
A Formal Treatment of Remotely Keyed
Encryption?

Matt Blaze1 Joan Feigenbaum1 Moni Naor2

1 AT&T Labs – Research
180 Park Avenue

Florham Park, NJ 07932 USA
{mab,jf}@research.att.com

2 Dept. Applied Math. and Computer Science
Weizmann Institute of Science

Rehovot 76100, Israel
naor@wisdom.weizmann.ac.il

Abstract. Remotely keyed encryption schemes (RKESs), introduced by
Blaze [6], support high-bandwidth cryptographic applications (such as
encrypted video conferences) in which long-lived secrets (such as users’
private keys) never leave lower-bandwidth environments such as secure
smart-cards. We provide a formal framework in which to study the secu-
rity of RKESs and give RKESs that satisfy our formal security require-
ments. Our RKESs are efficient in that the amount of communication
and computation required of the smart-card is independent of the in-
put size. In one proof of security, we use the pseudorandom permutation
framework of Naor and Reingold [18] in an essential way.

Keywords: Block Ciphers, Pseudorandomness, Remotely Keyed Encryption,
Session Keys, Smart-cards

1 Introduction

No cryptographic protocol is stronger than the mechanism protecting its se-
cret keys. However, in many computing and communication systems, there is no
“safe place” in which secret keys can be stored and cryptographic computations
can be performed. This is especially true of modern networked computers; in
some sense, every computer that communicates extensively with the world is
bound at some point to be partly controlled by an unfriendly entity. Therefore,
it is natural to consider adding an external, special-purpose device, such as a
smart-card or a PCMCIA card, for storing cryptographic keys and computing
cryptographic functions. Because they have only one purpose and communicate

? These results were presented in preliminary form at the Eurocrypt ’98 conference
(Helsinki, Finland), in June 1998. The third author was supported by a RAND2
grant from the EC.



only via a limited set of functions, such devices can be made much more secure
than their general-purpose host machines. However, it is not always practical
to rely on such devices to perform all sensitive cryptographic operations. Inex-
pensive smart-cards, for example, are also characterized by their limited band-
width, memory, and processor speed. If the host computer used such devices
simple-mindedly, by just encrypting all external communication and all disk
traffic, then the bandwidth of the link between the host and the cryptographic
module would have to be at least as high as that between the host and the
outside world. Even if the engineering problems of developing inexpensive high-
bandwidth, high-performance cryptographic modules were completely solved, it
would still be the case that, whenever the host’s link to the outside world was
upgraded, the modules and the secret keys they store would have to be changed,
because cryptographic modules are typically designed never to reveal their keys.

This paper provides a formal treatment of the remotely keyed encryption
problem: how to do bulk encryption and decryption for high-bandwidth applica-
tions in a way that takes advantage of both the superior power of the host and
the superior security of the smart-card? If adversary A takes control of the host
for a certain period, then clearly A will obtain whatever plaintext or ciphertext
is resident in the host during that period. We would like to say formally that this
is all it obtains: Once A loses control of the host, it cannot compute anything
that it couldn’t compute before it took control, except for the values it obtained
explicitly while it was in control.

Note that we are concerned with attacks on the host but not with direct at-
tacks on the card; we assume that the card owner wants to safeguard the “remote
keys” and that an attacker can only communicate with the card via its official
communication channels. See, e.g., Boneh et al. [7] and Biham-Shamir [5], for a
discussion of direct attacks on cards. Note as well that the remotely keyed encryp-
tion problem is different from the one of having a smart-card take advantage of
a host’s superior processing power in order to do a public-key computation with-
out leaking the input to the host. For a discussion of the (well-studied) problem
of host-assisted public-key cryptography, see e.g., Feigenbaum [10], Matsumoto
et al. [17], and the references therein. Finally, note that the goal of a remotely
keyed encryption scheme (RKES) is not “session-key exchange” between two
different hosts each connected to a card, where the two cards share a key. In an
RKES application, such as the encryption of disk traffic, there is only one host;
it encrypts at some point in time and then decrypts the stored ciphertext later.
In settings in which the reason for exchanging keys is encryption, an RKES may
replace a session-key exchange protocol and has the advantage of no interaction;
however, there are other reasons for key exchange. See, for example, Shoup and
Rubin [19] for a rigorous treatment of session-key exchange (following Bellare
and Rogaway [3]), in which the adversary is similar in power to the one we con-
sider here. The Shoup-Rubin protocol requires several rounds of communication
between the hosts.

We give formal definitions that capture the notion of “security” needed in our
scenario and RKESs that satisfy the definitions. One of our schemes produces

2



ciphertext of exactly the same length as the corresponding plaintext, and one
produces ciphertext that is slightly longer. The length-preserving scheme has the
advantage of allowing applications to adhere to strict formatting requirements,
such as may be imposed on the encryption of disk traffic or data packets, while
the length-increasing scheme has the advantage of satisfying a more stringent
definition of security. Both of our RKESs have the desirable property that, for
any input length, the amount of communication and computation that they
require of the smart-card is independent of the input size.

History

Blaze [6] was the first to use the term “remotely keyed encryption” and to focus
attention on the fact that many high-bandwidth applications need symmetric-
key encryption schemes that store long-lived secret keys in low-bandwidth smart-
cards.1 He proposed a specific scheme but did not give a formal statement of
the properties that an RKES should satisfy. Although the scheme in [6] does not
satisfy the formal security requirements that we give in this paper, the basic idea
of the scheme is sound, and we use it as a starting point in the design of an RKES
that does satisfy our formal requirements. One weakness of the original scheme
in [6] is that it may enable an adversary that has controlled the host during m
interactions with the card subsequently to “forge” a plaintext/ciphertext pair
that is not one of the m pairs he has obtained during the interaction.

Lucks [16] first noted that the RKES in [6] was not completely satisfactory;
in particular, he noted the forgery weakness just described. Lucks [16] attempted
to formalize the security properties that an RKES should have and to construct
schemes that have them. Although the properties proposed in [16] are indeed
desirable, we believe that the overall formalism and construction are flawed.
Roughly speaking, [16] proposed that an RKES should have three properties:
(i) Forgery security: If the adversary has controlled the host for m interactions,
then it cannot produce m + 1 plaintext/ciphertext pairs; (ii) Inversion security:
Access to encryption should not imply the ability to decrypt and vice versa;
(iii) Pseudorandomness: The encryption function should be a pseudorandom
permutation. We suggest that an RKES might have these three properties but
still be “insecure” in an intuitive sense.

In fact, the scheme in [16] is a good example of one that has properties (i),
(ii), and (iii) but is intuitively insecure. That scheme uses the first two plaintext
blocks in order to define an encryption key for the rest of the message; the
encryption of these two blocks depends on the entire message, thus allowing
property (i) to be satisfied. However, because the encryption key depends only
on the first two plaintext blocks, an arbitrarily large set of messages all of which
start with the same two blocks will always be encrypted with the same key.
This is not a hypothetical situation: A set of files in a computer file system, for
example, might always start with the same few bytes of structural information.

1 Blaze [6] used the phrase “remotely keyed encryption protocol,” and we use “remotely
keyed encryption scheme.” The terms are interchangeable.

