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Abstract

Motivated by the challenging task of designing “secure” vote storage mechanisms, we study
information storage mechanisms that operate in extremely hostile environments. In such en-
vironments, the majority of existing techniques for information storage and for security are
susceptible to powerful adversarial attacks. We propose a mechanism for storing a set of at
most K elements from a large universe of size N on write-once memories in a manner that does
not reveal the insertion order of the elements. We consider a standard model for write-once
memories, in which the memory is initialized to the all 0’s state, and the only operation allowed
is flipping bits from 0 to 1. Whereas previously known constructions were either inefficient (re-
quired Θ(K2) memory), randomized, or employed cryptographic techniques which are unlikely
to be available in hostile environments, we eliminate each of these undesirable properties. The
total amount of memory used by the mechanism is linear in the number of stored elements and
poly-logarithmic in the size of the universe of elements.

We also demonstrate a connection between secure vote storage mechanisms and one of the
classical distributed computing problems: conflict resolution in multiple-access channels. By
establishing a tight connection with the basic building block of our mechanism, we construct
the first deterministic and non-adaptive conflict resolution algorithm whose running time is
optimal up to poly-logarithmic factors.
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1 Introduction

In this paper we deal with the design of information storage mechanisms that operate in extremely
hostile environments. In such environments, the majority of existing techniques for information
storage and for security are susceptible to powerful adversarial attacks. Our motivation emerges
from the task of designing vote storage mechanisms, recently studied by Molnar, Kohno, Sastry
and Wagner [20]. The setting considered by Molnar et al. is that of an electronic voting machine in
a polling station. In a typical election, the machine is set up by local election officials. Voters are
then allowed to cast their ballots. Finally, the ‘polls are closed’ by the election officials (after which
no additional ballots may be cast), and the results transmitted to a voting center. The machines
themselves may also be used to audit or verify the results.

This setting is an acute example of a hostile environment for voting machines: an adversary
attempting to corrupt the election results may also be a legitimate voter, an election official, or
even one of the voting machine developers. A typical threat is a corrupt poll worker who has
complete access to the vote storage mechanism at some point during or after the election process.
The attacker may attempt to change, add or delete votes, or merely to learn how others voted (in
order to buy votes or coerce voters). Without a ‘secure’ vote storage mechanism, such an adversary
may be able to undetectably tamper with the voting records or compromise voter privacy.

We consider the abstract problem of storing a set of at most K elements taken from a large
universe of size N , while minimizing the total amount of allocated memory. In the vote storage
context, think of ‘elements’ as ballots, K as the number of voters and of N as the number of possible
ballot states (e.g., if there are 10 two-candidate races, there are N = 210 possible ballot states;
alternatively, if there is one race where write-in candidates are allowed, N would be the number of
possible candidate names). Our mechanism supports insert operations, membership queries, and
enumeration of all stored elements1. While previously known constructions were either inefficient,
randomized, or employed cryptographic techniques that require secure key storage, we make a
concentrated effort to eliminate these undesirable properties. We design a storage mechanism
which is deterministic, history-independent, and tamper-evident.

Deterministic strategies. Randomization is an important ingredient in the design of efficient
systems. However, for systems that operate in hostile environments, randomization can assist the
adversary in attacking the system. First, as sources of random bits are typically obtained from the
environment, it is quite possible that the adversary can corrupt these sources. In such cases, we
usually have no guarantees on the expected behavior of the system. Second, even when truly random
bits are available, these bits may be revealed to the adversary in advance, and serve as a crucial
tool in the attack. Third, a randomized storage strategy may enable a covert channel: As multiple
valid representations for the same abstract state exist, a maliciously designed storage mechanism
can secretly embed information into the stored data by choosing one of these representations.
Applications such as voting protocols may run in completely untrusted environments. In such
cases, deterministic strategies have invaluable security benefits.

History-independence. Many systems give away much more information than they were in-
tended to. When designing a data structure whose memory representation may be revealed, we
would like to ensure that an adversary will not be able to infer information that is not available

1We note that for vote storage mechanisms it is sufficient to support only insert operations and enumeration of
all stored elements
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through the system’s legitimate interface. Computer science is rich with tales of cases where this
was not done, such as files containing information whose creators assumed had been erased, only to
be revealed later in embarrassing circumstances (e.g., see [1, 2]). Informally, we consider a period
of activity after which the memory representation of the data is revealed to the adversary. The
data structure is history-independent if the adversary will not be able to deduce any more about
the sequence of operations that led to the current content than the content itself yields (concrete
definitions will be given in Section 3.1).

Tamper-evident write-once storage. A data structure is tamper-evident if any unauthorized
modification of its content can be detected. Tamper-evidence is usually provided by a mixture
of physical assumptions (such as secure processors) and cryptographic tools (such as signature
schemes). Unfortunately, the majority of cryptographic tools require secure key storage, which
is unlikely to be available in a hostile environment. Our construction follows the approach of
Molnar et al. [20], who exploited the properties of write-once memories to provide tamper-evident
storage. They introduced an encoding scheme in which flipping some of the bits of any valid
codeword from 0 to 1 will never lead to another valid codeword. Consider, for example, the encoding
E(x) = x || wt(x̄)2, obtained by concatenating the string x with the binary representation of the
Hamming weight of its complement. This encoding has the property that flipping any bit of x
from 0 to 1 decreases wt(x̄)2, and requires flipping at least one bit of wt(x̄)2 from 1 to 0 (which is
physically impossible when using a write-once memory). In the voting scenario, this prevents any
modification to the stored ballots after the polls close, and prevents poll workers from tampering
with the content of the data structure while the storage device is in transit. This approach does
not require any cryptographic tools or computational assumptions, which makes it very suitable
for the setting of hostile environments. The additional memory allocation required by the encoding
is only logarithmic in the size of the stored data, and can be handled independently of the storage
strategy. For simplicity of presentation, we ignore the encoding procedure, and refer the reader’s
attention to the fact that our storage strategy is indeed write-once (i.e., the memory is initialized
to the all 0’s state, and the only operation allowed is flipping bits from 0 to 1).

1.1 Our Contributions

We construct an efficient, deterministic mechanism for storing a set of at most K elements on
write-once memories. The elements are given one at a time, and stored in a manner that does not
reveal the insertion order. Our mechanism is immune to a large class of attacks that made previous
constructions unsuitable for extremely hostile environments. Previous constructions were either
much less efficient (required Θ(K2) memory), randomized, or employed cryptographic techniques
that require secure key storage (making them vulnerable to various side-channel and hardware
attacks). Unless stated otherwise, throughout the paper we refer to the amount of allocated memory
as the number of allocated memory words, each of length logN bits, and assume that writing and
reading a memory word can be done in constant time. Our main result is the following:

Theorem 1.1. There exists an explicit, deterministic, history-independent, and write-once mech-
anism for storing a set of at most K elements from a universe of size N , such that:

1. The total amount of allocated memory is O(K · polylog(N)).

2. The amortized insertion time and the worst-case look-up time are O(polylog(N)).
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In addition, our construction yields a non-constructive proof for the existence of the following
storage mechanism:

Theorem 1.2. There exists a deterministic, history-independent, and write-once mechanism for
storing a set of at most K elements from a universe of size N , such that:

1. The total amount of allocated memory is O(K log(N/K)).

2. The amortized insertion time is O(log2N · logK).

3. The worst-case look-up time is O(logN · logK).

In order to evaluate the security of our mechanism we focus on the main security goals of vote
storage mechanisms [20], and formalize a threat model. Such a model should specify both the
computational capabilities of the adversary (in this paper we consider computationally unbounded
adversaries), and the type of access that the adversary has to the mechanism. Our threat model is
described in Section 3.2. Informally, we consider two types of adversaries: post-election adversaries
that gain access to the mechanism at the end of the election process, and lunch-time adversaries that
gain access to the mechanism at several points in time during the election process. For each type
of adversaries we consider two levels of access to the mechanism: read-only access, and read-write
access.

