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Abstract

A zapis a two-round, public coin witness-indistinguishable protocol in which the first round, con-
sisting of a message from the verifier to the prover, can be fixed “once and for all” and applied to any
instance. We present a zap for every language in NP, based on the existence of non-interactive zero-
knowledge proofs in the shared random string model. The zap is istdmelardmodel, and hence
requires no common guaranteed random string.

We present several applications for zaps, including 3-round concurrent zero knowledge and 2-round
concurrent deniable authentication, in the timing model of Dwork, Naor and Sahai [23], using moderately
hard functions [20]. We also characterize the existence of zaps in terms of a primitive\eaikeble
pseudo-random bit generatofg§PRGS).

1 Introduction

The concept of zero-knowledge, introduced in the ground-breaking paper of Goldwasser, Micali, and Rack-
off [35], has proved to be an invaluable tool in the design of cryptographic primitives and protocols. For
example, consider an identification protocol based on pseudo-random function evaluation: | am identified
by my ability to evaluate a functioif;, where only | know the sees and there is some form of public
commitment tofs. Given a challenge, | producey and prove thay = fs(x) critically without revealing
any information about.

An appealing and frequently useful relaxation of zero-knowledge, callatess-indistinguishability
was proposed by Feige and Shamir [26]. Roughly speaking, in the context of NP, the difference is as follows:
An interactive proof system is zero-knowledge if a prover, knowing a witness for membership of a:string
an NP langaugé, can correctly “convince” a verifier to accepthile revealing no information whatsoever
about the witness. If there are two witnessesifae L, a proof system is witness-indistinguishable if the
verifier cannot tell which of the two witnesses is being used by the prover to carry out the proof, even if
the verifier knows both witnesses. We restrict our attention to NP because we are interested in the realistic
setting in which parties are restricted to probabilistic polynomial time computations

In this work we obtain surprising results on the numbers of rounds needed in order to achieve zero-
knowledge and witness-indistinguishability. For this purpose we introduce and investigate zaps. A zap is a
two-round witness indistinguishable protocol in which
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(i) the first round, consisting of a message from the verifier to the prover, can be fixed “once-and-for-
all” and applied to any instance and

(i) the verifier uses onlypublic coins

That is, the system remains sound and witness-indistinguishable even if the statements to be proven are
chosen after the first-round message is fixed. Thus, if we think of the participating parties as families of
non-uniform rather than uniform, probabilistic polynomial time-bounded Turing machines, the existence of
a zap for a language implies the existence of a 1-message witness-indistinguishable proof systém for

Throughout the paper we will distinguish betweenshared random string modeh which the parties
have access to a commguoaranteed randorstring, and what we call th&gandardmodel, in which no such
assumption is made. Whenever we refer to noninteractive zero-knowledge proofs (NIZKs), we mean in
the shared random string model (the definition of NIZK forces a shared object). We present zaps for every
languagel. € NP based on the existence of a noninteractive zero-knowledge proof systefniriathe
shared random string model. The zap is in the standard model, and hence requires no common guaranteed-
random string. Using current NIZK technology this means that zaps can be based on any family of enhanced
certified trapdoor permutation [29].

Not only can zaps be constructed from NIZKs, but the converse holds as well: if every langauge in NP
has a zap and one-way functions exist, then every language in NP has a NIZK. In fact, the NIZKs we obtain
from zaps are zero-knowledge against adaptive selection of the theorem to be proved. This yields a proof
that if NIZKs secure against non-adaptive selection exist and one-way functions exist, then adaptive NIZKs
exist.

This result (and its proof) gives a somewhat formal view of zaps, but yields little intuition for why zaps
and NIZKs exist at all. Indeed, our first constructions of zaps were not based on NIZKs, but relied on the
new notion of averifiable pseudo-random bit generatamr VPRG. Roughly speaking, a pseudo-random
sequence iserifiableif a party knowing the pseudo-random seed can construct verifiable “proofs” of the
bits of the pseudo-random sequence. Moreover, a VPRG with some nérmbeutput bits passes what we
call the “ith bit test” for all1 < ¢ < k: given proofs of the values of all but th#h bit in the sequence, it
is computationally infeasible to guess thk bit with a non-negligible advantage ovef2. Thus, VPRGs
can be viewed as a special case of the verifiable pseudo-random functions (VPRF's) of Micali, Rabin,
and Vadhan [44], in which the domain is very small. We give constructions for VPRGs and a relaxation,
approximate VPRGs

The importance of VPRGs is this: Zaps (and NIZKs) exist if and only if approximate VPRGs exist in
the standard model. In this paper we construct VPRGs using multiple certified trapdoor permutations with
a common domain; this yields the first NIZK construction for which the trapdoor permutations need not be
enhanced. In addition, recent constructions of VPRFs based on assumptions on bilinear maps [42, 16, 17]
also necessarily yield NIZKs (and zaps).

1.1 Applications of Zaps

We present applications of zaps in several models. Specifically, we construct faster implementations of
important cryptographic primitives in each of the standard, timing-based, and resettable models. Although
in some cases the absolute improvement in rounds may be modest, the number of rounds that we achieve
in each case is within 1 of the best possible. For example, all previous withess-indistinguishable proof
systems require at leasitreerounds of communication, while zaps achieve witness indistinguishability in

two rounds. The fact that zaps also yield non-uniform one-round witness-indistinguishability suggests that
proving a lower bound of two rounds is unlikely (see also the very recent work of Barak, Ong and Vadhan
[2]).

An interesting set of applications for zaps is in timing model of Dwork, Naor, and Sahai [23], where,



using moderately hard functions [20] and timed commitments [11], we obtain 3-roumolrrentblack-

box? zero knowledge proofs of knowledge for all of NP. A 3-round black-box zero-knowledge protocol with
timing (even without concurrency) is interesting in its own right: it is known that in the standard model (no
timing) this is impossible to achieve (with negligible soundness error assuming BIPP) [31], while the
possibility of concurrency implies that at led3tlog n/loglogn) rounds are required [14]; thus, adding
timing allows us to go well below the lower bounds in the standard model. Recently, using zaps, Dwork and
Stockmeyer have obtained 2-round timing-based black-box (concurrent) zero-knowledge interactive proofs
under the assumption that certain functions have noafaditors they also provide a prover-advice based
variant for which soundness is absolute (in this variant the prover can have arbitrary computation time) [24].
We note that even in the timing-based model, zero-knowledge proof systems for languages outside of BPP
require two rounds of interaction. No such result is known for the bounded-advice model.

Still more recently, Barak and Pass obtained one-rauedkzero knowledge arguments, under (less)
non-standard assumptions [4]. Under the weakened definition, soundness holds only against uniform prob-
abilistic polynomial time cheating provers, and the zero-knowledge condition is obtained using a simulator
that runs in quasi-polynomial (rather than polynomial) time.

We also use zaps to construct 2-round deniable authentication protocols [18, 21, 23, 24]. Intuitively,
deniable authentication is like a signature scheme in that it permits one party to authenticate messages to
another party, based on a public key; however, unlike in the case of digital signatures, the authenticating
conversation “leaves no trace,” for example, it may be simulatable, and hence efiedbeelyrepudiated.

The relative ease with which we are able to reduce the amount of interaction provides further motivation
for the timing model of [23] — in our opinion a more realistic one than the shared guaranteed random string
model (see e.g. [15])— and a complexity theory of moderately hard functions [20].

Using zaps and timed commitments we also obtain a different type of improvement on the results in [23,
24]. The timing model requires a mild ¢, 3)” assumption about the relative rates of the clocks of non-
faulty processors, and the protocols in [23] require processors (typically, the prover), to wait until an interval
of at least? > « time has elapsed (as measured on the processor's own cle@d s are chosen so as
to tolerate actual system and communication delays. The proofs in [23, 24] require the parameters to be
set according to the slowest non-faulty processors. Our new techniques permit flexibility in this respect:
fast verifiers with good communication links to the prover are not forced to suffer delays due to slower
concurrent verifiers.

In the standard model, without timing assumptions, we give a 2-round oblivious transfer protocol based
on the quadratic residuousity assumption and using public keys; without previously established public keys
the protocol requires three rounds.

Finally, we consider a model of computation in which the prover’s use of randomness is severely re-
stricted, as, for example, in the case of a smart card, in which the prover may have a short embedded truly
random seed and read-only memory. Canetti, Goldreich, Goldwasser, and Micali [13] give one formal-
ization, termedesettablezero-knowledge (rZK). Informally, a protocol protects a witness (either in the
zero-knowledge sense or in the indistinguishability sense) in the resettable model if the protection holds
even if the prover may be re-started (reset) many times and forced to repeatedly use the same random tape
(the prover may also be re-started using a different, but still random, tape).

Using zaps and timed commitments, we construct a 3-round timing-based rZK proof system for any
language in NP. As noted in [13], rZK proofsnnotbe proofs of knowledge, so, despite the connections
between the smart-card setting as described above, resettable, and concurrent zero-knowledge [13, 37], this
result is incomparable with our 3-round concurrent-ZK proofs of knowledge.

2A protocol is ‘black-box zero-knowledge’ if there is a universal simulator, which when given “black box” access to any verifier
strategy, is able to simulate an interaction of that verifier with the prover. Virtually all zero-knowledge proofs until very recently
where black-box (but see [1] for an example of a protocol which does not fit this category).



We also observe that 2-round (and even non-constructive 1-round) resettable witness-indistinguishability
is easily obtained from a zap, simply by having the prover’s “random” bits in the zap be a pseudo-random
function of the verifier’s initial message and the input. This improves (both in conceptual and round com-
plexity) upon the 5-round resettable witness-indistinguishability results in [13].

In all our protocols that employ timing, only the verifier needs access to a (local) clock. This is partic-
ularly appealing in the resettable case, in which the prover may be a smart card, since the card may not be
equipped with a clock.

1.2 Outline

In Section 2 we review the definitions of known cryptographic primitives. A formal definition of a zap is
given in Section 3. In Section 4 we prove the existential equivalence of zaps (in the standard model) and
NIZKs (in the shared random string model). Section 5 defines and constructs verifiable pseudo-random bit
generators (VPRGs) and approximate VPRGs, together with a proof that zaps (and hence, by the above-
mentioned result, NIZKs) exist if and only if approximate VPRGs exist in the standard model. Section 6
contains our zap-based oblivious transfer protocol. In Section 7 we discuss the timing-based applications
(3-round concurrent zero knowledge and 2-round deniable authentication). In Section 8 we discuss uses of
zaps in the resettable model of [13]. Finally, open questions are discussed in Section 9.

