Chapter 9

Probabilistic Proof Systems

A proof is whatever convinces me.

Shimon Even (1935-2004)

The glory attached to the creativity involved in finding proofs makes us forget that
it is the less glorified process of verification that gives proofs their value. Conceptu-
ally speaking, proofs are secondary to the verification process; whereas technically
speaking, proof systems are defined in terms of their verification procedures.

The notion of a verification procedure presumes the notion of computation and
furthermore the notion of efficient computation. This implicit stipulation is made
explicit in the definition of NP, where efficient computation is associated with
deterministic polynomial-time algorithms. However, as argued next, we can gain a
lot if we are willing to take a somewhat non-traditional step and allow probabilistic
verification procedures.

In this chapter, we shall study three types of probabilistic proof systems, called
interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs. In each
of these three cases, we shall present fascinating results that cannot be obtained
when considering the analogous deterministic proof systems.

Summary: The association of efficient procedures with deterministic
polynomial-time procedures is the basis for viewing NP-proof systems
as the canonical formulation of proof systems (with efficient verifica-
tion procedures). Allowing probabilistic verification procedures and,
moreover, ruling by statistical evidence gives rise to various types of
probabilistic proof systems. Indeed, these probabilistic proof systems
carry a probability of error (which is explicitly bounded and can be
reduced by successive application of the proof system), yet they of-
fer various advantages over the traditional (deterministic and errorless)
proof systems.

Randomized and interactive verification procedures, giving rise to inter-
active proof systems, seem much more powerful than their deterministic
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counterparts. In particular, such interactive proof systems exist for any
set in PSPACE 2 coNP (e.g., for the set of unsatisfied propositional
formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems (i.e., NP # coN'P). We stress that a “proof”
in this context is not a fixed and static object, but rather a randomized
(and dynamic) process in which the verifier interacts with the prover.
Intuitively, one may think of this interaction as consisting of questions
asked by the verifier, to which the prover has to reply convincingly.

Such randomized and interactive verification procedures allow for the
meaningful conceptualization of zero-knowledge proofs, which are of
great theoretical and practical interest (especially in cryptography).
Loosely speaking, zero-knowledge proofs are interactive proofs that
yield nothing (to the verifier) beyond the fact that the assertion is
indeed valid. For example, a zero-knowledge proof that a certain propo-
sitional formula is satisfiable does not reveal a satisfying assignment to
the formula nor any partial information regarding such an assignment
(e.g., whether the first variable can assume the value true). Thus,
the successful verification of a zero-knowledge proof exhibit an extreme
contrast between being convinced of the validity of a statement and
learning nothing else (while receiving such a convincing proof). It turns
out that, under reasonable complexity assumptions (i.e., assuming the
existence of one-way functions), every set in NP has a zero-knowledge
proof system.

NP-proofs can be efficiently transformed into a (redundant) form that
offers a trade-off between the number of locations (randomly) exam-
ined in the resulting proof and the confidence in its validity. In par-
ticular, it is known that any set in AP has an NP-proof system that
supports probabilistic verification such that the error probability de-
creases exponentially with the number of bits read from the alleged
proof. These redundant NP-proofs are called probabilistically checkable
proofs (or PCPs). In addition to their conceptually fascinating nature,
PCPs are closely related to the study of the complexity of numerous
natural approximation problems.

Introduction and Preliminaries

Conceptually speaking, proofs are secondary to the verification process. Indeed,
both in mathematics and in real-life, proofs are meaningful only with respect to
commonly agreed principles of reasoning, and the verification process amounts to
checking that these principles were properly applied. Thus, these principles, which
are typically taken for granted, are more fundamental than any specific proof that
applies them; that is, the mere attempt to reason about anything is based on
commonly agreed principles of reasoning.



385

The commonly agreed principles of reasoning are associated with a verification
procedure that distinguishes proper applications of these principles from improper
ones. A line of reasoning is considered valid with respect to such fixed principles
(and is thus deemed a proof) if and only if it proceeds by a proper applications
of these principles. Thus, a line of reasoning is considered valid if and only if it is
accepted by the corresponding verification procedure. This means that, technically
speaking, proofs are defined in terms of a predetermined verification procedure
(or are define with respect to such a procedure) . Indeed, this state of affairs is
best illustrated in the formal study of proofs (i.e., logic), which is actually the
study of formally defined proof systems: The point is that these proof systems are
defined (often explicitly and sometimes only implicitly) in terms of their verification
procedures.

The notion of a verification procedure presumes the notion of computation. This
fact explains the historical interest of logicians in computer science (cf. [224, 54]).
Furthermore, the verification of proofs is supposed to be relatively easy, and hence
a natural connection emerges between verification procedures and the notion of
efficient computation. This connection was made explicit by complexity theorists,
and is captured by the definition of NP and NP-proof systems (cf. Definition 2.5),
which targets all efficient verification procedures.!

Recall that Definition 2.5 identifies efficient (verification) procedures with de-
terministic polynomial-time algorithms, and that it explicitly restricts the length
of proofs to be polynomial in the length of the assertion. Thus, verification is
performed in o number of steps that is polynomial in the length of the assertion.
We comment that deterministic proof systems that allow for longer proofs (but
require that verification is efficient in terms of the length of the alleged proof) can
be modeled as NP-proof systems by adequate padding (of the assertion).

Indeed, NP-proofs provide the ultimate formulation of efficiently verifiable proofs
(i-e., proof systems with efficient verification procedures), provided that one asso-
ciates efficient procedures with deterministic polynomial-time algorithms. How-
ever, as we shall see, we can gain a lot if we are willing to take a somewhat
non-traditional step and allow probabilistic (polynomial-time) algorithms and, in
particular, probabilistic verification procedures.

e Randomized and interactive verification procedures seem much more powerful
than their deterministic counterparts.

e Such interactive proof systems allow for the construction of (meaningful)
zero-knowledge proofs, which are of great conceptual and practical interest.

e NP-proofs can be efficiently transformed into a (redundant) form that sup-
ports super-fast probabilistic verification via very few random probes into the
alleged proof.

In contrast, traditional proof systems are formulated based on rules of inference that seem
natural in the relevant context. The fact that these inference rules yield an efficient verification
procedure is merely a consequence of the correspondence between processes that seem natural
and efficient computation.
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In all these cases, explicit bounds are imposed on the computational complexity of
the verification procedure, which in turn is personified by the notion of a verifier.
Furthermore, in all these proof systems, the verifier is allowed to toss coins and
rule by statistical evidence. Thus, all these proof systems carry a probability of
error; yet, this probability is explicitly bounded and, furthermore, can be reduced
by successive application of the proof system.

One important convention. When presenting a proof system, we state all
complexity bounds in terms of the length of the assertion to be proved (which is
viewed as an input to the verifier). Namely, when we say “polynomial-time” we
mean time that is polynomial in the length of this assertion. Indeed, as will become
evident, this is the natural choice in all the cases that we consider. Note that this
convention is consistent with the foregoing discussion of NP-proof systems.?

Notational Conventions. We denote by poly the set of all integer functions
that are upper-bounded by a polynomial, and by log the set of all integer functions
bounded by a logarithmic function (i.e., f € log if and only if f(n) = O(logn)).
All complexity measures mentioned in this chapter are assumed to be constructible
in polynomial-time.

Organization. In Section 9.1 we present the basic definitions and results regard-
ing interactive proof systems. The definition of an interactive proof systems is the
starting point for a discussion of zero-knowledge proofs, which is provided in Sec-
tion 9.2. Section 9.3, which presents the basic definitions and results regarding
probabilistically checkable proofs (PCP), can be read independently of the other
sections.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1).

9.1 Interactive Proof Systems

In light of the growing acceptability of randomized and interactive computations,
it is only natural to associate the notion of efficient computation with probabilistic
and interactive polynomial-time computations. This leads naturally to the notion
of an interactive proof system in which the verification procedure is interactive and
randomized, rather than being non-interactive and deterministic. Thus, a “proof”
in this context is not a fixed and static object, but rather a randomized (dynamic)
process in which the verifier interacts with the prover. Intuitively, one may think of
this interaction as consisting of questions asked by the verifier, to which the prover
has to reply convincingly.

2Recall that Definition 2.5 refers to polynomial-time verification of alleged proofs, which in
turn must have length that is bounded by a polynomial in the length of the assertion.
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The foregoing discussion, as well as the definition provided in Section 9.1.2,
makes explicit reference to a prover, whereas a prover is only implicit in the tradi-
tional definitions of proof systems (e.g., NP-proof systems). Before turning to the
actual definition, we highlight and further discuss this issue as well as some other
conceptual issues.

9.1.1 Motivation and Perspective

We shall discuss the various interpretations given to the notion of a proof in dif-
ferent human contexts, and the attitudes that underly and/or accompany these
interpretations. This discussion is aimed at emphasizing that the motivation for
the definition of interactive proof systems is not replacing the notion of a mathemat-
ical proof, but rather capturing other forms of proofs that are of natural interest.
We also discuss the roles of the prover and the verifier, in these settings, and the
general notions of completeness and soundness.

9.1.1.1 A static object versus an interactive process

Traditionally in mathematics, a “proof” is a fized sequence consisting of statements
that are either self-evident or are derived from previous statements via self-evident
rules. Actually, both conceptually and technically, it is more accurate to substitute
the phrase “self-evident” by the phrase “commonly agreed” (because, at the last
account, self-evidence is a matter of common agreement). In fact, in the formal
study of proofs (i.e., logic), the commonly agreed statements are called azioms,
whereas the commonly agreed rules are referred to as derivation rules. We highlight
a key property of mathematics proofs: these proofs are viewed as fized (static)
objects.

In contrast, in other areas of human activity, the notion of a “proof” has a
much wider interpretation. In particular, a proof is not a fixed object but rather
a process by which the validity of an assertion is established. For example, in the
context of Law, standing a cross-examination by an opponent, who may ask tough
and/or tricky questions, is considered a proof of the facts claimed by the witness.
Likewise, various debates that take place in daily life have an analogous potential of
establishing claims and are then perceived as proofs. This perception is quite com-
mon in philosophical and political debates, and applies even in scientific debates.
Needless to say, a key property of such debates is their interactive (“dynamic”)
nature. Interestingly, the appealing nature of such “interactive proofs” is reflected
in the fact that they are mimicked (in a rigorous manner) in some mathemati-
cal proofs by contradiction, which emulate an imaginary debate with a potential
(generic) skeptic.

Another difference between mathematical proofs and various forms of “daily
proofs” is that, while the former aim at certainty, the latter are intended (“only”)
for establishing claims beyond any reasonable doubt. Arguably, an explicitly bounded
error probability (as present in our definition of interactive proof systems) is an
extremely strong form of establishing a claim beyond any reasonable doubt.
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We also note that, in mathematics, proofs are often considered more important
than their consequence (i.e., the theorem). In contrast, in many daily situations,
proofs are considered secondary (in importance) to their consequence. These con-
flicting attitudes are well-coupled with the difference between written proofs and
“interactive” proofs: If one values the proof itself then one may insist on having it
archived, whereas if one only cares about the consequence then the way in which
it is reached is immaterial.

Interestingly, the foregoing set of daily attitudes (rather than the mathematical
ones) will be adequate in the current chapter, where proofs are viewed merely as
a vehicle for the verification of the validity of claims. (This attitude gets to an
extreme in the case of zero-knowledge proofs, where we actually require that the
proofs themselves be useless beyond being convincing of the validity of the claimed
assertion.)

In general, we will be interested in modeling various forms of proofs that may
occur in the world, focusing on proofs that can be verified by automated procedures.
These verification procedures are designed to check the validity of potential proofs,
and are oblivious of additional features that may appeal to humans such as beauty,
insightfulness, etc. In the current section we will consider the most general form
of proof systems that still allow efficient verification.

We note that the proof systems that we study refer to mundane theorems (e.g.,
asserting that a specific propositional formula is not satisfiable or that a party sent
a message as instructed by a predetermined protocol). We stress that the (meta)
theorems that we shall state regarding these proof systems will be proved in the
traditional mathematical sense.

9.1.1.2 Prover and Verifier

The wide interpretation of the notion of a proof system, which includes interactive
processes of verification, calls for the explicit introduction of two interactive players,
called the prover and the wverifier. The verifier is the party that employs the
verification procedure, which underlies the definition of any proof system, while
the prover is the party that tries to convince the verifier. In the context of static
(or non-interactive) proofs, the prover is the transcendental entity providing the
proof, and thus in this context the prover is often not mentioned at all (when
discussing the verification of alleged proofs). Still, explicitly mentioning potential
provers may be beneficial even when discussing such static (non-interactive) proofs.

We highlight the “distrustful attitude” towards the prover, which underlies any
proof system. If the verifier trusts the prover then no proof is needed. Hence,
whenever discussing a proof system, one should envision a setting in which the
verifier is not trusting the prover, and furthermore is skeptic of anything that the
prover says. In such a setting the prover’s goal is to convince the verifier, while the
verifier should make sure that it is not fooled by the prover. (See further discussion
in §9.1.1.3.) Note that the verifier is “trusted” to protect its own interests by
employing the predetermined verification procedure; indeed, the asymmetry with
respect to who we trust is an artifact of our focus on the verification process (or
task). In general, each party is trusted to protect its own interests (i.e., the verifier
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is trusted to protect its own interests), but no party is trusted to protect the
interests of the other party (i.e., the prover is not trusted to protect the verifier’s
interest of not being fooled by the prover).

Another asymmetry between the two parties is that our discussion focuses on
the complexity of the verification task and ignores (as a first approximation) the
complexity of the proving task (which is only discussed in §9.1.5.1). Note that this
asymmetry is reflected in the definition of NP-proof systems; that is, verification
is required to be efficient, whereas for sets AP \ P finding adequate proofs is
infeasible. Thus, as a first approximation, we consider the question of what can
be efficiently verified when interacting with an arbitrary prover (which may be
infinitely powerful). Once this question is resolved, we shall also consider the
complexity of the proving task (indeed, see §9.1.5.1).

9.1.1.3 Completeness and Soundness

Two fundamental properties of a proof system (i.e., of a verification procedure) are
its soundness (or validity) and completeness. The soundness property asserts that
the verification procedure cannot be “tricked” into accepting false statements. In
other words, soundness captures the verifier’s ability to protect itself from being
convinced of false statements (no matter what the prover does in order to fool
it). On the other hand, completeness captures the ability of some prover to con-
vince the verifier of true statements (belonging to some predetermined set of true
statements). Note that both properties are essential to the very notion of a proof
system.

We note that not every set of true statements has a “reasonable” proof system
in which each of these statements can be proved (while no false statement can be
“proved”). This fundamental phenomenon is given a precise meaning in results
such as Gédel’s Incompleteness Theorem and Turing’s theorem regarding the un-
decidability of the Halting Problem. In contrast, recall that NP was defined as the
class of sets having proof systems that support efficient deterministic verification
(of “written proofs”). This section is devoted to the study of a more liberal notion
of efficient verification procedures (allowing both randomization and interaction).

9.1.2 Definition

Loosely speaking, an interactive proof is a game between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the
verifier of the validity of some assertion. Specifically, the verifier employs a proba-
bilistic polynomial-time strategy (whereas no computational restrictions apply to
the prover’s strategy). It is required that if the assertion holds then the verifier
always accepts (i.e., when interacting with an appropriate prover strategy). On the
other hand, if the assertion is false then the verifier must reject with probability
at least %, no matter what strategy is being employed by the prover. (The error
probability can be reduced by running such a proof system several times.)

We formalize the interaction between parties by referring to the strategies that
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the parties employ.® A strategy for a party describes the party’s next move (i.e.,
its next message or its final decision) as a function of the common input (i.e.,
the aforementioned assertion), its internal coin tosses, and all messages it has
received so far. That is, we assume that each party records the outcomes of its past
coin tosses as well as all the messages it has received, and determines its moves
based on these. Thus, an interaction between two parties, employing strategies
A and B respectively, is determined by the common input, denoted z, and the
randomness of both parties, denoted r4 and rp. Assuming that A takes the first
move (and B takes the last move), the corresponding (¢-round) interaction transcript
(on common input x and randomness 74 and rg) is ai,f1, ..., ay, B, where a; =
A(z,ra,pP, .., Bi—1) and 3; = B(z,rp, a1, ...,a;). The corresponding final decision
of A is defined as A(x,r4,1,...,0t)-

We say that a party employs a probabilistic polynomial-time strategy if its next
move can be computed in a number of steps that is polynomial in the length of
the common input. In particular, this means that, on input common input z, the
strategy may only consider a polynomial in |z| many messages, which are each of
poly(|z]) length.* Intuitively, if the other party exceeds an a priori (polynomial in
|z]) bound on the total length of the messages that it is allowed to send, then the
execution is suspended. Thus, referring to the aforementioned strategies, we say
that A is a probabilistic polynomial-time strategy if, for every ¢ and r4, 51, -.., B,
the value of A(z,7a,01,...,8;) can be computed in time polynomial in |z|. Again,
in proper use, it must hold that |r4|,¢ and the |3;|’s are all polynomial in |z|.

Definition 9.1 (Interactive Proof systems — IP):> An interactive proof system for
aset S is a two-party game, between a verifier executing o probabilistic polynomial-
time strategy, denoted V', and a prover that executes a (computationally unbounded)
strategy, denoted P, satisfying the following two conditions:

e Completeness: For every x € S, the verifier V always accepts after interacting
with the prover P on common input x.

e Soundness: For every © ¢ S and every strategy P*, the verifier V' rejects with
probability at least % after interacting with P* on common input x.

We denote by TP the class of sets having interactive proof systems.

The error probability (in the soundness condition) can be reduced by successive
applications of the proof system. (This is easy to see in the case of sequential
repetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,

3 An alternative formulation refers to the interactive machines that capture the behavior of each
of the parties (see, e.g., [90, Sec. 4.2.1.1]). Such an interactive machine invokes the corresponding
strategy, while handling the communication with the other party and keeping a record of all
messages received so far.

4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must
also be bounded by a polynomial in the length of =.

5We follow the convention of specifying strategies for both the verifier and the prover. An
alternative presentation only specifies the verifier’s strategy, while rephrasing the completeness
condition as follows: There exists a prover strategy P such that, for every x € S, the verifier V
always accepts after interacting with P on common input .
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repeating the proving process for k times, reduces the probability that the verifier
is fooled (i.e., accepts a false assertion) to 27% and we can afford doing so for any
k = poly(]z|). Variants on the basic definition are discussed in Section 9.1.4.

The role of randomness. Randomness is essential to the power of interactive
proofs; that is, restricting the verifier to deterministic strategies yields a class of
interactive proof systems that has no advantage over the class of NP-proof systems.
The reason being that, in case the verifier is deterministic, the prover can predict
the verifier’s part of the interaction. Thus, the prover can just supply its own
sequence of answers to the verifier’s sequence of (predictable) questions, and the
verifier can just check that these answers are convincing. Actually, we establish
that soundness error (and not merely randomized verification) is essential to the
power of interactive proof systems (i.e., their ability to reach beyond NP-proofs).

Proposition 9.2 Suppose that S has an interactive proof system (P,V) with no
soundness error; that is, for every x & S and every potential strateqy P*, the verifier
V' rejects with probability one after interacting with P* on common input x. Then

S eNP.

Proof: We may assume, without loss of generality, that V' is deterministic (by just
fixing arbitrarily the contents of its random-tape (e.g., to the all-zero string) and
noting that both (perfect) completeness and perfect (i.e., errorless) soundness still
hold). Thus, the case of zero soundness error reduces to the case of deterministic
verifiers.

Now, since V is deterministic, the prover can predict each message sent by V,
because each such message is uniquely determined by the common input and the
previous prover messages. Thus, a sequence of optimal prover’s messages (i.e., a
sequence of messages leading V' to accept € S) can be (pre)determined (without
interacting with V') based solely on the common input x.5 Hence, z € S if and only
if there exists a sequence of (prover’s) messages that make (the deterministic) V'
accept z, where the question of whether a specific sequence (of prover’s messages)
makes V' accept = depends only on the sequence and on the common input x
(because V tosses no coins that may affect this decision).” The foregoing condition
can be checked in polynomial-time, and so a “passing sequence” constitutes an
NP-witness for z € S. It follows that S e NP. I

Reflection. The moral of the reasoning underlying the proof Proposition 9.2 is
that there is no point to interact with a party whose moves are easily predictable,
because such moves can be determined without any interaction. This moral repre-
sents the prover’s point of view (regarding interaction with deterministic verifiers).

6As usual, we do not care about the complexity of determining such a sequence, since no
computational bounds are placed on the prover.

"Recall that in the case that V is randomized, its final decision also depends on its internal
coin tosses (and not only on the common input and on the sequence of prover’s messages). In
that case, the verifier’s own messages may reveal information about the verifier’s internal coin
tosses, which in turn may help the prover to answer with convincing messages.



392 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS

In contrast, even an infinitely powerful party (e.g., a prover) may gain by inter-
acting with an unpredictable party (e.g., a randomized verifier), because this in-
teraction may provide useful information (e.g., information regarding the verifier’s
coin tosses, which in turn allows the prover to increase its probability of answer-
ing convincingly). Furthermore, from the verifier’s point of view it is beneficial to
interact with the prover, because the latter is computationally stronger (and thus
its moves may not be easily predictable by the verifier even in the case that they
are predictable in an information theoretic sense).

9.1.3 The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems
in the sense that without randomness interactive proofs are not more powerful than
NP-proofs. Indeed, the power of interactive proof arises from the combination of
randomization and interaction. We first demonstrate this point by a simple proof
system for a specific coNP-set that is not known to have an NP-proof system, and
next prove the celebrated result ZP = PSPACE, which suggests that interactive
proofs are much stronger than NP-proofs.

9.1.3.1 A simple example

One day on the Olympus, bright-eyed Athena claimed that Nectar
poured out of the new silver-coated jars tastes less good than Nec-
tar poured out of the older gold-decorated jars. Mighty Zeus, who was
forced to introduce the new jars by the practically oriented Hera, was
annoyed at the claim. He ordered that Athena be served one hundred
glasses of Nectar, each poured at random either from an old jar or from
a new one, and that she tell the source of the drink in each glass. To
everybody’s surprise, wise Athena correctly identified the source of each
serving, to which the Father of the Gods responded “my child, you are
either right or extremely lucky.” Since all gods knew that being lucky
was not one of the attributes of Pallas-Athena, they all concluded that
the impeccable goddess was right in her claim.

The foregoing story illustrates the main idea underlying the interactive proof for
Graph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-
tive proof system is designed for proving dissimilarity of two given objects (in the
foregoing story these are the two brands of Nectar, whereas in Construction 9.3
these are two non-isomorphic graphs). We note that, typically, proving similarity
between objects is easy, because one can present a mapping (of one object to the
other) that demonstrates this similarity. In contrast, proving dissimilarity seems
harder, because in general there seems to be no succinct proof of dissimilarity (e.g.,
clearly, showing that a particular mapping fails does not suffice, while enumerat-
ing all possible mappings (and showing that each fails) does not yield a succinct
proof). More generally, it is typically easy to prove the existence of an easily veri-
fiable structure in a given object by merely presenting this structure, but proving
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the non-existence of such a structure seems hard. Formally, membership in an
NP-set is proved by presenting an NP-witness, but it is not clear how to prove
the non-existence of such a witness. Indeed, recall that the common belief is that
cON'P £ NP.

Two graphs, G; =(V1, E1) and G2 =(Va, E»), are called isomorphic if there exists
a 1-1 and onto mapping, ¢, from the vertex set Vi to the vertex set V5 such that
{u,v} € E; if and only if {¢(v),p(u)} € E,. This (“edge preserving”) mapping
¢, in case it exists, is called an isomorphism between the graphs. The following
protocol specifies a way of proving that two graphs are not isomorphic, while it is
not known whether such a statement can be proved via a non-interactive process
(i.e., via an NP-proof system).

Construction 9.3 (Interactive proof for Graph Non-Isomorphism):
e Common Input: A pair of graphs, Gy =(V1, E1) and G =(Va, Es).

e Verifier’s first step (V1): The verifier selects at random one of the two input
graphs, and sends to the prover a random isomorphic copy of this graph.
Namely, the verifier selects uniformly o € {1,2}, and a random permutation
w from the set of permutations over the vertex set V. The verifier constructs
a graph with vertex set V, and edge set

def
E= {rw),7(v)}: {u,v} €E,}
and sends (V,, E) to the prover.

e Motivating Remark: If the input graphs are mon-isomorphic, as the prover
claims, then the prover should be able to distinguish (not necessarily by an
efficient algorithm) isomorphic copies of one graph from isomorphic copies of
the other graph. However, if the input graphs are isomorphic, then a random
isomorphic copy of one graph is distributed identically to a random isomorphic
copy of the other graph.

e Prover’s step: Upon receiving a graph, G' = (V', E'), from the verifier, the
prover finds a 7 € {1,2} such that the graph G' is isomorphic to the input
graph G.. (If both T=1,2 satisfy the condition then T is selected arbitrarily.
In case no T € {1,2} satisfies the condition, T is set to 0). The prover sends
T to the verifier.

e Verifier’s second step (V2): If the message, T, received from the prover equals
o (chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common
input). Otherwise the verifier outputs 0 (i.e., rejects the cormmon input).

The verifier’s strategy in Construction 9.3 is easily implemented in probabilistic
polynomial-time. We do not known of a probabilistic polynomial-time implemen-
tation of the prover’s strategy, but this is not required. The motivating remark
justifies the claim that Construction 9.3 constitutes an interactive proof system for
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the set of pairs of non-isomorphic graphs.® Recall that the latter is a coNP-set
(which is not known to be in N'P).

9.1.3.2 The full power of interactive proofs

The interactive proof system of Construction 9.3 refers to a specific coNP-set that
is not known to be in A'P. It turns out that interactive proof systems are powerful
enough to prove membership in any coNP-set (e.g., prove that a graph is not 3-
colorable). Thus, assuming that AP # coANP, this establishes that interactive
proof systems are more powerful than NP-proof systems. Furthermore, the class
of sets having interactive proof systems coincides with the class of sets that can be
decided using a polynomial amount of work-space.

Theorem 9.4 (The IP Theorem): ZP = PSP.ACE.

Recall that it is widely believed that AP is a proper subset of PSPACE. Thus,
under this conjecture, interactive proofs are more powerful than NP-proofs.

Sketch of the Proof of Theorem 9.4

We first show that coANP C ZP, by presenting an interactive proof system for
the coNP-complete set of unsatisfiable CNF formulae. Next we extend this proof
system to obtain one for the PSPACE-complete set of unsatisfiable Quantified
Boolean Formulae. Finally, we observe that ZP C PSPACE. Indeed, proving that
some coN P-complete set has an interactive proof system is the core of the proof
of Theorem 9.4 (see Exercise 9.2).