We show that our mechanism provides the highest level of security against post-election ad-
versaries with read-write access, and against lunch-time adversaries with read-only access. Unfor-
tunately, our mechanism turns out to be insecure against lunch-time adversaries with read-write
access. Specifically, it does not guarantee tamper-evidence against such adversaries. We prove, how-
ever, that such a vulnerability is not specific for our construction, but is inherent in any mechanism
that uses significantly less than K2 bits of storage. In fact, we provide a complete characterization
of the class of deterministic, history-independent and write-once mechanisms that do enjoy such a
level of security. Informally, we show that any such mechanism stores the elements according to a
superimposed code [17]. The following theorem then follows from known lower bounds and upper
bounds on superimposed codes [11, 12, 25]:

Theorem 1.3. Any deterministic, history-independent, and write-once mechanism for storing a
set of at most K elements from a universe of size N which is tamper-evident against a lunch-time
adversary with read-write access uses Ω

(
K2

logK · logN
)

bits of storage. Moreover, there exists such

an explicit mechanism that uses O(K2 log2N) bits of storage.

Conflict resolution. In this paper we also address a seemingly unrelated problem: conflict
resolution in multiple-access channels. A fundamental problem of distributed computing is to
resolve conflicts that arise when several stations transmit simultaneously over a single channel. A
conflict resolution algorithm schedules retransmissions, such that each of the conflicting stations
eventually transmits individually to the channel. Such an algorithm is non-adaptive if the choice of
the transmitting stations in each step does not depend on information gathered from previous steps
(with the exception that a station which successfully transmits halts, and waits for the algorithm
to terminate). The efficiency measure for conflict resolution algorithms is the total number of steps
it takes to resolve conflicts in the worst case (where the worst case refers to the maximum over all
possible sets of conflicting stations).

3



We consider the standard model in which N stations are tapped into a single channel, and
there are at most K conflicting stations. In 1985, Komlós and Greenberg [18] provided a non-
constructive proof for the existence of a deterministic and non-adaptive algorithm that resolves
conflicts in O(K log(N/K)) steps. However, no explicit algorithm with a similar performance
guarantee was known.

By adapting our technique to the setting of conflict resolution, we devise the first efficient
deterministic and non-adaptive algorithm for this problem. The number of steps required by our
algorithm to resolve conflicts matches the non-explicit upper bound of Komlós and Greenberg [18]
up to poly-logarithmic factors. More specifically, we prove the following theorem:

Theorem 1.4. For every N and K there exists an explicit, deterministic, and non-adaptive algo-
rithm that resolves any K conflicts among N stations in O(K · polylog(N)) steps.

Paper organization. The rest of the paper is organized as follows. In Section 2 we review related
work. Section 3 contains some essential definitions and a formal description of our main security
goals and threat model. In Section 4 we present our construction of the storage mechanism, which
we then analyze in Section 5. The analysis includes, in addition to an evaluation of the soundness,
performance, and security guarantees of our construction, a characterization of the class of mech-
anisms that are deterministic, history-independent, and write-once and provide tamper-evidence
against a lunch-time adversary with read-write access. In Section 6 we provide constructions of
the bipartite graphs that serve as the main building block of our storage mechanism. Finally, in
Section 7 we show that our technique can be adapted to devise a deterministic and non-adaptive
conflict resolution algorithm.

2 Related Work

The problem of constructing history-independent data structures was first formally considered by
Micciancio [19], who devised a variant of 2–3 trees that satisfies a property of this nature. Micciancio
considered a rather weak notion of history-independence, which required only that the shape of the
trees does not leak information. We follow Naor and Teague [22] and consider a stronger notion
— data structures whose memory representation does not leak information (see Section 3.1 for a
formal definition and for related work that considered this definition and its variants). Naor and
Teague focused on dictionaries, and constructed very efficient hash tables in which the cost of each
operation is constant. Some of their results were recently improved by Blelloch and Golovin [6] and
by Naor et al. [21] who managed to support delete operations as well while still guaranteeing the
strongest form of history independence.

In the context of write-once memories, Rivest and Shamir [24] initiated the study of codes for
write-once memory, by demonstrating that such memories can be “rewritten” to a surprising degree.
Irani, Naor and Rubinfeld [16] explored the time and space complexity of computation using write-
once memories, i.e., whether “a pen is much worse than a pencil”. Specifically, they proved that a
Turing machine with write-once polynomial space decides exactly the class of languages P.

History-independence on write-once memories. Molnar et al. [20] studied the task of de-
signing a vote storage mechanism, and suggested constructions of history-independent storage mech-
anisms on write-once memories. Among their suggestions is a deterministic mechanism based on
an observation of Naor and Teague [22], stating that one possible way of ensuring that the memory
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representation is determined by the content of a data structure is to store the elements in lexico-
graphical order. This way, any set of elements has a single canonical representation, regardless of
the insertion order of its elements. When dealing with write-once media, however, we cannot sort
in-place when a new element is inserted. Instead, on every insertion, we compute the sorted list
that includes the new element, copy the contents of this list to the next available memory position,
and erase the previous list. We refer to this solution as a copy-over list, as suggested by Molnar et
al. [20]. The main disadvantage of copy-over lists is that any insertion requires copying the entire
list. Therefore, storing K elements requires Θ(K2) memory. We note that when dealing with a
small universe of elements (for example, an election with only two candidates), a better solution is
to pre-allocate memory to store a bounded unary counter for each element. However, this may not
be suitable for elections in cases where write-in candidates are allowed (as is common in the U.S.)
or when votes are subsets or rankings (as is common in many countries).

In an attempt to improve the amount of allocated memory, Molnar et al. suggested using a hash
table in which each entry is stored as a separate copy-over list. The copy-over lists are necessary
when several elements are mapped to the same entry. However, with a fixed hash function the
worst-case behavior of the table is very poor, and therefore the hash function must be randomly
chosen and hidden from the adversary. Given the hash function, the mechanism is deterministic
and we refer to such a strategy as an off-line randomized strategy. For instance, the mechanism
may choose a pseudo-random function as its hash function. However, this approach is not suitable
for hostile environments, where secure storage for the key of the hash function is not available.