2 Brief Review of Cryptographic Primitives

We now review the cryptographic primitives used in this paper. For the standard ones we follow Goldreich
[28]. Throughout this paper, unless otherwise noted, all “good” parties (the non-faulty prover and veri-
fier) are uniform probabilistic polynomial time Turing machines. However, our protocols remain sound
regardless of the computational power of the prover, and we achieve zero-knowledge against non-uniform
probabilistic polynomial time cheating verifiers (this is assuming the classical underlying primitives are
secure against non-uniform adversaries). (Security against non-uniform adversaries is not essential to our
work and we chose to express it this way for simplicity.)

In general we will be using. as our security parameter and the input length, but in some places we
will also be usingk, to denote the length of the input to a cryptographic primitive which is sufficient for
obtaining hardness, for instance a one-way function or a trapdoor permutation. In gererk, are
polynomially related. While we do not emphasize efficiency in this paper (rather our aim is to point out
feasibility of various constructions), we prefer to have two parameters for future comparisong(nl.et
denote a function that grows more slowly than the inverse of any polynamiafor all ¢ > 0 there is amy
such that/(n) < 1/n° for all n > ny. We say such &(-) is negligible We use the terrwith overwhelming
probability to mean with probability that is at leakt- v(n) for negligiblewv.

2.1 Witness Indistinguishability

The concept ofitness indistinguishabilityas proposed by Feige and Shamir [26] as a relaxation of zero-
knowledge. Unlike the case with zero-knowledge, witness indistinguishability is closed under parallel and
concurrent composition. Ldt be an NP language accepted by a nondeterministic polynomial time Turing
machineMy. A computation path is a sequence of nondeterministic choices madé;byThe set of
accepting computation paths on inpu€ L is thewitness setf =, denotedu(x).

Definition 2.1 (Witness Indistinguishability) A proof system{P, V') for languageL is witness indistin-
guishable if for any polynomial tim&’, for all = € L, for all wy,ws € w(zx), and for all auxiliary inputsz



to V’, the distribution on the views &f’ following an executioriP, V')(x, w1, z) is indistinguishable from
the distribution on the views df’ following an executiori P, V')(x, wa, z) to a non-uniform probabilistic
polynomial time distinguisher receiving one of the above transcripts as wéell,as , ws, z).

Note that the auxiliary input can even be the two withesses, w». Thus,even knowing both withnesses
V' should not be able to distinguish which witness is being usef.by

Theorem 2.1 ([26]) Every zero-knowledge protocol is witness indistinguishable.

Theorem 2.2 ([26]) Witness indistinguishability is preserved under parallel and concurrent composition of
protocols.

2.2 Noninteractive Zero-Knowledge Proof Systems

The following discussion is based on [18, 27, 48]: A (single theorem) non-interactive proof system for a
languagel. allows one partyP to prove membership i, to another party/ for anyxz € L. P andV

initially share a stringr, of length polynomial in the security parameterwhich is trusted to have been
chosen at random. To prove membership of a strimg L,, = L N {0, 1}", P sends a messageas a proof

of membershipl decides whether to accept or to reject the proak function ofr ando. Non-interactive

zero knowledge proof systems were introduced in [8, 7]. Non-interactive zero-knowledge schemes for
proving membership in any language in NP may be based on any enhanced certified trapdoor permutation
(see [27, 39] and [29] for a discussion of enhancement). As for the complexity of the NIZKs, assuming a
trapdoor permutation oh; bits, the length of a proof of a satisfiable circuit of sizé(and the size of the

shared random string) 8(Mk?2).

We assume that the shared strimgs generated according to the uniform distribution on strings of
length polynomial in the security parameterwhere the polynomial depends on the particular protocol.
The running time of the verifier is also polynomialin

Let L be in NP and for any € L, n = |z|, letw(z) be the set of strings that withess the membership of
x in L, as described above. For the proof system to be of anyRisayst be able to operate in polynomial
in n time if it is given a witnessy € w(z). We call this theractability assumption foP. In generako is
notavailable toV.

Let PN(x,w, o) be the distribution of the proofs generated Byon inputz, witnessw, and shared
stringo. Suppose thaP sendsV a proofr when the shared random stringas Then the paif(o, ) is
called the tonversatioi Any z € L andw € w(z) induces a probability distributio6ONV (x,w) on
conversationgo, ) whereo is a shared string and € PN (z, w, o) is a proof.

For the system to be zero-knowledge, there must exist a simfatewhich, on inputz, generates a
conversatior{o, p). Let Sim(z) be the distribution on the conversations tRat. generates on input, let
Simy (x) = Simy be the distribution on the part of the conversation, and I16im p(x) be the distribution
on the proof component. In the definitions of [7, 27] the simulator has two steps: it first oputs
without knowingz, and then, givenr, it outputsSimp(x).

Definition 2.2 A pair of probabilistic polynomial time machin¢®, ') with shared random string is a
non-interactive zero-knowledge proof systéanthe languagd. € N P if:

Completeness: For alt € L,, for all w € w(x) and for randonmp, with overwhelming probability over
m €gr PN(xz,w, o), we have thal” accepts on inputo, z, 7). The probability is over the choice of
the shared stringr and the internal coin flips oP.

Soundness: For aly ¢ L we have thaPr,[37" € {0,1}* s.t. V acceptg o, y, 7’)] is negligible. Note that
the probability isonly over the choices of the shared strieig
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Zero-knowledge: There is a probabilistic polynomial time mactfine which is a simulator for the sys-
tem: For all non-uniform polynomial time distinguishefs for all non-negligiblev(-), for all suffi-
ciently largez € L, andw € w(z),

|PT (s,z,w) = 1|s €g Sim(x)] — P17 (s,z,w) = 1|s €g CONV(z,w)]| < wv(n)

where the probability space is taken over the random choicesaofd over the random choices of the
Sim andP.

Remark 2.3 This definition of NIZK does not require that the systeradaendif the instancer is adaptively
chosen, that is selected after the public random string is known. Nevertheless, it is sufficiently strong for our
purposes; also it is easy to reduce the soundness error in NIZK by parallel repetition. Similarly, we do not
assume zero-knowledge against adaptive choice @&s we will see in Corollary 4.4, going through zaps
allows us to transform any NIZK satisfying Definition 2.2 into one that allows adaptive selection of

As shown in [27], any NIZK satisfying Definition 2.2 is alg®neral witness indistinguishabie the
following sense:

Claim 2.1 ([27]) Any NIZK for a languagd. in NP is general witnhess indistinguishable; that is, for all poly-
nomial distinguisher§™ for a random stringr, for any (non-adaptively chos&rsequencé (z;, w}, w?)}",
chosen byI” wherex; € L, andw}, w? € w(z;) forall 1 <4 < m we have

’Pr[T(ﬂ'%,W%, . 7T71n) =1]— Pr[T(w%,w%, . 7'('31) =1]| <v(n)

where for alll <i < mandb € {0,1} we letr® €g PN (z;,w?, o). The probability space is ové?’s and
7’s random coins and the choice of

Note that general witness indistinguishability implies witness indistinguishability evenf ... =
z., Which will be the case of interest here.

2.3 Deniable Authentication

A public key authenticatioacheme permits an authenticattP to convince a second parly, only having

access taAP’s public key, thatAP is willing to authenticate a message However, unlike in the case

of digital signatures, deniable authentication does not périmit convince a third party thadt’® has au-
thenticatedn — there is no “paper trail” of the conversation (say, other than what could be produdéd by
alone). Thus, deniable authentication is incomparable with digital signatures. Deniable authentication first
appeared in [18, 21]; and was formalized in [23] (see also [24]). Several 4-round timed concurrent deniable
authentication protocols are given in [23, 24].

The authentication protocol should satisfy:

Completeness: For any messaggif the prover and verifier follow the protocol for authenticatingthen
the verifier accepts.

Soundness — Existential Unforgeability Against Concurrent Chosen Message Attack: Suppose that the
copies ofAP are willing to authenticate any polynomial number of messaggsns, . . ., which may
be chosen adaptively and in a concurrent manner by an advesahp also controls the verifidr’.
We say that4d successfully attacks the scheme if a forgemunder control of4 and pretending to be
AP, succeeds in authenticating to a third pafty(running the protocol of the original verifiér) a
messagen # m;, i = 1,2,.... The soundness requirement is that all probabilistic polynomial time
A will succeed with at most negligible probability.

3If the NIZK is non-adaptive, then the Claim refers to non-adaptively chosen sequences; if the NIZK is adaptive, then the Claim
also holds for adaptively chosen sequences. In our case, we have assumed the weaker NIZK.



Zero-Knowledge - Deniability: Consider an adversatyas above and suppose that the copiesi®f
are willing to authenticate any polynomial number of messages. Then for éablere exists a
polynomial-time simulator that outputs an indistinguishable transcript from thedqmeduces from
its interaction withAP.

Two natural variants are: (1) the distinguisher has access to the secret authentication key and (2) the
distinguisher does not have access to the secret authentication key. The first best captures our intuitive
notion of deniable authentication, since even obtaining access to the key, say, via legal compulsion,
will not destroy the deniability.

2.4 Security of Encryption

We will need public-key cryptosystems for two of our applications: Resettable Zero-Knowledge (Section
8.2) and Deniable Authentication (Section 7.2). The security requirements of these two applications are
different. To specify the security of an encryption scheme one must describe the power of the attacker in
terms of access to the system (chosen plaintext, chosen ciphertext) and what it means to break the system
(semantic-security, non-malleability). See [18] or [5] for a discussion of notions of security. The deniable
authentication application requires a system that is non-malleable against chosen-ciphertext attacks in the
post-processing mode (called CCA-2 in [5]). The resettable zero-knowledge application requires semantic
security against chosen plaintext attacks (there are some other requirements from the encryption scheme
which transcend security).

2.5 Using Time in the Design of Protocols

Dwork, Naor and Sahai [23] have shown the power of time in the design of zero-knowledge protocols
through the use of afw, ) assumption. This says that all good parties are assumed to have clocks that
satisfy the(«, 5)-constraint(wherea < f3): for any two (possibly the same) non-faulty partigsand P,

if P, measures elapsed time on its local clock arig measureg elapsed time on its local clock, arft

begins its measurement in real time aftgrbegins, ther?, will finish after P, does.

The protocols in [23, 24] use time in two explicit ways: (i) Delays: one party must delay the sending
of some message until at least some specified tinfias elapsed on its local clock; (ii) Time-outs: one
party requires that the other deliver its next message before some specified hiamseelapsed on its (first
party’s) local clock. In this work we are able to eliminate the use of delays; the protocols only use time-outs.
Furthermore we do not requiregdobal («, 3)-constraint, rather each instantiation of the protocol can fix
its own values based on the local characteristics of the network. An essential ingredient of our protocols is
theimplicit use of time viamoderately hard function0]. In particular, we uséimed commitments with
verifiable recoverygescribed next.

