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Abstract

Over the last few years a new breed of cryptographic primitives has arisen: on one hand they
have previously unimagined utility and on the other hand they are not based on simple to state
and tried out assumptions. With the on-going study of these primitives, we are left with several
different candidate constructions each based on a different, not easy to express, mathematical
assumptions, where some even turn out to be insecure.

A combiner for a cryptographic primitive takes several candidate constructions of the primi-
tive and outputs one construction that is as good as any of the input constructions. Furthermore,
this combiner must be efficient: the resulting construction should remain polynomial-time even
when combining polynomially many candidate. Combiners are especially important for a prim-
itive where there are several competing constructions whose security is hard to evaluate, as is
the case for indistinguishability obfuscation (IO) and witness encryption (WE).

One place where the need for combiners appears is in design of a universal construction,
where one wishes to find “one construction to rule them all”: an explicit construction that is
secure if any construction of the primitive exists.

In a recent paper, Goldwasser and Kalai posed as a challenge finding universal construc-
tions for indistinguishability obfuscation and witness encryption. In this work we resolve this
issue: we construct universal schemes for IO, and for witness encryption, and also resolve the
existence of combiners for these primitives along the way. For IO, our universal construction
and combiners can be built based on either assuming DDH, or assuming LWE, with security
against subexponential adversaries. For witness encryption, we need only one-way functions
secure against polynomial time adversaries.
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1 Introduction

We live in a golden, but dangerous, age for cryptography. New primitives are proposed along with
candidate constructions that achieve things that were previously in the realm of science fiction. Two
such notable examples are indistinguishability obfuscation1 (IO), and witness encryption2 (WE).
However, at the same time, we are seeing a steady stream of new attacks on assumptions that
are underlie, or at least are closely related to, these new candidates. With this proliferation of
constructions and assumptions comes the question: how do we evaluate these various assumptions,
which constructions do we choose and how do we actually use them?

What is better: one candidate construction of indistinguishability obfuscation (IO) or two such
candidate constructions? What about a polynomial-sized family of candidates? The usual approach
should be “the more the merrier”, but how do we use these several candidates to actually obfuscate?
The relevant notion is that of a combiner: it takes several candidates for a primitive and produces
one instance of the primitive so that if any of the original ones is a secure construction then the result
is a secure primitive. Furthermore, this combiner must be efficient: the resulting construction should
remain polynomial-time. Another issue is what do we assume about the insecure constructions.
Are they at least correct, i.e. do they maintain the functionality, or can they be arbitrarily faulty?
We are interested in a combiner that adds very little complexity to the basic underlying schemes
and assumes as little as possible regarding the insecure schemes, i.e. they may be completely
dysfunctional. Furthermore, we would like the assumptions underlying our combiner to be as
minimal and standard as possible.

One candidate to rule them all (theoretically speaking). In fact, we can even go further: A
closely related issue to the existence of combiners is that of a universal construction of a primitive:
a concrete construction of the primitive that is secure if any secure construction exists. In the
context of candidate constructions, a universal IO candidate would change the game considerably
between attacker and defender: Currently, each IO candidate is based on specific mathematical
techniques, and a cryptanalysis of each candidate can be done by finding specific weaknesses in the
underlying mathematics. With a universal IO candidate, the only way to give a cryptanalysis of
this candidate would be to prove that no secure IO scheme exists. To the best of our knowledge, no
plausible approaches have been proposed for obtaining such a proof. Thus, a universal IO scheme
would vastly raise the bar on what an attacker must do.

Furthermore, intriguingly, we note that IO exists if P=NP. In contrast to other objects in
cryptography, IO by itself does not imply hardness. This raises the possibility of a future non-
constructive existence proof for IO, even without needing to resolve P vs NP. If we have a universal
IO scheme, then any such non-constructive proof would be made explicit: the universal IO scheme
would be guaranteed to be secure.

Indeed, in a recent opinion paper regarding assumptions Goldwasser and Kalai [GK16] wrote:

We pose the open problem of finding a universal instantiations for other generic assump-
tions, in particular for IO obfuscation, witness encryption, or 2-message delegation for
NP.

1Indistinguishability obfuscation is the ability to scramble a program so that it is not possible to decide what was
the source code out of two semantically equivalent options.

2Witness encryption is a method for encrypting a message relative to a string x and language L so that anyone
with a witness w that x ∈ L can decrypt but if x 6∈ L then no information about the message is leaked.
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In this work we resolve two out of those three primitives, namely IO and witness encryption, for
security against subexponential adversaries for IO, and polynomial adversaries for witness encryp-
tion. Our universal constructions also resolve the existence of combiners for these primitives along
the way. For IO, our universal construction and combiners can be built based on either assuming
DDH, or assuming LWE, with security against subexponential adversaries. For witness encryption,
we need only one-way functions secure against polynomial adversaries.

The status of iO schemes or – are we dead yet? The state of the art of iO is in flux.
There is a steady stream of proposals for constructions and a similar stream of attacks on various
aspects of the constructions. In order to clarify the state of the art in Appendix A we provide a
detailed explanation of the constructions, the attacks and what implications they have (a summary
is provided in Figure 13). As of now (March 2016) there is no argument or attack known that
implies that all iO schemes or primitives used by them are broken.

Brief history of combiners and universal cryptographic primitives. The notion of a
combiner and its connection to universal construction were formalized by Harnik [HKN+05] (see
also Herzberg [Her05, Her09]). An early instance of a combiner for encryption is that of Asmuth
and Blakely [CA81]. A famous example of a universal construction (and the source of the name)
is that of one-functions due to Levin [Lev87] (for details see Goldreich [Gol01, §2.4.1]).

Related Work. Concurrent to our work, Fischlin et al. [FHNS16], building upon [HS10], also
studied the notion of robust obfuscation combiners. The security notions considered in their work
also deal with virtual black box obfuscation and virtual gray box obfuscation, that are not dealt with
in our work. However they achieve a much weaker result: they can only combine a constant number
of candidates and furthermore, they assume that a majority of the candidates are correct. And
thus, their combiners are not useful to obtaining any implication to universal indistinguishability
obfuscation.

1.1 Our Results

Our first result is a construction of an IO combiner. We give two separate constructions, one using
LWE, and other using DDH. Thus, we can build IO combiners from two quite different assumptions.

Theorem 1 (Informal). Under the hardness of Learning with Errors (LWE) and IO secure against
sub-exponential adversaries, there exist an IO combiner.

Theorem 2 (Informal). Under the hardness of Decisional Diffie-Hellman (DDH) and IO secure
against sub-exponential adversaries, there exist an IO combiner.

We show how to adapt the LWE-based IO combiner to obtain a universal IO scheme.

Theorem 3 (Informal). Under the hardness of Learning with Errors (LWE) against sub-exponential
adversaries and the existence of IO secure against sub-exponential adversaries, there exists a uni-
versal IO scheme.

For witness encryption, we have similar results, under assumptions widely believed to be weaker.
We prove the following theorem.

Theorem 4 (Informal). If one-way functions exist, then there exist a secure witness encryption
combiner.
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Again, we extend this and get a universal witness encryption scheme.

Theorem 5 (Informal). If one-way functions and witness encryption exist, then there is a universal
witness encryption scheme.

Theorem 5 assumes the existence of one-way functions. Notice that if P = NP then WE exist,
however, one-way functions do not. Thus, in most cryptographic application one-way functions are
used as an additional assumption. Nevertheless, we can make a stronger statement: If there exist
any hard-on-average language in NP then there is a universal WE scheme. In [KMN+14] it was
shown that the existence of witness encryption and a hard-on-average language in NP implies the
existence of one-way functions. By combing this with Levin’s universal one-way function [Lev87]
we obtain our result.

In Section 9 we present the constructions of universal secret sharing for NP and universal witness
PRFs. Both these constructions assume only one-way functions.

2 Techniques

We present the technical challenges and describe how we overcome them.

2.1 Universal Obfuscation

A natural starting point is to revisit the construction of universal one-way functions [Lev87] –
constructions of other known universal cryptographic primitives [HKN+05] have the same flavor.
An explicit function f is said to be a universal one-way function if the mere existence of any one-way
function implies that f is one-way.

The universal one-way function funiv on input x = y1|| . . . ||y`, where |x| = `2, executes as
follows3:

1. Interpret the integer i ∈ {1, . . . , `} as a Turing machine Mi. This interpretation is quite
standard in the computational complexity literature4.

2. Output M1(y1)|| · · · ||M`(y`).

To argue security, we exploit the fact that there exists a secure one-way function represented by
Turing machine Mowf . Let `0 be an integer that can be interpreted as Mowf . We argue that it is
hard to invert Mowf(x), where x has length at least `20 and is drawn uniformly at random. To see
why, notice that in Step 1, Mowf will be included in the enumeration. From the security of Mowf

it follows that it is hard to invert Mowf(y`0), where y`0 is the `th0 block of x. This translates to the
un-invertibility of funiv(x). This proves that funiv is one-way5.

Let us try to emulate the same approach to obtain universal indistinguishability obfuscation.
On input circuit C, first enumerate the Turing machines M1, . . . ,M`, where ` here is the size of the
circuit C. We interpret Mi’s as indistinguishability obfuscators. It is not clear how to implement
the second step in the context of obfuscation – unlike one-way functions we cannot näıvely break

3If x can not be expressed of this form then suitably truncate x till it is of this form.
4This fact was used to prove the famous Gödel’s incompleteness theorem [Göd31].
5Note that the definition of one-way function only requires un-invertibility to hold for sufficiently long inputs.

This requirement is satisfied by funiv as its un-invertibility holds for inputs of lengths greater than `20.
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the circuit into blocks and individually obfuscate each block. We need a mechanism to jointly
obfuscate a circuit using multiple obfuscators M1, . . . ,M` such that the security of the joint obfus-
cation is guaranteed as long as one of the obfuscators is secure. This is where indistinguishability
obfuscation combiners come in. Designing combiners for indistinguishability obfuscation involves
a whole new set of challenges and we deal with them in a separate section (Section 2.2). For now,
we assume we have such combiners at our disposal.

Warmup Attempt. Using combiners for IO, we propose the following approach to achieve uni-
versal obfuscation. The universal obfuscator IOuniv on input circuit C executes the following steps:

1. Interpret the integer i ∈ {1, . . . , `} as a Turing machine Mi.

2. Obfuscate C by applying the IO combiner on the machines M1, . . . ,M`. Output the result C
of the IO combiner.

Unlike the case of one-way functions, in addition to security we need to argue correctness of the
above scheme. An obfuscator Mi is said to be correct if the obfuscated circuit Mi(C) is equivalent
to C (or agrees on most inputs) and this should be true for every circuit C. This in turn depends
on the correctness of obfuscators M1, . . . ,M`. But we don’t have any guarantee on the correctness
of M1, . . . ,M`.

Test-and-Discard. We handle this by first checking for every i whether the obfuscator Mi is
correct. This is infeasible in general. However, we test the correctness of Mi only on the particular
circuit obfuscated by Mi during the execution of the universal obfuscation. In more detail, suppose
we execute IOuniv on circuit C and during the execution of the IO combiner, let [C]i (derived from
C) be the circuit that we obfuscate using machine Mi. Then we test whether Mi([C]i) agrees with
Mi on significant fraction of inputs. This can be done by picking inputs at random and testing
whether both circuits (obfuscated and un-obfuscated) agree on these inputs. If Mi fails the test, it
is discarded. If it passes the test, then Mi cannot be used directly since Mi([C]i) could agree with
[C]i on (1− 1/poly)-fraction of inputs and yet it could pass the test with non-negligible probabil-
ity. So we need to reduce the error probability of Mi([C]i) to negligible before it is ready to be used.

Correctness Amplification. A first thought would be to use the recent work that shows an ele-
gant correctness amplification for IO by Bitansky-Vaikuntanathan [BV16]. In particular, they show
how to transform an obfuscator that is correct on at least (1/2+1/poly)-fraction of inputs into one
that is correct on all inputs. At first glance this seems to be “just what the doctor ordered”, there
is, however, one catch here: their transformation is guaranteed to work if the obfuscator is correct
for every circuit C on at least (1/2 + 1/poly)-fraction of inputs. However, we are only ensured that
it is approximately correct on only one circuit! Nonetheless we show how to realize correctness
amplification with respect to a single circuit and ensure that Mi([C]i) does not agree with [C]i on
only negligible fraction of inputs. Once we perform the error amplification, the obfuscator Mi will
be used in the IO combiner. In the end, the result of the IO combiner will be an obfuscated circuit
C; the correctness guarantees of Mi([C]i), for every i, translate to the corresponding correctness
guarantee of C.

Handling Selective Abort Obfuscators. We now move on to security. For two equivalent
circuits C0, C1, we need to argue that their obfuscations are computationally indistinguishable. To
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do this, we need to rely on the security of IO combiner. The security of IO combiner requires that
as long as one of the machines Mi is a secure obfuscator6 then the joint obfuscation of C0 using
M1, . . . ,M` is indistinguishable from the joint obfuscation of C1 using the same candidates. The
fact that same candidates are used is crucial here since the final obfuscated circuit could potentially
reveal the description of the obfuscators combined.

However, there is no such guarantee offered in our case! Recall that we have a ‘test-and-discard’
phase where we potentially throw out some obfuscators. It might be the case that a particular can-
didate Mmal is correct only on circuits derived from C0 but fails on circuits derived from C1. We
call such obfuscators selective abort obfuscators. Clearly, selective abort obfuscators can lead to a
complete break of security. In fact, if there are ` obfuscators used then potentially ` − 1 of them
could be of selective abort type. To protect against these adversarial obfuscators we ensure that the
distribution of the ` derived circuits is computationally independent from the circuit to obfuscate.

Issue of runtime. While the above ideas ensure correctness and security, we haven’t yet shown
that our scheme is efficient. In fact it could potentially be the case our scheme never halts on some
inputs7. This could happen since we have no a priori knowledge on the runtime of the obfuscators
considered. We propose a näive solution to this problem: we assume the knowledge of an upper
bound on the runtime of the actually secure obfuscator. In some sense, the assumption of time
bound might be inherent – without this we are required to predict a bound on the runtime of a
Turing machine and we know in general this is an undecidable problem.

2.2 Combiners for Indistinguishability Obfuscation

We now focus our attention on constructing an IO combiner. Recall, in the setting of IO combiner
we are given multiple IO candidates8 with all of them satisfying correctness but with only one of
them being secure. We then need to combine all of them to produce a joint obfuscator that is
secure.

This scenario is reminiscent of a concept we are quite familiar with: Secure Multi-Party Com-
putation (MPC). In the secure multi-party computation setting, there are multiple parties with
individual inputs and the goal of all these parties is to jointly compute a functionality. The privacy
requirement states that the inputs of the honest parties are hidden other than what can be leaked
by the output.

Indeed, MPC provides a natural template to solve the problem of building an IO combiner: Let
Π1, . . . ,Πn be the IO candidates and let C be the circuit to be obfuscated.

- Secret share the circuit C into n shares s1, . . . , sn.

- Take any n-party MPC protocol for the functionality F that can tolerate all-but-one ma-
licious adversaries [GMW87]. The n-input functionality F takes as input ((s1, x1), (s2, x2),
. . . , (sn, xn)); reconstructs C from the shares and outputs C(x) only if x = x1 = · · · = xn.

6Just as in the case of one-way functions, for sufficiently large circuits C, one of the enumerated machines will be
a secure obfuscator.

7This is not a problem for the case of one-way functions because of a well established result that given any one-
way function that runs in arbitrary polynomial time we can transform it into a different one-way function that takes
quadratic time.

8IO candidates are just indistinguishability obfuscation schemes. The scheme of [BGK+14] is an example of an
IO candidate, scheme of [PST14] is another example and so on.
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- Obfuscate the “code” (or algorithmic description) of the ith party using Πi.

- The joint obfuscation of all the parties is the final obfuscated circuit!

To evaluate on an input x, perform the MPC protocol on the obfuscated parties with (si, x) being
the input of the ith party.

Could the above approach lead to a secure IO combiner? The hope is that the security of MPC
can be used to argue that one of the shares (corresponding to the honest party) is hidden which
then translates to the hiding of C.

However, we face some fundamental challenges in our attempt to realize the above template,
and in particular we will not be able to just invoke general solutions like [GMW87], and we will
need to leverage more specialized cryptographic objects.

Challenge #1: Single-Input versus Multi-Inputs security. Recall that in the context of
MPC, we argue the security only for a particular set of inputs (one for every party) in one session.
In particular, a fresh session needs to be executed to compute the functionality on a different set of
inputs. However, obfuscation is re-usable – it enables multiple evaluations of the obfuscated circuit.
The obfuscated circuit should hide the original circuit independent of the number of times the ob-
fuscated circuit is evaluated. On the other hand, take the classical Yao’s garbled circuits [Yao86],
used in two party secure computation, for example. Suppose we are provided with the ability to
evaluate the garbled circuit on two different inputs then the security completely breaks down.

Challenge #2: Power of the Adversary. Suppose we start with an arbitrary multi-round
MPC protocol. In the world of IO combiners, this corresponds to executing a candidate multiple
times during the evaluation of a single input. While the party in the MPC protocol can maintain
state in between executions, a candidate does not have the same luxury since it is stateless. This
enables the adversarial evaluator to launch so called resetting attacks: during the evaluation of the
IO combiner on a single input x, a secure candidate could first be executed on transcripts consis-
tent with x and later executed on transcripts consistent with a different input x′. Since, the secure
candidate cannot maintain state, it is possible that it cannot recognize such a malicious execution.
We need to devise additional mechanisms to prevent such attacks.

Challenge #3: Virtual Black Box Obfuscation versus IO. The above two challenges exist
even if we had started off with virtual black box (VBB) obfuscation. Dealing with indistinguisha-
bility obfuscation as opposed to VBB presents us with fresh challenges. Indeed, in MPC, we take
for granted that an honest party hides its input from the adversary. However, if we obfuscate
the parties using IO, it is not clear whether the relevant input – the share of C – is hidden at
all. Arguing this requires importing IO-friendly tools (for instance, [SW14]) studied in the recent
literature and making it compatible with the tools of MPC that we want to use.

We will see next how to address the above challenges.

2.2.1 Our Approach

We present two different approaches to construct IO combiners. The first solution, in addition to
existence of IO, assumes the hardness of Decisional Diffie Hellman. The second solution assumes
additionally the hardness of learning with errors. Common to both these solutions is a technique
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of [CLTV15] that we’ll call the partition-programming technique. We give a brief overview of this
technique below.

Partition-Programming Technique: Consider a randomized algorithm P (·, ·) that takes as input
secret sk, public instance x ∈ {0, 1}λ and produces a distribution Dx. Suppose there exists a
simulator Sim that on input x outputs a distribution D∗x such that the distributions Dx and D∗x are
statistically close.

Let us say we are given obfuscation of P (sk, ·) (sk is hardwired in the program), we show how
to use the partition-programming technique to remove the secret sk. We proceed in 2λ hybrids: In
the ith hybrid, we have a hybrid obfuscated program that on input x, executes P (sk, x) if x ≤ i but
otherwise it executes Sim(x). Now, the indistinguishability of ith hybrid and (i+1)th hybrid can be
argued directly from the security of IO: here we are using the fact that the simulated distribution
and the real distribution are statistically close. In the (2λ+1)th hybrid, we have a program that
only uses Sim, on every input, to generate the output distribution. Thus, we have removed the
secret sk from the program.

This technique will come in handy when we address Challenge #1. We will see below how this
technique will be used in both the solutions.

DDH-Based Solution. We begin by tackling Challenge #2. We noted that using interactive MPC
solutions are bound to result in resetting attacks. Hence, we restrict our attention to non-interactive
solutions. We need to determine our communication pattern between the candidates. In particular,
we consider the “line” communication pattern: Suppose there are n candidates Π1, . . . ,Πn and let
C be the circuit to be obfuscated. For this discussion, we use the same notation Πi to also refer
to the circuit obfuscated by the candidate Πi. The first obfuscated circuit Π1 produces an output
that will be input to Π2 and so on. In the end, Πn will receive the input from Πn−1 and the output
of Πn will determine the final output.

Lets examine how to achieve a solution in the above communication model, by first considering
a näıve approach: Π1 has hardwired into it an encryption Enc(pk,C) of circuit C to be obfuscated.
It receives an input x, it performs a part of the computation and sends the result to the next
candidate Π2 who performs another part of the computation, sends it to Π3 and so on. In the end,
the last candidate Πn has the secret key sk to decrypt the output. This is clearly insecure because
if both Π1 and Πn are broken then using sk and Enc(pk,C) we can recover the circuit C. This
suggests the use of a re-encryption scheme. A re-encryption scheme is associated with public keys
pk1, . . . , pkn+1 and corresponding re-encryption keys rk1→2, . . . , rkn→(n+1). The first candidate Π1

will have hardwired into it Enc(pk1, C) and the ith candidate has hardwired into it the re-encryption
key rki→i+1. Thus, the ith candidate performs part of the computation, re-encrypts with respect to
pki+1 using its re-encryption key rki→i+1. We provide the secret key skn+1, corresponding to public
key pkn+1, as part of the obfuscated circuit. Using this, the evaluator can decrypt the output and
produce the answer. Intuitively, as long as one candidate hides one secret key, the circuit C should
be safe.

The natural next step is to figure out how to implement the “computation” itself: one direction
would be to consider re-encryption schemes that are homomorphic with respect to arbitrary com-
putations. However, we currently do not know of the existence of such schemes based on DDH (for
LWE-based solutions, see below). We note that [ACG+14] faced similar hurdles while designing
DDH-based multi-server delegation schemes. They employed the use of re-randomizable garbled
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circuits to implement the “computation” aspect of the above approach. A re-randomizable garbling
scheme is a garbling scheme which is accompanied by a re-randomization algorithm that takes as
input garbled circuit-input wire keys pair (GC, wx) and outputs (GCr, wrx).

