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Abstract

This paper investigates the possibility that any NP statement can be proven by anargument system
in two rounds of communication (i.e. one message from the verifier to the prover and one message
back) while sending only relatively few bits, without relying on the existence of a random oracle. More
specifically, we focus on a natural approach (suggested in [1]) for designing such an argument system
by a combination of two tools: (i) The PCP (probabilistically checkable proofs) Theorem that states that
for every languageL ∈ NP there exist polynomial size witnesses that may be verified, with constant
error probability, by probing only a constant number of locations of the proof, and (ii) Computational
PIR (private information retrieval) schemes. The idea is simple: to verify an NP statement, the verifier
simulates a PCP verifier where every query is performed via a (computational) PIR. Although this
protocol is very natural, attempts to prove its soundness have failed. We exhibit inherent difficulties in
such attempts (even when applied to extensions of this protocol). Our results give some indications of
the direction one must take in order to construct efficient proof systems in this way.
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1 Introduction

NP is the class of languages with polynomial length proofs. I.e. for every instancex in the language there
is a proof (also called a witness), of size polynomial in the length ofx. Viewed as a proof system, there
is a prover that can send a message whose length is polynomial in|x| and a polynomial time verifier that
can check the proof. Ifx ∈ L then the verifier accepts the proof (completeness) and for anyx 6∈ L,
there is no proof that makes the verifier accept (soundness). The PCP Theorem [2, 3] states that for every
languageL ∈ NP there exist witnesses of polynomial length that may be verified, with constant error
probability, by probing only a constant number of locations of the proof. However if we want to obtain a
proof system where the total communication from the prover to the verifier and back is low (polylogarithmic
or sublinear), then we are faced with the impossibility results of Goldreich and Håstad [13] and Goldreich,
Vadhan and Wigderson [15] who showed that only languages which are relatively easy may have such proof
systems. Therefore we must settle forcomputationalsoundness, or anargument systemwhere the prover
is assumed to be computationally bounded and for nox 6∈ L can it succeed in making the verifier accept
with non-negligible probability. Such argument systems for all languages in NP, based on the PCP Theorem
and computational assumptions, were constructed by Kilian [17, 18] and Micali [21]. The constructions
of Kilian are based on a standard computational primitive, namely a collision-intractable hash function.
The resulting protocol is a communication-efficient 3-round (prover-verifier-prover) protocol. Micali [21]
constructs a one-round argument system (called CS – computationally sound – proofs). The construction
assumes the existence of a random oracle.

The problem studied in this paper is whether there exist two-round (or single-round) communication
efficient argument systems for NP in thestandardmodel. This is central to understanding the tradeoff
between the number of rounds and the number of communication bits in the context of non-trivial argument
systems. Moreover, two-round communication-efficient argument systems, if they exist, would have many
appealing applications. Consider for example the setting of remote procedure calls: Alice asks Bob to
compute the outcome of some piece of code on a specific input. This can be done in two rounds (Alice’s
request and Bob’s reply – the outcome of the computation). Two-round communication-efficient argument
systems for NP may enable Bob to also prove the correctness of his answer with a relatively low overhead in
communication and without changing the communication pattern of the original protocol. The significance
of the two-round requirement is that Bob can be stateless and does not have to remember what he did in
previous rounds. The complexity of generating such proofs using current techniques may be too high to be
used as described; however the hope is that showing that such a process is possible in principle will inspire
more practical methods for specific instances.

Combining PCPs and computational PIR We focus on a specific approach, previously suggested by
Aiello et al. [1], for designing efficient argument systems in two rounds. This approach is based on the com-
position of PCP systems with computational PIR (private information retrieval) schemes. A computational
PIR scheme enables a user to read a specific location of a database without revealing any information about
this location.

The starting point of [1] (as in [17, 18, 21]) is the PCP Theorem. Since the PCP verifier only looks at a
few locations, we may consider the following (seemingly ridiculous) two-round protocol:

Verifier: Simulate a PCP verifier and ask the prover for the probed locations.
Prover: Reply with the corresponding bits of the PCP proof.
Verifier: Accept iff the PCP verifier accepts.

This protocol is obviously not sound: allowing the prover to choose its PCP proof after seeing the
verifier’s queries makes it easy for him to cheat. But what if he does not get to see the actual locations
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of interest but rather some “encrypted” version of them? In such a case, the proverseemsto have no way
of adjusting his proof to the verifier’s queries. This is exactly the intuition behind the basic two-round
arguments we study: The verifier simulates the PCP verifier but instead of sending his queries in the clear,
he performs them via parallel executions(independent on his part)of a PIR scheme. Using the PIR scheme
of [7], the protocol will consist of two rounds and have small communication complexity.

Our results Despite the intuition described above, our first result shows that the basic two-round protocol
is not always sound: There exists a concrete PCP which, if used in the basic two-round construction, can be
fooled, i.e. every statement can be proved correct. The flaw of the basic protocol is that nothing forces the
prover to answer different queries consistently, i.e. according to the same “database”. (The authors of [1]
have withdrawn their work as a result of this observation and our results that follow.)

However, this problem seems easy to fix following a standard way of transforming PCP to sound MIP
(multiprover interactive proofs) [11, 6]. The verifier may check the consistency of the provers answers: In
addition to the PCP queries, the verifier can hide (in random locations) repeated queries to the same location
with the sole purpose of verifying that the prover answers consistently.

Our main results show fundamental difficulties in proving the soundness of the revised protocol as well
(and even more general versions of this protocol). The essence of the problem is that seemingly independent
executions of PIR schemes may have what we call“spooky interactions” (see precise Definition 5.5). Even
though the queries are formed independently and the prover does not have a real understanding of them, there
may be hidden interactions (i.e. unexpected correlations between queries and outputs). This problem holds
irrespectively of the specific PCP system in use.

The possibility of spooky interactions seems to be a fundamental issue. We do not know whether there
exist PIR schemes for which parallel executions yield spooky interactions or whether the properties of
PIR schemes (namelyprivacy - that the database learns nothing about the locations being probed; and
correctness- that database information can be read by the user assuming both parties are honest) rule out
such interactions. This is an intriguing open problem. In our work, we identify for any efficient PCP system
P, a possible form of spooky interaction which contradicts the soundness of the basic protocol withP.
We conclude, that such interactions must be ruled out in any attempt to prove the soundness of the basic
protocol.