We show that the set of unsatisfiable CNF formulae has an interactive proof
system by using algebraic methods, which are applied to an arithmetic generaliza-
tion of the said Boolean problem (rather than to the problem itself). That is, in
order to demonstrate that this Boolean problem has an interactive proof system, we
first introduce an arithmetic generalization of CNF formulae, and then construct
an interactive proof system for the resulting arithmetic assertion (by capitalizing
on the arithmetic formulation of the assertion). Intuitively, we present an iterative
process, which involves interaction between the prover and the verifier, such that in
each iteration the residual claim to be established becomes simpler (i.e., contains
one variable less). This iterative process seems to be enabled by the fact that the
various claims refer to the arithmetic problem rather than to the original Boolean
problem. (Actually, one may say that the key point is that these claims refer to a
generalized problem rather than to the original one.)

81n case G is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,
both to G1 and to G2). In this case the graph G’ sent in Step (V1) uniquely determines the bit
o. On the other hand, if G1 and G2 are isomorphic then, for every G’ sent in Step (V1), the
number of isomorphisms between G1 and G’ equals the number of isomorphisms between G2 and
G'. Tt follows that, in this case G', yields no information about o (chosen by the verifier), and so
no prover may convince the verifier with probability exceeding 1/2.
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Teaching note: We devote most of the presentation to establishing that coNP C IP,
and recommend doing the same in class. Our presentation focuses on the main ideas,
and neglects some minor implementation details (which can be found in [161, 204]).

The starting point: We prove that coN’P C ITP by presenting an interactive
proof system for the set of unsatisfiable CNF formulae, which is coNP-complete.
Thus, our starting point is a given Boolean CNF formula, which is claimed to be
unsatisfiable.

Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-
mula, we replace the Boolean variables by integer variables, and replace the logical
operations by corresponding arithmetic operations. In particular, the Boolean val-
ues false and true are replaced by the integer values 0 and 1 (respectively),
OR-clauses are replaced by sums, and the top level conjunction is replaced by a
product. This translation is depicted in Figure 9.1. Note that the Boolean formula

BOOLEAN ARITHMETIC
variable values false, true 0,1
connectives -z, V and A 1—2, 4+ and -
final values false, true 0, positive

Figure 9.1: Arithmetization of CNF formulae.

is satisfied (resp., unsatisfied) by a specific truth assignment if and only if evaluat-
ing the resulting arithmetic expression at the corresponding 0-1 assignment yields
a positive (integer) value (resp., yields the value zero). Thus, the claim that the
original Boolean formula is unsatisfiable translates to the claim that the summa-
tion of the resulting arithmetic expression, over all 0-1 assignments to its variables,
yields the value zero. For example, the Boolean formula

(2?3 V x5 V .1‘17) N (.1‘5 \ .1‘9) N (—|.Z‘3 \ —|.Z‘4)
is replaces by the arithmetic expression
(.1‘3 + (]. — .1‘5) + .1‘17) . (.1‘5 + 379) . ((]. - 373) + (]. — 334))

and the Boolean formula is unsatisfiable if and only if the sum of the corresponding
arithmetic expression, taken over all choices of z1,zs,...,z17 € {0,1}, equals 0.
Thus, proving that the original Boolean formula is unsatisfiable reduces to proving
that the corresponding arithmetic summation evaluates to 0. We highlight two
additional observations regarding the resulting arithmetic expression:

1. The arithmetic expression is a low degree polynomial over the integers; specif-
ically, its (total) degree equals the number of clauses in the original Boolean
formula.
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2. For any Boolean formula, the value of the corresponding arithmetic expression
(for any choice of 1, ..., z, € {0,1}) resides within the interval [0, v™], where
v is the maximum number of variables in a clause, and m is the number of
clauses. Thus, summing over all 2" possible 0-1 assignments, where n < vm
is the number of variables, yields an integer value in [0, 2"v™].

Moving to a Finite Field: In general, whenever we need to check equality
between two integers in [0, M], it suffices to check their equality mod ¢, where
g > M. The benefit is that, if ¢ is prime then the arithmetic is now in a finite
field (mod ¢), and so certain things are “nicer” (e.g., uniformly selecting a value).
Thus, proving that a CNF formula is not satisfiable reduces to proving an equality
of the following form

Z Z ¢(x1,...,zy) =0 (mod q), (9.1)

x1=0,1 x,=0,1

where ¢ is a low-degree multi-variate polynomial (and ¢ can be represented using
O(|¢]) bits). In the rest of this exposition, all arithmetic operations refer to the
finite field of ¢ elements, denoted GF(q).

Overview of the actual protocol: stripping summations in iterations.
Given a formal expression as in Eq. (9.1), we strip off summations in iterations,
stripping a single summation at each iteration, and instantiate the corresponding
free variable as follows. At the beginning of each iteration the prover is supposed
to supply the univariate polynomial representing the residual expression as a func-
tion of the (single) currently stripped variable. (By Observation 1, this is a low
degree polynomial and so it has a short description.)? The verifier checks that the
polynomial (say, p) is of low degree, and that it corresponds to the current value
(say, v) being claimed (i.e., it verifies that p(0) + p(1) = v). Next, the verifier ran-
domly instantiates the currently free variable (i.e., it selects uniformly r € GF(q)),
yielding a new value to be claimed for the resulting expression (i.e., the verifier
computes v < p(r), and expects a proof that the residual expression equals v).
The verifier sends the uniformly chosen instantiation (i.e., ) to the prover, and the
parties proceed to the next iteration (which refers to the residual expression and
to the new value v). At the end of the last iteration, the verifier has a closed form
expression (i.e., an expression without formal summations), which can be easily
checked against the claimed value.

A single iteration (detailed): The '! iteration is aimed at proving a claim of
the form

Z Z O(T1y ey Tic 1, Tiy Tig1y ey Tpn) =01 (mod gq), (9.2)

z;=0,1 z,=0,1

9We also use Observation 2, which implies that we may use a finite field with elements having
a description length that is polynomial in the length of the original Boolean formula (i.e., log, ¢ =

O(vm)).
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where v = 0, and 7q,...,7;_1 and v;_; are as determined in previous iterations.
The i*} iteration consists of two steps (messages): a prover step followed by a
verifier step. The prover is supposed to provide the verifier with the univariate
polynomial p; that satisfies

pi(2) def Z Z DTy ooy Tim15 2, Tig1y -y L) MOd ¢ . (9.3)

I,j+1:071 Ir,,,:071

Note that, module g, the value p;(0) +p;(1) equals the Lh.s of Eq. (9.2). Denote by
pi the actual polynomial sent by the prover (i.e., the honest prover sets p, = p;).
Then, the verifier first checks if pi(0) + pi(1) = v;—1 (mod g), and next uniformly
selects 7; € GF(g) and sends it to the prover. Needless to say, the verifier will
reject if the first check is violated. The claim to be proved in the next iteration is

Z Z ¢(7‘1,...,7‘1'_1,7‘2',3?2'4_1,...,3?") = V; (mod q), (94)

I,j+1:071 Ir,,,:[),l
where v; def pi(r;) mod ¢ is computed by each party.

Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,
the prover can supply the correct polynomials (as determined in Eq. (9.3)), and
this will lead the verifier to always accept.

Soundness of the protocol: It suffices to upper-bound the probability that, for
a particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim
(i.e., Eq. (9.4)) is valid. Indeed, let us focus on the 7*! iteration, and let v; ; and
p; be as in Eq. (9.2) and Eq. (9.3), respectively; that is, v;—; is the (wrong) value
claimed at the beginning of the i*? iteration and p; is the polynomial representing
the expression obtained when stripping the current variable (as in Eq. (9.3)). Let
pi(-) be any potential answer by the prover. We may assume, without loss of
generality, that p(0) + pi(1) = v;_1 (mod ¢) and that p} is of low-degree (since
otherwise the verifier will definitely reject). Using our hypothesis (that the entry
claim of Eq. (9.2) is false), we know that p;(0) + p;(1) #Z vi—1 (mod ¢). Thus,
p; and p; are different low-degree polynomials, and so they may agree on very few
points (if at all). Now, if the verifier’s instantiation (i.e., its choice of a random r;)
does not happen to be one of these few points (i.e., p;(r;) Z pi(r;) (mod g)), then
the ending claim (i.e., Eq. (9.4)) is false too (because the new value (i.e., v;) is set
to pl(r;) mod g, while the residual expression evaluates to p;(r;)). Details are left
as an exercise (see Exercise 9.3).

This establishes that the set of unsatisfiable CNF formulae has an interactive
proof system. Actually, a similar proof system (which uses a related arithmeti-
zation — see Exercise 9.5) can be used to prove that a given formula has a given
number of satisfying assignment; i.e., prove membership in the (“counting”) set

{(¢,k) : {7 : o(7) = 1}| = k} . (9-5)



398 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS

Using adequate reductions, it follows that every problem in #P has an interactive
proof system (i.e., for every R € PC, the set {(z,k) : {y : (z,y) € R} =k} isin
IP). Proving that PSPACE C IP requires a little more work, as outlined next.

Obtaining interactive proofs for PSPACE (the basic idea). We present
an interactive proof for the set of satisfied Quantified Boolean Formulae (QBF),
which is complete for PSPACE (see Theorem 5.15).1° Recall that the number of
quantifiers in such formulae is unbounded (e.g., it may be polynomially related to
the length of the input), that there are both existential and universal quantifiers,
and furthermore these quantifiers may alternate. In the arithmetization of these
formulae, we replace existential quantifiers by summations and universal quantifiers
by products. Two difficulties arise when considering the application of the foregoing
protocol to the resulting arithmetic expression. Firstly, the (integral) value of
the expression (which may involve a big number of nested formal products) is
only upper-bounded by a double-exponential function (in the length of the input).
Secondly, when stripping a summation (or a product), the expression may be a
polynomial of high degree (due to nested formal products that may appear in the
remaining expression).!! For example, both phenomena occur in the following

expression
Z H H (4 yn),

z=0,1y1=0,1 Yn=0,1

which equals 37, 22" (14 2)2" 7", The first difficulty is easy to resolve by
using the fact (to be established in Exercise 9.7) that if two integers in [0, M] are
different then they must be different modulo most of the primes in the interval
[3, poly(log M)]. Thus, we let the verifier selects a random prime ¢ of length that
is linear in the length of the original formula, and the two parties consider the
arithmetic expression reduced modulo this q. The second difficulty is resolved by
noting that PSP.ACE is actually reducible to a special form of (non-canonical) QBF
in which no variable appears both to the left and to the right of more than one
universal quantifier (see the proof of Theorem 5.15 or alternatively Exercise 9.6).
It follows that when arithmetizing and stripping summations (or products) from
the resulting arithmetic expression, the corresponding univariate polynomial is of
low degree (i.e., at most twice the length of the original formula, where the factor

10 Actually, the following extension of the foregoing proof system yields a proof system for the
set of unsatisfied Quantified Boolean Formulae (which is also complete for PSP.ACE). Alterna-
tively, an interactive proof system for QBF can be obtained by extending the related proof system
presented in Exercise 9.5.

HThis high degree causes two difficulties, where only the second one is acute. The first difficulty
is that the soundness of the corresponding protocol will require working in a finite field that
is sufficiently larger than this high degree, but we can afford doing so (since the degree is at
most exponential in the formula’s length). The second (and more acute) difficulty is that the
polynomial may have a large (i.e., exponential) number of non-zero coefficients and so the verifier
cannot afford to read the standard representation of this polynomial (as a list of all non-zero
coefficients). Indeed, other succinct and effective representations of such polynomials may exist
in some cases (as in the following example), but it is unclear how to obtain such representations
in general.
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of two is due to the single universal quantifier that has this variable quantified on
its left and appearing on its right).

IP is contained in PSPACE: We shall show that, for every interactive proof
system, there exists an optimal prover strategy that can be implemented in polynomial-
space, where an optimal prover strategy is one that maximizes the probability that
the prescribed verifier accepts the common input. It follows that ZP C PSPACE,
because (for every S € ZP) we can emulate, in polynomial space, all possible inter-
actions of the prescribed verifier with any fixed polynomial-space prover strategy
(e.g., an optimal one).

Proposition 9.5 LetV be a probabilistic polynomial-time (verifier) strategy. Then,
there exists a polynomial-space computable (prover) strategy f that, for every w,
maximizes the probability that V accepts x. That is, for every P* and every x it
holds that the probability that V accepts x after interacting with P* is upper-bounded
by the probability that V accepts x after interacting with f.

Proof Sketch: For every common input z and any possible partial transcript v of
the interaction so far, the strategy'? f determines an optimal next-message for the
prover by considering all possible coin tosses of the verifier that are consistent with
(z,7). Specifically, f is determined recursively such that f(x,v) = m if m maxi-
mizes the number of outcomes of the verifier’s coin-tosses that are consistent with
(z,v) and lead the verifier to accept when subsequent prover moves are determined
by f (which is where recursion is used). That is, the verifier’s random sequence r
support the setting f(z,v) = m, where v = (au, b1, ..., a4, B¢), if the following two
conditions hold:

1. r is consistent with (z,7), which means that for every ¢ € {1,...,¢} it holds
that 3, = V(z,r,aq, ..., ;).

2. r leads V' to accept when the subsequent prover moves are determined by f,
which means at termination (i.e., after 7' rounds) it holds that

V(x,r,an, ooy @ty My Qg o) = 1

where for every ¢ € {¢t+1,...,T—1} it holds that a;+1 = f(z,v,m, Bes1, -, 4, Bi)
and B; =V(z,r,a1,..,qp,m, Qpp9, ..., ;).

Thus, f(z,7) = m if m maximizes the value of E[¢; v (z, R,,v,m)], where R, is
selected uniformly among the r’s that are consistent with (z,v) and &,y (z, 7,7, m)
indicates whether or not V' accepts x in the subsequent interaction with f (which
refers to randomness r and partial transcript (v, m)). It follows that the value
f(x,~) can be computed in polynomial-space when given oracle access to f(z,7, -, -)-
The proposition follows by standard composition of space-bounded computations
(i.e., allocating separate space to each level of the recursion, while using the same
space in all recursive calls of each level). O

12For sake of convenience, when describing the strategy f, we refer to the entire partial tran-
script of the interaction with V' (rather than merely to the sequence of previous messages sent
by V).
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9.1.4 Variants and finer structure: an overview

In this subsection we consider several variants on the basic definition of interactive
proofs as well as finer complexity measures. This is an advanced subsection, which
ounly provides an overview of the various notions and results (as well as pointers to
proofs of the latter).

9.1.4.1 Arthur-Merlin games a.k.a public-coin proof systems

The verifier’s messages in a general interactive proof system are determined arbi-
trarily (but efficiently) based on the verifier’s view of the interaction so far (which
includes its internal coin tosses, which without loss of generality can take place at
the onset of the interaction). Thus, the verifier’s past coin tosses are not necessarily
revealed by the messages that it sends. In contrast, in public-coin proof systems
(a.k.a Arthur-Merlin proof systems), the verifier’s messages contain the outcome
of any coin that it tosses at the current round. Thus, these messages reveal the
randomness used towards generating them (i.e., this randomness becomes public).
Actually, without loss of generality, the verifier’s messages can be identical to the
outcome of the coins tossed at the current round (because any other string that the
verifier may compute based on these coin tosses is actually determined by them).

Note that the proof systems presented in the proof of Theorem 9.4 are of the
public-coin type, whereas this is not the case for the Graph Non-Isomorphism proof
system (of Construction 9.3). Thus, although not all natural proof systems are of
the public-coin type, by Theorem 9.4 every set having an interactive proof system
also has a public-coin interactive proof system. This means that, in the context of
interactive proof systems, asking random questions is as powerful as asking clever
questions. (A stronger statement appears at the end of §9.1.4.3.)

Indeed, public-coin proof systems are a syntactically restricted type of inter-
active proof systems. This restriction may make the design of such systems more
difficult, but potentially facilitates their analysis (and especially when the analy-
sis refers to a generic system). Another advantage of public-coin proof systems is
that the verifier’s actions (except for its final decision) are oblivious of the prover’s
messages. This property is used in the proof of Theorem 9.12.

9.1.4.2 Interactive proof systems with two-sided error

In Definition 9.1 error probability is allowed in the soundness condition but not in
the completeness condition. In such a case, we say that the proof system has perfect
completeness (or one-sided error probability). A more general definition allows an
error probability (upper-bounded by, say, 1/3) in both the completeness and the
soundness conditions. Note that sets having such generalized (two-sided error)
interactive proofs are also in PSPACE, and thus (by Theorem 9.4) allowing two-
sided error does not increase the power of interactive proofs. See further discussion
at the end of §9.1.4.3.
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9.1.4.3 A hierarchy of interactive proof systems

Definition 9.1 only refers to the total computation time of the verifier, and thus
allows an arbitrary (polynomial) number of messages to be exchanged. A finer
definition refers to the number of messages being exchanged (also called the number
of rounds).!?

Definition 9.6 (The round-complexity of interactive proof):

e For an integer function m, the complezity class TP(m) consists of sets having
an interactive proof system in which, on common input x, at most m(|z|)
messages are exchanged between the parties.'*

e For a set of integer functions, M, we let TP(M) def Umerr IP(m). Thus,
IP =1IP(poly).

For example, interactive proof systems in which the verifier sends a single message
that is answered by a single message of the prover corresponds to ZP(2). Clearly,
NP C IP(1), yet the inclusion may be strict because in ZP(1) the verifier may toss
coins after receiving the prover’s single message. (Also note that ZP(0) = coRP.)

Definition 9.6 gives rise to a natural hierarchy of interactive proof systems,
where different “levels” of this hierarchy correspond to different “growth rates” of
the round-complexity of these systems. The following results are known regarding
this hierarchy.

e A linear speed-up (see Appendix F.2 (or [22] and [110])): For every integer
function, f, such that f(n) > 2 for all n, the class ZP(O(f(-))) collapses to
the class ZP(f(-)). In particular, ZP(O(1)) collapses to ZP(2).

e The class ZP(2) contains sets that are not known to be in A'P; e.g., Graph
Non-Isomorphism (see Construction 9.3). However, under plausible intractabil-
ity assumptions, ZP(2) = NP (see [166]).

e If coN'P C ZP(2) then the Polynomial-Time Hierarchy collapses (see [44]).

It is conjectured that coNP is not contained in ZP(2), and consequently that inter-
active proofs with an unbounded number of message exchanges are more powerful
than interactive proofs in which only a bounded (i.e., constant) number of messages
are exchanged.'®

The class ZP(1), also denoted MA, seems to be the “real” randomized (and yet
non-interactive) version of A"P: Here the prover supplies a candidate (polynomial-
size) “proof”, and the verifier assesses its validity probabilistically (rather than
deterministically).

13 An even finer structure emerges when considering also the total length of the messages sent
by the prover (see [105]).

14We count the total number of messages exchanged regardless of the direction of
communication.

15Note that the linear speed-up cannot be applied for an unbounded number of times, because
each application may increase (e.g., square) the time-complexity of verification.
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The IP-hierarchy (i.e., ZP(-)) equals an analogous hierarchy, denoted AM(),
that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, for
every integer function f, it holds that AM(f) = ZP(f). For f > 2, it is also the
case that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up for
IP(-) is established by combining the following two results:

1. Emulating ZP(-) by AM(-) (see §F.2.1 or [110]): ZP(f) € AM(f +3).
2. Linear speed-up for AM(-) (see §F.2.2 or [22]): AM(2f) C AM(f +1).

In particular, ZP(0O(1)) = AM(2), even if AM(2) is restricted such that the verifier
tosses no coins after receiving the prover’s message. (Note that ZP(1) = AM(1)
and ZP(0) = AM(0) are trivial.) We comment that it is common to shorthand
AM(2) by AM, which is indeed inconsistent with the convention of using ZP as
shorthand of ZP(poly).

The fact that ZP(O(f)) = ZP(f) is proved by establishing an analogous result
for AM(-) demonstrates the advantage of the public-coin setting for the study
of interactive proofs. A similar phenomenon occurs when establishing that the
IP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.8).

9.1.4.4 Something completely different

We stress that although we have relaxed the requirements from the verification
procedure (by allowing it to interact with the prover, toss coins, and risk some
(bounded) error probability), we did not restrict the validity of its assertions by
assumptions concerning the potential prover. This should be contrasted with other
notions of proof systems, such as computationally-sound ones (see §9.1.5.2), in
which the validity of the verifier’s assertions depends on assumptions concerning
the potential prover(s).

9.1.5 On computationally bounded provers: an overview

Recall that our definition of interactive proofs (i.e., Definition 9.1) makes no ref-
erence to the computational abilities of the potential prover. This fact has two
conflicting consequences:

1. The completeness condition does not provide any upper bound on the com-
plexity of the corresponding proving strategy (which convinces the verifier to
accept valid assertions).

2. The soundness condition guarantees that, regardless of the computational
effort spend by a cheating prover, the verifier cannot be fooled to accept
invalid assertions (with probability exceeding the soundness error).

Note that providing an upper-bound on the complexity of the (prescribed) prover
strategy P of a specific interactive proof system (P, V) only strengthens the claim
that (P,V) is a proof system for the corresponding set (of valid assertions). We
stress that the prescribed prover strategy is referred to only in the completeness
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condition (and is irrelevant to the soundness condition). On the other hand, relax-
ing the definition of interactive proofs such that soundness holds only for a specific
class of cheating prover strategies (rather than for all cheating prover strategies)
weakens the corresponding claim. In this advanced section we consider both pos-
sibilities.

Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-
dent reading. It merely provides an overview of the various notions, and the reader is

directed to the chapter’s notes for further detail (i.e., pointers to the relevant literature).

9.1.5.1 How powerful should the prover be?

Suppose that a set S is in ZP. This means that there exists a verifier V' that
can be convinced to accept any input in S but cannot be fooled to accept any
input not in S (except with small probability). One may ask how powerful should
a prover be such that it can convince the verifier V to accept any input in S.
Note that Proposition 9.5 asserts that an optimal prover strategy (for convincing
any fixed verifier V') can be implemented in polynomial-space, and that we cannot
expect any better for a generic set in PSPACE = IP (because the emulation of
the interaction of V' with any optimal prover strategy yields a decision procedure
for the set). Still, we may seek better upper-bounds on the complexity of some
prover strategy that convinces a specific verifier, which in turn corresponds to a
specific set S. More interestingly, considering all possible verifiers that give rise to
interactive proof systems for S, we ask what is the minimum power required from
a prover that satisfies the completeness requirement with respect to one of these
verifiers?

We stress that, unlike the case of computationally-sound proof systems (see
§9.1.5.2), we do not restrict the power of the prover in the soundness condition,
but rather consider the minimum complexity of provers meeting the completeness
condition. Specifically, we are interested in relatively efficient provers that meet
the completeness condition. The term “relatively efficient prover” has been given
three different interpretations, which are briefly surveyed next.

1. A prover is considered relatively efficient if, when given an auxiliary input (in
addition to the common input in §), it works in (probabilistic) polynomial-
time. Specifically, in case S € NP, the auxiliary input maybe an NP-proof
that the common input is in the set. Still, even in this case the interac-
tive proof need not consist of the prover sending the auxiliary input to the
verifier; for example, an alternative procedure may allow the prover to be
zero-knowledge (see Construction 9.10).

This interpretation is adequate and in fact crucial for applications in which
such an auxiliary input is available to the otherwise polynomial-time parties.
Typically, such auxiliary input is available in cryptographic applications in
which parties wish to prove in (zero-knowledge) that they have correctly con-
ducted some computation. In these cases, the NP-proof is just the transcript
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of the computation by which the claimed result has been generated, and thus
the auxiliary input is available to the proving party.

2. A prover is considered relatively efficient if it can be implemented by a proba-
bilistic polynomial-time oracle machine with oracle access to the set S itself.
Note that the prover in Construction 9.3 has this property (and see also
Exercise 9.10).

This interpretation generalizes the notion of self-reducibility of NP-proof sys-
tems. Recall that by self-reducibility of an NP-set (or rather of the corre-
sponding NP-proof system) we mean that the search problem of finding an
NP-witness is polynomial-time reducible to deciding membership in the set
(cf. Definition 2.14). Here we require that implementing the prover strategy
(in the relevant interactive proof) be polynomial-time reducible to deciding
membership in the set.

3. A prover is considered relatively efficient if it can be implemented by a prob-
abilistic machine that runs in time that is polynomial in the deterministic
complexity of the set. This interpretation relates the time-complexity of con-
vincing a “lazy person” (i.e., a verifier) to the time-complexity of determining
the truth (i.e., deciding membership in the set).

Hence, in contrast to the first interpretation, which is adequate in settings
where assertions are generated along with their NP-proofs, the current in-
terpretation is adequate in settings in which the prover is given only the
assertion and has to find a proof to it by itself (before trying to convince a
lazy verifier of its validity).

9.1.5.2 Computational-soundness

Relaxing the soundness condition such that it only refers to relatively-efficient ways
of trying to fool the verifier (rather than to all possible ways) yields a fundamen-
tally different notion of a proof system. Assertions proved in such a system are
not necessarily correct; they are correct only if the potential cheating prover does
not exceed the presumed complexity limits. As in §9.1.5.1, the notion of “rela-
tive efficiency” can be given different interpretations, the most popular one being
that the cheating prover strategy can be implemented by a (non-uniform) fam-
ily of polynomial-size circuits. The latter interpretation coincides with the first
interpretation used in §9.1.5.1 (i.e., a probabilistic polynomial-time strategy that
is given an auxiliary input (of polynomial length)). Specifically, in this case, the
soundness condition is replaced by the following computational soundness condition
that asserts that it is infeasible to fool the verifier into accepting false statements.
Formally:

For every prover strategy that is implementable by a family of polynomial-
size circuits {C,,}, and every sufficiently long © € {0,1}*\ S, the prob-
ability that V' accepts x when interacting with C|y| is less than 1/2.
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As in case of standard soundness, the computational-soundness error can be re-
duced by repetitions. We warn, however, that unlike in the case of standard sound-
ness (where both sequential and parallel repetitions will do), the computational-
soundness error cannot always be reduced by parallel repetitions.

It is common and natural to consider proof systems in which the prover strate-
gies considered both in the completeness and soundness conditions satisfy the same
notion of relative efficiency. Protocols that satisfy these conditions with respect
to the foregoing interpretation are called arguments. We mention that argument
systems may be more efficient (e.g., in terms of their communication complexity)
than interactive proof systems.

9.2 Zero-Knowledge Proof Systems

Standard mathematical proofs are believed to yield (extra) knowledge and not
merely establish the validity of the assertion being proved; that is, it is commonly
believed that (good) proofs provide a deeper understanding of the theorem being
proved. At the technical level, an NP-proof of membership in some set S € NP\ P
yields something (i.e., the NP-proof itself) that is hard to compute (even when
assuming that the input is in S). For example, a 3-coloring of a graph constitutes an
NP-proof that the graph is 3-colorable, but it yields information (i.e., the coloring)
that seems infeasible to compute (when given an arbitrary 3-colorable graph).

A natural question that arises is whether or not proving an assertion always
requires giving away some extra knowledge. The setting of interactive proof systems
enables a negative answer to this fundamental question: In contrast to NP-proofs,
which seem to yield a lot of knowledge, zero-knowledge (interactive) proofs yield no
knowledge at all; that is, zero-knowledge proofs are both convincing and yet yield
nothing beyond the validity of the assertion being proved. For example, a zero-
knowledge proof of 3-colorability does not yield any information about the graph
(e.g., partial information about a 3-coloring) that is infeasible to compute from
the graph itself. Thus, zero-knowledge proofs exhibit an extreme contrast between
being convincing (of the validity of a assertion) and teaching anything on top of
the validity of the assertion.

Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., since
it differentiates proof-verification from learning). Still, the reader may wonder
whether such a phenomenon is desirable, because in many settings we do care
to learn as much as possible (rather than learn as little as possible). However,
in other settings (most notably in cryptography), we may actually wish to limit
the gain that other parties may obtained from a proof (and, in particular, limit
this gain to the minimal level of being convinced in the validity of the assertion).
Indeed, the applicability of zero-knowledge proofs in the domain of cryptography is
vast; they are typically used as a tool for forcing (potentially malicious) parties to
behave according to a predetermined protocol (without having them reveal their
own private inputs). The interested reader is referred to discussions in §C.4.3.3
and §C.7.3.2 (and to detailed treatments in [90, 91]). We also mention that, in
addition to their direct applicability in Cryptography, zero-knowledge proofs serve
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Figure 9.2: Zero-knowledge proofs — an illustration.

as a good bench-mark for the study of various questions regarding cryptographic
protocols.

Teaching note: We believe that the treatment of zero-knowledge proofs provided in
this section suffices for the purpose of a course in complexity theory. For an extensive

treatment of zero-knowledge proofs, the interested reader is referred to [90, Chap. 4].

9.2.1 Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the
validity of the assertion; that is, a verifier obtaining such a proof only gains convic-
tion in the validity of the assertion. This is formulated by saying that anything that
can be feasibly obtained from a zero-knowledge proof is also feasibly computable
from the (valid) assertion itself. The latter formulation follows the simulation
paradigm, which is discussed next.

9.2.1.1 A wider perspective: the simulation paradigm

In defining zero-knowledge proofs, we view the verifier as a potential adversary
that tries to gain knowledge from the (prescribed) prover.!® We wish to state that
no (feasible) adversary strategy for the verifier can gain anything from the prover
(beyond conviction in the validity of the assertion). The question addressed here
is how to formulate the “no gain” requirement.

Let us consider the desired formulation from a wide perspective. A key ques-
tion regarding the modeling of security concerns is how to express the intuitive
requirement that an adversary “gains nothing substantial” by deviating from the
prescribed behavior of an honest user. The answer is that the adversary gains noth-
ing if whatever it can obtain by unrestricted adversarial behavior can be obtained

16Recall that when defining a proof system (e.g., an interactive proof system), we view the
prover as a potential adversary that tries to fool the (prescribed) verifier (into accepting invalid
assertions).
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within essentially the same computational effort by a benign (or prescribed) behav-
ior. The definition of the “benign behavior” captures what we want to achieve
in terms of security, and is specific to the security concern to be addressed. For
example, in the context of zero-knowledge, a benign behavior is any computation
that is based (only) on the assertion itself (while assuming that the latter is valid).
Thus, a zero-knowledge proof is an interactive proof in which no feasible adversar-
ial verifier strategy can obtain from the interaction more than a “benign party”
(which believes the assertion) can obtain from the assertion itself.

The foregoing interpretation of “gaining nothing” means that any feasible ad-
versarial behavior can be “simulated” by a benign behavior (and thus there is no
gain in the former). This line of reasoning is called the simulation paradigm, and
is pivotal to many definitions in cryptography (e.g., it underlies the definitions of
security of encryption schemes and cryptographic protocols); for further details see
Appendix C.

9.2.1.2 The basic definitions

We turn back to the concrete task of defining zero-knowledge. Firstly, we com-
ment that zero-knowledge is a property of some prover strategies; actually, more
generally, zero-knowledge is a property of some strategies. Fixing any strategy
(e.g., a prescribed prover), we consider what can be gained (i.e., computed) by an
arbitrary feasible adversary (e.g., a verifier) that interacts with the aforementioned
fized strategy on a common input taken from a predetermined set (in our case the
set of valid assertions). This gain is compared against what can be computed by an
arbitrary feasible algorithm (called a simulator) that is only given the input itself.
The fixed strategy is zero-knowledge if the “computational power” of these two
(fundamentally different settings) is essentially equivalent. Details follow.

The formulation of the zero-knowledge condition refers to two types of probabil-
ity ensembles, where each ensemble associates a single probability distribution to
each relevant input (e.g., a valid assertion). Specifically, in the case of interactive
proofs, the first ensemble represents the output distribution of the verifier after
interacting with the specified prover strategy P (on some common input), where
the verifier is employing an arbitrary efficient strategy (not necessarily the specified
one). The second ensemble represents the output distribution of some probabilistic
polynomial-time algorithm (which is only given the corresponding input (and does
not interact with anyone)). The basic paradigm of zero-knowledge asserts that for
every ensemble of the first type there exist a “similar” ensemble of the second type.
The specific variants differ by the interpretation given to the notion of similarity.
The most strict interpretation, leading to perfect zero-knowledge, is that similarity
means equality.

Definition 9.7 (perfect zero-knowledge, over-simplified):'” A prover strategy, P,

7In the actual definition one relaxes the requirement in one of the following two ways. The
first alternative is allowing A* to run for ezpected (rather than strict) polynomial-time. The
second alternative consists of allowing A* to have no output with probability at most 1/2 and
considering the value of its output conditioned on it having output at all. The latter alternative
implies the former, but the converse is not known to hold.
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is said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-
time verifier strategy, V*, there exists a probabilistic polynomial-time algorithm,
A*, such that

(P,V*)(z) = A" (), for everyz € S

where (P,V*)(x) is a random variable representing the output of verifier V* after
interacting with the prover P on common input x, and A*(x) is a random variable
representing the output of algorithm A* on input x.

We comment that any set in coRP has a perfect zero-knowledge proof system in
which the prover keeps silence and the verifier decides by itself. The same holds
for BPP provided that we relax the definition of interactive proof system to allow
two-sided error. Needless to say, our focus is on non-trivial proof systems; that is,
proof systems for sets outside of BPP.

A somewhat more relaxed interpretation (of the notion of similarity), leading
to almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-
ity means statistical closeness (i.e., negligible difference between the ensembles).
The most liberal interpretation, leading to the standard usage of the term zero-
knowledge (and sometimes referred to as computational zero-knowledge), is that
similarity means computational indistinguishability (i.e., failure of any efficient pro-
cedure to tell the two ensembles apart). Combining the foregoing discussion with
the relevant definition of computational indistinguishability (i.e., Definition C.5),
we obtain the following definition.

Definition 9.8 (zero-knowledge, somewhat simplified): A prover strategy, P, is
said to be zero-knowledge over a set S if for every probabilistic polynomial-time
verifier strateqy, V*, there exists a probabilistic polynomial-time simulator, A*,
such that for every probabilistic polynomial-time distinguisher, D, it holds that

dm) ¥ _max | {IPrD(, (P.V)(@)=1] - PrlD(r, 4" () =1]}

18

is a negligible function.”® We denote by ZIC the class of sets having zero-knowledge

interactive proof systems.

Definition 9.8 is a simplified version of the actual definition, which is presented in
Appendix C.4.2. Specifically, in order to guarantee that zero-knowledge is preserved
under sequential composition it is necessary to slightly augment the definition (by
providing V* and A* with the same value of an arbitrary (poly(|z|)-bit long) aux-
iliary input). Other definitional issues and related notions are briefly discussed in
Appendix C.4.4.

8 That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive
. . . def
polynomial p and for sufficiently large n, it holds that d(n) < 1/p(n)). Needless to say, d(n) = 0

if S {0,1}" = 0.
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On the role of randomness and interaction. It can be shown that only
sets in BPP have zero-knowledge proofs in which the verifier is deterministic (see
Exercise 9.13). The same holds for deterministic provers, provided that we consider
“auxiliary-input” zero-knowledge (as in Definition C.9). It can also be shown that
ounly sets in BPP have zero-knowledge proofs in which a single message is sent (see
Exercise 9.14). Thus, both randomness and interaction are essential to the non-
triviality of zero-knowledge proof systems. (For further details, see [90, Sec. 4.5.1].)

Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowest
level of a knowledge-complexity hierarchy which quantifies the “knowledge revealed
in an interaction.” Specifically, the knowledge complexity of an interactive proof
system may be defined as the minimum number of oracle-queries required in order
to efficiently simulate an interaction with the prover. (See [89, Sec. 2.3.1] for
references.)

9.2.2 The Power of Zero-Knowledge

When faced with a definition as complex (and seemingly self-contradictory) as the
definition of zero-knowledge, one should indeed wonder whether the definition can
be met (in a non-trivial manner).!® It turns out that the existence of non-trivial
zero-knowledge proofs is related to the existence of intractable problems in AP.
In particular, we will show that if one-way functions exist then every NP-set has a
zero-knowledge proof system. (For the converse, see [90, Sec. 4.5.2] or [227].) But
first, we demonstrate the non-triviality of zero-knowledge by a presenting a simple
(perfect) zero-knowledge proof system for a specific NP-set that is not known to
be in BPP. In this case we make no intractability assumptions (yet, the result is
significant only if AP is not contained in BPP).

9.2.2.1 A simple example

A story not found in the Odyssey refers to the not so famous Labyrinth
of the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-
lenged godlike Odysseus to traverse the Labyrinth from its North Gate
to its South Gate. Canny Odysseus doubted whether such a path ex-
isted at all and asked beautiful Circe for a proof, to which she replied
that if she showed him a path this would trivialize for him the chal-
lenge of traversing the Labyrinth. “Not necessarily,” clever Odysseus
replied, “you can use your magic to transport me to a random place in
the labyrinth, and then guide me by a random walk to a gate of my
choice. If we repeat this enough times then I’ll be convinced that there
is a labyrinth-path between the two gates, while you will not reveal to
me such a path.” “Indeed,” wise Circe thought to herself, “showing
this mortal a random path from a random location in the labyrinth to

9Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system in
which the verifier just determines membership by itself. Thus, the issue is the existence of zero-
knowledge proofs for sets outside BPP.
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the gate he chooses will not teach him more than his taking a random
walk from that gate.”

The foregoing story illustrates the main idea underlying the zero-knowledge proof
for Graph Isomorphism presented next. Recall that the set of pairs of isomorphic
graphs is not known to be in BPP, and thus the straightforward NP-proof system
(in which the prover just supplies the isomorphism) may not be zero-knowledge.
Furthermore, assuming that Graph Isomorphism is not in BPP, this set has no
zero-knowledge NP-proof system. Still, as we shall shortly see, this set does have
a zero-knowledge interactive proof system.

Construction 9.9 (zero-knowledge proof for Graph Isomorphism):
e Common Input: A pair of graphs, Gy =(V1, E1) and Gy =(Va, Es).

If the input graphs are indeed isomorphic, then we let ¢ denote an arbitrary
isomorphism between them; that is, ¢ is a 1-1 and onto mapping of the vertex
set V1 to the vertex set Vo such that {u,v} € Ey if and only if {¢(v), p(u)} €
Es.

e Prover’s first Step (P1): The prover selects a random isomorphic copy of
G-, and sends it to the verifier. Namely, the prover selects at random, with
uniform probability distribution, a permutation w from the set of permutations
over the vertex set V,, and constructs a graph with vertex set Vo and edge set

def

E= {{r(u),7(v)} : {u,v} € Es}.
The prover sends (Va, E) to the verifier.

e Motivating Remark: If the input graphs are isomorphic, as the prover claims,
then the graph sent in Step P1 is isomorphic to both input graphs. However,
if the input graphs are not isomorphic then no graph can be isomorphic to
both of them.

e Verifier’s first Step (V1): Upon receiving a graph, G' = (V',E"), from the
prover, the verifier asks the prover to show an isomorphism between G' and
one of the input graphs, chosen at random by the verifier. Namely, the verifier
uniformly selects o € {1,2}, and sends it to the prover (who is supposed to
answer with an isomorphism between G, and G').

e Prover’s second Step (P2): If the message, o, received from the verifier equals
2 then the prover sends m to the verifier. Otherwise (i.e., o # 2), the prover
sends w o ¢ (i.e., the composition of m on ¢, defined as 7o ¢(v) def m(p(v)))
to the verifier.

(Indeed, the prover treats any o # 2 as 0 = 1. Thus, in the analysis we shall
assume, without loss of generality, that o € {1,2} always holds.)

e Verifier’s second Step (V2): If the message, denoted 1, received from the
prover is an isomorphism between G, and G' then the verifier outputs 1,
otherwise it outputs 0.
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The verifier strategy in Construction 9.9 is easily implemented in probabilistic
polynomial-time. If the prover is given an isomorphism between the input graphs as
auxiliary input, then also the prover’s program can be implemented in probabilistic
polynomial-time. The motivating remark justifies the claim that Construction 9.9
constitutes an interactive proof system for the set of pairs of isomorphic graphs.
Thus, we focus on establishing the zero-knowledge property.

We consider first the special case in which the verifier actually follows the
prescribed strategy (and selects o at random, and in particular obliviously of the
graph G’ it receives). The view of this verifier can be easily simulated by selecting
o and ¥ at random, constructing G’ as a random isomorphic copy of G, (via
the isomorphism ), and outputting the triple (G',0,%). Indeed (even in this
case), the simulator behaves differently from the prescribed prover (which selects
G’ as a random isomorphic copy of G, via the isomorphism 7), but its output
distribution is identical to the verifier’s view in the real interaction. However,
the foregoing description assumes that the verifier follows the prescribed strategy,
while in general the verifier may (adversarially) select o depending on the graph
G'. Thus, a slightly more complicated simulation (described next) is required.

A general clarification may be in place. Recall that we wish to simulate the
interaction of an arbitrary verifier strategy with the prescribed prover. Thus, this
simulator must depend on the corresponding verifier strategy, and indeed we shall
describe the simulator while referring to such a generic verifier strategy. Formally,
this means that the simulator’s program incorporates the program of the corre-
sponding verifier strategy. Actually, the following simulator uses the generic verifier
strategy as a subroutine.

Turning back to the specific protocol of Construction 9.9, the basic idea is that
simulator tries to guess o and completes a simulation if its guess turns out to be
correct. Specifically, the simulator selects 7 € {1,2} uniformly (hoping that the
verifier will later select o = 7), and constructs G’ by randomly permuting G, (and
thus being able to present an isomorphism between G, and G'). Recall that the
simulator is analyzed only on yes-instances (i.e., the input graphs G; and G are
isomorphic). The point is that if G; and G5 are isomorphic, then the graph G’
does not yield any information regarding the simulator’s guess (i.e., 7).2° Thus,
the value o selected by the adversarial verifier may depend on G’ but not on 7,
which implies that Pr[oc =7] = 1/2. In other words, the simulator’s guess (i.e., 7)
is correct (i.e., equals o) with probability 1/2. Now, if the guess is correct then the
simulator can produce an output that has the correct distribution, and otherwise
the entire process is repeated.

Digest: a few useful conventions. We highlight three conventions that were
either used (implicitly) in the foregoing analysis or can be used to simplify the
description of (this and/or) other zero-knowledge simulators.

1. Without loss of generality, we may assume that the cheating verifier strategy
is implemented by a deterministic polynomial-size circuit (or, equivalently,

20Tndeed, this observation is identical to the observation made in the analysis of the soundness
of Construction 9.3.
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by a deterministic polynomial-time algorithm with an auxiliary input).2*

This is justified by fixing any outcome of the verifier’s coins, and observing
that our (uniform) simulation of the various (residual) deterministic strategies
yields a simulation of the original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only)
output their view of the interaction (i.e., the common input, their internal
coin tosses, and the messages that they have received). In other words, it
suffices to simulate the view that cheating verifiers have of the real interaction.

This is justified by noting that the final output of any verifier can be obtained
from its view of the interaction, where the complexity of the transformation
is upper-bounded by the complexity of the verifier’s strategy.

3. Without loss of generality, it suffices to construct a “weak simulator” that
produces output with some noticeable?? probability such that whenever an
output is produced it is distributed “correctly” (i.e., similarly to the distri-
bution occuring in real interactions with the prescribed prover).

This is justified by repeatedly invoking such a weak simulator (polynomially)
many times and using the first output produced by any of these invocations.
Note that by using an adequate number of invocations, we fail to produce
an output with negligible probability. Furthermore, note that a simulator
that fails to produce output with negligible probability can be converted
to a simulator that always produces an output, while incurring a negligible
statistic deviation in the output distribution.

9.2.2.2 The full power of zero-knowledge proofs

The zero-knowledge proof system presented in Construction 9.9 refers to one spe-
cific NP-set that is not known to be in BPP. It turns out that, under reasonable
assumptions, zero-knowledge can be used to prove membership in any NP-set. In-
tuitively, it suffices to establish this fact for a single NP-complete set, and thus we
focus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.

It is easy to prove that a given graph G is 3-colorable by just presenting a 3-
coloring of G (and the same holds for membership in any set in A'P), but this NP-
proof is not a zero-knowledge proof (unless NP C BPP). In fact, assuming NP &
BPP, graph 3-colorability has no zero-knowledge NP-proof system. Still, as we
shall shortly see, graph 3-colorability does have a zero-knowledge interactive proof
system. This proof system will be described while referring to “boxes” in which
information can be hidden and later revealed. Such boxes can be implemented
using one-way functions (see, e.g., Theorem 9.11).

21This observation is not crucial, but it does simplify the analysis (by eliminating the need to
specify a sequence of coin tosses in each invocation of the verifier’s strategy).

22Recall that a probability is called noticeable if it is greater than the reciprocal of some positive
polynomial (in the relevant parameter).
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Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):
The description refers to abstract non-transparent boxes that can be perfectly locked
and unlocked such that these boxes perfectly hide their contents while being locked.

e Common Input: A simple graph G=(V, E).

e Prover’s first step: Let ¥ be a 3-coloring of G. The prover selects a random
permutation, w, over {1,2,3}, and sets ¢(v) def w(Y(v)), for each v € V.
Hence, the prover forms a random relabeling of the 3-coloring ¥. The prover
sends to the verifier a sequence of |V| locked and non-transparent bozes such

that the v*" boz contains the value ¢(v).

e Verifier’s first step: The verifier uniformly selects an edge {u,v} € E, and
sends it to the prover.

e Motivating Remark: The bozes are supposed to contain a 3-coloring of the
graph, and the verifier asks to inspect the colors of vertices u and v. Indeed,
for the zero-knowledge condition, it is crucial that the prover only responds
to pairs that correspond to edges of the graph.

e Prover’s second step: Upon receiving an edge {u,v} € E, the prover sends to
the verifier the keys to bores u and v.

For simplicity of the analysis, if the verifier sends {u,v} ¢ E then the prover
behaves as if it has received a fized (or random) edge in E, rather than sus-
pending the interaction, which would have been the natural thing to do.

e Verifier’s second step: The verifier unlocks and opens bores u and v, and
accepts if and only if they contain two different elements in {1,2,3}.

The verifier strategy in Construction 9.10 is easily implemented in probabilistic
polynomial-time. The same holds with respect to the prover’s strategy, provided
that it is given a 3-coloring of G as auxiliary input. Clearly, if the input graph
is 3-colorable then the verifier accepts with probability 1 when interacting with
the prescribed prover. On the other hand, if the input graph is not 3-colorable,
then any contents put in the boxes must be invalid with respect to at least one
edge, and consequently the verifier will reject with probability at least ‘—]{3‘ Hence,
the foregoing protocol exhibits a non-negligible gap in the accepting probabilities
between the case of 3-colorable graphs and the case of non-3-colorable graphs. To
increase the gap, the protocol may be repeated sufficiently many times (of course,
using independent coin tosses in each repetition).

So far we showed that Construction 9.10 constitutes (a weak form of) an in-
teractive proof system for Graph 3-Colorability. The point, however, is that the
prescribed prover strategy is zero-knowledge. This is easy to see in the abstract
setting of Construction 9.10, because all that the verifier sees in the real interac-
tion is a sequence of boxes and a random pair of different colors (which is easy to
simulate). Indeed, the simulation of the real interaction proceeds by presenting a
sequence of boxes and providing a random pair of different colors as the contents
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of the two boxes indicated by the verifier. Note that the foregoing argument relies
on the fact that the boxes (indicated by the verifier) correspond to vertices that
are connected by an edge in the graph.

This simple demonstration of the zero-knowledge property is not possible in
the digital implementation (discussed next), because in that case the boxes are
not totally unaffected by their contents (but are rather affected, yet in an indistin-
guishable manner). Thus, the verifier’s selection of the inspected edge may depend
on the “outside appearance” of the various boxes, which in turn may depend (in
an indistinguishable manner) on the contents of these boxes. Consequently, we
cannot determine the boxes’ contents after a pair of boxes are selected, and so the
simple foregoing simulation is inapplicable. Instead, we simulate the interaction as
follows.

1. We first guess (at random) which pair of boxes (corresponding to an edge)
the verifier would ask to open, and place a random pair of distinct colors
in these boxes (and garbage in the rest).?> Then, we hand all boxes to the
verifier, which asks us to open a pair of boxes (corresponding to an edge).

2. If the verifier asks for the pair that we chose (i.e., our guess is successful),
then we can complete the simulation by opening these boxes. Otherwise, we
try again (i.e., repeat Step 1 with a new random guess and random colors).
The key observation is that if the boxes hide the contents in the sense that
a box’s contents is indistinguishable based on it outside appearance, then
our guess will succeed with probability approximately 1/|E|. Furthermore,
in this case, the simulated execution will be indistinguishable from the real
interaction.

Thus, it suffices to use boxes that hide their contents almost perfectly (rather than
being perfectly opaque). Such boxes can be implemented digitally.

Teaching note: Indeed, we recommend presenting and analyzing in class only the
foregoing abstract protocol. It suffices to briefly comment about the digital implemen-
tation, rather than presenting a formal proof of Theorem 9.11 (which can be found

in [99] (or [90, Sec. 4.4])).

Digital implementation (overview). We implement the abstract boxes (re-
ferred to in Construction 9.10) by using adequately defined commitment schemes.
Loosely speaking, such a scheme is a two-phase game between a sender and a re-
ceiver such that after the first phase the sender is “committed” to a value and yet,
at this stage, it is infeasible for the receiver to find out the committed value (i.e.,
the commitment is “hiding”). The committed value will be revealed to the receiver
in the second phase and it is guaranteed that the sender cannot reveal a value other
than the one committed (i.e., the commitment is “binding”). Such commitment

23 An alternative (and more efficient) simulation consists of putting random independent colors
in the various boxes, hoping that the verifier asks for an edge that is properly colored. The latter
event occurs with probability (approximately) 2/3, provided that the boxes hide their contents
(almost) perfectly.
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schemes can be implemented assuming the existence of one-way functions (as in
Definition 7.3); see §C.4.3.1.

Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability
is NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-
tems for any NP-set.?* Furthermore, NP-witnesses can be efficiently transformed
into polynomial-size circuits that implement the corresponding (prescribed zero-
knowledge) prover strategies.

Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformly
hard) one-way functions, it holds that NP C ZK. Furthermore, every S € NP has
a (computational) zero-knowledge interactive proof system in which the prescribed
prover strateqy can be implemented in probabilistic polynomaial-time, provided that
it is given as auziliary-input an NP-witness for membership of the common input
in S.

The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-
avoidable, because the existence of zero-knowledge proofs for “hard on the average”
problems implies the existence of one-way functions (and, likewise, the existence
of zero-knowledge proofs for sets outside BPP implies the existence of “auxiliary-
input one-way functions”).

Theorem 9.11 has a dramatic effect on the design of cryptographic protocols
(see Appendix C). In a different vein we mention that, under the same assumption,
any interactive proof can be transformed into a zero-knowledge one. (This trans-
formation, however, does not necessarily preserve the complexity of the prover.)

Theorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-
uniformly hard) one-way functions, it holds that TP = ZK.

Loosely speaking, Theorem 9.12 can be proved by recalling that ZP = AM(poly)
and modifying any public-coin protocol as follows: the modified prover sends com-
mitments to its messages rather than the messages themselves, and once the orig-
inal interaction is completed it proves (in zero-knowledge) that the corresponding
transcript would have been accepted by the original verifier. Indeed, the latter as-
sertion is of the “NP type”, and thus the zero-knowledge proof system guaranteed
in Theorem 9.11 can be invoked for proving it.

Reflection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-
complete in order to obtain a zero-knowledge proofs for any set in AP by using such
a protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completeness
result is used here in a “positive” way; that is, in order to construct something
rather than in order to derive a (“negative”) hardness result (cf., Section 2.2.4).%2

24 Actually, we should either rely on the fact that the standard Karp-reductions are invertible
in polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge with
respect to auxiliary inputs (as in Definition C.9).

25Historically, the proof of Theorem 9.11 was probably the first positive application of NP-
completeness. Subsequent positive uses of completeness results have appeared in the context of
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Perfect and Statistical Zero-Knowledge. The foregoing results, which refer
to computational zero-knowledge proof systems, should be contrasted with the
known results regarding the complexity of statistical zero-knowledge proof systems:
Statistical zero-knowledge proof systems exist only for sets in ZP(2)NcoZP(2), and
thus are unlikely to exist for all NP-sets. On the other hand, the class Statistical
Zero-Knowledge is known to contain some seemingly hard problems, and turns
out to have interesting complexity theoretic properties (e.g., being closed under
complementation, and having very natural complete problems). The interested
reader is referred to [226].

9.2.3 Proofs of Knowledge — a parenthetical subsection

Teaching note: Technically speaking, this topic belongs to Section 9.1, but its more
interesting demonstrations refer to zero-knowledge proofs of knowledge — hence its cur-
rent positioning.

Loosely speaking, “proofs of knowledge” are interactive proofs in which the prover
asserts “knowledge” of some object (e.g., a 3-coloring of a graph), and not merely
its existence (e.g., the existence of a 3-coloring of the graph, which in turn is equiv-
alent to the assertion that the graph is 3-colorable). Note that the entity asserting
knowledge is actually the prover’s strategy, which is an automated computing de-
vice, hereafter referred to as a machine. This raises the question of what do we
mean by saying that a machine knows something.

9.2.3.1 Abstract reflections

Any standard dictionary suggests several meanings for the verb to know, but these
are typically phrased with reference to the notion of awareness, a notion which is
certainly inapplicable in the context of machines. Instead, we should look for a
behavioristic interpretation of the verb to know. Indeed, it is reasonable to link
knowledge with the ability to do something (e.g., the ability to write down whatever
one knows). Hence, we may say that a machine knows a string « if it can output
the string ae. But this seems as total non-sense too: a machine has a well defined
output — either the output equals « or it does not, so what can be meant by saying
that a machine can do something?

Interestingly, a sound interpretation of the latter phrase does exist. Loosely
speaking, by saying that a machine can do something we mean that the machine
can be easily modified such that it (or rather its modified version) does whatever
is claimed. More precisely, this means that there exists an efficient machine that,
using the original machine as a black-box (or given its code as an input), outputs
whatever is claimed.