3



An adversary that controls the host during the encryption or decryption of one
file in such a set could subsequently decrypt the encryption of any file in the set.
More fundamentally, the framework in [16] fails to recognize that it is nontrivial
in this scenario to give a precise meaning to the statement that “the encryption
function is a pseudorandom permutation.” Once the adversary has witnessed one
host/card interaction, it can subsequently distinguish between the encryption
function and a random permutation by asking for the value on a single point.

We thus conclude that the formalism in [16] is inadequate. In this paper, we
develop a formal framework that is both more precise and more stringent than
those in the previous literature. In particular, we define pseudorandomness in a
way that is meaningful for remotely keyed encryption.

Outline

We present our formalism in full detail in Section 3 below. A secure length-
increasing RKES is given in Section 4, and a secure length-preserving RKES is
given in Section 5.

2 Notation, Terminology, and Building Blocks

Definitions of standard cryptographic and complexity theoretic terms can be
found in, for example, Goldreich [11], Luby [15], and Naor and Reingold [18]. The
following is a description of the building blocks and terminology used throughout.

– The plaintext and the ciphertext are, respectively, X and Y . Usually, both
are given in blocks and hence are denoted X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn), where each of Xi and Yi is in {0, 1}b.

– The encryption and decryption functions of a block cipher are E and D.
ES(Xj) denotes the encryption of plaintext block Xj with encryption key
S, i.e., ES , DS : {0, 1}b 7→ {0, 1}b and DS(ES(Xj)) = Xj .
The security property required of ES(∙) is that it should be a strong pseudo-
random permutation, i.e., that any probabilistic, polynomial-time adversary
given access to ES(∙) and DS(∙) cannot distinguish them from a truly random
permutation. A thorough treatment of strong pseudorandom permutations
is given by Luby [15], who calls them “super” pseudorandom permutations.

– A pseudorandom function FS : {0, 1}b 7→ {0, 1}b; it may or may not be
identical to the encryption function E of the block cipher. (Note that ev-
ery pseudorandom permutation is also a pseudorandom function, where the
added advantage of a distinguisher is bounded by m2/2b.) We use FS , rather
than ES , in situations that never require the function to be inverted.

– A length-preserving method GS for encrypting an n-block plaintext (X1, . . .,
Xn) using encryption key S. Gj

S(X1, . . . , Xn) denotes the jth block of the
resulting ciphertext. The corresponding decryption function is denoted ĜS ,
and the jth block of the plaintext that results from decrypting (Y1, . . . , Yn)
is denoted Ĝj

S(Y1, . . . , Yn).

4



The security requirement for GS is that, for any X1, X2, . . . , Xn, if S is
chosen uniformly at random, then GS(X1, . . . , Xn) is pseudorandom (i.e.,
indistinguishable from a random string of similar length). We impose a sim-
ilar requirement on ĜS . Possible realizations of GS are:
• Apply a pseudorandom generator to S and Xor the resulting sequence

with X1, . . . , Xn.
• Use ES with some sort of chaining, e.g., CBC. The security of such an

operation follows from [2].
– A collision-intractable hash function H : {0, 1}∗ 7→ {0, 1}b. “Collision-intrac-

tability” means that it is computationally infeasible to find distinct X and
X ′ such that H(X) = H(X ′).

– The adversary is in general an oracle machine M where M (f,f−1) that has
access to the function pair (f, f−1). As in [18], M may submit two forms of
queries to the function-pair oracle: A query of the form (+, x) results in the
answer f(x), and one of the form (−, y) results in the answer f−1(y).

As usual, various parameters are needed in order to express things in full
detail. In particular, there is an underlying size (security) parameter u, and there
are three polynomially bounded functions that measure the key length κ(u), the
block length b(u), and the number of blocks n(u). The total length of the input to
any of our protocols is a polynomial function of κ(u), b(u), and n(u). For clarity
of presentation, we suppress these parameters whenever possible, but they are
an implicit part of everything that follows. For example, the statement “F is
a pseudorandom function” means that F : {0, 1}κ(u) × {0, 1}b(u) → {0, 1}b(u)

is a pseudorandom function generator, in the sense of [12] or [15, Lecture 12].
Similarly, additional (but standard) detail is also required to say precisely what
is meant by a “random” function, permutation, or function pair. These details
can be found in, for example, [11,15,18].

In our schemes, the card stores the keys of several functions and permuta-
tions. Our “physical assumption” is that the adversary cannot read these keys
directly. Note that we do not need the assumption that intermediary values, i.e.,
results of applying these cryptographic primitives, remain secret.

3 Definitions of Secure Remotely Keyed Encryption

Intuitively, we would like an RKES to resist the following form of attack. Ad-
versary A may gain control of the host temporarily. During this host phase of
his attack, A may have a total of m interactions with the card, where m is poly-
nomially bounded. He may send any message to the card during one of these
interactions and may deviate from the protocol. However, since m is an upper
bound on the total number of interactions, A obtains at most m plaintexts and
m ciphertexts during the host phase. After these m interactions with the card,
A loses control of the host. He should subsequently have no advantage in his
attempts to find the encryption (resp., decryption) of plaintexts (resp., cipher-
texts) other than those m that he found explicitly during the host phase.

5



One step in formalizing this intuition is to make precise what we mean by
“no advantage.” We will do this in terms of pseudorandomness. That is, the
encryption and decryption protocols of the RKES compute some function pair
(f, f−1), and this function pair should appear truly random to A. During the
host phase, A learns the value of f and f−1 each at m points. This should give
him “no advantage” in the sense that if, in a distinguishing phase that takes place
after he loses control of the host, A is asked to distinguish between (f, f−1) and
a truly random function pair, he should be able to do so only with negligible
probability.

Because the amount of communication between the host and the card in
an efficient RKES should be much shorter than the input length, there is a
complication that is missing in the standard definition of pseudorandomness. If,
during the host phase, A learns the value of f on m points X1, X2, . . . , Xm,
then f almost certainly does not look random to A on these points, because
the transcript of the host phase and the description of the protocol constitute a
short description of (X1, f(X1)), (X2, f(X2)), . . . , (Xm, f(Xm)). Our formalism
addresses this by requiring that, between the host phase and the distinguishing
phase, a nondeterministic choice occurs: Either (f, f−1) is replaced with a truly
random function pair or it is kept the same. A’s challenge is thus to decide
whether or not a switch occurred or not.

Now a new complication arises: We cannot allow the adversary, during the
distinguishing phase, to query the oracle about any of the m plaintexts and m
ciphertexts that he obtained during the host phase. If the adversary A does
so and receives the same answers as he did the first time around, then A will
know, with high probability, that there was no switch and (f, f−1) remained
unchanged. If A receives a different answer on one of these queries during the
distinguishing phase than he did during the host phase, then he can conclude
with certainty that the oracle is not (f, f−1).