In addition we study the existence of spooky interactions in settings other than the basic two round pro-
tocol in which parallel executions of a computational PIR are used. In Appendix B, we introduce a variant
of PIR that performs several queries at once – Multi-PIR. We show that Multi-PIR does allow spooky inter-
actions. Therefore, the basic protocol with Multi-PIR is not necessarily sound. Furthermore, in Appendix C
we show an information theoretic PIR where spooky interactions occur.

The results of this paper seem to identify the directions one should follow in order to construct two-
round arguments using the approach of [1]. It seems apparent that any success in this line of research
requires better understanding of PIR schemes. We discuss the resulting questions in Section 7.

Organization: In Section 2 we review some standard definitions used throughout the paper and define
the parallel PIR protocol. In Section 3 we review the basic two round protocol. Sections 4, and 5 explain
the difficulties in proving the soundness of such protocols: Section 4 shows a counterexample based on the
lack of consistency checks. In Section 5 we discuss the possibility of fixing the basic two round protocol
using consistency checks. For that end we look in more depth into the parallel PIR protocol. The results of
Section 5 are generalized in Section 6. In Appendix D we discuss two issues: how to reduce the soundness
error via parallel repetition and how to achieve witness indistinguishability. Finally, we discuss our results
and state the main open problems.
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2 Tools and definitions

In this section we review the tools used in the construction of the proposed argument system for NP state-
ments, namely, the PCP Theorem and computational PIR schemes. We then define communication efficient
argument systems.

2.1 Probabilistically checkable proofs

We now define a probabilistically checkable proof (PCP) system in terms of its verifierV. We are assuming
thatV has access to an oracle tapeπ where on queryi the response isπ(i), i.e. the bit at locationi of π.

Definition 2.1 (Probabilistically checkable proofs (PCP))A languageL is in PCPδ,ε(r, q) if there exists
a probabilistic polynomial time verifierV with access to an oracle tapeπ which uses at mostr random bits
and queries at mostq oracle bits such that:

Completeness:For anyx ∈ L, there exists a proof tapeπ s.t.Pr [V(x, π) = 1] ≥ δ.

Soundness:For anyx 6∈ L and for all tapesπ∗, Pr [V(x, π∗) = 1] ≤ ε.

The probabilities are over the random choices of the verifierV.

After a long line of work including [3, 2], a new characterization of NP (known as the PCP Theorem) was
achieved, namely it was shown that NP= PCP1,1/2(O(lg |x|), O(1)). This implies that|π| = poly(|x|).
In the constructions that are analyzed in this work we use PCP systems with low query complexity (up to
polylogarithmic in the instance length|x|) so that a simulation of such systems in our context results in
arguments of low communication complexity.

2.2 Private information retrieval

The parties of a private information retrieval scheme are a chooser and a sender. The sender holds a database
DB of lengthn and the chooser holds an indexi ∈ [n]. Intuitively, the protocol enables the chooser to read
locationi of DB without the sender learning anything abouti. It is convenient for us to define PIR privacy
against a non-uniform adversary1. The PIR scheme is defined by three algorithms:Q andR are executed
by the chooser andD by the sender. AlgorithmQ is the query generator that maps the indexi into a query
q using the chooser’s secret random strings (s is to remain secret if the chooser does not wish to reveal
i). Algorithm D is the one executed by the (honest) prover in response to queryq and as a function of the
databaseDB. Finally, algorithmR allows the chooser to reconstruct the value at location i as a function of
the response it received from the sender and the secret random strings.

Definition 2.2 (Private information retrieval (PIR)) Let D,Q, R be probabilistic polynomial time algo-
rithms. Letk be a security parameter andn the length of the database.(D, Q,R) is a (computational) PIR
scheme if

Correctness: For anyn-bit stringDB and any locationi ∈ [n],

Pr
[
(q, s)← Q(n, i, 1k); a← D(DB, q, 1k) : R(n, i, (q, s), a, 1k) = DB[i]

] ≥ 1− neg(k)

1This implies a cleaner statement of Lemma 5.3. Considering a stronger definition of PIR only makes our results more mean-
ingful.
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Privacy: For any family of polynomial-size (probabilistic) circuits{Ak}k∈IN and anyi, j ∈ [n],
∣∣Pr

[
(q, s)← Q(n, i, 1k) : Ak(q, 1k) = 1]− Pr[(q, s)← Q(n, j, 1k) : Ak(q, 1k) = 1

]∣∣ ≤ neg(k)

The probabilities are taken over all choices made by all machines involved.

There are two constructions of PIR schemes that are most relevant to our work. The construction by
Kushilevitz and Ostrovsky [19] was the first to eliminate the need of multiple databases and was based on
a computational assumption (the Quadratic Residue Assumption). The communication complexity of their
construction is of the formk·nε wherek is the security parameter andn is the database size. A more efficient
construction (in terms of communication complexity) was suggested by Cachin, Micali and Stadler [7]. It
is based on a new computational hardness assumption – Theφ-hiding assumption – and has communication
complexityO(κ) whereκ is the length of composites for which theφ-hiding assumption holds. Note that
there is also a lot of work related to PIR schemes with more than one sender, but they are less related to our
setting.

As described in the Introduction, the two-round arguments analyzed in this paper are composed of
several instances of a PIR scheme that are executed in parallel, with independent random coins for each
instance. Let̄i = (i1, i2, . . . , i`) be a vector of (not necessarily distinct) locations. Given a PIR scheme
(D, Q, R) let PARPIR(̄i,DB) be the two round protocol in which̀independent executions of(D, Q,R)
are performed in parallel. Forj = 1 . . . ` the j’th execution queries locationij on databaseDB. Protocol
PARPIR is rigorously defined in Appendix A.

2.3 Argument systems

Finally we introduce the object we are seeking – the low communication argument system.

Definition 2.3 (Two-round argument system)LetV1,V2,P be probabilistic polynomial time algorithms.
Letk be a security parameter.(V1,V2,P) is a two-round argument system for a languageL if

Completeness:For anyx ∈ L there exists a proof tapeπ s.t.

