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Abstract

In this paper we attempt to formally study two very intuitive physical models: sealed envelopes and
locked boxes, often used as illustrations for common cryptographic operations. We relax the security
properties usually required from locked boxes (such as in bit-commitment protocols) and require only that
a broken lock or torn envelope be identifiable to the original sender. Unlike the completely impregnable
locked box, this functionality may be achievable in real life, where containers having this property are
called “tamper-evident seals”. Another physical object with this property is the “scratch-off card”, often
used in lottery tickets. We consider three variations of tamper-evident seals, and show that under some
conditions they can be used to implement oblivious transfer, bit-commitment and coin flipping. We also
show a separation between the three models. One of our results is a strongly-fair coin flipping protocol
with bias bounded by O(1/r) (where r is the number of rounds); this was a stepping stone towards
achieving such a protocol in the standard model (in subsequent work).

1 Introduction

In this paper we consider the use of “tamper-evident seals” in cryptographic protocols. A tamper-evident
seal is a primitive based on very intuitive physical models: the sealed envelope and the locked box. In the
cryptographic and popular literature, these are often used as illustrations for a number of basic cryptographic
primitives. For instance, when Alice sends an encrypted message to Bob, she is often depicted as placing
the message in a locked box and sending the box to Bob (who needs the key to read the message).

Bit commitment, another well known primitive, is usually illustrated using a sealed envelope. In a bit-
commitment protocol one party, Alice, commits to a bit b to Bob in such a way that Bob cannot tell what b
is. At a later time Alice can reveal b, and Bob can verify that this is indeed the bit to which she committed.
The standard illustration used for a bit-commitment protocol is Alice putting b in a sealed envelope, which
she gives to Bob. Bob cannot see through the envelope (so cannot learn b). When Alice reveals her bit, she
lets Bob open the envelope so he can verify that she didn’t cheat.

The problem with the above illustration is that a physical “sealed envelope”, used in the simple manner
described, is insufficient for bit-commitment: Bob can always tear open the envelope before Alice officially
allows him to do so. Even a locked box is unlikely to suffice; many protocols based on bit-commitment
remain secure only if no adversary can ever open the box without a key. A more modest security guarantee
seems to be more easily obtained: an adversary may be able to tear open the envelope but Alice will be able
to recognize this when she sees the envelope again.

“Real” closures with this property are commonly known as “tamper evident seals”. These are used
widely, from containers for food and medicines to high-security government applications. Another common
application that embodies these properties is the “scratch-off card”, often used as a lottery ticket. This is
usually a printed cardboard card which has some areas coated by an opaque layer (e.g., the possible prizes to
be won are covered). The text under the opaque coating cannot be read without scratching off the coating,
but it is immediately evident that this has been done (so the card issuer can verify that only one possible
prize has been uncovered).
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In this paper we attempt to clarify what it means to use a sealed envelope or locked box in a crypto-
graphic protocol. Our focus is on constructing cryptographic protocols that use physical tamper-evident seals
as their basis. In particular, we study their applicability to coin flipping (CF), zero-knowledge protocols, bit
commitment (BC) and oblivious transfer (OT), some of the most fundamental primitives in modern cryp-
tography; Oblivious transfer is sufficient by itself for secure function evaluation [16, 18] without additional
complexity assumptions. Oblivious transfer implies bit-commitment, which in turn implies zero-knowledge
proofs for any language in NP [15] and (weakly-fair) coin flipping [6].

Note that encryption is very simple to implement using tamper-evident containers (given authenticated
channels), which is why we do not discuss in depth in this paper. For example, Alice and Bob can agree
on a secret key by sending random bits in sealed containers. A bit in a container that arrives unopened is
guaranteed (by the tamper-evidence property) to be completely unknown to the adversary. The case where
only the creator of a container can tell whether it has been opened requires only slightly more complex
protocols.

1.1 Seals in Different Flavours

The intuitive definition of a tamper-evident seal does not specify its properties precisely. In this paper, we
consider three variants of containers with tamper-evident seals. The differences arise from two properties:
whether or not sealed containers can be told apart and whether or not an honest player can break the seal.

Distinguishable vs. Indistinguishable One possibility is that containers can always be uniquely iden-
tified, even when sealed (e.g., the containers have a serial number engraved on the outside). We call this a
“distinguishable” model. A second possibility is that containers can be distinguished only when open; all
closed containers look alike, no matter who sealed them (this is similar to the paper-envelope voting model,
where the sealed envelopes can’t be told apart). We call this an “indistinguishable” model.

Weak Lock vs. Envelope The second property can be likened to the difference between an envelope
and a locked box: an envelope is easy to open for anyone. A locked box, on the other hand, may be difficult
for an “honest” player to open without a key, although a dishonest player may know how to break the lock.
We call the former an “envelope” model and the latter a “weak lock” model. In Section 2 we give formal
definitions for the different models.

Any envelope model is clearly stronger than the corresponding weak-lock model (since in the envelope
model the honest player is more powerful, while the adversary remains the same). We show that there
are protocols that can be implemented in the indistinguishable models that cannot be realized in any of
the distinguishable models. It is not clear however, that any indistinguishable model is strictly stronger
than any distinguishable model. Although all four combinations are possible, the indistinguishable envelope
model does not appear significantly stronger than the indistinguishable weak lock model, and in this paper
we discuss only the latter. Note that in the standard model of cryptography, where the parties exchange
messages and there is no access to outside physical resources, we do not know how to implement any of these
closures.

Additional Variants The definitions of tamper-evident seals we consider in this paper are by no means
the only possible ones. They do, however, represent a fairly weak set of requirements for a physical imple-
mentation. In particular, we don’t require the containers to be unforgeable by their creator (this relaxation
is captured by allowing the creator of the container to change its contents and reseal it).

1.2 Our Results

In this paper we show that tamper-evident seals can be used to implement standard cryptographic protocols.
We construct protocols for “weakly-fair” coin flipping (in which the result is 0, 1 or invalid), bit-commitment
and oblivious transfer using tamper-evident seals as primitives.

A possibly practical application of our model is the “cryptographic randomized response technique”
(CRRT), defined by Ambainis et al. [2]. “Randomized response” is a polling technique used when some of
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the answers to the poll may be stigmatizing (e.g., “do you use drugs?”). The respondent lies with some known
probability, allowing statistical analysis of the results while letting the respondent disavow a stigmatizing
response. In a CRRT, there is the additional requirement that a malicious respondent cannot bias the results
more than by choosing a different answer. The techniques described by Ambainis et al. achieve this, but
require “heavy” cryptographic machinery (such as OT), or quantum cryptography. In a follow-up paper [21],
we show a simple protocol for CRRT using scratch-off cards.

One of the most interesting results is a protocol for “strongly-fair” coin flipping (where the result for an
honest player must be either 0 or 1 even if the other player quits before finishing the protocol) with bias
bounded by O( 1

r ), where r is the number of rounds. This protocol was a stepping-stone to the subsequent
construction of an optimal protocol for strongly-fair coin flipping in the standard model [22].

An important contribution of this paper is the formal analysis for the models and protocols we construct.
We show that the protocols are Universally Composable in the sense of Canetti [7]. This allows us to use
them securely as “black-boxes” in larger constructions.

On the negative side, we show that our protocol for strongly-fair CF using sealed envelopes is optimal:
it is impossible to do better than O( 1

r ) bias (this follows from a careful reading of the proof in [8]). We also
give impossibility results for BC and OT (note that we show the impossibility of any type of bit-commitment
or oblivious transfer, not just universally composable realizations). The proofs are based on information-
theoretic methods: loosely speaking, we show that the sender has too much information about what the
receiver knows. When this is the case, BC is impossible because the sender can decide in advance what the
reciever will accept (so either the reciever knows the committed bit or it is possible to equivocate), while
OT is impossible because the transfer cannot be “oblivious” (the sender knows how much information the
receiver has on each of his bits).

Our results show a separation between the different models of tamper-evident seals and the “bare” model,
summarized in the following table:

Model Possible Impossible
Bare CF, BC, OT

Dist. Weak Locks Coin Flip BC, OT
Dist. Envelopes Coin Flip, Bit-Commitment, OT

Strongly-Fair Coin Flip(1/r)
Indist. Weak Locks Coin Flip, Bit-Commitment, Oblivious Transfer ??

1.3 Related Work

To the best of our knowledge, this is the first attempt at using tamper evident seals for cryptographic
protocols. Ross Anderson discusses “packaging and seals” in the context of security engineering [3], however
the use of tamper-evidence does not extend to more complex protocols. Blaze gives some examples of the
reverse side of the problem: cryptanalysis of physical security systems using techniques from computer
science [4, 5]. Using scratch-off cards in the lottery setting can be described as a very weak form of CF,
however we do not believe this has ever been formally analyzed (or used in more complex protocols).

On the other hand, basing cryptographic protocols on physical models is a common practice. Perhaps
the most striking example is the field of quantum cryptography, where the physics of quantum mechanics are
used to implement cryptographic operations – some of which are impossible in the “bare” model. One of the
inspirations for this work was the idea of “Quantum Bit Escrow” (QBE) [1], a primitive that is very similar
to a tamper-evident seal and that can be implemented in a quantum setting. There are, however, significant
differences between our definitions of tamper-evident seals and QBE. In particular, in QBE the adversary
may “entangle” separate escrowed bits and “partially open” commitments. Thus, while unconditionally
secure bit-commitment is impossible in the pure quantum setting [20, 19], it is possible in ours.

Much work has been done on basing BC and OT on the physical properties of communication channels,
using the random noise in a communication channel as the basis for security. Both BC and OT were shown
to be realizable in the Binary Symmetric Channel model [10, 9], in which random noise is added to the
channel in both directions with some known, constant, probability. Later work shows that they can also be
implemented, under certain conditions, in the weaker (but more convincing) Unfair Noisy Channel model
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[12, 11], where the error probability is not known exactly to the honest parties, and furthermore can be
influenced by the adversary. Our construction for 1-2 OT uses some of the techniques and results from [12].

One of the motivations for this work was the attempt to construct cryptographic protocols that are
implementable by humans without the aid of computers. This property is useful, for example, in situations
where computers cannot be trusted to be running the protocol they claim, or where “transparency” to
humans is a requirement (such as in voting protocols). Many other examples exist of using simple physical
objects as a basis for cryptographic protocols that can be performed by humans, some are even folklore: Sarah
Flannery [14] recounts a childhood riddle that uses a doubly-locked box to transfer a diamond between two
parties, overcoming the corrupt postal system (which opens any unlocked boxes) despite the fact that the
two parties have never met (and can only communicate through the mail). Fagin, Naor and Winkler [13]
assembled a number of solutions to the problem of comparing secret information without revealing anything
but the result of the comparison using a variety of different physical methods. Schneier devised a cipher [24]
that can be implemented by a human using a pack of cards. In a lighter vein, Naor, Naor and Reingold [23]
give a protocol that provides a “zero knowledge proof of knowledge” of the correct answer to the children’s
puzzle “Where’s Waldo” using only a large newspaper and scissors. A common thread in these works is that
they lack a formal specification of the model they use, and a formal proof of security.

1.4 Organization of the Paper

In Section 2, we give formal definitions for the different models of tamper-evident seals and the functionalities
we attempt to realize using them. In Section 3 we discuss the capabilities of the Distinguishable Weak Lock
model, show that bit-commitment is impossible in this model and give a protocol for weakly-fair coin-
flipping. In Section 4 we discuss the capabilities of the Distinguishable Envelope model, showing that OT is
impossible and giving protocols for BC and strongly-fair CF with bias 1/r. Section 5 contains a discussion
of the indistinguishable weak lock model and a protocol for oblivious transfer in this model. The proofs of
security for the protocols we describe are given in Sections 6,8.1,7,9 and 10. The proofs are fairly technical,
and can be skipped on first reading. Section 11 contains the discussion and some open problems.

2 The Model: Ideal Functionalities

2.1 Ideal Functionalities and the UC Framework

Many two-party functionalities are easy to implement using a trusted third party that follows pre-agreed
rules. In proving that a two-party protocol is secure, we often want to say that it behaves “as if it were
performed using the trusted third party”. A formalization of this idea is the “Universally Composable”
model defined by Canetti [7].

In the UC model, the trusted third party is called the ideal functionality. The ideal functionality is de-
scribed by a program (formally, it is an interactive Turing machine) that can communicate by authenticated,
private channels with the participants of the protocol.

The notion of security in the UC model is based on simulation: a protocol securely realizes an ideal
functionality in the UC model if any attack on the protocol in the “real” world, where no trusted third party
exists, can be performed against the ideal functionality with the same results. Attacks in the ideal world
are carried out by an “ideal adversary”, that can also communicate privately with the functionality. The
ideal adversary can corrupt honest parties by sending a special Corrupt command to the functionality, at
which point the adversary assumes full control of the corrupted party. This allows the functionality to act
differently depending on which of the parties are corrupted. Additional capabilities of the adversary are
explicitly defined by the ideal functionality.

Proving protocol security in the UC model provides two main benefits: First, the functionality definition
is an intuitive way to describe the desired properties of a protocol. Second (and the original motivation for
the definition of the UC model), protocols that are secure in the UC have very strong security properties,
such as security under composition and security that is retained when the protocol is used as a sub-protocol
to replace an ideal functionality. This security guarantee allows us to simplify many of our proofs, by showing
separately the security of their component sub-protocols.
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Note that our impossibility results are not specific to the UC model: the impossibility results for bit-
commitment (Section 3.3), oblivious transfer (Section 4.1) and the lower bound for strongly-fair coin flipping
(Section 4.4) hold even for the weaker “standard” notions of these functionalities.

In this section we formally define the different models for tamper-evident seals in terms of their ideal
functionalities. For completeness, we also give the definitions of the primitives we are trying to implement
(CF, BC and OT). We restrict ourselves to the two-party case, and to adversaries that decide at the beginning
of the protocol whether to corrupt one of the parties or neither.

For readability, we make a few compromises in strict formality when describing the functionalities. First,
the description is in natural language rather than pseudocode. Second, we implicitly assume the following
for all the descriptions:

• All functionalities (unless explicitly specified) have a Halt command that can be given by the adversary
at any time. When a functionality receives this command, it outputs ⊥ to all parties. The functionality
then halts (ignoring further commands). In a two party protocol, this is equivalent to a party halting
prematurely.

