’s output matches the
responder’s choice is exactly p.

Unfortunately, this protocol is completely secure only for a semi-honest pollster
(one that correctly generates the scratch-off cards). A malicious pollster can cheat
in two possible ways: he can replace one of the rows with an invalid row (one
that does not contain exactly k “Yes” bubbles or exactly k “No” bubbles), or he
can use two valid rows that have the same majority value (rather than opposite
majority values). In both cases the pollster will gain additional information about
the responder’s choice. This means the protocol does not realize the ideal Pollster-
Immune CRRT functionality.
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Figure 3.2. Sample execution of responder-immune protocol

If the pollster chooses to use an invalid row, he will be caught with probability at
least 1

2 (1−p) (since with this probability the responder will scratch identical bubbles
in both rows, and choose to eliminate the invalid row). We can add “cheating
detection” to the protocol to increase the probability of detecting this attack. In
a protocol with cheating detection, the pollster gives the responder ℓ scratch-off
cards rather than just one (each generated according to the basic protocol). The
responder chooses one card to use as in the basic protocol. On each of the other
cards, she scratches off a single row (chosen randomly), and verifies that it contains
either exactly k “Yes” bubbles or exactly k “No” bubbles. She then returns all the
cards to the pollster (this step is necessary to prevent the responder from increasing
her chances by trying multiple cards until one gives the answer she wants). A
pollster that cheats by using an invalid row will be caught with probability 1 − 1

ℓ
.

A malicious pollster can still cheat undetectably by using two valid rows with
identical majorities. This gives only a small advantage, however, and in practice
the protocol may still be useful when p is close to 1

2 .

3.2. Responder-Immune CRRT. The responder takes three envelopes (e.g., la-
belled “1”, “2” and “3”), and places one card containing either “Yes” or “No” in
each of the envelopes. If she would like to answer “No”, she places a single “Yes”
card in a random envelope, and one “No” card in each of the two remaining en-
velopes. She then seals the envelopes and gives them to the pollster (remembering
which of the envelopes contained the “Yes” card).

The pollster chooses a random envelope and opens it, revealing the card to the
responder. He then asks the responder to tell him which of the two remaining
envelopes contains a card with the opposite answer. He opens that envelope as
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well. If the envelope does contain a card with the opposite answer, he records
the answer on the first card as the response to the poll, and returns the third
(unopened) envelope to the responder.

If both opened envelopes contain the same answer, it can only be because the
responder cheated. In this case, the pollster opens the third envelope as well. If
the third envelope contains the opposite answer, the pollster records the answer on
the first card as the response to the poll. If, on the other hand, all three envelopes
contain the same answer, the pollster rolls a die: A result of 1 to 4 (probability 2

3 )
means he records the answer that appears in the envelopes, and a result of 5 or 6
means she records the opposite answer. An example of protocol execution (where
both parties follow the protocol) appears in Figure 3.2.
Security Intuition. In this protocol, the responder gets her wish with probability
at most 2

3 no matter what she does. If she follows the protocol when putting
the answers in the envelopes, the pollster will choose the envelope containing the
other answer with probability 1

3 . If she tries to cheat by putting the same answer
in all three envelopes, the pollster will roll a die and choose the opposite answer
with probability 1

3 . The pollster, on the other hand, can decide to open all three
envelopes and thus discover the real answer favored by the responder. If he does
this, however, the responder will see that the seal on the returned envelope was
broken and know the pollster was cheating.

The pollster may also be able to cheat in an additional way: he can open two
envelopes before telling the responder which envelope he opened, and hope that
the responder will not require him to return an envelope that was already opened.
This attack is what requires us to add the Test command to the functionality.
Implementation Notes. This protocol requires real envelopes (rather than scratch-
off cards) to implement, since the responder must choose what to place in the
envelopes (and we cannot assume the responder can create a scratch-off card). In
general, tamper-evidence for envelopes may be hard to achieve (especially as the
envelopes will most likely be provided by the pollster). In this protocol, however,
the pollster’s actions can be performed in full view of the responder, so any opening
of the envelopes will be immediately evident. When this is the case, the responder
can tell which envelope the pollster opened first, so the protocol actually realizes
the stronger version of the Responder-Immune CRRT functionality (without the
Test command).