Pr[(q, s)← V1(x, 1k); a← P(x, π, q, 1k) : V2(s, a, 1k) = 1] ≥ 1− neg(k)

Soundness:For anyx 6∈ L for all probabilistic poly-time machinesP∗

Pr[(q, s)← V1(x, 1k); a← P∗(x, q, 1k) : V2(s, a, 1k) = 1] ≤ neg(k)

The probabilities are over the random choices of all machines involved.

The communication complexity of an argument system is|q|+|a|. An argument system iscommunication-
efficientif its communication complexity isk · polylog(|π|).

3 The basic two-round protocol

We now formalize and analyze the basic two-round arguments obtained by composing PCP systems with
PIR schemes.

Definition 3.1 Given the verifierV of a PCP systemP for L ∈ NP with randomnessr and query complexity
`, and a PIR scheme(D, Q,R), let the basic two-round protocol be as follows:
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ProtocolBASICP(x):

Input: Both parties hold a stringx supposedly inL. If x ∈ L, the prover holds as auxiliary input a
corresponding PCP proof tapeπ.

Step 1: The verifier simulates the PCP-verifierV. Let ī be the vector of locations accessed byV.

Step 2: Both parties invoke protocolPARPIR(π, ī) where the verifier plays the chooser and the prover
plays the sender. The verifier’s outcome isb̄.

Step 3: The verifier simulatesV on b̄ and accepts iffV accepts.

The PIR access to locationsī = (i1, i2, . . . , i`) is supposed to simulate access to these locations in the
PCP tapeπ. Attempts to prove the correctness ofBASICP were based on the privacy requirement of the
PIR scheme [1]. It was suspected that the privacy of the PIR scheme forces the (malicious) prover to answer
according to a particular proof tapeπ. We show that this isnot the case.

4 A counterexample based on inconsistent replies

In this section we show that the construction suggested in [1] is not sound.

Observation 4.1 There exists an explicit PCP systemP such that for any computational PIR scheme, the
corresponding argument systemBASICP is not sound.

Proof Our counter example uses a PCP constructed by Petrank [22] based on a reduction from Max-3-SAT
to Max-3-Coloring. It is shown in [22] that for any NP languageL and inputx one can produce a graphG
such that:

1. if x ∈ L, thenG is 3-colorable.

2. if x 6∈ L, then any 3-coloringχ of G will miscolor at least aγ fraction of the edges ofG for some
constantγ > 0.

The implied PCP systemP is as follows. Given any languageL ∈ NP and inputx, the verifier constructs
the graphG corresponding tox, chooses randomly an edge(i, j) in G, and queries the PCP proofπ on
locationsi, j; each entry is in{1, 2, 3}. The verifier accepts iffπi 6= πj . In particular, ifx 6∈ L the verifier
has probability at most1− γ of accepting.

The malicious prover’s strategy forBASICP is as follows: Pick two different random colorsc1 6= c2 ∈
{1, 2, 3}. Answer the first query as if all the nodes are coloredc1 and the second one as if all of them are
coloredc2. This strategy will convince the verifier with probability 1, independent of whether or notx is in
L. Note that the cheating prover’s strategy can be implemented regardless of the specific PIR scheme. All
that is being used is that the prover is able to simulate each of the parallel PIR protocols inBASICP with
a different database. 2

4.1 Consistency checks

The counterexample described above exploits the following flaw of the basic protocol: A cheating prover
may usedifferent databasesin its answers to the different PIR queries of the verifier. A standard approach
for solving this problem is by incorporatingconsistency checksinto P. For example, the verifier can select
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its queries according toP but with probability1/2, instead of querying for the original list of locations,
it picks at random one of these locationsij and sendsij in all instances of the PIR protocol. In such a
case, the verifier accepts iff all the PIR answers it received are the same. Is it enough to enhanceBASICP

with consistency checks in order to make it sound? In such a system, a cheating prover can no longer get
away with just giving answers from different databases. But is this the only kind of malicious behavior a
BASICP prover (i.e. aPARPIR sender) can carry out?

Consider a variant of PIR that performs several queries at once. We denote such a primitive as Multi-
PIR. In Appendix B we define the Multi-PIR primitive and show that the corresponding variant of protocol
BASIC in which thePARPIR sender is replaced by an arbitrary Multi-PIR sender is not sound, even when
enhanced by consistency checks.

In the remainder of our work we concentrate on the basic protocol withPARPIR senders. We charac-
terize in Section 5 the possible behaviors of aPARPIR sender, we define a type of malicious behaviors we
call spookyand show that spooky behaviors (if exist) challenge the soundness of the basic protocol enhanced
with consistency checks.

5 A deeper look into PIR privacy

PIR privacy served the main tool in attempts to prove the soundness of the basic protocol (see e.g. [1]). This
is indeed a natural approach – the usage of the PIR correctness requirement for proving soundness seems
beyond our current understanding of PIR schemes. What we show in the following is that PIR privacy is not
enough for proving the soundness of the basic protocol as well as similar protocols.

In the following, we present an alternative definition ofPARPIR privacy based on theinput output
behavior ofPARPIR. We show that it suffices to prove the soundness of protocolBASIC when we
restrict ourselves toPARPIR protocols with input output behavior that obeys what we call theprojection
condition. We then study two types of behaviors which obey this property: tape distributions (which are
easy to implement using any PIR scheme) and spooky behaviors (which are far from any tape distribution).
Finally we show (in Section 6) that foranyefficient PCP systemP (no matter how sophisticated we make
its checks) there exists a spooky behavior that challenges the soundness of protocolBASIC with P. This
implies that any proof for the soundness of protocolBASIC must rule out such spooky behaviors.

5.1 Behaviors

Let ī = (i1, . . . , i`) be a vector of locations, and̄b = (b1, . . . , b`) be a vector of possible answers. We define
the input-output behavior ofPARPIR to be a function that takes a set of valuesb̄ and an equinumerous
set of indices̄i and determines the probability that invokingPARPIR on chooser input̄i results in chooser
outputb̄. I.e. the probability that the outcome isb̄ conditioned on the fact that the input isī.

Definition 5.1 (BehaviorP ) A behaviorP is a function of̄i ∈ [n]` and b̄ ∈ {0, 1}`, denotedP [b̄|̄i] so that
(i) 0 ≤ P [b̄|̄i] ≤ 1 For everȳi, b̄ and (ii)

∑
σ∈{0,1}l P [σ|̄i] = 1 for everȳi.