• When a functionality receives an invalid command (one that does not exist or is improperly formatted),
it proceeds as if it received the Halt command.

• When we say that the functionality “verifies” some condition, we mean that if the condition does not
hold, the functionality proceeds as if it received the Halt command.

2.2 Tamper-Evident Seals

These are the functionalities on which we base the protocols we describe in the paper. In succeeding
sections, we assume we are given one of these functionalities and attempt to construct a protocol for a
“target” functionality (these are described in Section 2.3).

2.2.1 Distinguishable Weak Locks

This functionality models a tamper-evident container that has a “weak lock”: an honest party requires
a key to open the container, but the adversary can break the lock without help. Functionality F (DWL)

contains an internal table that consists of tuples of the form (id, value, creator, holder, state). The table
represents the state and location of the tamper-evident containers. It contains one entry for each existing
container, indexed by the container’s id and creator. We denote valueid, creatorid, holderid and stateid the
corresponding values in the table in row id (assuming the row exists). The table is initially empty. The
functionality is described as follows, running with parties P1, . . . , Pn and ideal adversary I:

Seal (id, value) This command creates and seals a container. On receiving this command from party Pi,
the functionality verifies that id has the form (Pi, {0, 1}∗) (this form of id is a technical detail to ensure
that ids are local to each party). If this is the first Seal message with id id, the functionality stores
the tuple (id, value, Pi, Pi, sealed) in the table. If this is not the first Seal with id id, it verifies that
creatorid = holderid = Pi and, if so, replaces the entry in the table with (id, value, Pi, Pi, sealed).

Send (id, Pj) On receiving this command from party Pi, the functionality verifies that an entry for container
id appears in the table and that holderid = Pi. If so, it outputs (Receipt, id, creatorid, Pi, Pj) to Pj
and I and replaces the entry in the table with (id, valueid, creatorid, Pj , stateid).

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table, that holderid = Pi and that either Pi is corrupted or stateid = unlocked. It then sends
(Opened, id, valueid, creatorid) to Pi. If stateid 6= unlocked it replaces the entry in the table with
(id, valueid, creatorid, holderid,broken).

Verify id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table and that holderid = Pi. It then considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi. Otherwise, it sends (Verified, id,ok) to Pi.

5



Unlock id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table, that creatorid = Pi and that stateid = sealed. If so, it replaces the entry in the
table with (id, valueid, creatorid, holderid,unlocked) and sends (Unlocked, id) to holderid.

2.2.2 Distinguishable Envelopes

Functionality F (DE) models a tamper-evident “envelope”: in this case honest parties can open the envelope
without need for a key (although the opening will be evident to the envelope’s creator if the envelope is
returned). This functionality is almost exactly identical to F (DWL), except the Open command allows
anyone holding the container to open it. The functionality description is identical to F (DWL), except that
the new handling of the Open command is:

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table and that holderid = Pi. It sends (Opened, id, valueid, creatorid) to Pi. It also replaces
the entry in the table with (id, valueid, creatorid, holderid,broken).

The Unlock command is now irrelevant, but still supported to make it clear that this model is strictly
stronger than the weak lock model.

2.2.3 Indistinguishable Weak Locks

This functionality models tamper-evident containers with “weak locks” that are indistinguishable from the
outside. The indistinguishability is captured by allowing the players to shuffle the containers in their posses-
sion using an additional Exchange command. To capture the fact that the indistinguishability applies only
to sealed containers, the internal table contains an addition column: sid, the “sealed id”. This is a unique id
that is shuffled along with the rest of the container contents and is revealed when the container is opened1

Functionality F (IWL) can be described as follows, running with parties P1, . . . , Pn and adversary I:

Seal (id, sid, value) This command creates and seals a container. On receiving this command from party
Pi, the functionality verifies that id and sid have the form (Pi, {0, 1}∗).

Case 1: This is the first Seal message with id id and sid sid. In this case the functionality stores the tuple
(id, sid, value, Pi, Pi, sealed) in the table.

Case 2: This is the first Seal message with sid sid but id has been used before. In this case, the functionality
verifies that holderid = Pi. It then replaces the entry in the table with (id, sid, value, Pi, Pi, sealed).

Case 3: This is the first Seal message with id id but sid has been used before. In this case the functionality
proceeds as if it has received the Halt command.

Send (id, Pj) On receiving this command from party Pi, the functionality verifies that an entry for container
id appears in the table and that holderid = Pi. If so, it sends (Receipt, id, Pi, Pj) to Pj and I and
replaces the entry in the table with (id, sidid, valueid, creatorid, Pj , stateid).

Open id On receiving this command from Pi, the functionality verifies that an entry for container id appears
in the table, that holderid = Pi and that either Pi is corrupted or stateid = unlocked. It then sends
(Opened, id, sidid, valueid, creatorid) to Pi. If stateid 6= unlocked it replaces the entry in the table
with (id, sidid, valueid, creatorid, ownerid,broken).

Verify id On receiving this command from Pi, the functionality verifies that an entry for container id
appears in the table and that holderid = Pi. It then considers stateid. If stateid = broken it sends
(Verified, id,broken) to Pi. Otherwise, it sends (Verified, id,ok) to Pi.

Unlock sid On receiving this command from Pi, the functionality verifies that an entry exists in the table
for which sidid = sid, that creatorid = Pi. If stateid = sealed, it replaces the entry in the table with
(id, sidid, valueid, creatorid, holderid,unlocked). Otherwise, it does nothing. Note that this command
does not send any messages (so it cannot be used to determine who is holding a container).

1Technically, the sid can be used to encode more than a single bit in a container. We do not make use of this property in
any of our protocols, but changing the definition to eliminate it would make it unduly cumbersome.
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Exchange (id1, id2) On receiving this command from Pi the functionality verifies that both id1 and id2

exist in the table, and that holderid1 = holderid2 = Pi. It then exchanges the two table rows; the
tuples in the table are replaced with (id2, sidid1 , valueid1 , creatorid1 , Pi, stateid1) and
(id1, sidid2 , valueid2 , creatorid2 , Pi, stateid2).

A Note About Notation In the interests of readability, we will often refer to parties “preparing” a
container or envelope instead of specifying that they send a Seal message to the appropriate functionality.
Likewise we say a party “verifies that a container is sealed” when the party sends a Verify message to the
functionality, waits for the response and checks that the resulting Verified message specifies an ok status.
We say a party “opens a container” when it sends an Open message to the functionality and waits for the
Opened response. We say the party “shuffles” a set of containers according to some permutation (in the
indistinguishable model) when it uses the appropriate Exchange messages to apply the permutation to the
containers’ ids.

2.3 Target Functionalities

These are the “standard” functionalities we attempt to implement using the tamper-evident seals.

2.3.1 Weakly-Fair Coin Flipping

This functionality models coin flipping in which the result of the coin flip can be 0, 1 or ⊥. The result of
the flip c should satisfy: Pr[c = 0] ≤ 1

2 and Pr[c = 1] ≤ 1
2 . This is usually what is meant when talking about

“coin flipping” (for instance, in Blum’s “Coin Flipping Over the Telephone” protocol [6]). The ⊥ result
corresponds to the case where one of the parties noticeably deviated from (or prematurely aborted) the
protocol. Under standard cryptographic assumptions (such as the existence of one-way functions), weakly-
fair coin flipping is possible. Conversely, in the standard model the existence of weakly-fair coin flipping
implies one-way functions [17].

Functionality F (WCF ) is described as follows, with parties Alice and Bob and adversary I:

Value The sender of this command is Alice (the other party is Bob). When this command is received, the
functionality chooses a uniform value d ∈ {0, 1}. If one of the parties is corrupted, the functionality
outputs (Approve, d) to I (the adversary). In that case, the functionality ignores all input until
it receives either a Continue command or a Halt command from I. If no party is corrupted, the
functionality proceeds as if I had sent a Continue command.

Halt When this command is received from I (in response to an Approve message) the functionality outputs
⊥ to all parties and halts.

Continue When this command is received from I (in response to an Approve message), the functionality
outputs (Coin, d) to all parties and halts.

Note: if only one of the parties can cheat in the coin flip, we say the coin flip has one-sided error.

2.3.2 Strongly-Fair Coin Flipping with Bias p (adapted from [7]).

This functionality models a coin flip between two parties with a bounded bias. If both parties follow the
protocol, they output an identical uniformly chosen bit. Even if one party does not follow the protocol, the
other party outputs a random bit d that satisfies: |Pr[d = 0]−Pr[d = 1]| ≤ 2p. Note that we explicitly deal
with premature halting; the standard Halt command is not present in this functionality.

Functionality F (SCF ) is described as follows:

Value When this command is received for the first time from any party, F (SCF ) chooses a bit b, such
that b = 1 with probability p and 0 with probability 1 − p (this bit signifies whether it will allow
the adversary to set the result). If b = 1, the functionality sends the message ChooseValue to I.
Otherwise, it chooses a random bit d ∈ {0, 1} and outputs (Coin, d) to all parties and to I. If this
command is sent more than once, all invocations but the first are ignored.
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Bias d When this command is received, the functionality verifies that the sender is corrupt, that the Value
command was previously sent by one of the parties and that b = 1 (if any of these conditions are not
met, the command is ignored). The functionality then outputs (Coin, d) to all parties.

2.3.3 Bit Commitment (adapted from [7])

Functionality F (BC) can be described as follows:

Commit b The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records b and outputs Committed to the receiver. It then ignores
any other commands until it receives the Open command from the sender.

Open On receiving this command from the sender, the functionality outputs (Opened, b) to the receiver.

2.3.4 Oblivious Transfer (from [11])

Functionality F (OT ) is as follows:

Send (b0, b1) The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records (b0, b1) and outputs QueryChoice to the receiver. It then
ignores all other commands until it receives a Choice command from the receiver

Choice c On receiving this command from the receiver, the functionality verifies that c ∈ {0, 1}. It then
sends bc to the receiver.

2.4 Intermediate Functionalities

In order to simplify the presentation, in the following sections we will present protocols that realize func-
tionalities that are slightly weaker than the ones we want. We then use standard amplification techniques to
construct the “full” functionalities from their weak version. In this section we define these intermediate func-
tionalities and state the amplification lemmas we use to construct the stronger versions of these primitives.
These definitions are in the spirit of [12].

2.4.1 p-Weak Bit-Commitment

This functionality models bit-commitment where a corrupt receiver can cheat with probability p. Note
that an ε-WBC protocol is a regular bit-commitment protocol when ε is negligible. Formally, functionality
F (p−WBC) proceeds as follows:

Commit b The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records b and outputs Committed to the receiver. It ignores any
additional Commit commands.

Open b On receiving this command from the sender, the functionality verifies that the sender previously
sent a Commit b command. If so, the functionality outputs (Opened, b) to the receiver.

Break On receiving this command from a corrupt receiver, the functionality verifies that the sender previ-
ously sent a Commit b command. With probability p it sends (Broken, b) to the receiver and with
probability 1− p it sends ⊥ to the receiver. Additional Break commands are ignored.

The following theorem allows us to amplify any p-WBC protocol when p < 1, meaning that the existence
of such a protocol implies the existence of regular bit-commitment.

Theorem 2.1. For any p < 1 and ε > 0, there exists a protocol that realizes F (ε−WBC) using O
(
log
(

1
ε

))
instances of F (p−WBC)

The proof for this theorem is given in Section 9.3.
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2.4.2 p-Remotely Inspectable Seal

This functionality is used in our protocol for strongly-fair CF. It is a strengthened version of a tamper-
evident seal. With a tamper-evident seal, only its holder can interact with it. Thus, either the sender can
check if it was opened, or the receiver can verify that the sealed contents were not changed, but not both
at the same time. A remotely inspectable seal is one that can be tested “remotely” (without returning it
to the sender). Unfortunately, we cannot realize this “perfect” version in the DE model, therefore relax it
somewhat: we allow a corrupt receiver to learn the committed bit during the verification process and only
then decide (assuming he did not previously break the seal) whether or not the verification should succeed.
Our definition is actually a further relaxation2: the receiver may cheat with some probability: A corrupt
receiver who opens the commitment before the verify stage will be caught with probability 1− p.

Formally, the functionality maintains an internal state variable v = (vb, vs) consisting of the committed
bit vb and a “seal” flag vs. It accepts the commands:

Commit b The issuer of this command is called the sender, the other party is the receiver. b can be either
0, 1. The functionality sets v ← (b, sealed). The functionality outputs Committed to the receiver
and ignores any subsequent Commit commands.

Open This command is sent by the receiver. The functionality outputs (Opened, vb) to the receiver. If
vs = sealed, with probability 1− p the functionality sets vs ← open

Verify If vs 6= sealed, the functionality outputs (Verifying,⊥) to the receiver and ⊥ to the sender.
Otherwise (no opening was detected), the functionality outputs (Verifying, vb) to the receiver. If
the receiver is corrupt, the functionality waits for a response. If the adversary responds with ok, the
functionality outputs Sealed to the sender, otherwise it outputs ⊥ to the sender. If the receiver is
not corrupt, the functionality behaves as if the adversary had responded with ok. After receiving this
command from the sender (and responding appropriately), the functionality ignores any subsequent
Verify and Open commands.

We call 0-RIS simply “RIS”. When εis negligible, ε-RIS is statistically indistinguishable from RIS. The
following theorem states that a p-RIS functionality can be amplified for any p < 1 to get RIS:

Theorem 2.2. For any p < 1 and ε > 0, there exists a protocol that realizes F (RIS) using O
(
log
(

1
ε

))
instances of F (p−RIS)

The proof for this theorem appears in Section 8.2.

2.4.3 Possibly Cheating Weak Oblivious Transfer

The ideal functionality for WOT is defined in [12]. Loosely, a (p, q)-WOT protocol is a 1-2 OT protocol in
which a corrupt sender gains extra information and can learn the receiver’s bit with probability at most p,
while a corrupt receiver gains information that allows it to learn the sender’s bit with probability at most q.
Here we define a very similar functionality, (p, q)-Possibly-Cheating Weak Oblivious Transfer

This functionality differs from WOT in two ways: First, a corrupt sender or receiver learns whether or not
cheating will be successful before committing to their bits. Second, a corrupt sender that cheats successfully
is not committed to her bits — the sender can choose which bit the receiver will receive as a function of the
receiver’s bit.