Following along the lines of the approach of [ACG+14], we propose the following solution tem-
plate:

1. First we compute the garbled circuit-wire keys pair (GC1, w1) of circuit C corresponding to
the re-randomizable garbled circuits scheme. Here, w1 comprises of keys associated to bits 0
and 1 with respect to every position. Π1 has hardwired into it, Enc(pk1, (GC

1, w1)).

2. Π1 takes as input x and produces Enc(pk2, (GC
2, w2

x)), where (GC2, w2
x) is obtained by first

re-randomizing (GC1, w1) and then choosing the wire keys corresponding to x. This process
is enabled using the re-encryption key rk1→2. In addition, we require that the re-encryption
process allows for homomorphic operations – in particular, it should allow for homomorphism
of re-randomization operation of the garbling schemes.

3. The ith candidate takes as input Enc(pki, (GC
i, wix)); homomorphically re-randomizes the

garbled circuit while simultaneously re-encrypting the ciphertext to obtain Enc(pki+1, (GC
i+1,

wi+1
x )).

4. In the end, the nth candidate Πn outputs Enc(pkn+1, (GC
n+1, wn+1

x )). Using the secret key
skn, we can decrypt the output (GCn+1, wn+1

x ). We then evaluate the garbled circuit GCn+1

using the wire keys wn+1
x to recover the output.

We employ a specific re-randomizable garbled circuits by [GHV10] and homomorphic re-encryption
scheme by [BBS98], where both these primitives can be based on DDH. The above template does
not immediately work since an adversarial evaluator could feed in incorrect inputs to the secure
candidate. While [ACG+14] used non-interactive zero knowledge proofs (NIZKs) to resolve this
issue, we need to employ “IO-friendly” proofs such as statistically-sound NIZKs [SW14, BP15].
Refer to Section 5.2 for the formal construction.

Security: To argue security, we need to rely on the security of re-encryption schemes in addition to
the security guarantees of the other schemes. The security property of a re-encryption scheme states
that given re-encryption keys {rki→i+1}i∈[n]\{rki→i+1} and a secret key skn+1, it is computationally
hard to distinguish Enc(pk1,m0) from Enc(pk1,m1).

To argue the security of universal obfuscator, we have to get rid of the re-encryption key
corresponding to the secure candidate – indeed, in the case of [ACG+14] the re-encryption key
corresponding to the honest party is removed in the security proof. In our scenario, however, this
can only be implemented if we hardwire all possible outputs inside the code of the secure candi-
date. Clearly, this is not possible since there are exponentially many outputs. This is where we will
use the partition-programming technique to remove the re-encryption key. To apply the technique,
we argue that the re-encrypted ciphertexts are statistically close to freshly generated ciphertexts
(which will be our simulated distribution) and this property holds for the particular instantiation
of [BBS98] we are considering.

LWE-Based Solution. We give an alternate construction based on the learning with errors
(LWE) assumption. One potential approach is to take the above solution and replace the DDH-
based primitives with LWE-based primitives. Namely, we replace re-randomizable garbled circuits
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and re-encryption schemes with fully homomorphic encryption schemes. While we believe this is
a viable approach, it turns out we can give an arguably more elegant solution by using the notion
of multi-key fully homomorphic encryption [LTV12, CM15, MW16]. A multi-key FHE allows for
generating individual public key-secret key pairs {pki, ski} such that they can be later combined
to obtain a joint public key pk. To be more precise, given a ciphertext with respect to pki, there
is an “Expand” operation that transforms it into a ciphertext with respect to a joint public key
pk. Once this done, the resulting ciphertext can be homomorphically evaluated just like any FHE
scheme. The resulting ciphertexts can then be individually decrypted using ski’s to obtain partial
decryptions. Finally, there is a mechanism to combine the partial decryptions to obtain the final
output.

Before we outline the solution below, we first fix the communication model. We consider a “star”
interaction network: suppose there are n candidates Π1, . . . ,Πn. Each candidate Πi is executed on
the same input x. The joint outputs of all these candidates are then combined to obtain the final
output. We propose the solution template based on multi-key FHE below.

1. We first secret share C into different shares s1, . . . , sn.

2. Generate public key-secret key pairs {pki, ski} for all i ∈ [n]. Encrypt si with respect to pki
to obtain the ciphertext CTi.

3. “Expand” every ciphertext CTi into another ciphertext ĈTi with respect to the joint public
key pk which is a function of (pk1, . . . , pkn).

4. Every candidate Πi has hardwired into it the secret key ski and ciphertext ĈTi. It takes as
input x and first homomorphically evaluates the universal circuit Ux on ĈTi to obtain an

encryption of C(x), namely ĈT
C(x)
i , with respect to pk. Finally, using ski it outputs the

partial decryption of ĈT
C(x)
i .

5. The different partial decryptions output by the candidates are later combined to obtain the
final output.

Security: We rely on the semantic security of the MFHE scheme to argue the security of the
obfuscator. The security notion of multi-key FHE intuitively guarantees that the semantic security
on ciphertext CTi can be argued as long as the adversary never gets the secret key ski for some
i ∈ [n]. A näıve approach is to remove the secret key ski from the secure candidate Πi. A similar
issue that we encountered in the case of DDH-based solution arises here as well – we need to
hardwire exponentially many outputs. Here comes partition-programming technique to the rescue!
We show how to use this technique to remove ski after which we can argue the semantic security
of MFHE, and thus the security of the obfuscator. To apply this technique, we need an alternate
simulated distribution that simulates the partial decryption keys. We use the scheme of [MW16]
who define such a simulatability property where the simulated distribution is statistically close to
the real distribution. Refer to Section 5.1 for the formal construction.

The above LWE-based construction, unlike the DDH-based construction, satisfies some addi-
tional properties that are used to design a special type of IO combiner (we call this decomposable
IO combiner in Section 4.1) which will then be used to construct universal indistinguishability
obfuscation.
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2.3 Universal Witness Encryption

We have discussed the construction of an IO combiner, and how to use the combiner to achieve a
universal construction of IO. We describe our construction of a universal witness encryption (WE)
scheme. We show that a universal WE scheme exists on the sole assumption of the existence of a
one-way function. First, we construct a WE combiner. This is achieved similarly to combiners for
public-key encryption [HKN+05], using secret sharing. To encrypt a message m one secret shares
the message to n shares such that all of them are needed to recover the message. Then, he encrypts
each share using a different candidate. If at least one of the candidate schemes is secure then at
least one share is unrecoverable and the message remains hidden.

The main challenge constructing a universal WE scheme is handling correctness. In the universal
IO construction we had two main steps. The first was to test whether a candidate is approximately
correct. This step was accomplished easily by sampling the obfuscated circuit on random inputs and
verifying its correctness. Notice that although we cannot verify that the candidate is approximately
correct for all circuits, we can verify that it is correct for the circuit in hand. The second step was to
boost the correctness to achieve (almost) perfect security. This was obtained by suitably adapting
the transformation described by Bitansky and Vaikuntanathan [BV16] to work in our setting where
we only have a correctness guarantee for a single circuit.

The techniques used for the universal IO scheme seem not to apply for WE. Consider a language
L with a relation R and a candidate scheme Π. To test correctness on an input x and a message
m, one needs to encrypt the message and decrypt the resulting ciphertext. However, decryption
requires a valid witness for x, where it might be NP-hard to find one! Testing, therefore, is limited to
instances where it is easy to find a witness, a regime where witness encryption is trivial. Moreover,
even given an approximate candidate, the boosting techniques used for the universal IO scheme do
not apply for witness encryption.

Witness Injection. We describe a transformation that modifies any WE candidate scheme to
be “testable” and also show how to boost the correctness of such testable schemes. Our first
technique is to inject a “fake” witness for any x such that it will be easy to find this witness, for a
party which has a trapdoor and computationally hard without the trapdoor (this is as in Feige and
Shamir [FS90]). Moreover, this transformation will be indistinguishable for the (computationally
bounded) candidate scheme.

Denote (x,w) ∈ R for an instance x with a valid witness w. Let PRG be a length doubling
pseudorandom generator. For any string z, we augment the language L and define Lz with the
relation Rz such that

(x,w) ∈ Rz ⇐⇒ (x,w) ∈ R ∨ PRG(w) = z.

Notice that if we choose z = PRG(s) for a random seed s, then Lz is the trivial language of all
strings. Whereas, if z is chosen uniformly at random then with high probability Lz is equivalent
to L, and these two cases are indistinguishable for anyone not holding the seed. This step enables
us to test a candidate for some specific instance x: We choose z ← PRG(s), encrypt relatively to
Lz, decrypt using the “fake” witness s and verify the output. After testing, we replace z with a
random string (outside the range of the PRG) to get back the original language L. The problem is
that this guarantees correctness only on our specific witness. The decryption algorithm, however,
might refuse to cooperate for any other witness the user chooses to use.
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Witness Protection Program. The next step is to apply what we call a witness-worst-case
transformation. That is, a scheme that works on all witnesses with the same probability. Our main
tool is a non-interactive zero knowledge (NIZK) proof system with statistical soundness. Suppose
(P, V ) is such a NIZK scheme with a common random string σ. Then we further augment the
language Lz to Lz,σ with relation Rz,σ such that:

(x, π) ∈ Rz,σ ⇐⇒ V (σ, x, π) = 1.

If (x,w) ∈ R is a valid instance witness pair for L, then the corresponding witness for Lz,σ will
be π ← P (σ, x, w). That is, executing the transformed scheme on x,w relative to the language
L translate to executing the original scheme on x, π relative to the language Lz,σ for a randomly
chosen z. Finally, to boost the success probability we apply a standard “BPP amplification”;
encrypt many times and take the majority.

The result is roughly the following algorithm. We take any scheme and apply our witness-worst-
case transformation for z ← PRG(s). Afterwards, we can test it on a fake witness while we are
assured that it will work the same for any other witness. Then, if the scheme passes all tests, we
replace z with a random string, and boost the correctness such that it will work for any witness
with all but negligible probability. Finally, we apply the WE combiner to get a universal scheme.
For the exact details see Section 2.3.

Relying on One-Way Functions. The description above of a universal witness encryption
scheme used NIZK proof system as a building block, where we promised using only one-way func-
tions. These proofs are not known to be implied by one-way functions and moreover no universal
NIZK scheme is known (and this is an interesting open problem!). However, standard interactive
zero knowledge can be constructed for any language in NP for one-way functions and moreover
there exist a universal one-way function [Lev87]. Of course, we cannot use an interactive protocol,
but, taking a closer look we observe that we can simulate a protocol between a verifier and a prover
before the actual witness is given. That is, we can simulate a zero-knowledge protocol that might
have many rounds, however, only the final round depends on the witness itself. Such protocols are
known as pre-process non-interactive zero-knowledge protocols and where studied in [DMP88, LS90]
where they proved how to construct them based on way-one functions.

For the final scheme, we will run the pre-process protocol to get two private states σV and σP
for the verifier and the prover respectively, just before the final round. The modified language will
be Lz,σV with relation Rz,σV , where

(x, π) ∈ Rz,σV ⇐⇒ V (σV , x, π) = 1.

We will publish σP as part of the encryption so that a user, given witness w can produce the
corresponding final round of the proof π ← P (σP , x, w). Notice that the given the state of the
prover, σP , the proof π is not zero-knowledge. However, since the decryption algorithm of the
scheme does not get the state of the prover (only the state of the verifier) then from his perspective
it is zero-knowledge.

3 Preliminaries

Let λ be the security parameter. For a distribution D we denote x
$←− by an element chosen

from D uniformly at random. We denote that
{
D1,λ

}
≈c
{
D2,λ

}
, if for every PPT distinguisher
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A,

∣∣∣∣Pr[A(1λ, x
$←− D1,λ) = 1

]
− Pr

[
A(1λ, x

$←− D2,λ) = 1
]∣∣∣∣ ≤ negl(λ) where negl is a negligible

function. For a language L associated with a relation R with denote by (x,w) ∈ R an instance
x ∈ L with a valid witness w. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.

Important Notation. We introduce some notation that will be useful throughout this work.
Consider an algorithm A. We define the time function of A to be T if the runtime of A(x) ≤ T (|x|).
We are only interested in time functions which satisfy the property that T (poly(n)) = |poly(T (n))|.

3.1 Puncturable Pseudorandom Functions

A pseudorandom function family consisting of functions of the form PRFK(·), that is defined over
input space {0, 1}∗, output space {0, 1}χ(λ) and key K ∈ {0, 1}λ, is said to be a puncturable PRF
family if there exists a PPT algorithm Puncture that satisfies the following properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K ∈
{0, 1}λ, input x ∈ {0, 1}∗ and outputs Kx such that for all x′ 6= x, PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1
λ) outputs an input x ∈ {0, 1}∗, consider an experiment where K

$←− {0, 1}λ and
Kx ← PRF (K,x). Then for all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x, PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 6 ([GGM86, BW13, BGI14, KPTZ13]). If µ-secure one-way functions9 exist, then for
a polynomial χ(λ), there exists a µ-secure puncturable PRF family mapping {0, 1}∗ to {0, 1}χ(λ).

3.2 Witness Encryption

We recall the notion of witness encryption as defined by [GGSW13].

Definition 1 (Witness encryption [GGSW13, GLW14]). A witness encryption scheme for an NP
language L (with a corresponding relation R) consists of the following two polynomial-time algo-
rithms:

WE.Enc(1λ, x,m): Takes as input a security parameter 1λ, a string x and a message m, and
outputs a ciphertext CT.

WE.Dec(CT, w): Takes as input a ciphertext CT and a string w, and outputs a message m or
the symbol ⊥.

These algorithms satisfy the following two conditions:

9We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is
sampled from the family, is at most µ(λ).
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1. Almost Perfect Correctness: For any security parameter λ, any m ∈ {0, 1}∗, any x ∈ L
and w ∈ {0, 1}∗ such that R(x,w) holds, we have that

Pr[WE.Dec(WE.Enc(1λ, x,m), w) = m] ≥ 1− 2−λ.

2. Security: For any probabilistic polynomial-time adversary A and any polynomial p(·), there
exists a negligible function negl(·), such that for any λ ∈ N, any x /∈ L and any two equal-
length messages m1 and m2 such that |x|, |m1| ≤ p(λ), we have that∣∣∣Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m2)) = 1]

∣∣∣ ≤ negl(λ).

We say that a WE scheme is parametrized by a polynomial T if both encryption and decryption
algorithms run in time at most T .

3.3 NIZK with Pre-Processing

We consider a specific type of zero knowledge proof system where the messages exchanged is in-
dependent of the input instance till the last round. We call this zero knowledge proof system
with pre-processing. The pre-processing algorithm essentially simulates the interaction between
the prover and the verifier till the last round and outputs views of the prover and the verifier.

Definition 2. Let L be a language with relation R. A scheme PZK = (PZK.Pre,
PZK.Prove,PZK.Verify) of PPT algorithms is a zero knowledge proof system with pre-processing,
PZK, between a verifier and a prover if they satisfy the following properties. Let (σV , σP ) ←
PZK.Pre(1λ) be a preprocessing stage where the prover and the verifier interact. Then:

1. Completeness: there exists a polynomial r such that for every (x,w) ∈ R we have that:

Pr [PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1.

where the probability is over the internal randomness of all the PZK algorithms.

2. Soundness: for every x /∈ L we have that:

Pr[∃π : PZK.Verify(σV , x, π) = 1] < 2−n

where the probability is only over PZK.Pre.

3. Zero-Knowledge: there exists a PPT algorithm S such that for any x,w where V (x,w) = 1
it hold that:

{σV ,PZK.Prove(σP , x, w)} ≈c {S(x)}

Such schemes were studied in [DMP88, LS90] where they proposed constructions based on
one-way functions.
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3.4 Commitment Schemes

We consider commitment schemes secure in the CRS model. We give the definition of this primitive
below.

Definition 3 (Commitment scheme in the CRS model). A polynomial-time computable function
Com : {0, 1}n×{0, 1}λ×{0, 1}m → {0, 1}∗, where n = poly(λ) is the length of the string to commit,
λ is the length of the randomness, m = poly(λ) is the length of the CRS. We say that Com is
a (non-interactive perfectly binding) commitment scheme in the CRS model if for any two inputs
x1, x2 ∈ {0, 1}n such that x1 6= x2 it holds that:

1. Computational Hiding: Let crs ← {0, 1}m be chosen uniformly at random. The random
variables Com(x1,Uλ, crs) and Com(x2,Uλ, crs) are computationally indistinguishable (given
crs).

2. Perfect Binding: With all but negligible probability over the CRS, the supports of the above
random variables are disjoint.

Commitment schemes that satisfy the above definition, in the CRS model, can be constructed
based on any pseudorandom generator [Nao91] (which can be based on any one-way functions
[HILL99]). For simplicity, throghout the paper we ignore the CRS and simply write Com(·, ·). We
say that Com(x, r) is the commitment of the value x with the opening r.

3.5 Threshold Multi-key FHE

We recall the definition of multi-key fully homomorphic encryption from [LTV12, CM15, MW16].
A µ−threshold multi-key FHE scheme is a tuple of algorithms TMFHE = (Setup,KeyGen,Enc,
Expand,FHEEval,Dec,PartDec,FinDec) described as follows:

• params← Setup(1λ, 1d). The setup algorithm takes as input the security parameter λ, circuit
depth d and outputs the system parameter params. We assume that all algorithms take
params as input implicitly.

• (sk, pk) ← KeyGen(params). Keygen algorithm takes as input the system parameters and
outputs a key pair.

• CT← Enc(pk,m). The encryption algorithm takes as input the public key pk, some message
m and outputs a ciphertext CT.

• ĈT ← Expand
(
(pk1, .., pkN ), i,CT

)
. Given a sequence of N public-keys and a fresh cipher-text

CT under the i−th key pki, it outputs an expanded ciphertext ĈT .

• CTeval ← FHEEval(params, C, ĈT1, ..., ĈTl). On input params, a circuit C of depth ≤ d and

expanded ciphertexts (ĈT1, ..., ĈTl) the FHEEval algorithm outputs an evaluated ciphertext
CTeval.

• m← Dec(params, (sk1, .., skN ), ĈT). On input an expanded ciphertext ĈT and a sequence of
secret keys (sk1, .., skN ) the decryption algorithm outputs a message m.
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• pi ← PartDec(ĈT, (pk1, .., pkN ), i, ski). On input an expanded ciphertext ĈT under a sequence
of N keys and the i − th secret key output a partial decryption pi. Note that this is a
randomized procedure.

• m ← FinDec(p1, .., pN ). On input N partial decryptions pi for i ∈ [N ] output the plaintext
m.

We require following properties from the scheme.

Semantic Security of encryption: For any polynomial d = d(λ) and any two messages of equal
length m0,m1 the following distributions are computationally indistinguishable:(

params, pk,Enc(pk,m0)
)
≈
(
params, pk,Enc(pk,m1)

)
where params← Setup(1λ, 1d), (sk, pk)← KeyGen(params).

Correctness and Compactness: Let params ← Setup(1λ, 1d). Consider any sequences of N
correctly generated key pairs {(pki, ski) ← KeyGen(params)}i∈[N ] and any l-tuple of messages
(m1, ..,ml). For any sequence of indices (I1, .., Il) where each Ii ∈ [N ] let {CTi ← Enc(pkIi ,mi)}i∈[l]
and {ĈTi ← Expand

(
(pk1, .., pkN ), Ii,CTi

)
}i∈[l] be the corresponding expanded ciphertexts. Let

C be a boolean circuit of depth ≤ d and ĈT = FHEEval
(
C, ĈTI1 , . . . , ĈTIl

)
be the evaluated

ciphertext. Then the following holds:

Correctness of Expansion: ∀i ∈ [l] Dec
(
params, (sk1, .., skN ), ĈTi

)
= mi.

Correctness of Evaluation: Dec
(
(sk1, .., skN ), ĈT

)
= C(m1, ..,ml).

Compactness: There exists a polynomial p() such that |ĈT| ≤ p(λ, d,N). In other words

the size of ĈT should be independent of C and l, but can depend on λ, d,N .

Correctness of Part and Final decryption: It holds that

FinDec(p1, . . . , pN ) = C(m1, ..,ml),

where {pi ← PartDec(ĈT, (pk1, .., pkN ), i, ski)}i∈[N ] are partial decryptions.

Simultability of partial decryption: There exists a PPT simulator Sim which, on input an
index i ∈ [N ] and all but the i − th keys {skj}i∈[N ]\i the evaluated ciphertext ĈT and the output

message m = C(m1, ..,mN ) produces a simulated partial decryption p′i ← Sim(m, ĉt, i, {skj}i∈[N ]\i)
such that

pi ≈µ p′i
where pi ← PartDec(ĈT, (pk1, .., pkN ), i, ski). Note that the randomness is only over the random
coins of the simulator and the PartDec procedure and all other values are assumed to be fixed
(and known). Here the indistinguishability is statistical. We call a TMFHE scheme µ−secure if the
statistical distance between the distributions is bounded by µ. Note that in the construction of
[MW16] the value µ is O(2−λ

Ω(1)
).
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4 Indistinguishability Obfuscation (IO) Combiners

Suppose we have many indistinguishability obfuscation (IO) schemes, also referred to as IO candi-
dates). We are additionally guaranteed that one of the candidates is secure. No guarantee is placed
on the rest of the candidates and they could all be potentially broken. Indistinguishability obfus-
cation combiners provides a mechanism of combining all these candidates into a single monolithic
IO scheme that is secure. We emphasize that the only guarantee we are provided is that one of
the candidates is secure and in particular, it is unknown exactly which of the candidates is secure.
If we knew which candidate is secure then achieving an IO combiner is straightforward – the IO
combiner will just be the secure candidate and the rest of the candidates are discarded.