We would like therefore to “filter” those values that appeared in the host
phase. The problem with making this discussion rigorous is that the adversary’s
actions during the host phase do not necessarily correspond to specific inputs,
and certainly there are many inputs that yield the same (host,card) transcript.
To overcome this problem, we introduce an arbiter into our definition of secure
remotely keyed encryption. The purpose of the arbiter, which we denote by B,
is to make sure that A does not ask during the distinguishing phase any of the
queries that it asked during the host phase. B should be a simple function of
the transcript of the communication that occurred during the host phase and
should have limited filtering ability. Instead of saying that the inputs queried
during the host phase are excluded (which is not well-defined), we say that if A
has had m interactions with the card during the host phase, then B is allowed to
filter no more than m queries during the distinguishing phase. Note that there
is no need actually to implement this arbiter; rather, a (host,card) protocol is
secure if there exists such an arbiter.

This discussion can be summarized as follows.

6



Definition 1. A length-preserving RKES is a pair of protocols, one for en-
cryption and one for decryption, to be executed by a host and a card. The length
of a ciphertext must be the same as that of the corresponding plaintext. The
RKES is secure if there is a polynomial-time arbiter B that can enforce the
following restriction on any probabilistic, polynomial-time adversary A and any
polynomial bound m: During the host phase, A may play the role of the host
in a total of m interactions with the card. During this phase, A may send any
message to the card and does not necessarily follow the encryption or decryption
protocol. Between the host phase and the distinguishing phase, a nondeterminis-
tic choice is made between continuing to use the RKES or switching to a random
function pair. The arbiter B receives as input the transcript of the host-phase
communication between the host and the card. During the distinguishing phase,
A may run any probabilistic, polynomial-time test T that submits plaintexts or
ciphertexts to B; on at most m of the plaintexts and m of the ciphertexts, B
may choose to run the RKES, even if a switch to a random function pair was
made between phases. Otherwise the plaintext (resp. ciphertext) is given to the
encryption (resp. decryption) protocol if no switch was made between phases
and to the random function f (resp. f−1) if a switch was made. The differ-
ence between the probability that T accepts on a continuation of the RKES and
the probability that T accepts on a switch to a random function pair must be
negligible.

A natural way to relax the above requirement is to allow B to reject polynomi-
ally in m many input/output, instead of exactly m. However, the constructions
given in Section 5 achieve the stricter notion.

We now turn our attention to length-increasing RKESs. These should be
easier to construct than length-preserving RKESs. However, we can require ad-
ditional security properties of length-increasing RKESs that are not achievable
in the length-preserving case, and thus we need a second definition. In the length-
increasing case, each plaintext may correspond to multiple ciphertexts, because
the ciphertext space is bigger than the plaintext space. We can (and should) use a
probabilistic encryption algorithm that induces, for each plaintext, a probability
distribution on a corresponding set of ciphertexts [13]. Furthermore, if cipher-
texts are of length c(u), it need not be the case that every string in {0, 1}c(u) is
a legitimate encryption of some plaintext.

Because we have these two types of flexibility that are not present in the
length-preserving case, we can impose two additional security properties. The
first is semantic security, as defined by Goldwasser and Micali [13] – “whatever is
efficiently computable given the ciphertext is efficiently computable without it.”
We prefer to work with the equivalent “real-or-random” definition: No proba-
bilistic, polynomial-time adversary can distinguish between a random ciphertext
and the encryption of a chosen plaintext, even if it had prior access to the en-
cryption and decryption mechanisms (see Bellare et al. [1]). To make use of the
property that not every string in {0, 1}c(u) needs to correspond to a plaintext,
we give the decryption algorithm the option of outputting a distinguished string

7



“invalid.” Intuitively, the decryption algorithm is supposed to return the cor-
rect plaintext when given as input a ciphertext that has been produced by the
encryption algorithm but to return “invalid” when given anything else.

The second security requirement that we impose on length-increasing RKESs
but not on length-preserving ones is self-validation: Even if it had prior access
to the encryption and decryption mechanisms, a probabilistic, polynomial-time
adversary should not be able to generate a new valid ciphertext, i.e., one that
it did not obtain explicitly from the encryption algorithm and on which the
decryption algorithm does not output “invalid.” Note that the combination of
these two properties yields a private-key non-malleable cryptosystem as defined
by Dolev et al. [8]2, in which it is infeasible not only to compute anything about a
plaintext but also to generate the ciphertext of a related message. It is worth not-
ing that self-validation together with semantic security is a stricter requirement
than non-malleability: In a non-malleable cryptosystem, the adversary cannot
produce ciphertexts of unrelated messages, but he may be able to produce ci-
phertexts of random messages.

For length-increasing RKESs, we would like to say that, after the host phase,
the adversary cannot tell whether he is interacting with the real protocols or with
a “random, self-validating black box,” given that an arbiter is filtering based
on a transcript of the host-phase communication. A “random, self-validating
black box” contains an encryption box and a decryption box. On any input of
the appropriate plaintext length, the encryption box outputs a random string
of the appropriate ciphertext length. The decryption box outputs “invalid” on
all inputs, except those that were previously output by the encryption box,
and on those it outputs the input string on which the encryption box gave
this output. Note that such a pair of boxes is not a encryption scheme in the
usual sense: It is not “memoryless” but rather assumes that the encryption and
decryption boxes can remember and “communicate about” the strings they have
processed. The challenge in creating a self-validating encryption scheme is to
enable the decryption algorithm to know when to output “invalid” even though
it cannot communicate with the encryption algorithm, and neither algorithm
can remember which strings it has previously processed.

Self-validating encryption makes sense only when the ciphertext length c(u)
exceeds the plaintext length by enough to make a random string in {0, 1}c(u)

“invalid” except with negligible probability. This is not an onerous requirement,
as we will see in Section 4.

Definition 2. A length-increasing RKES is a pair of protocols, one for en-
cryption and one for decryption, to be executed by a host and a card. The length
of a ciphertext is greater than the length of the corresponding plaintext. If its
input is a ciphertext that has previously been output by the encryption protocol,
the decryption protocol outputs the corresponding plaintext; otherwise, it may
output “invalid” (and in fact will do so on most inputs). The RKES is secure
if there is a polynomial-time arbiter B that can enforce the following restriction

2 The private-key case is discussed only in the expanded version.

8



on any probabilistic, polynomial-time adversary A and any polynomial bound
m: During the host phase, A may play the role of the host in m interactions
with the card. During this phase, A may send any message to the card and does
not necessarily follow the encryption or decryption protocol. Between the host
phase and the distinguishing phase, a choice is made between continuing to use
the RKES or switching to a random, self-validating black box that has not yet
received any queries. B gets as input the transcript of the host-phase communi-
cation between the host and the card. During the distinguishing phase, A may
run any probabilistic, polynomial-time test T that submits plaintexts or cipher-
texts to B. On at most m of the ciphertexts (but not the plaintexts), B may
choose to run the RKES, even if a switch was made between phases. Otherwise
the plaintext (resp. ciphertext) is given to the encryption (resp. decryption) pro-
tocol if no switch was made between phases and to the random, self-validating
black box if a switch was made. The difference between the probability that T
accepts on a continuation of the RKES and the probability that T accepts on a
switch to a random, self-validating black box must be negligible.