Technically speaking, using a machine as a black-box seems more appealing
when the said machine is interactive (i.e., implements an interactive strategy).
Indeed, this will be our focus here. Furthermore, conceptually speaking, whatever

interactive proofs (see the proof of Theorem 9.4), probabilistically checkable proofs (see the proof
of Theorem 9.16), and the study of statistical zero-knowledge (cf. [226]).
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a machine knows (or does not know) is its own business, whereas what can be
of interest and reference to the outside is whatever can be deduced about the
knowledge of a machine by interacting with it. Hence, we are interested in proofs
of knowledge (rather than in mere knowledge).

9.2.3.2 A concrete treatment

For sake of simplicity let us consider a concrete question: how can a machine prove
that it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloring
to the verifier. Yet, we claim that applying the protocol in Construction 9.10 (i.e.,
the zero-knowledge proof system for 3-Colorability) is an alternative way of proving
knowledge of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible
prover strategy and links the ability to “extract” a 3-coloring (of a given graph)
from such a prover to the probability that this prover convinces the verifier. That is,
the definition postulates the existence of an efficient universal way of “extracting” a
3-coloring of a given graph by using any prover strategy that convinces this verifier
to accept this graph with probability 1 (or, more generally, with some noticeable
probability). On the other hand, we should no expect this extractor to obtain
much from prover strategies that fail to convince the verifier (or, more generally,
convince it with negligible probability). A robust definition should allow a smooth
transition between these two extremes (and in particular between provers that
convince the verifier with noticeable probability and those that convince it with
negligible probability). Such a definition should also support the intuition by which
the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring of
a given graph provided that Bob has successfully convinced her that he knows this
coloring.?® We stress that the zero-knowledge property of Alice’s strategy should
hold regardless of the proof-of-knowledge system used for proving Bob’s knowledge
of a 3-coloring.

Loosely speaking, we say that a strategy, V', constitutes a verifier for knowledge
of 3-coloring if, for any prover strategy P, the complexity of extracting a 3-coloring
of G when using P as a “black box”?7 is inversely proportional to the probability
that V is convinced by P (to accept the graph G). Namely, the extraction of the
3-coloring is done by an oracle machine, called an extractor, that is given access to
the strategy P (i.e., the function specifying the message that P sends in response to
any sequence of messages it may receive). We require that the (ezpected) running
time of the extractor, on input G and oracle access to P, be inversely related (by
a factor polynomial in |G|) to the probability that P convinces V' to accept G. In
particular, if P always convinces V' to accept G, then the extractor runs in expected
polynomial-time. The same holds in case P convinces V' to accept with noticeable
probability. On the other hand, if P never convinces V' to accept, then nothing is
required of the extractor. We stress that the latter special cases do not suffice for

26For simplicity, the reader may consider graphs that have a unique 3-coloring (up-to a rela-
beling). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), which
arise naturally in some (cryptographic) applications.

27Indeed, one may consider also non-black-box extractors.
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a satisfactory definition; see discussion in [90, Sec. 4.7.1].

Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,
have many applications to the design of cryptographic schemes and cryptographic
protocols (see, e.g., [90, 91]). These are enabled by the following general result.

Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformly
hard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge
(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategy
can be implemented in probabilistic polynomial-time, provided it is given such an
NP-witness.

9.3 Probabilistically Checkable Proof Systems

Teaching note: Probabilistically checkable proof (PCP) systems may be viewed as
a restricted type of interactive proof systems in which the prover is memoryless and
responds to each verifier message as if it were the first such message. This perspective
creates a tighter link with previous sections, but is somewhat contrived. Indeed, such
a memoryless prover may be viewed as a static object that the verifier may query at
locations of its choice. But then it is more appealing to present the model using the
(more traditional) terminology of oracle machines rather than using (and degenerating)

the terminology of interactive machines (or strategies).

Probabilistically checkable proof systems can be viewed as standard (determinis-
tic) proof systems that are augmented with a probabilistic procedure capable of
evaluating the validity of the assertion by examining few locations in the alleged
proof. Actually, we focus on the latter probabilistic procedure, which in turn im-
plies the existence of a deterministic verification procedure (obtained by going over
all possible random choices of the probabilistic procedure and making the adequate
examinations).

Modeling such probabilistic verification procedures, which may examine few
locations in the alleged proof, requires providing these procedures with direct access
to the individual bits of the alleged proof (so that they need not scan the proof
bit-by-bit). Thus, the alleged proof is a string, as in the case of a traditional
proof system, but the (probabilistic) verification procedure is given direct access
to individual bits of this string.

We are interested in probabilistic verification procedures that access only few
locations in the proof, and yet are able to make a meaningful probabilistic verdict
regarding the validity of the alleged proof. Specifically, the verification procedure
should accept any valid proof (with probability 1), but rejects with probability
at least 1/2 any alleged proof for a false assertion. Such probabilistic verification
procedures are called probabilistically checkable proof (PCP) systems.

The fact that one can (meaningfully) evaluate the correctness of proofs by
examining few locations in them is indeed amazing and somewhat counter-intuitive.
Needless to say, such proofs must be written in a somewhat non-standard format,
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because standard proofs cannot be verified without reading them in full (since a flaw
may be due to a single improper inference). In contrast, proofs for a PCP system
tend to be very redundant; they consist of superfluously many pieces of information
(about the claimed assertion), but their correctness can be (meaningfully) evaluated
by checking the consistency of a randomly chosen collection of few related pieces.
We stress that by a “meaningful evaluation” we mean rejecting alleged proofs of
false assertions with constant probability (rather than with probability that is
inversely proportional to the length of the alleged proof).

The main complexity measure associated with PCPs is indeed their query com-
plexity. Another complexity measure of natural concern is the length of the proofs
being employed, which in turn is related to the randomness complexity of the
system. The randomness complexity of PCPs plays a key role in numerous appli-
cations (e.g., in composing PCP systems as well as when applying PCP systems to
derive inapproximability results), and thus we specify this parameter rather than
the proof length.

Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-
merous inapproximability results (see Section 9.3.3), but our view is that the latter
is merely one extremely important application of the fundamental notion of a PCP

system. Our presentation is organized accordingly.

9.3.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilis-
tic polynomial-time verifier having access to an oracle that represents an alleged
proof (in redundant form). Typically, the verifier accesses only few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin
tosses. As in the case of interactive proof systems, it is required that if the asser-
tion holds then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas, if the assertion is false then the verifier must reject with proba-
bility at least %, no matter which oracle is used. The basic definition of the PCP
setting is given in Part (1) of the following definition. Yet, the complexity measures
introduced in Part (2) are of key importance for the subsequent discussions.

Definition 9.14 (Probabilistically Checkable Proofs — PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine, called verifier and denoted V', that satisfies
the following two conditions:

e Completeness: For every x € S there exists an oracle 7, such that, on
input x and access to oracle 7., machine V always accepts x.
e Soundness: For every x € S and every oracle 7, on input x and access

to oracle w, machine V rejects x with probability at least %

2. We say that a probabilistically checkable proof system has query complexity
q¢:N—N if, on any input of length n, the verifier makes at most q(n) oracle
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queries.?®  Similarly, the randomness complexity 7 : N— N upper-bounds the
number of coin tosses performed by the verifier on a generic n-bit long input.

For integer functions r and q, we denote by PCP(r,q) the class of sets having
probabilistically checkable proof systems of randomness complexity r and query
complezity q. For sets of integer functions, R and Q,

U PCP(r,q).
r€ER,qEQ

def

PCP(R,Q) =

The error probability (in the soundness condition) of PCP systems can be reduced
by successive applications of the proof system. In particular, repeating the process
for k£ times, reduces the probability that the verifier is fooled by a false assertion to
2~F whereas all complexities increase by at most a factor of k. Thus, PCP systems
of non-trivial query-complexity (cf. Section 9.3.2) provide a trade-off between the
number of locations examined in the proof and the confidence in the validity of the
assertion.

We note that the oracle 7, referred to in the completeness condition of a PCP
system constitutes a proof in the standard mathematical sense. Indeed any PCP
system yields a standard proof system (with respect to a verification procedure
that scans all possible outcomes of V’s internal coin tosses and emulates all the
corresponding checks). Furthermore, the oracles in PCP systems of logarithmic
randomness-complexity constitute NP-proofs (see Exercise 9.15). However, the
oracles of a PCP system have the extra remarkable property of enabling a lazy
verifier to toss coins, take its chances and “assess” the validity of the proof without
reading all of it (but rather by reading a tiny portion of it). Potentially, this allows
the verifier to examine very few bits of an NP-proof and even utilize very long
proofs (i.e., of super-polynomial length).

Adaptive versus non-adaptive verifiers. Definition 9.14 allows the verifier
to be adaptive; that is, the verifier may determine its queries based on the an-
swers it has received to previous queries (in addition to their dependence on the
input and on the verifier’s internal coin tosses). In contrast, non-adaptive verifiers
determine all their queries based solely on their input and internal coin tosses.
Note that ¢ adaptive (binary) queries can be emulated by Y 7_, 2=l < 27 non-
adaptive (binary) queries. We comment that most constructions of PCP systems
use non-adaptive verifiers, and in fact in many sources PCP systems are defined as
non-adaptive.

Randomness versus proof length. Fixing a verifier V, we say that location
i (in the oracle) is relevant to input z if there exists a computation of V' on input
z in which location 4 is queried (i.e., there exists w and 7 such that, on input
x, randomness w and access to the oracle 7, the verifier queries location 7). The
effective proof length of V is the smallest function £ : N—IN such that for every
input x there are at most #(|z|) locations (in the oracle) that are relevant to z.

28 As usual in complexity theory, the oracle answers are binary values (i.e., either 0 or 1).
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We claim that the effective proof length of any PCP system is closely related to
its randomness (and query) complexity. On one hand, if the PCP system has
randomness-complexity r and query-complezity q, then its effective proof length is
upper-bounded by 2”4 whereas a bound of 2" - ¢ holds for non-adaptive systems
(see Exercise 9.15). Thus, PCP systems of logarithmic randomness complexity have
effective proof length that is polynomial, and hence yield NP-proof systems. On the
other hand, in some sense, the randomness complexity of a PCP system can be
upper-bounded by the logarithm of the (effective) length of the proofs employed
(provided we allow non-uniform verifiers; see Exercise 9.16).

On the role of randomness. The PCP Theorem (i.e., NP C PCP(log, O(1)))
asserts that a meaningful probabilistic evaluation of proofs is possible based on
a constant number of examined bits. We note that, unless P = NP, such a
phenomena is impossible when requiring the verifier to be deterministic. Firstly,
note that PCP(0,0(1)) = P holds (as a special case of PCP(r,q) C DriMge(22 9"
poly); see Exercise 9.17). Secondly, as shown in Exercise 9.19, P # AP implies that
NP is not contained in PCP(o(log),o(log)). Lastly, assuming that not all NP-sets
have NP-proof systems that employs proofs of length ¢ (e.g., £(n) = n), it follows
that if 2"("g(n) < €(n) then PCP(r,q) does not contain NP (see Exercise 9.17
again).

9.3.2 The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP = PCP(log, O(1)), and this result
is indeed the focus of the current section. But before getting to it we make several
simple observations regarding the PCP Hierarchy.

We first note that PCP(poly,0) equals coRP, whereas PCP(0,poly) equals
NP. 1t is easy to prove an upper bound on the non-deterministic time complexity
of sets in the PCP hierarchy (see Exercise 9.17):

Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomially
bounded integer function r, it holds that PCP(r,poly) C NTIME(2" - poly). In
particular, PCP(log,poly) C N'P.

The focus on PCP systems of logarithmic randomness complexity reflects an inter-
est in PCP systems that utilize proof oracles of polynomial length (see discussion in
Section 9.3.1). We stress that such PCP systems (i.e., PCP(log,q)) are NP-proof
systems with a (potentially amazing) extra property: the validity of the assertion
can be “probabilistically evaluated” by examining a (small) portion (i.e., g(n) bits)
of the proof. Thus, for any fixed polynomially bounded function ¢, a result of the
form

NP C PCP(log,q) (9.6)

is interesting (because it applies also to NP-sets having witnesses of length exceed-
ing q). Needless to say, the smaller ¢ — the better. The PCP Theorem asserts the
amazing fact by which ¢ can be made a constant.
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Theorem 9.16 (The PCP Theorem): NP C PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarith-
mically many coins and makes only a constant number of queries exist for every
set in A"P. This constant is essentially three (see §9.3.4.1). Before reviewing the
proof of Theorem 9.16, we make a couple of comments.

Efficient transformation of NP-witnesses to PCP oracles: The proof of
Theorem 9.16 is constructive in the sense that it allows to efficiently transform
any NP-witness (for an instance of a set in NP) into an oracle that makes the
PCP verifier accept (with probability 1). That is, for every (NP-witness relation)
R € PC there exists a PCP verifier V as in Theorem 9.16 and a polynomial-time
computable function 7 such that for every (x,y) € R the verifier V always accepts the
input x when given oracle access to the proof w(z,y) (ie., Pr[V™(@¥)(z)=1] = 1).
Recalling that the latter oracles are themselves NP-proofs, it follows that NP-proofs
can be transformed into NP-proofs that offer a trade-off between the portion of the
proof being read and the confidence it offers. Specifically, for every € > 0, if one is
willing to tolerate an error probability of ¢ then it suffices to examine O(log(1/¢))
bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), these
bit locations need to be selected at random.

The foregoing strengthening of Theorem 9.16 offers a wider range of applica-
tions than Theorem 9.16 itself. Indeed, Theorem 9.16 itself suffices for “negative”
applications such as establishing the infeasibility of certain approximation prob-
lems (see Section 9.3.3). But for “positive” applications (see §9.3.4.2), typically
some user (or a real entity) will be required to actually construct the PCP-oracle,
and in such cases the strengthening of Theorem 9.16 will be useful.

A characterization of NP: Combining Theorem 9.16 with Proposition 9.15 we
obtain the following characterization of NP.

Corollary 9.17 (The PCP characterization of NP): NP = PCP(log, O(1)).

Road-map for the proof of the PCP Theorem: Theorem 9.16 is a culmina-
tion of a sequence of remarkable works, each establishing meaningful and increas-
ingly stronger versions of Eq. (9.6). A presentation of the full proof of Theorem 9.16
is beyond the scope of the current work (and is, in our opinion, unsuitable for a
basic course in complexity theory). Instead, we present an overview of the original
proof (see §9.3.2.2) as well as of an alternative proof (see §9.3.2.3), which was found
more than a decade later. We will start, however, by presenting a weaker result
that is used in both proofs of Theorem 9.16 and is also of independent interest.
This weaker result (see §9.3.2.1) asserts that every NP-set has a PCP system with
constant query-complexity (albeit with polynomial randomness complexity); that
is, N'P C PCP(poly, O(1)).



9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 423

Teaching note: In our opinion, presenting in class any part of the proof of the PCP
Theorem should be given low priority. In particular, presenting the connections between
PCP and the complexity of approximation should be given a higher priority. As for
relative priorities among the following three subsections, we strongly recommend giving
89.3.2.1 the highest priority, because it offers a direct demonstration of the power of
PCPs. As for the two alternative proofs of the PCP Theorem itself, our recommendation
depends on the intended goal. On one hand, for the purpose of merely giving a taste
of the ideas involved in the proof, we prefer an overview of the original proof (provided
in §9.3.2.2). On the other hand, for the purpose of actually providing a full proof, we

definitely prefer the new proof (which is only outlined in §9.3.2.3).

9.3.2.1 Proving that NP C PCP(poly, O(1))

The fact that every NP-set has a PCP system with constant query-complexity
(regardless of its randomness-complexity) already testifies to the power of PCP
systems. It asserts that probabilistic verification of proofs is possible by inspecting
very few locations in a (potentially huge) proof. Indeed, the PCP systems presented
next utilize exponentially long proofs, but they do so while inspecting these proofs
at a constant number of (randomly selected) locations.

We start with a brief overview of the construction. We first note that it suffices
to construct a PCP for proving the satisfiability of a given system of quadratic
equations over GF(2), because this problem is NP-complete (see Exercise 2.25).2°
For an input consisting of a system of quadratic equations with n variables, the
oracle (of this PCP) is supposed to provide the evaluation of all quadratic ex-
pressions (in these n variables) at some fixed assignment to these variables. This
assignment is supposed to satisfy the system of quadratic equations that is given as
input. We distinguish two tables in the oracle: the {Zirst table corresponding to all
2™ linear expressions and the second table to all 2" quadratic expressions. Each
table is tested for self-consistency (via a “linearity test”), and the two tables are
tested to be consistent with each other (via a “matrix-equality” test, which utilizes
“self-correction”). Finally, we test that the assignment encoded in these tables sat-
isfies the quadratic system that is given as input. This is done by taking a random
linear combination of the quadratic equations that appear in the quadratic system,
and obtaining the value assigned to the corresponding quadratic expression by the
aforementioned tables (again, via self-correction). The key point is that each of the
foregoing tests utilizes a constant number of Boolean queries, and has time (and
randomness) complexity that is polynomial in the size of the input. Details follow.

Teaching note: The following text refers to notions such as the Hadamard encoding,
testing and self-correction, which appear in other parts of this work (see, e.g., §£.1.1.2,
Section 10.1.2. and §7.2.1.1, respectively). While a wider perspective (provided in the

aforementioned parts) is always useful, the current text is self-contained.

29Here and elsewhere, we denote by GF(2) the 2-element field.
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The starting point. We construct a PCP system for the set of satisfiable
quadratic equations over GF(2). The input is a sequence of such equations over the
variables x1, ..., x,, and the proof oracle consist of two parts (or tables), which are
supposed to provide information regarding some satisfying assignment 7 =74 -+ - 7,
(also viewed as an n-ary vector over GF(2)). The first part, denoted 77, is sup-
posed to provide a Hadamard encoding of the said satisfying assignment; that is,
for every aw € GF(2)" this table is supposed to provide the inner product mod 2 of
the n-ary vectors o and 7 (i.e., T () is supposed to equal Y | «;7;). The second
part, denoted 715, is supposed to provide all linear combinations of the values of
the 7;7;’s; that is, for every 8 € GF(2)"2 (viewed as an n-by-n matrix over GF(2)),
the value of T»(3) is supposed to equal Z” Bi;TiTi- (Indeed T} is contained in
T, because 0? = o for any o € GF(2).) The PCP verifier will use the two tables
for checking that the input (i.e., a sequence of quadratic equations) is satisfied by
the assignment that is encoded in the two tables. Needless to say, these tables may
not be a valid encoding of any n-ary vector (let alone one that satisfies the input),
and so the verifier also needs to check that the encoding is (close to being) valid.
We will focus on this task first.

Testing the Hadamard Code. Note that 77 is supposed to encode a linear
function; that is, there must exist some 7 = 71 - - - 7,, € GF(2)™ such that T} («) =
>, T holds for every o = ay - - -, € GF(2)™. This can be tested by selecting
uniformly o', o € GF(2)™ and checking whether T3 (') + T1 (") = T1 (o' + "),
where o’ + o' denotes addition of vectors over GF(2). The analysis of this natural
tester turns out to be quite complex. Nevertheless, it is indeed the case that any
table that is 0.02-far from being linear is rejected with probability at least 0.01
(see Exercise 9.20), where 7' is e-far from being linear if 7' disagrees with any linear
function f on more than an e fraction of the domain (i.e., Pr.[T(r)# f(r)] > ).

By repeating the linearity test for a constant number of times, we may reject
each table that is 0.02-far from being a codeword of the Hadamard Code with
probability at least 0.99. Thus, using a constant number of queries, the verifier
rejects any T3 that is 0.02-far from being a Hadamard encoding of any 7 € GF(2)",
and likewise rejects any T3 that is 0.02-far from being a Hadamard encoding of
any 7 € GF(2)"". We may thus assume that T} (resp., T5) is 0.02-close to the
Hadamard encoding of some 7 (resp., 7').3¢ (Needless to say, this does not mean
that 7/ equals the outer produce of 7 with itself.)

In the rest of the analysis, we fix 7 € GF(2)™ and 7' € GF(2)”2, and denote the
Hadamard encoding of 7 (resp., 7') by f,:GF(2)" —GF(2) (resp., f, : GF(2)"" —
GF(2)). Recall that T} (resp., T») is 0.02-close to f, (resp., fr).

Self-correction of the Hadamard Code. Suppose that 7" is e-close to a linear
function f:GF(2)™ — GF(2) (i-e., Pr.[T(r) # f(r)] < ¢). Then, we can recover
the value of f at any desired point x, by making two (random) queries to 7.

30Note that 7 (resp., 7') is uniquely determined by T (resp., T»), because every two different
linear functions GF(2)™ — GF(2) agree on exactly half of the domain (i.e., the Hadamard code
has relative distance 1/2).
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Specifically, for a uniformly selected r € GF(2)™, we use the value T'(x +1r) —T'(r).
Note that the probability that we recover the correct value is at least 1—2¢, because
Pr[T(z+7r)—T(r) = flx+7)— f(r)] >1—2¢and f(z +r)— f(r) = f(z) by
linearity of f. (Needless to say, for € < 1/4, the function 7' cannot be e-close to
two different linear functions.)! Thus, assuming that 7 is 0.02-close to f, (resp.,
T, is 0.02-close to f;/) we may correctly recover (i.e., with error probability 0.04)
the value of f, (resp., f;/) at any desired point by making 2 queries to T} (resp.,
T5). This process is called self-correction (ctf., e.g., §7.2.1.1).

r S r T T S
\ | [ | \

A — — f(D)R(E

Figure 9.3: Detail for testing consistency of linear and quadratic forms.

Checking consistency of f. and f;. Suppose that we are given access to
f- : GF(2)" — GF(2) and f : GF(2)" — GF(2), where f;(a) = > . micy
and fr(a') = 32, .7 ;) ;, and that we wish to verify that 7, ; = 7;7; for ev-
ery i,j € {1,...,n}. In other words, we are given a (somewhat weird) encoding
of two matrices, A = (7;7;);; and A" = (7] ;);,j, and we wish to check whether
or not these matrices are identical. It can be shown (see Exercise 9.22) that if
A # A’ then Pr,  [rT As # rT A’s] > 1/4, where 7 and s are uniformly distributed
n-ary vectors. Note that, in our case (where A = (7;7;);; and A" = (7] )i ;), it
holds that r' As = 232 rimity)s; = fr(r)f-(s) (see Figure 9.3) and rTA's =
S (it )si = frr (rs"), where rs " is the outer-product of s and 7. Thus, (for
(1i15)i; # (Ti’d-)m) we have Pr, s[f-(r)f-(s) # fr(rs")] > 1/4.

Recall, however, that we do not have direct access to the functions f, and f;/,
but rather to tables (i.e., 71 and T») that are 0.02-close to these functions. Still,
using self-correction, we can obtain the values of f. and f,. at any desired point,
with very high probability. Actually, when implementing the foregoing consistency
test it suffices to use self-correction for f., because we use the values of f, at
two independently and uniformly distributed points in GF(2)™ (i.e., r,s) but the
value f, is required at rs ', which is not uniformly distributed in GF(Z)”Z. Thus,
we test the consistency of f. and f, by selecting uniformly r,s € GF(2)"™ and
Re GF(Q)”Z, and checking that Ty (r)T1(s) = Ty(rs" + R) — To(R).

By repeating the aforementioned (self-corrected) consistency test for a constant
number of times, we may reject an inconsistent pair of tables with probability at
least 0.99. Thus, in the rest of the analysis, we may assume that (7;7;): ; = (7] ;)i ;-

31Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers
to the fact that the Hadamard code has relative distance 1/2.
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Checking that 7 satisfies the quadratic system. Suppose that we are given
access to f, and f, as in the foregoing (where, in particular, 7/ = 77 7). A key
observation is that if 7 does not satisfy a system of (quadratic) equations then,
with probability 1/2, it does not satisfy a random linear combination of these
equations. Thus, in order to check whether 7 satisfies the quadratic system (which
is given as input), we create a single quadratic equation by taking such a random
linear combination, and check whether this quadratic equation is satisfied by 7.
The punch-line is that testing whether T satisfies the quadratic equation Q(z) = o
amounts to testing whether f(Q) = o. Again, the actual checking is implemented
by using self-correction (of the table T3).

This completes the description of the verifier. Note that this verifier performs
a constant number of codeword tests for the Hadamard Code, and a constant
number of consistency and satisfiability tests, where each of the latter involves self-
correction of the Hadamard Code. Each of the individual tests utilizes a constant
number of queries (ranging between two and four) and uses randomness that is
quadratic in the number of variables (and linear in the number of equations in the
input). Thus, the query-complexity is a constant and the randomness-complexity
is at most quadratic in the length of the input (quadratic system). Clearly, if
the input quadratic system is satisfiable (by some 7), then the verifier accepts the
corresponding tables T and T» (i.e., Ty = f; and T» = f..v) with probability 1.
On the other hand, if the input quadratic system is unsatisfiable, then any pair of
tables (77,7%) will be rejected with constant probability (by one of the foregoing
tests). It follows that AP C PCP(q,O(1)), where ¢ is a quadratic polynomial.

Reflection. Indeed, the actual test of the satisfiability of the quadratic system
that is given as input is facilitated by the fact that a satisfying assignment is
encoded (in the oracle) in a very redundant manner, which fits the final test of
satisfiability. But then the burden of testing moves to checking that this encoding
is indeed valid. In fact, most of the tests performed by the foregoing verifier are
aimed at verifying the validity of the encoding. Such a test of validity (of encoding)
may be viewed as a test of consistency between the various parts of the encoding.
All these themes are present also in more advanced constructions of PCP systems.

9.3.2.2 Overview of the first proof of the PCP Theorem

The original proof of the PCP Theorem (Theorem 9.16) consists of three main
conceptual steps, which we briefly sketch first and further discuss later.

1. Constructing a (non-adaptive) PCP system for AP having logarithmic ran-
domness and polylogarithmic query complexity; that is, this PCP has the
desired randomness complexity and a very low (but non-constant) query com-
plexity. Furthermore, this proof system has additional properties that enable
proof composition as in the following Step 3.

2. Constructing a PCP system for NP having polynomial randomness and con-
stant query complexity; that is, this PCP has the desired (constant) query
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complexity but its randomness complexity is prohibitingly high. (Indeed, we
showed such a construction in §9.3.2.1.) Furthermore, this proof system too
has additional properties enabling proof composition as in Step 3.

3. The proof composition paradigm:3? In general, this paradigm allows to com-
pose two proof systems such that the “inner” one is used for probabilistically
verifying the acceptance criteria of the “outer” verifier. The aim is to conduct
this (“composed”) verification using much fewer queries than the query com-
plexity of the “outer” proof system. In particular, the inner verifier cannot
afford to read its input, which makes composition more subtle than the term
suggests.

Loosely speaking, the outer verifier should be robust in the sense that its
soundness condition guarantee that with high probability the oracle answers
are “far” from satisfying the residual decision predicate (rather than merely
not satisty it). (Furthermore, the latter predicate, which is well-defined by
the non-adaptive nature of the outer verifier, must have a circuit of size
bounded by a polynomial in the number of queries.) The inner verifier is
given oracle access to its input and is charged for each query made to it, but
is only required to reject with high probability inputs that are far from being
valid (and, as usual, accept inputs that are valid). That is, the inner verifier
is actually a verifier of proximity.