We give a thorough formal treatment of the concept of IO combiners next. We start by providing
the syntax of an obfuscation scheme. We then present the definitions of an IO candidate and a
secure IO candidate. Once we have set up these notions, in Section 4.1 we finally present the
definition of IO combiner.

Syntax of Obfuscation Scheme. An obfuscation scheme associated to a class of circuits C =
{Cλ}λ∈N consists of two PPT algorithms (Obf,Eval) defined below.

• Obfuscate, C ← Obf(1λ, C): It takes as input security parameter λ, a circuit C ∈ Cλ and
outputs an obfuscation of C, C.

• Evaluation, y ← Eval
(
C, x

)
: This is a deterministic algorithm. It takes as input an obfus-

cation C, input x ∈ {0, 1}λ and outputs y.

Throughout this work, we will only be concerned with uniform Obf algorithms. That is, Obf and
Eval are represented as Turing machines (or equivalently uniform circuits).

µ-Correct IO candidate. We define the notion of an IO candidate below. The following defini-
tion of obfuscation scheme incorporates only the correctness and polynomial slowdown properties
of an indistinguishability obfuscation scheme [BGI+01, GR07, GGH+13b]. In particular, an IO
candidate need not necessarily have any security property associated with it. Formally,

Definition 4 (µ-Correct IO candidate). An obfuscation scheme Π = (Obf,Eval) is an µ-correct
IO candidate for a class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies
the following properties:

• Correctness: For every C : {0, 1}λ → {0, 1} ∈ Cλ, x ∈ {0, 1}λ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

]
≥ µ(λ),

over the random coins of Obf.

• Polynomial Slowdown: For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the running time of
Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running time of Eval on input
(C, x) is poly(|C|, λ).

Note that an identity function I is a valid IO candidate. We make use of this fact later on.

Remark 1. We say that Π is an IO candidate if it is a µ-correct IO candidate with µ = 1.
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µ-Correct ε-Secure IO candidate. If any IO candidate additionally satisfies the following
(informal) security property then we define it to be a secure IO candidate: for every pair of circuits
C0 and C1 that are equivalent10 we have obfuscations of C0 and C1 to be indistinguishable by any
PPT adversary.

Definition 5 (µ-Correct ε-Secure IO candidate). An obfuscation scheme Π = (Obf,Eval) for a
class of circuits C = {Cλ}λ∈N is a µ-correct ε-secure IO candidate if it satisfies the following
conditions:

• Π is a µ-correct IO candidate with respect to C,

• Security. For every PPT adversary A, for every sufficiently large λ ∈ N, for every C0, C1 ∈
Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ and |C0| = |C1|, we have:∣∣∣Pr[0← A(Obf(1λ, C0), C0, C1

)]
− Pr

[
0← A

(
Obf(1λ, C1), C0, C1

)]∣∣∣ ≤ ε(λ)

We remarked earlier that identity function is an IO candidate. However, note that the identity
function is not a secure IO candidate.

Remark 2. We say that Π is a secure IO candidate if it is a µ-correct ε-secure IO candidate with
µ = 1 and ε(λ) = negl(λ), for some negligible function negl.

In the literature [GGH+13b, SW14], a secure IO candidate is simply referred to as an indistin-
guishability obfuscation scheme.

We have the necessary ingredients to define an IO combiner.

4.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide the syntax of the IO
combiner. Later we present the properties associated with an IO combiner.

There are two PPT algorithms associated with an IO combiner, namely, CombObf and
CombEval. Procedure CombObf takes as input circuit C along with the description of multiple
IO candidates11 and outputs an obfuscation of C. Procedure CombEval takes as input the obfus-
cated circuit, input x, the description of the candidates and outputs the evaluation of the obfuscated
circuit on input x.

Syntax of IO Combiner. We define an IO combiner Πcomb = (CombObf,CombEval) for a class
of circuits C = {Cλ}λ∈N.

• Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . ,Πn): It takes as input
security parameter λ, a circuit C ∈ C, description of IO candidates {Πi}i∈[n] and outputs an

obfuscated circuit C.

• Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . ,Πn): It takes as input
obfuscated circuit C, input x, descriptions of IO candidates {Πi}i∈[n] and outputs y.

10Two circuits C0 and C1 are equivalent if they (a) have the same size, (b) have the same input domain and, (c)
for every x in the input domain, C0(x) = C1(x).

11The description of an IO candidate includes the description of the obfuscation and the evaluation algorithms.
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We define the properties associated to any IO combiner. There are three main properties – correct-
ness, polynomial slowdown, and security. The correctness and the polynomial slowdown properties
are defined on the same lines as the corresponding properties of the IO candidates.

The intuitive security notion of IO combiner says the following: suppose one of the candidates
is a secure IO candidate then the output of obfuscator (CombObf) of the IO combiner on C0 is
computationally indistinguishable from the output of the obfuscator on C1, where C0 and C1 are
equivalent circuits.

Definition 6 ((µ′, µ)-correct (ε′, ε)-secure IO combiner). Consider a circuit class C = {Cλ}λ∈N.
We say that Πcomb = (CombObf,CombEval) is a (µ′, µ)-correct (ε′, ε)-secure IO combiner if the
following conditions are satisfied: Let Π1, . . . ,Πn be n µ-correct IO candidates for P/poly, where µ
is a function of µ′ and ε is a function of ε′.

• Correctness. Let C ∈ Cλ∈N and x ∈ {0, 1}λ. Consider the following process: (a) C ←
CombObf(1λ, C,Π1, . . . ,Πn), (b) y ← CombEval(C, x,Π1, . . . ,Πn).

Then, Pr[y = C(x)] ≥ µ′(λ) over the randomness of CombObf.

• Polynomial Slowdown. For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the running time of
CombObf on input (1λ, C,Π1, . . . ,Πn) to be at most poly(|C|+n+λ). Similarly, we have the
running time of CombEval on input (C, x,Π1, . . . ,Πn) to be at most poly(|C|+ n+ λ).

• Security. Let Πi be ε-secure for some i ∈ [n]. For every PPT adversary A, for every
sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ and
|C0| = |C1|, we have:∣∣∣Pr[0← A(C0, C0, C1,Π1, . . . ,Πn

)]
− Pr

[
0← A

(
C1, C0, C1,Π1, . . . ,Πn

)]∣∣∣
≤ ε′(λ),

where Cb ← CombObf(1λ, Cb,Π1, . . . ,Πn) for b ∈ {0, 1}.
Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (µ′, µ)-correct (ε′, ε)-secure IO combiner,
where (a) µ′ = 1, (b) µ = 1, (c) ε′ = negl′ and, (d) ε = negl with negl and negl′ being negligible
functions.

Remark 4. We alternatively call the IO combiner defined in Definition 6 to be a 1-out-n IO
combiner. We can more generally define c-out-n IO combiners where the IO combiner combines n
IO candidates securely as long as at least c candidates are secure. If c = n-1 then we can construct a
(n-1)-out-n combiner as follows: given a circuit C, discard all but two candidates; obfuscate C using
one of the candidates and re-obfuscate the resulting obfuscated circuit using the other candidate. In
fact this approach can be generalized to (n-k)-out-n, where k is a constant. In this work we only
focus on 1-out-n IO combiners.

5 Constructions of IO Combiners

We propose constructions of combiners for indistinguishability obfuscation. We first present a
construction based on the learning with errors assumption. In Section 5.2, we present a construction
based on the decisional Diffie Hellman assumption.
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5.1 LWE-Based Construction

We present the formal construction below. For an informal explanation of the construction, we
refer the reader to Introduction.

Construction. Consider a circuit class C. We use a threshold multi-key FHE scheme TMFHE = (
Setup,KeyGen,Enc,Expand,FHEEval,Dec,PartDec,FinDec) (see Definition 3.5). We additionally use
a puncturable PRF family F .

We construct an IO combiner Πcomb = Πcomb[Π1, . . . ,Πn] for C below.

CombObf(1λ, C,Π1, . . . ,Πn): It takes as input security parameter λ, circuit C ∈ Cλ, description of
candidates {Πi = (Πi.Obf,Πi,Eval)}i∈[n] and does the following.

1. Initialization of TMFHE parameters:

- Execute the setup of the threshold multi-key FHE scheme, params ← Setup(1λ, 1d),
where d = poly(λ, |C|) 12. Execute {(ski, pki)← KeyGen(params)}i∈[n].

- Sample n random strings {Si}i∈[n] of size | C | such that
⊕

i∈[n] Si = C.

- For all i ∈ [n], encrypt the string Si using pki, CTi ← Enc(pki, Si).

- For every i ∈ [n], generate the expanded ciphertext under pki by executing ĈTi ←
Expand((pk1, . . . , pkn), i,CTi).

2. Obfuscating Circuits using IO candidates:

- For every i ∈ [n], sample puncturable PRF keys Ki $←− {0, 1}λ.

- For every i ∈ [n], construct circuit Gi = Gi

[
Ki, ski, {pki}i∈[n], {ĈTi}i∈[n]

]
∈ Ci as

described in Figure 1.

- Generate Gi ← Πi.Obf(1
λ, Gi).

Output the obfuscation C =
(
G1, . . . , Gn

)
.

CombEval(C, x,Π1, . . . ,Πn): On input an obfuscation C, an input x, descriptions of candidates

{Πi}i∈[n] evaluate the obfuscations on input x to obtain pi ← Πi.Eval(Gi, x) for all i ∈ [n]. Execute
the final decryption algorithm, y ← FinDec(p1, . . . , pn). Output y.

5.1.1 Correctness and Security of Πcomb

We prove the correctness and security of Πcomb below.

12Looking ahead, we set d to be the size of C as against its depth so that a PPT adversary will not be able to
distinguish obfuscations of two functionally equivalent circuits C0 and C1 with the same size but potentially different
depths by just measuring the size of params.
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Gi

[
Ki, ski, {pki}i∈[n], {ĈTi}i∈[n]

]
Hardwired values: PRF key Ki, TMFHE partial decryption key ski, TMFHE public keys

{pki}i∈[n], TMFHE expanded ciphertext {ĈTi}i∈[n].
Input: x ∈ {0, 1}λ.

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a universal

circuit that takes as input n strings S1, .., Sn and first computes
⊕

j∈[n] Sj = C where

C ∈ Cλ and outputs C(x).

- Generate randomness ri ← PRFKi(x).

- Execute the partial decryption algorithm, pi ← PartDec
(
ĈTout, pk1,

. . . , pkn, i, ski; ri

)
- Output pi.

Figure 1: Circuit Gi

Correctness. Consider a circuit C ∈ Cλ and let x ∈ {0, 1}λ. Let Gi, for every i ∈ [n], be the
circuit generated during the execution of Obf(1λ, C,Π1, . . . ,Πn). Let Gi ← Πi.Obf(1

λ, Gi). Finally
let C = (G1 . . . Gn) be the output of CombObf.

We first prove the following lemma.

Lemma 1. Suppose for every i ∈ [n], Pr[Πi.Eval(Gi, x) = Gi(x)] ≥ 1 − µi then we have
Pr[CombEval(C, x) = C(x)] ≥ µ′ with µ′ = (1−

∑n
i=1 µi), assuming the perfect correctness of

TMFHE.

Proof. Suppose on an input x, Πi.Eval(Gi, x) = Gi(x) holds for every i ∈ [n] then we have the
corresponding output of CombEval to be C(x). Thus we have,

Pr[CombEval(C, x) 6= C(x)] = Pr[∃i ∈ [n] : Πi.Eval(Gi, x) 6= Gi(x)]

≤
n∑
i=1

Pr[Πi.Eval(Gi, x) 6= Gi(x)] (union bound)

≤
n∑
i=1

µi

Thus, we have Pr[CombEval(C, x) 6= C(x)] ≥ 1−
∑n

i=1 µi.

The proof of the following theorem follows directly from the above lemma.

Theorem 7. If for all i ∈ [n], Πi is (1 − µi)-correct, then Πcomb = Πcomb[Π1, . . . ,Πn] is at least
(1−

∑n
i=1 µi)-correct.

Security. We now move on to proving the security of Πcomb.
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Theorem 8. Consider a circuit class C ∈ P/poly. Assuming that F is a subexponentially secure
puncturable PRFs and TMFHE is 2−2λ-secure threshold multi-key FHE, the scheme Πcomb is an
(2−2λ, negl(λ))−secure IO combiner for C.

Proof. Consider a set of IO candidates Π1, . . . ,Πn. Let Πind be a secure IO candidate for some
ind ∈ [n]. We employ the standard hybrid argument to prove the theorem. Consider two circuits
C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x ∈ {0, 1}λ. In the first hybrid (Hyb1), the circuit

Cb is obfuscated honestly with b
$←− {0, 1}. In the final hybrid (Hyb4), the obfuscated circuit the

adversary has no information about b. At this point, the probability of guessing the bit b is exactly
1/2. By arguing indistinguishability of every consecutive intermediate hybrids, we show that the
probability of guessing b in the first hybrid is negligibly close to 1/2 (or the advantage is 0), which
proves the theorem.

In the following set of hybrids, denote A to be a PPT adversary.

Hyb1: Pick a bit b at random. The adversary receives the obfuscation Cb, where

Cb ← Πcomb.CombObf(1λ, Cb,Π1, . . . ,Πn). Let A output b′. Output of Hyb1 is b′.

Hyb2.1.z for z ∈ {0, 1}λ: Pick a bit b at random. First generate the TMFHE parameters ĈTi for

every i ∈ [n] as a function of circuit Cb. Sample puncturable PRF key K ind $←− {0, 1}λ. Execute
K ind
z ← Puncture(K ind, z). Then generate pzind as below.

- Perform ĈTzout ← FHEEval
(
params, Uz(·), ĈT1, . . . , ĈTn

)
(where Uz(·) is a universal circuit

that takes as input n strings S1, .., Sn and first computes
⊕

j∈[n] Sj = C where C ∈ Cλ and
outputs C(z).)

- Generate randomness rzind ← PRFK ind(z).

- Execute the partial decryption algorithm, pzind ← PartDec
(
ĈTout, pk1, . . . , pkn,

ind, skind; rzind

)
.

- Set v = pzind.

Generate the obfuscation, H1 ← Πind.Obf(1
λ,H1), where H1 = H1

[
z, C0,K

ind
z , skind, {ski}i∈[n]\{ind},

{pki}i∈[n], {ĈTi}i∈[n], v
]

is described in Figure 2. Set Gind = H1. Generate the obfuscations Gi ←
Πind.Obf(1

λ, Gi) for i 6= ind and i ∈ [n] where Gi is designed as presented in the scheme. Set
Cb =

(
G1, . . . , Gn

)
.

The adversary receives Cb and outputs b′. Output of Hyb2.1.z is b′.

Hyb2.2.z for z ∈ {0, 1}λ: Proceed as in the previous hybrid, except that rzind is sampled at random

from {0, 1}χ(λ).

Hyb2.3.z for z ∈ {0, 1}λ: Let the ciphertext ĈTzout, partial decryption keys {ski}i∈[n]\{ind} be defined

as before. Execute pzind ← Sim
(
C0(z), ĈT

z
out, ind, {ski}i∈[n]\{ind}; rind

)
. Set v = pzind. The rest of the

hybrid is as before.
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H1

[
z, C0,K

ind
z , skind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n], v

]
Hardwired values: PRF key K ind

z , TMFHE partial decryption key skind, rest of partial de-
cryption keys {ski}i∈[n]\{ind}, TMFHE public keys {pki}i∈[n], TMFHE expanded ciphertext

{ĈTi}i∈[n], hardwired value v.
Input: x ∈ {0, 1}λ.

• If x < z:

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a

universal circuit that takes as input n strings S1, .., Sn and first computes⊕
j∈[n] Sj = C where C ∈ Cλ and outputs C(x).

- Generate randomness rind ← PRFK ind(x).

- Simulate the partial decryption, pind ← Sim
(
C0(x), ĈTout, ind,

{ski}i∈[n]\{ind}; rind
)

.

- Output pind.

• If x = z then output v.

• If x > z:

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a

universal circuit that takes as input n strings S1, .., Sn and first computes⊕
j∈[n] Sj = C where C ∈ Cλ and outputs C(x).

- Generate randomness rind ← PRFK ind
z

(x).

- Execute the partial decryption algorithm, pind ← PartDec
(
ĈTout, pk1,

. . . , pkn, ind, skind; rind
)

.

- Output pind.

Figure 2: Circuit H1

Hyb2.4.z for z ∈ {0, 1}λ: Proceed as in the previous hybrid, except that rzind is set to be PRFK ind(z).

Hyb2.5.z for z ∈ {0, 1}λ: This is same as the previous hybrid except for the following: Gener-

ate the obfuscation, H2 ← Πind.Obf(1
λ,H2), where H2 = H2

[
z, C0,K

ind
z , skind, {ski}i∈[n]\{ind},

{pki}i∈[n], {ĈTi}i∈[n]
]

is described in Figure 3. Set Gind = H2. Generate the obfuscations

Gi ← Πind.Obf(1
λ, Gi) for i 6= ind and i ∈ [n] where Gi is designed as presented in the scheme. Set

Cb =
(
G1, . . . , Gn

)
.

Hyb3: This is same as the previous hybrid except for the following: Generate the obfuscation,

H3 ← Πind.Obf(1
λ,H3), where H3 = H3

[
C0,K

ind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]
]

is described

in Figure 4 (here K ind is the actual PRF key). Set Gind = H3. Generate the obfuscations Gi ←
Πind.Obf(1

λ, Gi) for i 6= ind and i ∈ [n] where Gi is designed as presented in the scheme. Set
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H2

[
z, C0,K

ind
z , skind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]

]
Hardwired values: PRF key K ind

z , TMFHE partial decryption key skind, rest of partial de-
cryption keys {ski}i∈[n]\{ind}, TMFHE public keys {pki}i∈[n], TMFHE expanded ciphertext

{ĈTi}i∈[n].
Input: x ∈ {0, 1}λ.

• If x ≤ z:

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a

universal circuit that takes as input n strings S1, .., Sn and first computes⊕
j∈[n] Sj = C where C ∈ Cλ and outputs C(x).

- Generate randomness rind ← PRFK ind(x).

- Simulate the partial decryption, pind ← Sim
(
C0(x), ĈTout, ind,

{ski}i∈[n]\{ind}; rind
)

.

- Output pind.

• If x > z:

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a

universal circuit that takes as input n strings S1, .., Sn and first computes⊕
j∈[n] Sj = C where C ∈ Cλ and outputs C(x).

- Generate randomness rind ← PRFK ind
z

(x).

- Execute the partial decryption algorithm, pind ← PartDec
(
ĈTout, pk1,

. . . , pkn, ind, skind; rind
)

.

- Output pind.

Figure 3: Circuit H2

Cb =
(
G1, . . . , Gn

)
.

Hyb4: This hybrid is the same as the previous hybrid except that CTind is computed as an encryption
of Sind⊕Cb⊕C0. In this hybrid, S1, .., Sn form a xor secret sharing of C0. This hybrid is independent
of b, hence the advantage of adversary in this hybrid is exactly 0.

Indistinguishability of Hybrids: We prove the indistinguishability of hybrids next.

Notation: We begin with some notation. Let us assume that the secure candidate Πind be
δio−secure and the PRF be δprf−secure. Also let TMFHE be µ−secure with polynomial security.

Lemma 2. If Πind is a δio-secure IO candidate then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb1) = 1
]
− Pr

[
A(Hyb2.1.0) = 1

]∣∣∣ < δio.

Proof. The only difference in Hyb1 and Hyb2.1.0 is the manner in which Gind is generated. In Hyb1
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H3

[
C0,K

ind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]
]

Hardwired values: PRF key K ind
z , TMFHE partial decryption keys {ski}i∈[n]\{ind},

TMFHE public keys {pki}i∈[n], TMFHE expanded ciphertext {ĈTi}i∈[n].
Input: x ∈ {0, 1}λ.

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a universal

circuit that takes as input n strings S1, .., Sn and first computes
⊕

j∈[n] Sj = C where

C ∈ Cλ and outputs C(x).

- Generate randomness rind ← PRFK ind(x).

- Simulate the partial decryption, pind ← Sim
(
C0(x), ĈTout, ind, {ski}i∈[n]\{ind}; rind

)
.

- Output pind.

Figure 4: Circuit H3

it is generated as an obfuscation of circuit H0 as done in a genuine obfuscation of Cb.
In Hyb2.1.0 it is generated as follows: H1 ← Πind.Obf(1

λ,H1), where H1 = H1

[
z = 0, C0,K

ind
z , skind,

{ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n], v
]

is described in Figure 2. Gind is set as H1. Here v is set as
in Hyb2.1.0.
Note that H1 instantiated with (z = 0, v) is functionally equivalent to H0. This is because the only
point at which these two circuits may differ is the input z = 0λ. Because at all points x > 0, both
circuits evaluate the same code except that H0 uses a PRF key K ind while H1 uses a punctured
PRF key (punctured at 0λ). Since the puncturable PRF is correct, the evaluation at all points
x > 0 guarantees same output.
At this input z = 0λ, H1 outputs the hard coded value v. By the definition of hybrid Hyb2.1.0, v is
set to be equal to the output of H0 at 0λ which causes two circuits to be functionally equivalent.
The security now follows from the security of indistinguishibility obfuscator candidate Πind.

Lemma 3. If puncturable PRF is δprf -secure then for any PPT adversary A and z ∈ {0, 1}λ, it

holds that
∣∣∣Pr[A(Hyb2.1.z) = 1

]
− Pr

[
A(Hyb2.2.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb2.1.z and Hyb2.2.z, K
ind is absent and both these hybrids

depend only on the key punctured at z, K ind
z and a string rindz (evaluation of the PRF at z). In

Hyb2.2.z, r
ind
z is sampled randomly while in Hyb2.1.z it is generated as the evaluation of the PRF

using the (unpunctured) key K ind at z.
The security now follows from the security of δprf -secure puncturable PRF at the punctured point
z.