Molnar et al. also showed that an on-line randomized strategy can significantly improve the
amount of allocated memory. A simple solution is to allocate an array of 2K entries, and insert
an element by randomly probing the array until an empty entry is found. However, as mentioned
earlier, such a strategy may enable covert channels: a maliciously designed storage mechanism can
secretly embed information into the stored data by choosing among the multiple valid representa-
tions of the same data.

Tamper-evidence without write-once memories. The constructions of Molnar et al. achieved
tamper-evidence by exploiting the properties of write-once memories. Bethencourt, Boneh and
Waters [5] took a different approach to designing a history-independent tamper-evident storage
mechanism. They developed a signature scheme for signing sets of elements with two important
properties: the order in which elements were added to the set cannot be determined from the sig-
nature, and elements cannot be deleted from the set. Even though their solution uses only O(K)
memory to store K elements, it is randomized and requires secure storage for cryptographic keys
(as well as computational assumptions).

3 Definitions and Threat Model

3.1 Formal Definitions

A data structure is defined by a list of operations. We construct a data structure that supports
the following operations:

1. Insert(x) - stores the element x.

2. Seal() - finalizes the data structure (after this operation no Insert operations are allowed).

3. LookUp(x) - outputs FOUND if and only if x has already been stored.
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4. RetrieveAll() - outputs all stored elements.

We say that two sequences of operations, S1 and S2, yield the same content if for all suffixes
T , the results returned by T when the prefix is S1 are identical to those returned by T when the
prefix is S2.

Definition 3.1. A deterministic data structure is history-independent if any two sequences of
operations that yield the same content induce the same memory representation.

In our scenario, two sequences of operations yield the same content if and only if the corre-
sponding sets of stored elements are identical. The above definition is a simplification of the one
suggested by Naor and Teague [22], when dealing only with deterministic data structures. Naor
and Teague also considered a stronger definition, in which the adversary gains control periodically,
and obtains the current memory representation at several points along the sequence of operations.
This definition has also been studied by Hartline et al. [15] and by Buchbinder and Petrank [7].
Since we deal only with deterministic data structures, in our setting the definitions are equivalent.

3.2 Security Goals and Threat Model

Our approach in defining the security goals and threat model is motivated by the possible attacks
on an electronic voting system. To make the discussion clearer, we frame the security goals and
threat model in terms of a vote storage mechanism. In an actual voting scenario, casting a ballot
corresponds to an Insert operation. In the simplest form of voting systems, the element inserted
is the chosen candidate’s name. In more complex voting systems, however, the inserted element
may be a ranking or a subset of the candidates, an encrypted ballot, or a combination of multiple
choices. These possibilities are the reason for viewing the “universe of elements” as large, while
the actual number of elements inserted is small (at most the number of voters). Once the voting is
complete (e.g., the polls close), the Seal operation is performed. The purpose is to safeguard the
ballots during transport (and for possible auditing). Finally, to count the votes, the RetrieveAll
operation is performed.

The main security goals we would like our storage mechanism to achieve are the following2:

1. Tamper-evidence: Any modification of votes after they were cast should be detected.

2. Privacy: No information about the order in which votes were cast should be revealed.

3. Robustness: No adversary should be able to cause the election process to fail.

We consider extremely powerful adversaries: computationally unbounded adversaries that can
adaptively corrupt any number of voters (i.e., the adversary can choose to perform arbitrary Insert
operations at arbitrary points in time). The extent to which each of the above security goals can be
satisfied by our mechanism depends on the assumed adversarial access. We consider two types of
adversaries: post-election adversaries that gain access to the mechanism at the end of the election
process, and lunch-time adversaries that gain access to the mechanism at several points in time
during the election process. For each type of adversaries we consider two levels of access to the
mechanism: read-only access, and read-write access. In Section 5.2 we evaluate the security of our
mechanism according to the above security goals and threat model.

2For simplicity we focus on the main and most relevant security goals. We refer the reader to the work of Molnar
et al. [20] for a more detailed list.
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4 The Construction

4.1 Overview

Our construction relies on the fundamental technique of storing elements in a hash table and
resolving collisions separately in each entry of the table. More specifically, our storage mechanism
incorporates two “strategies”: a global strategy that maps elements to the entries of the table, and
a local strategy that resolves collisions that occur when several elements are mapped to the same
entry. As long as both strategies are deterministic, history-independent and write-once, the entire
storage mechanism will also share these properties.

The local strategy. We resolve collisions by storing the elements mapped to each entry of the
table in a separate copy-over list. Copy-over lists were introduced by Molnar et al. [20], and are
based on an observation by Naor and Teague [22], stating that one possible way of ensuring that the
memory representation is determined by the content of a data structure is to store the elements in
lexicographical order. When dealing with write-once media, however, we cannot sort in-place when
a new element is inserted. Instead, on every insertion, we compute the sorted list that includes the
new element, copy the contents of this list to the next available memory position, and erase the
previous list (by setting all the bits to 1). Note that storing K elements in a copy-over list requires
Θ(K2) memory, and therefore is reasonable only for small values of K.

The global strategy. Our goal is to establish a deterministic strategy for mapping elements to
the entries of the table. However, for any fixed hash function, the set of inserted elements can be
chosen such that the load in at least one of the entries will be too high to be efficiently handled
by our local strategy. Therefore, in order to ensure that the number of elements mapped to each
entry remains relatively small (in the worst case), we must apply a more sophisticated strategy.

Our global strategy stores the elements in a sequence of tables, where each table enables us to
store a fraction of the elements. Each element is first inserted into several entries of the first table.
When an entry overflows (i.e., more than some pre-determined number of elements are inserted
into it), the entry is “permanently deleted”. In this case, any elements that were stored in this
entry and are not stored elsewhere in the table are inserted into the next table in a similar manner.
Thus, we are interested in finding a sequence of functions that map the universe of elements to the
entries of the tables, such that the total number of tables, the size of each table, and the number of
collisions are minimized. We view such functions as bipartite graphs G = (L,R,E), where the set
of vertices on the left, L, is identified with the universe of elements, and the vertices on the right,
R, are identified with the entries of a table. Given a set of elements S ⊆ L to store, the number of
elements mapped to each table entry y ∈ R is the number of neighbors that y has from the set S.
We would like the set S ⊆ L to have as few as possible overflowing entries, i.e., as few as possible
vertices y ∈ R with many neighbors in S.

More specifically, we are interested in bipartite graphs G = (L,R,E) with the following prop-
erty: Every set S ⊆ L of size at most K contains “many” vertices with low-degree neighbors. We
refer to such graphs as bounded-neighbor expanders3. Our global strategy will map all the elements
in S which have a low-degree neighbor to those neighbors, and this guarantees that the table entries
corresponding to those neighbors will not overflow at any stage. However, not every element in S
will have a low-degree neighbor. For this reason, we use a sequence of bipartite graphs, all sharing

3The definition is motivated by the notion of bipartite unique-neighbor expanders presented by Alon and Capalbo
[3].
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the same left set L. Each graph will enable us to store a fraction of the elements in S. Formally,
we define:

Definition 4.1. Let G = (L,R,E) be a bipartite graph. We say that a vertex x ∈ L has an
`-degree neighbor with respect to S ⊆ L, if it has a neighbor y ∈ R with no more than ` incoming
edges from S.