Timed Commitment. A string commitment protocol allows a sender to commit, to a receiver, to some
value. The protocol has two phases. At the end oftttramitphase the receiver has gained no information
about the committed value, while after treveal phase the receiver is assured that the revealed value is
indeed the one to which the sender originally committed. Timed commitments, defined and constructed by
Boneh and Naor [11], are an extension of the standard notion of commitments in which there is a potential
forced opening phase permitting the receiver, by computation of some moderately hard function, to recover
the committed value without the help of the committer. The price paid in terms of security is that the
committed value is hidden for only a limited amount of time.

Definition 2.3 A (T, t, ¢) timed commitmenscheme for a string € {0, 1}" enables Alice to give Bob a
commitment’ to the string. At a later time, Alice can prove to Bob tldatepresents a commitment to the
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valuey. However, if Alice refuses to reveal the valu€fthen Bob can spend timiéto forcibly retrieve this
value. Alice is assured that within timden a parallel machine with polynomially many processors, where
t < T, Bob will succeed in obtaining with probability at most. Formally, a(7’, ¢, ¢) timed commitment
scheme consists of three phases:

Commit phase: To commit to a stringy € {0, 1}" Alice and Bob execute a protocol whose outcome is a
commitment string”’ = T'C(y) which is given to Bob.

Open phase: At a later time Alice may reveal the stringto Bob. They execute a protocol so that at the
end of the protocol Bob has a proof thats the committed value.

Forced open phase:Suppose Alice refuses to execute dpen phase and does not reveal Then there
exists an algorithm, calletbrced-open, that takes the commitment stridgas input and outputs
and a proof thaty is the committed value. The algorithm’s running time is at rfiast

The commitment scheme must satisfy a number of security constraints:

Binding: During the open phase Alice cannot convince Bob thas a commitment tg’ # y. That is,
binding is absolute, independent of computational power: there is at most one “de-commitgent,”
consistent witl'C'(y).

Soundness: At the end of theommit phase Bob is convinced that, givéh theforced open algorithm
will produce the committed stringin time 7.

Privacy: everyPRAM algorithm A whose running time is at mostfor ¢ < 7' on polynomially many
processors, will succeed in distinguishipdgrom a random string, given the transcript of the commit
protocol as input, with advantage at mestn other words,

PrlA(transcript y) = “yes”] — PrlA(transcript R) = “yes”]| < e

where the probability is over the random choice@nd R and the random bits used to createfrom
y during the commit phase.

The important requirements of timed commitments are (i) The future recoverability of the committed
value is verifiable: if the commit phase ends successfully, then the receiver is correctly convinced that forced
opening will yield the value. (ii) Forcibly recovered values and decommitments are verifiable: the receiver
not only obtains the value, but also a proof of its validity, so that anyone who has the commitment (or the
transcript of the commit phase) can verify the valighout going through a recovery proces®. in fixed
amount of time. (iii) The commitment is immune to parallel attacks, i.e. even if the receiver has much
more computing power than assumed, it cannot recover the value substantially more quickly than a single-
processor receiver. We denote Bythe bound on the time below which it is safe to assume that the timed
commitment cannot be broken with non-negligible probability, even by a PRAM.

Specifically, we are interested in timed commitment schemes with the following structure. The commit-
ter sends to the receiver a striggwhich constitutes the commitment. For every “valid” commitmérnit
is possible, through moderately hard computation, to recover ggpaii such thatr is an easily checked
witness to the fact thaf is a commitment tg;. The set of valid commitments is in NP: For every valid
commitment¢ there is a witness to the statemeqti$ a valid commitment to a string that can be recov-
ered through the forced recovery process.” Finally, the forced recovery time is relatively large compared to
the time of all other operations in the protocol (such as, construgtingrifying a correctly decommitted
value, verifying future recoverability, etc.) Thus, we think of all other operations as “easy” while recovery is
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“moderately hard.” The scheme in [11] has this structure and properties, albeit based on a non-standard as-
sumption regarding the computation of number of the fg?f“nmod N for compositesV without knowing
the factorization ofV.

2.6 Oblivious Transfer

In a 1-out-of-2 Oblivious Transfer protocol one party, theender has two stringg M/, M5) as its input,
and the second party, tlehooser has a bith. The chooser should leat?, and nothing regarding/; _,
while the sender should gain no information abbutl-out-2 OT was suggested by Even, Goldreich and
Lempel [25], as a generalization of Rabin’s “oblivious transfer” [49].

3 Formal Definition of a Zap

A zapis a 2-round (2-message) protocol for proving membership®fL, whereL is a language in NP. Let
the first-round (verifier to prover) message be denptadd the second-round (prover to verifier) response
be denotedr satisfying the following conditions:

Public Coins: There is a polynomial-) such that the first round messages form a distribution on strings
of lengthk(n) which depends only on thengthn of z. The verifier's decision whether to accept or
reject is a polynomial time function af, p, andx only.

Completeness: Given, a witnessw € w(x), and a first-roung, the prover, running in time polynomial in
|z|, can generate a proafthat will be accepted by the verifier. Note that thipésfect completeness
We can relax this requirement and ask the prover to succeed with overwhelming probability over the
choices made by the prover and the verifier.

Soundness: With overwhelming probability over the choicg,dhere exists na’ ¢ L and second round
messager such that the verifier accepts’, p, 7).

Witness-Indistinguishability: Letv,w’ € w(x) for z € L. ThenVp, the distribution onr when the
prover has inpufz, w) and the distribution o when the prover has inpdt;, w’) are nonuniform
probabilistic polynomial time (im = |z|) indistinguishable, even given both witnessesy’.

It follows immediately from the definitions that every zap yieldsa-constructivenon-uniform single
round witness-indistinguishable protocol; that is, the first-round message can be fixed once and for all. Also
since we require ‘unconditional’ soundness (soundness against unbounded provers) the private coins vs.
secret coins really does not show up.

Claim 3.1 Every zap yields aon-constructivanon-uniform single round witness-indistinguishable proto-
col: for eachn, there exists a string,, such that, lettingL,, = L N {0,1}",

1. Givenx € L,, and a witnessv € w(x), the prover can generate a prosfthat will be accepted by
the verifier. Moreover, the verifier’'s decision whether to accept or reject is a polynomial time function
of x, p,,, and.

2. There exists no’ ¢ L,, and message such that the verifier accepts’, p,, 7).

3. Forallz € L, and allw,w’ € w(zx), the distributionsP(z, w, p,,) and P(x,w’, p,,) are indistin-
guishable by any non-uniform probabilistic polynomial time distinguisher.



Comparison with NIZKs. Zaps differ from non-interactive zero-knowledge proof systems (NIZKs) in

two respects, making the two concepts incomparable. On the one hand, zaps do not require that the prover
and verifier have access to a common guaranteed random string. On the other hand, NIZKs provide more
provable protection of the witness than do zaps, since NIZKs can be simulated without access to the witness
while zaps provide no such guarantee.

4 The NIZK-Based Construction

Assume we have a NIZK system (in the shared string model) satisfying Definition 2.2 for a languafge

will construct a zap fot. (in the standard model). We will first provide some intuition for the construction.
Consider a NIZK in the shared string model; we try to convert it into a zap by somehow generating the
shared string. Suppose we let the verifier choose a strihignd fixc = B. The danger with this approach

is that there may be “bad” choices ferthat leak information about the witness, and the verifier might
chooseB to be one of them, thus harming the witness protection. If, to compensate, we have the prover
choose its own random stririg and we set = B @ C (that is,o is the bit-wise exclusive-or aB with C),

then the danger is that the prover will use the simulator to come up withteat “proves” thatr € L (that

is, causing/ to acceptr), even forz ¢ L. The prover could then sét = ¢’ & B, violating soundness.

The actual protocol strikes a balance between these two ideas: a NIZK is repeated many times in parallel,
but not quite independently, as follows. Tl instance has common string, defined to be the bitwise
exclusive-or of two strings, one chosen by the prover and the other chosen by the verifier. The verifier's
choice for thejth instance may be any string;; however the prover may only choose a single staing
that is used in all instances. This sort of idea can be called ‘reverse randomization’ and has been previously
used in the bit commitment protocol of Naor [45] and can be traced back to Lautmann’s proof that BPP is
in the second level of the hierarchy [41]; it has since been applied by Dwork, Naor and Reingold [22] for
removing decryption errors.

Choice of Parameters (General Construction). We now specify the parameters we need. Note that
in general it is possible to reduce the soundness error of a NIZK by repetition (with a fresh part of the
shared random string for each repetition) without hurting the zero-knowledge properties. Note that parallel
repetition reduces the error here in a straightforward manner here, since it is ‘combinatorial’. The price of
course is in the string and proof length.

Assume that we have a NIZK fdr which, for proving membership of strings of length, with security
parameten, uses a common shared string of lengta ¢(n, |z|). Assume further that on any inpytZ L
of length|z| the NIZK errs with probability at most = ¢(n) over the choice of the common random string
o. In Equation 1k = k(n,|z|) = |p|, the number of random bits sent by the verifier in the first-round
message. The number of copies= m(n, |z|) of the NIZK will be k/¢. To achieve soundness guaraniee
for the zap (that is, a cheating prover should succeed with probability atiyase choose: satisfying

4]
k/¢
q/<W- 1)

4.1 Protocol Z: A Zap

In order to achieve soundness against an arbitrarily powerful prover and yet to require only feasible compu-
tation from the “good” prover, we must assume the existence of a NIZK with these properties, such as the
systems in [27, 39].

Letz € L be an NP-statement to be proved to the verifier. We do not néedte fixed before execution
of the protocol begins. Lab be the withess ta € L known by the prover, let be the security parameter,

10



and letPN (z,w, o) be the distribution on messages sent in the NIZK by a (non-cheating) prover when
the common random string s of length/(n, |z|). For simplicity, in the remainder of this discussion we
assumen and|z| are related by some fixed polynomial so that it suffices to thinkof |z|) as a function
solely ofn. Letk = k(n) andm = m(n) satisfy Equation 1.

First Round: V — P : The verifier sends to the prover a randérbit stringp = b; ... b, which is
interpreted as3; ... B,,, whereB; denotes thgth block of ¢ consecutive bits and is the length of the
common random string used by the NIZK.

Second Round: P — V : The prover responds as follows. First, it chooses a randduit string
C=c1...¢. Forj=1...mdefineo; to be the bitwise exclusive-OR @f; andC:

oj=B;&C.
Then the prover sends to the verifierC', and them noninteractive proofs

{mj €r PN(z,w,05)}j=1..m-

Final Check: The verifierV checks that each of thes NIZKs 71,79, ..., 7, with common strings
o1,02,...0;, Whereo; = C' @ B; results in acceptance; if so, then the verifier accepts the zap; other-
wise the verifier rejects. This completes the description of Protocol Z.

Lemma 4.1 Protocol Z is sound; moreover, for afl, there exists a choicg, = b ... Bk(n) for the first
round message that yields perfect soundn&ss¢ L, V7 V(x, p,, 7) rejects.