Formally, functionality F (p,q−PCWOT ) proceeds as follows:

CanCheat When this command is first received the functionality chooses a uniformly random number
x ∈ [0, 1] and records this number. x is returned to the issuer of the command and further CanCheat
commands are ignored. This command can only be sent by a corrupt party.

2This second relaxation is only for convenience; we can remove it using amplification as noted in Theorem 2.2
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Send (b0, b1) The issuer of this command is called the sender, the other party is the receiver. On receiving
this command the functionality records (b0, b1) and outputs QueryChoice to the receiver. If the
receiver is corrupt and x < q it also outputs (Broken, b0, b1) to the receiver. It then ignores all other
commands until it receives a Choice command from the receiver

Choice c On receiving this command from the receiver, the functionality verifies that c ∈ {0, 1}. If the
sender is corrupt and x < p, it sends (Broken, c) to the sender and waits for a Resend command.
Otherwise, it sends bc to the receiver. Any further Choice commands are ignored.

Resend b On receiving this command from a corrupt sender, and if x < p, the functionality sends b to the
receiver.

In [12], Damg̊ard et al. prove that (p, q)-WOT implies OT iff p+ q < 1. A careful reading of their proof
shows that this is also the case for (p, q)-PCWOT, giving the following result:

Theorem 2.3. For any p + q < 1 and any ε > 0, there exists a protocol that realizes F (ε,ε−PCWOT ) using
O
(
log2

(
1
ε

))
instances of F (p,q−PCWOT ).

2.5 Proofs in the UC Model

Formally, the UC model defines two “worlds”, which should be indistinguishable to an outside observer called
the “environment machine” (denoted Z).

The “ideal world” contains two “dummy” parties, the “target” ideal functionality, Z and an “ideal
adversary”, I. The parties in this world are “dummy” parties because they pass any input they receive
directly to the target ideal functionality, and write anything received from the ideal functionality to their
local output. I can communicate with Z and the ideal functionality, and can corrupt one of the parties. I
sees the input and any communication sent to the corrupted party, and can control the output of that party.
The environment machine, Z, can set the inputs to the parties and read their local outputs, but cannot see
the communication with the ideal functionality.

The “real world” contains two “real” parties, Z and a “real adversary”, A. In addition it may contain the
“service” ideal functionalities (in our case the distinguishable envelope functionality). A can communicate
with Z and the “service” ideal functionalities, and can corrupt one of the parties. The uncorrupted parties
follow the protocol, while corrupted parties are completely controlled by A. As in the ideal world, Z can set
the inputs for the parties and see their outputs, but not internal communication (other than what is known
to the adversary).

The protocol securely realizes an ideal functionality in the UC model, if there exists I such that for any
Z and A, Z cannot distinguish between the ideal world and the real world. Our proofs of security follow the
general outline for a proof typical of the UC model: we describe the ideal adversary, I, that “lives” in the
ideal world. Internally, I simulates the execution of the “real” adversary, A. We can assume w.l.o.g. that
A is simply a proxy for Z, sending any commands received from the environment to the appropriate party
and relaying any communication from the parties back to the environment machine. I simulates the “real
world” for A, in such a way that Z cannot distinguish between the ideal world when it is talking to I and
the real world. In our case we will show that Z’s view of the execution is not only indistinguishable, but
actually identical in both cases.

All the ideal adversaries used in our proofs have, roughly, the same idea. They contain a “black-box”
simulation of the real adversary, intercepting its communication with the tamper-evident container function-
alities and replacing it with a simulated interaction with simulated tamper-evident containers. The main
problem in simulating a session that is indistinguishable from the real world is that the ideal adversary does
not have access to honest parties’ inputs, and so cannot just simulate the honest parties. Instead, the ideal
adversary makes use of the fact that in the ideal world the “tamper-evident seals” are simulated, giving it
two tools that are not available in the real world:

First, the ideal adversary does not need to commit in advance to the contents of containers (it can decide
what the contents are at the time they are opened), since, in the real world, the contents of a container don’t
affect the view until the moment it is opened.
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Second, the ideal adversary knows exactly what the real adversary is doing with the simulated containers
at the time the real adversary performs the action, since any commands sent by the real adversary to the
simulated tamper-evident container functionality are actually received by the ideal adversary. This means
the ideal adversary knows when the real adversary is cheating. The target functionalities, when they allow
cheating, fail completely if successful cheating gives the corrupt party “illegal” information: in case cheating
is successful they give the adversary the entire input of the honest party. Thus, the strategy used by the
ideal adversary is to attempt to cheat (by sending a command to the target ideal functionality) when it
detects the real adversary cheating. If it succeeds, it can simulate the rest of the protocol identically to a
real honest party (since it now has all the information it needs). If it fails to cheat, the ideal adversary uses
its “inside” information to cause the real adversary to be “caught” in the simulation.

3 Capabilities of the Distinguishable Weak-Lock Model

This is the weakest of the four primitives we consider. We show that unconditionally secure bit commitment
and oblivious transfer are impossible in this model. However, this model is still strictly stronger than the
bare model, as weak coin flipping is possible in this model.

3.1 A Weakly-Fair Coin Flipping Protocol

We give a protocol that securely realizes F (WCF ) using calls to F (DWL). Here Alice learns the result of the
coin flip first. Note that when this protocol is implemented in the Distinguishable Envelope Model, a trivial
change allows it to have one-sided error (only Bob can cheat). In this case, Bob learns the result of the coin
flip first.

Protocol 3.1 (WCF).

1. Alice prepares and sends to Bob 4n containers arranged in quads. Each quad contains two containers
with the value 0 and two with the value 1. The order of the 0s and 1s within the quad is random.

2. If Alice halts before completing the previous stage, Bob outputs a random bit and halts. Otherwise,
Bob chooses one container from every quad and sends the chosen containers to Alice.

3. Alice verifies that all the containers Bob sent are still sealed (if not, or if Bob halts before sending all
the containers, she outputs ⊥ and halts). She then unlocks all the remaining containers, outputs the
xor of the bits in the containers she received from Bob and halts.

4. Bob opens all the containers in his possession. If any triplet of open containers is improper ((0, 0, 0)
or (1, 1, 1)), Bob outputs a random bit and halts. If Alice quits before unlocking the containers, Bob
outputs ⊥ and halts. Otherwise he outputs the xor of the bits in the containers that remain in his
possession and halts. In the DE model, Bob can open the containers without help from Alice, so he
never outputs ⊥.

The following theorem (whose proof appears in Section 6) states the security properties for the protocol:

Theorem 3.1. Protocol 3.1 securely realizes F (WCF ) in the UC model.

3.2 Oblivious Transfer is Impossible

Any protocol in the DWL model is also a protocol in the DE model (see Section 4). We show in Section 4.1
that OT is impossible in the DE model, hence it must also be impossible in the DWL model.

11



3.3 Bit-Commitment is Impossible

To show bit-commitment is impossible in the DWL model, we define a small set of properties that every
bit-commitment protocol must satisfy in order to be considered “secure”. We then show that no protocol in
the DWL model can satisfy these properties simultaneously.

A bit-commitment protocol is a protocol between two players, a sender and a receiver. Formally, we can
describe the protocol using four PPTs, corresponding to the commitment stage and the opening stage for
each party.

PSCommit(b, 1
n) receives an input bit and plays the sender’s part in the commit stage of the protocol. The

PPT can communicate with PRCommit and with the F (DWL) functionality. It also has an output tape
whose contents are passed to PSOpen

PRCommit(1
n) plays the receiver’s part in the commit stage of the protocol. It can communicate with PSCommit

and with the F (DWL) functionality. It also has an output tape whose contents are passed to PROpen

PSOpen(1n) receives the output tape of PSCommit, and can communicate with PROpen and with the F (DWL)

functionality (note that F (DWL) retains its state between the commit and open stage).

PROpen(1n) receives the output tape of PRCommit, and can communicate with PROpen and with the F (DWL)

functionality. PROpen(1n) outputs either a bit b′ or ⊥.

A bit-commitment protocol is complete if it satisfies:

Definition 3.2 (Completeness). If b is the input to PSCommit, and both parties follow the protocol, the
probability that the output of PROpen(1n) is not b is a neglible function in n.

We say a bit-commitment protocol is secure if it satisfies the following two properties:

Definition 3.3 (Hiding). Let the sender’s input b be chosen uniformly at random. Then for any adversary
B substituted for PRCommit in the protocol, the probability that B can guess b is at most 1

2 + ε(n), where ε
is a negligible function.

Definition 3.4 (Binding). For any adversary A = (ACommit, AOpen(x)) substituted for PS in the protocol,
if x ∈ {0, 1} is chosen independently and uniformly at random after the end of the commit stage, the
probability (over A and PR’s random coins and over x) that PROpen outputs x is at most 1

2 + ε(n), where ε
is a negligible function.

Implementing bit-commitment that is secure against computationally unbounded players using only the
F (DWL) functionality is impossible. We show this is the case not only for universally composable bit-
commitment (which is a very strong notion of bit commitment), but even for a fairly weak version: there is
no bit commitment protocol that is both unconditionally hiding and unconditionally binding in the DWL
model.

Intuitively, the reason that bit-commitment is impossible is that in the DWL model the sender has access
to all the information the receiver has about the sender’s bit. This information cannot completely specify
the bit (since in that case the hiding requirement of the commitment protocol is not satisfied), hence there
must be valid decommitments for both 0 and 1 (that the receiver will accept). Since the sender knows what
information the receiver has, she can determine which decommitments will be accepted (contradicting the
binding requirement).

More formally, the proof proceeds in three stages. First, we show that we can assume w.l.o.g. that a BC
protocol in the DWL model ends the commit phase with all containers returned to their creators. Second,
we show that if the receiver is honest, the sender can compute everything the receiver knows about her bit
and her random string. We then combine these facts to show that either the receiver knows her bit (hence
the protocol is not hiding) or the sender can decommit to two different values (hence the protocol is not
binding).

Let P =
(
PSCommit, P

S
Open, P

R
Commit, P

R
Open

)
be a bit commitment protocol using calls to F (DWL), where

PS denotes the sender’s side of the protocol and PR the receiver’s side. Let Alice be the sender in the
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commitment protocol and Bob the receiver. Denote Alice’s input bit by b and her random string by rA.
Denote Bob’s random string rB and Bob’s view of the protocol at the end of the commit stage VBob (w.l.o.g,
this is assumed to be the output of PRCommit). We can assume w.l.o.g. that both parties know which is the
final message of the commit stage (since both parties must agree at some point that the commit stage is
over).

Let P ′ the protocol in which, at the end of the commit stage, Alice unlocks all the containers she created
and Bob opens all the containers in his possession, records their contents and returns them to Alice. Formally,
the protocol is defined as follows:

• P ′RCommit runs PRCommit using the same input and random coins, keeping track of the locations of all
containers created by the sender. When PRCommit terminates, P ′RCommit waits for all containers it holds
to be unlocked, then opens all of them, records their contents and returns them to P ′S .

• P ′SCommit runs PSCommit using the same input and random coins, keeping track of the locations of all
containers it creates. When PSCommit terminates, P ′SCommit unlocks all the containers created by PS and
still held by the receiver, then waits for the containers to be returned.

• P ′SOpen runs PSOpen, but when PSOpen sends an Unlock command to F (DWL) for a container that was
created by P ′SCommit, P

′S
Open instead sends a special “unlock” message to P ′ROpen.

• P ′ROpen runs PROpen, converting the special “unlock” messages sent by P ′SOpen to simulated Unlocked
messages from F (DWL). It also intercepts requests to open containers that were created by P ′SCommit

and simulates the responses using the recorded contents. It’s output is the output of PROpen.

Lemma 3.5. If P is both hiding and binding, so is P ′

Proof. P ′ is binding. If P ′ is not binding, it means there is some adversary A′ = (A′Commit, A
′
Open(x)) such

that when A′ is substituted for P ′S , P ′R will output x with probability at least 1
2 + poly( 1

n ).
We can construct an adversary A that will have the same probability of success when substituted for PS

in protocol P : ACommit runs A′Commit until PRCommit terminates, recording the contents and locations of any
containers A′ creates. It then continues to run A′Commit, discarding any Unlock commands A′ sends after
this point, and simulating the receipt of all containers created by A′ and still held by PR (if A′ asks to verify
a container, A simulates an ok response from F (DWL), and if it asks to open a container, A simulates the
correct Opened response using the recorded contents).

AOpen(x) runs A′Open(x). When A′Open(x) sends a special unlock message to PR, AOpen(x) sends the
corresponding real unlock command to F (DWL). Given the same input and random coins, the simulated
version of PROpen under P ′ has a view identical to the real PROpen under P , hence the output must be the
same. Therefore the probability that A is successful is identical to the probability that A′ is successful. This
contradicts the hypothesis that P is binding.

P ′ is hiding. If P ′ is not hiding, there is some adversary B′ = B′Commit that, substituted for P ′RCommit in
protocol P ′ can guess b with probability 1

2 +poly( 1
n ). We can construct an adversary B for the protocol P as

follows: B behaves identically to B′ until PSCommit terminates. It then breaks all the containers that remain
in its possession and continues running B′, simulating the Unlock messages from PS . Since the simulation
of B′ under B and the real B′ in protocol P ′ see an identical view (given the same random coins and input),
B and B′ will have the same output, guessing b successfully with non-negligible advantage. This contradicts
the hypothesis that P is hiding.

Denote P ′′ the protocol in which, at the end of PCommit, Alice returns all of Bob’s containers to him and
Bob uses them only in P ′′Open (or ignores them if they are never used).

Formally, P ′′SCommit runs PSCommit until it terminates, keeping track of the containers created by P ′′R. It
then returns all of those containers that it still holds to P ′′R. P ′′RCommit runs PRCommit until it terminates, and
records the ids of the containers received from P ′′SCommit.