Definition 4.2. A bipartite graph G = (L,R,E) is a (K,α, `)-bounded-neighbor expander, if every
S ⊆ L of size K contains at least α|S| vertices that have an `-degree neighbor with respect to S.

We denote |L| = N . In addition, we assume that all the vertices on the left side have the same
degree D. We discuss and provide constructions of bounded-neighbor expander graphs in Section
6.

4.2 Details

Let G0, . . . , Gt denote a sequence of bounded-neighbor expanders Gi = (L = [N ], Ri, Ei) with
left-degree Di. The graphs are constructed such that:

• G0 is a (K0 = K,α0, `0)-bounded-neighbor expander, for some α0 and `0.

• For every 1 ≤ i ≤ t, Gi is a (Ki, αi, `i)-bounded-neighbor expander, for some αi and `i, where
Ki = (1− αi−1)Ki−1.

As described in Section 4.1, the elements are stored in a sequence of tables, T0, . . . , Tt. Each
table Ti is identified with the right set Ri of the bipartite graph Gi, and contains |Ri| entries
denoted by Ti[1], . . . , Ti[|Ri|]. The elements are mapped to the entries of the tables and are stored
there using a separate copy-over list at each entry. The copy-over list at each entry of table Ti will
store at most `i elements. We denote by |Ti[y]| the number of elements stored in the copy-over list
Ti[y], and use the notation Ti[y] = ∗ to indicate that the copy-over list Ti[y] overflowed and was
permanently deleted.

In order to insert or look-up an element x, we execute Insert(x, T0) or LookUp(x, T0), respec-
tively. The Seal() operation is performed as in the mechanism of Molnar et al. [20] by using the
encoding discussed in the introduction (specifically, the seal operation concatenates to the current
content of the memory the binary representation of the Hamming weight of its complement). The
operations Insert(x, Ti), LookUp(x, Ti), and RetrieveAll() are described in Figure 1.

5 Analysis of the Construction

5.1 Soundness and Performance

We first prove that the storage mechanism is history-independent, i.e., any two sequences of inser-
tions that yield the same content, induce the same memory representation. Then, we show that
each table indeed stores a fraction of the elements. Finally we summarize the properties of the
constructions.

Lemma 5.1. For every set S ⊆ [N ] of size at most K, any insertion order of its elements induces
the same memory representation.
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Insert(x, Ti):
1: for all neighbors y of x in the graph Gi do
2: if Ti[y] = ∗ then
3: Continue to the next neighbor of x
4: else if |Ti[y]| < `i then
5: Store x in the copy-over list Ti[y]
6: else
7: for all x′ in Ti[y] such that x′ does not appear in any other list in Ti do
8: Execute Insert(x′, Ti+1)
9: Set Ti[y]← ∗ // erase the memory blocks of Ti[y]

10: if x was not stored in any copy-over list in the previous step then
11: Execute Insert(x, Ti+1)

LookUp(x, Ti):
1: for all neighbors y of x in the graph Gi do
2: if x is stored in the copy-over list Ti[y] then
3: return FOUND and halt
4: if x was not found in a previous step and i = t then
5: return NOT FOUND
6: else
7: return LookUp(x, Ti+1)

RetrieveAll():
1: for all tables Ti do
2: for all copy-over lists Ti[y] do
3: if Ti[y] 6= ∗ then
4: Output all elements of Ti[y] that have not yet been output

Figure 1: The Insert, LookUp, and RetrieveAll operations.

Proof. Let S ⊆ [N ] of size at most K. We prove by induction on 0 ≤ i ≤ t that the memory
representation of table Ti is independent of the insertion order.

For i = 0, denote by Y0 the set of vertices in R0 that have no more than `0 incoming edges from
S in the graph G0. Then, it is clear that for every y ∈ Y0 and for any insertion order, the copy-over
list in entry T0[y] never contains more than `0 elements, and is therefore never erased. Moreover,
this list will always contain the same elements (all the neighbors of y in S) which will be stored in
a history-independent manner. In addition, for every y ∈ R0 \ Y0 and for any insertion order, the
copy-over list at entry T0[y] will be erased at some point (since it will exceed the `0 upper bound),
and will contain a fixed number of erased blocks. Therefore, the memory representation of T0 is
independent of the insertion order.

Suppose now that the memory representation of T0, . . . , Ti−1 is independent of the insertion
order. In particular this implies that for every set S there exists a fixed Si ⊂ S such that the
elements of Si are all stored in T0, . . . , Ti−1. Let S′i = S \ Si. Then, in any insertion order, only
the elements of S′i are inserted into table Ti (note that although the elements of S′i are inserted
into table Ti this does not necessarily mean that they will eventually be stored in Ti). Now, denote
by Yi the set of vertices in Ri that have no more than `i incoming edges from Si in the graph
Gi. Then, for every y ∈ Yi and for any insertion order, the copy-over list in entry Ti[y] will never
contain more than `i elements, and therefore will store all the neighbors of y from S′i in a history
independent manner. In addition, for every y ∈ Ri \ Yi and for any insertion order, the copy-over

9



list at entry Ti[y] will be erased at some point (since it will exceed the `i upper bound), and will
contain a fixed number of erased blocks. Therefore, the memory representation of Ti is independent
of the insertion order as well.

Lemma 5.2. For every set S ⊆ [N ] of size at most K, for every insertion order of its elements,
and for every 0 ≤ i ≤ t, the number of Insert(·, Ti) calls is at most Ki. In particular, if there
exists an α > 0 such that αi ≥ α for every Gi, then setting t =

⌈
lnK
α

⌉
guarantees that every such

set S is successfully stored.

Proof. We prove the first part of the lemma by induction on i. For i = 0, it is clear that the
number of Insert(·, T0) calls is at most K0 = K, since S contains at most K elements.

Suppose now that the number of Insert(·, Ti) calls is at most Ki. Fix an insertion ordering,
and denote by Si the set of elements x for which an Insert(x, Ti) call was executed. An element x′

will be inserted by Insert(x′, Ti+1) only if it was previously inserted by Insert(x′, Ti), and then
either did not find an available copy-over list to enter, or was erased when a copy-over list exceeded
the `i upper bound. Notice that in the graph Gi, if some x ∈ Si has a neighbor y ∈ Ri with at
most `i incoming edges from Si, then x will be successfully placed in the copy-over list Ti[y]. This
is due to the fact that y has at most `i incoming edges from Si, and therefore the copy-over list
Ti[y] will not be erased.

This implies that the number of Insert(·, Ti+1) calls is upper bounded by the number of vertices
in Si which do not have an `i-degree neighbor with respect to Si in Gi. We now claim that the
number of such vertices is at most (1 − αi)Ki = Ki+1. Extend Si arbitrarily to a set S′i of size
exactly Ki. Then, Definition 4.2 implies there are at least αiKi vertices in S′i that have an `i-degree
neighbor with respect to S′i. Since Si ⊆ S′i, then any vertex x ∈ Si that has an `i-degree neighbor
with respect to S′i, also has (the same) `i-degree neighbor with respect to Si. This implies that at
most (1− αi)Ki vertices in S′i do not have an `i-degree neighbor with respect to Si. In particular,
since Si ⊆ S′i, there are at most (1 − αi)Ki vertices in Si that do not have an `i-degree neighbor
with respect to Si.