The chooser ofPARPIR is assumed to honestly follow her prescribed procedure. The sender, however,
may follow any arbitrary strategy that is a family of polynomial-size probabilistic circuitsS∗ = {S∗k}k∈IN.
It follows that the behavior ofPARPIR is completely determined by the sender strategyS∗.

For everȳi ∈ [n]`, b̄ ∈ {0, 1}`, let PS∗ [b̄|̄i] be the probability that the chooser’s output isb̄ given that
its input is ī. The probabilities are over the coins ofQ, R andS∗. Note thatPS∗ is a behavior since∑

σ∈{0,1}l PS∗ [σ|̄i] = 1 for everyī.
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Definition 5.2 Let(D, Q, R) be a PIR scheme. A behaviorP has efficient implementation under(D, Q,R)
if there exists a family of polynomial-size (probabilistic) circuits{S∗k}k∈IN so thatP = PS∗ .

5.2 The projection condition

To define the projection condition we first define the input-output behavior also forsubsets of thèlocations
retrieved by the chooser. Letα = {α1, . . . , αm} be a subset of[`]. For a vector of locations̄i define theα-
projection of̄i asīα = (iα1 , . . . , iαm). Similarly, for a vector of possible answersb̄, define theα-projection
of b̄ asb̄α = (bα1 , . . . , bαm). Forα andσ ∈ {0, 1}|α|, definePα[σ|̄i] to be

∑
b̄α=σ P [b̄|̄i].

PS∗
α [σ|̄i] thus equals the probability that theα-projection,̄bα, of the answers,̄b, received by the chooser

equals toσ, given that the chooser’s input isī. We now define the two flavors of the projection condition.

Definition 5.3 (Projection condition) Let P be a behavior. If for allα ⊆ [`], for all location vectors̄i, ī′

such that̄iα = ī′α (i.e. theirα-projection is equal) and for allσ ∈ {0, 1}|α| it holds that

• Pα[σ|̄i] = Pα[σ|ī′], then we say thatP satisfies theperfect projection condition

• ∣∣Pα[σ|̄i]− Pα[σ|ī′]∣∣ ≤ neg(k), then we say thatP satisfies thestatistical projection condition

In the following we refer to thestatistical projection condition as theprojection condition.

5.2.1 Tape distributions and spooky interactions

There are some behaviors which obey the projection condition and have efficient implementation under
any PIR scheme used. These are those where the sender chooses` binary vectors of lengthn denoted
π1, π2, . . . π` and responds to query(i1, i2, . . . i`) with (π1[i1], π2[i2], . . . π`[i`]). We now define the result-
ing distributions:

Definition 5.4 (Tape Distribution) A behavior that has an efficient implementation under any PIR scheme
with a distribution on tapesπ1, π2, . . . π` is called atape distribution.

For example, the counterexample presented in Section 4 demonstrates a behavior that is a tape distri-
bution. It is conceivable, however, that there exist behaviors that are far from any tape distribution but still
obey the projection condition, we call such behaviorsspooky.

Definition 5.5 (Spooky Behavior) A behaviorP is ε-spooky if it obeys the (statistical) projection condition
and is of distance (L1 norm) at leastε from any tape distribution.

In general when the security parameter is fixed we say that a behavior is spooky if it isε-spooky for a
non-negligibleε.

5.2.2 Examples of behaviors obeying the projection condition

Example 5.1 (A tape distribution) Let P̂ be the following behavior. For alli1, i2 let P̂ [(0, 1)|(i1, i2)] =
P̂ [(1, 0)|(i1, i2)] = 1/2. It follows that for alli1, i2 and forα = {1} or α = {2} it holds thatP̂ [(0, 0)|(i1, i2)] =
P̂ [(1, 1)|(i1, i2)] = 0 and P̂α[0|(i1, i2)] = P̂α[1|(i1, i2)] = 1/2. It is simple to verify that̂P satisfies the
projection condition.
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The behaviorP̂ of Example 5.1 is essentially the same as the cheating prover’s behavior in the counter
example of Section 4. Indeed,̂P not only satisfies the projection condition but also has efficient PIR im-
plementationunder any PIR scheme. Define a sender strategyS∗ as follows: pick random bitσ. Answer
the first query as if all the entries of the database areσ and the second query as if all the entries are the
complement ofσ. As discussed above, such a strategy can be detected by consistency checks. That is, by
allowing (with some probability) multiple queries to the same location. The strategyS∗ will give such equal
queries different answers, indicating that the sender deviated from the protocol. We now give a behaviorP̃
that resists consistency checks andstill satisfies the projection condition.

Example 5.2 (A spooky behavior)Let P̃ be the following behavior. For alli1 6= i2 let P̃ [(0, 1)|(i1, i2)] =
P̃ [(1, 0)|(i1, i2)] = 1/2, and for alli1 = i2 let P̃ [(0, 0)|(i1, i2)] = P̃ [(1, 1)|(i1, i2)] = 1/2 whereii, i2 ∈ n.
It is simple to verify that̃P satisfies the projection condition.

Note that forn = 2 the resulting behavior is a tape distributions – takeπ1 = π2 uniformly distributed
over{01, 10}. However, whenn ≥ 3 it is not hard to see that the resulting behavior is spooky.

We do not know whether the behavior̃P has an efficient implementation under some PIR scheme.
On one hand, this seems counterintuitive since it means that the sender is able to correlate its answers to
different queries in an unexpected wayeven without learning anything about the queries (and in fact also
about its answers). That is why we call such a behavior “spooky”. On the other hand, PIR inherently uses
a malleable encryption scheme so that the (honest) sender is able to manipulate the choosers ‘encrypted’
queries according to his database. (See also Appenxid C.)

5.2.3 The Projection Lemma

We show an equivalence between privacy and the projection condition. We use the following notation. For
a vector of locations̄i denote by(q̄, s̄) = (q(̄i), s(̄i)) = Q(n, ī, 1k) = Q(n, i1, 1k) ◦ · · · ◦ Q(n, il, 1k) the
independent applications ofQ to all the locations.