P ′′SOpen runs PSOpen, replacing Send commands to F (DWL) for containers sent by P ′′S with special “send”
messages to P ′′R. When PSOpen attempts to open one of the containers sent by P ′′S , P ′′S sends a special
“return” message to P ′′R and waits for it to send that container.
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P ′′ROpen runs PROpen, intercepting the special “send” and “return” messages from P ′′S . In response to a
“send” message it simulates a Receipt message from F (DWL), and in response to a “return” message it
gives the corresponding Send command to F (DWL).

Lemma 3.6. If P is both hiding and binding then so is P ′′

Proof. P ′′ is binding. Suppose P ′′ is not. Then there exists some adversary A′′ = (A′′Commit, A
′′
Open(x)) such

that when A′′ is substituted for P ′′S , P ′′R will output x with probability at least 1
2 + poly( 1

n ).
We can construct an adversary A that will have the same probability of success when substituted for

PS in protocol P : ACommit runs A′′Commit until PRCommit terminates. It then continues to run A′′Commit,
intercepting any Send commands A′′ sends after this point.

AOpen(x) runs A′′Open(x). When A′′Open(x) sends a special “send” message to P ′′R, AOpen(x) instead sends
the corresponding real container to PR. When A′′ sends a special “return” message to P ′′R, A simulates the
receipt of the container from P ′′R (this is possible because the container was never actually sent).

Given the same input and random coins, the simulated version of PROpen under P ′′ has a view identical to
the real PROpen under P , hence the output must be the same. Therefore the probability that A is successful
is identical to the probability that A′′ is successful. This contradicts the hypothesis that P is binding.

P ′′ is hiding. Suppose it is not, then there is some adversary B′′ = B′′Commit that, substituted for P ′RCommit

in protocol P ′′ can guess b with probability 1
2 + poly( 1

n ). We can construct an adversary B for the protocol
P as follows: B runs B′′ until PSCommit terminates, recording the contents and locations of containers it
creates. B then simulates the receipt of all containers it created that were still held by PS and continues
running B′′. If B′′ tests whether a container is sealed, B simulates an ok response for all containers (note
that since PS is an honest party, it cannot break any lock, so this response is always correct). If B′′ opens
a container, B simulates the proper response using the last recorded contents for that container (since only
the creator of the container can alter the contents, this response is always correct).

Given the same input and random coins, the views of B′′ when P ′′ is running and the simulated B′′

when P is running are identical, hence the output must be the same. Therefore B can also guess b with
probability 1

2 + poly( 1
n ), contradicting the hypothesis that P is hiding.

Lemma 3.7. If neither Alice (the sender) nor Bob (the receiver) break open containers (open a container
that is not unlocked), Alice can compute b, rA | VBob (the information Bob has about b and Alice’s random
string at the end of the commitment phase).

Proof. Bob’s view, VBob, is composed of some sequence of the following:

1. Seal messages for his own containers

2. Receipt messages for containers received from Alice.

3. Send messages for containers sent to Alice.

4. Open messages sent for containers he created and Alice holds (there’s no point in Bob opening a
container he created and also holds – he already knows what it contains)

5. Opened messages generated by Alice opening a container she created and he holds.

6. Verify messages he sent

7. Verified messages received as a response to his Verify messages.

8. Unlock messages he sent

9. Plaintext communication

Any information Bob has about b, rA must derive from his view of the protocol. Any messages sent by Bob
do not add information about b or rA: the contents of the message are determined solely by rB , which is
independent of b and rA, and by the prefix of the protocol. Therefore, the Seal, Send, Open, Verify and
Unlock messages do not contribute information about b or rA.
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The response to a Verify message will always be ok, since Alice never breaks open a container. Therefore
Verified messages do not contain any information about b or rA.

It follows that all the information Bob has about b, rA must reside in the Receipt and Opened messages
and plaintext communication. However, this information is also available to Alice: Every Receipt message
is generated by a Send message from Alice (so she knows the contents of all Receipt messages received by
Bob). On the other hand, since Bob never breaks open a container, every Open message he sends must be
preceded by an Unlock message from Alice. Thus, Alice must know which containers he opened (and since
she created them, she knows their contents) And, of course, Alice also knows anything she sent in plaintext
to Bob.

Theorem 3.8. F (BC) cannot be securely realized against computationally unbounded adversaries using
F (DWL) as a primitive.

Proof. From Lemmas 3.5 and 3.6, we can assume w.l.o.g that at the end of the Commit phase, all of Alice’s
containers are held by Alice and all of Bob’s containers are held by Bob

From Lemma 3.7, Alice knows everything Bob knows about b and rA. Therefore she can compute all the
possible pairs b′, r′A which are consistent with Bob’s view of the protocol.

Assume, in contradiction, that with non-negligible probability (over b and both parties’ random coins),
in at least poly( 1

n ) of the pairs b′ = 0 and in at least poly( 1
n ) of the pairs b′ = 1. Consider the following

adversary A = (ACommit, AOpen): ACommit runs PSCommit with a random input b. AOpen(x) actions depend
on b:

Case 1: If b = x, it runs PSOpen.

Case 2: if b = 1−x, but in at least poly( 1
n ) of the pairs b′ = x, it chooses r′A randomly from this set of pairs and

simulates PSCommit(x), using r′A for the random coins, intercepting all commands to F (DWL) but Seal
commands and simulating the correct responses using the recorded view (note that the contents and
ids of Bob’s containers must be identical no matter which r′A is chosen, because Bob’s view is identical
for all these pairs). A can send Seal commands for the containers because it currently holds all the
containers it created. AOpen(x) then runs PSOpen using the output from the simulation of PSCommit(x).

Case 3: If b = 1− x, but only a negligible fraction of the pairs b′ = x, it fails.

By the completeness property, the probability that PROpen outputs something other than x must be negligible
in cases 1 and ??. Case 1 occurs with probability 1

2 and, by our hypothesis, case ?? occurs with non-negligible
probability. This contradicts the binding property of the protocol.

Assume that the probability that both b′ = 0 and b′ = 1 in a non-negligible fraction of the pairs is
negligible. Consider the following adversary B: BCommit runs PRCommit. It then outputs the majority value of
b′ on all the pairs b′, rA consistent with it’s view. By our hypothesis, with overwhelming probability b′ = b,
contradicting the hiding property of the protocol. Thus, the protocol is either not binding or not hiding.

4 Capabilities of the Distinguishable Envelope Model

This model is clearly at least as strong as the Distinguishable Weak Lock model (defined in Section 2.2.1),
since we only added capabilities to the honest players, while the adversary remains the same. In fact, we
show that it is strictly stronger, by giving a protocol for bit-commitment in this model (in Section 3.3 we
prove that bit-commitment is impossible in the DWL model). We also give a protocol for 1

r -Strong Coin
Flipping in this model and show that Oblivious transfer is impossible.

4.1 Oblivious Transfer is Impossible

Let Alice be the sender and Bob the receiver. Consider Alice’s bits a0 and a1, as well as Bob’s input c, to
be random variables taken from some arbitrary distribution. Alice’s view of a protocol execution can also
be considered a random variable VA = (a0, a1, rA, N1, . . . , Nn), consisting of Alice’s bits, random coins (rA)
and the sequence of messages that comprise the transcript as seen by Alice. In the same way we denote
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Bob’s view with VB = (c, rB ,M1, . . . ,Mn), consisting of Bob’s input and random coins and the sequence of
messages seen by Bob.

The essence of oblivious transfer (whether universally composable or not) is that Bob gains information
about one of Alice’s bits, but Alice does not know which one. We can describe the information Bob has
about Alice’s bits using Shannon entropy, a basic tool of information theory. The Shannon entropy of a
random variable X, denoted H(X) is a measure of the “uncertainty” that resides in X. When X has finite
support: H(X) = −

∑
x Pr[X = x] log Pr[X = x].

Suppose Bob’s view of a specific protocol transcript is vB . What Bob learns about ai (i ∈ {0, 1}) can be
described by the conditional entropy of ai given Bob’s view of the protocol. We write this H(ai | VB = vB).
If Bob knows ai at the end of the protocol then H(ai | VB = vB) = 0 since there is no uncertainty left about
the value of ai given Bob’s view. If Bob has no information at all about ai then H(ai | VB = vB) = 1, since
there are two equally likely values of ai given Bob’s view.

We show that in any protocol in the DE Model, Alice can calculate the amount of information Bob has
about each of her bits:

Theorem 4.1. For any protocol transcript where VA = vA and VB = vB, both H(a0 | VB = vB) and
H(a1 | VB = vB) are completely determined by vA

Proof. We will show how to compute H(a0 | VB = vB) using the value of VA. Computing H(a1 | VB = vB)
works in the same way, replacing a0 with a1.

For any injection f and any random variable, the event Y = y is identical to the event f(Y ) = f(y).
Therefore, for any two random variables X and Y , it holds that H(X | Y = y) = H(X | f(Y ) = f(y)). We
will describe an injection from VB to a variable that Alice can (almost) compute:

1. Denote by C the set of all pairs (id, valueid) that appear in some Opened message from M1, . . . ,Mn

and such that id is one of Alice’s envelopes.

2. Denote by O the multiset of all pairs (id, state) that appear in some Verified message from M1, . . . ,Mn

This is a multiset because the same envelope may be verified multiple times. We only count the first
Verified message after a Receipt message for the same envelope, however (i.e. if Bob verified the
same envelope more than once without sending it to Alice between verifications, we ignore all but the
first).

3. Denote M ′ the subsequence of the messages M1, . . . ,Mn consisting only of Receipt messages from
F (DE) and plaintext messages from Alice. We consider M ′ to contain the indices of the messages in
the original sequence.

Let f(VB) = (O,C, c, rB ,M ′). To show that f is one-to-one, we show that given (O,C, c, rB ,M ′) it is
possible to compute VB by simulating Bob. The simulation proceeds as follows:

1. Run Bob (using c for the input and rB for the random coins) until Bob either sends a message to
F (DE) or should receive a message from Alice (we an assume w.l.o.g. that Bob always knows when he
is supposed to receive a message). If Bob asks to send a message to Alice the simulation pretends to
have done so.

2. If Bob sends a message to F (DE), we simulate a response from F (DE):

(a) If Bob sends an Open message for one of Alice’s envelopes, we can look up the contents in C and
respond with a simulated Opened message

(b) If Bob sends an Verify message for one of his envelopes, we can look up the result in O and
respond with a simulated Verified message (if the envelope was verified multiple times, we return
the result corresponding to the current request from the multiset, or the previous returned result
if Bob did not send the envelope to Alice between verifications).

(c) If Bob sends an Seal message, we store the value (and do nothing, since no response is expected).
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(d) If Bob sends an Open message for one of his own envelopes, we respond with an Opened message
using the value stored earlier.

(e) The simulation also keeps track of the locations of simulated envelopes (so that it can respond
correctly if Bob tries an illegal operation, such as opening an envelope that is not in his possession).

3. If Bob should receive a message, we simulate either a plaintext message from Alice or a Receipt
message from F (DE) by looking it up in M ′.

Given rB , Bob is deterministic, so the simulation transcript must be identical to the original protocol view.
Finally note that the random variables a0 and (c, rB) must be independent (otherwise, even before

beginning the protocol, Bob has information about Alice’s input bits). Hence, for any random variable X:
H(a0 | X, c, rB) = H(a0 | X). In particular, H(a0 | O,C, c, rB ,M ′) = H(a0 | O,C,M ′).

However, Alice can compute O,C,M ′ from VA: Alice can compute M ′ since any Receipt messages
Bob received must have been a response to a Send message sent by Alice, and all messages sent by Alice
(including plaintext messages) can be computed from her view of the protocol.

We can assume w.l.o.g. that Bob opens all the envelopes that remain in his possession at the end of the
protocol (if the protocol is secure, the protocol in which Bob opens the envelopes at the end must be secure
as well, since a corrupt Bob can always do so without getting caught). Likewise, we can assume w.l.o.g. that
both players verify all of their envelopes as they are returned by the other player (again, this can be done
by a corrupt player without leaking any information to the other player, so the protocol that includes this
step cannot be less secure than the same protocol without it).

C consists of the contents of all of Alice’s envelopes that Bob opened. Obviously, Alice knows the contents
of all her envelopes (since she created them). To compute C, she only needs to know which of them were
opened by Bob. Each of her envelopes is either in her possession or in Bob’s possession at the end of the
protocol; Alice can tell which is the case by checking if the envelope was sent more times than it was received.
If it’s not in her possession, she can assume Bob opened it. If it is in her possession, she verified the seal on
the envelope every time it was received from Bob and the results of the verification are in her view of the
protocol. If Bob opened it, at least one of the verifications must have failed. Thus, Alice can compute C.
Similarly, her view tells her which of Bob’s envelopes she opened and how many times each envelope was
sent to Bob. Since she can assume Bob verified each envelope every time it was returned to him, she can
compute the results of the Verified messages Bob received (and so she can compute O).

Thus, Alice can compute H(a0 | O,C,M ′) = H(a0 | f(VB) = f(vB)) = H(a0 | VB = vB).

4.2 Bit Commitment

In this section we give a protocol for bit-commitment using distinguishable envelopes. The protocol realizes
a weak version of bit commitment (defined in Section 2.4.1). Theorem 2.1 implies that WBC is sufficient to
realize “standard” bit-commitment.

Protocol 4.1 ( 3
4 -WBC).

To implement Commit b:

1. The receiver prepares four sealed envelopes, two containing a 0 and two a 1 in random order. The
receiver sends the envelopes to the sender.

2. The sender opens three envelopes (chosen randomly) and verifies that they are not all the same. Let
r be the value in the remaining (sealed) envelope. The sender sends d = b⊕ r to the receiver.

To implement Open:

1. The sender sends b and the sealed envelope to the receiver.

2. The receiver verifies that the envelope is sealed, then opens it to extract r. He verifies that d = b⊕ r.

The proof for the security of this protocol, stated as the following theorem, appears in Section 9:

Theorem 4.2. Protocol 4.1 securely realizes F ( 3
4−WBC) in the UC model.
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4.3 A Strongly-Fair Coin Flipping Protocol with Bias O(1
r
)

The construction uses remotely inspectable seals (defined in Section 2.4.2), which we then show how to im-
plement in the DE model. The idea is similar to the “standard” coin flipping protocol using bit-commitment:
Alice commits to a random bit a. Bob sends Alice a random bit b, after which Alice opens her commitment.
The result is a⊕ b.