Three remarks are in order about this definition. First, it generalizes the
corresponding definitions in standard (i.e., not remotely keyed) encryption. If
one fixes m = 0, i.e., makes the host phase trivial, then Definition 1 reduces to
the definition of a strong pseudorandom permutation. Similarly, in Definition 2,
fixing m = 0 yields the definition of a semantically secure and self-validating
private-key cryptosystem. Second, note that an important difference between the
length-preserving case and the length-increasing one is that, in the latter, the
arbiter does not have the power to route plaintexts to the RKES. It may only do
so with ciphertexts. The third remark worth making is that these definitions are
concerned with security rather than efficiency. Note, for instance, that a strong
pseudorandom permutation evaluated solely by the card satisfies Definition 1.
Clearly, an RKES is most useful if the computational, memory, and bandwidth
demands on the card are small. In particular, it is desirable for all to be slowly
growing functions of the block length b and key length κ and to be independent
of n, the number of blocks in the plaintext, as they are in the schemes given
below. Finally, we assume that the length of the message is known. It may be
implicitly known, e.g., the size of a disk sector or a data packet, or it may be
conveyed by some other protocol. Note that it is possible to set the protocols
in Sections 4 and 5 so that they yield a different permutation for each message
length.

4 A Secure, Length-Increasing RKES

We first describe a simple scheme (Scheme I1) that is not secure in the sense of
Definition 1. The adversary may create arbitrarily many “valid” ciphertexts. At
the start of the execution of the encryption protocol, the host obtains a random
or pseudorandom number S by the best method at its disposal; alternatively,
the card could provide S to the host. The RKES requires only that S can be

9



encrypted using the block encryption algorithm E.The private key stored in
the smart-card is denoted by k1. The idea of the protocol is simple: The host
generates a session-key and the card provides its encryption.

Scheme I1: Insecure, length-increasing RKES:

Encryption protocol: input X1, . . . , Xn; output Y0, Y1, . . . , Yn

I1-0 Generate S
I1-1 Host → Card: S
I1-2 Card: Y0 ← Ek1(S)
I1-3 Card → Host: Y0

I1-4 Host: set Y0 as received message; For j ← 1 to n, Yj ← Gj
S(X1, . . . , Xn).

Decryption protocol: input Y0, Y1, . . . , Yn; output X1, . . . , Xn

I1-5 Host → Card: Y0

I1-6 Card: S ← Dk1(Y0)
I1-7 Card → Host: S
I1-8 Host: For j ← 1 to n, Xj ← Ĝj

S(Y1, . . . , Yn).

Clearly, Scheme I1 makes no attempt to reject invalid ciphertexts. Any se-
quence Y0, Y1, . . . , Yn will be decrypted. Furthermore, the adversary may “forge”
as many plaintext/ciphertext pairs as he wishes, following a host phase in which
he carries out just one execution of either the encryption protocol or the decryp-
tion protocol.

Scheme I2 is a secure, length-increasing RKES based on the same basic idea
as Scheme I1, i.e., using the luxury of an additional ciphertext block to store an
encryption of a session key. To achieve self-validation, it uses another additional
ciphertext block to store a value that an adversary cannot compute without
running the encryption protocol, because of the properties of the cryptographic
building blocks E, F , G, and H. The private key stored in the smart-card is
partitioned into 4 parts, denoted k1, k2, k3, and k4, that play different roles in
the protocols. As mentioned in Section 2, the pseudorandom function F is used
when inversion is not needed, and the encryption functions E and G are used
when it is.

We have designed Scheme I2 for maximum clarity and have not sought to op-
timize it in several ways that could save constant factors in space and thus might
be relevant in applications with very tight constraints. For example, we have not
attempted to minimize the number of private-key components (k1, . . . , k4) or the
number of distinct cryptographic building blocks (E, F , G, and H), because such
optimizations would not help to illustrate the overall structure that an RKES
should have in order to satisfy our formal definition. It is possible, however, to
use the same key component or the same building block in multiple roles.

Scheme I2: Secure, length-increasing RKES:

Encryption protocol: input X1, . . . , Xn; output t, Y0, Y1, . . . , Yn

10



I2-0 Generate S
I2-1 Host: For j ← 1 to n, Yj ← Gj

S(X1, . . . , Xn)
I2-2 Host: h← H(Y1, Y2, . . . , Yn)
I2-3 Host → Card: S, h
I2-4 Card: Y0 ← Ek1(S)
I2-5 Card: t← Fk4(Fk3(Y0)⊕ Fk2(h))
I2-6 Card → Host: Y0, t

Decryption protocol: input t, Y0, Y1, . . . , Yn; output X1, . . . , Xn or “in-
valid”

I2-7 Host: h← H(Y1, Y2, . . . , Yn)
I2-8 Host → Card: Y0, h, t
I2-9 Card: If t 6= Fk4(Fk3(Y0)⊕ Fk2(h)) Then S ← “invalid”

Else S ← Dk1(Y0)
I2-10 Card → Host: S
I2-12 Host: If S 6= “invalid”

Then {For j ← 1 to n, Xj ← Ĝj
S(Y1 . . . , Yn); Output (X1, . . . , Xn)}

Else Output “invalid”

As required by Definition 2, the arbiter B does not filter queries of the
form (+, (X1, . . . , Xn)) during the distinguishing phase; it just sends them to
the encryption protocol if no switch was made between phases and to a ran-
dom, self-validating black box if a switch was made. On queries of the form
(−, (t, Y0, Y1, . . . , Yn)), B computes h = H(Y1, . . . , Yn) and checks whether (h,
Y0, t) occurs in the transcript of the host phase. If it does, then B routes the
query to the decryption protocol, regardless of whether a switch was made be-
tween phases; if it doesn’t, then B routes it either to the decryption protocol
or to the random, self-validating black box, depending on whether a switch was
made.

Theorem 3. Scheme I2 is a secure, length-increasing RKES.

Proof. The definitions of the cryptographic building blocks E, F , and G imply
straightforwardly that any sequence of encryptions is indistinguishable from a
random one (and hence from the output of a random, self-validating box). Con-
sider the case of decryption queries. Suppose that such a query (−, (t, Y0, Y1,
. . . , Yn)) does not correspond to an encryption query (+, (X1, . . . , Xn)) that
occurred earlier in the distinguishing phase and that (H(Y1, . . . , Yn), Y0, t) did
not appear in the host phase (i.e., the query is not filtered by the arbiter). A
random, self-validating black box will answer such a query by saying “invalid.”
The real protocol will also answer “invalid” if t 6= Fk4(Fk3(Y0)⊕ Fk2(h)), where
h = H(Y1, . . . , Yn), but it will produce a decryption if t = Fk4(Fk3(Y0)⊕Fk2(h)),
or in other words if t “validates” (Y0, h). Thus an adversary can tell whether a
switch was made between phases only if it can find (t, Y0, Y1, . . . , Yn) such that
t = Fk4(Fk3(Y0) ⊕ Fk2(H(Y1, . . . , Yn))) by some method other than submission
of a query (+, (X1, . . . , Xn)).