Composing two such PCPs yields a new PCP for NP, where the new proof
oracle consists of the proof oracle of the “outer” system and a sequence of
proof oracles for the “inner” system (one “inner” proof per each possible
random-tape of the “outer” verifier). The resulting verifier selects coins for
the outer-verifier and uses the corresponding “inner” proof in order to verify
that the outer-verifier would have accepted under this choice of coins. Note
that such a choice of coins determines locations in the “outer” proof that the
outer-verifier would have inspected, and the combined verifier provides the
inner-verifier with oracle access to these locations (which the inner-verifier
considers as its input) as well as with oracle access to the corresponding
“inner” proof (which the inner-verifier considers as its proof-oracle).

Note that composing an outer-verifier of randomness-complexity ' and query-
complexity ¢’ with an inner-verifier of randomness-complexity r'' and query-
complexity ¢" yields a PCP of randomness-complexity 7(n) = r'(n)+r"(¢'(n))
and query-complexity g(n) = ¢''(¢'(n)), because ¢'(n) represents the length
of the input (oracle) that is accessed by the inner-verifier. Recall that the
outer-verifier is non-adaptive, and thus if the inner-verifier is non-adaptive
(resp., robust) then so is the verifier resulting from the composition, which is
important in case we wish to compose the latter verifier with another inner-
verifier.

In particular, the proof system of Step 1 is composed with itself [using 7'(n) =
r"(n) = O(logn) and ¢'(n) = ¢''(n) = poly(logn)| yielding a PCP system (for

320ur presentation of the composition paradigm follows [34], rather than the original presen-
tation of [15, 14].
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N'P) of randomness-complexity 7(n) = r'(n) + r""(¢'(n)) = O(logn) and query-
complexity g(n) = ¢"(¢'(n)) = poly(loglogn). Composing the latter system (used
as an “outer” system) with the PCP system of Step 2, yields a PCP system (for
NP) of randomness-complexity r(n)+poly(g(n)) = O(logn) and query-complexity
O(1), thus establishing the PCP Theorem.

A more detailed overview — the plan. The foregoing description uses two
(non-trivial) PCP systems and refers to additional properties such as robustness
and verification of proximity. A PCP system of polynomial randomness-complexity
and constant query-complexity (as postulated in Step 2) is outlined in §9.3.2.1. We
thus start by discussing the notions of verifying proximity and being robust, while
demonstrating their applicability to the said PCP. Finally, we outline the other
PCP system that is used (i.e., the one postulated in Step 1).

PCPs of Proximity. Recall that a standard PCP verifier gets an explicit input
and is given oracle access to an alleged proof (for membership of the input in a
predetermined set). In contrast, a PCP of proximity verifier is given (direct) access
to two oracles, one representing an input and the other being an alleged proof,
and its queries to both oracles are counted in its query-complexity. Typically, the
query-complexity of this verifier is lower than the length of the input oracle, and
hence this verifier cannot afford reading the entire input and cannot be expected
to make absolute statements about it. Indeed, instead of deciding whether or not
the input is in a predetermined set, the verifier is only required to distinguish the
case that the input is in the set from the case that the input is far from the set
(where far means being at relative Hamming distance at least 0.01 (or any other
small constant)).

For example, consider a variant of the system of §9.3.2.1 in which the quadratic
system is fixed®® and the verifier needs to determine whether the assignment ap-
pearing in the input oracle satisfies the said system or is far from any assignment
that satisfies it. We use a proof oracle is as in §9.3.2.1, and a PCP verifier of
proximity that proceeds as in §9.3.2.1 and in addition perform a proximity test to
verify that the input oracle is close to the assignment encoded in the proof oracle.
Specifically, the verifier reads a uniformly selected bit of the input oracle and com-
pares this value to the self-corrected value obtained from the proof oracle (i.e., for
a uniformly selected i € {1,...,n}, we compare the i*® bit of the input oracle to the
self-correction of the value 77(0°~110"~%), obtained from the proof oracle).

Robust PCPs. Composing an “outer” PCP verifier with an “inner” PCP veri-
fier of proximity makes sense provided that the outer verifier rejects in a “robust”
manner. That is, the soundness condition of a robust verifier requires that (with
probability at least 1/2) the oracle answers are far from any sequence that is ac-
ceptable by the residual predicate (rather than merely that the answers are rejected
by this predicate). Indeed, if the outer verifier is (non-adaptive and) robust, then

33Indeed, in our applications the quadratic system will be “known” to the (“inner”) verifier,
because it is determined by the (“outer”) verifier.
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it suffices that the inner verifier distinguish (with the help of an adequate proof)
answers that are valid from answers that are far from being valid.

For example, if robustness is defined as referring to relative constant distance
(which is indeed the case), then the PCP of §9.3.2.1 (as well as any PCP of con-
stant query complexity) is trivially robust. However, we will not care about the
robustness of this PCP, because we only use this PCP as an inner verifier in proof
composition. In contrast, we will care about the robustness of PCPs that are used
as outer verifiers (e.g., the PCP presented next).

Teaching note: Unfortunately, the construction of a PCP of logarithmic randomness
and polylogarithmic query complexity for NP involves many technical details. Further-
more, obtaining a robust version of this PCP is beyond the scope of the current text.
Thus, the following description should be viewed as merely providing a flavor of the

underlying ideas.

PCP of logarithmic randomness and polylogarithmic query complexity
for NP. We focus on showing that NP C PCP(f, f), for f(n) = poly(logn),
and the claimed result will follow by a relatively minor modification (discussed
afterwards). The proof system underlying NP C PCP(f, f) is based on an arith-
metization of 3CNF formulae, which is different from the one used in §9.1.3.2 (for
constructing an interactive proof system for coNP). We start by describing this
arithmetization, and later outline the PCP system that is based on it.

In the current arithmetization, the names of the variables (resp., clauses) of a
3CNF formula ¢ are represented by binary strings of logarithmic (in |¢|) length, and
a generic variable (resp., clause) of ¢ is represented by a logarithmic number of new
variables, which are assigned values in a finite field F D {0,1}. Indeed, throughout
the rest of the description, we refer to the arithmetic operations of this finite field
F (which will have cardinality poly(|¢|)). The (structure of the) 3CNF formula
¢(x1,...,x,) is represented by a Boolean function Cy : {0,1}°0°¢") — 0,1} such
that Cy(a,B1, B2, 33) = 1 if and only if, for i = 1,2,3, the i'! literal in the a'h
clause of ¢ has index 8; = (s, 0;), which is viewed as a variable name augmented by
its sign. Thus, for every a € {0,1}°81¢! there is a unique (31, B, #3) € {0,1}3182»
such that Cy(a, 81, 82,03) = 1 holds. Next, we consider a multi-linear extension
of Cy over F, denoted ®; that is, ® is the (unique) multi-linear polynomial that
agrees with Cy, on {0,1}900sn) c FOUlosn),

Turning to the PCP, we first note that the verifier can reduce the original 3SAT-
instance ¢ to the aforementioned arithmetic instance ®; that is, on input a 3CNF
formula ¢, the verifier first constructs Cp and ® (as in Exercise 7.12). Part of the
proof oracle for this verifier is viewed as function A : F'°6™ — F, which is supposed
to be a multi-linear extension of a truth assignment that satisfies ¢ (i.e., for every
v € {0,1}°¢™ = [n], the value A(7) is supposed to be the value of the v** variable
in such an assignment). Thus, we wish to check whether, for every a € {0, 1}1°g|¢|,
it holds that

3
Z (p(a;ﬁlwgbﬂB) : H (1 - A,(ﬂl)) =0 (97)

B1B2B3€{0,1}3 1o 2n i=1
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where A'(B) is the value of the B literal under the (variable) assignment A;
that is, for 8 = (v,0), where v € {0,1}°8" is a variable name and o € {0,1}
indicates the literal’s type (i.e., whether the variable is negated), it holds that
A(B)=(1—0) - A(y)+0-(1— A(v)). Thus, Eq. (9.7) holds if and only if the o*®
clause is satisfied by the assignment induced by A (because A’(8) = 1 must hold
for at least one of the three literals 8 that appear in this clause).3

As in §9.3.2.1, we cannot afford to verify all |¢| instances of Eq. (9.7). Fur-
thermore, unlike in §9.3.2.1, we cannot afford to take a random linear combination
of these |¢| instances either (because this requires too much randomness). For-
tunately, taking a “pseudorandom” linear combination of these equations is good
enough. Specifically, using an adequate (efficiently constructible) small-bias prob-
ability space (cf. §8.5.2.3) will do. Denoting such a space (of size poly(|¢| - |F|)
and bias at most 1/6) by S C FI?l| we may select uniformly (815, 8|¢]) € S and
check whether

3
Yo sa®(a, 1,8, 8) [J(1-A(B)) =0 (98)
af1B82033€{0,1}* i=1

where ¢ & log|#| + 3log2n. The small-bias property guarantees that if A fails to
satisfy any of the equations of type Eq. (9.7) then, with probability at least 1/3
(taken over the choice of (s1,...,s4) € ), it is the case that A fails to satisfy
Eq. (9.8). Since |S| = poly(|¢| - |F|) rather that |S| = 2!¢!, we can select a sample
in S using O(log |¢|) coin tosses. Thus, we have reduced the original problem to
checking whether, for a random (sy, ..., 84) € S, Eq. (9.8) holds.

Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-
tically verify Eq. (9.8) by applying a “summation test” (as in the interactive proof
for coN'P); that is, we refer to stripping the ¢ binary summations in iterations,
where in each iteration the verifier obtains a corresponding univariate polynomial
and instantiates it at a random point. Indeed, the verifier obtains the relevant uni-
variate polynomials by making adequate queries (which specify the entire sequence
of choices made so far in the summation test).?®> Note that after stripping the £
summations, the verifier end-ups with an expression that contains three unknown
values of A’, which it may obtain by making corresponding queries to A. The sum-
mation test involves tossing £ - log |F| coins and making (¢ + 3) - O(log |F|) Boolean
queries (which correspond to ¢ queries that are each answered by a univariate poly-
nomial of constant degree (over F), and three queries to A (each answered by an
element of F)). Soundness of the summation test follows by setting |F| > O({),
where ¢ = O(log |¢|)-

Recall, however, that we may not assume that A is a multi-variate polynomial of
low degree. Instead, we must check that A is indeed a multi-variate polynomial of

34Note that, for this a there exists a unique triple (81,02,83) € {0,1}31°82% such that
®(a, B1,B2,83) # 0. This triple (31,82, 83) encodes the literals appearing in the at® clause,
and this clause is satisfied by A if and only if 3¢ € [3] s.t. A'(3;) = 1.

35The query will also contain a sequence (s1, ..., 514]) € S, selected at random (by the verifier)

and fixed for the rest of the process.
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low degree (or rather that it is close to such a polynomial), and use self-correction
for retrieving the values of A (which are needed for the foregoing summation test).
Fortunately, a low-degree test of complexities similar to those of the summation
test does exist (and self-correction is also possible within these complexities). Thus,
using a finite field F of poly(log(n)) elements, the foregoing yields NP C PCP(f, f)
for f(n) % O(log(n) - loglog(n)).

To obtain the desired PCP system of logarithmic randomness complexity, we
represent the names of the original variables and clauses by %—long sequences
over {1,...,logn}, rather than by logarithmically-long binary sequences. This re-
quires using low degree polynomial extensions (i.e., polynomial of degree (logn)—1),
rather than multi-linear extensions. We can still use a finite field of poly(log(n))
s o
and low-degree tests. However, the number of queries (needed for obtaining the
answers in these tests) grows, because now the polynomials that are involved have
individual degree (logn) — 1 rather than constant individual degree. This merely
means that the query-complexity increases by a factor of lolg(’f;gn (since the individ-
ual degree increases by a factor of logn but the number of variables decreases by

a factor of loglogn). Thus, we obtain NP C PCP(log, q) for ¢(n) = O(log® n).

elements, and so we need only -O(loglog n) random bits for the summation

Warning: Robustness and PCP of proximity. Recall that, in order to use
the latter PCP system in composition, we need to guarantee that it (or a version
of it) is robust as well as to present a version that is a PCP of proximity. The
latter version is relatively easy to obtain (using ideas as applied to the PCP of
§9.3.2.1), whereas obtaining robustness is too complex to be described here. We
comment that one way of obtaining a robust PCP system is by a generic application
of a (randomness-efficient) “parallelization” of PCP systems (cf. [14]), which in
turn depends heavily on highly efficient low-degree tests. An alternative approach
(cf. [34]) capitalizes of the specific structure of the summation test (as well as on
the evident robustness of a simple low-degree test).

Reflection. The PCP Theorem asserts a PCP system that obtains simultane-
ously the minimal possible randomness and query complexity (up to a multiplica-
tive factor, assuming that P # ANP). The foregoing construction obtains this
remarkable result by combining two different PCPs: the first PCP obtains loga-
rithmic randomness but uses poly-logarithmically many queries, whereas the second
PCP uses a constant number of queries but has polynomial randomness complex-
ity. We stress that each of these two PCP systems is highly non-trivial and very
interesting by itself. We also highlight the fact that these PCPs are combined us-
ing a very simple composition method (which refers to auxiliary properties such as
robustness and proximity testing).3¢

36 Advanced comment: We comment that the composition of PCP systems that lack these
extra properties is possible, but is far more cumbersome and complex. In some sense, this alterna-
tive composition involves transforming the given PCP systems to ones having properties related
to robustness and proximity testing.
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9.3.2.3 Overview of the second proof of the PCP Theorem

The original proof of the PCP Theorem focuses on the construction of two PCP
systems that are highly non-trivial and interesting by themselves, and combines
them in a natural manner. Loosely speaking, this combination (via proof compo-
sition) preserves the good features of each of the two systems; that is, it yields
a PCP system that inherits the (logarithmic) randomness complexity of one sys-
tem and the (constant) query complexity of the other. In contrast, the following
alternative proof is focused at the “amplification” of PCP systems, via a gradual
process of logarithmically many steps. We start with a trivial “PCP” system that
has the desired complexities but rejects false assertions with probability inversely
proportional to their length, and in each step we double the rejection probability
while essentially maintaining the initial complexities. That is, in each step, the
constant query complexity of the verifier is preserved and its randomness complex-
ity is increased only by a constant term. Thus, the process gradually transforms
an extremely weak PCP system into a remarkably strong PCP system (i.e., a PCP
as postulated in the PCP Theorem).

In order to describe the aforementioned process we need to redefine PCP sys-
tems so to allow arbitrary soundness error. In fact, for technical reasouns, it is more
convenient to describe the process as an iterated reduction of a “constraint satisfac-
tion” problem to itself. Specifically, we refer to systems of 2-variable constraints,
which are readily represented by (labeled) graphs such that the vertices correspond
to (non-Boolean) variables and the edges are associated with constraints.

Definition 9.18 (CSP with 2-variable constraints): For a fized finite set X, an
instance of CSP consists of a graph G = (V,E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints ® = (¢¢)ecr associated
with the edges, where each constraint has the form ¢. : X* — {0,1}. The value
of an assignment « : 'V — X is the number of constraints satisfied by «; that is,
the value of a is [{(u,v) € E : ¢(y ) (a(u),a(v)) = 1}|. We denote by vit(G,®)
(standing for violation) the fraction of unsatisfied constraints under the best possible
assignment; that is,

v1lt(G,®) = min { (9.9)

a:V—-X

|{(U,U) €EE: ¢(u7v)(a(u)>a(v)) = 0}| }
|E|

For various functions T : N — (0, 1], we will consider the promise problem gapCSPE,
having instances as in the foregoing, such that the yes-instances are fully satis-
fiable instances (i.e., v1t = 0) and the no-instances are pairs (G,®) for which
v1t(G,®) > 7(|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPil""J} for 7(m) = 1/m; see Exercise 9.23.
Our goal is to reduce 3SAT (or rather gapCSPil""J}) to gapCSP®, for some fixed fi-
nite ¥ and constant ¢ > 0. The PCP Theorem will follow by showing a simple PCP
system for gapCSP¥; see Exercise 9.25. (The relationship between constraint satis-
faction problems and the PCP Theorem is further discussed in Section 9.3.3.) The
desired reduction of gapCSP}),, to gapCSPg,, is obtained by iteratively applying
the following reduction logarithmically many times.
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Lemma 9.19 (amplifying reduction of gapCSP to itself): For some finite ¥ and
constant ¢ > 0, there exists a polynomial-time computable function f such that, for
every instance (G, ®) of gapCSP”, it holds that (G',®') = f(G,®) is an instance
of gapCSP* and the two instances are related as follows:

1. If v1it(G,®) = 0 then v1t(G',®') = 0.
2. v1t(G',®') > min(2 - v1t(G, D), c).
3. 16" = o(al).

That is, satisfiable instances are mapped to satisfiable instances, whereas instances
that violate a v fraction of the constraints are mapped to that violate at least
a min(2v, ¢) fraction of the constraints. Furthermore, the mapping increases the
number of edges (in the instance) by at most a constant factor. We stress that
both ® and @' consists of Boolean constraints defined over 2.

Proof Outline:3” Before turning to the proof, let us highlight the difficulty that
it needs to address. Specifically, the lemma asserts a “violation amplifying effect”
(i.e., Items 1 and 2), while maintaining the alphabet ¥ and allowing only a moderate
increase in the size of the graph (i.e., Item 3). Waiving the latter requirements
allows a relatively simple proof that mimics (an augmented version of )3® the parallel
repetition of the corresponding PCP. Thus, the challenge is significantly decreasing
the “size blow-up” that arises from parallel repetition and maintaining a fixed
alphabet. The first goal (i.e., Item 3) calls for a suitable derandomization, and
indeed we shall use the Expander Random Walk Generator (of Section 8.5.3).
Those who read §9.3.2.2 may guess that the second goal (i.e., fixed alphabet)
can be handled using the proof composition paradigm. (The rest of the overview
is intended to be understood also by those who did not read Section 8.5.3 and
§9.3.2.2.)

The lemma is proved by presenting a three-step reduction. The first step is a
pre-processing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of v1t may decrease
during this step by a constant factor. The heart of the reduction is the second
step in which we increase vlt by any desired constant factor. This is done by a
construction that corresponds to taking a random walk of constant length on the
current graph. The latter step also increases the alphabet X, and thus a post-
processing step is employed to regain the original alphabet (by using any inner
PCP systems; e.g., the one presented in §9.3.2.1). Details follow.

We first stress that the aforementioned ¥ and ¢, as well as the auxiliary pa-
rameters d and ¢t (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in the
course of our argument) are satisfied. Specifically, ¢ will be the last parameter to

37For details, see [66].

38 Advanced comment: The augmentation is used to avoid using the Parallel Repetition
Theorem of [184]. In the augmented version, with constant probability (say half), a consistency
check takes place between tuples that contain copies of the same variable (or query).
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be determined (and it will be made greater than a constant that is determined by
all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the input
(G, ®) of gapCSP¥ to an instance (G, ®;) such that G is a d-regular expander
graph.?® Furthermore, each vertex in G; will have at least d/2 self-loops, the
number of edges will be preserved up to a constant factor (i.e., |G1| = O(|G])), and
v1t(Gy,®1) = O(v1t(G,®)). This step is quite simple: essentially, the original
vertices are replaced by expanders of size proportional to their degree, and a big
(dummy) expander is superimposed on the resulting graph (see Exercise 9.26).

The main step is aimed at increasing the fraction of violated constraints by a
sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (¢-edge long) walk on the expander G intersects a fixed
set of edges is closely related to the probability that a random sample of () edges
intersects this set. Thus, we may expect such walks to hit a violated edge with
probability that is min(©(¢-v), c), where v is the fraction of violated edges. Indeed,
the current step consists of reducing the instance (G, ®;) of gapCSP* to an instance
(G, ®,) of gapCSP¥’ such that ¥’ = ¥4 and the following holds:

1. The vertex set of G5 is identical to the vertex set of Gy, and each t-edge
long path in G, is replaced by a corresponding edge in G5, which is thus a
d'-regular graph.

2. The constraints in ®, are the natural ones, viewing each element of ¥’ as a
Y-labeling of the (“distance < t”) neighborhood of a vertex (see Figure 9.4),
and checking that two such labelings are consistent as well as satisfy ®;. That
is, the following two types of constraints are introduced:

(consistency): If there is a path of length at most ¢ in Gy, going from vertex
u to vertex w and passing through vertex v, then the ®;-constraint
associated with the Gs-edge between vertices v and w mandates the
equality of the entries corresponding to vertex v in the Y'-labeling of
vertices v and w.

(satisfying ®1): If the Gi-edge (v,v') is on a path of length at most ¢ starting
at uw then the ®,-constraint associated with the G,-edge that corre-
sponds to this path enforces the ®;-constraint that is associated with

(v,0").

Clearly, |G2| = d*™! - |G1] = O(|G1]), because d is a constant and ¢ will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph

corresponds to the low randomness-complexity of selecting a random walk of length
t in Gl)

39 A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely
speaking, an expander graph has the property that each moderately balanced cut (i.e., partition
of its vertex set) has relatively many edges crossing it. An equivalent definition, also used in the
actual analysis, is that the second eigenvalue of the corresponding adjacency matrix has absolute
value that is bounded away from d. For further details, see §E.2.1.1.
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The alphabet ¥' as a labeling of the distance t = 3 neighborhoods,
when repetitions are omitted. In this case d = 6 but the self-loops
are not shown (and so the “effective” degree is three). The two-sided
arrow indicates one of the edges in G that will contribute to the edge
constraint between u and w in (G, ®5).

Figure 9.4: The amplifying reduction in the second proof of the PCP Theorem.

Turning to the analysis of this step, we note that v1t(Gi,®;) = 0 implies
v1t(Ga,®2) = 0. The interesting fact is that the fraction of violated constraints
increases by a factor of Q(v/%); that is, v1t(Ga, ®2) > min(Q(vt - v1t(Gy, ®1)),¢).
Here we merely provide a rough intuition and refer the interested reader to [66]. We
may focus on any Y'-labeling to the vertices of Gy that is consistent with some -
labeling of G, because relatively few inconsistencies (among the Y-values assigned
to a vertex by the X'-labeling of other vertices) can be ignored, while relatively
many such inconsistencies yield violation of the “equality constraints” of many
edges in G». Intuitively, relying on the hypothesis that G is an expander, it follows
that the set of violated edge-constraints (of ®;) with respect to the aforementioned
Y-labeling causes many more edge-constraints of ®, to be violated (because each
edge-constraint of ®; is enforced by many edge-constraints of ®,). The point is
that any set F' of edges of Gy is likely to appear on a min(Q(t) - |F|/|G1], (1))
fraction of the edges of Go (i.e., t-paths of G1). (Note that the claim would have
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been obvious if G; were a complete graph, but it also holds for an expander.)*®

The factor of Q(v/t) gained in the second step makes up for the constant factor
lost in the first step (as well as the constant factor to be lost in the last step).
Furthermore, for a suitable choice of the constant ¢, the aforementioned gain yields
an overall constant factor amplification (of v1t). However, so far we obtained an
instance of gapCSPZ’ rather than an instance of gapCSP*, where X/ = x4 The pur-
pose of the last step is to reduce the latter instance to an instance of gapCSP*. This
is done by viewing the instance of gapCSP” as a (weak) PCP system (analogously
to Exercise 9.25), and composing it with an inner-verifier using the proof composi-
tion paradigm outlined in §9.3.2.2. We stress that the inner-verifier used here needs
only handle instances of constant size (i.e., having description length O(d! log |X|)),
and so the verifier presented in §9.3.2.1 will do. The resulting PCP-system uses

randomness r = log, |G2|+O(d! log |Z])? and a constant number of binary queries,
and has rejection probability Q(v1t(Ga, ®2)), which is independent of the choice of
the constant ¢. As in Exercise 9.23, for © = {0,1}°(1), we can easily obtain an in-
stance of gapCSP”, that has a Q(v1t(Gs, ®2)) fraction of violated constraints. Fur-
thermore, the size of the resulting instance (which is used as the output (G', ®') of
the three-step reduction) is O(2") = O(|G3|), where the equality uses the fact that
d and t are constants. Recalling that v1t(Gs, ®5) > min(Q(v - v1t(Gy, ®1)),c)
and v1t(Gy, ®1) = Q(v1t(G, @)), this completes the (outline of the) proof of the
entire lemma. [

Reflection. In contrast to the proof presented in §9.3.2.2, which combines two
remarkable constructs by using a simple composition method, the current proof
of the PCP Theorem is based on developing a powerful “combining method” that
improves the quality of the main system to which it is applied. This new method,
captured by the Amplification Lemma (Lemma 9.19), does not merely obtain the
best of the combined systems, but rather obtains a better system than the one given.
However, the quality-amplification offered by Lemma 9.19 is rather moderate, and
thus many applications are required in order to derive the desired result. Taking
the opposite perspective, one may say that remarkable results are obtained by a
gradual process of many moderate amplification steps.

9.3.3 PCP and Approximation

The characterization of AP in terms of probabilistically checkable proofs plays
a central role in the study of the complexity of natural approximation problems
(cf., Section 10.1.1). To demonstrate this relationship, we first note that any PCP
system V gives rise to an approximation problem that consists of estimating the
maximum acceptance probability for a given input; that is, on input z, the task
is approximating the probability that V accepts = when given oracle access to
the best possible 7 (i.e., we wish to approximate max,{Pr[V™(z) =1]|}). Thus,
if S € PCP(r,q) then deciding membership in S is reducible to approzimating

40We mention that, due to a technical difficulty, it is easier to establish the claimed bound of
Q(v/t - v1t(G1, ®1)) rather than Q(t - v1t(G1, ®1)).
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the mazimum among exp(2"TY) quantities (corresponding to all effective oracles),
where each quantity can be evaluated in time 2" - poly. For (the validity of) this
reduction, an approzimation up to a constant factor (of 2) will do.

Note that the foregoing approximation problem is parameterized by a PCP ver-
ifier V, and its instances are given their value with respect to this verifier (i.e., the
instance z has value max, {Pr[V™(z)=1]}). This per se does not yield a “natural”
approximation problem. In order to link PCP systems with natural approxima-
tion problems, we take a closer look at the approximation problem associated with
PCP(r,q).

For simplicity, we focus on the case of non-adaptive PCP systems (i.e., all the
queries are determined beforehand based on the input and the internal coin tosses
of the verifier). Fixing an input z for such a system, we consider the 27(12)) Boolean
formulae that represent the decision of the verifier on each of the possible outcomes
of its coin tosses after inspecting the corresponding bits in the proof oracle. That is,
each of these 27(1#1) formulae depends on ¢(|z|) Boolean variables that represent the
values of the corresponding bits in the proof oracle. Thus, if x is a yes-instance then
there exists a truth assignment (to these variables) that satisfies all 272D formulae,
whereas if « is a no-instance then there exists no truth assignment that satisfies
more than 2"(1#D)=! formulae. Furthermore, in the case that r(n) = O(logn), given
x, we can construct the corresponding sequence of formulae in polynomial-time.
Hence, the PCP Theorem (i.e., Theorem 9.16) yields NP-hardness results regarding
the approzimation of the number of simultaneously satisfiable Boolean formulae of
constant size. This motivates the following definition.