Lemma 4. If TMFHE is µ-secure then for any PPT adversary A and z ∈ {0, 1}λ, it holds that∣∣∣Pr[A(Hyb2.2.z) = 1
]
− Pr

[
A(Hyb2.3.z) = 1

]∣∣∣ < µ.

Proof. The only difference between Hyb2.2.z and Hyb2.3.z is the manner in which the hard coded
value v is generated. In Hyb2.2.z it is generated by executing the partial decryption algorithm,
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pzind ← PartDec
(
ĈTout, pk1, . . . , pkn, ind, skind; rzind

)
using uniformly sampled randomness rzind. v is

then set as pzind.

In Hyb2.3.z it is generated by executing pzind ← Sim
(
C0(z), ĈTout, ind, {ski}i∈[n]\{ind}; rind

)
. v is then

set as pzind.
The security now follows from the statistical closeness of the simulated share for the index ind from
the shares generated by the partial decryption algorithm.

Lemma 5. If puncturable PRF is δprf -secure then for any PPT adversary A and z ∈ {0, 1}λ, it

holds that
∣∣∣Pr[A(Hyb2.3.z) = 1

]
− Pr

[
A(Hyb2.4.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb2.3.z and Hyb2.4.z, PRF key K ind is absent and both these
hybrids depend only on the key punctured at z, K ind

z and a string rindz . In Hyb2.3.z r
ind
z is sampled

randomly while in Hyb2.4.z it is generated as the evaluation of the PRF using the (unpunctured)
key K ind at z.
As the puncturable PRF is δio-secure, the lemma follows.

Lemma 6. If Πind is a δio-secure IO candidate then for any PPT adversary A and z ∈ {0, 1}λ, it

holds that
∣∣∣Pr[A(Hyb2.4.z) = 1

]
− Pr

[
A(Hyb2.5.z) = 1

]∣∣∣ < δio.

Proof. The only difference between Hyb2.5.z and Hyb2.4.z is the manner in which Gind is generated.
In Hyb2.5.z it is generated as follows: H2 ← Πind.Obf(1

λ,H2), where H2 = H2

[
z, C0,K

ind, skind,

{ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]
]

is described in Figure 3. Gind is set to be equal to H2.

In Hyb2.4.z it is generated as follows: Generate the obfuscation, H1 ← Πind.Obf(1
λ,H1), where

H1 = H1

[
z+ 1, C0,K

ind
z , skind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n], v

]
is described in Figure 2. Gind

is set as = H1. Here v is instantiated as in Hyb2.4.z.
Note that circuits H2 when instantiated with z and H1 instantiated with z and v are functionally
equivalent. This is because the only point at which these two circuits may differ is the input z.
Because at all points x 6= z, both circuits evaluate the same code except that H2 uses a PRF key
K ind while H1 uses a punctured PRF key (punctured at z). Since the puncturable PRF is correct,
the evaluation at all points x 6= z guarantees same output.
At this input z, H1 outputs the hard coded value v. By the definition of hybrid Hyb2.4.z, v is set
to be equal to the output of H2 at z which causes two circuits to be functionally equivalent. The
security then follows from the security of indistinguishibility obfuscator candidate Πind.

Lemma 7. If Πind is a δio-secure IO candidate then for any PPT adversary A and z ∈ {0, 1}λ \
2λ − 1, it holds that

∣∣∣Pr[A(Hyb2.5.z) = 1
]
− Pr

[
A(Hyb2.1.z+1) = 1

]∣∣∣ < δio.

Proof. The only difference between Hyb2.5.z and Hyb2.1.z+1 is the manner in which Gind is generated.
In Hyb2.5.z it is generated as follows: H2 ← Πind.Obf(1

λ,H2), where H2 = H2

[
z, C0,K

ind, skind,

{ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]
]

is described in Figure 3. Gind is set to be equal to H2.

In Hyb2.1.z+1, it is generated as follows: Generate the obfuscation, H1 ← Πind.Obf(1
λ,H1), where

H1 = H1

[
z+1, C0,K

ind
z+1, skind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n], v

]
is described in Figure 2. Gind

is set as = H1. Here v is instantiated as in Hyb2.1.z+1.
Note that circuits H2 when instantiated with z and H1 instantiated with z+1 and v are functionally
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equivalent. This is because the only point at which these two circuits may differ is the input z+ 1.
Because at all inputs x 6= z + 1, both circuits evaluate the same code except that H2 uses a PRF
key K ind while H1 uses a punctured PRF key (punctured at z + 1). Since the puncturable PRF is
correct, the evaluation at all points x 6= z + 1 guarantees same output.
At this input z+ 1, H1 outputs the hard coded value v. By the definition of hybrid Hyb2.1.z+1, v is
set to be equal to the output of H2 at z+ 1 which causes two circuits to be functionally equivalent.
The security then follows from the security of indistinguishibility obfuscator candidate Πind.

Lemma 8. If Πind is δio-secure then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb2.5.2λ−1) =

1
]
− Pr

[
A(Hyb3) = 1

]∣∣∣ < δio.

Proof. The only difference between Hyb2.5.2λ−1 and Hyb3 is the manner in which Gind is generated.
In Hyb2.5.2λ−1 it is generated as follows: H2 ← Πind.Obf(1

λ,H2), where H2 = H2

[
z = 2λ−1, C0,K

ind
z ,

skind, {ski}i∈[n]\{ind}, {pki}i∈[n], {ĈTi}i∈[n]
]

is described in Figure 3. Gind is set to be equal to H2.

In Hyb3, it is generated as follows: H3 ← Πind.Obf(1
λ,H3), where H3 = H3

[
C0,K

ind, {ski}i∈[n]\{ind},
{pki}i∈[n], {ĈTi}i∈[n]

]
is described in Figure 4. Set Gind = H3.

Note that circuits H2 when instantiated with z = 2λ − 1 and H3 are functionally equivalent. This
is because at all inputs x, both circuits evaluate the same code except that H2 has skind hardcoded
while H1 does not.
The security then follows from the security of indistinguishibility obfuscator candidate Πind.

Lemma 9. If TMFHE is secure if for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb3) = 1

]
−

Pr
[
A(Hyb4) = 1

]∣∣∣ < negl(λ).

Proof. The only difference between Hyb3 and Hyb4 is the manner how CTind is generated. In Hyb3
it is generated as an TMFHE encryption of Sind under pkind while in Hyb4 it is generated as an
encryption of Sind⊕Cb⊕C0 under pkind. Note that skind is not involved in both these hybrids. The
indistinguishability then follows from the semantic security of TMFHE.

Lemma 10. For any PPT adversary A, the advantage of guessing b′ correctly in Hyb4 is exactly
0.

Proof. In Hyb4, the strings {Si}i∈[n] used while computing {ĈTi}i∈[n] is distributed identically as
shares of C0. Hence, Hyb4 carries no information about but b and the claim follows.

Summing up advantages, we get that the advantage of adversary in the obfuscation security
game is bounded by 2λ+1µ+ 2λ+1δio + 2λ+1δprf + negl. Upon setting µ, δio and δprf to be O(2−2λ)
we get our claim.

5.2 DDH-Based Construction

In this section we present our construction from DDH. Before doing so, we look at some of the
primitives that are used for our construction of IO combiner based on DDH.
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5.2.1 Main Ingredients

SSS-NIZK. Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements in R.

A non-interactive proof system for a relation R consists of a common reference string generation
algorithm K, a prover P and a verifier V . We require that they all be probabilistic polynomial time
algorithms, i.e., we are looking at efficient prover proofs. The common reference string generation
algorithm produces a common reference string σ of length Ω(λ). The prover takes as input (σ, x, w)
and produces a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable
and 0 if rejecting the proof. We call (Σ, P, V ) a non-interactive proof system for R if it has the
completeness and statistical-soundness properties described below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can
convince an honest verifier. Formally we have

Pr
[
σ ← K(1λ) : ∃(x, π) : x /∈ L : V (σ, x, π) = 1

]
= 1.

Statistical soundness. A proof system is sound if it is infeasible to convince an honest verifier
when the statement is false. For all (even unbounded) adversaries A we have

Pr
[
σ ← Σ(1λ); (x, π)← A(σ) : V (σ, x, π) = 1 : x 6∈ L

]
= negl(λ).

Computational zero-knowledge. A proof system is computational zero-knowledge if the
proofs do not reveal any information about the witnesses to a bounded adversary. We say a
non-interactive proof (Σ, P, V ) is computational zero-knowledge if there exists a polynomial time
simulator S = (S1, S2), where S1 returns a simulated common reference string σ together with a
simulation trapdoor τ that enables S2 to simulate proofs without access to the witness. For all
non-uniform polynomial time adversaries A we have for all x ∈ L

Pr
[
σ ← Σ(1λ);π ← P (σ, x, w) : A(x, σ, π) = 1

]
≈c

Pr
[
(σ, τ)← S1(1

λ, x);π ← S2(σ, τ, x) : A(x, σ, π) = 1
]
.

Statistical Simulation-Soundness (SSS). A proof system is said to be statistically simulation
sound if it is infeasible to convince an honest verifier of a false statement even when the adversary
itself is provided with a simulated proof. For all statements x and all (even unbounded) adversaries
A we have

Pr
[
(σ, τ)← S1(1

λ, x);π ← S2(σ, τ, x) : ∃(x′, π′) : x′ 6= x : V (σ, x′, π′) = 1 : x′ /∈ L
]

= negl(λ).

Such statistical sound NIZK’s can be constructed as in [GGH+13b].

Re-randomizable Garbled Circuits. We import the definitions of a variant of re-randomizable
garbled circuits [GHV10] from [ACG+14]. This construction can be based on DDH and
suffices for our construction. The garbling scheme consists of four algorithms Garble =
(YaoGarbledCkt,FHEEval,Sim, reRand) described below.
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- YaoGarbledCkt(1λ, C) → (GC,w). Takes as input a circuit C with n inputs and outputs a
garbled circuit GC and set of wire labels w = {wi,0, wi,1}i∈[n].

- Eval(GC,wx)→ y. The evaluate algorithm takes as input the garbled circuit and set of labels
wx = {wi,xi}i∈[n] corresponding to some input x and outputs y.

- Sim(1λ, |C|, C(x)) → (G̃C, w̃x). takes as input a value C(x) and a size |C| and produces a
simulated garbled circuit G̃C and labels w̃x.

- reRand(GC,wx;R)→ (GC′,w′x). The re-randomization algorithm takes as input a randomness
value R a garbled circuit GC and input labels wx for some input x and computes a new garbled
circuit GC′ and labels w′x.

We require following properties from the scheme:
Correctness: The correctness is two fold. First, the FHEEval algorithm on input a garbled circuit
GC and labels wx generated for some circuit C an input x by YaoGarbledCkt algorithm must
output C(x). Second, re-randomized garbled circuit and labels should also give correct outputs.

Simulation security: We require the following distributions to be computationally close:{
GC,wx

}
≈c
{
G̃C, w̃x

}
Here GC and wx are the garbled circuit and labels corresponding to some circuit C and input
x respectively which are generated by YaoGarbledCkt algorithm. G̃C, w̃x are generated using the
simulated algorithm Sim.

Re-randomization security: Let GC w be a garbled circuit and set of labels for C gen-
erated by the YaoGarbledCkt algorithm. Then it must hold that.

{
GC
′
,w
′
x,GC,w

}
≈c
{
GC
′′
,w
′′
x,GC,w

}
Here the garbled circuit GC

′
and labels w

′
x (corresponding to input x) is obtained by re-randomizing

the garbled circuit GC and the labels wx using reRand algorithm. Garbled circuit GC
′′

and labels
w
′′
x (corresponding to input x), is generated afresh by garbling C using the YaoGarbledCkt algorithm.

A re-randomizable garbled circuit is µ−secure if the advantage of any PPT adversary in
breaking the simulation and re-randomization security is less than µ.

Homomorphic Re-encryption Scheme. We also require a weakly homomorphic encryption
scheme HE = (KeyGen,ReKey,Enc,Dec,HEEval,ReEncrypt). All the algorithms are as in a standard
public key re-encryption scheme except that additionally we have an algorithm HEEval that takes
in a ciphertext corresponding to set of ciphertext corresponding to a re-randomizable garbled
circuit and labels for any input x and a randomness value and outputs a ciphertext encrypting
re-randomized garbled circuit and labels for the same input according to the algorithm reRand.
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The algorithm ReKey takes as input two secret keys sk1 and sk2 and outputs a re-encryption
key τ1,2. The ReEncrypt algorithm is a randomized algorithm that takes as input a ciphertext
CT corresponding to message m encrypted under pk1 and a re-encryption key τ1,2 and outputs a
ciphertext encrypting the same message under pk2.

From security point of view we require that the distribution of a re-encrypted cipher-text
(re-encrypted from under public-key pk1 to pk2 ) for any message m should be statistically close
(with distance ε) to the distribution of a fresh ciphertext encrypting m encrypted under pk2.
We call such a scheme ε-secure weakly homomorphic re-encryption scheme. A description of
re-randomizable garbled circuit and re-encryption scheme satisfying these properties constructed
assuming DDH can be found in [BBS98].

5.2.2 Construction

We use a puncturable PRF and a non-interactive statistically binding commitment scheme Com.
Let HE be a 2−2λ-secure weakly homomorphic encryption scheme and Garble be a re-randomizable
garbled circuit scheme as described above SSSNIZK = (Σ, P, V, S) be a statistically simulation
sound NIZK proof system. We are now ready to present our construction. The construction is
described at a high level as follows. The obfuscator computes a re-randomizable garbled circuit
and labels for the circuit C as GC and w. It samples n + 1 public key-secret key pair for the
re-encryption scheme HE and also computes n re-encryption keys τi for all i ∈ [n] (τi converts a
ciphertext under pki to one under pki+1). Then GC,w are encrypted under pk1. Finally for all
i ∈ [n], we obfuscate a special circuits Gi (using Πi) which takes input as a ciphertext encrypting
garbled circuit and labels (under pki) corresponding to an input x along with some proofs (with
respect to some commitments, that the computations are done correctly). Gi verifies these proofs
and then re-encrypts/re-randomizes these cipher-text under the public key pki+1. The obfuscation
consists of the encryptions of the garbled circuits and the labels under pk1, n obfuscated programs,
the secret key skn+1.

We construct an IO combiner Πcomb = Πcomb[Π1, . . . ,Πn] for C below.

CombObf(1λ, C,Π1, . . . ,Πn): It takes as input security parameter λ, circuit C ∈ Cλ with λ inputs,
description of candidates {Πi = (Πi.Obf,Πi,Eval)}i∈[n] and does the following.

1. Setup phase:

- Run the setup of encryption scheme {HE.KeyGen(1λ)→ (pki, ski)}i∈[n+1].

- Compute the re-encryption keys HE.ReKey(ski, ski+1)→ τi.

- Sample puncturable PRF keys {PRF.Setup(1λ)→ Ki,j}i∈[n],j∈[3]
- Compute commitments Z = Com(0), Zi = Com(τi) and {Zi,j = Com(Ki,j)∀i ∈ [n], j ∈

[2]}. Let

{
a, {ai, ai,j}i∈[n],j∈[2]

}
be the openings to the commitments.

2. Setting up Circuits:

- Garble the circuit C, i.e. (GC,w)← YaoGarbledCkt(1λ, C).

- Compute encryptions of the garbled circuit and the labels under pk1, CT =
HE.Enc(pk1,GC) and CTi,j = HE.Enc(pk1, wi,j) for i ∈ [λ], j ∈ {0, 1}.
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- Run the setup of SSSNIZK proof, Σ(1λ)→ σ.

- Now we define relation R0. X satisfies the relation R0 if X = (x, y) iff:

(a) x ∈ {0, 1}λ

(b) y = {CT,CTi,xi}i∈λ
- For i ∈ [n], we now define a language Li for a SSSNIZK proof (let Vi be the SSSNIZK

verifier):

For instance X = (x,CTi−1, {CTi−1j,xj
}j∈[λ],CTi, {CTij,xj}j∈[λ]), (X, v) ∈ Li if the

following happens.

* Either all of the conditions described below occur

1 Zi = Com(τi; ai)

2 Zi,j = Com(Ki,j ; ai,j)∀j ∈ [2]

3 Let Q = HEEval

(
pki,CT

i−1, {CTi−1k,xk
}k∈[λ], reRand(;F(Ki,1, x))

)
. Then

{CTi, {CTik,xk}k∈[λ]} =

ReEncrypt

(
τi, Q;F(Ki,2, x)

)
* or, Z = Com(i; a)

- For every i ∈ [n], construct circuit Gi = Gi[Z, {Zk, Zk,j ,Ki,j}k∈[n],j∈[3], pkj∈[n+1],
τi,CT, {CTl,j}l∈[λ],j∈{0,1}] ∈ Ci as described in Figure 5.

3. Obfuscating Circuits with Candidates

- Generate Gi ← Πi.Obf(1
λ, Gi).

Output the obfuscation C =
(
CT, {CTi,j}i∈[λ],j∈{0,1}, skn+1, G1, . . . , Gn

)
.

CombEval(C, x,Π1, . . . ,Πn): Parse C = (CT, {CTi,j}i∈[λ],j∈{0,1}, skn+1, G1, .., Gn). On input an

obfuscation C, to evaluate on x, compute y0 by selecting encryptions CT, {CTi,xi}i∈[λ]. Then

iteratively compute Πi.Eval
(
Gi, (x, y0, ..., yi−1, π1, .., πi)

)
= (yi, πi) for i ∈ [n]. Recover a garbled

circuit and set of labels for x (i.e. GCn,wn,x) by decrypting yn using skn+1. Evaluate and output
Garble.FHEEval(GCn,wn,x).
Instantiations: We note that Com can be instantiated using ElGamal commitments. SSSNIZK
are known from IO and one way functions [BP15]. We remark that for the security proof, it is
enough to consider a construction in which each circuit Gi uses a SSSNIZK constructed from Πi

and DDH to prove statements.

5.2.3 Correctness and Security of Πcomb

Theorem 9. If for all i ∈ [n], Πi is (1)-correct, then Πcomb = Πcomb[Π1, . . . ,Πn] is (1)-correct.

Proof Sketch. We prove the correctness of the above scheme below. Consider a circuit C ∈ Cλ
and let x ∈ {0, 1}λ. Let Gi, for every i ∈ [n], be the circuit generated during the execution of
Obf(1λ, C,Π1, . . . ,Πn). Let Gi ← Πi.Obf(1

λ, Gi). Finally let C = (CT, {cti,j}i∈[λ],j∈{0,1}, skn+1,
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Gi
[
Z, {Zk, Zk,j ,Ki,j}k∈[n],j∈[3], pkj∈[n+1], τi,CT, {CTl,j}l∈[λ],j∈{0,1}

]
Hardwired values: Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Openings ai,j∈[2], PRF keys
{Ki,j}j∈[3] , Public Keys pkj∈[n+1], Re-encryption keys τi, Encrypted garbled circuit and
labels CT, {CTl,j}l∈[λ],j∈{0,1}
Input: X = (x, y0, y1, .., yi−1, π1, ..., πi−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [i − 1]. If
any check fails then abort.

- Compute randomness αl ← F(Ki,l, x) for l ∈ [3].

- Let Q = HE.HEEval
(
pki,CT

i−1, {CTi−1k,xk
}k∈[λ], reRand (;α1)

)
. Compute yi ←

HE.ReEncrypt (τi, Q;α2).

- Compute a SSSNIZK proof πi for the statement that there exists a witness v such
that (x, yi−1, yi, v) ∈ Li by proving the first statement for the language Li using the
hard-wired witness.

- Output (yi, πi)

Figure 5: Circuit Gi

G1 . . . Gn) be the output of CombObf. On input an obfuscation C, to evaluate on x, compute
y0 by selecting encryptions CT, {CTi,xi}i∈[λ]. Then iteratively compute Πi.Eval

(
Gi, (x, y0, ..., yi−1,

π1, .., πi)
)

= (yi, πi) for i ∈ [n]. Recover a garbled circuit and set of labels for x (i.e. GCn,wn,x) by
decrypting yn using skn+1. Evaluate and output Garble.FHEEval(GCn,wn,x).
Note that when each Πi is correct, evaluation of each Gi on input x is the same as the evaluation of
Gi on x. The circuits G1 takes in an encrypted garbled circuit and labels for an input x under pk1
and computes a re-encryption/re-randomization of the garbled circuit and labels under pk2 along
with a statistically sound proof that this computation is correct. The circuit G2 takes in this proof
along with set of encrypted labels and circuits along with the input x. It verifies these proofs and
computes a re-encryption/re-randomization of garbled circuit and labels for x in pk3 along with a
proof. Iteratively, Gn computes computes a re-encryption/re-randomization of garbled circuit and
labels for x in pkn+1. If the re-encryption algorithm and garbled circuits are correct this evaluation
gives us C(x) as output.

Theorem 10. Consider a circuit class C ∈ P/poly. Assuming subexponentially secure DDH the
scheme Πcomb is an (2−2λ, negl(λ)) IO combiner for C.