If the penalty for a pollster caught cheating is large enough, the privacy guaran-
teed by this protocol, may be enough to convince responders to answer accurately
in a real-world situation even with the weaker version of the functionality. This is
because any pollster cheating that can possibly reveal additional information about
the responder’s choice carries with it a corresponding risk of detection.
Generalizing to any rational p. When the pollster’s actions are performed in view
of the responder (in particular, when the responder can see exactly which envelopes
are opened by the pollster), this protocol has a straightforward generalization to
any rational p = k

n
, where k > 1

2n: the responder uses n (rather than 3) envelopes,
of which k contain her choice and n − k contain its opposite. After the pollster
chooses an envelope to open, the responder shows him n−k envelopes that contain
the opposite value.

Note that when this generalized protocol is performed by mail, it does not realize
the ideal functionality defined in Section 2.1.3.
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4. Strong CRRT Protocols

Ideally, we would like to have CRRT protocols that cannot be biased at all by
malicious responders, while perfectly preserving the responder’s deniability, even
against malicious pollsters. Unfortunately, the protocols described in Section 3 do
not quite achieve this. At the expense of increasing the number of rounds, we can
get arbitrarily close to the Strong-CRRT functionality defined in Section 2.1.1.

Consider a protocol in which the pollster and responder perform the pollster-
immune p-CRRT protocol r times, one after the other (with the responder using
the same input each time). The pollster outputs the majority of the subprotocols’
outputs. If the responder halts at any stage, the pollster uses uniformly random
bits in place of the remaining outputs.

This protocol gives a corrupt responder at most O( 1√
r
) advantage over an honest

responder. We give here only the intuition for why this is so: Clearly, if a corrupt
responder wants to bias the result to some bit b, it is in her best interest to use b for
all the inputs. Since the subprotocol securely realizes p-CRRT, the only additional
advantage she can gain is by halting at some round i. However, halting affects the
result only if the other r−1 rounds were balanced (this is the only case in which the
outcome of the ith round affects the majority). In the case where p = 1

2 , it is easy to

see that the probability for this occurring is O( 1√
r
). However, the probability that

r−1 independent weighted coin flips are balanced is maximized when p = 1
2 . Thus,

the additional advantage that can be gained by the adversary is at most O( 1√
r
).

The problem with the amplification protocol described above is that the prob-
ability that an honest responder will get the result she wants tends to 1 as the
number of rounds grows, for any constant p > 1

2 . Therefore, to preserve plausible

deniability we must use a p-CRRT protocol where p is very close to 1
2 , such as the

protocol described in Section 3.1 that works for any rational p. This adds further
complexity to the protocol (e.g., our generalized Pollster-Immune protocol requires
Ω(1

ǫ
) bubbles on the scratch-off card for p = 1

2 + ǫ). This, this multi-round protocol
is probably not feasible in practice.

4.1. Lower Bounds and Impossibility Results. In this section we attempt to
show that constructing practical strong CRRT protocols is a difficult task. We do
this by giving impossibility results and lower bounds for implementing subclasses of
the strong CRRT functionality. We consider a generalization of the strong p-CRRT
functionality defined in Section 2.1, which we call (p, q)-CRRT. The (p, q)-CRRT
functionality can be described as follows:

Vote b: The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin c, such that c = 0 with
probability p. It then outputs b ⊕ c to the pollster. The functionality sup-
plies the responder with exactly enough additional information so that she
can guess c with probability q ≥ p.

In the definition of strong CRRT given in Section 2.1, we specify exactly how much
information the pollster learns about the responder’s choice, but leave completely
undefined what a cheating responder can learn about the pollster’s result. The
(p, q)-CRRT functionality quantifies this information: in a (p, p)-CRRT, the respon-
der does not gain any additional information (beyond her pre-existing knowledge
that the pollster’s result will equal her choice with probability p). In a (p, 1)-CRRT,
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the responder learns the pollster’s result completely. We show that (p, p)-CRRT
implies oblivious transfer (and is thus impossible in the DE model), while (p, 1)-
CRRT implies strong coin-flipping (and thus we can lower-bound the number of
rounds required for the protocol). For values of q close to p or close to 1, the same
methods can still be used to show lower bounds.