Proof. Let ¢ = ¢(n) andk = k(n). Fix anz ¢ L and random bit string’ = ¢; ...¢,. Recall thatin a
NIZK the faulty prover’s probability of succeeding onarg L are a function of the common random string
only, and this probability is at mogt We will show that with overwhelming probability, over the choice of
bi,..., by, the prover will fail to convince the verifier to accept The key point is that once everything but
theb’s has been fixed, the;’s are truly random — because tiig’s are. Therefore each copy of the NIZK
proof has probability at most of failing to cause rejection. Since each proof is independent (because the
randomb;’s used in each copy of the NIZK proof are independent), the overall probability that allk /¢
copies fail to reject is at mogt™.

The number of possible assignments todlseandz ¢ L is at most/tl*l, Hence, as long as

(which is guaranteed by our choice/ofn (1)) the probability ovebq, . . ., b, that there even exists a “bad”
choice ofc; ... ¢, anz ¢ L, and a zapr that erroneously causes the verifier to aceefig at mosb (cf. the
soundness requirement in Definition 2.2). Sikice 1, there must exist somg, = by ... by that provides
soundness against all¢ L,,: Vo ¢ L, V7 V(z, g, ) rejects.

¢

Lemma 4.2 Protocol Z is witness indistinguishable.
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Proof.

We prove witness indistinguishabilitgr everyp. We will be using only the witness indistinguishability
property of the proof system (Theorem 2.1). Thus, fix an arbitpefigr the entire proof. We will carry out
a standard hybrid argument with the following steps along the chainwlaidw’ be two witnesses that
x € L, and letn = |z|. At one extreme of the chain the witnesss used in each of the: NIZKs; at the
other extreme the witness’ is used in every copy. At each step along the chain we increase by one the
number of copies of the NIZK in which’ is used (and decrease the number in whicis used).

Let (w, w', i) denote the distribution on transcripts in which the firsbpies of the NIZK are constructed
usingw and the remainingn — i copies are constructed using. The transcripts also include w, w’.
The distribution is over random choices made by the prover (sinicefixed). Let7 be a non-uniform
polynomial-time test that takes as input a transcript and outputs a single bit. WeZwfiig w’,i)) to
denoteZ’s behavior on a transcript chosen uniformly frgm, w’, 7).

Assume for the sake of contradiction that there exists a probabilistic polynomial tim& st 1 <
4 < m such that for some fixed and infinitely manyn:

PHAT ((w, ', — 1)) = 1]~ PAT ((w, ', ) = 1] > -
The probability space is over the choices made by the prover and the randomfesg/efwill show that
this contradicts the witness-indistinguishability of the underlying NIZK.

Let (]3, 17) be the underlying NIZK protocol (running in the shared random string model).r L
a truly random string of bits. Choose. €r {w,w’} and giveu to P. Let P generate a proof €p
PN (z,u, 7). By the witness-indistinguishability of the NIZK, with overwhelming probability over choice
of 7, no non-uniform probabilistic polynomial time machine, even giverand w’, has non-negligible
advantage of guessing the valueudirom 7. We will show how to usé to violate this indistinguishability.

Usingw andw’, construct a simulated transcript of Protocol Z as follows. Break by, ..., by into
m = k/¢blocks By, ..., By,,. SetC = 7 @ By, so thato; = B; @ C = 7, which is truly random by
assumption. For all < j, constructr; €z PN (x,w,0;). For alli > j, constructr; €g PN (z,w',0;).
Setr; = m which, by assumption, is a uniformly chosen elemen®of(z, v, 7). LetII denote the resulting
transcript.

Run7 onlIl. Sincer is truly random and uniformly distributed; is uniformly distributed as well, so
the resulting transcript of. NIZKs is a uniformly chosen element of eithap, w’, j — 1) (if u = w') or
(w,w', j) (if w = w). We can therefore usé’s assumed ability to distinguish these two cases to obtain a
non-negligible advantage in guessing whethet w oru = w’. <

Theorem 4.3 Protocol Z is a zap.

Proof. Soundness and witness-indistinguishability have been argued. If the underlying NIZK has perfect
completeness, then the resulting zap inherits this property. Otherwise, if the underlying NIZK has negligible
chance of failure, then completeness for Protocol Z follows from the fact that, fgé,amyceC' is random,

the probability that there is some blogk such thatr €z PN (z, w, B; & C) butV*(B; & C, z, =) does not
accept, is negligible. (Here, as earli&; is theith consecutive block of bits in p.) In fact, by re-sampling

C, the prover can actually achieve perfect completeness even if the underlying NIZK has negligible chance
of failure. ¢

Our main conclusion is therefore:

Corollary 4.4 LetL € NP be arbitrary.
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1. If there exists a NIZK foL in the common guaranteed-random string model, then there exists a zap
for L in the standard model.

2. If there exist zaps in the standard model é&verylanguage in NP, and if there exist non-uniform
one-way functions, then there is a NIZK fbiin the common guaranteed-random string model. Fur-
thermore, this NIZK is remains zero-knowledge under an adaptive selectigrtaft is, when: may
depend om.

Proof. The first claim is immediate from the construction and correctness of Protocol Z.

For the second claim we directly apply the idea of Feige, Lapidot, and Shamir [27] of transforming the
proof of the statement € L into a witness-indistinguishable proof for the statement “the common shared
random stringr is pseudo-random OR € L”. As we will explain, to carry out this approach it is sufficient
to have

e a pseudo-random generata@ithat, say, doubles the length of the seed (in this case a random string is
unlikely to be the output of the generator for any seed) and

e a zap for the languagl/ = {(z,0)|z € Lor3s o = G(s)}.

The desired pseudorandom generators exist iff non-uniform one-way functions exist [36]; moreover, since
L' is clearly in NP, it has a zap by the hypothesis. We assume for simplicity (and without loss of generality)
that the verifier's message in the zap is chosen uniformly at random.

Recall we are trying to show that if one-way functions and zaps exist, then there exists a NIZK in the
shared random string model. Given a shared random string, treatdt aswherep is the verifier’s first-
round message in the zap for the langudge The prover simply transforms its witness ferc L to a
witness for(z, o) € L'. Soundness follows from the fact that me# are not equal t@7(s) for any s (this
holds becausé is length-doubling and is truly random).

The system is zero-knowledge since, critically, the simulator for a NIZK is permitted to choose the
common string and may in particular choose it todhg) for some random. Then for a randomp it uses
s as the witness fofx, G(s)) € L’. The non-uniform probabilistic polynomial time indistinguishability of
outputs ofG from truly random strings, and the witness indistinguishability of the zap£/foimply that
the output of the simulator is indistinguishable from a real transcript.

Note that since a zap maintains its witness indistinguishability even wiechosen after the first round
message is known, we get that the zero-knowledge is maintained evensélected in an adaptive manner.

¢

5 Zaps and Verifiable Pseudo-Random Bit Generators

In this section we characterize zaps in terms of a new cryptographic primitiréfiable pseudo-random
sequence generat@¥PRG) which is inspired by the definition of VPRF [44] (but note the differences). A
VPRG is a pseudo-random generator where the holder of the seed can generate “proofs” of consistency for
some parts of the sequence without hurting the unpredictability of the remaining bits. In the standard model
we will exhibit a construction of zaps from VPRGs (Protocol VZ below). As we will see, the construction
works even if the VPRG iapproximate in that the “proofs” of the bit values are occasionally incorrectly
accepted, so it is possible to “cheat” a little (this “little” need not be polynomial). We will also show
that if zaps exist then so do approximate VPRGs. Very rougigproximateVPRGs can be designed to

have multiple witnesses, so zaps, with their witness-indistinguishability, are sufficiently strong to yield the
necessary proofs of consistency with some member of the set of vectors related to the public verification
string (denoted'(VK)). In contrast, we do not know how to desigfnict VPRGSs to have multiple witnesses.
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The following summarizes the relationships between zaps, VPRGs, and NIZKs, both in the standard
model and in the common guaranteed random string model.

Summary 5.1 1. NIZKs exist in the common guaranteed random string model if and only if VPRGs
exist in the common guaranteed random string model (Theorem 5.9).

2. NIZKs exist in the common guaranteed random string model if and only if zaps exist in the standard
model (Theorem 4.3 and Corollary 4.4).

3. Zaps exists in the standard model if and only if approximate VPRGs (with certain parameters) exist
in the standard model (Corollary 5.6 and Theorem 5.7).

Definition 5.1 An (s, k) verifiable pseudo-random generator (VPR3 pseudo-random sequence genera-
tor which, for security parametdr®, maps a random seedof lengths(n) to an output sequenea, . . ., aj

of lengthk = k(n) and a verification keWK wheres(n) andk(n) and the length oV K are fixed polyno-
mials. The mapping should satisfy the following requirements:

Verifiability: For any subsef C {1,...,k} of indices, given the seaed € {0,1}*™ it is possible to
construct a proofr of the consistency, witWK, of the values ofa;}ic;. We call this aproof for
{a;}ier. The construction takes polynomial time and the proof is of polynomial length. Gilgn
the verifier can check the proafin polynomial time. The generation #fmay be randomized.

Binding: The public verification keW¥ K binds the sequence. That is, for ea¢K there isat most one
associated sequeneag, as, . . . , a:

1. This sequence is in the range of the generator on input a seed of lgngth

2. Forallsubsetd C {1,..., k}, ifthe verifier accepts a proaf of values{b; } ;< 1, then there exists
a sequencey, ..., a; associated withVK andb; = q; for all i € I. (There can be two different
seedw andv’ that yield that sam@&K; in this case they will yield the samg, as, . . . ax.)

Passing theith Bit Test: For all 1 < ¢ < k and non-uniform polynomial time adversari€she following
holds. Suppose thét receives for a random € {0, 1}5(") the verification ke K and

ai, az,...a—1,Aj+1,. .. ag.

The adversany selectsl C {1,...,k} such that. ¢ I and receives a randomly generated praof
for {a;};cr. It then attempts to guess. The probability, over the choice of the seed, the random
choices in the construction of the proof and the random choices Wy that 7 guesses; correctly

is negligibly inn close tol /2.

Remark 5.2 : Consider asubsetest, i.e. instead of a single< i < k there is a missing subset of indices

and the distinguisher gets the valuesagf at all other locations plus candidate values for the missing
locations. It can then ask to see a proof of consistency for any suibsett including any of the missing
indices and then has to guess if the candidate values are correct or just random. This test is equivalent to
theith bit test, just as the distinguishing test and the next bit test are equivalent for regular pseudo-random
generators. Note that in the case of verifiable pseudo-randmictions(VPRF) such an equivalence is not
clear. The relation between VPRGs and VPREFs is further discussed in Sections 5.2 and 9.