Proof. We first sketch the proof and give the formal details later. We now sketch a sequence of 2λ

hybrids and argue indistinguishability. The first hybrid corresponds to an obfuscation of Cb, while
the last hybrid is independent of b (hence, the advantage of adversary in this hybrid is 0). Each
hybrid is indistinguishable from each other implying security.
From the first hybrid, we go to a hybrid where Z = Com(ind). Since, the opening of Z was not used
in any of the proofs, these two hybrids are indistinguishable. Changing Z allows the obfuscation
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Gi to cheat in the proofs. Now define a sequence of exponential number of hybrids. We go input
by input where inputs to Gi are of the form (x, y0, .., yind−1, π1, ..., πind−1). We first puncture Ki,3

(used for generating SSSNIZK) at point x = z (z = 0 initially) and use the actual evaluation at z for
generating proofs (if the input proofs verify). These two hybrids are close because of correctness of
the PRF and security of Πind. In the next hybrid, we use a random value instead of the actual PRF
and hard-wire the proof. These two hybrids are close because of the security of the puncturable
PRF. Now we simulate the SSSNIZK at input such that x = z. Security holds because of the
zero knowledge property of SSSNIZK. In the next hybrid we puncture keys Ki,1 and Ki,2 at input
x. These two hybrids are close because of the correctness of PRF and security of Πind. We then
hard-wire the re-encryption/re-randomization with a fresh encryption of a new garbled circuit for
C0 and input x. This hybrid is indistinguishable from the previous hybrid due to µ−security of the
re-encryption scheme and re-randomization security of the garbled circuit. In the next hybrid ,we
output an encryption of simulated garbled circuit at inputs such that x = z. These two hybrids
are indistinguishable due to the security of the simulation security of the garbled circuit. Now we
give a genuine SSSNIZK using the trapdoor for Z. In the next hybrid, we unpuncture the PRF
keys Ki,1,Ki,2 and Ki,3 (by first going from random to actual evaluations at z). These hybrids
are indistinguishable from security of Πind and security/correctness of the PRF. This way we go
input by input from z = 0 to z = 2λ to a circuit that outputs a fresh encryptions of simulated
garbled circuit (simulated using C0). At this point we remove the re-encryption key τind from the
obfuscation Gind. These hybrids are indistinguishable due the security of Πind. Finally, we can can
change the encryptions CT, {CTi,j}i∈[λ],j∈{0,1} to an encryption of garbled circuit for C0. These two
hybrids are close due to polynomial security of the re-encryption scheme. Note that hybrid carry
no information about b.

We give the formal description of the hybrids next.

Hybrids: Consider a set of IO candidates Π1, . . . ,Πn. Let Πind be a secure IO candidate for some
ind ∈ [n]. We employ the standard hybrid argument to prove the theorem. Consider two circuits
C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x ∈ {0, 1}λ. In the first hybrid (Hyb1), the circuit

Cb is obfuscated honestly with b
$←− {0, 1}. In the final hybrid (Hyb7), the obfuscated circuit the

adversary has no information about b. At this point, the probability of guessing the bit b is exactly
1/2. By arguing indistinguishability of every consecutive intermediate hybrids, we show that the
probability of guessing b in the first hybrid is negligibly close to 1/2 (or the advantage is 0), which
proves the theorem.

In the following set of hybrids, denote A to be a PPT adversary.

Hyb1: Pick a bit b at random. The adversary receives the obfuscation Cb, where

Cb ← Πcomb.CombObf(1λ, Cb,Π1, . . . ,Πn). Let A output b′. Output of Hyb1 is b′.

Hyb2: This hybrid is the same as the previous hybrid except that Z is a commitment of ind.

Hyb3.1.z for z ∈ [0, 2λ]: This hybrid is the same as the previous hybrid except that Gind is generated
as an obfuscation of the circuit (denoted by H1) described in 6.

Hyb3.2.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except the following.

- Puncture Kind,3 at z to compute, Kz
ind and rzind ← PRFKind,3

(z).
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H1

[
z, Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[3], pkj∈[n+1], τind,CT, {CTl,j}l∈[λ],j∈{0,1}, a, aind, aind,j∈[2]

]
Hardwired values: Input index z, Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Openings
a, aind, aind,j∈[2], PRF keys {Kind,j}j∈[3], Public Keys pkj∈[n+1], Re-encryption key τind, En-
crypted garbled circuit and labels CT, {CTl,j}l∈[λ],j∈{0,1}.
Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Parse yi = (CTi−1, {CTi−1k,xk
}k∈[λ]) for i ≥ 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Compute randomness αl ← F(Ki,l, x) for l ∈ [3].

- Let Q = HE.HEEval
(
pkind−1,CT

ind−1, {CTind−1
k,xk

}k∈[λ], reRand (;α1)
)

. Compute yind ←
HE.ReEncrypt (τind, Q;α2).

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yi−1, yi, v) ∈ Li. If x ≥ z prove the first statement for the language Li using
the hard-wired witness. If x < z prove the second statement by using the trapdoor
witness (opening of Z). This proof is computed using the randomness PRFKind,3

(x).

- Output (yind, πind)

Figure 6: Circuit H1

- Construct circuits Gi for i ≤ ind. Then iteratively compute Gi(x, y0, ..., yi−1, π1, .., πi) =
(yi, πi) for i ∈ [ind]

- Compute a SSSNIZK proof πzind that (z, yind−1, yind) ∈ Lind by proving the first statement and
using the randomness rzind.

- Gind is now generated as an obfuscation of the circuit (denoted by H2) described in 7.

Hyb3.3.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that rzind is sampled
randomly.

Hyb3.4.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that πzind is computed
by proving the second statement of the proof (Z is a commitment of ind).

Hyb3.5.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that rzind is computed
as PRFKind,3

(z).

Hyb4: This hybrid is the same as the previous hybrid except that Gind is now generated as an
obfuscation of the circuit (denoted by H3) described in Figure 8.

Hyb5.0 for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that Zind, Zind,1, Zind,2

is now a commitment of 0.
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H2

[
z, Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[2],Kz

ind, pkj∈[n+1], τind,CT, {CTl,j}l∈[λ],j∈{0,1}, a, aind,
aind,j∈[2], π

z
ind

]
Hardwired values: Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Openings a, aind, aind,j∈[2], PRF
keys {Kind,j}j∈[2] and a punctured key Kz

ind, Public Keys pkj∈[n+1], Re-encryption key τind,
Encrypted garbled circuit and labels CT, {CTl,j}l∈[λ],j∈{0,1}, Proof πzind
Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Compute randomness αl ← F(Kind,l, x) for l ∈ [3].

- Parse yi = (CTi−1, {CTi−1k,xk
}k∈[λ]) for i ≥ 1.

- Let Q = HE.HEEval
(
pki,CT

ind−1, {CTind−1
k,xk

}k∈[λ], reRand (;α1)
)

. Compute yind ←
HE.ReEncrypt (τind, Q;α2).

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yi−1, yi, v) ∈ Li. If x > z prove the first statement for the language Li using
the hard-wired witness. If x < z prove the second statement by using the trapdoor
witness (opening of Z). The proof is generated using the randomness PRFKz

ind
(x). At

x = z use the hard-wired proof πind = πzind

- Output (yind, πind)

Figure 7: Circuit H2

Hyb5.1.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that Gind is an
obfuscation of the circuit (denoted as H4) described in Figure 9.

Hyb5.2.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that following is
done.

- Puncture Kind,2 at z to compute, Kz
ind,2 and rzind,2 ← PRFKind,2

(z). Also puncture Kind,3 at z
to compute, Kz

ind,3 and rzind,3 ← PRFKind,3
(z).

- Construct circuits Gi for i ≤ ind. Then iteratively compute Gi(z, y0, ..., yi−1, π1, .., πi) =
(yi, πi) for i ∈ [ind− 1]. Parse yind−1 = CTind−1, {CTind−1

k,zk
}k∈[λ].

- Let Q = HE.HEEval
(
pkind,CT

ind−1, {CTind−1
k,zk

}k∈[λ], reRand (;α1)
)

. Compute yzind ←
HE.ReEncrypt (τind, Q;α2).

- Compute a SSSNIZK proof πzind that (z, yind−1, yind) ∈ Lind by proving the first statement and
using the randomness rzind.

- Gind is now generated as an obfuscation of the circuit (denoted by H5) described in 10.
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H3

[
Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[3], pkj∈[n+1], τind,CT, {CTl,j}l∈[λ],j∈{0,1}, a

]
Hardwired values: Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Opening a, PRF keys
{Kind,j}j∈[3], Public Keys pkj∈[n+1], Re-encryption key τind, Encrypted garbled circuit and
labels CT, {CTl,j}l∈[λ],j∈{0,1}.
Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Parse yi = (CTi−1, {CTi−1k,xk
}k∈[λ]) for i ≥ 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Compute randomness αl ← F(Kind,l, x) for l ∈ [3].

- Let Q = HE.HEEval
(
pkind,CT

ind−1, {CTind−1
k,xk

}k∈[λ], reRand (;α1)
)

. Compute yind ←
HE.ReEncrypt (τind, Q;α2).

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yind−1, yind, v) ∈ Lind. This is done by proving the second statement by using
the trapdoor (opening of Z) as a witness. This proof is computed using the random-
ness PRFKind,3

(x).

- Output (yind, πind)

Figure 8: Circuit H3

Hyb5.3.z for z ∈ {0, 1}λ: This hybrid is the same as the previous except that rzind,1 and rzind,2 are
sampled randomly.

Hyb5.4.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that yzind is computed
differently.

- Construct circuits Gi for i ≤ ind. Then iteratively compute Gi(z, y0, ..., yi−1, π1, .., πi) =
(yi, πi) for i ∈ [ind − 1]. Parse yind−1 = CTind−1, {CTind−1

k,zk
}k∈[λ]. Decrypt yind−1 with skind−1

to get GCzind−1,w
z
ind−1.

- Let Q = reRand(GCzind−1,w
z
ind−1). Compute yzind ← HE.Enc(pkind, Q).

Hyb5.5.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that yzind is
computed differently.

- Garble the circuit Cb, i.e. (GC,w) ← YaoGarbledCkt(1λ, Cb; r
z
ind,1). Let wz denote the labels

for input z.

- Compute yzind = HE.Enc(pkind,GC,w
z; rzind,2).

Hyb5.6.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that yzind is computed
differently.
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H4

[
z, Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[3], pkj∈[n+1], τind,CT, {CTl,j}l∈[λ],j∈{0,1}, a, C0

]
Hardwired values: Input index z, Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Openings a, PRF
keys {Kind,j}j∈[3], Public Keys pkj∈[n+1], Re-encryption key τind, Encrypted garbled circuit
and labels CT, {CTl,j}l∈[λ],j∈{0,1}, circuit C0.
Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Compute randomness αl ← F(Ki,l, x) for l ∈ [3].

- If x ≥ z, let Q = HE.HEEval
(
pkind,CT

ind−1, {CTind−1
k,xk

}k∈[λ], reRand (;α1)
)

. Compute

yind ← HE.ReEncrypt (τind, Q;α2).

- If x < z, compute a simulated garbled circuit (G̃C, w̃x) ← Sim(1λ, |C|, C0(x);α1).
Encrypt (G̃C, w̃x) under pkind using randomness α2 to get yind

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yind−1, yind, v) ∈ Lind. This is done by proving the second statement by using
the trapdoor (opening of Z) as a witness. This proof is computed using the random-
ness PRFKind,3

(x).

- Output (yind, πind)

Figure 9: Circuit H4

- Garble the circuit Cb, i.e. (GC,wz) ← Sim(1λ, |C0|, C0(z), r
z
ind,1). Let wz denote the labels

for input z.

- Compute yzind = HE.Enc(pkind,GC,w
z; rzind,2).

Hyb5.7.z for z ∈ {0, 1}λ: This hybrid is the same as the previous hybrid except that rzind,1 and rzind,2
are generated as PRFKind,1

(z) and PRFKind,2
(z).

Hyb6: This hybrid is the same as the previous hybrid except that Gind is an obfuscation of the
circuit (denoted as H6) described in Figure 11.

Hyb7: This hybrid is the same as the previous hybrid except that now CT,CTi,j for all i ∈ [λ], j ∈
{0, 1} encrypt 0.

Indistinguishability of Hybrids: We begin with some notation.

Notation: Let us assume that the secure candidate Πind be δio−secure and the PRF be δprf−secure.
Also assume that the garbling scheme is atleast δgb re-randomization and simulation secure and
that HE is atleast δhe-secure. We also denote SSSNIZK to be δSSSNIZK−secure.
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H5

[
z, Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[3], pkj∈[n+1], τind,CT, {CTl,j}l∈[λ],j∈{0,1}, a, C0, y

z
ind, π

z
ind

]
Hardwired values: Point z, Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Opening a, Punctured
PRF keys {Kz

ind,j}j∈[2], PRF key Kind,3, Public Keys pkj∈[n+1], Re-encryption key τind,
Encrypted garbled circuit and labels CT, {CTl,j}l∈[λ],j∈{0,1}, hardwired output (yzind, π

z
ind).

Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Parse yi = (CTi−1, {CTi−1k,xk
}k∈[λ]) for i ≥ 1.

- Compute randomness αl ← F(Kind,l, x) for l ∈ [3].

- If x > z, let Q = HE.HEEval
(
pkind,CT

ind−1, {CTind−1
k,xk

}k∈[λ], reRand (;α1)
)

. Compute

yind ← HE.ReEncrypt (τind, Q;α2).

- If x < z, compute a simulated garbled circuit (G̃C, w̃x) ← Sim(1λ, |C|, C0(x);α1).
Encrypt (G̃C, w̃x) under pkind using randomness α2 to get yind

- If x = z output (yzind, π
z
ind).

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yind−1, yind, v) ∈ Lind. This is done by proving the second statement by using
the trapdoor (opening of Z) as a witness. This proof is computed using the random-
ness PRFKind,3

(x).

- Output (yind, πind)

Figure 10: Circuit H5

Lemma 11. If Com is computationally hiding, then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb1) = 1
]
− Pr

[
A(Hyb2) = 1

]∣∣∣ < negl(λ).

Proof. The only difference in Hyb1 and Hyb2 is the manner in which Z is generated. In Hyb1 it is
generated as a commitment of 0 and in Hyb2 it is generated as a commitment of ind. Note that the
opening of Z is not used in any of the hybrids, hence the security follows from the security of the
commitment scheme.

Lemma 12. If Πind is δio−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb2) =

1
]
− Pr

[
A(Hyb3.1.0) = 1

]∣∣∣ < δio.

Proof. The only difference in Hyb2 and Hyb3.1.0 is the manner in which Gi is generated. In Hyb2 it
is generated as an obfuscation of circuit in Figure 5 while in Hyb3.1.0 it is an obfuscation of circuit
H1 described in Figure 2 (instantiated with z = 0) are equivalent. This is because on every input
these circuits implement the same code. Proof now follows from the security of Πind.
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H6

[
z, Z, {Zk, Zk,j ,Kind,j}k∈[n],j∈[3], pkj∈[n+1],CT, {CTl,j}l∈[λ],j∈{0,1}, a, C0

]
Hardwired values: Point z, Commitments Z, {Zk, Zk,j}k∈[n],j∈[2], Opening a,
PRF keys {Kind,j}j∈[3], Public Keys pkj∈[n+1], Encrypted garbled circuit and labels
CT, {CTl,j}l∈[λ],j∈{0,1}.
Input: X = (x, y0, y1, .., yind−1, π1, ..., πind−1).

- Check that y0 is a garbled circuit and set of labels (corresponding to input x), en-
crypted under pk1. That is, R(x, y0) = 1.

- Using the SSSNIZK verifier, check that Vl(x, yl−1, yl, πl) = 1 for every l ∈ [ind− 1]. If
any check fails then abort.

- Compute randomness αl ← F(Kind,l, x) for l ∈ [3].

- Compute a simulated garbled circuit (G̃C, w̃x) ← Sim(1λ, |C|, C0(x);α1). Encrypt
(G̃C, w̃x) under pkind using randomness α2 to get yind

- If x = z output (yzind, π
z
ind).

- Compute a SSSNIZK proof πind for the statement that there exists a witness v such
that (x, yind−1, yind, v) ∈ Lind. This is done by proving the second statement by using
the trapdoor (opening of Z) as a witness. This proof is computed using the random-
ness PRFKind,3

(x).

- Output (yind, πind)

Figure 11: Circuit H6

Lemma 13. If PRF is correct and Πind is δio−secure, then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb3.1.z) = 1
]
− Pr

[
A(Hyb3.2.z) = 1

]∣∣∣ < δio.

Proof. The only difference Hyb3.1.z and Hyb3.2.z is the way Gind is generated. In Hyb3.1.z it is
generated as an obfuscation of H1 (instantiated with z) while in Hyb3.2.z it is generated as an
obfuscation of H2 (instantiated with z). These circuits execute at the same code except at inputs
of the form (z, y0, .., yind−1, π0, .., πind−1) where H2 uses a PRF key punctured at z.
At this point the output of H2 is hard-coded to be the same as that of H1. The security now follows
from the security of Πind.

Lemma 14. If the PRF is δprf−secure, then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb3.2.z) = 1
]
− Pr

[
A(Hyb3.3.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb3.2.z and Hyb3.3.z PRF key Kind,3 is absent and both these
hybrids depend only on the key punctured at z, Kz

ind and a string rzind. In Hyb3.2.z r
z
ind is sampled

randomly while in Hyb3.2.z it is generated as the evaluation of the PRF using the (unpunctured)
key Kind at z. As the puncturable PRF is δprf−secure, the lemma follows

Lemma 15. If the SSSNIZK is δSSSNIZK−secure, then for any z ∈ {0, 1}λ any PPT adversary A,

it holds that
∣∣∣Pr[A(Hyb3.3.z) = 1

]
− Pr

[
A(Hyb3.4.z) = 1

]∣∣∣ < δSSSNIZK.
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Proof. The only difference between hybrids Hyb3.3.z and Hyb3.4.z is the way the proof πzind is gen-
erated. In both hybrids the proof is generated for the statement but the witness used is different.
The security now follows from the witness indistinguishability property of the SSSNIZK. Witness
indistinguishable property follows from the zero knowledge property via an intermediate hybrid.
First the proof is simulated and in the next hybrid the proof uses the other witness.

Lemma 16. If the PRF is δprf−secure then for all z ∈ {0, 1}λ, then for any PPT adversary A, it

holds that
∣∣∣Pr[A(Hyb3.4.z) = 1

]
− Pr

[
A(Hyb3.5.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb3.4.z and Hyb3.5.z PRF key Kind,3 is absent and both these
hybrids depend only on the key punctured at z, Kz

ind and a string rzind. In Hyb3.4.z r
z
ind is sampled

randomly while in Hyb3.5.z it is generated as the evaluation of the PRF using the (unpunctured)
key Kind at z. As the puncturable PRF is δprf−secure, the lemma follows

Lemma 17. If the PRF is correct and Πind−secure then for all z ∈ {0, 1}λ, then for any PPT

adversary A, it holds that
∣∣∣Pr[A(Hyb3.5.z) = 1

]
− Pr

[
A(Hyb3.1.z+1) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb3.1.z+1 and Hyb3.5.z differ only in the way Gind is generated. In hybrid
Hyb3.1.z+1 it is generated as an obfuscation of circuit H1 described in Figure 6 (instantiated with
z + 1) while in hybrid Hyb3.5.z it is generated as an obfuscation of circuit H2 described in Figure
7. These two programs execute the same code except that at input (z, y0, y1, .., yind−1, π0, .., πind−1)
where the output of the circuit in Hyb3.5.z are hard-wired to be the same as in Hyb3.1.z+1

Lemma 18. If the Πind is δio−secure then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb3.1.2λ) = 1
]
− Pr

[
A(Hyb4) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb3.1.2λ and Hyb4 differ only in the way Gind is generated. In hybrid
Hyb3.1.z+1 it is generated as an obfuscation of circuit H1 described in Figure 6 (instantiated with
z + 1) while in hybrid Hyb4 it is generated as an obfuscation of circuit H3 described in Figure 8.
These two programs execute the same code at all inputs hence are functionally equivalent. Security
now follows from the security of the candidate Πind.

Lemma 19. If the Com is computationally hiding then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb4) = 1
]
− Pr

[
A(Hyb5.0) = 1

]∣∣∣ < negl(λ).

Proof. The only difference between these two hybrids is the way the commitments Zind, Zind,1, Zind,2

are generated. In Hyb4 they are generated as commitments of τind,Kind,1,Kind,2 respectively while
in Hyb5.0 it is generated as a commitment of 0. The security now holds due to computational hiding
property of the commitment scheme.

Lemma 20. If the Πind is δio−secure then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb5.1.0) = 1
]
− Pr

[
A(Hyb5.0) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb5.1.0 and Hyb5.0 differ only in the way Gind is generated. In hybrid
Hyb5.1.0 it is generated as an obfuscation of circuit H4 described in Figure 9 (instantiated with
z = 0) while in hybrid Hyb5.0 it is generated as an obfuscation of circuit H3 described in Figure 8.
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These two programs execute the same code at all inputs hence are functionally equivalent. Security
now follows from the security of the candidate Πind.

Lemma 21. If the Πind is δio−secure then for any z ∈ {0, 1}λ PPT adversary A, it holds that∣∣∣Pr[A(Hyb5.1.z) = 1
]
− Pr

[
A(Hyb5.2.z) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb5.1.z and Hyb5.2.z differ only in the way Gind is generated. In hybrid
Hyb5.1.z it is generated as an obfuscation of circuit H4 described in Figure 9 (instantiated with
z) while in hybrid Hyb5.2.z it is generated as an obfuscation of circuit H5 described in Figure 10.
The only difference between these programs is the fact that H5 uses PRF keys Kz

ind,1 and Kz
ind,2

punctured at z. At all points (x, y0, .., yind−1, π0, .., πind−1) where x 6= z the circuit outputs are same
because of correctness of the puncturable PRF. At remaining points H5 uses the evaluation of the
PRF’s at z, rzind,1 and rzind,2 to ensure same outputs. Security now follows from the security of the
candidate Πind.