11



The collision-intractability of H implies that, with all but non-negligible
probability, the adversary cannot find (Y1, . . . , Yn) 6= (Y ′

1 , . . . , Y ′
n) such that

H(Y1, . . . , Yn) = H(Y ′
1 , . . . , Y ′

n). Therefore the adversary is left with two pos-
sibilities: (i) Find “colliding pairs” (Y0, h) 6= (Y ′

0 , h′) such that

Fk3(Y0)⊕ Fk2(h) = Fk3(Y
′
0)⊕ Fk2(h

′),

or (ii) Guess the value of Fk4(Fk3(Y0) ⊕ Fk2(h)) where the value Fk3(Y0) ⊕
Fk2(h) did not appear in Step I2-5 of any previous query during the Host or
Distinguishing Phases. However, the probability of (ii) is bounded by 1/2b plus
the probability of distinguishing Fk4 from a truly random function. Therefore
we concentrate on the probability of finding colliding pairs. Our formal claim
is:

Lemma 4. Let A be a probabilistic, polynomial-time adversary that has m1

interactions with the card during the host phase and makes m2 oracle queries
during the distinguishing phase. Then the probability that A can produce col-
liding pairs is at most (m1+m2)

2

2b + ε, where b is the block length and ε is an
upper bound on the probability that A can distinguish at least one of the two
pseudorandom functions Fk2 and Fk3 from random functions.

Proof. The argument that collisions are hard to find, even during the host phase,
has a standard form: First show that the probability would be negligible if the
F ’s were truly random functions and then use a “hybrid argument” to show that
it remains negligible when the cryptographic F ’s are used. (For an explanation
of hybrid arguments, see Goldreich [11]).

Suppose that Fk2 and Fk3 are truly random functions. Then all the values
Fk2(Y0) and Fk3(h) are random values. The probability that (Y0, h) 6= (Y ′

0 , h′)
but Fk3(Y0)⊕Fk2(h) = Fk3(Y

′
0)⊕Fk2(h

′) is 1/2b. There are (m1 +m2)2 possible
pairs. ut

Therefore, with all but negligible probability, the most that the adversary
can obtain during the distinguishing phase is a collection of encryptions (and
decryptions that it could have obtained anyway because they were submitted
by the adversary as queries). We conclude that it cannot distinguish between
a random, self-validating black-box and the original encryption algorithm. The
analysis further implies that the number of different decryption queries that the
arbiter will reroute if adversary presents them is bounded by m1. ut

5 A Secure, Length-Preserving RKES

We now present Scheme P, a secure, length-preserving RKES. The card’s secret
key has four components k1, k2, k3, and k4. As in the previous section, we have
designed Scheme P for maximum clarity and have not sought to optimize by, for
example, minimizing the number of distinct key components or cryptographic
building blocks.

12



The scheme is best understood as part of the Naor-Reingold [18] framework
for constructing and proving the security of pseudorandom permutations. In
this framework, the pseudorandom permutation Π is the composition of three
permutations: Π ≡ p−1

2 ◦ J ◦ p1. In general, p1 and p−1
2 are “lightweight,” and J

is where most of the work is done. In our setting, J will be the part performed
mostly by the host, and p1 and p−1

2 will be done mostly by the card.
The “heavyweight” building block J should behave as a random permutation

on most inputs. An important step in applying the Naor-Reingold framework is
the identification of a collection of input-output sequences that are called “J-
good.” For an input-output sequence 〈(X1, Y 1), . . ., (Xm, Y m)〉 to be J-good,
PrJ [Y i = J(Xi), 1 ≤ i ≤ m] should be close to 2−`∙m, where ` = n ∙ b, i.e., the
probability should be close to what it would be if J were a truly random function.
The role of the permutations p1 and p2 is to ensure that, with overwhelming
probability, the inputs and outputs to J form an J-good sequence, even if the
inputs to Π are chosen by an adaptive adversary, under a chosen plaintext and
ciphertext attack. Thus a sequence is J-good or not based on p1 and p2.

Scheme P: Secure length-preserving RKES:

Encryption protocol: input X1, . . . , Xn; output Y1, . . . , Yn

P1 Host: hx ← H(X2, . . . , Xn)
P2 Host → Card: hx, X1

P3 Card: W ← EFk1 (hx)(X1)
P4 Card: Z ← Ek2(W )
P5 Card: S ← Fk3(W )
P6 Card → Host: S

P7 Host: For j ← 2 to n, Yj ← Gj
S(X2, . . . , Xn).

P8 Host: hy ← H(Y2, . . . , Yn)
P9 Host → Card: hy

P10 Card: Y1 ← EFk4 (hy)(Z)
P11 Card → Host: Y1

Decryption protocol: input Y1, . . . , Yn; output X1, . . . , Xn

P12 Host: hy ← H(Y2, . . . , Yn)
P13 Host → Card: hy, Y1

P14 Card: Z ← DFk4 (hy)(Y1)
P15 Card: W ← Dk2(Z)
P16 Card: S ← Fk3(W )
P17 Card → Host: S

P18 Host: For j ← 2 to n, Xj ← Ĝj
S(Y2, . . . , Yn).

P19 Host: hx ← H(X2, . . . , Xn)
P20 Host → Card: hx

P21 Card: X1 ← DFk1 (hx)(W )
P22 Card → Host: X1

13



In our construction, p1 and p2 produce output that depends on all the input
blocks, but they change only the first block. That is

p1 : (X1, X2, . . . , Xn) 7→ (W,X2, . . . , Xn),

where W is a function of X1 and hx = H(X2, . . . , Xn), and

p2 : (Y1, Y2, . . . , Yn) 7→ (Z, Y2, . . . , Yn),

where Z is a function of Y1 and hy = H(Y2, . . . , Yn).
Good sequences will be those in which different X1, . . . , Xn and X ′

1, . . . , X
′
n

are mapped by p1 to different W and W ′, and similarly different Y ’s are mapped
by p2 to different Z’s. To obtain permutations p1 and p2 with the right properties,
we define a new primitive called non-colliding encryption.

Definition 5. A non-colliding encryption scheme is a pair of keyed functions
Ck : {0, 1}b × {0, 1}b 7→ {0, 1}b and Ĉk : {0, 1}b × {0, 1}b 7→ {0, 1}b with the
following two properties.

1. For all V ∈ {0, 1}b and h ∈ {0, 1}b, the functions satisfy Ĉk(Ck(V, h), h) = V
and Ck(Ĉk(V, h), h) = V . (Note that this property allows us to use C to
“store” V , provided h is retrievable.)

2. Let A be a probabilistic, polynomial-time adversary that is allowed to query
Ck and Ĉk adaptively. We say that “(V, h) appears in a (polynomial-length)
sequence of queries” if A asks for Ck(V, h) directly or if V is the reply to
some direct query Ĉk(U, h). If the key k is chosen at random, then A has
only a negligible probability of finding two pairs (V, h) 6= (V ′, h′) such that
(a) Ck(V, h) = Ck(V ′, h′), and (b) at least one of (V, h) and (V ′, h′) did not
appear in the sequence of queries.

In Scheme P, the permutations p1 and p2 are determined by (Ck, Ĉk). For
example, p1 : (X1, X2, . . . , Xn) 7→ (W = Ck1(X1, H(X2, . . . , Xn)), X2, . . . , Xn),
and p2 is defined similarly. The “storage” capability of non-colliding encryp-
tion ensures that p1 is indeed a permutation, because p−1

1 : (W,X2, . . . , Xn) 7→
(X1 = Ĉk1(W,H(X2, . . . , Xn)), X2, . . . , Xn). The permutation J depends on the
two key components k3 and k4. J : (W,X2, . . . , Xn) 7→ (Z, Y2, . . . , Yn), where
Z = Ek3(W ), (Y2, . . . , Yn) = GFk4 (W )(X2, . . . , Xn), and GS : {0, 1}(n−1)b 7→

{0, 1}(n−1)b. The overall permutation computed by the encryption protocol is
Π = p−1

2 ◦ J ◦ p1.
Our main result is as follows.