Definition 9.20 (gap problems for SAT and generalized-SAT): For constants q €
N and € > 0, the promise problem gapGSAT! refers to instances that are each a
sequence of g-variable Boolean formulae (i.e., each formula depends on at most
q variables). The yes-instances are sequences that are simultaneously satisfiable,
whereas the no-instances are sequences for which no Boolean assignment satisfies
more than a 1 — ¢ fraction of the formulae in the sequence. The promise problem
gapSATY is defined analogously, except that in this case each instance is a sequence
of disjunctive clause (i.e., each formula in each sequence consists of a single dis-
junctive clause).

Indeed, each instance of gapSAT? is naturally viewed as ¢-CNF formulae, and we
counsider an assignment that satisfies as many clauses (of the input CNF) as possible.
As hinted, NP C PCP(1og, O(1)) implies that gapGSAT;,” is NP-complete, which
in turn implies that for some constant € > 0 the problem gapSAT? is NP-complete.
The converses hold too. All these claims are stated and proved next.

Theorem 9.21 (equivalent formulations of the PCP Theorem). The following
three conditions are equivalent:

1. The PCP Theorem: there ezists a constant q such that NP C PCP(log,q).

2. There exists a constant q such that gapGSAT‘{/2 is N'P-hard.
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3. There exists a constant € > 0 such that gapSAT? is N'P-hard.

The point of Theorem 9.21 is not its mere validity (which follows from the valid-
ity of each of the three items), but rather the fact that its proof is quite simple.
Note that Items 2 and 3 make no reference to PCP. Thus, their (easy to estab-
lish) equivalence to Item 1 manifests that the hardness of approximating natural
optimization problems lies at the heart of the PCP Theorem. In general, proba-
bilistically checkable proof systems for NP yield strong inapproximability results
for various classical optimization problems (cf., Exercise 9.18 and Section 10.1.1).

Proof: We first show that the PCP Theorem implies the NP-hardness of gapGSAT.
We may assume, without loss of generality, that, for some constant ¢ and every
S € NP, it holds that S € PCP(O(log),q) via a non-adaptive verifier (because
q adaptive queries can be emulated by 2¢ non-adaptive queries). We reduce S to
gapGSAT as follows. On input z, we scan all 29008 12 possible sequence of outcomes
of the verifier’s coin tosses, and for each such sequence of outcomes we determine
the queries made by the verifier as well as the residual decision predicate (where this
predicate determines which sequences of answers lead this verifier to accept). That
is, for each random-outcome w € {0,1}°0°8 17D we consider the residual predicate,
determined by z and w, that specifies which g-bit long sequence of oracle answers
makes the verifier accept x on coins w. Indeed, this predicate depends only on ¢
variables (which represent the values of the ¢ corresponding oracle answers). Thus,
we map z to a sequence of poly(|z|) formulae, each depending on ¢ variables,
obtaining an instance of gapGSAT?. This mapping can be computed in polynomial-
time, and indeed x € S (resp., x ¢ S) is mapped to a yes-instance (resp., no-
instance) of gapGSATg/Z.

Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Specifically,
gapGSAT] , reduces to gapSAT; (,;,), which in turn reduces to gapSAT? for ¢ =

2-(a+1) /(g — 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT?,
consider all possible conjunctions of 1/¢ disjunctive clauses in the given instance).
We complete the proof by showing that Item 3 implies Item 1. (The same
argument shows that Item 2 implies Item 1.) This is done by showing that gapSAT?
is in PCP(e!log,3e7!), and using the reduction of NP to gapSAT? to derive a
corresponding PCP for each set in NP. In fact, we show that gapGSAT? is in
PCP(c~tlog, e 1q), and do so by presenting a very natural PCP system. In this
PCP system the proof oracle is supposed to be an satisfying assignment, and the
verifier selects at random one of the (g-variable) formulae in the input sequence,
and checks whether it is satisfied by the (assignment given by the) oracle. This
amounts to tossing logarithmically many coins and making ¢ queries. This verifier
always accepts yes-instances (when given access to an adequate oracle), whereas
each no-instances is rejected with probability at least € (no matter which oracle is
used). To amplify the rejection probability (to the desired threshold of 1/2), we
invoke the foregoing verifier ¢! times (and note that (1 —¢)'/* < 1/2). W

Gap amplifying reductions — a reflection. Item 2 (resp., Item 3) of Theo-
rem 9.21 implies that GSAT (resp., 3SAT) can be reduce to gapGSAT, /, (resp., to
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gapSAT?). This means that there exist “gap amplifying” reductions of problems
like 3SAT to themselves, where these reductions map yes-instances to yes-instances
(as usual), while mapping no-instances to no-instances that are “far” from being
yes-instances. That is, no-instances are mapped to no-instances of a special type
such that a “gap” is created between the yes-instances and no-instances at the
image of the reduction. For example, in the case of 3SAT, unsatisfiable formu-
lae are mapped to formulae that are not merely unsatisfiable but rather have no
assignment that satisfies more than a 1 — ¢ fraction of the clauses. Thus, PCP
constructions are essentially “gap amplifying” reductions.

9.3.4 More on PCP itself: an overview

We start by discussing variants of the PCP characterization of NP, and next turn
to PCPs having expressing power beyond NP. Needless to say, the latter systems
have super-logarithmic randomness complexity.

9.3.4.1 More on the PCP characterization of NP

Interestingly, the two complexity measures in the PCP-characterization of NP
can be traded off such that at the extremes we get NP = PCP(log, O(1)) and
NP =PCP(0,poly), respectively.

Proposition 9.22 For every S € NP, there exists a logarithmic function £ (i.e.,
¢ € log) such that, for every integer function k that satisfies 0 < k(n) < {€(n), it
holds that S € PCP(£ — k,O(2%)). (Recall that PCP(log,poly) C N'P.)

Proof Sketch: By Theorem 9.16, we have S € PCP(¢,0(1)). To show that
S € PCP({ — k,0(2%)), we consider an emulation of the corresponding verifier in
which we try all possibilities for the k(n)-bit long prefix of its random-tape. O

Following the establishment of Theorem 9.16, numerous variants of the PCP
Characterization of NP were explored. These variants refer to a finer analysis of
various parameters of probabilistically checkable proof systems (for sets in N'P).
Following is a brief summary of some of these studies.!

The length of PCPs. Recall that the effective length of the oracle in any
PCP(log,log) system is polynomial (in the length of the input). Furthermore,
in the PCP systems underlying the proof of Theorem 9.16 the queries refer only to
a polynomially long prefix of the oracle, and so the actual length of these PCPs for
NP is polynomial. Remarkably, the length of PCPs for N'P can be made nearly-
linear (in the combined length of the input and the standard NP-witness), while
maintaining constant query complexity, where by nearly-linear we mean linear up
to a poly-logarithmic factor. (For details see [35, 66].) This means that a rel-
atively modest amount of redundancy in the proof oracle suffices for supporting
probabilistic verification via a constant number of probes.

41With the exception of works that appeared after [89], we provide no references for the results
quoted here. We refer the interested reader to [89, Sec. 2.4.4].
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The number of queries in PCPs. Theorem 9.16 asserts that a constant num-
ber of queries suffice for PCPs with logarithmic randomness and soundness error
of 1/2 (for NP). It is currently known that this constant is at most five, whereas
with three queries one may get arbitrary close to a soundness error of 1/2. The
obvious trade-off between the number of queries and the soundness error gives rise
to the robust notion of amortized query-complexity, defined as the ratio between the
number of queries and (minus) the logarithm (to based 2) of the soundness error.
For every € > 0, any set in NP has a PCP system with logarithmic randomness
and amortized query-complexity 1+ ¢ (ct. [118]), whereas only sets in P have PCPs
of logarithmic randomness and amortized query-complexity less than 1.

Free-bit complexity. The motivation to the notion of free bits came from the
PCP-to-MaxClique connection (see Exercise 9.18 and [28, Sec. 8]), but we believe
that this notion is of independent interest. Intuitively, this notion distinguishes
between queries for which the acceptable answer is determined by previously ob-
tained answers (i.e., the verifier compares the answer to a value determined by the
previous answers) and queries for which the verifier only records the answer for
future usage. The latter queries are called free (because any answer to them is “ac-
ceptable”). For example, in the linearity test (see §9.3.2.1) the first two queries are
free and the third is not (i.e., the test accepts if and only if f(z)+ f(y) = f(z+y))-
The amortized free-bit complexity is define analogously to the amortized query com-
plexity. Interestingly, NP has PCPs with logarithmic randomness and amortized
free-bit complexity less than any positive constant.

Adaptive versus non-adaptive verifiers. Recall that a PCP verifier is called
non-adaptive if its queries are determined solely based on its input and the outcome
of its coin tosses. (A general verifier, called adaptive, may determine its queries also
based on previously received oracle answers.) Recall that the PCP Characterization
of NP (i.e., Theorem 9.16) is established using a non-adaptive verifier; however, it
turns out that adaptive verifiers are more powerful than non-adaptive ones in terms
of quantitative results: Specifically, for PCP verifiers making three queries and
having logarithmic randomness complexity, adaptive queries provide for soundness
error at most 0.51 (actually 0.5 + € for any € > 0) for any set in NP, whereas
non-adaptive queries provide soundness error 5/8 (or less) only for sets in P.

Non-binary queries. Our definition of PCP allows only binary queries. Cer-
tainly, non-binary queries can be emulated by binary queries, but the converse does
not necessarily hold.*? For this reason, “parallel repetition” is highly non-trivial

42 Advanced comment: The source of trouble is the adversarial settings (implicit in the
soundness condition), which means that when several binary queries are packed into one non-
binary query, the adversary need not respect the packing (i.e., it may answer inconsistently on
the same binary query depending on the other queries packed with it). This trouble becomes
acute in the case of PCPs, because they do not correspond to a full information game. Indeed,
in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, because
they can be modeled as full information games: this is obvious in the case of public-coin systems,
but also holds for general interactive proof systems (see Exercise 9.1).
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in the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-
dent invocations of the same PCP is known, but it is not applicable for obtaining
soundness error smaller than a constant (while preserving logarithmic randomness).
Nevertheless, using adequate “consistency tests” one may construct PCP systems
for NP using logarithmic randomness, a constant number of (non-binary) queries
and soundness error exponential in the length of the answers. (Currently, this is
known only for sub-logarithmic answer lengths.)

9.3.4.2 Stronger forms of PCP systems for NP

Although the PCP Theorem is famous mainly for its negative applications to the
study of natural approximation problems (see Section 9.3.3 and §10.1.1.2), its po-
tential for direct positive applications is fascinating. Indeed, the vision of speeding-
up the verification of mundane proofs is exciting, where these proofs may refer to
mundane assertions such as the correctness of a specific computation. Enabling
such a speed-up requires a strengthening of the PCP Theorem such that it man-
dates efficient verification time rather than “merely” low query-complexity of the
verification task. Such a strengthening is possible.

Theorem 9.23 (Theorem 9.16 — strengthened): Every set S in NP has a PCP
system V' of logarithmic randomness-complexity, constant query-complexity, and
quadratic time-complexity. Furthermore, NP-witnesses for membership in S can be
transformed in polynomial-time to corresponding proof-oracles for V.

The furthermore part was already stated in Section 9.3.2 (as a strengthening of
Theorem 9.16). Thus, the novelty in Theorem 9.23 is that it provides quadratic
verification time, rather than polynomial verification time (where the polynomial
may depend arbitrarily on the set S). Theorem 9.23 is proved by noting that that
the CNF formulae that is obtained by reducing S to 3SAT are highly uniform, and
thus the verifier V' that is outlined in §9.3.2.2 can be implemented in quadratic
time. Indeed, the most time-consuming operation required of V' is evaluating the
low-degree extension @ (of Cy), which corresponds to the input formula ¢, at a few
points. In the context of §9.3.2.2, evaluating ® in exponential-time suffices (since
this means time that is polynomial in |¢|). Theorem 9.23 follows by showing that
a variant of ® can be evaluated in polynomial-time (since this means time that is
polylogarithmic in |@|); for details, see Exercise 9.29.

PCPs of Proximity. Clearly, we cannot expect a PCP system (or any standard
proof system for that matter) to have sub-linear verification time (since linear-
time is required for merely reading the input). Nevertheless, we may consider a
relaxation of the verification task (regarding proofs of membership in a set S). In
this relaxation the verifier is only required to reject any input that is “far” from
S (regardless of the alleged proof), and, as usual, accept any input that is in S
(when accompanied with an adequate proof). Specifically, in order to allow sub-
linear time verification, we provide the verifier V' with direct access to the bits
of the input (which is viewed as an oracle) as well as with direct access to the
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usual (PCP) proof-oracle, and require that the following two conditions hold (with
respect to some constant € > 0):

Completeness: For every x € S there exists a string 7, such that, when given access
to the oracles x and 7., machine V' always accepts.

Soundness with respect to proximity e: For every string x that is e-far from S (i.e.,
for every 2’ € {0,1}1*I N S it holds that = and 2’ differ on at least ¢|z| bits)
and every string 7, when given access to the oracles x and #, machine V'
rejects with probability at least %

Machine V is called a PCP of proximity, and its queries to both oracles are counted
in its query-complexity. (Indeed, such a PCP of proximity was used in §9.3.2.2,
and the notion is analogous to a relaxation of decision problems that is reviewed
in Section 10.1.2.)

We mention that every set in NP has a PCPs of prozimity of logarithmic
randomness-complexity, constant query-complexity, and polylogarithmic time-complexity.
This follows by using ideas as underlying the proof of Theorem 9.23 (see also Ex-
ercise 9.29).

9.3.4.3 PCP with super-logarithmic randomness

Our focus so far was on the important case where the verifier tosses logarithmically
many coins, and hence the “effective proof length” is polynomial. Here we mention
that the PCP Theorem (or rather Theorem 9.23) scales up.*?

Theorem 9.24 (Theorem 9.16 — Generalized): Let ¢(+) be an integer function such
that n<t(n)<2P°Y(M) . Then, NTiME(t) € PCP(O(logt), O(1)).

Recall that PCP(r,q) € NTiME(t), for t(n) = poly(n) - 2"("). Thus, the NTIME
Hierarchy implies a hierarchy of PCP(-,0(1)) classes, for randomness complexity
ranging between logarithmic and polynomial functions.

Chapter Notes

(The following historical notes are quite long and still they fail to properly discuss
several important technical contributions that played an important role in the de-
velopment of the area. For further details, the reader is referred to [89, Sec. 2.6.2].)

Motivated by the desire to formulate the most general type of “proofs” that
may be used within cryptographic protocols, Goldwasser, Micali and Rackoff [108]
introduced the notion of an interactive proof system. Although the main thrust of
their work was the introduction of a special type of interactive proofs (i.e., ones
that are zero-knowledge), the possibility that interactive proof systems may be more
powerful from NP-proof systems was pointed out in [108]. Independently of [108],

43Note that the sketched proof of Theorem 9.23 yields verification time that is quadratic in the
length of the input and polylogarithmic in the length of the NP-witness.
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Babai [17] suggested a different formulation of interactive proofs, which he called
Arthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted form
of interactive proof systems, yet it was subsequently shown that these restricted
systems are as powerful as the general ones (cf., [110]). The speed-up result (i.e.,
AM(2f) C AM(f)) is due to [22] (improving over [17]).

The first evidence to the power of interactive proofs was given by Goldreich, Mi-
cali, and Wigderson [99], who presented an interactive proof system for Graph Non-
Isomorphism (Construction 9.3). More importantly, they demonstrated the gen-
erality and wide applicability of zero-knowledge proofs: Assuming the existence of
one-way function, they showed how to construct zero-knowledge interactive proofs
for any set in AP (Theorem 9.11). This result has had a dramatic impact on
the design of cryptographic protocols (cf., [100]). For further discussion of zero-
knowledge and its applications to cryptography, see Appendix C. Theorem 9.12
(i.e., ZK = IP) is due to [31, 129].

Probabilistically checkable proof (PCP) systems are related to multi-prover in-
teractive proof systems, a generalization of interactive proofs that was suggested
by Ben-Or, Goldwasser, Kilian and Wigderson [32]. Again, the main motivation
came from the zero-knowledge perspective; specifically, presenting multi-prover
zero-knowledge proofs for NP without relying on intractability assumptions. Yet,
the complexity theoretic prospects of the new class, denoted MZP, have not been
ignored.

The amazing power of interactive proof systems was demonstrated by using
algebraic methods. The basic technique was introduced by Lund, Fortnow, Karloff
and Nisan [161], who applied it to show that the polynomial-time hierarchy (and
actually P#7) is in ZP. Subsequently, Shamir [204] used the technique to show
that ZP = PSPACE, and Babai, Fortnow and Lund [19] used it to show that
MIP = NEXP. (Our entire proof of Theorem 9.4 follows [204].)

The aforementioned multi-prover proof system of Babai, Fortnow and Lund [19]
(hereafter referred to as the BFL proof system) has been the starting point for fun-
damental developments regarding NP. The first development was the discovery
that the BFL proof system can be “scaled-down” from NEXP to N'P. This im-
portant discovery was made independently by two sets of authors: Babai, Fortnow,
Levin, and Szegedy [20] and Feige, Goldwasser, Lovdsz, and Safra [72]. However,
the manner in which the BFL proof is scaled-down is different in the two papers,
and so are the consequences of the scaling-down.

Babai et. al. [20] start by considering (only) inputs encoded using a special error-
correcting code. The encoding of strings, relative to this error-correcting code, can
be computed in polynomial time. They presented an almost-linear time algorithm
that transforms NP-witnesses (to inputs in a set S € N'P) into transparent proofs
that can be verified (as vouching for the correctness of the encoded assertion)
in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai
et. al. [20] stress the practical aspects of transparent proofs; specifically, for rapidly
checking transcripts of long computations.

In contrast, in the proof system of Feige et. al. [72, 73] the verifier stays
polynomial-time and only two more refined complexity measures (i.e., the ran-
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domness and query complexities) are reduced to poly-logarithmic. This eliminates
the need to assume that the input is in a special error-correcting form, and yields
a refined (quantitative) version of the notion of probabilistically checkable proof
systems (introduced in [79]), where the refinement is obtained by specifying the
randomness and query complexities (see Definition 9.14). Hence, whereas the BFL
proof system [19] can be reinterpreted as establishing NEXP = PCP(poly,poly),
the work of Feige et. al. [73] establishes NP C PCP(f, f), where f(n) = O(logn -
loglogn). (In retrospect, we note that the work of Babai et. al. [20] implies that
NP C PCP(log,polylog).)

Interest in the new complexity class became immense since Feige et. al. [72, 73]
demonstrated its relevance to proving the intractability of approximating some nat-
ural combinatorial problems (specifically, for MaxClique). When using the PCP—
to—MaxClique connection established by Feige et. al., the randomness and query
complexities of the verifier (in a PCP system for an NP-complete set) relate to
the strength of the negative results obtained for the approximation problems. This
fact provided a very strong motivation for trying to reduce these complexities and
obtain a tight characterization of NP in terms of PCP(-,-). The obvious challenge
was showing that NP equals PCP(log, log). This challenge was met by Arora and
Safra [15]. Actually, they showed that NP = PCP(log,q), where q(n) = o(logn).

Hence, a new challenge arose; namely, further reducing the query complexity —
in particular, to a constant — while maintaining the logarithmic randomness com-
plexity. Again, additional motivation for this challenge came from the relevance of
such a result to the study of natural approximation problems. The new challenge
was met by Arora, Lund, Motwani, Sudan and Szegedy [14], and is captured by
the PCP Characterization Theorem, which asserts that NP = PCP(log, O(1)).

Indeed the PCP Characterization Theorem is a culmination of a sequence of
impressive works [161, 19, 20, 73, 15, 14]. These works are rich in innovative ideas
(e.g., various arithmetizations of SAT as well as various forms of proof composi-
tion) and employ numerous techniques (e.g., low-degree tests, self-correction, and
pseudorandomness). Our overview of the original proof of the PCP Theorem (in
§9.3.2.1-9.3.2.2) is based on [14, 15].** The alternative proof outlined in §9.3.2.3
is due to Dinur [66].

We mention some of the ideas and techniques involved in deriving even stronger
variants of the PCP Theorem (which are surveyed in §9.3.4.1). These include
the Parallel Repetition Theorem [184], the use of the Long-Code [28], and the
application of Fourier analysis in this setting [115, 116]. We also highlight the
notions of PCPs of proximity and robustness (see [34, 67]).

Computationally-Sound Proof Systems. Argument systems were defined by
Brassard, Chaum and Crépeau [48], with the motivation of providing perfect zero-
knowledge arguments (rather than zero-knowledge proofs) for NP. A few years
later, Kilian [144] demonstrated their significance beyond the domain of zero-
knowledge by showing that, under some reasonable intractability assumptions, ev-

440ur presentation also benefits from the notions of PCPs of proximity and robustness, put
forward in [34, 67].
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ery set in NP has a computationally-sound proof in which the randomness and
communication complexities are poly-logarithmic.*® Interestingly, these argument
systems rely on the fact that NP C PCP(f, f), for f(n) = poly(logn). We men-
tion that Micali [164] suggested a different type of computationally-sound proof
systems (which he called CS-proofs).

Final comment: The current chapter is a revision of [89, Chap. 2]. In particular,
more details are provided here for the main topics, whereas numerous secondary
topics discussed in [89, Chap. 2] are not mentioned here (or are only briefly men-
tioned here). We note that a few of the research directions that were mentioned
in [89, Sec. 2.4.4] have received considerable attention in the period that elapsed,
and improved results are currently known. In particular, the interested reader is
referred to [34, 35, 66] for a study of the length of PCPs, and to [118] for a study
of their amortized query complexity. Likewise, a few open problems mentioned
in [89, Sec. 2.6.3] have been resolved; specifically, the interested reader is referred
to [24, 171] for breakthrough results regarding zero-knowledge.

Exercises

Exercise 9.1 (parallel error-reduction for interactive proof systems) Prove
that the error probability (in the soundness condition) can be reduced by parallel
repetitions of the proof system. (A proof appears in [89, Apdx. C.1].)

Guideline: As a warm-up, consider the special case of public-coin interactive proof sys-
tems. Next, generalize the analysis to arbitrary interactive proof systems, by considering
(as a mental experiment) a “powerful verifier” that emulates the original verifier while
behaving as in the public-coin model.

Exercise 9.2 Prove that if S is Karp-reducible to a set in ZP, then S € IP.
Prove that if S is Cook-reducible to a set S’ such that both S’ and {0,1}*\ S’ are
in ZP, then S € ITP.

Exercise 9.3 Complete the details of the proof that coN’P C ZP (i.e., the first
part of the proof of Theorem 9.4). In particular, suppose that the protocol for
unsatisfiability is applied to a CNF formula with n variables and m clauses. Then,
what is the length of the messages sent by the two parties? What is the soundness
error?

Exercise 9.4 Present an interactive proof system for unsatisfiability such that on
input a CNF formula having n variables the parties exchange n/O(logn) messages.

Guideline: Modify the (first part of the) proof of Theorem 9.4, by stripping O(logn)
summations in each round.

45We comment that interactive proofs are unlikely to have such low complexities; see [105].
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Exercise 9.5 (an interactive proof system for #P) Using the main part of
the proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).

Guideline: Use a slightly different arithmetization of CNF formulae. Specifically, instead
of replacing the clause z V -y V z by the term (z + (1 —y) + z), replace it by the term (1 —
((1—=)-y-(1—=))). The point is that this arithmetization maps Boolean assignments that
satisfy the CNF formula to 0-1 assignments that when substituted in the corresponding
arithmetic expression yield the value 1 (rather than yielding a somewhat arbitrary positive
integer).

Exercise 9.6 Show that QBF can be reduced to a special form of (non-canonical)*6
QBF in which no variable appears both to the left and to the right of more than
one universal quantifier.

Guideline: Consider a process (which proceeds from left to right) of “refreshing” vari-
ables after each universal quantifier. Let ¢(x1, ..., Ts, Y, Ts41, ..., Ts+¢) be a quantifier-free
boolean formula and let Qs41, ..., @s++ be an arbitrary sequence of quantifiers. Then, we
replace the quantified (sub-)formula

VyQs+1Ts+1 -+ QsttTstt P(T1, .0y s, Yy Ts41, ooy Tstt)

by the (sub-)formula
Vy3ay - Fal[(Aimy (2 = 26)) A Quirmott v+ QuitTott P(TL, ooy Ty Yy o1, ey Tutr) ] -

Note that the variables z1,...,xs; do not appear to the right of the quantifier ;41 in
the replaced formula, and that the length of the replaced formula grows by an additive
term of O(s). This process of refreshing variables is applied from left to right on the
entire sequence of universal quantifiers (except the inner one, for which this refreshing is
useless).*7

Exercise 9.7 Prove that if two integers in [0, M] are different then they must be
different modulo most of the primes in the interval [3, L], where L = poly(log M)].
Prove the same for the interval [L, 2L)].

Guideline: Let a # b € [0, M] and suppose that P, ..., P; is an enumeration of all the
primes that satisfy a = b (mod F;). Using the Chinese Reminder Theorem, prove that
Q def Hle P; < M (because otherwise a = b follows by combining a =b (mod Q) with
the hypothesis a,b € [0, M]). It follows that ¢ < log, M. Using a lower-bound on the
density of prime numbers, the claim follows.

46See Appendix G.2.
47For example,
21 Vz2323V24325Vz6 ¢(21, 22, 23, 24, 25, 26)
is first replaced by
F21Vzo32] [(2] = 21) A Fz3VzaTzsVze ¢(2), 22, 23, 24, 25, 26)]
and next (written as 321Vz,3z2] [(2] = 21) A 324Vz)32LVz ¢(2], 2}, 24, 2}, 25, 2()]) is replaced by
EszVzéElzi [(zi =2z1) A EIzészlflzilflzgflzg
[(/\13:1(Z£’ = z:,)) A Elzgvzé(b(zi’: 257 Zé’, zé’i: 2g7 Zé)“

Thus, in the resulting formula, no variable appears both to the left and to the right of more than
a single universal quantifier.
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Exercise 9.8 (on interactive proofs with two-sided error (following [81]))
Let ZP'(f) denote the class of sets having a two-sided error interactive proof system
in which a total of f(|x|) messages are exchanged on common input z. Specifically,
suppose that a suitable prover may cause every yes-instance to be accepted with
probability at least 2/3 (rather than 1), while no cheating prover can cause a
no-instance to be accepted with probability greater than 1/3 (rather than 1/2).
Similarly, let AM’ denote the public-coin version of ZP'.

1. Establish ZP'(f) € AM'(f + 3) by noting that the proof of Theorem F.2,
which establishes ZP(f) C AM(f+3), extends to the two-sided error setting.

2. Prove that AM'(f) € AM(f + 1) by extending the ideas underlying the
proof of Theorem 6.9, which actually establishes that BPP C AM(1) (where
BPP = AM'(0)).

Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for every
function f: N — N\ {1}, it holds that ZP'(f) = AM(f) = ZP(f).