The reason that this is not a strongly-fair CF protocol is that Alice learns the result of the toss before
Bob and can decide to quit before opening her commitment. Using RIS instead of BC solves this problem,
because Bob can open the commitment without Alice’s help.

Ideally, we would like to replace BC with RIS (and have Alice verify that Bob didn’t break the seal before
sending b). This almost works; If Bob quits before verification, or if the verification fails, Alice can use a
as her bit, because Bob had to have decided to quit before seeing a. If Bob quits after verification (and the
verification passed), Alice can use a⊕ b, since Bob sent b before learning a.

The reason this idea fails is that RIS allows Bob to see the committed bit during verification. If he
doesn’t like it, he can cause the verification to fail.

We can overcome the problem with probability 1− 1
r by doing the verification in r rounds. The trick is

that Alice secretly decides on a “threshold round”: after this round a failure in verification won’t matter.
Bob doesn’t know which is the threshold round (he can guess with probability at most 1/r). If Bob decides
to stop before the threshold round, either he did not attempt to illegally open a commitment (in which case
his decision to stop cannot depend on the result of the coin flip), or he illegally opened all the remaining
commitments (opening less than that gives no information about the result). In this case all subsequent
verifications will fail, so he may as well have simply stopped at this round (note that the decision to open is
made before knowing the result of the coin flip). Clearly, anything Bob does after the threshold round has
no effect on the result. Only if he chooses to illegally open commitments during the threshold round can this
have an effect on the outcome (since in this case, whether or not the verification fails determines whether
Alice outputs a or a⊕ b).

The full protocol follows:

Protocol 4.2 ( 1
r -SCF). The protocol uses r instances of F (RIS):

1. Alice chooses r random bits a1, . . . , ar and sends Commit ai to F (RIS)
i (this is done in parallel).

Denote a = a1 ⊕ · · · ⊕ ar.

2. Bob chooses a random bit b. If Alice halts before finishing the commit stage, Bob outputs b. Otherwise,
he sends b to Alice.

3. If Bob halts before sending b, Alice outputs a. Otherwise, Alice chooses a secret index j ∈ {1, . . . , r}.

4. The protocol now proceeds in r rounds. Round i has the following form:

(a) Alice verifies that Bob did not open the commitment for ai.

(b) Bob opens the commitment for ai (this actually occurs during the RIS verification step).

5. If the verification for round j and all preceeding rounds was successful, Alice outputs a⊕ b. Otherwise,
Alice outputs a.

6. Bob always outputs a ⊕ b (If Alice halts before completing the verification rounds, Bob opens the
commitments himself (instead of waiting for verification).

The proof of the following theorem appears in Section 7:

Theorem 4.3. Protocol 4.2 securely realizes F ( 1
r−SCF ) in the UC model.
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4.3.1 Implementation of Remotely Inspectable Seals

We give protocol that realizes 1
2 -RIS. We can then apply Theorem 2.2 to amplify it to ε-RIS for some

negligible ε. In addition to the F (DE) functionality, the protocol utilises a weak coin flip functionality with
one-sided error (only Bob can cheat). This can be implemented using distinguishable envelopes. The WCF
protocol in the DWL model, described in Section 3.1, has one-sided error in the DE model (although we don’t
give a formal proof in this paper). Alternatively, Blum’s protocol for coin flipping also has this property,
and can be implemented using bit-commitment.

Protocol 4.3 ( 1
2 -RIS).

To implement Commit b:

1. Alice sends two envelopes, denoted e0 and e1 to Bob, both containing the bit b.

To implement Verify:

1. Alice initiates a weakly-fair coin flip with Bob (the coin flip has one-sided error, so that Alice is unable
to cheat).

2. Denote the result of the coin flip r. Bob opens envelope e1−r and outputs (Verifying, b) (where b is
the contents of the envelope. Bob returns envelope er to Alice.

3. Alice waits for the result of the coin flip and the envelope from Bob. If the result of the coin flip is ⊥,
or if Bob does not return an envelope, Alice outputs ⊥. Otherwise, Alice verifies that Bob returned
the correct envelope and that it is still sealed. If either of these conditions is not satisfied, she outputs
⊥, otherwise she outputs Sealed.

To implement Open:

1. Bob randomly chooses one of the envelopes in his possession. He opens the envelope and outputs
(Opened, b) (where b is the contents of the envelope). Bob opens the other envelope as well.

The proof of the following theorem appears in Section 8.1:

Theorem 4.4. Protocol 4.3 securely realizes F ( 1
2−RIS) in the UC model.

4.4 Lower Bound for Strongly-Fair Coin Flipping

In [8], Cleve proves that for any coin flipping protocol in the standard model, one of the parties can bias the
result by Ω(1/r) where r is the number of rounds. This is true even if all we allow the adversary to do is to
stop early. An inspection of his proof shows that this is also true in the DE model:

Theorem 4.5. Any r-round strongly-fair coin flipping protocol in the DE model can be biased by Ω( 1
r )

The main idea in Cleve’s proof is to construct a number of adversaries for each round of the protocol.
He then proves that the average bias for all the adversaries is at least Ω( 1

r ), so there must be an adversary
that can bias the result by that amount. Each adversary runs the protocol correctly until it reaches “its”
round. It then computes what an honest player would output had the other party stopped immediately after
that round. Depending on the result, it either stops in that round or continues for one more round and then
stops.

The only difficulty in implementing such an adversary in the DE model is that to compute its result it
might need to open envelopes, in which case it may not be able to continue to the next round. The solution
is to notice that it can safely open any envelopes that would not be sent to the other party at the end of the
round (since it will stop in the next round in any case). Also, it must be able to compute the result without
the envelopes it’s about to send (since if the other party stopped after the round ends he would no longer
have access to the envelopes). Therefore Cleve’s proof is valid in the DE model as well.
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5 Capabilities of the Indistinguishable Weak-Lock Model

The addition of indistinguishability makes the tamper-evident seal model startlingly strong. Even in the
Weak Lock variant, unconditionally secure oblivious transfer is possible (and therefore so are bit-commitment
and coin flipping). In this section we construct a 1-2 OT protocol using the F (IWL) functionality. We show
a
(

1
2 ,

1
3

)
-PCWOT protocol (for a definition of the functionality, see 2.4.3). We can then use Theorem 2.3 to

construct a full 1-2 OT protocol.

5.1 A (1
2
, 1

3
)-Possibly Cheating Weak Oblivious Transfer Protocol

The basic idea for the protocol is that the sender can encode information in the order of containers, not just
in their contents. When the containers are indistinguishable, the sender can shuffle containers (thus changing
the information encoded in their order) without knowing the identities of the containers themselves; this
gives us the obliviousness.

In order to get a more intuitive understanding of the protocol it is useful to first consider a protocol that
works only against an “honest but curious” adversary:

1. the sender prepares two containers containing the bits (0, 1), and sends them to the receiver.

2. the receiver prepares two containers of his own, also containing (0, 1). If his bit is 0, he returns both
pairs to the sender with his pair first. If his bit is 1, he returns both pairs to the sender with his pair
second.

3. At this point, the sender no longer knows which of the pairs is which (as long as she doesn’t open any
containers). However, she knows that both pairs contain (0, 1). She now encodes her bits, one on each
pair (by leaving the pair alone for a 0 bit or exchanging the containers within the pair for a 1 bit). She
returns both pairs to the receiver.

4. the receiver verifies that both his containers are still sealed and then opens them. The bit he learns
from the sender can be deduced from the order of the containers in the pair. He randomly shuffles the
sender’s pair and returns it to the sender.

5. the sender verifies that the containers in the remaining pair are still sealed. Since the receiver shuffled
the containers within the pair, the original encoded bit is lost, so the contents of the containers give
her no information about the receiver’s bit.

Unfortunately, this simple protocol fails when the adversary is not limited to be passive. For example,
an active adversary that corrupts the receiver can replace the sender’s pair of the containers with his own
at stage (2). In stage (3) the sender encodes both her bits on the receiver’s containers, while he still has the
sender’s pair to return at stage (4).

To prevent this attack, we can let the sender start with additional container pairs (say, three). Then, in
stage (3), the sender can randomly choose two of her pairs and have the receiver tell her which ones they
are. She can then verify that the pairs are sealed and that they are the correct ones. Now she’s left with
two pairs (one hers and one the receiver’s), but the order may not be what the receiver wanted. So in the
modified protocol, before the sender encodes her bits, the receiver tells her whether or not to switch the
pairs.

If the receiver tampered with any of her pairs (or replaced them), with probability 2
3 the sender will catch

him (since he can’t know in advance which pairs the sender will choose to open). However, this modification
gives the sender a new way to cheat: She can secretly open one of the pairs at random (before choosing
which or her pairs to verify). There are four pairs, and only one is the receiver’s, so with probability 3

4 she
chooses one of her pairs. She can then ask the receiver to give her the locations of the other two pairs. Once
she knows the location of the receiver’s pair, she knows which bit he wants to learn.

To counter this attack, we let the receiver add two additional pairs as well (so that he returns six pairs
at stage (2)). After the sender chooses which of her pairs to verify, the receiver randomly chooses two of his
pairs to verify. He gives the sender the locations and she returns the pairs to him. Since there are now six
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containers, three of which are the receiver’s, if the sender decides to open a container she will open one of
the receiver’s with probability 1

2 (which is allowed in a
(

1
2 ,

1
3

)
-PCWOT protocol).

However, although the receiver will eventually learn that the sender cheated, if he didn’t catch her here
(he doesn’t with probability 1

3 ), the sender will learn his bit before he can abort the protocol. We prevent
this by having the sender choose a random value r, and encoding a0 ⊕ r and a1 ⊕ r instead a0 and a1. At
the end of the protocol the receiver asks the sender to send him either r or a0 ⊕ a1 ⊕ r, depending on the
value of his bit. Learning only one of the values encoded by the sender gives the receiver no information
about the sender’s bits. Given the additional information from the sender, it allows him to learn the bit he
requires, but gain no information about the other bit. As long as the sender doesn’t know which of the two
encoded values the receiver learns, his request at the end of the protocol doesn’t give her any information
about his bit.

Similarly, the receiver can gain information about both of the sender’s bits by opening her containers as
well as his after she encodes them. This can be prevented by having the sender use the same value for both
of her containers (i.e., put 1 in both containers). Since the receiver should never open the sender’s pair if
he follows the protocol, this shouldn’t matter. If he hasn’t opened the pair previously, however, he now has
no information about the bit encoded in the pair (since he doesn’t know which container was originally the
first in the pair).

There remains a final problem with the protocol: the receiver can cheat by lying to the sender about the
locations of his pairs when he asks her to return them, and instead asking for the sender’s remaining pair
(along with one of his). In this case the sender remains with two of the receiver’s pairs, giving the receiver
both of her bits. We solve this by having the sender randomly shuffle the pairs she returns to the receiver.
If the pairs are indeed the receiver’s, he can tell how she shuffled them. For the sender’s pair, however, he
has to guess (since he doesn’t know their original order. This is almost enough, except that the receiver can
still cheat successfully with probability 1

2 by simply guessing the correct answer. To decrease the probability
of successfully cheating to 1

3 , we use triplets instead of pairs, and require the receiver to guess the location
of the second container in the triplet under the sender’s permutation.

The resulting protocol is what we require. As the protocol is fairly complex, we specify separately the
sender’s side (Protocol 5.1a) and the receiver’s side (Protocol 5.1b).

We prove the following theorem in Section 10:

Theorem 5.1. Protocol 5.1 securely realizes F ( 1
2 ,

1
3−PCWOT ) in the UC model.

6 Proof of Security for Weakly-Fair Coin Flipping Protocol (Pro-
tocol 3.1)

In this section we prove Theorem 3.1. The proof follows the standard scheme for proofs in the UC model
(elaborated in Section 2.5). We deal separately with the case where A corrupts Alice and where A corrupts
Bob.

6.1 A Corrupts Bob

We first describe the ideal simulator, then prove that the environment’s view in the ideal and real worlds is
identically distributed. The ideal simulator, I, proceeds as follows:

1. I waits until ideal Alice sends a Value message to F (WCF ) and it receives the (Approve, d) message
from F (WCF ). I now continues running the protocol with A, simulating F (DWL). I sends 4n Receipt
messages to A.

2. I chooses n random quads exactly as Alice would following the protocol. Consider a quad “committed”
when the contents of all unopened containers in the quad are identical (i.e., if three containers have
already been opened or if two containers have been opened and contained the same value).