Lemma 5.3 Let (D, Q,R) be a PIR scheme. The following conditions are equivalent:

1. PIR Privacy: for any family of polynomial-size (probabilistic) circuits{Ak}k∈IN, for anyi 6= i′ ∈ [n]:
∣∣Pr[(q, s)← Q(n, i, 1k) : Ak(q, 1k) = 1]− Pr[(q′, s′)← Q(n, i′, 1k) : Ak(q′, 1k) = 1]

∣∣ ≤ neg(k)

2. PARPIR privacy: for any family of polynomial-size (probabilistic) circuits{Bk}k∈IN, for any vec-
tors ī 6= ī′ ∈ [n]`:

∣∣Pr[(q̄, s̄)← Q(n, ī, 1k) : Bk(q̄, 1k) = 1]− Pr[(q̄′, s̄′)← Q(n, ī′, 1k) : Bk(q̄′, 1k) = 1]
∣∣ ≤ neg(k)

3. Every behaviorP that has an efficient implementation under(D, Q,R) satisfies the projection con-
dition.

Proof (sketch)

1→ 2: Let ī = (i1, . . . , il), ī′ = (i′1, . . . , i
′
l) andB a distinguisher of̄q = q(̄i) andq̄′ = q(̄i′). It follows by

a standard hybrid argument that there exists an indexj so thatB distinguishes(q(i1), . . . , q(ij−1), q(i′j), . . . , q(i
′
`))

from (q(i1), . . . , q(ij), q(i′j+1), . . . , q(i
′
`)). Let i = ij , i

′ = i′j .

Construct a distinguisherA of q(i), q(i′) in contrast to PIR privacy. On inputInpA, circuit A creates
a queryInpB for B as follows: letInpB

1 , . . . , InpB
j−1 = q(i1), . . . , q(ij−1), let InpB

j+1, . . . , InpB
` =

q(i′j+1), . . . , q(i
′
`) andInpB

j = InpA. A outputsB(InpB).
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2→ 3: Suppose that the projection condition does not hold. LetS∗ be a sender strategy,α ⊂ [`] andī 6= ī′

vectors satisfyinḡiα = ī′α such that forσ ∈ {0, 1}|α| it holds thatPα[σ|̄i]−Pα[σ|ī′] is non-negligible.
We construct a circuitB based onS∗ that distinguishesq(̄i) from q(̄i′) (violating (2)). On inputInpB

circuit B creates a queryInpS∗ for S∗ as follows:

1. Let (qα, sα) ∈R Q(̄iα). Let InpS∗
α = qα. Thus,B can decrypt the response ofS∗ on locations

α. Note thatInpS∗
α andInpB

α are equally distributed.

2. Let InpS∗
[`]\α = InpB

[`]\α. (Surelyα 6= [`] and thusInpB affectsInpS∗ .)

Given the reply ofS∗, B decrypts̄bα and outputs 1 iff it equalsσ.

3→ 1: Suppose that the PIR Privacy property does not hold. Leti 6= i′ andA be a distinguisher ofq(i)
from q(i′). Let ī = (i, 1, . . . , 1) be the vector with first location set toi and all other̀ − 1 locations
set to 1. Similarly, let̄i′ = (i′, 1, . . . , 1). Let α = [`] \ {1}. We now construct a sender strategyS∗

so that the induced behaviorPS∗ does not obey the projection condition. In particular, the difference
PS∗

α [0|α| |̄i]− PS∗
α [0|α| |̄i′] is non-negligible.

On inputInpS∗ let InpA = InpS∗
1 be the first query inInpS∗ .

If A(InpA) = 1 thenS∗ usesD to coerce all answers to be 1, otherwise it usesD to coerce all
answers to 0.

2

5.3 Consistency checks - revisited

Consider again the enhancement of consistency checks as described in Section 4.1. More specifically, letP̂
be the PCP of Section 4 enhanced with consistency checks. Given the graphG that corresponds to the input
x, the verifier ofP̂ randomly chooses an edge(i, j) in G and queries the PCP proofπ on locationsi, j (with
probability1/2) or on locationsi, i (with probability1/2).

Assume now that the prover ofBASICP̂ can implement the behavior̃P of Example 5.2. Recall that̃P
obeys the projection condition. Regardless of the graphG, the verifier always gets two distinct and random
answers if it queries distinct locations(i, j) and the same random answer if it queries(i, i). This implies

that under such an assumptionBASICP̂ is not sound. Or in other words,in order to prove the soundness of
BASICP̂ one must first rule out the possibility of behaviorP̃ (which is a specific instance of the “spooky
interactions” problem.).

6 The projection condition and arbitrary PCPs

Our counterexamples of Sections 4 and 5 were based on a specific PCP scheme and a specific way to per-
form consistency checks. In one case, we have shown that the resulting argument system is not sound. In
the other case, proving the soundness of the argument system will require proving that a particular spooky
behavior cannot be implemented by PIR schemes. Such a proof in general seems non-trivial (especially
given the equivalence we have shown between PIR privacy and the projection condition). A possible alter-
native is to design a particular (communication efficient) PIR scheme that avoids the spooky behavior of our
counterexample. An obvious obstacle in this direction, is the small number of communication efficient PIR
schemes that exist in the literature (still, this may be the most promising research direction).

But – there seem to be another way out.Forget about PIRs, and instead concentrate on PCPs ...Perhaps
by carefully choosing a PCP system (that may incorporate more sophisticated checks) we can prove the
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soundness of the corresponding argument system, without resolving the problem of spooky interactions. In
this section we study this possibility and come up with a negative result. For every efficient PCP, there exists
a behavior that challenges the soundness of the resulting protocol, while satisfying the projection condition.
Moreover, there exists aneffectiveprocedure for computing this behavior. It is not clear, however, whether
such behaviors have efficient implementation or not. Still, the results of this section show that no matter
what PCP we use, proving the soundness of the resulting argument system reduces to an instance of the
“spooky interactions” problem.

6.1 The classPROJ(`)

Since we are seeking a proof that avoids the problem of spooky behaviors, let us assume that there exist PIR
schemes that are “fully malleable” (to borrow a term from the related context of [8])) in the sense that every
behaviorP that satisfies the projection condition has an efficient implementation under such PIR schemes.
Under this assumption we ask the following question: Is there a PCP for a non-trivial languageL such that
(1) The query complexitỳ , of the PCP is small. (2) The corresponding two-round argument system is
sound?