4.1.1. (p, q)-CRRT when q is close to p: First, note that when p = q we can view
the (p, q)-CRRT functionality as a binary symmetric channel (BSC) with error
probability 1 − p. Crépeau and Kilian have shown that a protocol for Oblivious
Transfer (OT) can be constructed based on any BSC [9]. However, it is impossible
to implement OT in the Distinguishable Envelope (DE) model [18]. Therefore
(p, p)-CRRT cannot be implemented in the DE model. It turns out that this is
also true for any q close enough to p. This is because, essentially, the (p, q)-CRRT
functionality is a (1 − q, 1 − p)-Passive Unfair Noisy Channel (PassiveUNC), as
defined by Damg̊ard, Kilian and Salvail [12]. A (γ, δ)-PassiveUNC is a BSC with
error δ which provides the corrupt sender (or receiver) with additional information
that brings his perceived error down to γ; (i.e., a corrupt sender can guess the bit
received by the receiver with probability 1 − γ, while an honest sender can guess
this bit only with probability 1 − δ). For γ and δ that are close enough (the exact
relation is rather complex), Damg̊ard, Fehr, Morozov and Salvail [11] show that a
(γ, δ)-PassiveUNC is sufficient to construct OT. For the same range of parameters,
this implies that realizing (p, q)-CRRT is impossible in the DE model.

4.1.2. (p, q)-CRRT when q is close to 1: When q = 1, both the pollster and the
responder learn the poll result together. A (p, 1)-CRRT can be used as a protocol
for strongly fair coin flipping with bias p− 1

2 . In a strongly fair coin flipping protocol
with bias ǫ, the bias of an honest party’s output is at most ǫ regardless of the other
party’s actions — even if the other party aborts prematurely. If q is close to 1, we
can still construct a coin flipping protocol, albeit without perfect consistency. The
protocol works as before, except that the responder outputs his best guess for the
pollster’s output: both will output the same bit with probability q.

A result by Cleve [8] shows that even if all the adversary can do is halt prema-
turely (and must otherwise follow the protocol exactly), any r-round protocol in
which honest parties agree on the output with probability 1

2 + ǫ can be biased by
at least ǫ

4r+1 . Cleve’s proof works by constructing 4r+1 adversaries, each of which
corresponds to a particular round. An adversary corresponding to round i follows
the protocol until it reaches round i. It then halts immediately, or after one extra
round. The adversary’s decision is based only on what the ourput of an honest
player would be in the same situation, should the other party halt after this round.
Cleve shows that the average bias achieved by these adversaries is ǫ

4r+1 , so at least
one of them must achieve this bias. The same proof also works in the DE model,
since all that is required is that the adversary be able to compute what it would
output should the other player stop after it sends the messages (and envelopes) for
the current round. This calculation may require a party to open some envelopes
(the problem being that this might prevent the adversary from continuing to the
next round). However, an honest player would be able to perform the calculation
in the next round, after sending this round’s envelopes, so it cannot require the
adversary to open any envelopes that may be sent in the next round.
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Cleve’s lower bound shows that a (p, q)-CRRT protocol must have at least
q− 1

2

4(p− 1

2
)
− 1

4 rounds. Since a protocol with a large number of rounds is imprac-

tical for humans to implement, this puts a lower bound on the bias p (finding a
CRRT protocol with a small p is important if we want to be able to repeat the poll
while still preserving plausible deniability).