3. As long as there is at least one uncommitted quad, I responds to Open messages from A by returning
the values chosen in stage (2).
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Protocol 5.1a 1
2 ,

1
3 -PCWOT (Sender)

Input: bits a0, a1.
1: Prepare three triplets of containers. All the containers contain the value 1.
2: Send all nine containers to the receiver.
3: Wait to receive 18 containers (six triplets) from the receiver.
4: Select a random index i ∈R {1, 2, 3} and send i to the receiver.
5: Wait to receive indices (j1, j2) and (k1, k2) from the receiver {these should be the locations of the sender’s

triplets (except for triplet i) and the locations of two of the receiver’s triplets}.
6: Opens all the containers in triplets j1 and j2 and verify that they are the correct containers.
7: Choose two random permutations π1, π2 ∈R S3.
8: Shuffle the triplets k1 and k2 using π1 and π2, respectively.
9: Send the shuffled triplets k1 and k2 to the receiver. {the remaining unopened triplets should be the

original triplet i and one of the receiver’s triplets}
10: Wait to receive indices `1, `2 from the receiver.
11: Verify that `1 = π1(2) and `2 = π2(2). If not, abort.
12: Choose a random bit r ∈R {0, 1}.
13: if a0 ⊕ r = 1 then {Encode a0 ⊕ r on first remaining triplet}
14: Exchange first two containers in the first triplet. {encode a one}
15: else
16: Do nothing. {encode a zero}
17: end if
18: if a1 ⊕ r = 1 then {Encode a1 ⊕ r on second remaining triplet}
19: Exchange first two containers in the second triplet. {encode a one}
20: else
21: Do nothing. {encode a zero}
22: end if
23: Returns all six remaining containers to the receiver.
24: Wait to receive a bit b′ from the receiver.
25: if b′ = 0 then
26: Set x′ ← r.
27: else
28: Set x′ ← a0 ⊕ a1 ⊕ r.
29: end if
30: Send x′ to the receiver
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Protocol 5.1b 1
2 ,

1
3 -PCWOT (Receiver)

Input: Choice bit b.
1: Wait to receive nine containers from the sender.
2: Prepare three triplets of containers (we’ll call them triplets 4,5 and 6). Each triplet contains the values

(0, 1, 0) in that order.
3: Choose a random permutation σ ∈ S6.
4: Shuffle all six triplets using σ. {the three containers in each triplet are not shuffled}
5: Send all 18 containers to the sender.
6: Wait to receive an index i from the sender.
7: Send the indices σ({1, 2, 3}\{i}) and σ({5, 6})to the sender. {the locations of the sender’s triplets except

for triplet i and the locations of the last two triplets created by the receiver}.
8: Wait to receive two triplets from the sender.
9: Verifies that all the containers in the received triplets were unopened and that they are from the original

triplets 5 and 6.
10: Open the containers. Let `1, `2 be the index of the container containing 1 in each triplet. Send `1, `2 to

the sender. {e.g., `1 should be π1(2)}
11: Wait to receive six containers (two triplets) from the sender.
12: if σ(i) > σ(4) then
13: Verify that all the containers in the first triplet are sealed and were originaly from triplet 4. If not,

abort.
14: Let x = 1 iff the first container in the first triplet contains 1. {x = a0 ⊕ r = 1}
15: Set c← 0
16: else
17: Verify that all the containers in the second triplet are sealed and were originaly from triplet 4. If not,

abort.
18: Let x = 1 iff the first container in the second triplet contains 1. {x = a1 ⊕ r = 1}
19: Set c← 1
20: end if
21: Send b⊕ c to the sender.
22: Wait to receive response x′ from the sender.
23: Output x⊕ x′. {x⊕ x′ = ab}

23



4. When only a single uncommitted quad remains, denote by x the xor of the values for the committed
quads. I will force the last unopened container in the quad to have the value x ⊕ d, by choosing the
responses from the distribution of permutations conditioned on the last container having the forced
value.

5. I waits for A to return one container from each quad.

6. If A halts before returning n containers, or if any of the n containers was opened, I sends a Halt
command to F (WCF ). Otherwise it sends a Continue command.

7. I simulates the Unlocked messages for all the containers still held by A. It continues the simulation
until A halts.

Lemma 6.1. For any Z and A, when A corrupts Bob, Z’s view of the simulated protocol in the ideal world
and Z’s view in the real world are identically distributed.

Proof. Z’s view of the protocol in both worlds is identical, except for the contents of the containers sent by
Alice. An inspection of the simulation shows that the distribution of the contents is also identical: in both
the real and ideal worlds, the contents of each quad are uniformly random permutations of (0, 0, 1, 1). Also
in both cases, the xor of the committed value of all the quads is a uniformly random bit b. If A does not
open more than three containers in any quad, and returns containers according to the protocol, this is the
bit output by Alice in both the real and ideal worlds. If A opens all four containers, or does not return them
according to the protocol, Alice will output ⊥ in both the real and ideal worlds.

6.2 A Corrupts Alice

As in the previous case, we first describe the ideal simulator, then prove that the environment’s view in the
ideal and real worlds is identically distributed. The ideal simulator, I, proceeds as follows:

1. I sends a Value message to F (WCF ) and waits to receive the (Approve, d) message from F (WCF ).

2. I waits for A to send the 4n Seal and Send messages to F (WCF ).

Case 2.1: If at least one of the quads is proper (i.e., contains two 0s and two 1s), I chooses which containers
to send in the other quads randomly, and then chooses a container to send in the proper quad so
that the xor of all the sent containers is d.

Case 2.2: If all the quads are improper, I chooses the containers to send from the uniform distribution
conditioned on the event that at least one quad has three remaining containers that contain
identical bits.

3. I sends the chosen containers to A, and waits for A to unlock the remaining containers.

4. If A does not unlock all the containers, or if one of the remaining quads is improper, I sends a Halt
command to F (WCF ). Otherwise I sends a Continue command to F (WCF ).

Lemma 6.2. For any ε > 0 there exists n = O(log 1
ε ), such that for any Z and A, when A corrupts Alice

the statistical distance between Z’s view of the simulated protocol in the ideal world and Z’s view in the real
world is less than ε.

Proof. Z’s view of the protocol in both worlds is identical, except for the choice of containers sent by Bob.
In the real world, Bob’s choices are always uniformly random. If not all quads are improper, the distribution
of Bob’s choices in the ideal world is also uniformly random (since d is uniformly random, and the only
choice made by I that is not completely random is to condition on the xor of the quad values being d).
If all the quads are improper, the statistical difference between the uniform distribution and I’s choices is
exponentially small in n, since each quad has three remaining identical containers with probability at least
3
4 , and the events for each quad are independent (thus the probability that none of the quads was bad is at
most ( 3

4 )n).
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7 Proof of Security for Strongly-Fair Coin Flip Protocol (Protocol
4.2)

In this section we prove Theorem 4.3. The proof follows the standard scheme for proofs in the UC model
(elaborated in Section 2.5). We deal separately with the case where A corrupts the sender and where A
corrupts the receiver.

7.1 A Corrupts Alice

1. I sends a Value command to F ( 1
r−SCF ). If it receives a ChooseValue message from F ( 1

r−SCF ) it
randomly chooses a bit d and sends a Bias d command. Denote by d the result of the coin flip.

2. I waits for A to commit to the bits a1, . . . , ar. If A stops before committing to r bits, I halts as well.

3. Otherwise, I simulates Bob sending b = d⊕ a1 ⊕ · · · ⊕ ar to Alice. I then continues the protocol with
the simulated Bob behaving honestly.

Lemma 7.1. For any environment machine Z, and any real adversary A that corrupts only Alice, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. The proof is by inspection. First, note that the output of the ideal Bob always matches the output
of the simulated Bob (by the choice of b). Since I simulates Bob following the protocol precisely, the only
difference Z could notice is the distribution of b. However, this is uniform in both the real and ideal worlds,
since in the ideal world d (the result of F ( 1

r−SCF )’s coin flip) is uniformly distributed, and in the real world
Bob chooses b uniformly. Thus, Z’s view is identically distributed in both worlds.

7.2 A Corrupts Bob

1. I sends a Value command to F ( 1
r−SCF ). We’ll say that I “has control” if it received a ChooseValue

message, and that I “doesn’t have control” if it received a ‘(Coin, d) message from F ( 1
r−SCF ).

2. If I has control, it chooses a random bit d itself.

3. I simulates Bob receiving commit messages from F (RIS)
1 , . . . ,F (RIS)

r .

4. I waits for Bob (controlled by A) to send b to Alice.

Case 1: If A halts before sending b, I sends a Bias d command to F ( 1
r−SCF ) and also halts.

Case 2: If A attempts to open the commitments before sending b, or if b = 0, I sends a Bias d command
to F ( 1

r−SCF ) (this is ignored if I does not have control). I then randomly chooses a2, . . . , ar, sets
a1 ← d

⊕
i>1 ai and continues the protocol, proceeding as if Alice sent Commit ai to F (RIS)

i . In
this case no matter what Bob does, in the real-world protocol Alice must eventually output d.

Case 3: If A sends b = 1 before opening any commitments:

i. I begins simulating the protocol rounds, randomly choosing a value for each ai when A
opens (or simulated Alice verifies) F (RIS)

i . The simulation continues in this manner until the
contents of all but one of the commitments have been revealed (either because A prematurely
opened the commitments, or during the verification phase).

ii. Call a round j “good” if the verification stage of round j succeeded and all previous rounds
were good. Denote the current round by i, the index of the highest good round so far by j (by
definition j < i), and by k the smallest index such that the committed bit in instance F (RIS)

k

is not yet known to A (note that k ≥ i, since all instances up to i must have been revealed
during verification). The actions of I now depend on i, j, k and whether I has control:
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Case 3.1: If i < k, or if F (RIS)
k is being opened (rather than verified): (this is equivalent to the case

where even in the real world A couldn’t bias the result)
• I sends a Bias d command to F ( 1

r−SCF ).
• I chooses a random index i∗ ∈ {1, . . . , r}.
• If i∗ > j, I sets ak ← d

⊕
6̀=k a`, otherwise ak ← b⊕ d

⊕
` 6=k a`.

• I continues the simulation as if Alice had actually chosen the bits a1, . . . , ar to commit
and the secret threshold round i∗. Note that if Alice had actually followed the protocol,
the choice of ak ensures that she always outputs d. This is because round i will certainly
fail verification (since F (RIS)

i has already been opened), so round j will remain the last
round which passed verification.

Case 3.2: If i = k, F (RIS)
k is being verified and I does not have control: (this is equivalent to the

case where A did not correctly guess the secret threshold round, but could have cheated
successfully if he had)
• I chooses a random index i∗ ∈ {1, . . . , r} \ {i}.
• If i∗ > j, I sets ak ← d

⊕
6̀=k a`, otherwise ak = b⊕ d

⊕
` 6=k a`.

• I continues the simulation as if Alice had actually chosen the bits a1, . . . , ar to commit
and the secret threshold round i∗. Note that if Alice had actually followed the protocol,
the choice of ak ensures that she always outputs d. This is because, by the choice of
i∗, it doesn’t matter whether or not round i fails verification (either i∗ > j, in which
case also i∗ > i, or i∗ ≤ j < i).

Case 3.3: If i = k, F (RIS)
k is being verified and I has control: (this is equivalent to the case where

A correctly guessed the secret threshold i, and can cheat successfully)
• I chooses a random bit for ak and continues the simulation.
• If A chooses to fail the verification, I sets d∗ ← d

⊕
` a`, otherwise (the verification

succeeds) I sets d∗ ← b⊕ d
⊕

` a`.

• I sends a Bias d∗ command to F ( 1
r−SCF ).

• I continues the simulation until A halts.

Lemma 7.2. For any environment machine Z, and any real adversary A that corrupts only Bob, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. Z’s view can consist of a1, . . . , ar (the results of opening the commitments) and of the ideal Alice’s
output d.

In both the real and ideal worlds, in all cases the first r − 1 commitments opened by A are independent
and uniformly random (this can be easily seen by inspecting the simulator).

For any adversary that reaches Case 1 or Case 2 in the real world, the final commitment is always the
xor of b (the bit sent by A), the first r−1 commitments and the output of the real Alice (since the threshold
round does not affect the result in this case). This is also the situation in the ideal world.

For an adversary that reaches Case 3.1, the final commitment is the xor of the first r − 1 commitments
and the output of the real Alice with probability r−j

r (this is the probability that the secret threshold round
was after the last good round), and the complement of that with probability j

r (the probability that the
threshold round is in the first j rounds). By the choice of i∗, the distribution of the last commitment in the
ideal model is identical in this case.

Finally, consider the adversary that reaches Case 3.2 or Case 3.3. This adversary is honest until round i,
then opens all commitments except F (RIS)

i , whose contents are revealed during verification.

1. In the real world, with probability 1
r round i is the threshold round, in which case the final commitment

is the xor of the first r − 1 commitments and d if A fails the verification and the complement of that
if A does not fail. With the same probability, I is in control, and therefore executes Case 3.3 (which
calculates the final commitment in the same way).
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2. With probability 1− 1
r , round i is not the threshold round. In this case, the final commitment is the

xor of the first r − 1 commitments and d with probability r−i
r−1 (the threshold round is after i), and

the complement of that with probability i−1
r−1 (the threshold round is before i). In the same way, with

probability 1 − 1
r , I is not in control, and executes Case 3.2. The choice of i∗ ensures the correct

distribution of the final commitment.

Since any adversary must reach one of the cases above, we have shown that for all adversaries Z’s view
of the protocol is identical in the real and ideal worlds.

Together, Lemma 7.1 and Lemma 7.2 imply Theorem 4.3.

8 Proof of Security for Remotely Inspectable Seals

Below we prove Theorem 4.4 (in Section 8.1) and Thereom 2.2 (in Section 8.2).

8.1 Proof of Security for 1
2
-RIS Protocol (Protocol 4.3)

The proof of Theorem 4.4 follows the standard scheme for proofs in the UC model (elaborated in Section
2.5). We deal separately with the case where A corrupts the sender and where A corrupts the receiver.

8.1.1 A corrupts Alice (the sender)

To simulate the Commit command, I waits until A sends two envelopes to Bob. Denote the envelopes e0
and e1.

Case 1: If A does not send the envelopes, I sends the Halt command to F ( 1
2−RIS) (causing ideal Bob to output

⊥) and halts.

Case 2: If both envelopes contained the same bit b, I sends a Commit b message to F ( 1
2−RIS).

Case 3: If the envelopes contained two different bits, I randomly selects a bit b and sends Commit b to
F ( 1

2−RIS).

To simulate the Verify command:

1. I waits for A to initiate a coin flip.

2. If both envelopes sent by A contained the same bit, I chooses a random bit r, otherwise it sets r to
the index of the envelope containing b.

3. I sends r as the result of the coin flip to A.

4. I simulates sending envelope er to A.

5. I sends the Verify command to F ( 1
2−RIS) and waits for the functionality’s response.

Case 1: If the response is ⊥, verifying envelope er will return a broken message.
Case 2: If the response was Sealed, verifying envelope er will return a sealed message.

6. I continues the simulation until A halts.

Note that the Open command need not be simulated in this case — in both the ideal and the real worlds
this does not involve the sender at all.

Lemma 8.1. For any environment machine Z, and any real adversary A that corrupts only Alice, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.
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Proof. The proof is by case analysis. First, consider the view during the commit stage. Any adversary must
fall in one of the three cases. In Case 1, in both the real and ideal worlds Z’s view consists of Bob outputting
⊥ and Alice halting. In Case 2 and Case 3, Z’s view looks the same from A’s point of view, and in both
worlds Bob will output Committed.