The existence of such a PCP will imply that for everyx 6∈ L, no behavior that satisfies the projection
condition convinces the verifier. Otherwise, since we assumed that “fully malleable” PIR schemes exist, the
cheating prover can convince the verifier thatx is in L, thus contradicting the soundness of the argument
system2. Furthermore, note that for such a PCP, for everyx ∈ L there in a behavior that satisfies the (perfect)
projection condition and convinces the verifier. This is just the behavior of the honest prover. At this point,
our argument system reduces to a proof system in the following setting:

Consider a verifierV that interacts with a (computationally unbounded) prover in the clear (i.e. the
verifier just sends the queriesī and receives the answersb̄). Nevertheless, we restrict the prover’s answers to
be consistent with some behaviorP that satisfies the projection condition. (The behaviorP is not assumed to
have an efficient implementation.) LetV(x, P ) denote the random variable whose value is 0 or 1 according
to whetherV accepts the common inputx when interacting with behaviorP .

Definition 6.1 A languageL is in PROJ(`) if there exists a probabilistic polynomial verifierV using`
queries such that

1. If x ∈ L then there exists a behaviorP that satisfies perfect projection condition s.t.Pr[V(x, P ) =
1] ≥ 2/3.

2. If x 6∈ L then for all behaviorsP ∗ that obey the projection condition it holds thatPr[V(x, P ∗) =
1] ≤ 1/3.

The probabilities are over the random choices made by both machines.

Given our assumptions on the PCP for the languageL (and on the malleability of PIRs), we can deduce
thatL ∈ PROJ(`). The following theorem shows that if` is small (equivalently, if the argument system is
communication efficient), thenL is relatively easy (and in particular, is unlikely to be NP-complete).

Theorem 6.1 PROJ(`) ⊆ BPTime(2O(` log(n))).

Proof Let L be a language inPROJ(`) andV be the corresponding verifier. Given an input instancex, we
create a linear program whose objective is to find a behaviorP that satisfies perfect projection condition and

2 We discuss the problem of “finding” the malicious behavior in Remark 6.2.
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maximizes the acceptance probability of the verifierV. If the acceptance probability ofV on P is greater
than1/2 then we conclude thatx ∈ L otherwise we conclude thatx 6∈ L.

Recall the definition of a behaviorP and the corresponding valuesP [b̄|̄i], Pα[σ|̄i] (see Section 5.2). We
abuse notation and useP [b̄|̄i], Pα[σ|̄i] as the variables of our linear program.

Fix the common inputx. Let V [̄i] be the probability thatV queries locations̄i = (i1, . . . , i`). Given
that V queries̄i, let V[b̄|̄i] be the probability thatV accepts on answers̄b. Both probabilities are taken
over the coin tosses ofV and are implicitly defined byV. We define the coefficients of the linear program as
V ī

b̄
= V [̄i]·V[b̄|̄i]. The acceptance probability of the verifierV onP isV(x, P ) =

∑
ī V [̄i]

∑
b̄ V[b̄|̄i]·P [b̄|̄i] =∑V ī

b̄
· P [b̄|̄i]. We can now define the corresponding linear program (LP).

(LP) Maximize
∑

ī,b̄ V ī
b̄
· P [b̄|̄i] s.t.

(1) Pα[σ|̄i] = Pα[σ|ī′] ∀ α ⊆ [`];σ ∈ {0, 1}|α|; ī, ī′ s.t. īα = ī′α

(2) Pα[σ|̄i] =
∑

b̄α=σ P [b̄|̄i] ∀ α ⊆ [`];σ ∈ {0, 1}|α|

(3)
∑

σ∈{0,1}l P [σ|̄i] = 1 ∀ ī

(4) P [σ|̄i] ≥ 0 ∀ σ ∈ {0, 1}l; ī

Conditions (1) and (2) of LP enforce perfect projection condition onP .3 Conditions (3) and (4) restrict
P [σ|̄i] to be a probability distribution.

The size of the linear program is2O(` log(n)). Thus assuming that the coefficientsV ī
b̄

are known, the LP

may be solved in time2O(` log(n)).
Computing the exact valuesV ī

b̄
by going over all the possible coin tosses ofV takes time exponential in

the randomness ofV, thus it may be larger than2O(` log(n)). Instead we show how to approximateV ī
b̄

in time

2O(` log(n)) such that solving the linear program with theseapproximated coefficientschanges the value of
the objective function by less than1/6. Thus using such anapproximatedlinear program, membership in
the languageL can be decided in time2O(` log(n)).

The number of coefficientsV ī
b̄

is 2O(` log(n)), each of them appears in the objective function of LP once,

multiplied by a positive variable bounded by 1. Hence, it suffices to approximate eachV ī
b̄

within additive

error2−O(` log(n)) with probability1− 2−O(` log(n))−n.
We approximateV ī

b̄
by samplingt random strings of lengthr. Let V̂ ī

b̄
be the fraction of strings on which

V queries̄i and accepts if answered̄b. Using the Chernoff bound ift ≥ 2O(` log(n)) then the difference
betweenV ī

b̄
andV̂ ī

b̄
is smaller than2−O(` log(n)) with probability at least1 − 2−O(` log(n))−n. Thus for any

behaviorP it holds with probability at least1− 2−n that

|
∑
V ī

b̄P [b̄|̄i]−
∑
V̂ ī

b̄P [b̄|̄i]| < 1/6.

2

Remark 6.2 As noted, our argument above neglects the question of how the prover “finds” the malicious
spooky behavior. As the proof of Theorem 6.1 shows, for every instancex it is possible to find in time

3Condition (1) can be rephrased to capture the (computational) projection condition by allowing slackness. We defer the
treatment of computational projection to the full version of this work.
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2O(` log(n)) thebestbehaviorP (in terms of verifier acceptance probability). If` is constant, the prover can
therefore find is cheating behavior in polynomial time. More generally, consider a variant of our definition
of argument systems, in which the prover is restricted to be a circuit of sizeT (k) (which may be super-
polynomial ink). (Assuming the PIR scheme is private against circuits of sizeT (k) the projection condition
still holds.) In this case, the prover can still cheat as long as` ≤ log(T (k))/ log(n). Finally, when
` > log(T (k))/ log(n), we can at least deduce that proving the soundness of the basic protocol cannot
solely rely on the projection condition, but should use the restriction on the prover’s computational power
to guarantee a stronger property.