Theorem 6. Scheme P is a secure, length-preserving RKES.

Proof. To prove this result, we must define an arbiter B, construct a non-colliding
encryption scheme, and apply the Naor-Reingold framework [18]. Applying the
framework entails identifying J-good sequences and proving that the overall
construction gives a strong pseudorandom permutation. The identification of J-
good sequences has to take into account the “two-phase” aspect of the definition

14



of security of RKESs; this is a complication that is not present in the original
Naor-Reingold paper. We address each of these issues in turn.

Arbiter:
B records all the pairs (hx, X1) and (hy, Y1) that appear in the host phase.

The list of pairs is easy to deduce from the transcript. During the distinguishing
phase, B does the following for each encryption query (+, (X1, . . . , Xn)). First,
it computes hx = H(X2, . . . , Xn). If the pair (hx, X1) appeared in the host
phase, then B answers the query using the encryption protocol; otherwise, it
uses either the encryption protocol or the random permutation, depending on
whether the decision between phases was to continue or to switch. Similarly,
when it receives a decryption query (−, (Y1, . . . , Yn)) during the distinguishing
phase, B first computes hy = H(Y2, . . . , Yn); then, if the pair (hy, Y1) appeared
in the host phase, B uses the decryption protocol to answer the query, and
otherwise it uses either the decryption protocol or the random function inverse,
depending on whether the decision between phases was to continue or to switch.

Non-colliding encryption:
Assume without loss of generality that the key k required by the non-colliding

encryption scheme is the same length (b bits) as the key for the block cipher E. If
the block-cipher keys are too short, they can be stretched using a pseudorandom
generator, and if they are too long, they can be truncated. Recall that F is a
pseudorandom function.

NCE Construction 1: Let Ck(V, h) = EFk(h)(V ) and Ĉk(V, h) = DFk(h)(V ).

Lemma 7. NCE Construction 1 is a non-colliding encryption scheme.

Proof. This construction obviously satisfies Property 1 of Definition 5.
To prove that is also satisfies Property 2, consider an adaptive adversary A

that makes a sequence of m queries to Ck and Ĉk. Let ε1
m (resp. ε2

m) be an
upper bound on the probability that, with m queries, A can distinguish F from
a truly random function (resp. an upper bound on the probability that, with m
queries, A can distinguish a collection of m+2 pseudorandom permutations from
a collection of m + 2 truly random permutations). Then A’s chance of finding
two pairs (V, h) 6= (V ′, h′) such that (a) Ck(V, h) = Ck(V ′, h′), and (b) at least
one of (V, h) and (V ′, h′) did not appear in the sequence of queries is at most

m2

2b
+

1
2b −m

+ ε1
m + ε2

m. (1)

In see this, compare (Ck, Ĉk) to the following process (C ′, Ĉ ′), which is de-
fined in terms of random functions and permutations rather than pseudorandom
functions and permutations. Let E1, E2, . . . , Em+2 be random permutations, and
let D1, D2, . . . , Dm+2 be the corresponding inverse permutations. The process
(C ′, Ĉ ′) acts as follows on A’s ith query (Vi, hi), given that (V1, h1), (V2, h2), . . .,
(Vi−1, hi−1) were A’s i− 1 previous queries. Suppose that hi is the jth distinct
element in the set {h1, h2, . . ., hi}. If (Vi, hi) is a query is to C ′, then respond
with Ej(Vi), and if it is a query to Ĉ ′, then respond with Dj(Vi).

15



We would like to bound the probability that, after m queries, A can find
(V, h) 6= (V ′, h′) such that C ′(V, h) = C ′(V ′, h′) but at least one of (V, h) or
(V ′, h′) did not appear in the sequence (V1, h1), (V2, h2), . . ., (Vm, hm). Sup-
pose that h is the jth

1 distinct element and h′ is the jth
2 distinct element among

h1, h2, . . . , hm, h, h′. If j1 = j2, we are done, because Ej1(V ) 6= Ej1(V
′). Other-

wise, assume without loss of generality that it is the query (V, h) that did not
appear in the sequence. Then the probability that Ej1(V ) = Ej2(V

′) is at most
1/(2b − m), because the value of Ej1 has been specified on at most m points,
and Ej1(V ) is uniformly distributed among the remaining 2b −m points in the
range.

We now bound the probability that a polynomial-time adversary can dis-
tinguish between (truly random) (C ′, Ĉ ′) and (pseudorandom) (Ck, Ĉk). Essen-
tially, we use a hybrid argument. If, instead of the pseudorandom Fk, a truly
random function f were used, the probability that the adversary could find two
different h and h′ such that f(h) = f(h′) would be at most m2/2b. If this does
not happen, then the randomness of f implies that the keys of the pseudoran-
dom permutations are random; if the adversary could distinguish between such
a process and (C ′, Ĉ ′), then it could distinguish between a collection of m pseu-
dorandom permutations and a collection of m truly random permutations – this
happens with probably at most ε2

m. Distinguishing between the case in which a
random f is used and the one in which a pseudorandom Fk is used adds proba-
bility at most ε1

m, yielding (1). ut

We provide another construction of non-colliding encryption . The proof is
based on generating many “independent” permutations from a single one, as in
Even and Mansour [9] and Kilian and Rogaway [14]. It may be the preferred
construction if the smart-card constraints make it very difficult to change a key
to a permutation.

NCE Construction 2: Let k = (k1, k2, k3), where k2 and k3 are used as keys
to the pseudo-random function F and k1 as a key to E. The idea is to apply F
to h and obtain a “mask” for encrypting V . Formally, Ck(V, h) = Ek1(Fk2(h)⊕
V )⊕ Fk3(h), and Ĉk(V, h) = Dk1(Fk3(h)⊕ V )⊕ Fk2(h).

Lemma 8. NCE Construction 2 is a non-colliding encryption scheme.

Proof. Even and Mansour showed that, if E : {0, 1}b 7→ {0, 1}b is a random per-
mutation and m pairs 〈(I1, O1), (I2, O2), . . . , (In, On)〉 are chosen independently
and uniformly at random, then the permutations Ei(X) = E(X ⊕ Ii) ⊕ Oi are
indistinguishable from random. The pseudorandomness of Fk2 and Fk3 allows us
to repeat the argument of Lemma 7. ut

J-good sequences:
Recall that we would like these to be the sequences in which different Xi’s

correspond to different W i’s and different Y i’s correspond to different Zi’s. Fur-
thermore, the W ’s and Z’s of the distinguishing phase should be different from
those obtained during the host phase, except in those inputs filtered by the ar-
biter. Intuitively, these sequences are “good” for the pseudorandom permutation

16



construction, because distinct W ’s produce distinct S’s with overwhelming prob-
ability. The properties of the building blocks E,F , and G then ensure that there
is a process J̃ , indistinguishable from J , such that, for all J-good input-output
sequences 〈(X1, Y 1), . . . , (Xm, Y m)〉

Pr
J̃

[p2(Y
i) = J̃(p1(X

i)), 1 ≤ i ≤ m] ≈ 2−`∙m.