If Z tells Bob to open the commitment before the verify stage, The output will be identical in the real
and ideal worlds (it will be (Opened, b), where b is a uniformly random bit if A commited two different
bits).

During the verification stage, r is always a random uniform bit. There are only two cases to consider:
either Z told Bob to open the commitment earlier, or it did not. If it did, F ( 1

2−RIS) will return a failed
verification, and A will also see a failed verification (exactly as would be the case in the real world). If it
did not, A will see a successful verification in both the real and ideal worlds.

Thus, in all cases Z’s view is identically distributed in both worlds.

8.1.2 A corrupts Bob (the receiver)

The simulation is in two phases. In the initial phase (corresponding to the Commit and Open commands):

1. I waits until it receives Committed from F ( 1
2−RIS). It then simulates A receiving two envelopes, e0

and e1.

2. If A requests to open any of the envelopes, I sends an Open command to F ( 1
2−RIS) and waits to

receive the (Opened, b) response. It then continues the simulation as if both envelopes had contained
b.

The second phase begins when I receives a (Verifying, x) message from F ( 1
2−RIS) (signifying that ideal

Alice sent a Verify command). I initiates the verification phase with A.

1. I chooses r in the following way: If, in the verification message, x 6=⊥ (that is, I has a choice about
whether the verification will fail), it chooses r randomly from the set of unopened envelopes (if both
were opened, it chooses randomly between them). If, in the verification message, x =⊥ (that is, the
verification will definitely fail), I chooses r randomly from the set of opened envelopes (note that at
least one envelope must be open for this to occur, because otherwise I would not have sent an Open
command to F ( 1

2−RIS) and would thus always have a choice).

2. I continues the simulation following the protocol exactly, letting the contents of the envelopes both
be b (where b ← x if x 6=⊥, otherwise it is the response to the Open command sent in the previous
phase.

3. The simulation continues until A returns an envelope. If that envelope was opened, or its index does
not match r, I fails the verification by sending a Halt command to F ( 1

2−RIS). If the envelope was
not opened and its index does match r, I sends the ok command to F ( 1

2−RIS) (note that if I had no
choice, the index r always matches an envelope that was already opened).

Lemma 8.2. For any environment machine Z, and any real adversary A that corrupts only Bob, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. Since I simulates Alice exactly, except for the contents of the envelopes and the result of the coin
flip and her response to verification, these are the only things that can differ in Z’s view between the real
and ideal worlds.

Simple inspection of the protocol shows that ideal Alice’s output and the contents of the envelopes are
always consistent with A’s view. It remains to show that the distribution of r is identical in the real and
ideal worlds. The only case in the ideal world in which r is not chosen uniformly at random by I is when
exactly one of the envelopes was opened. However, this means I must have sent an Open command to
F ( 1

2−RIS), and therefore with probability 1
2 the verification will fail. Thus, r is still distributed uniformly in

this case.

Together, Lemma 8.2 and Lemma 8.1 prove Theorem 4.4.
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8.2 Amplification for Remotely Inspectable Seals

The following protocol constructs an pk-RIS using k instances of F (p−RIS):

Commit b Alice chooses k random values r1, . . . , rk such that r1 ⊕ · · · ⊕ rk = b. She commits to the values
in parallel using F (p−RIS)

1 , . . . ,F (p−RIS)
k .

Verify Alice sends Verify commands in parallel to all k instances of F (p−RIS). The verification passes only
if all k verifications return Sealed.

Open Bob opens all k commitments. The result is the xor of the values returned.

The ideal adversary in this case is fairly simple. The case where the sender is corrupt is trivial, and we
omit it (since the sender can’t cheat in the basic F (p−RIS) instance). When A corrupts the receiver, the
simulation works in two phases: In the initial phase (corresponding to Commit and Open):

1. I waits to receive the Committed command from F (pk−RIS).

2. Whenever A asks to open a commitment for F (p−RIS)
i :

Case 2.1: If at least one additional commitment is still unopened, I chooses a random bit ri and returns
this as the committed value.

Case 2.2: If F (p−RIS)
i is the last unopened F (p−RIS) instance, I sends an Open command to F (pk−RIS)

and sets the value of the last commitment to be the xor of all the other commitments and the
response, b.

The second phase begins when I receives a (Verifying, x) message from F (pk−RIS) (signifying that ideal
Alice sent a Verify command). I initiates the verification phase with A. Denote the number commitments
opened by A by j.

Case 1: If j = k, I has sent an Open command previously to F (pk−RIS).

Case 1.1: If it has a choice about verification (occurs with probability pk), I sends a (Verifying, ri) message
to A for all instances of F (p−RIS). If A decides to fail verification in any of the instances, I sends
a Halt command to F (pk−RIS). Otherwise I sends an ok response to F (pk−RIS).

Case 1.2: Otherwise, I chooses k bits q1, . . . , qk by sampling from the binomial distribution B(k, p), condi-
tioned on at least one bit being 1 (i.e., equivalent to letting qi = 1 independently with probability
p, repeating until not all bits are 0). For each bit where qi = 0 it sends (Verifying, ri), and for
the other bits it sends (Verifying,⊥). I sends a Halt command to F (pk−RIS).

Case 2: If j < k, no Open command was sent, so I will always have a choice whether to fail verification. I
sends a (Verifying, xi) message to A for each instance of F (p−RIS). For instances which were not
opened, xi = ri. For instances that were opened, I chooses with probability p to send xi = ri and
with probability 1 − p to send xi =⊥. It then waits for A to respond. If in any of the instances it
chose xi =⊥, or if A decides to fail verification in any of the instances, it sends a Halt command to
F (pk−RIS). Otherwise I sends an ok response to F (pk−RIS).

It is easy to see by inspection that the adversary’s view is identical in the real and ideal worlds. Setting
k = O(log 1

ε ), the amplification protocol gives us the proof for Theorem 2.2.

9 Proof of Security for Bit-Commitment Protocol

In this section we prove Protocol 4.1 realizes the WBC functionality (proving Theorem 4.2) and show how
to amplify WBC to get full bit-commitment (proving Theorem 2.1). We begin with the proof of security for
Protocol 4.1. The proof follows the standard scheme for proofs in the UC model (elaborated in Section 2.5).
We deal separately with the case where A corrupts the sender and where A corrupts the receiver.
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9.1 A corrupts Alice (the sender)

We divide the simulation, like the protocol, into two phases.

9.1.1 Simulation of the Commit Phase

I starts the simulated commit protocol with A (I simulates the honest receiver, Bob, in this protocol). I
sends four (simulated) envelopes to A. I chooses a random permutation σ ∈ S4. If A opens any of the
envelopes, I gives results that are consistent with Bob following the protocol (i.e., the envelopes’ contents
are determined by σ(0, 0, 1, 1)). I continues the simulation until Alice (controlled by A) sends a bit, d, to
Bob (as required by the protocol). The succeeding actions depend on how many envelopes A opened:

Case 1: A did not open any envelopes or opened two envelopes containing different bits. In this case I chooses
a random bit b and sends a Commit b command to F ( 3

4−WBC) .

Case 2: A opened a single envelope containing x. In this case I chooses a random bit b to be d ⊕ x with
probability 1

3 and d⊕ (1− x) with probability 2
3 . I sends a Commit b command to F ( 3

4−WBC) .

Case 3: Alice opened two envelopes containing identical bits x. Letting b = d⊕ (1− x), I sends a Commit b
command to F ( 3

4−WBC) .

Case 4: Alice opened three envelopes whose xor is x. Letting b = d⊕ (1− x), I sends a Commit b command
to F ( 3

4−WBC) .

Case 5: Alice opened four envelopes. Letting b = 0, I sends a Commit b command to F ( 3
4−WBC) .

9.1.2 Simulation of the Open Phase

I begins simulating the Open phase of the protocol with A, and waits for A to send an envelope and a bit
b′. If A asks to open an envelope i before this occurs, I proceeds in the following way:

Let Pconsistent be the set of permutations of (0, 0, 1, 1) that are consistent with A’s view so far (i.e.,
the permutations that map the correct contents to the envelopes A has already opened), and Pvalid the set
of permutations in which at least one of the envelopes that will remain unopened after opening i contains
b ⊕ d (where b is the bit to which I committed in the Commit phase). I randomly chooses a permutation
from Pconsistent ∩ Pvalid and responds to the request to open i as if Bob had chosen this permutation in the
Commit phase.

Note that I’s choice of d and b ensures that at the end of the Commit phase Pconsistent ∩ Pvalid is not
empty. As long as i is not the last unopened envelope, Pconsistent ∩ Pvalid will remain non-empty. If i is the
last unopened envelope, I responds with the value consistent with the other opened envelopes.

Once A sends the bit b′ and an envelope, I proceeds as follows: If the envelope is unopened, and b′ = b, I
sends the Open command to F ( 3

4−WBC) . Otherwise, I aborts the protocol by sending the Halt command
to F ( 3

4−WBC) (and simulating Bob aborting the protocol to A).

Lemma 9.1. For any environment machine Z and any real adversary A that corrupts only the sender, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. I simulates Bob (the receiver) exactly following the protocol (apart from the envelope contents), and
the simulation ensures that the ideal Bob’s output is consistent with A’s view of the protocol. The only
possible differences between Z’s view in the real and ideal worlds are the contents of the envelopes sent by
Bob. Inspection of the protocol and simulation shows that in both the real and ideal worlds A always sees
a random permutation of (0, 0, 1, 1).

9.2 A corrupts Bob (the receiver)

As before, the simulation is divided into two phases.
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9.2.1 Simulation of the Commit Phase

I waits until A sends four envelopes and until the Committed message is received from F ( 3
4−WBC) . I’s

actions depend on the contents of the envelopes sent by A:

Case 1: If the envelopes sent by A are a valid quad (two zeroes and two ones), I sends a random bit d to A.

Case 2: If the envelopes are all identical (all zeroes or all ones), I aborts the protocol by sending the Halt
command to F ( 3

4−WBC) (and simulating Alice aborting the protocol to A)

Case 3: If the envelopes contain three ones and a zero, or three zeroes and a one, denote x the singleton bit. I
sends a Break message to F ( 3

4−WBC) . If the response is ⊥, I simulates Alice aborting the protocol
to A and halts. If the response is (Broken, b), I sends b⊕ (1− x) to A.

9.2.2 Simulation of the Open Phase

I waits to receive the (Opened, b) message from F ( 3
4−WBC) . It then proceeds depending on A’s actions in

the Commit phase:

Case 1: If A sent a valid quad, I randomly picks one of the two envelopes that contain d⊕ b and returns it to
A.

Case 2: If the envelopes sent by A were not a valid quad, they must be three ones and a zero or three zeroes
and a one (otherwise I would have aborted in the Commit phase). In this case I randomly chooses
one of the three identical envelopes and simulates returning it to A.

I sends the bit b to A as well. If A checks whether the envelope returned by Alice is sealed, I simulates an
affirmative reply from F (DE).

Lemma 9.2. For any environment machine Z and any real adversary A that corrupts only the receiver, the
output of Z when communicating with A in the real world is identically distributed to the output of Z when
communicating with I in the ideal world.

Proof. I’s simulation of Alice (the sender) is always consistent with a real Alice that follows the protocol
(from A’s point of view), and it ensures that the ideal Alice’s output is also consistent with A’s view. A’s
view consists of d, the bit sent by Alice in the commit phase (or Alice halting in the commit phase), and the
choice of envelope returned in the open phase. In both the real and ideal worlds, when A sends a proper quad
d is uniformly random When A sends a quad whose bits are all identical, in both worlds Alice will abort.
When A sends a quad containg three bits with value 1− x and one bit with value x, in the real world Alice
would abort with probability 1

4 (if x is the unopened envelope), and send d = b⊕ (1−x) with probability 3
4 .

In the ideal world, d is distributed identically, since F ( 3
4−WBC) allows cheating with probability 3

4 .
In the real world, if A sent a proper quad in the commit phase, the envelope returned in the open phase

is a random envelope and its value, r, satisfies r = d ⊕ b. Inspection of the simulation shows that the
same holds in the ideal world. if A sent an improper quad in the commit phase (conditioned on Alice not
aborting), the envelope is randomly selected from one of the three containing the same bit, and its value
satisfies (1− r) = d⊕ b. Again, this holds in the ideal world.

Thus, Z’s views are identically distributed in both worlds,

Together, Lemmas 9.1 and 9.2 imply Theorem 4.2.

9.3 Amplification for Weak Bit Commitment

The following protocol constructs an pk-WBC using k instances of F (p−WBC):

Commit b Alice chooses k random values r1, . . . , rk such that r1 ⊕ · · · ⊕ rk = b. She commits to the values
in parallel using F (p−WBC)

1 , . . . ,F (k−WBC)
1 .

Open Alice opens all k commitments. The result is the xor of the values returned.
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The proof that this procotol securely realizes F (pk−WBC) is extremely similar to the proof of the RIS
amplification protocol (in Section 8.2), and we omit it here. Letting k = O(log 1

ε ), the amplification protocol
gives us the proof for Theorem 2.1.

10 Proof of Security for Oblivious Transfer Protocol

This section contains the proof of Theorem 5.1. The proof follows the standard scheme for proofs in the
UC model (elaborated in Section 2.5). We deal separately with the case where A corrupts the sender and
where A corrupts the receiver. Note that when A corrupts the sender, I simulates an honest receiver and
references to steps in the protocol refer to Protocol 5.1b, while when A corrupts the receiver, I is simulating
an honest sender and the steps refer to Protocol 5.1a.

10.1 A corrupts the receiver

Assume A begins by corrupting the receiver. I also corrupts the receiver and sends a CanCheat command
to F ( 1

2 ,
1
3−PCWOT ). I waits for the sender to send a Send command, then begins simulating the real-world

protocol by sending nine Receipt messages to A (acting for the receiver). Call a triplet of containers in
which all containers are sealed and all belonged to the original triplet good. We now describe a decision tree
for I. The edges in the tree correspond either to choices made by A (these are marked by †), or to responses
from F ( 1

2 ,
1
3−PCWOT ).

