An alternative presentation of the analysis of Nisan's pseudorandom generator of space-bounded machines

The following description of the analysis of Nisan's construction [3] is inspired by [1], and differs from the presentation in [2, Sec. 8.4.2.1]. Specifically, the construction is the same, but rather than being analyzed by looking at contracted versions of the distinguisher (see [2, p. 321]), we consider a sequence of distributions that this distinguisher may examine.

Our description is meant to replace the text in [2, pp. 320-321], which means that it relies on the definitions and notations of $[2, \mathrm{Sec} .8 .4]$.

Sketch of the proof of [2, Thm. 8.21]. The main technical tool used in this proof is the "mixing property" of pairwise independent hash functions (see [2, Apdx. D.2]). A family of functions H_{n}, which map $\{0,1\}^{n}$ to itself, is called mixing if for every pair of subsets $A, B \subseteq\{0,1\}^{n}$ for all but very few (i.e., $\exp (-\Omega(n))$ fraction) of the functions $h \in H_{n}$, it holds that

$$
\begin{equation*}
\operatorname{Pr}\left[U_{n} \in A \wedge h\left(U_{n}\right) \in B\right] \approx \frac{|A|}{2^{n}} \cdot \frac{|B|}{2^{n}} \tag{1}
\end{equation*}
$$

where the approximation is up to an additive term of $\exp (-\Omega(n)$). (See the generalization of $[2$, Lem.D.4], which implies that $\exp (-\Omega(n))$ can be set to $2^{-n / 3}$.)

We may assume, without loss of generality, that $s(k)=\Omega(\sqrt{k})$, and thus $\ell \stackrel{\text { def }}{=} \ell(k) \leq 2^{s(k)}$ holds. For any $s(k)$-space distinguisher D_{k} as in [2, Def. 8.20], we consider its computation when fed with ℓ-long sequences that are taken from various distributions. The first distribution is the uniform distribution over $\{0,1\}^{n}$; that is, $U_{\ell} \equiv U_{n}^{(1)} U_{n}^{(2)} \cdots U_{n}^{\left(\ell^{\prime}\right)}$, where $\ell^{\prime}=\ell / n$ and the $U_{n}^{(j)}$,s are independent random variables each uniformly distributed over $\{0,1\}^{n}$. The last distribution will be the one produced by the pseudorandom generator, and a generic (hybrid) distribution will have the form

$$
\mathcal{H}_{i} \stackrel{\text { def }}{=} G_{i}\left(U_{n}^{(1)}\right) G_{i}\left(U_{n}^{(2)}\right) \cdots G_{i}\left(U_{n}^{\left(\left(\ell^{\prime} / 2^{i}\right)-1\right)}\right) G_{i}\left(U_{n}^{\left(\ell^{\prime} / 2^{i}\right)}\right)
$$

where G_{i} is an arbitrary mapping of n-bit strings to $2^{i} \cdot n$-bit strings (and $\left.i \in\left\{0,1 \ldots, \log _{2} \ell^{\prime}\right\}\right) .{ }^{1}$ That is, the $i^{\text {th }}$ hybrid is obtained by applying $G_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{2^{i \cdot n}}$ to a sequence of $\ell^{\prime} / 2^{i}$ independently and uniformly distributed n-bit long strings. Note that $\mathcal{H}_{0} \equiv U_{\ell}$ (with G_{0} being the identity function), whereas $\mathcal{H}_{\log _{2} \ell^{\prime}}=G_{\log _{2} \ell^{\prime}}\left(U_{n}\right)$ is a distribution that is obtained by stretching random n-bit long strings into ℓ-bit long strings.

The key observation is that, for every i, the automata D_{k} cannot distinguish between \mathcal{H}_{i} and a distribution obtained by selecting a typical $h \in H_{n}$ and outputting

$$
G_{i}\left(U_{n}^{(1)}\right) G_{i}\left(h\left(U_{n}^{(1)}\right)\right) \cdots G_{i}\left(U_{n}^{\left(\ell^{\prime} / 2^{i+1}\right)}\right) G_{i}\left(h\left(U_{n}^{\left.\left(\ell^{\prime} / 2^{i+1}\right)\right)}\right)\right.
$$

Note that the foregoing distribution is similar to \mathcal{H}_{i}, except that the $2 j^{\text {th }}$ block is set to $G_{i}\left(h\left(U_{n}^{(j)}\right)\right)$ rather than to $G_{i}\left(U_{n}^{(2 j)}\right)$ as in $\mathcal{H}_{i} .{ }^{2}$ On the other hand, the foregoing distribution has the form of \mathcal{H}_{i+1} (i.e., let $\left.G_{i+1}(s)=G_{i}(s) G_{i}(h(s))\right)$. To prove that this replacement has little effect on the movement of D_{k}, we consider an arbitrary pair of vertices, u and v in layers $(2 j-2) \cdot 2^{i} \cdot n$