More precisely, let A be a probabilistic, polynomial-time adversary that has
m1 interactions with the card during the host phase and makes m2 oracle queries
during the distinguishing phase. The sequences we are interested in consist of

(X1
1 , h1

x, Y 1
1 , h1

y), (X2
1 , h2

x, Y 2
1 , h2

y), . . . , (Xm1
1 , hm1

x , Y m1
1 , hm1

y )

from the host phase and

(Xm1+1, Y m1+1), (Xm1+2, Y m1+2), . . . , (Xm1+m2 , Y m1+m2)

from the distinguishing phase. For any such sequence, the permutations p1 and
p2 determine W 1, . . ., Wm1 , Wm1+1, . . ., Wm1+m2 and Z1, . . ., Zm1 , Zm1+1,
. . ., Zm1+m2 . An encryption query (+, Xm1+i) or decryption query (−, Y m1+i)
is filtered during the distinguishing phase by B if there is a 1 ≤ j ≤ m1 for which

(Xm1+i
1 , H(Xm1+i

2 , . . . , Xm1+i
n )) = (Xj

1 , hj
x)

(or analogously (Y m1+i
1 , H(Y m1+i

2 , . . . , Y m1+i
n )) = (Y j

1 , hj
y)). Note that the ad-

versary should not be able to find more than m1 inputs and m1 outputs that are
filtered – otherwise, the pigeonhole principle implies that the adversary would
have found in the distinguishing phase two encryption queries (+, Xm1+j1) 6=
(+, Xm1+j2) such that (Xm1+j1

1 , hm1+j1
x ) = (Xm1+j2

1 , hm1+j2
x ) = (Xi, h

i
x) for

some 1 ≤ i ≤ m1 and 1 ≤ j1, j2 ≤ m2 (or two analogous decryption queries).
However, that would mean that it had broken the collision-intractable hash func-
tion H.

We say that a sequence is J-good for p1 and p2 if

1. For all 1 ≤ i < j ≤ m2, if Xm1+i 6= Xm1+j and Xm1+i and Xm1+j are not
filtered by B, then Wm1+i 6= Wm1+j , and, if Y m1+i 6= Y m1+j and Y m1+i

and Y m1+j are not filtered by B, then Zm1+i 6= Zm1+j .
2. For all 1 ≤ i ≤ m2, if Xm1+i is not filtered by B, then Wm1+i 6= W j for

all 1 ≤ j ≤ m1, and, if Y m1+i is not filtered by B, then Zm1+i 6= Zj for all
1 ≤ j ≤ m1.

In other words, the W ’s and Z’s of the distinguishing phase are different from
one another and from those of the host phase. We must show that the adversary
is not able to find bad sequences, except with negligible probability.

Lemma 9. For any permutation J , for any probabilistic, polynomial-time ad-
versary A that has m1 interactions with the card during the host phase and
makes m2 oracle queries during the distinguishing phase, the probability that A
finds a sequence that is not J-good for p1 and p2 is negligible. The probability
is computed over the choice of p1 and p2 and the random coin-flips of A. Note
that J is not necessarily secret.

17



Proof. Let ε1 be an upper bound on the probability that an adversary with
A’s resources breaks the collision-intractable hash function H, and let ε2 be an
upper bound on the probability that an adversary with A’s resources breaks the
non-colliding encryption scheme. Then A’s probability of finding a sequence that
is not J-good for p1 and p2 is upper-bounded by ε1 + ε2.

Suppose that the first query that witnesses the fact that this sequence is not
J-good occurs at the jth step of the distinguishing phase, and assume without
loss of generality that it is an encryption query. We divide this event into two
cases. In case 1, Property 1 is violated, i.e., there are i and j, 1 ≤ i < j ≤ m2,
such that Xm1+i 6= Xm1+j but Xm1+i

1 = Xm1+j
1 and H(Xm1+i

2 , . . . , Xm1+i
n ) =

H(Xm1+j
2 , . . . , Xm1+j

n ). This means that A has broken the collision-intractable
function H, which happens with probability at most ε1. The other possibility is
that Zm1+j = Zi but (Xm1+j

1 , hm1+j
x ) 6= (Xi

1, h
i
x) where i (1 ≤ i ≤ m1 + j − 1)

is either from the host phase or from the distinguishing phase. However, note
that (Xm1+j

1 , hm1+j
x ) did not appear explicitly before in the sequence (if it had,

it would have been filtered, or j would not be the first “bad location” in the
sequence), but Ck1(X

m1+j
1 , hm1+j

x ) = Ck1(X
i
1, h

i
x). Thus A could break the non-

colliding encryption scheme (Ck, Ĉk), which happens with probability at most
ε2. ut

Indistinguishability:
As in the original Naor-Reingold paper, we consider what happens when J

is replaced with a “more random” process. Let J̃1 be the obtained from J by
replacing Ek3 with a random permutation and replacing GS with a process G̃
that, on input S, produces a random string of length (n− 1) ∙ b (i.e., a random
function {0, 1}b 7→ {0, 1}(n−1)∙b) and Xors the string with X2, . . . , Xn. Let J̃2

be a random permutation. Note that, if J is replaced with J̃2, the composition
p−1
2 ◦ J̃2 ◦ p1 is a random permutation for any p1 and p2.

We complete the proof of Theorem 6 by showing (i) when J is replaced with
J̃1, the result is indistinguishable by probabilistic, polynomial-time adversaries,
and (ii) when J̃1 is replaced by J̃2 the result is indistinguishable to adversaries
restricted to good sequences.

Lemma 10. Suppose that, following the host phase of an attack on Scheme P,
a nondeterministic choice is made between replacing the function J by J̃1 or
continuing to use J . Then any probabilistic, polynomial-time adversary A has
only a negligible probability of determining whether a switch was made, where
the probability is over the choice of J, p1, p2, J̃1 and A’s coin-flips.

Proof. Observe first that J can be partly transformed without detection: Sup-
pose that Ek3 is replaced with a random permutation and Fk4 is replaced with
a random function prior to the beginning of the host phase. This should be in-
distinguishable to A, because the only information A has about Ek3 , Dk3 , and
Fk4 is their values (or some function of them) at some specific points. Therefore
the important part of a potential switch is the replacement of G by G̃.

By Lemma 9, except with negligible probability, all the W ’s of the distin-
guishing phase are different from those of the host phase and different from

18



each other, except those that were filtered. These W i’s are assigned a random
value Si. Recall that G has the property that, if S is chosen at random, then
GS(X2, . . . , Xn) is indistinguishable from a truly random string of the same
length for any X2, . . . , Xn, and similarly for Ĝ. In case a switch is not made
between phases, then G (or Ĝ) produces an input that is indistinguishable from
a truly random one. If a switch is made, then G̃ is used, and the result is a
random and independent string (except when Si is a collision, which happens
with probability at most m2/2b). Therefore, the overall probability with which
a switch is detected is negligible. ut

Lemma 11. Suppose that, following the host phase of an attack on Scheme P, a
nondeterministic choice is made between replacing J by J̃1 or replacing J by J̃2.
Then any probabilistic, polynomial-time adversary A has a negligible probability
of distinguishing between the two cases, where the probability is computed over
the choice of J, p1, p2, J̃1, J̃2, and A’s coin-flips.