This result also implies that it is impossible to construct a (p, 1)-CRRT protocol
in which there is a clear separation between the responder’s choice and the final out-
put. That is, the following functionality, which we call p-CRRT with confirmation,
is impossible to implement in the DE model:

Vote b: The issuer of this command is the responder. On receiving this com-
mand the functionality outputs “Ready?” to the pollster. When the poll-
ster answers with “ok” the functionality tosses a weighted coin c, such that
c = 0 with probability p. It then outputs b⊕c to the pollster and responder.

p-CRRT with confirmation is identical to (p, 1)-CRRT, except that the output isn’t
sent until the pollster is ready. The reason it is impossible to implement is that
this functionality can be amplified by parallel repetition to give a strongly fair coin
flipping protocol with arbitrarily small p. Since the amplification is in parallel, it
does not increase the number of rounds required by the protocol, and thus con-
tradicts Cleve’s lower bound. Briefly, the amplified protocol works as follows: the
responder chooses k inputs randomly, and sends each input to a separate (paral-
lel) instance of p-CRRT with confirmation. The pollster waits until all the inputs
have been sent (i.e., it receives the “Ready?” message from all the instances), then
sends “ok” to all the instances. The final result will be the xor of the outputs of all
the instances. Since the different instances act independently, the bias of the final
result is exponentially small in k.

5. Discussion and Open Problems

Polling Protocols by Mail. The pollster-immune CRRT protocol requires only a
single round; This makes it convenient to use in polls through the post (it only
requires the poll to be sent to the responder, “filled out” and returned). The
responder-immune protocol presents additional problems when used through the
post. First, in this case the protocol realizes a slightly weaker functionality than in
the face-to-face implementation. Second, it requires two rounds, and begins with
the responder. This means, in effect, that it would require an extra half-round
for the pollster to notify the responder about the existence of the poll. It would
be interesting to find a one-round protocol for the responder-immune functionality
as well. It may be useful, in this context, to differentiate between “information-
only” communication (which can be conducted by phone or email), and transfer of
physical objects such as envelopes (which require “real” mail).
Efficient Generalization to Arbitrary p. We describe efficient p-CRRT protocols for
specific values of p: p = 3

4 in the Pollster-Immune case, and p = 2
3 in the Responder-

Immune case. Our generalized protocols are not very efficient: for p = 1
2 + ǫ they

require Ω(1
ǫ
) envelopes. In a protocol meant to be implemented by humans, the

efficiency of the protocol has great importance. It would be useful to find an
efficient general protocol to approximate arbitrary values of p (e.g., logarithmic in
the approximation error).
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Side-Channel Attacks. The privacy of our protocols relies on the ability of the re-
sponder to secretly perform some actions. For instance, in the pollster-immune
protocol we assume that the order in which the bubbles on the card were scratched
remains secret. In practice, some implementations may be vulnerable to an attack
on this assumption. For example, if the pollster uses a light-sensitive dye on the
scratch-off cards that begins to darken when the coating is scratched off, he may
be able to tell which of the bubbles was scratched first. Side-channel attacks are
attacks on the model, not on the CRRT protocols themselves. As these attacks
highlight, when implementing CRRT using a physical implementation of Distin-
guishable Envelopes, it is important to verify that this implementation actually
does realize the required functionality.
Dealing With Human Limitations. Our protocols make two assumptions about the
humans implementing them: that they can make random choices and that they
can follow instructions. The former assumption can be relaxed: if the randomness
“close to uniform” the security and privacy will suffer only slightly (furthermore,
simple physical aids, such as coins or dice, make generating randomness much
easier). The latter assumption is more critical; small deviations from the protocol
can result in complete loss of privacy or security. Constructing protocols that are
robust to human error could be very useful.
Practical Strong CRRT Protocols. As we discuss in Section 4.1, for a range of pa-
rameters p, q-CRRT is impossible, and for a different range of parameters it is
impractical. For some very reasonable values, such as 3

4 -Strong CRRT, we can ap-
proximate the functionality using a large number of rounds, but do not know how
to prove any lower bound on the number of rounds required. Closing this gap is
an obvious open question. Alternatively, finding a physical model in which efficient
Strong CRRT is possible is also an interesting direction.
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Appendix A. A Pollster-Immune
3
4 -CRRT Protocol

A.1. Formal Specification. Let P be the pollster and R the responder. Denote
P ’s random bits p0, p1 and R’s random bits r0, r1, r2.