Lemma 22. If the PRF is δprf−secure then for all z ∈ {0, 1}λ, then for any PPT adversary A, it

holds that
∣∣∣Pr[A(Hyb5.2.z) = 1

]
− Pr

[
A(Hyb5.3.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb5.2.z and Hyb5.3.z PRF keys Kind,1,Kind,2 is absent and
both these hybrids depend only on the key punctured at z, Kz

ind,1,K
z
ind and a strings rzind,1, r

z
ind,2. In

Hyb5.3.z, they are sampled randomly while in Hyb5.2.z they generated as the evaluation of the PRF
using the (unpunctured) keys at z. As the puncturable PRF is δprf−secure, the lemma follows

Lemma 23. If HE is δhe−re-randomizable secure, then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb5.3.z) = 1
]
− Pr

[
A(Hyb5.4.z) = 1

]∣∣∣ < δhe.

Proof. The only difference between these hybrids is the way yzind is generated. In Hyb5.3.z, it is
generated as a re-encryption of a cipher-text encrypting of Q while in Hyb5.4.z it is generated as a
fresh encryption of Q under pkind. The security now holds from the security of the re-encryption
scheme.

Lemma 24. If Garble is δgb−re-randomizable secure, then for any PPT adversary A, it holds that∣∣∣Pr[A(Hyb5.4.z) = 1
]
− Pr

[
A(Hyb5.5.z) = 1

]∣∣∣ < δgb.

Proof. The only difference between the hybrids Hyb5.4.z and Hyb5.5.z is the way Q is generated. In
Hyb5.4.z it is a re-ranomized garbled circuit and labels for input z (denoted by yind−1). In Hyb5.5.z
it is a freshly generated garbled circuit for Cb. The security now holds from the re-randomization
security of the garbling scheme.

Lemma 25. If Garble is δgb−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb5.5.z) =

1
]
− Pr

[
A(Hyb5.6.z) = 1

]∣∣∣ < δgb.

Proof. The only difference between the hybrids Hyb5.5.z and Hyb5.6.z is the way Q is generated. In
Hyb5.5.z it is freshly generated grbled circuit for Cb and labels corresponding to input z. In Hyb5.6.z
it is generated as a simulated garbled circuit and labels constructed using Cb(x) = C0(x).
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Lemma 26. If PRF is δprf−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb5.6.z) =

1
]
− Pr

[
A(Hyb5.7.z) = 1

]∣∣∣ < δprf .

Proof. Note that in both these hybrids Hyb5.6.z and Hyb5.7.z PRF keys Kind,1,Kind,2 is absent and
both these hybrids depend only on the keys punctured at z, Kz

ind,1,K
z
ind,2 and a strings rzind,1, r

z
ind,2.

In Hyb5.6.z r
z
ind,1, r

z
ind,2 are sampled randomly while in Hyb5.7.z they are generated as the evaluation

of the PRF using the (unpunctured) keys at z. As the puncturable PRF is δprf−secure, the lemma
follows

Lemma 27. If Πind is δio−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb5.7.z) =

1
]
− Pr

[
A(Hyb5.1.z+1) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb5.1.z+1 and Hyb5.7.z differ only in the way Gind is generated. In hybrid
Hyb5.1.z+1 it is generated as an obfuscation of circuit H4 described in Figure 9 (instantiated with
z+1) while in hybrid Hyb5.7.z it is generated as an obfuscation of circuit H5 described in Figure 10.
These two programs execute the same code except that at input (z, y0, y1, .., yind−1, π0, .., πind−1)
where the output of the circuit in Hyb5.7.z are hard-wired to be the same as in Hyb5.1.z+1. Observe
that H5 uses punctured PRF keys Kz

ind,1 and Kz
ind,2 but this key is never evaluated at z and hence

these two circuits are equivalent. The security now follows from the security of Πind.

Lemma 28. If Πind is δio−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb5.1.2λ) =

1
]
− Pr

[
A(Hyb6) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb5.1.2λ and Hyb6 differ only in the way Gind is generated. In hybrid
Hyb5.1.2λ it is generated as an obfuscation of circuit H4 described in Figure 9 (instantiated with
z = 2λ) while in hybrid Hyb6 it is generated as an obfuscation of circuit H6 described in Figure 11.
These two programs execute the same code at all inputs hence are functionally equivalent. Security
now follows from the security of the candidate Πind.

Lemma 29. If HE is δhe−secure, then for any PPT adversary A, it holds that
∣∣∣Pr[A(Hyb6) =

1
]
− Pr

[
A(Hyb7) = 1

]∣∣∣ < δio.

Proof. Note that hybrids Hyb6 and Hyb7 differ only in the way CT,CTi,j∀i ∈ [λ], j ∈ {0, 1} is
generated. In hybrid Hyb6 it is generated as an obfuscation of a garbled circuit Cb and in Hyb7 it is
generated as an encryption of 0. Note that the hybrids consists of (pk, τ1, .., τind−1, τind+1, .., skn).
Since τind is missing, the security holds by the security of re-encryption scheme.

We now note that the advantage of adversary in Hyb7 is 0. This is because Hyb7 is indepen-
dent of b. To complete the security proof we sum up the advantages and claim that the sum is
negligible. Summing up advantages, we get that the advantage of adversary in the obfuscation
security game is bounded by 2λ+2δio + 2λ+2δprf + 2λδSSSNIZK + 2λδhe + 2λ+1δgb + negl(λ). Setting
δhe, δprf , δgb, δio, δSSSNIZK to be O(2−2λ) we get our claim.
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6 Universal Obfuscation

We introduce the notion of universal obfuscation. We define a pair of Turing machines Πuniv.Obf
and Πuniv.Eval to be a universal obfuscation if the existence of a secure IO candidate implies that
(Πuniv.Obf,Πuniv.Eval) is also a secure IO candidate. Constructing a universal obfuscation scheme
means that we can turn the mere existence of a secure IO candidate into an explicit construction.
Formally, we have the following definition:

Definition 7 ((T, ε)-Universal Obfuscation). We say that a pair of Turing machines Πuniv =
(Πuniv.Obf,Πuniv.Eval) is a universal obfuscation, parameterized by T and ε, if there exists an
ε-secure indistinguishability obfuscator for P/poly with time function T then Πuniv is an indistin-
guishability obfuscator for P/poly with time function poly(T ).

We present a construction of (T, ε)-universal obfuscation next.

6.1 Construction of (T, ε)-Universal Obfuscation

We proceed to construct a (T, ε)-universal obfuscation. The core building block in our construction
is a decomposable IO combiner – this is a specific type of IO combiner that satisfies additional prop-
erties (explained below). Once we have this tool, we then construct a (T, ε)-universal obfuscation
that is approximately correct. That is, for every circuit, the corresponding (universal) obfuscated
circuit agrees with the original circuit on a significant fraction of the inputs. We then apply the
transformation of Bitansky-Vaikuntanathan [BV16] to obtain a universal obfuscation scheme that
is exact. We flesh out the technical details below.

Main Ingredient: Decomposable IO Combiner. A decomposable IO combiner is a type of
IO combiner, where the obfuscate algorithm has a specific structure. In particular, the obfuscate al-
gorithm takes as input circuit C to be obfuscated, the description of the candidates Π1, . . . ,Πn and
executes in two main steps. In the first step, circuit C is preprocessed into n circuits [C]1, . . . , [C]n.
In the second step, each individual circuit [C]i is obfuscated using the candidate Πi. The concate-
nation of the resulting obfuscated circuits is the final output.

In addition to the standard properties of IO combiner, we require that the decomposable IO
combiner satisfies more properties:

- Circuit-Specific Correctness: We require that if the underlying candidate Πi is approximately-
correct (say, η-correct) on the specific circuit [C]i and this holds for every i ∈ [n], then the IO
combiner is approximately-correct (say, η′-correct where η′ is a function of η) on the original
circuit C. This is different from the correctness property (Definition 6) where it was required
that Πi is approximately-correct on every circuit.

- Decomposable Security: This property states that any n − 1 of {[C]1, . . . , [C]n} hides the
original circuit C. The hiding property is formalized in the form of an indistinguishability
experiment. Consider two arbitrary circuits C0, C1 – in particular, they need not be equiva-
lent. Then, the distribution of {[C]01, . . . , [C]0n} \{[C]0i } derived from C0 is computationally
indistinguishable from the distribution of {[C]11, . . . , [C]1n}\{[C]1i } derived from C1 for every
i ∈ [n].

We present the formal definition below.
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Definition 8 (Decomposable IO Combiner). A (ε′, ε)-secure IO combiner Πcomb = (Πcomb.Obf,
Πcomb.Eval) of (Π1, . . . ,Πn) for a class of circuits C = {Cλ} is said to be (ε′, ε)-secure (η′, η)-
decomposable IO combiner if there exists a PPT algorithm Preproc such that the following
holds: Πcomb.Obf on input (1λ, C ∈ Cλ,Π1, . . . ,Πn) executes the steps:

(a) (Preprocessing step) C = ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C),

(b) (Candidate Obfuscation step) for all i ∈ [n], [C]i ← Πi.Obf(1
λ, [C]i),

(c) Outputs C =
(

[C]1, . . . , [C]n, aux
)

.

Additionally, we require the following properties to hold:

• (η′, η)-Circuit-Specific Correctness. Consider a circuit C ∈ Cλ. Let ([C]1, . . . , [C]n,

aux) ← Preproc(1λ, 1n, C). Let for all i ∈ [n], [C]i ← Πi.Obf(1
λ, [C]i). Denote C =

([C]1, . . . , [C]n).

If for all i ∈ [n], Pr
x

$←−{0,1}λ

[
[C]i(x) = [C]i(x)

]
≥ η(λ) then

Pr
x

$←−{0,1}λ

[
C(x) = C(x)

]
≥ η′(λ).

• Decomposable Security: For every C0, C1 ∈ Cλ such that |C0| = |C1|, for every i ∈ [n],
we have: {{

[C]0i

}
i 6=i,
i∈[n]

}
≈c

{{
[C]1i

}
i 6=i,
i∈[n]

}
,

where [C]bi ← Preproc(1λ, 1n, Cb ∈ Cλ) for b ∈ {0, 1}.

We claim that the construction of IO Combiner in Section 5 is already a decomposable IO combiner.
To show this, we first note that the obfuscator Πuniv.Obf in the construction in Section 5 can
be decomposed in a preprocessing step and candidate obfuscation step: the preprocessing step
comprises of all the steps till the generation of circuits {Gi}i∈[n] (Figure 1). The output of the
preprocessing step is (G1, . . . , Gn).

Furthermore, the circuit-specific correctness property was already proved in Lemma 1. More
specifically, we showed the aforementioned construction satisfies (1 − nµ, 1 − µ)-circuit specific
correctness property. All is remaining is to show that the construction satisfies decomposable
security. To show that, we prove the following claim.

Claim 1. Consider the following process:

- params← Setup(1λ, 1d), where d = poly(λ, |C|)

- {(ski, pki)← KeyGen(params)}i∈[n]

- Sample n random strings {Sbi }i∈[n] of size | Cb |, for b ∈ {0, 1}, such that
⊕

i∈[n] S
b
i = C.

- For all i ∈ [n], encrypt the string Si using pki, CT
b
i ← Enc(pki, S

b
i ).
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- For every i ∈ [n], execute ĈTbi ← Expand((pk1, . . . , pkn), i,CTi).

For any i ∈ [n] we have:

{G0
1, . . . , G

0
n}\{G0

i } ≈c {G1
1, . . . , G

1
n}\{G1

i },

assuming the semantic security of TMFHE, where Gbi = Gbi

[
Ki, ski, {pki}i∈[n], {ĈTbi}i∈[n]

]
is de-

fined in Figure 1.

Proof. Suppose there is a PPT adversary A that distinguishes the two distributions in the state-
ment of the claim. We design a reduction B, that internally uses A to break the security of
TMFHE. B requests the TMFHE public keys {pki}i∈[n], secret keys {sk1, . . . , skn}\{ski}, cipher-
texts {CTi = Enc(pki, S

0
i )}i 6=i and challenge ciphertext CT∗i , where CTi = CT∗i is either Enc(pki, S

0
i )

or Enc(pki, R), where R is a random string. Compute the expanded ciphertext ĈTbi ← Expand((pk1,
. . . , pkn), i,CTi) for every i ∈ [n]. Generate the puncturable PRF keys Ki for every i ∈ [n]. Finally,

generate the circuits Gi = Gi[K
i, ski, {pki}i∈[n], {ĈTbi}i∈[n]] for every i 6= i. Note that we cannot

generate Gi since the secret key ski is missing. We hand over the circuits {G1, . . . , Gn}\{Gi} to A.
If the output of A is a bit b, output b.

If CT∗i = Enc(pki, S
0
i ) then the circuits Gi’s are derived from a circuit C and in the other case

when CT∗i = Enc(pki, R), Gi’s correspond to a random circuit (of size |C|). Thus, the distinguishing
advantage of A translates directly to the distinguishing advantage of B.

We thus have the following theorem.

Theorem 11. The construction presented in Section 5 is a (negl, ε)-secure (1 − 1
λ , 1 −

1
λ2 )-

decomposable IO combiner, where the number of candidates is λ.

Step I: Construction of Approx. Correct (T, ε)-Universal Obfuscation. We construct
a universal obfuscation scheme Πuniv = (Obf,Eval) for a class of circuits C below. Our scheme
will be approximately correct. The main ingredient is a decomposable IO combiner (Definition 8)
Πcomb = (Πcomb.Obf,Πcomb.Eval) for C. But first, we establish some notation.

Notation. Let S be the class of all possible Turing machines. It is well known result [Göd31]
that there is a one-to-one correspondence between S2 and N given by φ : N → S2. Furthermore,
there is a fixed polynomial f such that the time to compute φ(j) is at most ≤ f(j), for every
j ∈ N.

Πuniv.Obf(1
λ, C): It takes as input security parameter λ, circuit C ∈ Cλ and executes the following

steps:

1. Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,Πi.Eval).

2. Preprocessing phase of Decomposable IO combiner. First compute the preprocessing
step, ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C) (n = λ).
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3. Eliminating Candidates with Large Runtimes. For all i ∈ [λ], execute Πi.Obf(1
λ,

[C]i) for at most t = T
(
λ,
∣∣[C]i

∣∣) number of steps. For every i ∈ [λ], if the computation
of Πi.Obf

(
1λ, [C]i

)
does not abort within t number of time steps re-assign Πi.Obf = I and

Πi.Eval = UTM , where I is an identity TM13 and UTM is a universal TM14.

At the end of this step, the execution of Πi.Obf(1
λ, [C]i) takes time at most T

(
λ,
∣∣[C]i

∣∣).
4. Eliminates Candidates with Imperfect Correctness. For all i ∈ [λ], execute Πi.Obf(1

λ,
[C]i) for at most t = T (λ,

∣∣[C]i
∣∣) number of steps. Denote [C]i to be the result of computation.

Denote ` to be the input length of [C]i. For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←−

{0, 1}`. Check if the following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

) )
= 1 (1)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I and Πi.Eval = UTM .
At the end of this step, every candidate satisfies the above condition.

5. Candidate Obfuscation Phase of Decomposable IO combiner. For all i ∈ [λ], execute
Πi.Obf

(
1λ, [C]i

)
for at most t = T (λ,

∣∣[C]i
∣∣) number of steps. Denote [C]i to be the result of

computation.

6. Output C =
(

(Π1, . . . ,Πλ), ([C]1, . . . , [C]λ, aux)
)

.

Πuniv.Eval(C, x): On input the obfuscated circuit C and input x, do the following. First parse C

as
(

(Π1, . . . ,Πλ), Ccomb = ([C]1, . . . , [C]λ, aux)
)

. Compute y ← Πcomb.Eval
(
Ccomb, x,Π1, . . . ,Πλ

)
.

Output y.

Theorem 12. Assuming that Πcomb is a (negl, ε)-secure
(
1− 1

λ , 1−
1
λ2

)
-decomposable IO combiner,

the above scheme Πuniv is a (T, ε)-universal obfuscation that is
(
1− 1

λ

)
-correct.

Proof. We first remark about the running time of the obfuscator and the evaluator algorithms.
First, we consider Πuniv.Obf. The running time of first step (Bullet 1) is λf(λ) = poly(λ) (where f
was defined earlier in the proof). The running time of each of the rest of the steps is poly(λ, t, |C|).
Plugging in the fact that t = T (λ,poly(λ, |C|)), we have that the total running time of all the
steps to be poly(T (λ, |C|))15. We move on to Πuniv.Eval. Here, the running time is governed by the
running time of the Πcomb.Eval algorithm which is poly(T (λ, |C|)). And hence, the running time of
Πuniv.Eval is again poly(T (λ, |C|)).

13An identity TM on input C outputs C.
14A universal TM on input circuit-input pair (C, x) outputs C(x).
15Observe that here we used two facts of the time function (beginning of Section 3): (a) T (λ, |C|) ≥ |C|+ λ and,

(b) T (λ,poly(|C|)) = poly′(T (λ, |C|)).
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Correctness. Consider the following lemma.

Lemma 30. Πuniv is a
(
1− 1

λ

)
-correct IO candidate.

Proof. Consider a circuit C ∈ Cλ. We prove the following claim. For all i ∈ [n], let ([C]1, . . . , [C]n,
aux) ← Preproc(1λ, 1n, C) with n = λ. Also, let {Πi}i∈[n] be the description of the candidates at
the end of Bullet 3. Note that some of the candidates could be re-assigned in Bullets 2 and 3. Let
[C]i ← Πi.Obf(1

λ, [C]i).

Claim 2. Let i ∈ [n] be such that

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≤ 1− 1

λ2

Then, the ith candidate Πi satisfies Condition (1) (Bullet 4) with negligible probability (over the
random coins of xj,i).

Proof. Let i ∈ [n] be such that it satisfies the condition stated in the claim. We show that [C]i
satisfies Condition (1) (Bullet 4) with negligible probability. We define the following random
variables for every j ∈ [λ3]:

InEQj =

{
1 if [C]i(xj,i) = [C]i(xj,i),
0 otherwise,

where xj,i ∈ {0, 1}λ. Thus, Pr[InEQj = 1] < 1− 1
λ2 .

Consider the following:

Pr

 ∧
j∈[λ3]

InEQj = 1

 =
∏
j∈[λ3]

(
Pr
[
InEQj = 1

])

<

(
1− 1

λ2

)λ3

< e−λ = negl(λ)

This proves the claim.

The above claim proves that at the end of Bullet 4, with overwhelming probability the following
holds for every i ∈ [n]:

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≥ 1− 1

λ2

We now apply the circuit-specific completeness property of the (1 − 1
λ , 1 −

1
λ2 )-decomposable IO

combiner Πcomb which ensures that the following holds:

Pr
x

$←−{0,1}λ

[
C(x) = Πcomb.Eval(C, x)

]
≥ 1− 1

λ
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where C = ([C]1, . . . , [C]n, aux). Note that C is the output of Πuniv.Obf. Also, the output of
Πuniv.Eval on input (C, x) is dictated by the result of Πcomb.Eval(C, x).

Thus, we have

Pr
x

$←−{0,1}λ

[
C(x) = Πuniv.Eval(C, x)

]
≥ 1− 1

λ
,

where C ← Πuniv.Obf(1
λ, C).

Security. We prove the following lemma.

Lemma 31. Πuniv is a (negl)-secure IO candidate.

Proof. Recall that the universal obfuscator proceeds in two phases. In the first phase, it chooses the
“correct” candidates and then in the second phase, it combines all these candidates to produce the
obfuscated circuit. At first glance, it should seem that as long as we ensure that one of the “correct”
candidates is secure then the security of IO combiner should hold, and thus the security of universal
obfuscator will follow. To make this more precise, lets say C0 and C1 are two equivalent circuits.

Let
−→
Π0 = Π0

1, . . . ,Π
0
n0

and
−→
Π1 = Π1

1, . . . ,Π
1
n1

be the “correct” candidates chosen with respect to C0

and C1 respectively. Now, assuming that
−→
Π0 and

−→
Π1 have at least one secure candidate; the hope

is that we can then invoke the security of IO combiner to argue computational indistinguishability
of obfuscation of C0 and C1. This does not work because the security of IO combiner dictates that−→
Π0 =

−→
Π1. Indeed obfuscation of C0 (resp., C1) could potentially reveal

−→
Π0 (resp.,

−→
Π1) at which point

no security holds. While we cannot argue that
−→
Π0 =

−→
Π1, because of the selective abort obfuscators

described in Introduction, we can still show that
−→
Π0 ≈c

−→
Π1. Arguing the indistinguishability of

the candidates then helps us invoke the security of IO combiner and then the proof of the theorem
follows. Arguing the indistinguishability of candidates is performed by invoking the decomposable
security property of the underlying IO combiner. The technical details are provided below.

Formal details. We first introduce some notation. Consider a circuit C ∈ Cλ. Let ((Π1, . . . ,Πλ),
([C]1, . . . , [C]λ), aux) be the output of Πuniv.Obf(1

λ, C). Note that many of the candidates
(Π1, . . . ,Πλ) could potentially be re-assigned during the execution of Πuniv.Obf. This re-assignment
is a function of the circuit C that is obfuscated and the random coins of the algorithm. Hence, we

can define a distribution DistC,λ,i, parameterized by C, λ, i ∈ [n], on {0, 1}λ such that x
$←− DistC,λ,i

defines which of the candidates gets re-assigned. That is, the ith bit xi = 1 indicates that Πi will
remain unchanged and xi = 0 indicates that Πi is re-assigned. Furthermore, xi is always 1.

In more detail, we define the sampling algorithm of distribution Distλ,C,i as follows: denote by
Π′1, . . . ,Π

′
λ the set of candidates enumerated in Bullet 1 and let Πi be an IO candidate that is

always correct. Note that the description of these candidates are independent of the circuit C and
they only depend on the security parameter λ. At the end of Bullet 4, denote the candidates to
be (Π1, . . . ,Πλ). We then assign x to be such that the ith bit of x, namely, xi = 1 if Π′i = Πi else
xi = 0 if Π′i 6= Πi. Output x. Note that xi = 1 since Πi is always correct.