Now, if there exists an α > 0 such that αi ≥ α for every Gi, then in particular the number of
Insert(·, Tt) calls is at most

Kt = K ·
t−1∏
i=0

(1− αi) ≤ K · (1− α)t ≤ K · e−αt ≤ 1 .

Thus, at most one element is inserted into the last table Tt, and therefore the set S is successfully
stored in the sequence of t+ 1 tables.

Lemma 5.3. The storage mechanism has the following properties:

1. The total amount of allocated memory is at most
∑t

i=0 |Ri| · `2i .

2. The amortized insertion time is at most 1
K ·
(∑t

i=0 |Ri| · `2i
)

+
∑t

i=0D
2
i · `3i .

3. The worst-case look-up time is at most 2 ·
∑t

i=0Di · (log `i + 1).

Proof. Each table Ti contains |Ri| entries, each of which stores at most `i elements in a copy-over
list by using at most `2i memory blocks. Therefore, the total amount of allocated memory is at
most

∑t
i=0 |Ri| · `2i .
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In order to bound the amortized insertion time, we consider the number of write operations and
the number of read operations separately. Since the storage strategy is write-once, then the total
number of write operations when storing K elements is upper bounded by the amount of memory in
which the elements are stored. Therefore, the amortized number of write operations per insertion
is at most 1

K ·
(∑t

i=0 |Ri| · `2i
)
. We bound the amortized number of read operation as follows: Each

element is inserted into at most t tables, and into Di entries of each table. In the worst case, when
an element is inserted into an overflowing copy-over list, we scan the current table for all the `i
elements that are stored in the overflowing list, which can be done in Di · `2i read operations for
every such element. Therefore, the amortized number of read operations is at most

∑t
i=0D

2
i · `3i .

Finally, when searching for an element, each table has to be accessed at only Di entries, where
each entry contains at most `2i memory blocks (and therefore can be searched in time d2 log `ie).
Therefore, the worst-case look-up time is at most 2 ·

∑t
i=0Di · (log `i + 1).

Theorems 1.1 and 1.2 now follow by instantiating the mechanism with the bounded-neighbor
expanders from Corollary 6.7 and Theorem 6.1, respectively.

Proof of Theorem 1.1. When the sequence of graphs G0, . . . , Gt are constructed according to
Corollary 6.7 with ε = 1/2, we have that every Gi is a (Ki, αi, `i)-bounded-neighbor expander, such
that

αi =
|Ri|

4DiKi
≥ cKi

log3(N)
· 1

4DiKi
=

c

4Di log3(N)
=

c

4D log3(N)
,

for some constant c > 0 and D = polylog(N). Therefore, by Lemma 5.2, we can set t =
⌈

lnK
α

⌉
,

where α = c
4D log3(N)

. Now, Lemma 5.3 states that the total amount of allocated memory is

t∑
i=0

|Ri| · `2i =
t∑
i=0

|Ri| ·
(

4DiKi

|Ri|

)2

= 16D2
t∑
i=0

K2
i

|Ri|
≤ 16D2 log3(N)

c

t∑
i=0

Ki

≤ 16KD2 log3(N)
c

t∑
i=0

(1− α)i ≤ 16KD2 log3(N)
c

· 1
α

=
64KD3 log6(N)

c2
.

Thus, the required memory allocation is O(K ·polylog(N)). Very similarly to the above calculation,
Lemma 5.3 further implies that the amortized insertion time and the worst-case look-up time are
O(polylog(N)).

Proof of Theorem 1.2. When the sequence of graphs G0, . . . , Gt are constructed according to
Corollary 6.1, we have that every Gi is a (Ki, 1/2, 1)-bounded-neighbor expander, where Ki = K/2i,
|Ri| = c1 ·Ki log(N/Ki) and Di = c2 · log(N/Ki) for some constants c1, c2 > 0. Now, Lemma 5.3
states that:
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1. The total amount of allocated memory is

t∑
i=0

|Ri| · `2i = c1 ·
t∑
i=0

K

2i
· log

(
N · 2i

K

)

= c1 ·
t∑
i=0

K

2i
· log

(
N

K

)
+ c1 ·

t∑
i=0

i ·K
2i

≤ 2c1K log
(
N

K

)
+ 2c1K

= O

(
K log

(
N

K

))
.

2. The amortized insertion time is at most

1
K
·

(
t∑
i=0

|Ri| · `2i

)
+

t∑
i=0

D2
i · `3i =

1
K
·
(

2c1K log
(
N

K

)
+ 2c1K

)
+ c2 ·

t∑
i=0

log2

(
N · 2i

K

)
= O

(
log2N · logK

)
.

3. The worst-case lookup time is at most

2
t∑
i=0

Di = 2c2 ·
t∑
i=0

log
(
N · 2i

K

)
= O(logN · logK) .

5.2 Security Evaluation and Characterization

In this section we evaluate the security of our mechanism according to the security goals and threat
model which we formalized in Section 3.2 in terms of vote storage mechanisms. In addition, we
characterize the class of mechanisms that are deterministic, history-independent, and write-once
and provide tamper-evidence against a lunch-time adversary with read-write access. Recall that
our main security goals are to guarantee tamper-evidence, privacy, and robustness, and we consider
two types of adversaries: post-election adversaries and lunch-time adversaries.

5.2.1 Security Against Post-Elections Adversaries

We first consider a post-election adversary that has read-only access to the mechanism. In this
case, tamper-evidence and robustness are trivially satisfied since the adversary does not modify the
records. Privacy is guaranteed due to the history-independence of the mechanism (see Lemma 5.1).

Now consider a post-election adversary that has read-write access to the mechanism. In this
case, tamper-evidence is guaranteed due to the write-once memory: at the end of the election
process, the records are sealed using the encoding suggested by Molnar et al. [20], and therefore
it is impossible to undetectably modify the records. Privacy is again guaranteed by the history-
independence property of the mechanism. Robustness, however, cannot be satisfied in such a case
since the adversary can simply erase the records by flipping all bits to 1.
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5.2.2 Security Against Lunch-Time Adversaries

Consider a lunch-time adversary that has read-only access to the mechanism. That is, the adversary
obtains the memory representation of the mechanism at several points in time during the election
process. As in the case of a read-only post-election adversary, tamper-evidence and robustness
are trivially satisfied. Privacy is guaranteed by the strong history-independence property of the
mechanism. More specifically, each time the adversary obtains the memory representation of the
mechanism, the only information that is leaked is the set of elements inserted since the previous
time the memory representation was revealed. This is the highest possible level of privacy against
such an adversary.

We now turn to consider a lunch-time adversary that has read-write access to the mechanism.
That is, the adversary gains read-write access to the mechanism at several points in time during the
election process. In such a case, our mechanism still provides the highest possible level of privacy,
exactly as in the case of a read-only lunch-time adversary. Robustness, however, is impossible to
guarantee in such a case since the adversary can erase the records.