(1) To implement Query: P creates two pairs of envelopes, each pair con-
taining a 0 and a 1. The first pair contains (p0, 1 − p0) and the second
(p1, 1 − p1). P sends both pairs to R.

(2) To implement Vote b: R opens a random envelope from each pair (the
index of the first envelope opened is given by r0 and the second by r1.
Denote the values of the opened envelopes x0 = p0 ⊕ r0 and x1 = p1 ⊕ r1.
(a) If x0 = x1 (i.e., both the opened values are equal), R chooses a random

pair and opens the remaining envelope in that pair (the first pair if
r2 = 0 and the second if r2 = 1).

(b) If x0 6= x1, R opens the remaining envelope in the pair whose open
envelope is not equal to b.

(c) In both cases, R verifies that the envelopes in the completely opened
pair contain different values (i.e., that the pair is valid). If so, R then
sends all four envelopes back to P , otherwise R halts.
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(3) If R halted in the previous step, P outputs ⊠ and halts. Otherwise, P
verifies that exactly three of the four envelopes received from R are open.
If so, P outputs the contents of the open envelope in the pair that contains
the sealed envelope. If not, P outputs ⊠.

A.2. Proof of Security. In this section we give the proof that the protocol se-
curely realizes Pollster-Immune 3

4 -CRRT in the UC model. The proof follows the
standard outline for a UC proof: we describe an ideal adversary, I, that works in
the ideal world by simulating a real adversary, A (given black-box access to A),
along with the envelope functionalities used to implement the protocol in the real
world. We then show that no environment machine, Z (which is allowed to set the
parties’ inputs) can distinguish between the case that it is communicating with A
in the real world, and the case where it is communicating with I in the ideal world
(for a more in-depth explanation of the UC model, see [3]). We’ll deal separately
with the case when A corrupts P and when it corrupts R (since we assume the
corruption occurs as a first step). The proof that the views of Z in the real and
ideal worlds are identical is by exhaustive case analysis.

A.2.1. A corrupts P.

(1) I waits to receive c, the outcome of the poll from the ideal functionality. I
now begins simulating FDE and R (as if he were a real honest party). The
simulation runs until P sends four envelopes as required by the protocol
(up to this point R did not participate at all in the protocol).

(2) If both pairs of envelopes are valid (contain a 0 and a 1), I chooses one of
the pairs at random, and simulates opening the envelope in the pair that
contains c and both envelopes in the other pair (there is an assignment to
the random coins of R which would have this result in the real world). It
then simulates the return of all four envelopes to P .

(3) If both pairs of envelopes are invalid, I simulates R halting (this would
eventually happen in a real execution as well).

(4) If exactly one pair of envelopes is invalid, denote the value in the invalid
pair by z.
(a) If c = z, I simulates opening both envelopes in the valid pair, and a

random envelope in the invalid pair (depending on the random coins
of R, this is a possible result in the real world). It then simulates the
return of all four envelopes to P

(b) If c 6= z, I simulates R halting (depending on the random coins of R,
this is also a possible result in the real world).

(5) I continues the simulation until A halts.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Thus, the only possible difference between
the views of Z in the ideal and real worlds is the behavior of the simulated R,
which depends only on the contents of the four envelopes sent by P and the output
of the ideal functionality (which in turn depends only on b). It is easy (albeit
tedious) to go over all 32 combinations of envelopes and input, and verify that the
distribution of R’s output in both cases (the real and ideal worlds) are identical.
We enumerate the basic cases below. All other cases are identical to one of the
following by symmetry:
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(1) A sends two valid pairs of envelopes. Assume it sends [(b, 1 − b), (b, 1 −
b)] (the other combinations follow by symmetry). I returns the following
distribution (“*” denotes a sealed envelope):
(a) With probability 3

4 (c = b) it selects uniformly from
{[(b, ∗), (b, 1 − b)], [(b, 1 − b), (b, ∗)]}

(b) With probability 1
4 (c 6= b) it selects uniformly from

{[(∗, 1 − b), (b, 1 − b)], [(b, 1 − b), (∗, 1 − b)]}
In the real world, the order of envelopes opened by R would be distributed
uniformly from one of the following sets (each with probability 1

4 ):
(a) {[(1, ∗), (3, 2)]}
(b) {[(1, ∗), (2, 3)], [(1, 3), (2, ∗)]}
(c) {[(3, 1), (2, ∗)]}
(d) {[(3, 1), (∗, 2)], [(∗, 1), (3, 2)]}
Note that the observed result is distributed identically in both cases.