We also use a relaxation of VPRGs, which we dtt)-approximate/PRGs. The differences are

14



Relaxed Binding: Intuitively, for any VK, there are at most(n) values for the revealed string that are
accepted as consistent witfK. Rigorously, for each seed(of lengths(n)) there are at most(n)
associated sequences of lengtls, = {1, @z, . . ., dqn) } Such that for all subsets C {1, ..., k},
if the verifier accepts a proof of values{b;}ics, then exits al < j < d(n) such that{b;},cs is
consistent withz; (samej for all thei € I). In addition, for each “claimedVK (including those for
which there is no corresponding seed) there exists at most one consistamd thisS is in factS,
for somev € {0, 1}5(™),

Two-Round Communication: The proof of consistency may be “zap-like”. On a first round the verifier
sends a public-coins messagand only therVK and the subset to be proven are chosen. The Binding
and Verifiability conditions hold with high probability over the choice of message of the first round.

Finally, for completeness, we also consider VPRGs in the shared random string model. The Binding and
Verifiability conditions hold with high probability over the choice of the shared string.

5.1 Zaps based on VPRG

Proofs Based on Hidden Random Strings: We find the following “physical” intuition helpful for de-
scribing certain types of proofs of membership. The prover is dealt a sequefibmafy cards, where each

card has value 1 with probability 1/2. The prover knows the values of the cards and can choose any subset to
reveal to the verifier. The verifier learns absolutely nothing about the values of cards that are not explicitly
revealed. The prover has no control over the values of the cards. The sequence of chiddes sandom

string (HRS).

To prove thatr € L, the prover, holding witness € w(x), can choose any subset of the hidden bits to
reveal to the verifier (cards to turn over). Lebe the locations and values of the revealed bits in the HRS.

In addition toa, the prover may send extra informatigh, to the verifier. The verifier decides whether to
accept or reject as a function ofy, 8, andz.

The soundnessequirement is that for somg < 1 such thatl — ¢ is non-negligible (that isg is non-
negligibly far from 1), the probability (over the values of the hidden random bits) that the prover can cause
the verifier to accept am ¢ L is at mostg, even if the prover is arbitrarily powerful. That is, with non-
negligible probabilityl — ¢ there is no triplgx, «, 3) such thate ¢ L and the verifier accepts:, «, ().

The witness protectiomequirement is that there exist a simulator that on inpwt L (but without a
witnesses ta: € L),

1. can creatéa, 3) identically distributed to théa, 3) pairs created in real executions of the proof;

2. givenq, 8, andany witnessw* to z € L, can generate an assignment to the remaining cards so
that the distribution omxtended transcriptghat is, the hidden cards, the revealed cardandg, is
identicalto the distribution on extended transcripts in real executions by a prover holding withess
We call this “completing the simulation witl*, or “forming a completion withw*”.

Again: « and 3 are chosen without access to a witness; then, given any witniessw(x), the simulator

can create a completion with*, that is, an assignment to all the cards, hidden and exposed, so that the
distribution on triples containing, (3, and the values for all the cards is exactly the distribution on these
values in real executions with witnegs.

The concept of an HRS-based proof is exemplified by the noninteractive zero-knowledge proof systems
of Feige, Lapidot and Shamir [27] and of Kilian and Petrank [39]. The idea is to implement the hidden
random string using the output of the VPRG and the opening using the proof capabilities of the VPRG (in
contrast to the reliance on the trapdoor properties in [27, 39]). We do not provide new HRS-based proofs in
this paper. Our results work with any (existing or future) HRS-based scheme.
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Note that although an implementation of an HRS-based proof may be cryptographic, an HRS-based
proof is itself a combinatorial, and hence unconditional, object.

Protocol VZ: A VPRG-based Zap

The choice of parameters for VPRG-based zaps differs slightly from the choice in the case of NIZK-based
zaps. This is because in the case of the VPRG we have less freédeni:(n) (the length ofp) is tied to
the parameters of the VPRG.

Choice of Parameters: Assume we have an HRS-based proof that for strirend security parameter
n polynomially related tgz| uses/(n) cards, and on any input errs with probability at mosy. Let

s = s(n) be the length of a seed permitting the VPRG to output k(n, |z|) bits. To achieve soundness
guarante@ (that is, a cheating prover should succeed with probability at doste require thak(n, |z|)
will sufficiently expand the input: it should satisfy

0
k(n|z))/t(n) o 7
q < on+s(n)+L(n)

The Protocol: Letm = k/¢. The HRS proof will be repeated times. The verifier sends to the prover
random bitsp = b4, ..., bg.

The prover choosesrandom bits”' = ¢4, . .., ¢ and a random seade {0, 1}* for the VPRG. LetVK
andasi, as, . . ., a; be the output of the VPRG an Theith bit of the HRS is defined to be

ai © b D C(i—1 mod )11

The prover sends to the verifie¥K, ¢y, ..., c,, andm HRS-based proofs that € L, where thejth
proof uses thgth block of¢ bits of the HRS. For all revealed cartls< i < k the prover provides,; and a
proof w for the consistency of the revealed values.

Let (o, 3;) be the values of the revealed cards and additional information ijtitheopy of the HRS-
based proof, foj = 1,...,m. For the revealed cards the verifier, usMy, checks that the value revealed
is the correct one. If not, the verifier rejects; otherwise the verifier accepts iff for atistances of the
HRS-based proof, the HRS-based verifier accepts.

Lemma 5.3 Protocol VZ is witness-indistinguishable.

Proof. The proof involves a pair of nested hybrid arguments. The outer hybrid moves from a case in which
all copies of the NIZK use one witness)to a case in which all copies use the other witnes$.(Once a
distinguishing gap has been identified, the inner hybrid is over proof strings: one extreme has completion
consistent withv, and the other has completighconsistent withu'.

Letw andw’ be two witnesses thate L. Assume there exists a sequehte . ., b, and a distinguisher
7 that, given(z, w,w’) and a transcript consisting éf, . .., b; followed by the responses of the HRS-
based proofs of € L, succeeds with non-negligible advantage guess which witness; or w’, was used
by the prover in generating the response.

By the pigeonhole argument used in hybrid argument, for sbrdej < m there exists a distinguisher
for the following two types of transcripts, that distinguishes between them with advantage afteast

1. The prover uses witneasfor the first; — 1 copies of the HRS-based proof antifor copies; . .. m.

2. The prover uses witnesasfor the first;j copies of the HRS-based proof amtifor copiesj +1...m.
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Let us fix such g for the remainder of the proof.

We first use the simulator, whose existence is guaranteed by the definition of an HRS-based proof, to
choosex andg for the jth copy of the HRS-based proof. For a given see¢d the VPRG, for the positions
1 < i < (indicated bya, we choose; so that the value;_1y,.; © b(j_1)e4; © c; opened is the value
indicated by

By the definition of witness-indistinguishability for an HRS-based proof, the simulator, now given
andw’, can efficiently find a completion (choices for the unopened valyes)rresponding to the case in
which the witness used is, as well as a completiofl, corresponding to the case in which the witness used
is w’. Together with the seed, the completionsy and~’ determine, respectively, the values of the bits
for each positiont that isnot indicated bya (the values for the positions indicated bywere fixed above
and will remain unchanged throughout the rest of the proof)rLet|y| = |¢/|. For0 < d < r, we denote

by c(v,7")q values for ther's not indicated by that agree withy in positionsl, . . ., d and agree with/’
in positionsd + 1,...,r. Thus, whenl = 0 the values all agree wity/, while whend = r the values all
agree withry.

We will now form a hybrid chain on proof strings. In every element in the chain, the seechains
unchanged, as do tl#&’'s and the values for thés in the positions indicated ky. Only thec’'s not indicated
by o will change as we move from one element in the chain to the next. The first element in the chain has
valuesc(y, '), for thec’s not indicated byx. Thus, these values all agree withwhere the witness ig.
Having fixed all the:'s for this element of the chain, we can complete the description of the first element of
the chain. The firsf — 1 blocks are HRS-based proofs constructed with witnesand blocksj + 1 through
m are constructed with witness'. Moreover, by choice of the's, the jth block has been completed with
w.

The next element in the chain has valug¢s, v')._; for the ¢'s not indicated byn. Everything else
remains the same: the values for the remainisghat were fixed in the description of the first element in
the chain are again used here. Then, having again fixed atiththe first; — 1 blocks are HRS-based
proofs constructed with witness, and blocksj + 1 throughm are constructed with witness'. Note that
the jth block might not really be something that could have been generated by the prover, since it is not
completely consistent with a proof constructed using either w’.

In general, fo0 < d < r, thed+1th element in the chain has valugs, 7');,_4 for thec’s not indicated

by a, for 0 < d < r. The last element in the chain has valués, ’y’)[o], that is, it agrees completely with
/

Y-
We note that the chain is non-empty, since otherwise the behavior of the prover on withesahs’ is

identical and therefore yields no possibility of distinguishing between the two witnesses. Thus, the number
of steps in they — ~/ hybrid chain isl < r < / (including the endpoints, the chain has- 1 elements).

We assumed ay/m advantage in distinguishing the two endpoints of the chain, hence there is én 1

where the adversary has advantage at leagi/) to distinguish between the— 1 andith elements in

the chain. The pseudo-randomness of the VPRG can be broken at this location. Thel salibetone
determined byx and the HRS proofs used in the other— 1 blocks. ¢

Lemma 5.4 Protocol VZ is sound; moreover, the first round can be fixed non-uniformly.

Proof. Letx ¢ L, ¢1,...,cs, and the VPRG verification keYK be fixed. We will show that with over-
whelming probability, over the choice 6f, ..., by, the prover will fail to convince the verifier to accept

The key point is that once everything but thie has been fixed, the hidden random string is truly random

— becauséy, ..., b, have not been chosen yet and are to be chosen at random. Therefore each copy of the
HRS-based proof has probability at mgsof failing to cause rejection. Since each proof is independent
(because thg;'s used in each copy of the HRS-based proof are independent), the overall probability that all
m = k /¢ copies fail is at mos§™.
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The number of possible assignments todse VK's?, andx ¢ Lisat most/tstlzl. Hence, as long as
2€+s+\x|qm <6

for arandomdy, . . ., by, the probability that there even exists a “bad” choiceof . ., ¢,, VK, andz that
erroneously causes the verifier to accept, is at mosthus, not only is the protocol sound, but the first
message (th&'s) can be fixed non-uniformly. <>

Theorem 5.5 Given an HRS proof system for a languageising/ cards and with probability of error at
mostg and given a VPRG mapping a seetb & bits, if

1)
ke o %
T < Shlrste

then protocol VZ is a zap fak.

Note that if instead of a VPRG we uselén)-approximate VPRG, then we can obtain a similar result
by adjusting the counting argument to accommodatel{h¢ possible openings consistent with:

Corollary 5.6 Given an HRS proof system farusing/ cards and with probability of error at mogtand
given ad(n)-approximate VPRG mapping a seetb & bits, if
Kt 1 0

q d(n) 2lal+s+e

then protocol VZ is a zap fak.

