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Abstract

The problem of explicitly constructing Ramsey graphs, i.e graphs that do not have a

large clique or independent set is considered. We provide an elementary construction of a

graph with the property that there is no clique or independent set of t of nodes, while the

graph size is t

p

log log t

log log log t

. The construction is based on taking the product of all graphs in a

distribution that is known to have mostly Ramsey graphs.
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1 Introduction

Ramsey Theory asserts that every graph on N nodes must contain a clique or independent set

of size

1

2

logN . On the other hand, Erd�os [5] has shown that there are graphs on N nodes that

do not contain (as a subgraph) a clique or independent set on 2 logN vertices and in fact most

graphs on N nodes have this property. His proof, which is the precursor of the \Probabilistic

Method", did not establish a way of constructing such graphs. It is still an open problem to

construct graphs that achieve these bounds. (See [8] for information about Ramsey Theory and

[3] for a thorough discussion of the probabilistic method.)

For a given size t, one might ask what is the largest (as a function of t) graph that can be

explicitly constructed which does not contain a clique or independent set of size t. Erd�os posed

as a challenge the problem of constructing a graph whose size is superpolynomial in t and does

not contain a clique or independent set of size t. The challenge was answered by Frankl [6] and

Frankl and Wilson [7] who showed an explicit way of constructing graphs that are of size t

log t

log log t

.

The goal of this paper is to present an elementary construction of a graph whose size is

superpolynomial in t (the size we know that there is no subgraph which is a clique or independent

set). Our construction is not as good as [7], the graph size is t

c

p

log log t

log log log t

for some constant c.
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A well known conjecture in this area is that the Paley graph is a Ramsey graph. The Paley

graph is de�ned for every prime p which is congruent to 1 mod 4. There is an edge between nodes

i and j i� i� j is a quadratic residue mod p. An interesting consequence of our construction is

that a closely related graph can be shown to be a (weak) Ramsey graph.

Our construction of Ramsey graphs is based on combining many graphs, most of which are

known to be good, without testing which are the bad ones. The fact that most of graphs are

good compensates for the bad ones.

Remark: Our construction is inspired by Justesen's construction of good error correcting codes

[9] (see [10] for more information on codes). It was known that good binary codes can be obtained

by concatenating a good code over a large alphabet (which can be explicitly constructed) with

good codes that map the large alphabet to the small one. The existence of this code was only

proved non-constructively. Justesen suggested using a collection of codes, most of which were

known to be good, instead of one good code.

2 The construction

Our starting point is Abbot's observation [1] about products of graphs: let G

1

and G

2

be graphs

on n

1

and n

2

nodes respectively that do not contain a clique or independent set of size k

1

and k

2

respectively, then their product is a graph on n

1

�n

2

nodes that does not contain a k

1

k

2

clique or

independent set. The product here means that (u

1

; u

2

) is connected to (v

1

; v

2

) if u

1

is di�erent

from v

1

and they are connected in G

1

or if u

1

= v

1

and u

2

is connected to v

2

in G

2

. Babai

and Frankl (see [4] pp. 46) suggested this as a method that starts from a small graph with a

certain relationship between the size of the graph and the size of a minimum non monochromatic

subgraph and generates a large graph with the same relationship. Thus, it can be used as an

\existential argument for an explicit construction" of graphs whose size is polynomial in the non

monochromatic subgraph, for any �xed polynomial.

We will use it slightly di�erently, by taking the products of all the graphs of a certain

distribution, where the probability of a graph being \good" is high. Note that if we have a

collection of graphs G

1

; G

2

; : : :G

m

of size n

1

; n

2

; : : :n

m

and number k

1

; k

2

; : : :k

m

such that G

i

does not contain a clique or independent set of size k

i

, then the graph H which is the product of

G

1

; G

2

; : : :G

m

is of size

Q

m

i=1

n

i

and does not contain a clique or independent set of size

Q

m

i=1

k

i

.