Case 1†: All the triplets created by the sender are returned by A at step (3) and all are good. In this case,
I randomly chooses i as specified in the protocol and continues the simulation until step (5). The
protocol continues depending on A’s actions:

Case 1.1†: A sent incorrect locations for the sender’s triplets σ({j1, j2}) 6= {1, 2, 3} \ {i}. In this case the
real sender would have aborted, so I aborts.

Case 1.2†: A sent correct locations for the triplets {1, 2, 3} \ {i}, but one of the triplets he wants the sender
to return (k1 or k2) is actually triplet i. I chooses π1 randomly as required by the protocol
(note: below, we always refer to the permutation used shuffle the receiver’s triplet as π1 and the
permutation used to shuffle the sender’s triplet as π2). The simulation continues depending on
whether I cheated successfully:

Case 1.2.1: I cheated successfully and received b0 and b1 (this occurs with probability 1
3 ). In this case

I continues the simulation until step (10), where A sends `2, its guess for π2(2), to the
sender. At this point I always accepts (equivalently, it selects π2 at random from the set of
permutations for which π2(2) = `2). I can now continue simulating a real sender, following
the protocol exactly.

Case 1.2.2: I failed to cheat and did not receive b0, b1. I continues the simulation until the end of step
(10), where A sends `2, its guess for π2(2). at this point I always aborts (equivalently, it
selects π2 at random from the set of permutations for which π2(2) 6= `2, and continues the
simulation for the sender, who will then abort).

Case 1.3†: A sent correct locations for the triplets {1, 2, 3} \ {i} and both the triplets he asks the sender
to return are the receiver’s. In this case simulates the sender returning thw two triplets two the
receiver. I chooses a random bit a′. If the receiver asks to open his triplet, I returns answers
consistent with the sender encoding a′ on the receiver’s triplet. I continues the simulation until
step (24), when the receiver sends the bit b′. Since I knows σ, given b′ I can compute the unique
value, b, that is consistent with the input of an honest receiver using the same permutation σ and
the same public messages. I sends a Choice b command to F ( 1

2 ,
1
3−PCWOT ) and receives ab. I

then simulates the sender responding with ab ⊕ a′ to the receiver in stage (30). The simulation
then continues until it A halts.
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Case 2†: Of the triplets created by the sender, at most two are good and returned by A at step (3). Let j be
the index of a bad (or missing) triplet (if there is more than one I chooses randomly between them).
The simulation continues depending on whether I can cheat successfully:

Case 2.1: I received both b0 and b1 (this occurs with probability 1
3 ). In this case I chooses i = j. I then

continues the protocol simulating an honest sender and letting the ideal receiver output whatever
the A commands it to output.

Case 2.2: I cannot cheat successfully. In this case I chooses i randomly from {1, 2, 3} \ {j}. This forces A
to send the simulated sender the location of triplet j at step (5). No matter what he sends the
real sender running the protocol in the “real-world” scenario would abort. Hence I always aborts
at step (6).

Lemma 10.1. For any environment machine Z, and any real adversary A that corrupts only the receiver,
the output of Z when communicating with A in the real world is identically distributed to the output of Z
when communicating with I in the ideal world.

Proof. The proof is by case analysis. I’s decision tree implicitly groups all possible adversaries by their
actions at critical points in the protocol. To show that Z’s view of the protocol is identically distributed
in the real and ideal worlds, it is enough to show that the distribution of the view is identical given any
specific choice by Z and A. Since I’s actions are identical for all adversaries in the same group, it is enough
to consider the groups implied by I’s decision tree.

Case 1.1 This is the case where A returned triplets that were all good, but sent incorrect locations for the
sender’s triplets. Z’s view in this case consists only of Receipt messages, the index i that is chosen
at random both in the real world and in the ideal world, and the ⊥ message sent by the sender.

Case 1.2 This is the case where A returned triplets that were all good, but asked for triplet i instead of his
own triplets. Z’s view up to step (10) consists of the Receipt messages, the index i, the permutation
π1. All these are chosen identically in both the real and ideal worlds. In the real world, with probability
1
3 the sender would have chosen π2 that is inconsistent with A’s guess `2, in which case the protocol
would halt with the sender outputting ⊥. In the ideal world, I can cheat with probability 1

3 , so with
the same probability the protocol halts and the sender outputs ⊥. Conditioned on the protocol not
halting, the view in both cases is also identically distributed, because in the ideal world I cheated
successfully and can simulate the real sender exactly (since it now knows a0 and a1).

Case 1.3 This is the case where the adversary follows the protocol exactly (as far as messages sent to the
sender and the F (IWL) functionality). In this case, I also simulates an honest sender exactly until
step (13). In the real and ideal worlds, the bit encoded on Bob’s triplet (a′) is uniformly random. The
response sent in stage (30) is in both cases completely determined (in the same way) by a′, the input
bits a0, a1 and the receiver’s actions.

Case 2 This is the case where the adversary opened (or replaced) containers before returning them in stage
(3). The view up to this stage in both the real and ideal world consists of Receipt messages and the
ids of the opened containers (the contents are always 1 bits). In both the real world and ideal worlds,
the index i sent by the sender is uniformly distributed in {1, 2, 3} (in the ideal world this is because
the probability that I cheats successfully is 1

3 , so that with probability 1
3 , i is set to some fixed j, and

with probability 2
3 it is set to one of the other values). Also, in both worlds, the probability that the

sender picked an index which was opened (replaced) by A is determined by the number of containers
that were opened (and is at least 1

3 ). In either case, I can exactly simulate the sender, since if cheating
was unsuccessful the protocol will necessarily halt before I needs to use the sender’s inputs. Thus, in
both cases the protocol will be identically distributed.
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10.2 A corrupts the sender

Assume A begins by corrupting the sender. I corrupts the real sender and sends a CanCheat command to
F ( 1

2 ,
1
3−PCWOT ). I then runs the simulation until the simulated sender sends nine containers. I simulates

the receiver returning the containers to the sender (note that the steps in the protocol now refer to Protocol
5.1b). The simulation now depends on A’s actions:

Case 1†: A asks to open one of the containers before sending i to the receiver in step (6). Denote the index
of the container A opens by j. I continues the simulation based on the response to the CanCheat
command:

Case 1.1: I can cheat. In this case I pretends A opened one of the sender’s containers (chosen randomly);
I selects a random permutation σ ∈ S6 from the set of permutations that map one of the sender’s
containers to index j. I then continues the simulation to the end, as if the receiver was honest and
had shuffled the containers using σ. If the simulation reaches stage (12) without anyone aborting,
I sends a Send 0, 0 command to F ( 1

2 ,
1
3−PCWOT ) and waits for the real (ideal dummy) receiver

to send the Choice command. I then continues the simulation using the the real receiver’s bit.
After the sender sends the bit in step (22), I calculates the simulated receiver’s output and sends
a Resend command to F ( 1

2 ,
1
3−PCWOT ) using that bit.

Case 1.2: I can’t cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the receiver’s containers to index j. I then continues the simulation as if the
receiver had shuffled the containers using σ. No matter what A does, I will then abort at step
(9), (13) or (17), since that is what the real receiver would have done.

Case 2†: A does not open any container before sending i in stage (6). The simulation continues until stage (9)
or until A asks to open a container that shouldn’t be opened according to the protocol:

Case 2.1†: A does not open any container (except those called for by the protocol, which will always be A’s
own containers) until the beginning of stage (9). Note that in this case w.l.o.g., A can wait to
open containers until step (11). I continues the simulation, randomly choosing σ at stage (10).
The simulation can now take the following paths:

Case 2.1.1†: A does not open any container until step (12). By this stage the sender no longer holds
any containers, so A cannot open containers later either. I continues the simulation using 0
in place of the receiver’s choice bit. Since I knows what exchanges A made on each of the
triplets, at the end of the protocol it can recover both a0 and a1. It sends a Send a0, a1

command to F ( 1
2 ,

1
3−PCWOT ).

Case 2.1.2†: A opens one of the containers before step (12).
Case 2.1.2.1: I can cheat. In this case I pretends the container A opens belongs to the sender’s triplet.

I sends a Send 0, 0 command to F ( 1
2 ,

1
3−PCWOT ) and waits for the real receiver to send

the Choice command. I then continues the simulation using the real receiver’s bit. After
the corrupt sender sends the bit in stage (22), I calculates the simulated receiver’s output
and sends a Resend command to F ( 1

2 ,
1
3−PCWOT ) using that bit.

Case 2.1.2.2: I can’t cheat. In this case I pretends the container A opens belongs to the receiver’s
triplet. Whatever A does, I will then abort in step (13) or (17).

Case 2.2†: A asks to open a container not called for by the protocol before stage (9). Denote the index of
this container by j. I’s actions depend on whether it can cheat:

Case 2.2.1: I can cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the sender’s containers to index j. I then continues the simulation to the
end as if the receiver was honest and had shuffled the containers using σ. If the simulation
reaches step (11) without anyone aborting, I sends a Send 0, 0 message to F ( 1

2 ,
1
3−PCWOT )

and waits for the real receiver to send a Choice message. I continues the simulation using
the real receiver’s bit. At the end of the simulation, I knows the simulated receiver’s output
and uses that in a Resend command to F ( 1

2 ,
1
3−PCWOT ).
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Case 2.2.2: I can’t cheat. In this case I selects a random permutation σ ∈ S6 from the set of permutations
that map one of the receiver’s containers to index j. I then continues the simulation as if the
receiver had shuffled the containers using σ. If an opened container is sent to the receiver in
step (8), I will then abort at stage (9), since that is what the real receiver would have done.
If the opened container is not sent to the receiver at step (8), I will abort at step (13) or
(17).

Lemma 10.2. For any environment machine Z, and any real adversary A that corrupts only the sender,
the output of Z when communicating with A in the real world is identically distributed to the output of Z
when communicating with I in the ideal world.

Proof. The proof is by case analysis. I’s decision tree implicitly groups all possible adversaries by their
actions at critical points in the protocol. To show that Z’s view of the protocol is identically distributed
in the real and ideal worlds, it is enough to show that the distribution of the view is identical given any
specific choice by Z and A. Since I’s actions are identical for all adversaries in the same group, it is enough
to consider the groups implied by I’s decision tree.

Case 1 This is the case where A first deviates from the protocol by opening one of the containers before
sending i in step (6). In the real world, the receiver’s choice of σ is uniformly random. Thus, no matter
what container A chooses to open, it will be one of the receiver’s containers with probability 1

2 . In
the ideal world, I’s choice of σ is also random: with probability 1

2 , I can cheat, in which case σ is
chosen from the half of S6 permutations that map j to the sender’s containers. With probability 1

2 , I
cannot cheat, in which case σ is chosen from the half of S6 permutations that map j to the receiver’s
containers. The rest of the simulation in the ideal world is an exact simulation of the real receiver (in
the case that I cannot cheat, it will never need to use the sender’s input bits, since it will halt in step
(9), (13) or (17). Thus in both cases the protocol view is identically distributed.

Case 2.1.1 This is the case where A honestly follows the protocol (from the point of view of I). In this
case, up to stage (12), I simulates a real receiver exactly. The only difference between the simulation
and the real world is that I uses the choice bit 0 in the simulation rather than the receiver’s input
bit. However, the view of A is identical, since in both cases the bit requested by the receiver in stage
(12) is uniformly random (because σ is chosen at random, and A has no information about the order
of the final two triplets). The receiver’s output is identical in both worlds, because I can compute the
sender’s inputs from A’s actions.

Case 2.1.2 This is the case where A first deviates from the protocol by opening a container during step
(11). Up to the deviation from the protocol, I simulates the real receiver exactly, so the protocol view
up to that point is identical in both worlds. In both worlds A has no information about the order of
the two remaining triplets (this is determined by the choice of σ and i). In the real world, the container
A opens will be the receiver’s container with probability 1

2 . In the ideal world, this will also be the
case, since I can cheat with probability 1

2 . If I can cheat, the rest of the simulation exactly follows the
protocol (since I now knows the real receiver’s choice bit). If I cannot cheat, the choice of σ ensures
that the rest of the simulation still follows the protocol exactly, since the receiver will abort before it
needs to use its choice bit. Thus, in both worlds the protocol view is identically distributed.

Case 2.2 This is the case where A first deviates from the protocol by opening a container after sending i
in step (6) but before stage (9). As in Case 1 (and for the same reasons), σ is uniformly distributed
in both worlds. If I can cheat, the simulation follows the protocol exactly (I knows the real receiver’s
choice), so the view is identical. If I cannot cheat the choice of σ ensures that I will never have to use
the real receiver’s choice, so the view is again distributed identically to the real world.

Together, Lemma 10.1 and Lemma 10.2 prove Theorem 5.1.
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11 Discussion and Open Problems

11.1 Zero Knowledge Without Bit Commitment

In the bare model, where bit-commitment is impossible, Zero knowledge proofs exist only for languages in
SZK — which is known to be closed under complement and is thus unlikely contain NP. An interesting
open question is whether the class of languages that have zero-knowledge proofs in the DWL model (where
bit-commitment is impossible; see Section 3.3) is strictly greater than SZK (assuming P 6= NP ).

11.2 Actual Human Feasibility

The protocols we describe in this paper can be performed by unaided humans, however they require too many
containers to be practical for most uses. It would be useful to construct protocols that can be performed
with a smaller number of containers (while retaining security), and with a smaller number of rounds.

Another point worth mentioning is that the protocols we construct in the distinguishable models only
require one of the parties to seal and verify containers. Thus, the binding property is only used in one
direction, and the tamper-evidence and hiding properties in the other. This property is useful when we want
to implement the protocols in a setting where one of the parties may be powerful enough to open the seal
undetectably. This may occur, for instance, in the context of voting, where one of the parties could be “the
government” while the other is a private citizen.

In both the weakly and strongly-fair CF protocols, only the first round requires envelopes to be created,
and their contents do not depend on communication with the other party. This allows the protocols to
be implemented using scratch-off cards (which must be printed in advance). In particular, the weakly-fair
coin flipping protocol can be implemented with a scratch-off card using only a small number of areas to be
scratched.

In the case of bit-commitment, our protocol requires the powerful party to be the receiver. It would be
interesting to construct a BC protocol for which the powerful party is the sender (i.e., only the sender is
required to to seal and verify envelopes).
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