The formal description of the sampling algorithm of Distλ,C,i is given next.

Sampler of Distλ,C,i:

• Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,Πi.Eval).
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• First compute the preprocessing step, ([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C). Here, n =
λ. Maintain another copy of the set of candidates - for every i ∈ [λ], set Π′i = Πi.

• For all i ∈ [λ], execute Πi.Obf(1
λ, [C]i) for at most t = T

(
λ,
∣∣[C]i

∣∣) number of steps. For
every i ∈ [λ], if the computation of Πi.Obf

(
1λ, [C]i

)
does not abort within t number of time

steps re-assign Πi.Obf = I and Πi.Eval = UTM , where I is an identity TM and UTM is a
universal TM.

• For all i ∈ [λ], execute Πi.Obf(1
λ, [C]i) for at most t = T (λ,

∣∣[C]i
∣∣) number of steps. Denote

[C]i to be the result of computation. Denote ` to be the input length of [C]i. For every

i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}`. Check if the following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

) )
= 1 (2)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I and Πi.Eval = UTM .

• Construct a string x ∈ {0, 1}λ such that the ith bit xi is generated as:

xi =

{
1, if Πi = Π′i
0, otherwise

• Output x.

Remark 5. For every x in the support of Distλ,C,i we have xi = 1 (ith bit of x) since the ith

candidate is always correct.

We prove the following useful sub-lemma. For every two circuits C0, C1 we claim that the outputs
of the corresponding distributions Distλ,C0,i and Distλ,C1,i are computationally indistinguishable.
Here, i corresponds to the candidate that is always correct.

SubLemma 1 (Candidate Indistinguishability Lemma). For large enough security parameter λ,

any two circuits C0, C1 ∈ Cλ, i ∈ [n] we have {x $←− Distλ,C0,i} ≈c {x
$←− Distλ,C1,i}, where ith can-

didate (respresented by φ(i)) is always correct, assuming that Πcomb satisfies decomposable security
property.

Proof. Suppose the above statement is false. Let C0, C1 ∈ Cλ be such that Distλ,C0,i 6≈c Distλ,C1,i,
i.e., both the distributions are computationally indistinguishable. Denote the PPT distinguisher
by A. We use A to contradict the decomposable security of Πcomb. In more detail, we construct
a reduction B that internally uses A to break the decomposable security of Πcomb. We give the
description of the reduction B below.

BA
(

1λ, i, {[C]j} j 6=i
j∈[λ]

)
:

Execute bullets 1,3,4 of Πuniv.Obf. That is, execute the following steps:

• Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,Πi.Eval). Maintain
another copy of the set of candidates - for every i ∈ [λ], set Π′i = Πi.
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• For all i ∈ [λ] and i 6= i, execute Πi.Obf(1
λ, [C]i) for at most t = T

(
λ,
∣∣[C]i

∣∣) number of steps.
For every i ∈ [λ], if the computation of Πi.Obf

(
1λ, [C]i

)
does not abort within t number of

time steps re-assign Πi.Obf = I and Πi.Eval = UTM , where I is an identity TM and UTM
is a universal TM.

• For all i ∈ [λ] and i 6= i, execute Πi.Obf(1
λ, [C]i) for at most t = T (λ,

∣∣[C]i
∣∣) number of

steps. Denote [C]i to be the result of computation. Denote ` to be the input length of [C]i.

For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}`. Check if the following condition

holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

) )
= 1 (3)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I and Πi.Eval = UTM .

• Construct a string x ∈ {0, 1}λ such that the ith bit xi is generated as:

xi =


1, if Πi = Π′i
1, if i = i
0, otherwise

• Execute b← A(1λ, x). Output b.

Suppose {[C]j}j 6=i,j∈[λ] is derived from C0 then the distribution of x in the end is identical to the
distribution Distλ,C0,i. Otherwise if {[C]j}j 6=i,j∈[λ] is derived from C1 then the distribution of x in
the end is identical to Distλ,C1,i. Thus, the distinguishability of Distλ,C0,i and Distλ,C1,i translates
directly to the distinguishability of {[C]j}j 6=i,j∈[λ] for the case of C0 and C1. This proves the
sublemma.

We now proceed to prove the main lemma. Recall that we are assured the existence of a secure IO
candidate that is always correct. Let i ∈ Z>0 be such that φ(i) represents the secure candidate. Let
λ ≥ i. Consider two equivalent circuits C0, C1 ∈ Cλ. That is, |C0| = |C1| and for every x ∈ {0, 1}λ
we have C0(x) = C1(x). Our goal is to show that Πuniv.Obf(1

λ, C0) ≈c Πuniv.Obf(1
λ, C1).

We define the following experiment. The following experiment, parameterized by (C0, C1), is
same as Πuniv.Obf(1

λ, C0) except that the decision to choose which of the candidates to obfuscate
the derived circuits {[C]i} is made solely based on the circuit C1.

ExptObf(1λ, C0, C1, i):

- Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,Πi.Eval).

- Compute the preprocessing step, ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C0) with n = λ.

- Sample x from Distλ,C1,i, where i ∈ [λ]. That is, x is sampled from the distribution Dist
parameterized by (λ,C1, i).

- For every i ∈ [λ] and xi = 0, re-assign Πi.Obf = I and Πi.Eval = UTM .
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- Execute [C]i ← Πi.Obf(1
λ, [C]i) for at most T (λ, |[C]i|) number of steps.

- Output C = ([C]1, . . . , [C]λ).

Consider the following claims.

Claim 3. The distributions D0 =
{
ExptObf

(
1λ, Cb, Cb, i

)}
and D1 = {Πuniv.Obf

(
1λ, Cb

)
} are

identical, for b ∈ {0, 1}.

The proof of the above claim follows directly from the description of Distλ,C,i.

Claim 4. The distributions D0 =
{
ExptObf

(
1λ, Cb, C0, i

)}
and D1 =

{
ExptObf(1λ, Cb, C1, i)

}
are

computationally indistinguishable for b ∈ {0, 1}.

The proof of the above claim follows from the Candidate Indistinguishability Lemma (Lemma 1).

Claim 5. The distributions D0 =
{
ExptObf

(
1λ, C0, Cb, i

)}
and D1 =

{
ExptObf(1λ, C1, Cb, i)

}
are

computationally indistinguishable for b ∈ {0, 1}.

Proof. We rely on the security (third bullet in Definition 6) of decomposable IO combiner to prove
this claim. That is, the output of th IO combiner on two equivalent circuits are computationally
indistinguishable. We only handle the case when b = 0, the other case symmetrically follows.

We denote B by the reduction that breaks the security of IO combiner. We denote the challenger
of the IO combiner game to be Ch. B internally makes use of A where A is the PPT distinguisher
that distinguishes the two distributions D0 and D1. B first computes φ(i) = (Πi.Obf,Πi.Eval), for
i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,Πi.Eval). Then it samples x from Distλ,C0,i, where i ∈ [λ].
For every i ∈ [λ] and xi = 0, re-assign Πi.Obf = I and Πi.Eval = UTM . It sends the candidates
Π1, . . . ,Πλ to Ch. It sends back C = (C1, . . . , Cλ, aux). Reduction B forwards C to A.

If Ch uses C0 to compute the obfuscated circuit then the input fed to A is distributed accord-
ing to ExptObf

(
1λ, C0, C0, i

)
. When Ch uses C1, the input fed to A is distributed according to

ExptObf
(
1λ, C1, C0, i

)
. Furthermore, C0 and C1 are equivalent circuits. Thus, the computational

indistinguishability of the obfuscations of C0 and C1 implies the computational indistinguishability
of the two distributions.

From Claims 3, 4, 5, it follows that Πuniv.Obf(1
λ, C0) ≈c Πuniv.Obf(1

λ, C1). In more detail,

Πuniv(1
λ, C0) ≡ ExptObf

(
1λ, C0, C0, i

)
( from Claim 3)

≈c ExptObf
(

1λ, C0, C1, i
)

( from Claim 4)

≈c ExptObf
(

1λ, C1, C1, i
)

( from Claim 5)

≡ Πuniv(1
λ, C1)( from Claim 3)

We have demonstrated that Πuniv satisfies both the correctness and security properties. This
proves the theorem.
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Step II: Approx. Correct to Exact (T, ε)-Universal Obfuscation. In Step I, we showed how
to construct a universal obfuscator that is

(
1− 1

λ

)
correct. That is, for sufficiently large security

parameter λ ∈ N, every circuit C ∈ Cλ, it holds that:

Pr
x

$←−{0,1}λ

[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1

λ, C)
]
≥ 1− 1

λ

We now apply the transformation of BV [BV16] to obtain a universal obfuscator that is exact
(with overwhelming probability). In particular, we apply their transformation that is based on
sub-exponential LWE assumption.

That is, for every C ∈ Cλ, x ∈ {0, 1}λ, with high probability it holds that:

Pr
[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1

λ, C)
]

= 1

We state the formal theorem below.

Theorem 13. Assuming learning with errors secure against adversaries running in time 2n
ε′

and
(1 − 1/λ)-correct (T, ε)-universal obfuscation, we have a (T, ε) -universal obfuscation that is exact
(with overwhelming probability).

Combining Step I and II =⇒Main Result. Combining both the above steps and instantiating
the decomposable IO combiner (Theorem 11) we get the following result:

Theorem 14. Assuming LWE secure against adversaries running in time 2n
ε′

, there exists a (T, ε)-
Universal Obfuscation with ε′ being a function of ε.

7 Witness Encryption Combiners

7.1 Definition of WE Combiner

We present the formal definition of a WE combiner below. The definition is similar to the definition
of IO combiners. The task of the WE combiner is to take n candidates that are correct (in terms
of encryption and decryption), and yield a scheme which is as secure as any one of the candidate
schemes.

For a scheme Π we say that it is a correct WE candidate if it satisfies that correctness requirement
of Definition 1 (item 1). We say that a candidate secure if it satisfies the security requirement (item
2) of Definition 1. We say that it is correct and secure if it satisfies both the requirements.

There are two PPT algorithms associated with an WE combiner, namely, CombEnc and
CombDec. Procedure CombEnc takes as input an instance x, a message m along with the de-
scription of multiple WE candidates and outputs a ciphertext. Procedure CombDec takes as input
the ciphertext, a witness w, the description of the candidates and outputs the original message.
Since the execution times of the candidates could potentially differ, we require the algorithms
CombEnc and CombDec in addition to their usual inputs also take a time function T as input. T
dictates an upper bound on the time required to execute all the candidates.

53



Syntax of WE Combiner. We define an WE combiner Πcomb = (CombEnc,CombDec) for a
language L.

• Combiner of encryption algorithms, CT ← CombEnc(1λ, x,m,Π1, . . . ,Πn, T ): It takes
as input security parameter λ, an instance x, a message m, description of WE candidates
{Πi}i∈[n], time function T and outputs a ciphertext.

• Combiner of decryption algorithms, y ← CombDec(CT, w,Π1, . . . ,Πn, T ): It takes as
input a ciphertext CT, a witness for the instance x, descriptions of WE candidates {Πi}i∈[n],
time function T and outputs y.

We define the properties associated with a WE combiner scheme. There are two properties –
correctness and security. We only consider the scenario where all the candidate WE schemes are
(almost) perfectly correct but only one of them is secure.

Definition 9 (Secure WE combiner). Let Π1, . . . ,Πn be n (almost) perfectly correct WE candidates
for NP (that is all the schemes are correct, however all of them need not be secure). We say that
Πcomb = (CombEnc,CombDec) is a secure WE combiner if the following conditions are satisfied:

• Correctness. Consider the following process: (a) CT ← CombEnc(1λ, x,m,Π1, . . . ,Πn, T ),
(b) y ← CombDec(CT, w,Π1, . . . ,Πn, T ).

Then, Pr[y = m] ≥ 1− negl(λ) over the randomness of CombEnc.

• Security: If for some i ∈ [n] candidate Πi is secure then, for any PPT adversary A and any
polynomial p(·), there exists a negligible function negl(·), such that for any λ ∈ N, any x /∈ L
and any two equal-length messages m1 and m2 such that |x|, |m1| ≤ p(λ), we have that

|Pr[A(CombEnc(1λ, x,m1,Π1, . . . ,Πn, T ) = 1]−
Pr[A(CombEnc(1λ, x,m2,Π1, . . . ,Πn, T )) = 1]| ≤ negl(λ).

Henceforth, we set the time function to be an a priori fixed polynomial. In our constructions
presented next, we drop the parameter T which is input to the above algorithms.

7.2 Construction of WE Combiner

We give a construction of a WE combiner. Formally, we prove the following theorem.

Theorem 15. If one-way functions exist, then there exists a secure WE combiner.

The construction is given below. As described in Section 2.3, the main ingredient of the con-
struction is a (perfectly) secure secret sharing scheme.

CombEnc(1λ, x,m,Π1, . . . ,Πn): It takes as input security parameter λ, instance x, message m,
description of candidates {Πi = (Πi.Enc,Πi.Dec)}i∈[n] and does the following.

1. Secret share the message. Choose n random strings r1, . . . , rn ∈ {0, 1}|m| such that
r1 ⊕ . . .⊕ rn = m.
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2. Encrypt shares using candidates. For i ∈ [n], encrypt ri using candidate Πi: yi ←
Πi.Enc(x, ri).

3. Output (y1, . . . , yn).

CombDec(1λ, ~y, w,Π1, . . . ,Πn): On input ~y = (y1, . . . , yn), an input x with witness w, descriptions

of candidates {Πi}i∈[n] run the decryption candidates to obtain ri ← Πi.Dec(1
λ, yi, w) for all i ∈ [n].

Compute m← r1 ⊕ . . .⊕ rn and output m.

Correctness: The correctness follows immediately from the scheme. For any x ∈ L using the
witness w we will get all ri for i ∈ [n] and from them we compute the correct message m =
r1 ⊕ . . .⊕ rn.

Security: To prove security, assume that x /∈ L and let i∗ ∈ [n] be such that candidate Πi∗

is secure. Let m0,m1 be any two messages. Consider the following sequence of hybrids. Let
H0, parameterized by (r1, . . . , rn), be a distribution on the encryptions of m0. That is, H0 is
a distribution over (y1, . . . , yn) where yi ← Πi.Enc(x, ri) where ri are random strings such that
r1⊕ . . .⊕ rn = m0. Then we define H1, again parameterized by (r1, . . . , rn), to be a distribution on
encryptions of the message m0⊕m1⊕ ri. That is, H0 is a distribution over yi∗ ← Πi∗ .Enc(1

λ, x, r′)
where r′ = m0 ⊕m1 ⊕ ri. From the security of Πi∗ we have that H0 ≈ H1. Notice that

r1 ⊕ . . .⊕ ri∗−1 ⊕ r′ ⊕ ri∗+1 . . .⊕ rn = m0 ⊕m1 ⊕m0 = m1.

Moreover, the distribution of r1, . . . , ri∗−1, r
′, ri∗+1, . . . , rn and the distribution r1, . . . , rn such that

r1 ⊕ . . . ⊕ rn = m1 are identical. Therefore, if we define H2 to be the distribution on the honest
encryptions of the message m1 (i.e., performed according to the scheme), we get that H1 ≡ H2.
Thus we have that H0 ≈ H2 which proves the security of the above scheme.

8 Universal Witness Encryption

We introduce the notion of universal witness encryption. We define a pair of Turing machines
Πuniv.Enc and Πuniv.Dec to be a universal witness encryption if the existence of a secure WE can-
didate implies that (Πuniv.Enc,Πuniv.Dec) is also a secure WE candidate. Constructing a universal
WE scheme means that we can turn the mere existence of a secure WE candidate (along with the
existence of one-way functions) into an explicit construction. Formally:

Definition 10 (T -Universal Witness Encryption). We say that a pair of Turing machines Πuniv =
(Πuniv.Enc,Πuniv.Dec) is a universal witness encryption, parametrized by T , if there exists an
secure witness encryption scheme for NP with time function T then Πuniv is a witness encryption
for NP with time function poly(T ).

We prove the following.

Theorem 16. If one-way functions exist then there exists a T -universal witness encryption scheme.
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8.1 Construction of universal WE

The intuition behind the scheme presented below is described in the introduction. We now give
the construction with full details. First, we give a witness-correctness amplifier for WE. That is,
we show how to transform a WE where the decryption can be performed using only one witness
into another WE scheme where the decryption can be performed using any valid witness. The next
step is a message-correctness amplification step. We show how to transform a WE scheme that is
correct only on a subset of messages (to be encrypted) into another WE scheme that is correct on
every message with overwhelming probability. Once we have both the above steps, we then present
the universal construction.

Step I: Witness-Correctness Amplifier for WE. Let L be an NP language associated with
a relation R. First we define a transformation that converts any approximate WE candidate that
might work differently on different witnesses, to a witness-worst-case scheme wΠ: a scheme in which
all witnesses decrypt correctly with the same probability. We start with a definition of a witness
encryption scheme that works on a single witness for any instance in the language.

Definition 11. We say that Π is a witness encryption scheme with single witness correctness if
we replace the (almost) perfect correctness requirement with the following one:

• Single Witness Correctness: For any security parameter λ, any m ∈ {0, 1}∗, any x ∈ L
there exists w ∈ {0, 1}∗ such that (x,w) ∈ R and the following condition holds:

Pr[Π.Dec(Π.Enc(1λ, x,m), w) = m] ≥ 1− 2−λ.

Using this definition we can prove the following theorem.

Theorem 17. Let Π be a WE scheme with single witness correctness, and assume one-way func-
tions exist. Then, there exist a (secure) WE scheme, wΠ, with (almost) perfect correctness.

Proof of Theorem 17. Suppose L be a language in NP. We augment L and define Lz with the
relation Rz such that

(x,w) ∈ Rz ⇐⇒ (x,w) ∈ R ∨ PRG(w) = z.

Let PZK = (PZK.Pre,PZK.Verify,PZK.Prove) be a zero-knowledge proof system with pre-processing
(see Definition 2). Now given an instance x, let (σV , σP )← PZK.Pre(1λ) be the state of the verifier
and prover respectively during the protocol up to the last round. We define a new language Lz,σV
with a relation Rz,σV such that for witness π we have:

(x, π) ∈ Rz,σV ⇐⇒ PZK.VerifyLz(σV , x, π) = 1.

The full details of the transformation in Figure 12.

Claim 6. For large enough λ, for z ← {0, 1}2λ chosen at random and for (σV , σP )← PZK.Pre(1λ)
with all but negligible probability it holds that L ≡ Lz,σV .

Proof. With extremely high probability we have that z is not in the image of the PRG, and hence
L = Lz. From the correctness of the PZK we have that if x ∈ L then there exists a proof π such
PZK.Verify(σV , x, π) = 1 and thus x ∈ Lz,σV . If x /∈ L then by the perfect soundness property of
the PZK we get that there does not exist a string π such that PZK.Verify(σV , x, π) = 1 and thus
x /∈ Lz,σV .
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The encryption and decryption algorithms of wΠ:

wΠ.EncL(1λ, x,m) :

1. sample random z
$←− {0, 1}2λ and (σV , σP )← PZKLz .Pre(1

λ).

2. compute CT = Π.EncLz,σV (1λ, x,m).

3. output (z, σP ,CT).

wΠ.DecL(1λ,CT′, x, w) :

1. parse CT′ as (z, σP ,CT).

2. compute π = PZKLz .Prove(σP , x, w).

3. output Π.DecLz,σV (CT, π).

Figure 12: The worst-case scheme wΠ, parameterized by Π.

Claim 7. Let L ∈ NP be a language with verifier V . Let Π be a candidate witness encryption
scheme and let wΠ be the witness-worst-case construction defined in Figure 12. Then for large
enough λ, a message m ∈ {0, 1}∗ the scheme wΠ satisfies the following conditions:

1. For any x ∈ L and w such that (x,w) ∈ R:

Pr[wΠ.Dec(wΠ.Enc(1λ, x,m), w) = m] ≥ Pr[Π.Dec(Π.Enc(1λ, x,m), w) = m]

− negl(λ).

2. Worst-Case witness correctness: for any λ, m ∈ {0, 1}∗, x ∈ L and any w,w′ such that
V (x,w) = 1 and V (x,w′) = 1 it holds that:

|Pr[wΠ.Dec(wΠ.Enc(1λ, x,m), w) = m]−
Pr[wΠ.Dec(wΠ.Enc(1λ, x,m), w′) = m]| ≥ negl(λ).

3. Security: for any λ, m ∈ {0, 1}∗, x /∈ L it holds that if

Π.Enc(1λ, x,m) ≈c Π.Enc(1λ, x, 0|m|),

then
wΠ.Enc(1λ, x,m) ≈c wΠ.Enc(1λ, x, 0|m|)

(with a possible loss of negl(λ) in the indistinguishability probability).

Proof.

1. From Claim 6 we know that with high probability L ≡ Lz,σV . From the correctness of the
PZK we get that for π ← PZK.Prove(σp, x, w) it holds that PZK.VerifyLz(σV , x, π) = 1, and
thus if Π.Dec(Π.Enc(1λ, x,m), w) = m then also wΠ.Dec(wΠ.Enc(1λ, x,m), w) = m.
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2. Let w and w′ be such that (x,w) ∈ R and (x,w′) ∈ R. From the zero-knowledge property of
PZK, we have that:

Pr
[
wΠ.Dec(wΠ.Enc(1λ, x,m), w) = m

]
=

Pr

WE.DecLz,σV (CT, π) = m

∣∣∣∣∣
z ← {0, 1}2λ,
σV , σP ← PZK.Pre(1λ),
CT←WE.EncLz,σV (x,m),

π ← PZK.ProveLz(σP , x, w)

 =

Pr

WE.DecLz,σV (CT, π′) = m

∣∣∣∣∣
z ← {0, 1}2λ,
σV , σP ← PZK.Pre(1λ),
CT←WE.EncLz,σV (x,m),

π′ ← PZK.ProveLz(σP , x, w
′)

± negl(λ) =

Pr
[
wΠ.Dec(wΠ.Enc(1λ, x,m), w′) = m

]
± negl(λ).