Let D be a collection of m graphs on n nodes such that the probability that a graph G drawn

from D has either a clique or an independent set of size k is at most �. For at most �m of the

graphs which have a clique or independent set of size larger than k we assume nothing, i.e. they

might have a clique or independent of size n. By the discussion above we have

Lemma 1 Consider the graph H obtained by taking the product of all the graphs in the collection

D. Then the number of nodes in H is N = n

m

and there is no clique or independent set of size

2



t = k

(1��)m

n

�m

. If � <

1

logn

, then t < (2k)

m

.

In order to apply the lemma, what we should do is try to come up for k and n (where k

is much smaller than n (� logn)) with as small a collection D as possible that has the desired

property with � �

1

logn

.

Example: Take D to be the set of all graph on n nodes and k to be 2 logn. We know that for

this collection � <

1

logn

. Therefore the graph H in Lemma 1 is on N = n

2

(

n

2

)

nodes and does

not contain a clique or independent set on t = (2 logn)

2

(

n

2

)

nodes, i.e. N � t

log log log t

log log log log t

. As we

shall see in the next section, by taking smaller sample spaces we can do better.

3 A construction based on small bias probability spaces

We now introduce small bias probability spaces, as de�ned in [11]. A probability space with n

random variables in f0; 1g is called k-wise �-bias if for any k or fewer random variables the

probabilities that their parity is 0 or 1 is di�er by at most �. It is known that in a k-wise �-bias

probability space, the probability that any k given random variables are all '0' or all '1' is at

most (2

�k+1

+ 2

k=2

�), since the variation distance of the distribution of any k random variables

from the uniform distribution is at most 2

k=2

�.

Thus, if the edges of a graph are chosen from a

�

k

2

�

-wise � bias probability space on

�

n

2

�

random variables, then the probability that there is a clique or independent set of size k is at

most

�

n

k

�

�(2

�

(

k

2

)

+1

+2

(

k

2

)

=2

�). Taking k to be 2 logn and � to be 2

�k

2

we get that this probability

is less than

1

logn

.

Consider now a D that is de�ned by this probability space, i.e. every graph corresponds to

a point in the probability space. The constructions of �-bias probability spaces in [11] and [2]

are of size (n=�)

c

for some �xed c. Therefore, m = 2

c

0

k

2

for some �xed c

0

. For the graph H in

Lemma 1 we have that N = 2

k2

c

0

k

2

and t is 2

2

c

0

k

2

, i.e. N � t

c

0

p

log log t

log log log t

.

We now take a concrete example of an k-wise �-bias probability space given in [2]. It is based

on quadratic characters. Let p be a prime which is 1 mod 4 such that p � (k=�)

2

(and also

greater than

�

n

2

�

). A point in the probability space is de�ned by i 2 Z

p

. The random variable

x

j

at point i is the quadratic character of i+ j mod p, i.e if i+ j is a quadratic residue modulo

p, then x

j

is 1 and it is 0 otherwise. Since the random variables we are interested in are edges,

for nodes a and b such that 1 � b < a � n we associate x

a(a�1)=2+b

with the edge (a; b).

The description of the graph H

n

= (V;E) is now: �x k = 2 logn and p > k

2

2

k

2

.

V = f(a

1

; a

2

; : : :a

p�1

)j1 � a

i

� ng

To determine whether there is an edge between two nodes a = (a

1

; a

2

; : : :a

p�1

) and b =

(b

1

; b

2

; : : : b

p�1

) let be i the �rst index where a

i

6= b

i

(i.e. a

1

; a

2

; : : :a

i�1

= b

1

; b

2

; : : : b

i�1

). In
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case b

i

< a

i

, then the quadratic residuosity modulo p of i+a

i

(a

i

� 1)=2+ b

i

determines whether

there is an edge (a; b), and in case a

i

< b

i

it is the quadratic residuosity of i+ b

i

(b

i

� 1)=2 + a

i

that determines whether the edge (a; b) exists.
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