7 Conclusions and Open Problems

We have analyzed the construction of argument systems by a composition of PCPs and PIR schemes (as
suggested in [1]). Suppose that the interactive proof is based on somesoundPCP where each verifier’s
query is done via an independent PIR. Then we would like to make the following argument: “every prover’s
strategy can be translated into a PCP proof tape (or distribution over tapes) that has a similar probability of
success (with respect to the PCP verifier).” We have shown inherent difficulties in making such a simulation
argument, regardless of the specific PCP in use. The problem is that the although the prover does not really
understand the queries may answer then in acorrelatedmanner (again, without really understanding the
answers).4 The possibility of “spooky interactions” (according to Definition 5.5) appears to be a fundamental
problem that must be resolved in order to construct argument systems using the approach of [1].

In Appendix D we further discuss two issues that are closely related to the topic of our investigation:
how to reduce the soundness error of two-round arguments via parallel repetition and how to achieve witness
indistinguishability.

The following open problems seem to be of particular interest.

1. Does there exist a computational PIR where “spooky interactions” may occur? A negative answer
would represent substantial progress in our understanding of PIRs and would be especially interesting
given the observations of this paper.

A possible direction for giving a positive answer is to construct artificial PIRs with communication
complexity which is larger than the data size that allow “spooky interactions”. In Appendix B, we
introduce a variant of PIR, that performs several queries at once – Multi-PIR. We show that Multi-PIR
does allow “spooky interactions”. Furthermore, in Appendix C we show an information theoretic PIR
where “spooky interactions” occur.

2. Is it possible to construct a “non-malleable computational PIR” in which such a behavior can be ruled
out?
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A Protocol PARPIR

ProtocolPARPIR(̄i,DB):

Input: The chooser holds a vector of (not necessarily distinct) locationsī = (i1, i2, . . . , i`) whereij ∈ [n].
The sender holds a databaseDB of lengthn.

Step 1: The chooser prepares, for eachj ∈ [`], a corresponding query(qj , sj)← Q(n, ij , 1k).
The random coins used in the construction of each query are chosen independently.
The chooser sends all queriesq1, . . . , q` to the sender.

Step 2: The sender prepares for each queryqj an answeraj ← D(DB, qj , 1k).
The sender sends the answersa1, . . . , a` to the chooser.

Step 3: The chooser recovers the entries ofDB in locationsi1, i2, . . . , i`, i.e. the sequence of bits̄b =
(b1, b2, . . . , b`) wherebj ← R(n, ij , (qj , sj), aj , 1k).

B Spooky interactions for Multi-PIR

The parties of a Multi-PIR are a chooser and a sender. The sender holds a databaseDB of lengthn and the
chooser holds a vector ofl indices̄i = (i1 . . . il) ∈ [n]l. Intuitively, the protocol enables the chooser to read
locations̄i ofDB without the sender learning anything aboutī. As in the PIR setup, the Multi-PIR scheme is
defined by three algorithms:Q andR are executed by the chooser andD by the sender. AlgorithmQ is the
query generator that maps the indicesī into a queryq using the chooser’s secret random strings. Algorithm
D is the one executed by the (honest) prover in response to queryq and as a function of the databaseDB.
Finally, algorithmR allows the chooser to reconstruct the values at locationsī as a function of the response
it received from the sender and the secret random strings.

Definition B.1 (Multi-PIR) Let D, Q, R be probabilistic polynomial time algorithms. Letk be a security
parameter,l be the number of queries andn the length of the database.(D, Q,R) is a (computational)
Multi-PIR scheme if

Correctness: For anyn-bit stringDB and anyl locations̄i = (i1 . . . il) ∈ [n]l,

Pr
[
(q, s)← Q(n, ī, 1k); a← D(DB, q, 1k) : R(n, ī, (q, s), a, 1k) = DB[̄i]

] ≥ 1− neg(k)

whereDB[̄i] = (DB[i1] . . .DB[il]).
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Privacy: For any family of polynomial-size (probabilistic) circuits{Ak}k∈IN and anȳi, j̄ ∈ [n]l,
∣∣Pr

[
(q, s)← Q(n, ī, 1k) : Ak(q, 1k) = 1]− Pr[(q, s)← Q(n, j̄, 1k) : Ak(q, 1k) = 1

]∣∣ ≤ neg(k)

The probabilities are taken over all choices made by all machines involved. Notice that given a PIR scheme
(D, Q, R), l independent executions of(D,Q, R) are a Multi-PIR.

Theorem B.1 Let P be the PCP system defined in Observation 4.1, enhanced with consistency checks.
There exists a Multi-PIRMP such that protocolBASIC withP andMP is not sound.

Proof Let (D,Q, R) be the PIR scheme presented in [19]. Roughly speaking, this PIR scheme is based on
the Quadratic Residue Assumption and is structured as follows.

1. Chooser: Pick a random numberN which is the multiplication of two primes. On queryi ∈ [n]
pick n random numbersy1 . . . yn (with Jacobi symbol of value 1) such thatyi in QNRN (quadratic
non-residues modN ) andyj for j 6= i in QRN (quadratic residues modN ). DefineQ(i) = (q, s)
whereq = (y1 . . . yn;N) ands are the factors ofN .

2. Sender :D(DB, q) = a =
∏n

i=1 y
2−DB[i]
i .

3. Chooser :R(n, i, (q, s), a) = 1 if a ∈ QNRN and 0 otherwise.

We will construct a Multi-PIR(D̂, Q̂, R̂) that runs two parallel copies of(D, Q,R), with a slight twist. In
addition to the standard encrypted queries that are sent from the chooser to the sender, we would like the
chooser to send additional information we calladvise. This advise is to be ignored by an honestD̂ but is
constructed such that it can (and will) be used by a malicious senderS∗ in order to fool the chooser.