Proof. Fix the adversary A to be the best deterministic machine, and fix p1, p2,
and J . This determines the queries made during the host phase. Now consider
any sequence

SEQ = 〈(Xm1+1, Y m1+1), . . . , (Xm1+m2 , Y m1+m2)〉

such that SEQ (together with the host phase queries) is J-good for p1 and p2.
If SEQ is a possible outcome for A, given the fixed J, p1, and p2, then

Pr
J̃1

[SEQ is produced] =
1

2bn
∙

1
(2b − 1) ∙ 2b(n−1)

∙ ∙ ∙
1

(2b −m2 + 1) ∙ 2b(n−1)

and

Pr
J̃2

[SEQ is produced] =
1

2bn
∙

1
2bn − 1

∙ ∙ ∙
1

2bn −m2 + 1
.

Therefore, PrJ̃1
[SEQ is produced] is at least

Pr
J̃2

[SEQ is produced] ≥ (1−
m2

2b
)m2 ∙ Pr

J̃1

[SEQ is produced].

Now consider any collection C of sequences that are J-good for p1 and p2.
The probabilities that a member of this collection is produced by J̃1 and J̃2 are
close, because the ratio of PrJ̃1

[C] and PrJ̃2
[C] is between 1 and 1 − (m2

2/2b).
Suppose without loss of generality that, just before A has to guess whether

it is querying process J̃1 or process J̃2, the permutations p1 and p2 are revealed.
This can only help A. If we consider all possible executions of A, then with all but
negligible probability (over p1, p2), the sequence generated is J-good for p1 and
p2. Partition the executions that end with an J-good sequence into C1 (those for
whichA announces 1), and C2 (those where it announces 2). Summing over p1, p2,
and J , the probabilities PrJ̃1

[C1] and PrJ̃2
[C1] are close (and similarly for PrJ̃1

[C2]

and PrJ̃2
[C2]). Therefore, we can conclude that J̃1 and J̃2 are indistinguishable

for A. ut

19



To complete the proof of Theorem 6, note that p−1
2 ◦ J̃2 ◦ p1 is a random per-

mutation. Thus, A has at most a negligible probability of determining whether
J was switched with a random permutation between phases. ut

6 Open Questions

Remaining questions include:

Question 12. The protocol in Section 5 requires two rounds of interaction be-
tween the host and the card. Is there a secure, length-preserving RKES that
requires only one round of interaction?

Question 13. Is the existence of a one-way function sufficient for the construction
of a provably secure RKES? Note that a collision-intractable hash function is
used in our constructions and that it is not known how to build such a hash
function based only on the assumption that a one-way function exists. (See [4] for
a discussion of the desirability of using UOWHFs instead of collision-intractable
hash functions.)

Acknowledgments

We thank Omer Reingold for useful discussions and the Eurocrypt ’98 Program
Committee members for their comments.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security Treatment
of Symmetric Encryption,” in Proceedings of the 38th Symposium on Foundation
of Computer Science, IEEE Computer Society Press, Los Alamitos, pp. 394–403,
1997.

2. M. Bellare, J. Kilian, and P. Rogaway, “The Security of Cipher Block Chaining,” in
Advances in Cryptology – Crypto ’94, Lecture Notes in Computer Science, vol. 839,
Springer, Berlin, pp. 341–358, 1994.

3. M. Bellare and P. Rogaway, “Provably Secure Session Key Distribution – The Three
Party Case,” in Proceedings of the 27th Symposium on Theory of Computing, ACM,
New York, pp. 57–66, 1995.

4. M. Bellare and P. Rogaway, “Collision Resistant Hashing, Towards Making
UOWHFs practical,” in Advances in Cryptology – Crypto ’97, Lecture Notes in
Computer Science, vol. 1294, Springer, Berlin, pp. 470–484, 1997.

5. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosys-
tems,” in Advances in Cryptology – Crypto ’97, Lecture Notes in Computer Sci-
ence, vol. 1294, Springer, Berlin, pp. 513–525, 1997.

6. M. Blaze, “High-Bandwidth Encryption with Low-Bandwidth Smartcards,” in Pro-
ceedings of the Fast Software Encryption Workshop, Lecture Notes in Computer
Science, vol. 1039, Springer, Berlin, pp. 33–40, 1996.

20



7. D. Boneh, R. A. Demillo, and R. J. Lipton, “On the Importance of Checking
Protocols for Faults,” in Advances in Cryptology – Eurocrypt ’97, Lecture Notes in
Computer Science vol. 1233, Springer, Berlin, pp. 37–51, 1997.

8. D. Dolev, C. Dwork, and M. Naor, “Non-Malleable Cryptography,” in Proceedings
of the 23rd Symposium on Theory of Computing, ACM, New York, pp. 542–552,
1991. Expanded version available as Weizmann Institute Technical Report CS95-
27.

9. S. Even and Y. Mansour, “A construction of a cipher from a single pseudoran-
dom permutation,” to appear in J. Cryptology. Preliminary version in Advances in
Cryptology - ASIACRYPT ’91,

10. J. Feigenbaum, “Locally Random Reductions in Interactive Complexity Theory,”
in Advances in Computational Complexity Theory, DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 13, American Mathematical
Society, Providence, 1993, pp. 73–98.

11. O. Goldreich, Foundations of Cryptography (Fragments of a Book), 1995.
http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html

12. O. Goldreich S. Goldwasser, and S. Micali, “How to Construct Random Functions,”
J. of the ACM, 33 (1986), pp. 792-807.

13. S. Goldwasser and S. Micali, “Probabilistic Encryption,” J. Computer and System
Sciences, 28 (1984), pp. 270–299.

14. J. Kilian and P. Rogaway, “How to protect DES against exhaustive key search,”
in Advances in Cryptology - CRYPTO ’96, Lecture Notes in Computer Science,
vol. XXXX, Springer, Berlin, pp. 252-267, 1996.

15. M. Luby, Pseudorandomness and Cryptographic Applications, Princeton
University Press, Princeton, 1996.

16. S. Lucks, “On the Security of Remotely Keyed Encryption,” in Proceedings of the
Fast Software Encryption Workshop, Lecture Notes in Computer Science, vol. 1267,
Springer, Berlin, pp. 219–229, 1997.

17. T. Matsumoto, K. Kato, and H. Imai, “Speeding Up Secret Computations with
Insecure Auxiliary Devices,” in Advances in Cryptology – Crypto ’88, Lecture
Notes in Computer Science, vol. 403, Springer, Berlin, pp. 497–506, 1990.

18. M. Naor and O. Reingold, “On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited,” to appear in J. Cryptology. Extended abstract appears
in Proceedings of the 29th Symposium on Theory of Computing, ACM, New York,
pp. 189–199, 1997.

19. V. Shoup and A. Rubin, “Session Key Distribution Using Smart Cards,” in Ad-
vances in Cryptology – Eurocrypt ’96, Lecture Notes in Computer Science vol. 1070,
Springer, Berlin, pp. 321–331, 1996.

21