3. From Claim 6 we have that x /∈ Lz,σV and thus by the security of WE the item follows.

The theorem is a direct corollary of the three items of Claim 7. The security follows from item
3. The correctness of the single witness follows from item 1. The correctness for any other witness
follows from item 2.

Step II: Message-Correctness Amplifier for WE. We describe an amplification transformation
for messages. That is, we start with a WE scheme where the decryption errs on a subset of messages.
We then transform it into one scheme where the decryption is correct on all the messages with
overwhelming probability.

The transformation proceeds in two main steps: (1) a worst-case to average case message
reduction and (2) amplification of the error probability. A similar amplification for IO is described
in [KMN+14, Appendix B] (without the message worst-case reduction).

Definition 12. We say that Π is a witness encryption scheme with approximate correctness if we
replace the (almost) perfect correctness requirement with the following one:

• Approximate Correctness: There exists a constant ε > 0 such that for any security pa-
rameter λ, any (x,w) ∈ R it holds that

Pr
m∈{0,1}λ

[Π.Dec(Π.Enc(1λ, x,m), w) = m] ≥ 1/2 + ε.

where the probability is over a random message m and the internal randomness of Π.

Let Π be a WE scheme. Let L be a language, x an instance, and w a message. Define a
new scheme ampWE(Π) = (ampWE.Enc, ampWE.Dec) as follow. Let n be a parameter that will be
determined later.
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Encryption: The encryption algorithm given a security parameter λ, an instance x and a message
m:

1. For i ∈ [n], sample ri ∈ {0, 1}|m| uniformly at random.

2. For i ∈ [n], compute ci ← ΠL.Enc(1
λ, x, ri) (each with fresh randomness).

3. For i ∈ [n], compute r′i ← m⊕ ri.

4. Output (c1, r
′
1), . . . , (cn, r

′
n).

Decryption: The decryption algorithm given n pairs (c1, r
′
1), . . . , (cn, r

′
n), and a witness w:

1. For all i ∈ [n] compute yi ← Π.Dec(1λ, ci)⊕ r′i.

2. Output y ← majority(y1, . . . , yn).

Lemma 32. Assume that Π is an approximate witness encryption scheme, then Π′ = ampWE(Π)
is an (almost) exact witness encryption scheme.

Proof. Set n = 4ε2λ. Since Π is approximately correct, and since each ri is completely random, we
have that for all i ∈ [n] it holds that

Pr[Π.Dec(Π.Enc(1λ, x, ri), w) = ri] ≥ 1/2 + ε.

Thus we get that Pr[yi = m] ≥ 1/2 + ε. By a standard Chernoff bound we get that the probability
that more than half are decrypted incorrectly is:

Pr[majority(y1, . . . , yn) 6= m] ≤ exp

(
−ε

2

2
· n

2

)
≤ 2−λ.

Security follows from a standard hybrid argument (see [KMN+14, Appendix B]).

Given the witness-worst-case transformation and the amplification transformation we are ready
to present the universal construction.

Universal construction of WE. The final construction is presented below. Let Π1, . . . ,Πn be
n candidate schemes, and let T be the time bound. The universal scheme works as follows.

Πuniv.Enc(1
λ, x,m): Takes as input security parameter λ, input x and message m and executes the

following steps:

1. Let φ(i) = (Πi.Enc,Πi.Dec), for i ∈ {1, . . . , n} where n = λ. Denote Πi = (Πi.Enc,Πi.Dec).

2. Witness-worst-case transformation. For all i ∈ [λ], re-assign Πi with the worst case
transformation Πi ← wcΠi (see Figure 12).

3. Eliminating Candidates with Large Runtimes. For all i ∈ [λ], execute Πi.Enc(1
λ, x, ri)

where ri
$←− {0, 1}|m| and for at most t = T (λ, x) number of steps. For every i ∈ [n], if the

computation does not abort within t number of time steps re-assign Πi = I, where I is an
identity scheme.
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4. Eliminating Candidates with Imperfect Correctness. For all i ∈ [λ] do the following
test λ times:

• sample ri
$←− {0, 1}|m|.

• sample s
$←− {0, 1}λ, and compute z ← PRG(s).

• compute (σV , σP )← PZK.Pre(1
λ).

• compute r′i ← ΠLz,σV
.Dec(1λ,ΠLz,σV

.Enci(1
λ, x, ri), s) .

• if r′i 6= ri then re-assign Πi = I.

5. Amplifying Correctness. For all i ∈ [λ], re-assign Πi to be ampWE(Πi, T ), where ampWE
is the correctness amplifier for WE (see Lemma 32).

6. Combine candidates. Use the combiner constructed in Section 7.2 on the candidate
Π1, . . . ,Πn to get a scheme Πcomb = (Πcomb.CombEnc,Πcomb.CombDec), and output CT ←
Πcomb.CombEnc(1λ, x,m,Π1, . . . ,Πn).

Πuniv.Dec(CT, w): Takes as a ciphertext CT, a witness w for x and executes:

1. Output m← Πcomb.CombDec(CT, w,Π1, . . . ,Πn).

Proof of Theorem 16. We prove correctness and security of the universal scheme Πuniv.
Correctness: To prove correctness it suffices to show correctness for all candidates. That is, for
all i ∈ [n] we show that:

Pr
r

[Πi.Dec(Πi.Enc(x, r), w)] ≥ 1− negl(λ).

Then, using a union bound we would get correctness for the entire scheme. Consider some candidate
Π = Πi for i ∈ [n] and denote by Πj the candidate after step j. If at any point Π is re-assigned
with the identity scheme then it will have perfect correctness. We consider the scheme after each
step. For any witness w we denote the probability that it decrypts correctly by αw. That is,

αw = Pr
r

[Π.Dec(Π.Enc(1λ, x, ri), w) = r].

After step (2) we know that this probability is roughly the same for any witness. Namely, using
claim 7 item 2, we get that for any witness w′ it holds that αw ≈ αw′ (i.e., αw = αw′ ± negl(λ)).

In step 4, we run the scheme on a different relation, namely we choose z ← PRG(s) instead of
a random z. Denote by α′w the same probability only under this new relation. From the security
of the PRG we know that αw ≈ α′w. Thus, we get that αw ≈ α′s. We verify that α′s is high,
and otherwise discard the scheme and re-assign it with the identity. Assume that α′s < 3/4, then
the probability that all checks verify is at most (3/4)−λ = negl(λ). Thus, after step 4, we know
that with all but negligible probability, we have that α′s ≥ 3/4, and thus αw ≥ 3/4 − negl(λ).
Step 5 is an amplification step. Since αw ≥ 3/4 − negl(λ) we get that after the amplification step
αw ≥ 1 − negl(λ). Finally, from the worst-case reduction of the amplification transformation we
know that if αw is high for a random message, then the corresponding probability is also high for
the specific message m. Thus, correct holds for the candidate.
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Security: Let x /∈ L. The security should follow from the properties of the secure combiner
performed at the last step. However, to apply it we need to prove that it is applicable here. That
is we need to prove that there exists at least one secure candidate, and that the distribution on
candidates given to the combiner is independent of the message.

First, we claim that there is an i ∈ [n] such that Πi is a correct and secure. Let i ∈ [n] be
the secure candidate at step 1. We need to show that the resulting candidate Πi is correct and
secure. The transformation any candidates goes though are the witness-worst-case transformation
and the potential re-assignment to the identity scheme. From Claim 7 items 1 and 3 we get that
the worst-case transformation remains its correctness and security.

Thus, we need to show that this candidate was not re-assigned to the identity at any step. It
will not be re-assigned in step 3 since assume a bound on its running time. Since Πi has (almost)
prefect correctness, we get that after in step 4, the probability that any of the steps fails in negligibly
small. Therefore, at not step will Πi be re-assigned with the identity.

In steps 1 to 5, we change the candidates. We need to prove that the distribution of the
resulting candidates given to the combiner is independent of the message. Notice that the choice
of candidates is performed independently of the message, using random messages instead. The
message is used only for the last step and thus we can apply the security of the combiner to get
the overall security of Πuniv.

9 Universal Schemes for Other Primitives

Universal Secret-Sharing We have constructed a combiner and a universal scheme for witness
encryption, under the assumption of one-way functions. In [KNY14], Komargodski et al. have
proved that witness encryption for NP along with one-way functions implies that existence of
secret-sharing for NP. Intuitively, a secret-sharing scheme for an access structure in NP is defined
as following: for the “qualified” subsets there is a witness attesting to this fact and given the witness
it should be possible to reconstruct the secret. On the other hand, for the “unqualified” subsets
there is no witness, and so it should not be possible to reconstruct the secret.

It is easy to see that, unconditionally, secret-sharing for NP implies witness encryption for NP.
Combining these results we get a combiner and a universal scheme for secret sharing for NP. In
particularly, given n candidate schemes for secret-sharing, where only one is correct and secure, we
transform each one to a witness encryption scheme. We know that the correct and secure scheme
will yield a secure witness encryption scheme. Then, applying the combiner for WE we get a correct
and secure WE scheme. Finally, applying the construction of [KNY14] to this scheme we get a
correct and secure secret-sharing scheme for NP.

Universal Witness PRF As an additional corollary for the universal WE scheme, we get a
combiner and universal construction for witness PRF [Zha16]. Informally, a witness PRF for an
NP language L is a PRF F such that anyone with a valid witness that x ∈ L can compute F (x)
without the secret key, but for all x /∈ L, F (x) is computationally hidden without knowledge of the
secret key.

The proof of a combiner and universal witness PRF is very similar to the proof of a universal
WE scheme. The only modification needed is in combing the security of n witness PRF candidate.
In the WE combiner, we secret-shared the message to the n candidate. For witness PRF, we want to
combiner output to be pseudorandom, as long as one candidate is outputs a pseudorandom string.
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Thus, we simply XOR all the outputs of the n candidates. It is easy to see that the final output
will be pseudorandom. For boosting correctness, the same techniques of WE apply for witness as
well. Notice, that since witness PRF by itself wimples the existence of one-way function, we get a
universal witness PRF scheme with no additional assumptions.
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[Göd31] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik, 1931.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

[GR07] Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. In TCC. 2007.

[Her05] Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, 2005.

[Her09] Amir Herzberg. Folklore, practice and theory of robust combiners. Journal of Com-
puter Security, 17(2):159–189, 2009.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 1999.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of ggh map. IACR Cryptology ePrint Archive,
2015:301, 2015.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, 2005.

[HS10] Amir Herzberg and Haya Shulman. Robust combiners for software hardening. In Trust
and Trustworthy Computing, Third International Conference, TRUST 2010, Berlin,
Germany, June 21-23, 2010. Proceedings, pages 282–289, 2010.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In FOCS, 2014.

[KNY14] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. In ASI-
ACRYPT, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In ACM SIGSAC, 2013.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica,
1987.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In CRYPTO, 1990.
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A Status of IO Schemes

Since the first candidate construction of indistinguishability obfuscation [GGH+13b] based on mul-
tilinear maps (mmaps) was proposed, many mmap-based iO constructions that have followed suit.
Recently, Cheon et al. [CHL+15] and many followup works have demonstrated that existing mmap
schemes suffer from vulnerabilities. It is important to note that most these works have had no
direct impact on the security of the iO candidates. Specifically:

• Most works on the cryptanalysis of mmaps have no impact on iO candidates because
they require encodings (such as low-level encodings of zero) that do not arise in iO can-
didates [CHL+15, HJ15, CLLT15] or they only impact the parameter choices of mmap
schemes [CJL16]. We note that the attacks of [CJL16] on GGH13 mmaps, for example,
can be avoided by setting n = λ log2 q, or by choosing n to not be a power of 2.

• Some attacks yield only subexponential or quantum attacks [CDPR15].

• On the other hand, two recent works have shown the first polynomial-time attacks on some iO
candidates: First, the work of [CGH+15] extended the cryptanalysis of [CHL+15] to apply to
some iO candidates over CLT13 mmaps. Second, the work of [MSZ16] introduced a new class
of polynomial-time attacks called Annihilating Attacks that applied to some iO candidates
over GGH13 mmaps. However, as we illustrate in Figure 13, these known cryptanalytic
techniques still leave many iO candidates without any known attacks.

We elaborate further on the current state of affairs below. We expect more attacks to be
found and the security situation of iO candidates to grow more complex as our understanding
grows. This situation emphasizes the need for iO combiners, the subject of our work.

It is important to note that the security of these candidates (in most cases) depends on the class of
functions being obfuscated. We classify the class of functions being obfuscated into many categories
as described below.

66



• Branching Programs (BP ): This corresponds to the class of all poly-sized matrix branch-
ing programs. In this case, a matrix branching program is being directly obfuscated.

• NC1: This corresponds to the class of NC1 circuits. For obfuscators that natively obfus-
cate matrix branching programs, this corresponds to obfuscating the specific class of matrix
branching programs obtained by applying Barrington’s theorem to the class of NC1 circuits.

• General Circuits: This category corresponds to general polynomial-size circuits. However,
no iO candidates currently exist that “directly” obfuscate general circuits. Instead, the ob-
fuscation of general circuits is achieved by obfuscating specific classes of “bootstrappable”
functions: obfuscating such a bootstrappable function family suffices to obfuscate arbitrary
class of polynomial-time functions. This is enabled by bootstrapping theorems. That is, in
order to obfuscate a circuit C, we first obfuscate a circuit C∗ = g(C), a circuit derived from C.
Then we apply bootstrapping theorem on C∗ to obtain an obfuscation of C. We enumerate
the different classes of bootstrappable functions known:

– FGGH+ : This corresponds to the class of functions defined in [GGH+13b]. It essentially
consists of circuits that first perform proof checking and then compute the decryption
of the input FHE ciphertext.

– FApp : This class of functions, defined in[App13], corresponds to the class of functions
that consists of computing randomized encoding of the functions to be obfuscated.

– FBGL+ : This class of functions, defined in[BGL+15] (also observed by [AJS15]), is
similar in spirit to [App13] except that the functions compute the randomized encoding
of the functions “one piece at a time”. The advantage of this, in comparison to [App13],
the size of the circuits implementing these functions is independent of the size of the
original circuit to be obfuscated.

– FGIS+ : This was defined in [GIS+10] and consists of functions which at its core performs
the following three steps: (a) decrypt the ciphertext, (b) compute a gate of the circuit
being obfuscated and, (c) re-encrypt the ciphertext. This enjoys the same advantage
as FBGL+ with the size of the functions being independent of the original circuit being
obfuscated.

We enumerate the candidates of indistinguishability obfuscation proposed so far.

1. Garg et al. [GGH+13b]: This was the first candidate construction of indistinguishability
obfuscation proposed. This candidate can be instantiated using both [GGH13a] and [CLT13]
candidate multilinear maps.

There are small classes of branching programs for which this candidate is known to be bro-
ken [CGH+15] when instantiated using CLT13 mmaps. However, no attacks are currently
known for any other setting.

2. Brakerski and Rothblum [BR14]: This candidate can be instantiated using both [GGH13a]
and [CLT13] candidate multilinear maps. There are small classes of branching programs for

67



which this candidate is known to be broken when instantiated using GGH13 mmaps [MSZ16].
However, no attacks are currently known for any other setting.

3. Barak et al. [BGK+14]: This candidate can be instantiated using both [GGH13a] and [CLT13]
candidate multilinear maps. Many future constructions of iO, notably [AGIS14, MSW14,
BMSZ16] adopted this framework. There are two versions of [BGK+14] depending on how
the final branching program is obfuscated.

- Single Input: In this model, the final branching program is a matrix branching program
consisting of a tuple where every entry corresponds to two matrices. On input x, the
evaluation corresponds to choosing one of the two matrices from every entry, depending
on xi for some i, and multiplying all of them in order (say, from left to right).

There are small classes of branching programs for which this candidate is known to be
broken when instantiated using CLT13 mmaps [CGH+15], and when instantiated using
GGH13 mmaps [MSZ16]. However, no attacks are currently known for any other setting.

- Dual Input: In this model, the final branching program is a matrix branching program
consisting of a tuple where every entry corresponding to four matrices. On input x, the
evaluation corresponds to choosing one of the four matrices depending on the value of
the pair (xi, xj) for some i, j with i 6= j. Once these matrices are chosen the matrices
are multiplied in order, as before, to recover the output.

There are small classes of branching programs for which this candidate is known to
be broken when instantiated using GGH13 mmaps [MSZ16]. However, no attacks are
currently known for any other setting.

4. Pass et al. [PST14]: This can be instantiated using both [GGH13a] and [CLT13] candidate
multilinear maps.

There are small classes of branching programs for which this candidate is known to be broken
when instantiated using GGH13 mmaps [MSZ16]. However, no attacks are currently known
for any other setting. There are (different) classes of branching programs for which this
candidate is known to be broken when instantiated using CLT13 mmaps [CGH+15]. However,
no attacks are currently known for any other setting.

5. Gentry et al. [GLSW15]: This candidate can be instantiated using only [CLT13] candidate
multilinear maps.

There are small classes of branching programs for which this candidate is known to be broken
when instantiated using CLT13 mmaps [CGH+15]. Furthermore, the multilinear subgroup
elimination assumption used in [GLSW15] is known to be false over CLT13 mmaps. However,
no attacks on the iO candidate itself are currently known for any other setting.

6. [Zim15, AB15]: These candidates can be instantiated using only [CLT13] candidate multi-
linear maps and apply directly to log-depth circuits. There are small classes of circuits for
which this candidate is known to be broken when instantiated using CLT13 mmaps [CGH+15].
However, no attacks are currently known for any other setting.

7. iOGGH15: This candidate was proposed by Gorbunov et al. [GGH15]. This is instantiated
using a standard lattices-based multilinear maps candidate proposed in the same work. No
attacks are known.
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8. iOfe: This candidate is obtained through the route of functional encryption. First, we ob-
tain (sub-exponentially secure) functional encryption based on (sub-exponentially secure)
[CLT13]-based multilinear map assumptions by using the work of Garg et al. [GGHZ16]. In
the second step, we obtain iO from (sub-exponentially secure) functional encryption via the
transformations put forward by the works [AJ15, BV15, AJS15]. No attacks are known.

We give a summary of the status of these candidates in Figure 13.

Explanation of entries in Figure 13: The rows indicate all the current known candidates
of indistinguishability obfuscation. The row labeled by “Single-Input [BGK+14] mmaps:[CLT13]”
corresponds to the (single-input version of) [BGK+14] candidate implemented using [CLT13]
multilinear maps. The columns indicate the class of functions that are to be obfuscated. BP
denotes the class of all poly-sized branching programs. NC1 denotes the complexity class NC1.
For all candidates, except [Zim15, AB15], NC1 is obfuscated via Barrington’s theorem. The
columns under “General Circuits via” corresponds to the class of functions obfuscating which
suffices in order to obfuscate arbitrary polynomial-sized circuits. This is achieved by applying so
called bootstrapping theorems that appeared in prior works [GGH+13b, BGL+15, AJS15]. A circle
mark (©) in (i, j)th entry indicates that currently there is no attack known on the ith candidate
for the jth class of functions. ‘N/A’ indicates ‘not applicable’. A cross mark (×) in (i, j)th entry
indicates that the ith candidate is broken when applied on the jth class of functions.
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BP NC1
General Circuits via

FGGH+ FApp FBGL+ FGIS+

[GGH+13b]
mmaps:[GGH13a]

© © © © © ©

[GGH+13b]
mmaps:[CLT13]

× © © © © ©

[BR14]
mmaps:[GGH13a]

× © © © © ©

[BR14]
mmaps:[CLT13]

© © © © © ©

Single-Input [BGK+14] –
mmaps:[GGH13a]

× © © © © ©

Dual-Input [BGK+14] –
mmaps:[GGH13a]

× © © © © ©

Single-Input [BGK+14] –
mmaps:[CLT13]

× © © © © ©

Dual-Input [BGK+14] –
mmaps:[CLT13]

© © © © © ©

[PST14]
mmaps:[GGH13a]

× © © © © ©

[PST14]
mmaps:[CLT13]

× © © © © ©

[GLSW15]
mmaps:[CLT13]

× © © © © ©

iOGGH15

mmaps:[GGH15]

© © © © © ©

[Zim15, AB15] ——-
mmaps:[CLT13]

N/A × © © © ©

iOfe
mmaps:[CLT13]

N/A N/A © © © ©

Figure 13: © in (i, j)th entry denotes that no attacks are known on the ith candidate when applied
on the jth class of functions. Similarly, × indicates that the ith candidate is broken when applied
to (a subset of) the jth class of functions. N/A indicates that the entry is not applicable.

70


	Introduction
	Our Results

	Techniques
	Universal Obfuscation
	Combiners for Indistinguishability Obfuscation
	Our Approach

	Universal Witness Encryption

	Preliminaries
	Puncturable Pseudorandom Functions
	Witness Encryption
	NIZK with Pre-Processing
	Commitment Schemes
	Threshold Multi-key FHE

	Indistinguishability Obfuscation (IO) Combiners
	Definition of IO Combiner

	Constructions of IO Combiners
	LWE-Based Construction
	Correctness and Security of comb

	DDH-Based Construction
	Main Ingredients
	Construction
	Correctness and Security of comb


	Universal Obfuscation
	Construction of (T,)-Universal Obfuscation

	Witness Encryption Combiners
	Definition of WE Combiner
	Construction of WE Combiner

	Universal Witness Encryption
	Construction of universal WE

	Universal Schemes for Other Primitives
	Status of IO Schemes