1. For ī = (i1, i2) let Q̂(̄i) = (q, s) whereq and s are defined below. Let(q1, s1) = Q(i1), and
(q2, s2) = Q(i2), and denote the modulae used in the instances of the PIR schemes byN1, N2 respec-
tively. To construct the advice pick a randomσ ∈ {0, 1}. If i1 = i2 andσ = 0 let advice1 ∈R QRN1

andadvice2 ∈R QRN2 . If i1 = i2 andσ = 1 let advice1 ∈R NQRN1 andadvice2 ∈R NQRN2 .
Similarly, if i1 6= i2 andσ = 0 let advice1 ∈R QRN1 andadvice2 ∈R NQRN2 . finally if i1 6= i2
andσ = 1 let advice1 ∈R NQRN1 andadvice2 ∈R QRN2 . Defineq to be(q1, q2, advice1, advice2)
ands to be(s1, s2).

2. For a databaseDB, and an encrypted queryq = (q1, q2, advice1, advice2) let D̂(DB, q) = a =
(a1, a2) whereai = D(DB, qi).

3. For a = (a1, a2), q = (q1, q2, advice1, advice2), ands = (s1, s2) let R̂(n, ī, (q, s), a) be the pair
R(n, i1, (q1, s1), a1), R(n, i2, (q2, s2), a2).

It is not hard to verify that the above is a Multi-PIR. Consider the behavior we obtain by Multi-PIR(D̂, Q̂, R̂)
with a malicious SenderS∗ that on inputq = (q1, q2, advice1, advice2) answers(advice1, advice2). If the
Sender was to query locationsi1 andi2 which differ, it would receive two answers that differ (either the
pair (0,1) or the pair (1,0), each with probability 1/2). Similarly if the Sender was to query locationsi1 and
i2 which are equal, it would receive two identical answers (either (0,0) or (1,1), each with probability 1/2).
We conclude that behavior̃P of Example 5.1 has an efficient implementation under the Multi-PIR we have
presented, thus implying our assertion. 2

Theorem B.1 can be extended to general PCP systems when we consider defining Multi-PIRs under a
non-uniform setting.
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Theorem B.2 LetP be any PCP system for an NP-Complete languageL with l queries and randomness
r, wherel andr are at most logarithmic in the instance size. UnlessNP = P there exists a non-uniform
Multi-PIRMP such that protocolBASIC withP andMP is not sound.

Proof (Sketch) Let V be the PCP verifier ofP. Assume thatV performsl queries, has randomnessr,
completenessδ and soundnessε. The proof idea is similar to that of Theorem B.1. We construct a Multi-
PIRMP that helps the malicious prover convince the verifier, with probability more thanε for at least one
instancêx 6∈ L.

The advice computed by the sender for a queryī is the answer that maximizes the acceptance probability
on x̂. Note that given̂x this advice is efficiently computable by going over all possible coin tosses ofV and
all possible answers to queryī. This process also computes the acceptance probability given the advice. We
now show that, unlessNP = P , for infinitely many values ofn there exist instanceŝx of lengthn for which
this probability is at leastδ.

By Definition 2.1 we have that for allx ∈ L there exists an assignment to the PCP tape so thatV accepts
with probability at leastδ. Hence, if we apply the algorithm for computing the acceptance probability with
the best advice (as above, usingx instead ofx̂), this probability must be at leastδ. If for all but a finite
number ofx 6∈ L it is the case that the algorithm for computing the acceptance probability for the best
advice returns a value less thanδ we conclude that one can decideL in polynomial time. 2

C Spooky interactions for information theoretic PIRs

Although we do not know how to constructcomputationalPIR schemes with spooky interactions, it is
fairly easy to do that with information theoretic schemes. Consider the following information theoretic
PIR scheme with two senders (S1, S2). The chooser selects a random vectorr = r1 . . . rn ∈ {0, 1}n,
sends this vector toS1 and the same vector with thei’th bit flipped r̂ to S2. Each sender returns the bitwise
multiplication of its input and the databaseB. The chooser compares thei’th bit in both answers and outputs
1 if they differ and zero otherwise.

We construct a malicious sender strategyS∗1 , S∗2 that implements the behavior of example 5.2, for two
parallel queries. Although the chooser send two queries, both senders ignore the second one. On inputr
andr′ the first senderS∗1 returns two vectors identical tor. On inputr̂ andr̂′, the second senderS∗2 , flips a
random coinσ ∈ {0, 1}, and returns two vectors identical toσ ⊕ r̂ (i.e each bit of̂r is XORed withσ).

It is easy to see that the behavior implied byS∗1 , S∗2 is that of example 5.2.

D Parallel Repetition and Witness Indistinguishability

We now discuss two issues related to the execution of arguments systems. First, regarding soundness, we
have concentrated on achieving a constant probability of error. Is this justified? The natural answer is yes,
since we can rapidly decrease the probability of error by running several such argument systems in parallel
multiplying the communication complexity by− log the error for which we are aiming. However, one
must be careful, since we are discussing a computational game and perhaps there are “spooky interactions”
between the copies of the game (as well as inside each game). However here we can use the fact that what
we have is a 2-round computational game. For such games Bellare, Impagliazzo and Naor [5] showed that
by parallel repetition the probability of failure goes down exponentially with the number of repetitions.
(This holds for any computational game with up to 3 rounds, but is not necessarily true for 4-round games.)
Also note that thetwo-proverparallel repetition Theorem of [23] is not applicable here since the prover has
a (non-efficient) strategy of winning in each individual game.
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Another goal of [1] was to achieve low communication witness indistinguishability in two rounds, i.e.
that the verifier would not be able to distinguish which witness the prover is using (obtaining zero-knowledge
in two-rounds is much harder and cannot be done via black-box reductions [14].) A possible approach is to
base it on a multi-prover proof system that is zero-knowledge, such as [9] as well as a Secure PIR scheme.
However, all the difficulties encountered in the previous sections must be resolved.

A different approach is to base it on Zaps [10], which are two-round witness-indistinguishable proof
system where the verifier’s first messageσ can be fixed once and for all. Every languageL ∈ NP has a zap
(provided some cryptographic assumption is true). The problem with using them is that the verifier should
send a long message. However, suppose that the zap partσ of the verifier’s message has been fixed (either
by a clever combinatorial construction or by the system somehow). Then we have reduced the problem of
constructing a low-communication witness-indistinguishable argument system for a languageL ∈ NP to
the problem of constructing an argument system for another languageL′ ∈ NP whereL′ consists of pairs
(x, σ) where there is a proofy thatx ∈ L with first messageσ by the verifier.
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