## An alternative presentation of the analysis of Nisan's pseudorandom generator of space-bounded machines

The following description of the analysis of *Nisan's construction* [3] is inspired by [1], and differs from the presentation in [2, Sec. 8.4.2.1]. Specifically, the construction is the same, but rather than being analyzed by looking at contracted versions of the distinguisher (see [2, p. 321]), we consider a sequence of distributions that this distinguisher may examine.

Our description is meant to replace the text in [2, pp. 320-321], which means that it relies on the definitions and notations of [2, Sec. 8.4].

Sketch of the proof of [2, Thm. 8.21]. The main technical tool used in this proof is the "mixing property" of pairwise independent hash functions (see [2, Apdx. D.2]). A family of functions  $H_n$ , which map  $\{0,1\}^n$  to itself, is called mixing if for every pair of subsets  $A, B \subseteq \{0,1\}^n$  for all but very few (i.e.,  $\exp(-\Omega(n))$  fraction) of the functions  $h \in H_n$ , it holds that

$$\Pr[U_n \in A \land h(U_n) \in B] \approx \frac{|A|}{2^n} \cdot \frac{|B|}{2^n}$$
(1)

where the approximation is up to an additive term of  $\exp(-\Omega(n))$ . (See the generalization of [2, Lem.D.4], which implies that  $\exp(-\Omega(n))$  can be set to  $2^{-n/3}$ .)

We may assume, without loss of generality, that  $s(k) = \Omega(\sqrt{k})$ , and thus  $\ell \stackrel{\text{def}}{=} \ell(k) \leq 2^{s(k)}$ holds. For any s(k)-space distinguisher  $D_k$  as in [2, Def. 8.20], we consider its computation when fed with  $\ell$ -long sequences that are taken from various distributions. The first distribution is the uniform distribution over  $\{0,1\}^n$ ; that is,  $U_{\ell} \equiv U_n^{(1)}U_n^{(2)}\cdots U_n^{(\ell')}$ , where  $\ell' = \ell/n$  and the  $U_n^{(j)}$ 's are independent random variables each uniformly distributed over  $\{0,1\}^n$ . The last distribution will be the one produced by the pseudorandom generator, and a generic (hybrid) distribution will have the form

$$\mathcal{H}_{i} \stackrel{\text{def}}{=} G_{i}(U_{n}^{(1)})G_{i}(U_{n}^{(2)})\cdots G_{i}(U_{n}^{(\ell'/2^{i})-1)})G_{i}(U_{n}^{(\ell'/2^{i})})$$

where  $G_i$  is an arbitrary mapping of *n*-bit strings to  $2^i \cdot n$ -bit strings (and  $i \in \{0, 1, ..., \log_2 \ell'\}$ ).<sup>1</sup> That is, the *i*<sup>th</sup> hybrid is obtained by applying  $G_i : \{0, 1\}^n \to \{0, 1\}^{2^i \cdot n}$  to a sequence of  $\ell'/2^i$ independently and uniformly distributed *n*-bit long strings. Note that  $\mathcal{H}_0 \equiv U_\ell$  (with  $G_0$  being the identity function), whereas  $\mathcal{H}_{\log_2 \ell'} = G_{\log_2 \ell'}(U_n)$  is a distribution that is obtained by stretching random *n*-bit long strings into  $\ell$ -bit long strings.

The key observation is that, for every i, the automata  $D_k$  cannot distinguish between  $\mathcal{H}_i$  and a distribution obtained by selecting a typical  $h \in H_n$  and outputting

$$G_i(U_n^{(1)})G_i(h(U_n^{(1)}))\cdots G_i(U_n^{(\ell'/2^{i+1})})G_i(h(U_n^{(\ell'/2^{i+1})}))$$

Note that the foregoing distribution is similar to  $\mathcal{H}_i$ , except that the  $2j^{\text{th}}$  block is set to  $G_i(h(U_n^{(j)}))$ rather than to  $G_i(U_n^{(2j)})$  as in  $\mathcal{H}_i$ .<sup>2</sup> On the other hand, the foregoing distribution has the form of  $\mathcal{H}_{i+1}$  (i.e., let  $G_{i+1}(s) = G_i(s)G_i(h(s))$ ). To prove that this replacement has little effect on the movement of  $D_k$ , we consider an arbitrary pair of vertices, u and v in layers  $(2j-2) \cdot 2^i \cdot n$ 

<sup>&</sup>lt;sup>1</sup>Indeed, while at this point  $G_i$  is to be thought of as arbitrary, later we shall use specific choices of  $G_i$ .