[^0]and $(2 j-1) \cdot 2^{i} \cdot n$, respectively, and denote by $L_{u, v} \subseteq\{0,1\}^{n}$ the set of the n-bit long strings s such that the automaton moves from vertex u to vertex v upon reading $G_{i}(s)$ (from locations $(2 j-2) \cdot 2^{i} \cdot n+1, \ldots,(2 j-1) \cdot 2^{i} \cdot n$ in its input). Similarly, for a vertex w at layer $2 j \cdot 2^{i} \cdot n$, we let $L_{v, w}^{\prime}$ denote the set of the strings s such that D_{k} moves from v to w upon reading $G_{i}(s)$. By Eq. (1), for all but very few of the functions $h \in H_{n}$, it holds that
\[

$$
\begin{equation*}
\operatorname{Pr}\left[U_{n} \in L_{u, v} \wedge h\left(U_{n}\right) \in L_{v, w}^{\prime}\right] \approx \operatorname{Pr}\left[U_{n} \in L_{u, v}\right] \cdot \operatorname{Pr}\left[U_{n} \in L_{v, w}^{\prime}\right], \tag{2}
\end{equation*}
$$

\]

where "very few" and \approx are as in Eq. (1). Thus, for all but $\exp (-\Omega(n))$ fraction of the choices of $h \in H_{n}$, replacing the coins in the second transition (i.e., the transition from layer $(2 j-1) \cdot 2^{i} \cdot n$ to layer $2 j \cdot 2^{i} \cdot n$) with the value of h applied to the outcomes of the coins used in the first transition (i.e., the transition from layer $(2 j-2) \cdot 2^{i} \cdot n$ to $(2 j-1) \cdot 2^{i} \cdot n$), approximately maintains the probability that D_{k} moves from u to w via v. Using a union bound (on all triples (u, v, w) as in the foregoing), we note that, for all but $2^{3 s(k)} \cdot \ell^{\prime} \cdot \exp (-\Omega(n))$ fraction of the choices of $h \in H_{n}$, the foregoing replacement approximately maintains the probability that D_{k} moves through any specific triple of vertices that are $2^{i} \cdot n$ apart. (We stress that the same h can be used in all these approximations.)

Thus, at the cost of extra $|h|$ random bits, we can reduce the number of true random coins used in transitions on D_{k} by a factor of two, without significantly affecting the final decision of D_{k} (where again we use the fact that $\ell^{\prime} \cdot \exp (-\Omega(n))<\exp (-\Omega(n))$, which implies that the approximation errors do not accumulate to too much). That is, fixing a good h (i.e., one that provides a good approximation to the transition probability over all $2^{3 s(k)} \cdot \ell^{\prime}$ triples), we can replace the amount of randomness in the hybrid (from $\ell^{\prime} / 2^{i} \cdot n$ in \mathcal{H}_{i} to $\ell^{\prime} / 2^{i+1} \cdot n$ in \mathcal{H}_{i+1}, which is defined based on this h), while approximately preserving the acceptance probability of D_{k} (i.e., $\left.\operatorname{Pr}\left[D_{k}\left(\mathcal{H}_{i}\right)=1\right] \approx \operatorname{Pr}\left[D_{k}\left(\mathcal{H}_{i+1}\right)=1\right]\right)$.

Applying the forgoing process can for $i=0, \ldots, \log _{2} \ell^{\prime}-1$, we repeatedly reduce the randomness of the hybrid by a factor of two, by randomly selecting (and fixing) a new hash function. Thus, repeating the process for a logarithmic (in ℓ^{\prime}) number of times, we obtain a distribution that depends on n random bits, at which point we stop. In total, we have used $t \stackrel{\text { def }}{=} \log _{2} \ell^{\prime}<\log _{2} \ell(k)$ random hash functions, denoted $h^{(1)}, \ldots, h^{(t)}$. This means that we can generate a (pseudorandom) sequence that fools the original D_{k} by using a seed of length $n+t \cdot \log _{2}\left|H_{n}\right|$ (see [2, Fig. 8.3] and [2, Exer. 8.28]). Using $n=\Theta(s(k))$ and an adequate family H_{n} (e.g., [2, Const. D.3]), we obtain the desired $\left(s, 2^{-s}\right)$-pseudorandom generator, which indeed uses a seed of length $O\left(s(k) \cdot \log _{2} \ell(k)\right)=k$.

References

[1] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom Generators from Polarizing Random Walks ECCC, TR18-015, 2018
[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008.
[3] Noam Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica, Vol. 12 (4), pages 449-461, 1992. Preliminary version in 22nd STOC, 1990.

[^0]: ${ }^{1}$ Indeed, while at this point G_{i} is to be thought of as arbitrary, later we shall use specific choices of G_{i}.
 ${ }^{2}$ Setting the $(2 j-1)^{\text {st }}$ block to $G_{i}\left(U_{n}^{(j)}\right)$ rather than to $G_{i}\left(U_{n}^{(2 j-1)}\right)$ as in \mathcal{H}_{i} is immaterial.