Guideline (for Part 2): Fixing an optimal prover strategy for the given two-sided
error public-coin interactive proof, consider the set of verifier coins that make the verifier
accept any fixed yes-instance, and apply the ideas underlying the transformation of BPP
to MA = AM(1). For further details, see [81].

Exercise 9.9 In continuation to Exercise 9.8, show that ZP'(f) = ZP(f) for every
function f: N — N (including f = 1).

Guideline: Focus on establishing ZP'(1) = ZP(1), which is identical to Part 2 of Exer-
cise 6.12. Note that the relevant classes defined in Exercise 6.12 coincide with ZP(1) and
IP'(1); that is, MA = ZP(1) and MA® = TP'(1).

Exercise 9.10 Prove that every PSP ACE-complete set S has an interactive proof
system in which the designated prover can be implemented by a probabilistic
polynomial-time oracle machine that is given oracle access to S.

Guideline: Use Theorem 9.4 and Proposition 9.5.

Exercise 9.11 (checkers (following [38])) A probabilistic polynomial-time or-
acle machine C' is called a checker for the decision problem II if the following two
conditions hold:

1. For every z it holds that Pr[C™(x)=1] = 1, where (as usual) C/(z) denotes
the output of A on input z when given oracle access to f.

2. For every f : {0,1}* — {0,1} and every z such that f(z) # II(z) it holds
that Pr[C/(z)=1] < 1/2.

Note that nothing is required in the case that f(z) = II(x) but f # II. Prove that
if both S1 = {z : II(z)=1} and Sy = {z : [I(z) =0} have interactive proof systems
in which the designated prover can be implemented by a probabilistic polynomial-
time oracle machine that is given oracle access to I, then I has a checker. Using
Exercise 9.10, conclude that any PSP.ACE-complete problem has a checker.
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Guideline: On input z and oracle access to f, the checker first obtains o def f(z). The
claim II(z) = o is then checked by combining the verifier of S, with the probabilistic
polynomial-time oracle machine that describes the designated prover, while referring its
queries to the oracle f.

Exercise 9.12 (weakly optimal deciders for checkable problems (following [132]))
Prove that if a decision problem II has a checker (as defined in Exercise 9.11) then
there exists a probabilistic algorithm A that satisfies the following two conditions:

1. A solves the decision problem II (i.e., for every z it holds that Pr[A(z) =
II(z)] > 2/3).

2. For every probabilistic algorithm A’ that solves the decision problem II,
there exists a polynomial p such that for every z it holds that t4(z) =
p(|7]) - max | <p(e){tar(z')}, where t4(2) (resp., tar(z)) denotes the number
of steps taken by A (resp., A') on input z.

Note that, compared to Theorem 2.33, the claim of optimality is weaker, but on the
other hand it applies to decision problems (rather than to candid search problems).

Guideline: Use the ideas of the proof of Theorem 2.33, noting that the correctness
of the answers provided by the various candidate algorithms can be verified by using
the checker. That is, A invokes copies of the checker, while using different candidate
algorithms as oracles in the various copies.

Exercise 9.13 (on the role of soundness error in zero-knowledge proofs)
Prove that if S has a zero-knowledge interactive proof system with perfect sound-
ness (i.e., the soundness error equals zero) then S € BPP.

Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier. Consider the algorithm that on input z, accepts z if and only if M (x) represents
a valid view of the verifier in an accepting interaction (i.e., an interaction that leads the
verifier to accept the common input z). Use the simulation condition to analyze the case
x € S, and the perfect soundness hypothesis to analyze the case = € S.

Exercise 9.14 (on the role of interaction in zero-knowledge proofs) Prove
that if S has a zero-knowledge interactive proof system with a uni-directional com-
munication then S € BPP.

Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier, and let M'(z) denote the part of this view that consists of the prover message.
Consider the algorithm that on input z, obtains m < M'(z), and emulates the verifier’s
decision on input = and message m. Note that this algorithm ignores the part of M (x) that
represents the verifier’s internal coin tosses, and uses fresh verifier’s coins when deciding
on (z,m).

Exercise 9.15 (on the effective length of PCP oracles) Suppose that V is
a PCP verifier of query-complexity ¢ and randomness-complexity r. Show that
for every fixed z, the number of possible locations in the proof oracle that are
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examined by V on input = (when considering all possible internal coin tosses of V'
and all possible answers it may receive) is upper-bounded by 2¢(IzD+r(12]) - Show
that if V is non-adaptive then the upper-bound can be improved to 27(*D . ¢(|z|).

Guideline: In the non-adaptive case, all g queries are determined by V’s internal coin
tosses.

Exercise 9.16 (on the effective randomness of PCPs) Suppose that a set .S
has a PCP of query-complexity g that utilizes proof oracles of length ¢. Show
that, for every constant ¢ > 0, the set S has a “non-uniform” PCP of query
complexity ¢, soundness error 0.5 + ¢ and randomness complexity r such that
r(n) = log,(£(n) +n) + O(1). By a “non-uniform PCP” we mean one in which the
verifier is a probabilistic polynomial-time oracle machine that is given direct access
to the bits of a non-uniform poly(¢(n) + n)-bit long advice.

Guideline: Consider a PCP verifier V' as in the hypothesis, and denote its randomness
complexity by ry. We construct a non-uniform verifier V' that, on input of length n,
obtains as advice a set R,, C {0,1}"V (™) of cardinality O((£(n) 4+ n)/e?), and emulates V'
on a uniformly selected element of R,,. Show that for a random R, of the said size, the
verifier V' satisfies the claims of the exercise.

(Extra hint: Fixing any input « ¢ S and any oracle = € {0,1}¢{=]) upper-bound the probability
that a random set R, (of the said size) is bad, where R, is bad if V accept & with probability

0.5 + € when selecting its coins in R, and using the oracle 7.)

Exercise 9.17 (on the complexity of sets having certain PCPs) Suppose that
a set S has a PCP of query-complexity g and randomness-complexity r. Show that

S can be decided by a non-deterministic machine*® that, on input of length n, makes

at most 2"("™) . ¢(n) truly non-deterministic steps (i.e., choosing between different
alternatives) and halts within a total number of 2"(") . poly(n) steps. Conclude
that S € NTIME(2" - poly) N DTIME(22 4+ - poly).

Guideline: For each input z € S and each possible value w € {0, I}T(‘z‘) of the verifier’s
random-tape, we consider a sequence of ¢(|z|) bit values that represent a sequence of
oracle answers that make the verifier accept. Indeed, for fixed  and w € {0, 1}’““”‘)7
each setting of the ¢(|z|) oracle answers determine the computation of the corresponding
verifier (including the queries it makes).

Exercise 9.18 (The FGLSS-reduction [73]) For any S € PCP(r,q), consider
the following mapping of instances for S to instances of the Independent Set
problem. The instance x is mapped to a graph G, = (V,, E.), where V, C
{0, 1}7(=D+a(2]) consists of pairs (w, ) such that the PCP verifier accepts the input
x, when using coins w € {0,1}"(#1) and receiving the answers a = a; - - - Qq(|2)) (tO
the oracle queries determined by z, r and the previous answers). Note that V. con-
tains only accepting “views” of the verifier. The set E, consists of edges that con-
nect vertices that represents mutually inconsistent views of the said verifier; that
is, the vertex v = (w, a1 - - ag(|q|)) is connected to the vertex v’ = (w', ] - 'O‘;(le))

if there exists ¢ and i’ such that a; # o}, and q¥(v) = q%(v'), where q¥(v) (resp.,

48Gee §4.2.1.3 for definition of non-deterministic machines.
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q%(v')) denotes the i-th (resp., i'-th) query of the verifier on input z, when us-
ing coins w (resp., w') and receiving the answers aq ---a;_1 (resp., of ---al_;).
In particular, for every w € {0,1}"(#D) and a # o/, if (w,@),(w,a') € Vi, then
{(w,a),(w,a)} € E,.

1. Prove that the mapping x — G, can be computed in time that is polynomial
in 2r(eD+allzl) g,

(Note that the number of vertices in G, is upper-bounded by 2r(lzD+7(=))
where f < g is the free-bit complexity of the PCP verifier.)

2. Prove that, for every x, the size of the maximum independent set in G is at
most 271D,

3. Prove that if x € S then GG, has an independent set of size or(lel),

4. Prove that if x ¢ S then the size of the maximum independent set in G, is
at most 271,

In general, denoting the PCP verifier by V', prove that the size of the maximum
independent set in G, is exactly 272D - max, {Pr[V7(z) = 1]}. (Note the similarity
to the proof of Proposition 2.26.)

Show that the PCP Theorem implies that the size of the mazimum independent set
(resp., clique) in a graph is NP-hard to approzimate to within any constant factor.

Guideline: Note that an independent set in G, corresponds to a set of coins R and a
partial oracle 7' such that V accepts z when using coins in R and accessing any oracle
that is consistent with 7’. The FGLSS-reduction creates a gap of a factor of 2 between
yes- and no-instances of S (having a standard PCP). Larger factors can be obtained by
considering a PCP that results from repeating the original PCP for a constant number of
times. The result for Clique follows by considering the complement graph.

Exercise 9.19 Using the ideas of Exercise 9.18, prove that, for any t(n) = o(logn),
it holds that NP C PCP(t,t) implies that P = N'P.

Guideline: We only use the fact that the FGLSS-reduction maps instances of S €
PCP(t,t) to instances of the Clique problem (and ignore the fact that we actually get a
stronger reduction to a “gap-Clique” problem). Furthermore, when applies to problems
in NP C PCP(t,t), the FGLSS-reduction runs in polynomial-time. The key observation
is that the FGLSS-reduction maps instances of the Clique problem (which is in NP C
PCP(o(log),o(log))) to shorter instances of the same problem (because 2°(°5™ <« n).
Thus, iteratively applying the FGLSS-reduction, we can reduce instances of Clique to
instances of constant size. This yields a reduction of Clique to a finite set, and NP =P
follows (by the NP-completeness of Clique).

Exercise 9.20 (a simple but partial analysis of the BLR Linearity Test)
For Abelian groups G and H, consider functions from G to H. For such a (generic)
function f, consider the linearity (or rather homomorphism) test that selects uni-
formly r, s € G and checks that f(r)+ f(s) = f(r+s). Let 6(f) denote the distance
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of f from the set of homomorphisms (of G to H); that is, 6(f) is the minimum
taken over all homomorphisms h : G — H of Pryeq[f(z) # h(x)]. Using the fol-
lowing guidelines, prove that the probability that the test rejects f, denoted e(f),
is at least 36(f) — 68(f)>.

1. Suppose that h is the homomorphism closest to f (i.e., 6(f) = Pryeq[f(x)#
h(z)]). Prove that e(f) = Pry yec|[f(z) + f(y) # f(z + y)] is lower-bounded
by 3 - Proy[f(z)#h(z) A f(y)=h(y) A f(z +y)=h(z +y)].

(Hint: consider three out of four disjoint cases (regarding f(z) z h(z), f(y) z h(y), and
f(z+y) L h(z+y)) that are possible when f(z)+ f(y) # f(« +y), where these three cases

refer to the disagreement of h and f on exactly one out of the three relevant points.)

2. Prove that Pro ,[f(2) #h(2)Af(y) =h(y) A f(z+y) =h(z+y)] > 6(f)—26(f)*.
(Hint: lower-bound the said probability by Pry y[f(z) # h(z)]—(Pre,y [f(z) # h(z)Af(y) #
h(y)] + Pray [f(2) # h(z) A f(z +y) # h(z +y)]).)

Note that the lower-bound e(f) > 36(f) — 68(f)? increases with §(f) only in the
case that 6(f) < 1/4. Furthermore, the lower-bound is useless in the case that
0(f) > 1/2. Thus an alternative lower-bound is needed in case 6(f) approaches
1/2 (or is larger than it); see Exercise 9.21.

Exercise 9.21 (a better analysis of the BLR Linearity Test (cf. [40])) In con-
tinuation to Exercise 9.20, use the following guidelines in order to prove that
e(f) > min(1/6,6(f)/2). Specifically, focusing on the case that e(f) < 1/6, show
that f is 2e(f)-close to some homomorphism (and thus (f) > 6(f)/2).

1. Define the vote of y regarding the value of f at x as ¢, () de f(a:+y)—f(y), and
define ¢(x) as the corresponding plurality vote (i.e., ¢(z) et argmax,c y{|{y €

G : py(w)=0v}[}).
Prove that, for every x € G, it holds that Pry[¢,(z) = ¢(x)] > 1 — 2e(f).

Extra guideline: Fixing z, call a pair (y1,y2) good if f(y1) + f(y2 —v1) = f(y2)
and f(z+y1)+ f(y2—y1) = f(z+y2). Prove that, for any z, a random pair (y1,y2)
is good with probability at least 1 — 2z(f). On the other hand, for a good (y1,y2),
it holds that ¢, (z) = ¢y, (z). Show that the graph in which edges correspond to
good pairs must have a connected component of size at least (1 —2¢(f)) - |G|. Note
that ¢, (x) is identical for all vertices y in this connected component, which in turn
contains a majority of all y’s in G.

2. Prove that ¢ is a homomorphism; that is, prove that, for every z,y € G, it
holds that ¢(x) + ¢(y) = ¢(z + y).
Extra guideline: Prove that ¢(z) + ¢(y) = é(x + y) holds by considering the
somewhat fictitious expression pq,y Lf Prrea[op(z) + ¢(y) # é(z + y)], and showing

that pzy < 1 (and hence ¢(x) + ¢(y) # ¢(x + y) is false). Prove that p,, < 1, by
showing that

¢(a)# f(z +7) = f(r)
Vo) #f(r) = f(r—y) (9.10)
Vé@+y)#f(@+r)—f(r—y)
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and using Item 1 (and some variable substitutions) for upper-bounding by 2¢(f) <
1/3 the probability of each of the three events in Eq. (9.10).

3. Prove that f is 2e(f)-close to ¢.

Extra guideline: Denoting B = {z €G : Pryca[f(z) # ¢y(z)
)

] > 1/2}, prove that
e(f) > (1/2) - (|B|/|G])- Note that if z € G \ B then f(z) = ¢(z).

)

We comment that better bounds on the behavior of e(f) as a function of §(f) are
known.

Exercise 9.22 (testing matrix identity) Let M be a non-zero m-by-n matrix
over GF(p). Prove that Pr,[r"Ms # 0] > (1 — p~')%, where r (resp., s) is a
random m-ary (resp., n-ary) vector.

Guideline: Prove that if v # 0™ then Pr,[v' s = 0] = p~ !, and that if M has rank p then
Prr[rTM =0"]=p".

Exercise 9.23 (3SAT and CSP with two variables) Show that 3SAT is reducible
to gapCSPil""J} for 7(m) = 1/m, where gapCSP is as in Definition 9.18. Further-
more, show that the size of the resulting gapCSP instance is linear in the length of
the input formula.

Guideline: Given an instance 1) of 3SAT, consider the graph in which vertices correspond
to clauses of 1, edges correspond to pairs of clauses that share a variable, and the con-
straints represent the natural consistency condition regarding partial assignments that
satisfy the clauses. See a similar construction in Exercise 9.18.

Exercise 9.24 (CSP with two Boolean variables) In contrast to Exercise 9.23,

prove that for every positive function 7 : N — (0, 1] the problem gapCSPiO’l} is
solvable in polynomial-time.

Guideline: Reduce gapCSPiO’l} to 2SAT.

Exercise 9.25 Show that, for any fixed finite ¥ and constant ¢ > 0, the problem
gapCSP¥ is in PCP(log, O(1)).

Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance
(G, ®), provides a trivial encoding of the assignment; that is, for a satisfying assignment « :
V — %, the oracle responds to the query (v, 7) with the i*" bit in the binary representation
of a(v). Consider a verifier that uniformly selects an edge (u,v) of G and checks the
constraint ¢, ,) when applied to the values o(u) and a(v) obtained from the oracle. This

verifier makes log,, |¥| queries and reject each no-instance with probability at least c.

Exercise 9.26 For any constant ¥ and d > 14, show that gapCSP* can be reduced
to itself such that the instance at the target of the reduction is a d-regular expander,
and the fraction of violated constraints is preserved up to a constant factor. That
is, the instance (G, ®) is reduced to (Gy, ®1) such that G is a d-regular expander
graph and v1t(Gi,®;) = O(v1t(G,®)). Furthermore, make sure that |Gi| =
O(]G|) and that each vertex in G; has at least d/2 self-loops.
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Guideline: First, replace each vertex of degree d' > 3 by a 3-regular expander of size
d', and connect each of the original d' edges to a different vertex of this expander, thus
obtaining a graph of maximum degree 4. Maintain the constraints associated with the
original edges, and associate the equality constraint (i.e., ¢(c,7) = 1 if and only if o = T)
to each new edge (residing in any of the added expanders). Next, augment the resulting
Ni-vertex graph by the edges of a 3-regular expander of size N1 (while associating with
these edges the trivially satisfied constraint; i.e., ¢(o,7) = 1 for all 0,7 € X). Finally,
add at least d/2 self-loops to each vertex (using again trivially satisfied constraints), so
to obtain a d-regular graph. Prove that this sequence of modifications may only decrease
the fraction of violated constraints, and that the decrease is only by a constant factor.
The latter assertion relies on the equality constraints associated with the small expanders

used in the first step.

Exercise 9.27 (free-bit complexity zero) Note that only sets in coRP have
PCPs of query complexity zero. Furthermore, Exercise 9.17 implies that only sets
in P have PCP systems of logarithmic randomness and query complexity zero.

1. Show that only sets in P have PCP systems of logarithmic randomness and
free-bit complexity zero.

(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit

complexity zero.)

2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bit
complexity zero (and linear randomness-complexity).

Exercise 9.28 (free-bit complexity one) In continuation to Exercise 9.27, prove
that only sets in P have PCP systems of logarithmic randomness and free-bit com-
plexity one.

Guideline: Consider an application of the FGLSS-reduction to a set having a PCP of
free-bit complexity one and randomness-complexity . Note that the question of whether
the resulting graph has an independent set of size 2" can be expressed as a 2CNF formula
of size poly(2"), and see Exercise 2.22.

Exercise 9.29 (Proving Theorem 9.23) Using the following guidelines, pro-
vide a proof of Theorem 9.23. Let S € NP and consider the 3CNF formulae
that are obtained by the standard reduction of S to 3SAT (i.e., the one provided
by the proofs of Theorems 2.21 and 2.22). Decouple the resulting 3CNF formulae
into pairs of formulae (¢, @) such that ¥, represents the “hard-wiring” of the in-
put x and ¢ represents the computation itself. Referring to the mapping of 3CNF
formulae to low-degree extensions presented in §9.3.2.2, show that the low-degree
extension ® that correspond to ¢ can be evaluated in polynomial-time (i.e., poly-
nomial in the length of the input to ®, which is O(log|¢|)). Conclude that the
low-degree extension that corresponds to 1, A ¢ can be evaluated in time |z|?. Al-
ternatively, note that it suffices to show that the assignment-oracle A (considered
in §9.3.2.2) satisfies ® and is consistent with = (and is a low-degree polynomial).
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Guideline: Note that the circuit constructed in the proof of Theorem 2.21 is highly
uniform. In particular, the relation between wires and gates in this circuit can be repre-
sented by constant-depth circuits of unbounded fan-in and polynomial-size (i.e., size that

is polynomial in the length of the indices of wires and gates).



Chapter 10

Relaxing the Requirements

The philosophers have only interpreted the world, in
various ways; the point is to change it.

Karl Marx, Theses on Feuerbach

In light of the apparent infeasibility of solving numerous useful computational prob-
lems, it is natural to ask whether these problems can be relaxed such that the
relaxation is both useful and allows for feasible solving procedures. We stress two
aspects about the foregoing question: on one hand, the relaxation should be suf-
ficiently good for the intended applications; but, on the other hand, it should be
significantly different from the original formulation of the problem so to escape the
infeasibility of the latter. We note that whether a relaxation is adequate for an
intended application depends on the application, and thus much of the material
in this chapter is less robust (or generic) than the treatment of the non-relaxed
computational problems.

Summary: We consider two types of relaxations. The first type of
relaxation refers to the computational problems themselves; that is, for
each problem instance we extend the set of admissible solutions. In
the context of search problems this means settling for solutions that
have a value that is “sufficiently close” to the value of the optimal
solution (with respect to some value function). Needless to say, the
specific meaning of ‘sufficiently close’ is part of the definition of the
relaxed problem. In the context of decision problems this means that
for some instances both answers are considered valid; specifically, we
shall consider promise problems in which the no-instances are “far”
from the yes-instances in some adequate sense (which is part of the
definition of the relaxed problem).

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead,
the behavior of the solver is analyzed with respect to a predetermined

455
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input distribution (or a class of such distributions), and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution. That is, we replace worst-case analysis by
average-case (or rather typical-case) analysis. Needless to say, a major
component in this approach is limiting the class of distributions in a way
that, on one hand, allows for various types of natural distributions and,
on the other hand, prevents the collapse of the corresponding notion of
average-case hardness to the standard notion of worst-case hardness.

Organization. The first type of relaxation is treated in Section 10.1, where we
consider approximations of search (or rather optimization) problems as well as
approximate-decision problems (a.k.a property testing); see Section 10.1.1 and Sec-
tion 10.1.2, respectively. The second type of relaxation, known as average/typical-
case complexity, is treated in Section 10.2. The treatment of these two types is
quite different. Section 10.1 provides a short and high-level introduction to various
research areas, focusing on the main notions and illustrating them by reviewing
some results (while providing no proofs). In contrast, Section 10.2 provides a basic
treatment of a theory (of average/typical-case complexity), focusing on some basic
results and providing a rather detailed exposition of the corresponding proofs.

10.1 Approximation

The notion of approximation is a very natural one, and has arisen also in other
disciplines. Approximation is most commonly used in references to quantities (e.g.,
“the length of one meter is approximately forty inches”), but it is also used when
referring to qualities (e.g., “an approximately correct account of a historical event” ).
In the context of computation, the notion of approximation modifies computational
tasks such as search and decision problems. (In fact, we have already encountered
it as a modifier of counting problems; see Section 6.2.2.)

Two major questions regarding approximation are (1) what is a “good” approx-
imation, and (2) can it be found easier than finding an exact solution. The answer
to the first question seems intimately related to the specific computational task
at hand and to its role in the wider context (i.e., the higher level application): a
good approximation is one that suffices for the intended application. Indeed, the
importance of certain approximation problems is much more subjective than the
importance of the corresponding optimization problems. This fact seems to stand
in the way of attempts at providing a comprehensive theory of natural approxi-
mation problems (e.g., general classes of natural approximation problems that are
shown to be computationally equivalent).

Turning to the second question, we note that in numerous cases natural approx-
imation problems seem to be significantly easier than the corresponding original
(“exact”) problems. On the other hand, in numerous other cases, natural approx-
imation problems are computationally equivalent to the original problems. We
shall exemplify both cases by reviewing some specific results, but will not provide
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a general systematic classification (because such a classification is not known).!

We shall distinguish between approximation problems that are of a “search
type” and problems that have a clear “decisional” flavor. In the first case we shall
refer to a function that assigns values to possible solutions (of a search problem);
whereas in the second case we shall refer to the distance between instances (of a
decision problem).? We note that, sometimes the same computational problem
may be cast in both ways, but for most natural approximation problems one of the
two frameworks is more appealing than the other. The common theme underlying
both frameworks is that in each of them we extend the set of admissible solutions.
In the case of search problems, we augment the set of optimal solutions by allowing
also almost-optimal solutions. In the case of decision problems, we extend the set
of solutions by allowing an arbitrary answer (solution) to some instances, which
may be viewed as a promise problem that disallows these instances. In this case we
focus on promise problems in which the yes- and no-instances are far apart (and
the instances that violate the promise are closed to yes-instances).

Teaching note: Most of the results presented in this section refer to specific computa-
tional problems and (with one exception) are presented without a proof. In view of the
complexity of the corresponding proofs and the merely illustrative role of these results

in the context of complexity theory, we recommend doing the same in class.

10.1.1 Search or Optimization

As noted in Section 2.2.2, many search problems involve a set of potential solutions
(per each problem instance) such that different solutions are assigned different “val-
ues” (resp., “costs”) by some “value” (resp., “cost”) function. In such a case, one is
interested in finding a solution of maximum value (resp., minimum cost). A corre-
sponding approximation problem may refer to finding a solution of approximately
maximum value (resp., approximately minimum cost), where the specification of
the desired level of approximation is part of the problem’s definition. Let us elab-
orate.

For concreteness, we focus on the case of a value that we wish to maximize.
For greater expressibility (or, actually, for greater flexibility), we allow the value
of the solution to depend also on the instance itself.> Thus, for a (polynomially
bounded) binary relation R and a value function f : {0,1}* x {0,1}* — R, we
consider the problem of finding solutions (with respect to R) that maximize the

In contrast, systematic classifications of restricted classes of approximation problems are
known. For example, see [55] for a classification of (approximate versions of) Constraint Satis-
faction Problems.

2In some sense, this distinction is analogous to the distinction between the two aforementioned
uses of the word approzimation.

3This convention is only a matter of convenience: without loss of generality, we can express
the same optimization problem using a value function that only depends on the solution by
augmenting each solution with the corresponding instance (i.e., a solution y to an instance x can
be encoded as a pair (z,y), and the resulting set of valid solutions for = will consist of pairs of the
form (z,-)). Hence, the foregoing convention merely allows avoiding this cumbersome encoding
of solutions.
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value of f. That is, given x (such that R(x) # (), the task is finding y € R(z) such
that f(z,y) = v,, where v, is the maximum value of f(z,y’') over all y' € R(x).
Typically, R is in PC and f is polynomial-time computable. Indeed, without loss
of generality, we may assume that for every x it holds that R(z) = {0,1}*(*D for
some polynomial £ (see Exercise 2.8).* Thus, the optimization problem is recast
as the following search problem: given z, find y such that f(z,y) = v,, where
vy = maxyeo 130 L (2, y')}

We shall focus on relative approximation problems, where for some gap function
g:{0,1}* - {reR : r>1} the (maximization) task is finding y such that f(z,y) >
vz /g(x). Indeed, in some cases the approximation factor is stated as a function of
the length of the input (i.e., g(z) = ¢'(|z]) for some ¢’ : N — {reR : r>1}), but
often the approximation factor is stated in terms of some more refined parameter
of the input (e.g., as a function of the number of vertices in a graph). Typically, g
is polynomial-time computable.

Definition 10.1 (g-factor approximation): Let f : {0,1}* x {0,1}* — R, ¢ :
N-N, and g:{0,1}* - {reR:r>1}.

Maximization version: The g-factor approximation of maximizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D ¢ f(z,y) > v./g(x)},
where v, = maXyero 1yea«n{f (€, y')}-

Minimization version: The g-factor approximation of minimizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D) : f(2,y) < g(z) - 2},
where ¢; = min i 1yea=n 1 (2,9}

We note that for numerous NP-complete optimization problems, polynomial-time
algorithms provide meaningful approximations. A few examples will be mentioned
in §10.1.1.1. In contrast, for numerous other NP-complete optimization problems,
natural approximation problems are computationally equivalent to the correspond-
ing optimization problem. A few examples will be mentioned in §10.1.1.2, where
we also introduce the notion of a gap problem, which is a promise problem (of
the decision type) intended to capture the difficulty of the (approximate) search
problem.