The task of guaranteeing tamper-evidence against a read-write lunch-time adversary turns out to
be more complicated. When considering such an adversary, the best we can hope for is a guarantee
about operations that took place before the attack (i.e., before the adversary gained control). The
adversary should not be able to undetectably delete votes that were previously cast. Unfortunately,
our mechanism does not guarantee this property, and in fact we manage to provide a complete
characterization of the class of deterministic, history-independent and write-once mechanisms that
do guarantee this property. Informally speaking, in what follows we show that such a mechanism
satisfies this property if and only if it stores the elements according to an (N,K+ 1)-superimposed
code [17]. A known lower bound on superimposed codes (see, for example, [12, 25]) implies that
Ω
(

K2

logK · logN
)

memory bits are required in order to store K elements, whereas our mechanism
uses only O(K · polylog(N)) bits. Moreover, using known explicit constructions of superimposed
codes we show that O(K2 log2N) bits suffice. This proves Theorem 1.3

A construction using superimposed codes. We present a simple construction of a determin-
istic, history-independent and write-once mechanism, which requires O(K2 log2N) memory bits in
order to store an increasingly growing set of at most K elements taken from the universe [N ]. The
mechanism maps the elements of the universe into entries of a table according to a superimposed
code. More specifically, given N and K, a binary superimposed code of size N guarantees that any
codeword is not contained in the bit-wise or of any other K − 1 codewords. In what follows for
binary strings y = y1 · · · yn ∈ {0, 1}n and y′ = y′1 · · · y′n ∈ {0, 1}n we use y ⊆ y′ for denoting that
for every 1 ≤ i ≤ n it holds that yi ≤ y′i, and we use y * y′ for denoting that there exists an index
1 ≤ i ≤ n such that yi > y′i (i.e., we naturally interpret y and y′ as subsets of {1, . . . , n}). We use
the following result of Erdös, Frankel and Füredi [11].

Theorem 5.4 ([11]). For every N and ` there exists an efficiently computable code C : [N ] →
{0, 1}d where d ≤ 16`2 logN , such that for every distinct x1, . . . , x` ∈ [N ] it holds that C(x1) *∨`
i=2C(xi).

Given such a code C : [N ] → {0, 1}d with ` = K + 1, the mechanism consists of a table T
containing d entries, denoted T [1], . . . , T [d]. In order to insert an element x, we store x in all
entries T [i] for which C(x)i = 1. If an entry is already occupied, it is permanently deleted. The
superimposed code guarantees that if at most K elements are inserted, then each element will be
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successfully stored (that is, for each element there exists an entry which is unique for the element).
The mechanism is clearly history-independent and write-once. Moreover, the superimposed code
guarantees tamper-evidence against a read-write lunch-time adversary: an existing element cannot
be deleted unless more than K elements are inserted.

A lower bound. We prove a lower bound on the amount of memory bits used by any mechanism
which is deterministic, history-independent, write-once, and guarantees tamper-evidence against a
read-write lunch-time adversary. We show that any such mechanism which uses d bits of memory
can be used to define an (N,K + 1)-superimposed code C : [N ] → {0, 1}d. Thus, the above
mentioned lower bound for superimposed codes implies that d = Ω

(
K2

logK · logN
)

.

Given such a mechanism, we define a mapping C : [N ] → {0, 1}d as follows. For any x ∈
[N ] let C(x) denote the memory representation of the mechanism when it contains the singleton
{x}. In what follows we argue that C is an (N,K + 1)-superimposed code. First, we extend the
mapping C for sets of elements: for any set S ⊂ [N ] denote by C(S) the memory representation
of the mechanism when it contains the set S. We note that the mapping C is well-defined since a
mechanism which is deterministic and history-independent must have a unique representation for
each set of elements. In addition, the write-once property implies that C is monotone. That is, for
any two sets S1, S2 ⊆ [N ] such that S1 ⊆ S2 it holds that C(S1) ⊆ C(S2) (that is, C(S2) can be
obtained from C(S1)by only flipping bits from 0 to 1).

Assume for the purpose of deriving a contradiction that C is not an (N,K + 1)-superimposed
code. Then there exist distinct x1, . . . , xK+1 ∈ [N ] for which C(x1) ⊆

∨K+1
i=2 C(xi). Notice that

this implies that C(x1) ⊆ C({x2, . . . , xK+1}). Consider an attack in where the adversary gains
control over the mechanism when it contains the singleton {x1}. At this point the adversary can
modify the memory representation to C({x2, . . . , xK+1}) by flipping bits from 0 to 1, and obtain
the unique memory representation of the set {x2, . . . , xK+1}. That is, the adversary managed to
undetectably delete x1. This yields a contradiction to the assumed security of the mechanism, and
therefore the mapping C is an (N,K + 1)-superimposed code.

6 Constructions of Bounded-Neighbor Expanders

Given N and K we are interested in constructing a (K,α, `)-bounded-neighbor expander G =
(L = [N ], R,E), such that α is maximized, and ` and |R| are minimized. We first present a non-
constructive proof of the existence of a bounded-neighbor expander that enjoys “the best of the
two worlds”: α = 1/2, ` = 1, and almost linear |R|. Then, we provide an explicit construction
of bounded-neighbor expanders, by showing that any disperser [26] is in fact a bounded-neighbor
expander.

6.1 A Non-Constructive Proof

We prove the following theorem:

Theorem 6.1. For every N and K, there exists a (K, 1/2, 1)-bounded-neighbor expander G =
(L,R,E), with |L| = N , |R| = O(K log(N/K)) and left-degree D = O(log(N/K)).

In order to prove the theorem, we show that for every N and K, there exists a family H
containing O(log(N/K)) functions h : [N ]→ [3K] with the following property: For every S ⊆ [N ]
of size K, there exists a function h ∈ H such that h restricted to S maps at least K/2 elements

14



of S to unique elements of [3K]. Alternatively, we can view each function h as a bipartite graph
Gh = ([N ], [3K], Eh), where (x, y) ∈ Eh if and only if h(x) = y, and ask that for every S ⊆ [N ] of
size K there exists a function h ∈ H such that at least K/2 elements in S have 1-degree neighbors
with respect to S in Gh.

Given such a family H = {h1, . . . , ht}, we define a bipartite graph G = (L = [N ], R,E) where R
contains t = O(log(N/K)) copies of [3K]. Each copy represents a function in H. More specifically,
each vertex x ∈ [N ] has t outgoing edges, where the i-th edge is connected to hi(x) in the i-th copy
of [3K]. See Figure 2 for an illustration of the constructed graph.

Figure 2: The constructed bounded-neighbor expander for the case t = 3.

Lemma 6.2. Let X denote the number of bins that contain exactly one ball, when K balls are
placed independently and uniformly at random in 3K bins. Then,

Pr [X < K/2] < exp(−K/48) .