(2) A sends two invalid pairs of envelopes: in this case, in both the real and
ideal worlds the adversary will see the responder halting with probability
1.

(3) A sends one valid and one invalid pair of envelopes:
(a) A sends [(b, b), (b, 1−b)] (the other case where the invalid pair matches

b is symmetric). The distribution of the returned envelopes in the ideal
world is:

(i) With probability 3
4 (c = b) it selects uniformly from

{[(b, ∗), (b, 1 − b)], [(∗, 1 − b), (b, 1 − b)]}
(ii) With probability 1

4 (c 6= b) it halts.
In the real world, the order of envelopes opened by R would be dis-
tributed uniformly from one of the following sets (each with probability
1
4 ); the sets marked with † lead to R halting:

(i) {[(1, ∗), (3, 2)]}
(ii)

{

[(1, ∗), (2, 3)], [(1, 3), (2, ∗)]†
}

(iii)
{

[(∗, 1), (2, 3)], [(3, 1), (2, ∗)]†
}

(iv) {[(∗, 1), (3, 2)]}
Note that in both worlds R halts with probability 1

4 , and otherwise
the returned envelopes are identically distributed.

(b) A sends [(1− b, 1− b), (b, 1− b)] (the other case where the invalid pair
matches 1−b is symmetric). The distribution of the returned envelopes
in the ideal world is:

(i) With probability 1
4 (c 6= b) it selects uniformly from

{[(1 − b, ∗), (b, 1 − b)], [(∗, 1 − b), (b, 1 − b)]}
(ii) With probability 3

4 (c = b) it halts.
In the real world, the order of envelopes opened by R would be dis-
tributed uniformly from one of the following sets (each with probability
1
4 ); the sets marked with † lead to R halting:

(i)
{

[(1, ∗), (3, 2)], [(1, 3), (∗, 2)]†
}

(ii)
{

[(1, 3), (2, ∗)]†
}

(iii)
{

[(∗, 1), (3, 2)], [(3, 1), (∗, 2)]†
}

(iv)
{

[(3, 1), (2, ∗)]†
}

Note that in both worlds R halts with probability 3
4 , and otherwise

the returned envelopes are identically distributed.
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A.2.2. A corrupts R.

(1) I waits to receive v and r from the ideal functionality (in response to the
Query command sent by the ideal P).

(2) I simulates R receiving four envelopes. The remainder of the simulation
depends on the values of v and r:
(a) If v = 1, I chooses a uniformly random bit t. The first envelope

R opens in the first pair will have the value t, and the first envelope
opened in the second pair will have the value 1−t. The values revealed
in the remaining envelopes will always result in a valid pair.

(b) If v = 0, The first envelope R opens in each pair will have the value
r, and the remaining envelopes the value 1 − r.

(3) I continues the simulation until R sends all four envelopes back to P . If R
opened exactly three envelopes, I sends Vote b to the ideal functionality,
where b is calculated as by the pollster in the protocol description. If R did
not open exactly three envelopes, I sends the Halt command to the ideal
functionality.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Furthermore, the outputs of the ideal and
simulated P are always identical. Thus, the only possible difference between the
views of Z in the ideal and real worlds is the contents of the envelopes opened by
R. In the real world, the envelope contents are random. In the ideal world, v and
r are i.i.d. uniform bits. Therefore the order in which the envelopes are opened
does not matter; any envelope in the first pair is independent of any envelope in
the second. Hence, the distributions in the ideal and real worlds are identical.
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