As we show next, the converse holds as well and we can use zaps in order teapiptaximate/PRGs.

Theorem 5.7 Let ¢(n) be any polynomial. Fixn > 2. LetG be any pseudo-random generator taking a
seed of lengtl(n) and producing an output of lengttin). Then, assuming every languafies N P has a
zap, one can constructdn)-approximate VPRG expanding a seed of lengths(n) to a string of length
k(n) = m - £(n), whered(n) = m2¢"),

Note that the expansion is arbitrary, sirf¢e) is an arbitrary polynomial and pseudo-random generators
exist for any polynomial expansion, based on any one-way function.

Proof. We use the commitment scheme of [45] (in this scheme, the receiver sends an initial message, which
can be fixed non-uniformly). The prover commitstoseeds of length(n); VK is the concatenation of the

m commitments. Using the pseudo-random generator, each seed yields a block of {engftbr a total

output length ofn - £(n). For any sefl of indices, the prover can reveal the values of the pseudo-random
bits {a; };c7, and can prove using a zap that the revealed bits in atteastl of the blocks are consistent

with VK (this is certainly in NP, so it has a zap by assumption).

Verifiability is immediate from the zap. Relaxed binding is also simple, since gilenthe number of
possible strings the prover can convince the verifier to accep2f§”) = d(n) (the prover has freedom to
choose one ofn blocks on which he can cheat and whict2éf”) values to plug in there).

It remains to show passing of thith bit test. Suppose the construction fails this test with somedias
We will use the blockB containingi, to distinguish pairs of the forrtC'(v), 7) from (C'(v), G(v)), where

“Note that we should only count the number of seeds{0, 1} and not the various possible public commitment strings, since
what matters is the valug, as . . . aj, of the sequence associated Wil and this sequence, by Definition 5.1, must correspond
to one in the range of the generator on input a seed of les(gth .

18



C(v) is a commitment to a seadof lengths(n) andr is random of lengttk(n). Given a pair(C(v), ),
construct a keyK as follows. Choosen — 1 seedsvy,...,v,_1, and arrange commitments to these
seeds and the commitme@i{v) so thatC(v) is the commitment to the supposed seed for blBckOpen
the values for all positions other thanand provide a zap of approximate consistency Wik, using the
chosen seeds, . .., v,,_1 as the witnesses to the fact that the revealed bits in atdeastl of the blocks
are consistent witiVK.

If 1 is pseudo-random with seed then by the witness-indistinguishability of the zap, the advantage
in guessing théth bit is close tay (the witness-indistinguishability may introduce a negligible error, so we
don’t get exact advantagd. On the other hand, if is truly random, then there can be no bias. Therefore
we have a distinguisher f¢C’'(v), 7) from (C(v), G(v)). <&

Remark 5.8 In the case of ordinary pseudo-random generators, it is known that the ability to expand by
even one bit can be used to obtain arbitrary expansion. Is the same true of (approximate) verifiable pseudo-
random generators? From Corollary 4.4, Theorem 5.9, and Corollary 5.6 we have only a higher threshold:
if any polynomialexpansion is possible (from to n'*¢ for fixede), then we can build zaps and hence
arbitrary expansion. See more open problems in Section 9.

5.2 Construction of VPRGs

A non-trivial VPRG, with a given desired (polynomial) expansion from seed to output, can be constructed
from anyverifiable pseudo-random functidg’PRF). The idea is simply that if the domain of a VPRF is
small, then one obtains a (non-approximate) VPRG. This is almost true, as there is a difference in the binding
requirement from a VPRF, according to the definition in [44], and the binding requirement from a VPRG
(Definition 5.1): a VPRF allows the total number of ‘legitimate’ functions (accepted by the verifier) to be
proportional to the number of public-keys, whereas a VPRG counts them according to the seeds. However
this can be resolved, since the length of the domain can be taken to be larger than the length of the public-
keys of the VPRF (any polynomial is possible) and allowing seeds that simply map their value to the output
(the probability of choosing such a seed under regular operation should be small which can be achieved by
having a prefix that if it is all zeros the the suffix is the public-key).

However, such a construction is an “overkill;” moreover, the only known constructions we have of
VPRFs require specific assumptions such the Strong-RSA assumption [44] or various “Diffie-Hellman”
assumptions for groups with bilinear mappings [42, 16,°17]

The goal of this section is to provide an alternate construction of VPRGs, based on general trapdoor
permutations. We do not require the “enhanced” property, as defined in [29]. The construction follows
along the lines of the trapdoor-based synthesizer construction of Naor and Reingold [47]. To obtain (non
approximate) VPRGs we require that the trapdoor permutation be certified (see [6]).

We assume the existence of a famfty; of certified trapdoor permutations with common domaip),
together with a hard-core predicate & a security parameter). The VPRG output is given as a binary
matrix (say, in row-major order). The matrix hasows andc columns, wherec = k. Choose- functions
fi,--. fr, from F (one for each row) and randomy’s (one for each column) in the common range of all
the trapdoor permutation®),,. The(i, j) entry of the matrix will be the hard-core predicateprl(yj).

Let VK = f1,..., fr,y1,...,y.. TO prove the value of thé, j) entry, revealfi‘l(yj). Verification
is immediate using/K and the fact that eacly is a permutation that is easy to compute in the forward
direction.

The length of the seedlis r log | F,,| + clog |D,,|. Asn is fixed andk grows, the expansion is roughly
guadratic. This completes the description of our VPRG construction. The proof that it satisfigs lite

5In light of Corollary 4.4 and Theorem 5.5, we therefore get zaps and NIZKs based on the same assumptions.
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test closely follows the proof in [47].

An alternative to trapdoor permutations is to use Diffie-Hellman in groups with efficient bilinear map-
pings where the Computational Diffie-Hellman is assumed to be hard [10, 38]. The easiness of the De-
cisional Diffie-Hellman problem in these groups yields a simple method for verification. (These are less
stringent requirements than in the existing constructions of VPRFs in [42, 16, 17].)

The standard example of a certifiable trapdoor function is RSA witfirae public exponent satisfying
e > N. This assures thatand¢(N) are relatively prime. If we relax theerfectbinding requirement and
instead aim for an approximate VPRG, then we can use certain uncertified trapdoor permutations, as in the
next example which is inspired by Shamir’'s pseudo-random generator [51].

Consider RSA with small exponent: Choose a random RSA modulasdy;,...,y. € Zy~. These
form the verification key. Associate with thth row theith smallest prime. Thé¢i, j)th output bit is the
hard-core bit ofyjl./pi mod N. The possible problem is that may divide¢(N). In this casey; may
have multiplep;th roots, possibly with different hard-core bits, and the owner of the generator can “cheat.”
However, even if the key is incorrectly chosen, so tNas nota product of two primes, there can be at most
log N/loglog N such primes, and hence we gelaxedbinding. (Note that ifN is not a product of two
primes then presumably the output sequence is not even close to that of a legal (two prime modulus) output;
but this can be resolved by allowing a small probability of ahyeing chosen, which dose not affect the
pseudo-randomness property). We can take this into account in setting the parameters.

5.3 Shared string VPRGs and NIZKs

Theorem 5.9 VPRGs in theshared random stringodel exist if and only if NIZKs exist in the shared random
string model. Moreover, in thehared random stringnodel NIZKs imply VPRGs of arbitrary expansion.

Proof(Sketch) To construct VPRGs from NIZKs in the shared random string model, commit (say, using the
protocol of [45], taking the first several bits of the common random string to be the “first-round” message

of the receiver) to the seed of a pseudo-random sequence and use a NIZK to prove that the revealed value is
the correct one. For the converse, given a VPRG in the common random string model, construct essentially
the NIZK of Feige, Lapidot, and Shamir [27], in which the bits of the hidden random string (see more about
them above) are the bits of the VPRGS

6 Oblivious Transfer in the Standard Model

Although there are many protocols under various assumptions for oblivious transfer, to date no 3-round
protocol has been shown secure, without resorting to a random oracle model. We provide a protocol for
1-out-of-2 OT for which we are able to prove that the chooser’s privacy is protected by the quadratic residu-
ousity assumption (QRA) [34], and the sender’s privacy is protected statistically (that is, with overwhelming
probability over choices made by the sender, at most one value is transmitted to the énhddsepyotocol
is not known to ensure correctness, that is, the sender may choose what to send as a function of the chooser’s
message.

For simplicity, we describe the protocol for the case in which the sender’s two inputs abg, bit he
first round of the protocol, described next, can be eliminated if the Sender has a public key. In this case, the
public key is chosen to be a random first-round mesgdge zaps.

1. If the Sender has no public key, then it chooses a first-round meggaga zap and sends it to the
Chooser. (If the Sender instead has a public key, then this round is not needed.)

®Previous applications of QRA to OT appear, for example, in [12, 40].
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2. Leti € {0, 1} be the Chooser’s input. The Chooser chooses a random 2-prime mddulod two
random stringgyg, y1 in Z such thaty; _; is a quadratic residue modulg andy; is a non-residue
with Jacobi symbol 1. Using, the Chooser gives a zapof the statement: s, is a QRmod N OR
y1 isa QRmod N.”

3. The Sender verifies the zgp, 7) and, if verification fails, the Sender aborts. If verification succeeds,
the Sender chooses,z1 €r Z} and sends the following two values to the Chooser in any order:
{yé’gazg mod N, ygiﬁ mod N}.

We now give a proof sketch of correctness of the protocol. Assume first that both parties are following
the protocol correctly. Lef; be the unique quadratic non-residue mod¥@amongyg, 1 - Thenyfixf is
a quadratic residue modul if and only if b, = 0. On the other hand, sineg_; is a quadratic residue
moduloV, so iSyll’l_‘;x%_i, independent of the value of_;. Thus, the ability of the Chooser to compute
guadratic residuousity yields only and exactly the valug; of

Now assume the Sender follows the protocol correctly but the Chooser does not. The soundness of the

zap ensures that at least oneygfy; is a quadratic residue modulg. Assume then thaj; is a quadratic

residue modulaV. Theny;?jaﬁ mod N is always a quadratic residue, independent;ofand independent

of how NV is chosen. Thus, the Chooser can learn at most omg, 6f. Finally, by the QRA and the way

in which a good Chooser construdts i, y1, the sender cannot distinguish whichygf v is the quadratic
residue. In particular, the (polynomial time bounded) sender cannot distinguish among the following four
distributions(N, yo, y1, (p, 7)) wWherep is fixed in Step 1N is chosen according to the protocol, and the
other elements are chosen as follows:

1. yo is arandom quadratic residue modNQ y; is a random non-residue with Jacobi symbol 1, g»nd
is the witness used in constructing

2. yo andy; are both quadratic residues modWoandyy is the withess used in constructing
3. yo andy; are both quadratic residues modWoandy; is the withess used in constructing

4. y, is a random quadratic residue modwNg i, is a random non-residue with Jacobi symbol 1, and
is the witness used in constructing

Distributions 2 and 3 are indistinguishable by the witness-indistinguishability of the zap. Distributions 1
and 2 (and, similarly, distributions 3 and 4) are indistinguishable by the QRA. Thus, distributions 1 and 4
are computationally indistinguishable, so the Sender does not learn whighbgthas been transferred to

the Chooser.