Proof. For every 1 ≤ i ≤ K, denote by Xi the Boolean random variable that equals 1 if and only
if the i-th ball is placed in a bin that does not contain any other balls. Then X =

∑K
i=1Xi. Note

that since K balls are placed in 3K bins, then there are always at least 2K empty bins. Therefore,
for every ~u ∈ {0, 1}K−1 and for every 1 ≤ i ≤ K,

Pr [Xi = 1 | (X1, . . . , Xi−1, Xi+1, . . . , XK) = ~u] ≥ 2/3 .

Let Y1, . . . , YK denote K independent and identically distributed Boolean random variables such
that Pr [Y1 = 1] = 2/3, and let Y =

∑K
i=1 Yi. A standard coupling argument shows that for every

t > 0 it holds that Pr [X < t] ≤ Pr [Y < t]. Therefore, by applying a Chernoff bound for Y , we
obtain

Pr [X < K/2] ≤ Pr [Y < K/2] ≤ exp(−K/48) .

The following lemma proves the existence of the family H, which is used to construct the
bounded-neighbor expander as explained above.

Lemma 6.3. For every N and K ≤ N , there exists a family H containing O(log(N/K)) functions
h : [N ] → [3K], such that for every S ⊆ [N ] of size K, there exists a function h ∈ H whose
restriction to S maps at least K/2 elements of S to unique elements of [3K].
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Proof. Fix N and K ≤ N . We apply the probabilistic method and show that with positive
probability over the random choice of such a family H it holds that for every S ⊆ [N ] of size
K, there exists a function h ∈ H whose restriction to S maps at least K/2 elements of S to
unique elements of [3K]. More specifically, consider the experiment of constructing the family H
by choosing uniformly and independently at random a collection of

|H| =
⌈

48
K
· log

(
N

K

)⌉
+ 1 = O

(
log
(
N

K

))
functions h : [N ] → [3K]. Then Lemma 6.2 implies that for every fixed set S ⊆ [N ] of size K,
the probability that there is no function h ∈ H whose restriction to S maps at least K/2 elements
of S to unique elements of [3K] is at most exp(−K/48 · |H|). Therefore, the probability over the
choice of H that there exists a set S ⊆ [N ] of size K for which there is no function h ∈ H whose
restriction to S maps at least K/2 elements of S to unique elements of [3K] is at most(

N

K

)
exp

(
K

48
· |H|

)
< 1 .

6.2 An Explicit Construction

We provide an explicit construction of bounded-neighbor expanders by showing that any disperser
is a bounded-neighbor expander. Dispersers [26] are combinatorial objects with many random-
like properties. Dispersers can be viewed as functions that take two inputs: a string that is not
uniformly distributed, but has some randomness; and a shorter string that is completely random,
and output a string whose distribution is guaranteed to have a large support. Dispersers have
found many applications in computer science, such as simulation with weak sources, deterministic
amplification, and many more (see [23] for a comprehensive survey). We now formally define
dispersers, and then show that any disperser is a bounded-neighbor expander.

Definition 6.4. A bipartite graph G = (L,R,E) is a (K, ε)-disperser if for every S ⊆ L of size at
least K, it holds that |Γ(S)| ≥ (1 − ε)|R|, where Γ(S) denotes the set of neighbors of the vertices
in S.

Lemma 6.5. Any (K, ε)-disperser G = (L,R,E) with left-degree D is a (K,α, `)-bounded-neighbor
expander, for α = (1−ε)|R|

2DK and ` = d1/αe.

Proof. We have to show that every set S ⊆ L of size K contains least α|S| vertices that have an
`-degree neighbor with respect to S (that is, a neighbor that has at most ` incoming edges from S).
Therefore, we can focus on the subgraph G′ = (S,Γ(S), E′), where E′ are all the outgoing edges of
S. There are exactly DK edges in G′, and therefore the average degree of the vertices of Γ(S) in
G′ is

DK

|Γ(S)|
≤ DK

(1− ε)|R|
≤ `

2
.

This implies that at least |Γ(S)|/2 vertices in Γ(S) have degree at most ` in G′. Thus, the number
of vertices in S which have an `-degree neighbor with respect to S is at least

|Γ(S)|
2D

≥ (1− ε)|R|
2D

=
(1− ε)|R|

2DK
· |S| = α|S| .
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Lemma 6.5 can be instantiated with the following disperser construction of Ta-Shma, Umans
and Zuckerman [28].

Theorem 6.6 ([28]). For every n, k, and constant ε > 0, there exists an efficiently computable
(K = 2k, ε)-disperser G = (L,R,E), with |L| = N = 2n, |R| = Θ(K/ log3(N)) and left-degree
D = polylog(N).

Corollary 6.7. For every n, k and constant ε > 0, there exists an efficiently computable (K =
2k, α, 1/α)-bounded-neighbor expander G = (L,R,E), with |L| = N = 2n, |R| = Θ(K/ log3(N)),
left-degree D = polylog(N), and α = (1−ε)|R|

2DK .

An alternative approach for constructing bounded-neighbor expanders is by using lossless con-
densers4. This approach guarantees constant α and very small `, but larger |R|. The recent
construction of Guruswami, Umans and Vadhan [14] yields a bounded-neighbor expander with
|R| = O(K1+ε), for every constant ε > 0. Therefore, this is preferable only when dealing with
relatively small values of K, such as K = polylog(N).

7 A Deterministic Non-Adaptive Conflict Resolution Algorithm

In the conflict resolution problem, N stations are tapped into a multiple-access channel, and the
goal is to resolve conflicts that arise when K stations transmit simultaneously over the channel. A
conflict resolution algorithm schedules retransmissions, such that each of the conflicting stations
eventually transmits individually to the channel. At each step, if more than one station transmits,
then all packets are lost. After each step the transmitting stations receive feedback indicating only
the success or failure of their transmission. A station that successfully transmits halts, and waits
for the algorithm to terminate.

A conflict resolution algorithm is non-adaptive if the choice of the transmitting stations in each
step does not depend on information gathered from previous steps. The efficiency measure for
conflict resolution algorithms is the total number of steps it takes to resolve conflicts in the worst
case, where worst case refers to the maximum over all possible sets of K conflicting stations.

Several deterministic adaptive solutions are known. Capetanakis’s tree algorithms [9, 10], that
resolve conflicts in O(K log(N/K)) steps, were devised almost three decades ago. Greenberg and
Winograd [13] showed that any deterministic algorithm must run for Ω(K(logN)/ logK) steps.
In 1985, Komlós and Greenberg [18] provided a non-constructive proof for the existence of a de-
terministic and non-adaptive algorithm that resolves conflicts in O(K log(N/K)) steps. However,
no explicit algorithm with a similar performance guarantee was known. As noted by Komlós
and Greenberg, a very simple deterministic and non-adaptive algorithm can resolve conflicts in
O(K2 logN) steps. This simple solution will be used by our algorithm in order to “locally” resolve
a small number of conflicts.