<sup>&</sup>lt;sup>2</sup>Setting the  $(2j-1)^{\text{st}}$  block to  $G_i(U_n^{(j)})$  rather than to  $G_i(U_n^{(2j-1)})$  as in  $\mathcal{H}_i$  is immaterial.

and  $(2j-1) \cdot 2^i \cdot n$ , respectively, and denote by  $L_{u,v} \subseteq \{0,1\}^n$  the set of the *n*-bit long strings s such that the automaton moves from vertex u to vertex v upon reading  $G_i(s)$  (from locations  $(2j-2) \cdot 2^i \cdot n + 1, ..., (2j-1) \cdot 2^i \cdot n$  in its input). Similarly, for a vertex w at layer  $2j \cdot 2^i \cdot n$ , we let  $L'_{v,w}$  denote the set of the strings s such that  $D_k$  moves from v to w upon reading  $G_i(s)$ . By Eq. (1), for all but very few of the functions  $h \in H_n$ , it holds that

$$\Pr[U_n \in L_{u,v} \land h(U_n) \in L'_{v,w}] \approx \Pr[U_n \in L_{u,v}] \cdot \Pr[U_n \in L'_{v,w}], \qquad (2)$$

where "very few" and  $\approx$  are as in Eq. (1). Thus, for all but  $\exp(-\Omega(n))$  fraction of the choices of  $h \in H_n$ , replacing the coins in the second transition (i.e., the transition from layer  $(2j-1) \cdot 2^i \cdot n$  to layer  $2j \cdot 2^i \cdot n$ ) with the value of h applied to the outcomes of the coins used in the first transition (i.e., the transition from layer  $(2j-2) \cdot 2^i \cdot n$  to  $(2j-1) \cdot 2^i \cdot n$ ), approximately maintains the probability that  $D_k$  moves from u to w via v. Using a union bound (on all triples (u, v, w) as in the foregoing), we note that, for all but  $2^{3s(k)} \cdot \ell' \cdot \exp(-\Omega(n))$  fraction of the choices of  $h \in H_n$ , the foregoing replacement approximately maintains the probability that  $D_k$  moves through any specific triple of vertices that are  $2^i \cdot n$  apart. (We stress that the same h can be used in all these approximations.)

Thus, at the cost of extra |h| random bits, we can reduce the number of true random coins used in transitions on  $D_k$  by a factor of two, without significantly affecting the final decision of  $D_k$  (where again we use the fact that  $\ell' \cdot \exp(-\Omega(n)) < \exp(-\Omega(n))$ , which implies that the approximation errors do not accumulate to too much). That is, fixing a good h (i.e., one that provides a good approximation to the transition probability over all  $2^{3s(k)} \cdot \ell'$  triples), we can replace the amount of randomness in the hybrid (from  $\ell'/2^i \cdot n$  in  $\mathcal{H}_i$  to  $\ell'/2^{i+1} \cdot n$  in  $\mathcal{H}_{i+1}$ , which is defined based on this h), while approximately preserving the acceptance probability of  $D_k$  (i.e.,  $\Pr[D_k(\mathcal{H}_i)=1] \approx \Pr[D_k(\mathcal{H}_{i+1})=1]$ ).

Applying the forgoing process can for  $i = 0, ..., \log_2 \ell' - 1$ , we repeatedly reduce the randomness of the hybrid by a factor of two, by randomly selecting (and fixing) a new hash function. Thus, repeating the process for a logarithmic (in  $\ell'$ ) number of times, we obtain a distribution that depends on n random bits, at which point we stop. In total, we have used  $t \stackrel{\text{def}}{=} \log_2 \ell' < \log_2 \ell(k)$ random hash functions, denoted  $h^{(1)}, ..., h^{(t)}$ . This means that we can generate a (pseudorandom) sequence that fools the original  $D_k$  by using a seed of length  $n + t \cdot \log_2 |H_n|$  (see [2, Fig. 8.3] and [2, Exer. 8.28]). Using  $n = \Theta(s(k))$  and an adequate family  $H_n$  (e.g., [2, Const. D.3]), we obtain the desired  $(s, 2^{-s})$ -pseudorandom generator, which indeed uses a seed of length  $O(s(k) \cdot \log_2 \ell(k)) = k$ .

## References

- Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom Generators from Polarizing Random Walks ECCC, TR18-015, 2018
- [2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008.
- [3] Noam Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica, Vol. 12 (4), pages 449–461, 1992. Preliminary version in 22nd STOC, 1990.