Remark 6.1 Naor and Pinkas [46] were able to modify this approach to produce a different protocol with
similar security properties; their protocol is based on DDH and does not explicitly use zaps.

7 Timing-Based Applications

In this section we describe two delay-free timing-based (see Section 2.5) applications for zaps:
e 3-round concurrent zero-knowledge proofs of knowledge for any langlag®& P

e 2-round deniable authentication
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7.1 3-round Concurrent Zero-Knowledge Proofs of Knowledge

At a high level, the protocol consists of two steps. ket L be the statement to be proved. (1) The verifier
chooses a statemefitand proves, using a zap, th&ts true; (2) the prover gives a proof of knowledge of

a witness to the statement = L Vv S”. Intuitively, soundness comes from the fact that the verifier's proof
does not reveal a witness & This is achieved by constructingto be the logical-or of two independent
statements — in such a case witness-indistinguishability is known to imply witness-hiding [26]. A single pre-
processing step is needed for both the proof of knowledge and to provide the firstaréamithe verifier's

zap ofS.

In a little more detail, the statemeAtis a claim that of two given timed commitments to two random
strings, at least one igalid — forced recovery of the committed value is possible (see the discussion in
Section 2.5). Verifiable recovery implies the existence of a knowledge extractor. The extractor is used in
constructing the simulator for proving zero-knowledge.

Let f be a one-way function. Lef*)(s) be thekth iterate of f applied tos. Associated with any
randomly chosen, there is &:-bit pseudo-random strin§ consisting of the hard-core bits of

s, f(8), fP(s),..., fEV(s),

respectively (this is the Blum-Micali [9] generator). The basic technique for proving knowledge of a withess
w € w(z) is to commit toB® and B! by giving a pairf*)(s°), f*)(s'). The verifier then chooses one of

the two blocks, sayB?, to be revealed. The prover releaséand givesw @ B, together with a proof of
consistency with the initial commitmerft*) (s'~*). Because this only gives a probability 1/2 of detecting
cheating, the process is repeajethany times in parallel. (Chooge the number of parallel repetitions,
according to the required probability of soundness error.) The pre-processing step (Step 1 in the protocol)
is just the transmission of sufficiently many pairs of the fofffd (s?), f(¥)(s!), together with g for the
verifier's zap in Step 2.

3-round Timed Concurrent ZK POK for L € NP. Common inputc € L, input to proverw € w(x).

1. (a) Letf be a fixed one-way permutatiorf {s part of the protocol, known to both parties). The
prover sends to the verifiep pairs(f*)(s9), f*#)(s1),..., (f®)(s3,), f*)(sd,))) for randomly
chosens’,i=1,...,2pandj = 0, 1.

(b) The prover also sends to the verifiera round-one message for a zap.

2. (@) The verifier selects a rand@p-bit stringc; . . . cap.

(b) The verifier chooses two random valugsandy; of lengthp, and constructs from them two
commitment stringgy €r TC(yo) and(; €r T'C(y1) using the timed commitment protocol.
Usingp, the verifier sends proving that at least one of thigis valid ((p, 7) constitutes a zap).

(c) The verifier sends to the prover a new round-one message

3. (a) Foreach < < p, the prover sends to the verifigf . For each suchthe prover also computes
B;, the pseudo-random-bit string consisting of the hard-core bits of

S ) S0, fED (s,

(b) The prover checks the zé&f, (1, p, 7). If the proofis invalid, the prover terminates the protocol.
(c) The prover choosesat random.
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(d) Using By, ..., B, the prover commits ta andw. Specifically, it sends @© By,...,z @ By;
similarly it commits tow, using blocksB, 1 ... Bs,. We call the commitments teo the first
group, and the commitments to the second groupUsing y’, the prover constructs a prosf
that at least one of the following two statements holds: (1) there exesigsistent with all of the
commitments in the first group ands the value committed to in one of the timed commitments
(o or (1; or (2) there existsv consistent with all of the commitments in the second group and
w € w(x). The witness used for constructing the zap is the set of stl{isig;scf“, e 35;6213}.

Timing constraints V' acceptsP’s Round 3 message only if arrives within timeon Vs local clock from
the time at whichl” sent its Round 2 messaga.and 3 (for the timing assumption) should be chosen to
satisfya < g and25 + v < t, where the value is the time below which it is safe to assume that the timed
commitment cannot be broken, even by a PRAM, aiglan upper bound on the time it takes to create a zap
by a program that is given a witness. For completenessust be sufficiently large to permit the necessary
computations byP, and the round-trip message delay.

The protocol is concurrent zero knowledge becausestraight-line simulatablevia the forced open-
ings: every interaction can be simulated without rewinding the prover [24]. To see this, consider a single
interaction. The simulator generates a real round-one message, which is given to the verifier. The verifier
constructs its timed commitments and their preofThe simulator checks and, if it is correct, continues
with the protocol. The clocks are frozen and the simulator computes the forced opening of the timed com-
mitments, obtaining, the de-commitment of one @f and(;. The clocks are started again, the simulator
setsz = y, commits toz and a random string (instead @f, and constructs’ using the commitment te
as the witness. When the adversarial scheduler scheflida®xt message, the simulator sends

Now consider four classes of transcripts: they differ according to the value committed to in the first
block (random or = y), the value committed to in the second bloek @r random), and which witness is
used in creating the zag (w or z). Only 4 of the eight possibilities are relevant.

1. First block: random; Second blocl:; witness isw.

2. First block:z = y; Second block: random; witnessys
3. First block:z = y; Second blockw; witness isw.

4. First block:z = y; Second blockzw; withess isy.

The real transcripts are the first class. The simulator outputs the second class. Classes 1 and 3 are com-
putationally indistinguishable by the one-waynessfofind the properties of hard-core bits. Classes 2
and 4 are indistinguishable for the same reason. Classes 3 and 4 are indistinguishable by the witness-
indistinguishability of zaps. Hence, classes 1 and 2 are computationally indistinguishable.
We now argue that the interaction is sound and a proof of knowledge. If the prover completes the proof
with probability §, then standard extraction techniques, i.e., fordihtp explore two computational paths,
can be used to obtain a witness (stri@é?i for the appropriate set of indicéswith probability negligibly
close tos?.
Supposer ¢ L, and that a cheating prover succeeds with non-negligible probabilitycause the
verifier to accept. Then the timed commitment scheme can be broken with probability negligibly close to
52 /2, as follows. Consider a (possibly fictitious) non-faulty process running a perfect clock. By the
assumption, i is non-faulty and measures time at masbn its own clock between the time at which it
sent its round 2 message and the time at which it recéRiedound 3 reply, at most real time has elapsed.
Assume we are given a timed commitménte z TC(y). Run the cheating prover for one step. Choose
c1...cp at random. Choosg’ and givel; € T'C(y'); then, using the witness based ¢h act as the
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verifier and in Step 2 give a zap that at least oné€;0dnd¢; is valid. By definition, such a zap can be
constructed within timey. If the prover responds (which it will do with probability at lea3t repeat Steps
2 and 3, using the same timed commitments and zap in Step 2, but with a new randonastringc),.

If the prover responds again, use the revealedo obtain at least one af, /', w € w(z). Sincex ¢ L,
the value obtained is eitheror 3/. By the Witnéss—indistinguishability of the verifier's zap, the value will
be y with probability 1/2. The total time required for extraction is at m@8t+ ~ < t contradicting the
assumption that breaking the timed commitment requires time attleast’. Thus, the system is sound.
That the system is a proof of knowledge is immediate from the extraction procedure described above.

Theorem 7.1 If TC' is a timed commitment protocol satisfying the requirements of Section 2.5, then The
protocol described above is a 3-round timed concurrent zero-knowledge proof of knowledge system for any
languageL in NP.

Remark 7.2 The straight-line simulability also permits the prover to use diffefings) pairs for the dif-
ferent verifiers.

7.2 Timed 2-round Deniable Authentication

We now describe a 2-round timed concurrent deniable authentication protocol (see Section 2.3 for definition
and discussion), based on zaps and timed commitments.

The AP has a public key F1, Es, p), whereE; and E, are public encryption keys chosen according
to a public-key cryptosystem generator that is non-malleable against chosen-ciphertext attacks in the post-
processing mode, andis a first-round message for a zap.

1. The verifier chooses random strings y1, 7 and sends to the proverer FE;(m o r) and timed
commitmentsy €r TC(yo) and(; €r T'C(y1). In addition, using, the verifier gives a zap that at
least one of the; is valid. Finally, the verifier also sends to the prover a first-round megsdgea
zap.

2. The prover checks the zap, ) and aborts if verification fails. Otherwise, the prover sends to the
verifiern € E1(r), § €r E2(s) for arandomly chosen. Usingy’, the prover sends a zap that at
least one of the following holds) € E;(r) or s € {yo, 41} (more specificallys’ is a proof that) is
an encryption undef’; of the suffix of the message encrypted by cipherte®R § is an encryption
under £, of one of the values committed to liy, (5). The witness used in creating is the set of
random bits in creating or 4. In a regular execution is used.

V accepts if and only if both (1) the zdp’, 7') is accepted and (2p’s response is received intamely
fashion, as specified in the timing constraints.

Timing constraints P's Round 2 message must arrive within timeon V’s local clock from the time
at which V' sent its Round 1 message. and 3 are chosen to satisfy < g ands + v < t, where the
valuet is the time below which it is safe to assume that the timed commitment cannot be broken, even by a
PRAM, andy is an upper bound on the time it takes to create a zap by a program that is given a withess. For
completenessy must be sufficiently large to permit the necessary computation8,kand the round-trip
message delay.

This completes the description of the deniable authentication protocol.

Theorem 7.3 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then the
2-round protocol is sound and deniable to a distinguisher that has access to the publicAkBy of
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Proof. We first argue unforgeability. Suppose that the adversary is trying to forge message is given
by the verifier the “challengeFE (m o r). Then by the non-malleability of; it cannot producé?; (r), even
if it has access to a decrypting oracle #r on all messages with prefix different tharl. Therefore, given
that the adversary provides a zap at Step 2, it must be the case that; for some: € {0,1}. In this
case, the real prover, who knovs, and the adversary together can be used to break the timed commitment
scheme with probabilityt /2: givenT'C(y), choosey’ at random and giv&'C(y'); then, using the witness
based on/, give a zap that at least one’6€'(y) or T'C(y’) (in random order) is recoverable. By definition,
such a zap can be constructed within tisndf the forger gives back = y within time o, thenT'C has been
broken in time at most + v < 7.