7.1 Overview of the Algorithm

We adapt the main idea underlying our storage mechanism by following similar “strategies”: A
global strategy that maps stations to time intervals, and a local strategy that schedules retransmis-
sions inside the intervals. The global strategy is identical to that of the storage mechanism: We

4We note that unbalanced expanders have been already considered for storing sets of elements by Buhrman,
Miltersen, Radhakrishnan and Venkatesh [8] and by Ta-Shma [27] with the property that membership queries can be
answered by querying just one bit.
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map the N stations to time intervals using a sequence of bounded-neighbor expanders. The local
strategy schedules retransmissions inside the intervals by associating the stations with codewords
of a superimposed code [17]. Given N and `, a binary superimposed code of size N guarantees that
any codeword is not contained in the bit-wise or of any other `− 1 codewords. For our algorithm
we use the superimposed code of Erdös, Frankel and Füredi [11] whose properties we stated in
Theorem 5.4, and note that any other superimposed code with similar asymptotic guarantees can
be used.

In every interval, we associate each station x that is mapped to the interval with a codeword
C(x) ∈ {0, 1}d. Each interval contains d steps, and the station x transmits at its j-th step if
and only if the j-th entry of C(x) is 1. The superimposed code guarantees that if at most `
stations are mapped to an interval, then each station will successfully transmit. This approach
provides a deterministic and non-adaptive algorithm that resolves conflicts among any ` stations
in d = O(`2 logN) steps.

7.2 The Algorithm

Let G0, . . . , Gt denote a sequence of bounded-neighbor expanders Gi = (L = [N ], Ri, Ei) with left-
degree Di, and let C0, . . . , Ct denote a sequence of codes Ci : [N ]→ {0, 1}di . The graphs and codes
are constructed such that:

• G0 is a (K0 = K,α0, `0)-bounded-neighbor expander, for some α0 and `0.

• For every 1 ≤ i ≤ t, Gi is a (Ki, αi, `i)-bounded-neighbor expander, for some αi and `i, where
Ki = (1− αi−1)Ki−1.

• For every 0 ≤ i ≤ t, Ci has the property that for every distinct x1, . . . , x`i ∈ [N ] it holds that
Ci(x1) *

∨`i
j=2Ci(xj).

The algorithm runs in a sequence of intervals I0, . . . , It. Each interval Ii is identified with
the right set Ri of the bipartite graph Gi, and is divided into |Ri| sub-intervals denoted by
Ii[1], . . . , Ii[|Ri|]. A station x ∈ [N ] participates in sub-interval Ii[y] if and only if x is adja-
cent to y in the graph Gi. The sub-interval Ii[y] contains di steps, and a participating station x
transmits at its j-th step if and only if the j-th entry of Ci(x) is 1.

The following lemma summarizes the properties of the algorithm. Theorem 1.4 is proved by
instantiating the algorithm with the explicit family of bounded-neighbor expanders constructed in
Section 6. The proof is almost identical to the proof of Theorem 1.1, and is omitted.

Lemma 7.1. The following properties hold:

1. For every set of K conflicting stations and for every 0 ≤ i ≤ t, the number of active stations
at the beginning of interval Ii is at most Ki.

2. For every set of K conflicting stations, the algorithm terminates in 16
(∑t

i=0 |Ri| · `2i
)
· logN

steps.

Proof. We prove the first part of the lemma, and the second part of the lemma follows directly
from the description of the algorithm, the first part of the lemma, and Theorem 5.4.

We prove the first part of the lemma by induction on i. Denote by S ⊆ [N ] the set of K
conflicting stations, and for every 1 ≤ i ≤ t denote by Si ⊆ [N ] the set of stations that are still
active at the beginning of interval Ii. Then S0 = S, which implies that |S0| ≤ K0 = K.
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Suppose now that |Si| ≤ Ki, i.e., that the number of active stations at the beginning of interval
Ii is at most Ki. Notice that in the graph Gi, if some x ∈ Si has a neighbor y ∈ Ri with at most
`i incoming edges from Si, then x will successfully transmit during the sub-interval Ii[y] due to
the property of the superimposed code Ci. This implies that the number of stations which will
remain active at the beginning of interval Ii+1 (i.e., the size of the set Si+1) is upper bounded by
the number of vertices in Si which do not have an `i-degree neighbor with respect to Si in Gi. We
now claim that the number of such vertices is at most (1 − αi)Ki = Ki+1. Extend Si arbitrarily
to a set S′i of size exactly Ki. Then, Definition 4.2 implies there are at least αKi vertices in S′i
that have an `i-degree neighbor with respect to S′i. Since Si ⊆ S′i, then any vertex x ∈ Si that has
an `i-degree neighbor with respect to S′i, also has an `i-degree neighbor with respect to Si (this is
the same neighbor). This implies that at most (1 − αi)Ki vertices in S′i do not have an `i-degree
neighbor with respect to Si. In particular, since Si ⊆ S′i, there are at most (1 − αi)Ki vertices in
Si that do not have an `i-degree neighbor with respect to Si. Therefore, |Si+1| ≤ Ki+1 and the
lemma follows.

8 Concluding Remarks

Dealing with multi-sets. Our storage mechanism can be easily adapted to store multi-sets of K
elements taken from a universe of size N . This setting can be viewed as dealing with a universe of
size N ′ = NK, and storing an element x ∈ [N ] as (x, i) where i ∈ [K] is the appearance number of
the element. Note that in order to insert an element x we first need to retrieve its current number
of appearances. This number can be retrieved using logK invocations of the LookUp procedure
in order to identify the maximal i ∈ [K] such that (x, i) is stored (using a binary search). These
modifications only add poly-logarithmic factors to the performance of the mechanism, and therefore
Theorem 1.1 holds in this setting as well.

Non-amortized insertion time. The amortized insertion time of our storage mechanism is at
most poly-logarithmic. However, the worst-case insertion time may be larger, since an insertion
may have a cascading effect. In some cases, this might enable a side-channel attack in which the
adversary exploits the insertion times in order to obtain information on the order in which elements
were inserted. We note that if multiple writes are allowed, then by combining our global strategy
with the hashing method of Naor and Teague [22], we can achieve a poly-logarithmic worst-case
insertion time, as well as linear memory allocation. Whether this is possible using write-once
memory remains an open problem.

Bounded-neighbor expanders. The explicit construction of bounded-neighbor expanders in
Section 6 does not achieve the parameters that one can hope for according to Theorem 6.1. It
would be interesting to improve our explicit construction, as any such improvement will in turn
lead to a more efficient instantiation of our storage mechanism.

Optimal monotone encoding. The total amount of allocated bits required by the mechanism
stated in Theorem 1.2 is O(K log(N) log(N/K)). This leaves a gap between the optimal construc-
tion using multiple-writes (that requires only O(K log(N/K)) bits) and our construction using
write-once memory. This can be alternatively formulated as the problem of finding an optimal
monotone encoding: find the minimal integer M = M(N,K) such that any set S ⊆ [N ] of size at
most K can be mapped to a set VS ⊆ [M ], with the property that VS1 ⊆ VS2 whenever S1 ⊆ S2.
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Note that any such encoding can be translated into a write-once strategy that requires a memory of
size M bits. This problem was posed in a preliminary version of our work, and was recently solved
by Alon and Hod [4], who provided a non-constructive proof showing that M = O(K log(N/K)).
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