We now argue deniability. The simulator extracts fréiy(yo) and7T'C(y; ) eitheryg or y; (for at least
one of them this should be possible). It then cregtes F; (1) for a random’ and creates = F»(y;) and
uses it as a witness to a zap that F,(r) or s = y;. The proof of indistinguishability of simulated and real
transcripts is analogous to the proof of Theorem 7.1 and relies on the indistinguishability of encryptions of
Eq andEQ.

Note that there is no real need to chodsedifferent fromFE;. <

The need to adg to the public key of the authenticator may increase its size significantly. However,
p is used only to show the recoverability @iC. If we are equipped with a timed commitment where
recoverability is self-evident, then there is no need to have it at all and we can use any public key of a
sufficiently strong encryption.

Deniability When the Distinguisher has the Private Keys ofAP. We now describe a protocol that is
deniable even for a distinguisher who has the private keys/fbased on the (not deniable) authentication
protocol given in [18]. ThedP has a public keyE, o), whereFE is a public encryption key chosen according

to a public-key cryptosystem generator that is non-malleable against chosen-ciphertext attacks in the post-
processing mode, andis a random string to be used in a NIZK of a language defined below.

1. The verifier chooses a random stringnd sends to the provercp E;(mor) and timed commitment
¢ €r TC(r). In addition, using, the verifier gives a NIZK proof that( is valid and the committed
value equals the suffix of the plaintext af

2. The prover checks the pro@f, =) and aborts if verification fails. Otherwise, the prover decrypts
and obtainsn andr and sends to the verifierin the clear (of course only if the decryptedequals
the value it wishes to authenticate).

V accepts if and only if both (1) the receivetl equals the value he selected and (2)’s response is
received in dimelyfashion, as specified in the timing constraints.

Timing constraints P’'s Round 2 message must arrive within tim@n Vs local clock from the time at
which V' sent its Round 1 messageand are chosen to satisty < g andg < ¢, where the valu¢ is the
time below which it is safe to assume that the timed commitment cannot be broken, even by a PRAM. For
completenessy must be sufficiently large to permit the necessary computation8,and the round-trip
message delay.

Theorem 7.4 If TC is a timed commitment protocol satisfying the requirements of Section 2.5, then the
2-round protocol is sound and deniable to a distinguisher that has access to the public and private keys of
AP.

"Actually it seems that we do not neét to resist any chosen ciphertext attacks and it is enough that it is non-malleable against

chosen plaintext attacks. The reason is that we can give the adversary an encryption of a random string iBsteaduod use
the forced opening of the timed commitment in order to obtain a zap in the second step.
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Proof. Unforgeability follows along the lines of the unforgeabiltiy in [18], the zero-knowledge property of
(o, 7), and the timing requirements. We now argue deniability. The simulator extractg freC'(r) the
valuer and by the soundness of the NIZK proof system this is the saasein the ciphertext. It then adds

r to the transcript.

%

8 Witness Protection in the Resettable Model

8.1 Resettable Witness-Indistinguishability

For a formal definition of resettable witness indistinguishability, see [13]. We will motivate the definition
informally by focusing on smart cards. Intuitively, a smart card is loaded with € w(z), and a seed

s for a pseudo-random function, at the time it is created. This seed is the only source of randomness the
card has; furthermore, we assume that the card is stateless, i.e. does not change its internal memory between
sessions (so it cannot store a counter and use it in conjunction with the seed to define the randomness of the
current session). Our interest is in protecting the prover from a velifighat runs the prover many times

on the same, w, s. Let us use the notatiofP(z, w, s), V*(z, z)) denote the transcript of exactly this kind

of attack where: is auxiliary information known td’* (in particular, we may even have= w, w'). Letting

w,w’ € w(x), a proof thatr € L is resettable witness-indistinguishable if for all probabilistic polynomial
timeT,V* andz:

|Pr(v*7s)[T(P(x,w,s)V*(x,z))]—Pr(v*75/)[T(P(x,w’,s')V*(m,z))H < v(n).

Every zap for a languagk € N P yields a 2-round resettable witness-indistinguishable proof system
for L as follows. On inpup, the prover computeR = f,(x, p), wheref, is a pseudo-random function with
seeds. It then uses the bitR as the “random” bits in computing the zap response

Soundness holds because the round-one megsaget needed founpredictability— indeed, soundness
holds even if somég is fixed non-uniformly and beforeis chosen. As for witness-indistinguishability, from
the WI of the zap it follows that an assumed distinguisher for the resettable system can be used to distinguish
the output of the pseudo-random function from truly random, a contradiction.

8.2 Resettable Zero-Knowledge

We first present our 3-round timing-based rZK protocol for ang N P, and then compare it to previous
results.

Let (E, D) be the encryption and decryption algorithms of a semantically secure against chosen plain-
text attack (CPA) encryption method. The scheme need not be public-key, but there should be a public
descriptionpd of the encryption key with the following two properties. (1) It is easy to verify that decryp-
tion is unique, that is, given ciphertexaind a public descriptiopd there should be at most opesatisfying
c € E(p). (2) Givenpd it is easy to verify that there exists decryption k8ysuch that giver € E(p) we
haveD i (c) = p.

An example of such an encryption scheme can be based on RSA with large public exponent, as in
Section 5.2. That is, the public key (s, V), in which the exponent is prime and sufficiently large (so
that e cannot possibly divides(V)); pd = (e, N) in this case and the actual encryption is done using
the hardcore predicate of the exponentiation wittunction. Alternatively,E could be a pseudo-random
permutation cipher, which can be turned into a semantically secure against CPA encryption scheme using
random padding, and whegel is a (perfectly binding) commitment to the seed. The fact thas a
permutation assures unigue decryption.
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For this application, we require that the timed commitment scheme be ssoomeniformly i.e. that
there does not exist a PRAM with fixed advice tape that can break the commitment scheme with non-
negligible probability in time less thah This is one of the cases where security against non-uniform
adversaries is used in an essential way.

3-round Timing-Based rZK for L € NP

1. The prover choosesi (the public description of the encryption key B) and a random string and
sends both to the verifier.

2. The verifier checks that encryptions undeare uniquely decryptable (as discussed above) and if not,
rejects. Assumingdr passes the test, the verifier chooses random stgings and sends to the prover
timed commitmentgy, €r TC(y0), (1 €r TC(y1) and, using, a zapr that at least one of the two
timed-commitments is valid. The verifier also sends a stpirtg the prover.

3. The prover checkér, p). If it is accepted, then the prover uses the random bits defined by an appli-
cation of its pseudo-random function on the message sent by the verifier to generate(w) and
b €r E(z) wherew € w(x) andz is random. Using’ and part of the output of the pseudo-random
function the prover also generates a zathatw € w(z) ORz € {yo,y1}. The witness used consists
of the random bits used in generatiaga, b and=’ are sent.

The verifier checks thdp’, ') is accepted, thdthas unique decryption and that the prover’s response was
timely, as defined by the timing constraints, accepting if and only if all conditions are satisfied.
Timing Constraints P’s Round 2 message must arrive within timeon Vs local clock from the time at
which V' sent its Round 1 message.andg (from the timing assumption) are chosen to satisfyt 5 and
8+~ < t, where the value is the time below which it is safe to assume that the timed commitment cannot
be broken, even by a PRAM, ands an upper bound on the time it takes to create a zap by a program that
is given a witness. For completenessmust be sufficiently large to permit the necessary computations by
P, and the round-trip message delay.

Note that the only party that has to measure tim& jsvhich is considered more resourceful than the
prover (who may be a smart-card with no independent clock) in the resettable setting

Theorem 8.1 If T'C'is a timed commitment protocol satisfying the requirements of Section 2.5, then for any
L € NP the above protocol is rZK.

Proof. A straight-line simulator can be constructed in a similar fashion to the construction in the proof of
Theorem 7.1, thus settling the zero-knowledge issue. For soundness we eséestbeceof a decryption
algorithm D with decryption keydk. If the protocol is not sound, then this key can be used to break the
timed commitment in exactly the same way as the proof of knowledge was used in the proof of Theorem 7.1,
violating the assumed non-uniform security of the timed commitment.

The properties of the encryption and decryption algoritfifisD) assure us that giveml a decryption
key dk exists (or the verifier will reject in Step 2). Suppose now that there is a soundness adversary, succeed-
ing on infinitely many sizes to make the verifier accept non-true statements. For each such size we can have
a slightly different prover, one that sends for sizéhe same keyd,,, the key that maximizes his chance
of proving a false statement. This prover has at least as high a chance of proving false statements that the
original adversary. Letk,, be the decryption key qgfd,,. Since the zaps generally prove true statements, the
prover’s chance of giving a false proof is onlyiE r E(z) (uniquely) corresponds toac {yo, y1 }. Given
dk,, as the advice for size, it is possible to obtain € {yo, 1} and guess the value of the timed commit-
ments. So the non-uniform advice for breaking the timed commitmeas isontradicting the assumption
that it is secure against non-uniform adversaries.
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We therefore have a non-constructive reduction: given an algorithm for providing false prodéfsvior
know that there exists an algorithm for breaking the timed-commitment; however, the reduction does not
yield an effective method for the conversion (since there is no effective way of fid@ng

Note that a proof of security which does not yield an effective procedure to break the underlying as-
sumptions is rare.

o

9 Open Questions

One vein of open problems induced by this work is with respect to the new primitive VPRG: Can VPRGs
be composed& la GGM”, as can ordinary pseudo-random generators? This is related to the issue of con-
structing VPRGs with better expansion as well as to the question whether there is a general construction
of VPRFs from VPRGs. A different issue is whether VPRGs can be based on an assumption weaker than
trapdoor permutations? For example, is it possible to base VPRGs on the Diffie-Hellman assumption (either
computational or the decisional version, for groups without a bilinear mapping)?

What is the relationship between NIZKs in the public parameters model and NIZKs in the public random
string model? The answer to this will clarify the relationship between VPRGs and NIZKs in the public
parameters model.

A second vein of questions deals with efficiency and practicality. We have used general NIZKs; thus any
proof must go through a reduction to an NP-complete problem. It would be useful to have more efficient,
special-purpose zaps, for instance, a zap that oneaddy is a quadratic residue modul§. Another
concrete question regarding zaps is to construct one in conjunction with a timed-commitment, so that it will
be simple to prove consistency.

A third vein of questions deals with round-efficiency: in which cases are our protocols round-optimal?
It is not hard to argue that 2-round (non-black-box) zero-knowledge pafdfaowledgeare impossible,
even using timing. It is also known that, assumifgs N P, there is no 2-round proof systemith perfect
completenesfor NP-hard languages either with [33] or without [3] auxiliary input. As mentioned earlier,
2-round and 1-round argument systems do exist under non-standard assumptions [24, 4].
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