10.1.1.1 A few positive examples

Let us start with a trivial example. Considering a problem such as finding the
maximum clique in a graph, we note that finding a linear factor approximation is
trivial (i.e., given a graph G = (V, E), we may output any vertex in V as a |V|-
factor approximation of the maximum clique in G). A famous non-trivial example
is presented next.

Proposition 10.2 (factor two approximation to minimum Vertex Cover): There
exists a polynomial-time approzimation algorithm that given a graph G = (V, E)

“However, in this case (and in contrast to Footnote 3), the value function f must depend both
on the instance and on the solution (i.e., f(z,y) may no be oblivious of ).
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outputs a vertex cover that is at most twice as large as the minimum vertex cover
of G.

We warn that an approximation algorithm for minimum Vertex Cover does not
yield such an algorithm for the complementary search problem (of maximum Independent
Set). This phenomenon stands in contrast to the case of optimization, where an
optimal solution for one search problem (e.g., minimum Vertex Cover) yields an
optimal solution for the complementary search problem (maximum Independent
Set).

Proof Sketch: The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph. Let M be any mazimal matching
in the graph G = (V, E); that is, M C E is a matching but augmenting it by any
single edge yields a set that is not a matching. Then, on one hand, the set of all
vertices participating in M is a vertex cover of G, and, on the other hand, each
vertex cover of G must contain at least one vertex of each edge of M. Thus, we can
find the desired vertex cover by finding a maximal matching, which in turn can be
found by a greedy algorithm. O

Another example. An instance of the traveling salesman problem (TSP) consists
of a symmetric matrix of distances between pairs of points, and the task is finding
a shortest tour that passes through all points. In general, no reasonable approx-
imation is feasible for this problem (see Exercise 10.1), but here we consider two
special cases in which the distances satisfy some natural constraints (and pretty
good approximations are feasible).

Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-
rithms exist for the following two computational problems.

1. Providing a 1.5-factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality.

2. For every € > 1, providing a (1 + ¢)-factor approzimation for the special case
of Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points reside
in a k-dimensional Euclidean space, and the distances refer to the standard
Euclidean norm).

A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2
is provided in [12]. We note the difference exemplified by the two items of Theo-
rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a specific
constant factor, Part 2 provides such an algorithm for any constant factor. Such a
result is called a polynomial-time approzimation scheme (abbreviated PTAS).

10.1.1.2 A few negative examples

Let us start again with a trivial example. Cousidering a problem such as finding
the maximum clique in a graph, we note that given a graph G = (V, E) finding
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a (1 + |V|7!)-factor approximation of the maximum clique in G is as hard as
finding a maximum clique in G. Indeed, this “result” is not really meaningful.
In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that
finding a |V |'~°()-factor approximation of the maximum clique in a general graph
G = (V, E) is as hard as finding a maximum clique in a general graph. This follows
from the fact that the approximation problem is NP-hard (cf. Theorem 10.5).

The statement of such inapproximability results is made stronger by referring
to a promise problem that consists of distinguishing instances of sufficiently far
apart values. Such promise problems are called gap problems, and are typically
stated with respect to two bounding functions g1, g2 : {0,1}* — R (which replace
the gap function g of Definition 10.1). Typically, g1 and g, are polynomial-time
computable.

Definition 10.4 (gap problem for approximation of f): Let f be as in Defini-
tion 10.1 and g1,92 : {0,1}* —» R.

Maximization version: For g1 > g2, the gap,, ,, problem of maximizing f consists
of distinguishing between {x : v, > gi(x)} and {x : v, < g2(x)}, where
Vg = maxye{[),l}l(lil){f(w;y)}'

Minimization version: For g1 < g2, the gap,, ,, problem of minimizing f consists
of distinguishing between {x : ¢, < gi(z)} and {z : ¢ > g2(z)}, where
Ca = Minyero 1ye0=n{f (2, y)}

For example, the gap,, , problem of maximizing the size of a clique in a graph
counsists of distinguishing between graphs G that have a clique of size g1(G) and
graphs G that have no clique of size g»(G). In this case, we typically let g;(G) be a
function of the number of vertices in G =(V, E); that is, g;(G) = ¢i(|V]). Indeed,
letting w(G) denote the size of the largest clique in the graph G, we let gapClique;
denote the gap problem of distinguishing between {G = (V, E) : w(G) > L(|V])}
and {G=(V,E) : w(G) < s(|V])}, where L > s. Using this terminology, we restate
(and strengthen) the aforementioned |V|*~°()-factor inapproximability result of
the maximum clique problem.

Theorem 10.5 For some L(N) = N'=°(1) and s(N) = N°U) it holds that gapClique; |
is NP-hard.

The proof of Theorem 10.5 is based on a major refinement of Theorem 9.16 that
refers to a PCP system of amortized free-bit complexity that tends to zero (cf.
§9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented in
Exercise 10.3.

As we shall show next, results of the type of Theorem 10.5 imply the hardness
of a corresponding approximation problem; that is, the hardness of deciding a gap
problem implies the hardness of a search problem that refers to an analogous factor
of approximation.
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Proposition 10.6 Let f,g1,92 be as in Definition 10.4 and suppose that these
functions are polynomial-time computable. Then the gap,, ,, problem of mazimiz-
ing f (resp., minimizing f) is reducible to the gi/g2-factor (resp., g2/gi-factor)
approzimation of mazimizing f (resp., minimizing f).

Note that a reduction in the opposite direction does not necessarily exist (even in
the case that the underlying optimization problem is self-reducible in some natural
sense). Indeed, this is another difference between the current context (of approx-
imation) and the context of optimization problems, where the search problem is
reducible to a related decision problem.

Proof Sketch: We focus on the maximization version. On input z, we solve the
gap,, 4, problem, by making the query z, obtaining the answer y, and ruling that
x has value at least g1 (z) if and only if f(z,y) > g2(z). Recall that we need to
analyze this reduction only on inputs that satisfy the promise. Thus, if v, > ¢1(z)
then the oracle must return a solution y that satisfies f(x,y) > v./(91(x)/g2(x)),
which implies that f(z,y) > g2(z). On the other hand, if v, < go2(z) then f(z,y) <
v, < g2(x) holds for any possible solution y. O

Additional examples. Let us consider gapVC, ,, the gap, , problem of mini-
mizing the vertex cover of a graph, where s and L are constants and g;(G) = s-|V|
(resp., gr(G) = L - |V]) for any graph G=(V, E). Then, Proposition 10.2 implies
(via Proposition 10.6) that, for every constant s, the problem gapVC, ,, is solvable
in polynomial-time. In contrast, sufficiently narrowing the gap between the two
thresholds yields an inapproximability result. In particular:

Theorem 10.7 For some constants s > 0 and L < 1 such that L > % - s (e.g.,
s =0.62 and L = 0.84), the problem gapVC_ ; is NP-hard.

The proof of Theorem 10.7 is based on a complicated refinement of Theorem 9.16.
Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).

As noted, refinements of the PCP Theorem (Theorem 9.16) play a key role in
establishing inapproximability results such as Theorems 10.5 and 10.7. In that
respect, it is adequate to recall that Theorem 9.21 establishes the equivalence of
the PCP Theorem itself and the NP-hardness of a gap problem concerning the
maximization of the number of clauses that are satisfies in a given 3-CNF for-
mula. Specifically, gapSAT? was defined (in Definition 9.20) as the gap problem
consisting of distinguishing between satisfiable 3-CNF formulae and 3-CNF formu-
lae for which each truth assignment violates at least an e fraction of the clauses.
Although Theorem 9.21 does not specify the quantitative relation that underlies
its qualitative assertion, when (refined and) combined with the best known PCP
construction, it does yield the best possible bound.

Theorem 10.8 For every v < 1/8, the problem gapSAT> is NP-hard.

On the other hand, gapSAT?/8 is solvable in polynomial-time.
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Sharp thresholds. The aforementioned opposite results (regarding gapSAT?) ex-
emplify a sharp threshold on the (factor of) approximation that can be obtained
by an efficient algorithm. Another appealing example refers to the following maxi-
mization problem in which the instances are systems of linear equations over GF(2)
and the task is finding an assignment that satisfies as many equations as possible.
Note that by merely selecting an assignment at random, we expect to satisfy half
of the equations. Also note that it is easy to determine whether there exists an
assignment that satisfies all equations. Let gapLin, ; denote the problem of dis-
tinguishing between systems in which one can satisfy at least an L fraction of
the equations and systems in which one cannot satisfy an s fraction (or more)
of the equations. Then, as just noted, gapling 5 is trivial (for every L > 0.5)
and gapLin, , is feasible (for every s < 1). In contrast, moving both thresholds
(slightly) away from the corresponding extremes, yields an NP-hard gap problem:

Theorem 10.9 For every constante > 0, the problem gapLin, . , 5., is NP-hard.

The proof of Theorem 10.9 is based on a major refinement of Theorem 9.16. In fact,
the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:
the verifier makes three queries and tests a linear condition regarding the answers,
while using a logarithmic number of coin tosses. This verifier accepts any yes-
instance with probability at least 1 — ¢ (when given oracle access to a suitable
proof), and rejects any no-instance with probability at least 0.5 — & (regardless
of the oracle being accessed). A weaker result, which follows from Theorem 9.16
itself, is presented in Exercise 10.5.

Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations with
respect to the “location” of the “gap” for which the corresponding promise prob-
lem is hard. Recall that both gapSAT and gapLin are formulated with respect
to two thresholds, where each threshold bounds the fraction of “local” conditions
(i-e., clauses or equations) that are satisfiable in the case of yes- and no-instances,
respectively. In the case of gapSAT, the high threshold (referring to yes-instances)
was set to 1, and thus only the low threshold (referring to no-instances) remained
a free parameter. Nevertheless, a hardness result was established for gapSAT, and
furthermore this was achieved for an optimal value of the low threshold (cf. the
foregoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-
ting the high threshold to 1 makes the gap problem efficiently solvable. Thus,
the hardness of gapLin was established at a different location of the high thresh-
old. Specifically, hardness (for an optimal value of the ratio of thresholds) was
established when setting the high threshold to 1 — ¢, for any € > 0.

A final comment. All the aforementioned inapproximability results refer to ap-
proximation (resp., gap) problems that are relaxations of optimization problems
in NP (i.e., the optimization problem is computationally equivalent to a decision
problem in N'P; see Section 2.2.2). In these cases, the NP-hardness of the approx-
imation (resp., gap) problem implies that the corresponding optimization problem
is reducible to the approximation (resp., gap) problem. In other words, in these
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cases nothing is gained by relaxing the original optimization problem, because the
relaxed version remains just as hard.

10.1.2 Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the
distance between instances, where a natural notion of distance is the Hamming
distance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,
this relaxation (called property testing) refers to distinguishing inputs that reside
in a predetermined set S from inputs that are “relatively far” from any input that
resides in the set. Two natural types of promise problems emerge (with respect to
any predetermined set S (and the Hamming distance between strings)):

1. Relazed decision w.r.t a fived relative distance: Fixing a distance parameter
6, we consider the problem of distinguishing inputs in S from inputs in I's(S),
where

def

Ds(S) = {z:Vze Sn{0, 1} A(z,2) > 6 -|z|} (10.1)

and A(zy - Tm, 21 2m) = |{i : ®; # z}| denotes the number of bits on
which = x1---%,, and z = 2, --- z,, disagree. Thus, here we consider a
promise problem that is a restriction (or a special case) of the problem of
deciding membership in S.

2. Relazed decision w.r.t a variable distance: Here the instances are pairs (z, ),
where z is as in Type 1 and 6 € [0,1] is a (relative) distance parameter. The
yes-instances are pairs (z,8) such that z € S, whereas (z,8) is a no-instance
if © € Ts(S).

We shall focus on Type 1 formulation, which seems to capture the essential question
of whether or not these relaxations lower the complexity of the original decision
problem. The study of Type 2 formulation refers to a relatively secondary question,
which assumes a positive answer to the first question; that is, assuming that the
relaxed form is easier than the original form, we ask how is the complexity of the
problem affected by making the distance parameter smaller (which means making
the relaxed problem “tighter” and ultimately equivalent to the original problem).

We note that for numerous NP-complete problems there exist natural (Type 1)
relaxations that are solvable in polynomial-time. Actually, these algorithms run
in sub-linear time (specifically, in polylogarithmic time), when given direct access
to the input. A few examples will be presented in §10.1.2.2 (but, as indicated in
§10.1.2.2, this is not a generic phenomenon). Before turning to these examples, we
discuss several important definitional issues.

10.1.2.1 Definitional issues

Property testing is concerned not only with solving relaxed versions of NP-hard
problems, but rather with solving these problems (as well as problems in P) in
sub-linear time. Needless to say, such results assume a model of computation in
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which algorithms have direct access to bits in the (representation of the) input (see
Definition 10.10).

Definition 10.10 (a direct access model — conventions): An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle (see §1.2.3.6). In addition, the algorithm is given the length of the
input and possibly other parameters on a secondary input device. The complexity of
such an algorithm is stated in terms of the length of its main input.

Indeed, the description in §5.2.4.2 refers to such a model, but there the main input
is viewed as an oracle and the secondary input is viewed as the input. In the
current model, polylogarithmic time means time that is polylogarithmic in the
length of the main input, which means time that is polynomial in the length of the
binary representation of the length of the main input. Thus, polylogarithmic time
yields a robust notion of extremely efficient computations. As we shall see, such
computations suffice for solving various (property testing) problems.

Definition 10.11 (property testing for S): For any fized § > 0, the promise
problem of distinguishing S from Ts(S) is called property testing for S (with respect
to 4).

Recall that we say that a randomized algorithm solves a promise problem if it
accepts every yes-instance (resp., rejects every no-instance) with probability at
least 2/3. Thus, a (randomized) property testing for S accepts every input in S
(resp., rejects every input in I's(S)) with probability at least 2/3.

The question of representation. The specific representation of the input is of
major concern in the current context. This is due to (1) the effect of the represen-
tation on the distance measure and to (2) the dependence of direct access machines
on the specific representation of the input. Let us elaborate on both aspects.

1. Recall that we defined the distance between objects in terms of the Hamming
distance between their representations. Clearly, in such a case, the choice of
representation is crucial and different representations may yield different dis-
tance measures. Furthermore, in this case, the distance between objects is
not preserved under various (natural) representations that are considered
“equivalent” in standard studies of computational complexity. For example,
in previous parts of this book, when referring to computational problems
concerning graphs, we did not care whether the graph was represented by its
adjacency matrix or by its incidence-list. In contrast, these two representa-
tions induce very different distance measures and correspondingly different
property testing problems (see §10.1.2.2). Likewise, the use of padding (and
other trivial syntactic conventions) becomes problematic (e.g., when using a
significant amount of padding, all objects are deemed close to one another
(and property testing for any set becomes trivial)).
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2. Since our focus is on sub-linear time algorithms, we may not afford trans-
forming the input from one natural format to another. Thus, representations
that are considered equivalent with respect to polynomial-time algorithms,
may not be equivalent with respect to sub-linear time algorithms that have
a direct access to the representation of the object. For example, adjacency
queries and incidence queries cannot emulate one another in small time (i.e.,
in time that is sub-linear in the number of vertices).

Both aspects are further clarified by the examples provided in §10.1.2.2.

The essential role of the promise. Recall that, for a fixed constant § > 0,
we consider the promise problem of distinguishing S from I's(S). The promise
means that all instances that are neither in S nor far from S (i.e., not in I's(.S))
are ignored, which is essential for sub-linear algorithms for natural problems. This
makes the property testing task potentially easier than the corresponding stan-
dard decision task (cf. §10.1.2.2). To demonstrate the point, consider the set S
consisting of strings that have a majority of 1’s. Then, deciding membership in
S requires linear time, because random n-bit long strings with |n/2]| ones cannot
be distinguished from random n-bit long strings with [n/2] + 1 ones by probing
a sub-linear number of locations (even if randomization and error probability are
allowed — see Exercise 10.8). On the other hand, the fraction of 1’s in the input can
be approximated by a randomized polylogarithmic time algorithm (which yields a
property tester for S; see Exercise 10.9). Thus, for some sets, deciding membership
requires linear time, while property testing can be done in polylogarithmic time.

The essential role of randomization. Referring to the foregoing example, we
note that randomization is essential for any sub-linear time algorithm that distin-
guishes this set S from, say, I'g.1(S). Specifically, a sub-linear time deterministic
algorithm cannot distinguish 1™ from any input that has 1’s in each position probed
by that algorithm on input 1”. In general, on input z, a (sub-linear time) deter-
ministic algorithm always reads the same bits of  and thus cannot distinguish x
from any z that agrees with = on these bit locations.

Note that, in both cases, we are able to prove lower-bounds on the time com-
plexity of algorithms. This success is due to the fact that these lower-bounds are
actually information theoretic in nature; that is, these lower-bounds actually refer
to the number of queries performed by these algorithms.

10.1.2.2 Two models for testing graph properties

In this subsection we consider the complexity of property testing for sets of graphs
that are closed under graph isomorphism; such sets are called graph properties. In
view of the importance of representation in the context of property testing, we
explicitly consider two standard representations of graphs (cf. Appendix G.1),
which indeed yield two different models of testing graph properties.
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1. The adjacency matrix representation. Here a graph G = ([N], E) is rep-
resented (in a somewhat redundant form) by an N-by-N Boolean matrix
Mg = (m;j); jern) such that m; ; = 1 if and only if {i,j} € E.

2. Bounded incidence-lists representation. For a fixed parameter d, a graph
G = ([N], E) of degree at most d is represented (in a somewhat redundant
form) by a mapping pg : [N] x [d] — [N]U{L} such that pg(u,i) =vifvis
the i*? neighbor of u and pg(u,7) = L if v has less than i neighbors.

We stress that the aforementioned representations determine both the notion of
distance between graphs and the type of queries performed by the algorithm. As
we shall see, the difference between these two representations yields a big difference
in the complexity of corresponding property testing problems.

Theorem 10.12 (property testing in the adjacency matrix representation): For
any fized § > 0 and each of the following sets, there ezists a polylogarithmic time
randomized algorithm that solves the corresponding property testing problem (with
respect to 0).

o For every fized k > 2, the set of k-colorable graphs.

e For every fized p > 0, the set of graphs having a clique (resp., independent
set) of density p.

e For every fized p > 0, the set of N-vertex graphs having a cut® with at least
p-N? edges.

e For every fized p > 0, the set of N-vertex graphs having a bisection® with at
most p- N? edges.

In contrast, for some § > 0, there exists a graph property in N'P for which property
testing (with respect to §) requires linear time.

The testing algorithms (asserted in Theorem 10.12) use a constant number of
queries, where this constant is polynomial in the constant 1/§. In contrast, exact
decision procedures for the corresponding sets require a linear number of queries.
The running time of the aforementioned algorithms hides a constant that is expo-
nential in their query complexity (except for the case of 2-colorability where the
hidden constant is polynomial in 1/§). Note that such dependencies seem essen-
tial, since setting § = 1/N? regains the original (non-relaxed) decision problems
(which, with the exception of 2-colorability, are all NP-complete). Turning to the
lower-bound (asserted in Theorem 10.12), we mention that the graph property for
which this bound is proved is not a natural one. As in §10.1.2.1, the lower-bound
on the time complexity follows from a lower-bound on the query complexity.
Theorem 10.12 exhibits a dichotomy between graph properties for which prop-
erty testing is possible by a constant number of queries and graph properties for

5A cut in a graph G = ([N], E) is a partition (S1, S2) of the set of vertices (i.e., S1 US2 = [N]
and S1 NSy = (D), and the edges of the cut are the edges with exactly one endpoint in S1. A
bisection is a cut of the graph to two parts of equal cardinality.
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which property testing requires a linear number of queries. A combinatorial charac-
terization of the graph properties for which property testing is possible (in the ad-
jacency matrix representation) when using a constant number of queries is known.°
We note that the constant in this characterization may depend arbitrarily on § (and
indeed, in some cases, it is a function growing faster than a tower of 1/6 exponents).
For example, property testing for the set of triangle-free graphs is possible by using
a number of queries that depends only on ¢, but it is known that this number must
grow faster than any polynomial in 1/6.

Turning back to Theorem 10.12, we note that the results regarding property
testing for the sets corresponding to max-cut and min-bisection yield approximation
algorithms with an additive error term (of §N?2). For dense graphs (i.e., N-vertex
graphs having Q(NN?) edges), this yields a constant factor approximation for the
standard approximation problem (as in Definition 10.1). That is, for every constant
¢ > 1, we obtain a c-factor approzimation of the problem of maximizing the size of a
cut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,
the result regarding clique yields a so called dual-approximation for maximum
clique; that is, we approximate the minimum number of missing edges in the densest
induced subgraph of a given size.

Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, in
general, for any graph property in the adjacency matrix representation.” Also note
that property testing is trivial, under the adjacency matrix representation, for any
graph property S satisfying I',(1)(S) = @ (e.g., the set of connected graphs, the set
of Hamiltonian graphs, etc).

We now turn to the bounded incidence-lists representation, which is relevant
only for bounded degree graphs. The problems of max-cut, min-bisection and clique
(as in Theorem 10.12) are trivial under this representation, but graph connectivity
becomes non-trivial, and the complexity of property testing for the set of bipartite
graphs changes dramatically.

Theorem 10.13 (property testing in the bounded incidence-lists representation):
The following assertions refer to the representation of graphs by incidence-lists of
length d.

o For any fired d and 6 > 0, there exists a polylogarithmic time randomized
algorithm that solves the property testing problem for the set of connected
graphs of degree at most d.

o For any fized d and § > 0, there exists a sub-linear time randomized algorithm
that solves the property testing problem for the set of bipartite graphs of degree

8Describing this fascinating result of Alon et. al. [8], which refers to the notion of regular
partitions (introduced by Szemerédi), is beyond the scope of the current text.

“In this model, as shown next, property testing of non-dense graphs is trivial. Specifically,
fixing the distance parameter §, we call a N-vertex graph non-dense if it has less than (§/2) - (I;[)
edges. The point is that, for non-dense graphs, the property testing problem for any set S is
trivial, because we may just accept any non-dense (N-vertex) graph if and only if S contains
some non-dense (N-vertex) graph. Clearly, the decision is correct in the case that S does not
contain non-dense graphs. However, the decision is admissible also in the case that S does contain
some non-dense graph, because in this case every non-dense graph is “§-close” to S (i.e., it is not
in I's(9))-
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at most d. Specifically, on input an N -verter graph, the algorithm runs for

O(VN) time.

o For any fized d > 3 and some § > 0, property testing for the set of N-vertex
(3-regular) bipartite graphs requires Q(vV N) queries.

e For some fized d and & > 0, property testing for the set of N -vertex 3-colorable
graphs of degree at most d requires Q(N) queries.

The running time of the algorithms (asserted in Theorem 10.13) hides a constant
that is polynomial in 1/6. Providing a characterization of graph properties accord-
ing to the complexity of the corresponding tester (in the bounded incidence-lists
representation) is an interesting open problem.

Decoupling the distance from the representation. So far, we have confined
our attention to the Hamming distance between the representations of graphs.
This made the choice of representation even more important than usual (i.e., more
crucial than is common in complexity theory). In contrast, it is natural to consider
a notion of distance between graphs that is independent of their representation.
For example, the distance between Gy =(V1, E1) and G2 =(V2, Es) can be defined
as the minimum of the size of symmetric difference between E; and the set of edges
in a graph that is isomorphic to G;. The corresponding relative distance may be
defined as the distance divided by |E;| + |E2| (or by max(|E1 |, |E2])).

10.1.2.3 Beyond graph properties

Property testing has been applied to a variety of computational problems beyond
the domain of graph theory. In fact, this type of computational problems first
emerged in the algebraic domain, where the instances (to be viewed as inputs to
the testing algorithm) are functions and the relevant properties are sets of algebraic
functions. The archetypical example is the set of low-degree polynomials; that is,
m-variate polynomials of total (or individual) degree d over some finite field GF(q),
where m,d and ¢ are parameters that may depend on the length of the input (or
satisfy some relationships; e.g., ¢ = d®> = m®). Note that, in this case, the input
is the (“full” or “explicit”) description of an m-variate function over GF(q), which
means that it has length ¢™ - log, g. Viewing the problem instance as a function
suggests a natural measure of distance (i.e., the fraction of arguments on which the
functions disagree) as well as a natural way of accessing the instance (i.e., querying
the function for the value of selected arguments).

Note that we have referred to these computational problems, under a different
terminology, in §9.3.2.2 and in §9.3.2.1. In particular, in §9.3.2.1 we refereed to
the special case of linear Boolean functions (i.e., individual degree 1 and ¢ = 2),
whereas in §9.3.2.2 we used the setting ¢ = poly(d) and m = d/logd (where d is a
bound on the total degree).

Other domains of computational problems in which property testing was stud-
ied include geometry (e.g., clustering problems), formal languages (e.g., testing
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membership in regular sets), coding theory (cf. Appendix E.1.2), probability the-
ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone and
junta functions). As discuss at the end of §10.1.2.2, it is often natural to decou-
ple the distance measure from the representation of the objects (i.e., the way of
accessing the problem instance). This is done by introducing a representation-
independent notion of distance between instances, which should be natural in the
context of the problem at hand.

10.2 Average Case Complexity

Teaching note: We view average-case complexity as referring to the performance on
“average” (or rather typical) instances, and not as the average performance on random
instances. This choice is justified in §10.2.1.1. Thus, it may be more justified to refer to
the following theory by the name typical-case complexity. Still, the name average-case
was retained for historical reasons.

Our approach so far (including in Section 10.1) is termed worst-case complex-
ity, because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That is,
computational problems were defined as referring to a set of instances and perfor-
mance guarantees were required to hold for each instance in this set. In contrast,
average-case complexity allows ignoring a negligible measure of the possible in-
stances, where the identity of the ignored instances is determined by the analysis
of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by the
problem’s statement). It is just that they are viewed as exceptional when claiming
that a specific algorithm solve the problem; that is, these exceptional instances are
determined by the analysis of that algorithm. Needless to say, these exceptional
instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Most importantly, a distribution
on the set of admissible instances has to be specified. In fact, we shall consider a
new type of computational problems, each consisting of a standard computational
problem coupled with a probability distribution on instances. Consequently, the
question of which distributions should be considered in a theory of average-case
complexity arises. This question and numerous other definitional issues will be
addressed in §10.2.1.1.

Before proceeding, let us spell out the rather straightforward motivation to the
study of the average-case complexity of computational problems: It is that, in real-
life applications, one may be perfectly happy with an algorithm that solves the
problem fast on almost all instances that arise in the relevant application. That is,
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one may be willing to tolerate error provided that it occurs with negligible proba-
bility, where the probability is taken over the distribution of instances encountered
in the application. The study of average-case complexity is aimed at exploring the
possible benefit of such a relaxation, distinguishing cases in which a benefit exists
from cases in which it does not exist. A key aspect in such a study is a good
modeling of the type of distributions (of instances) that are encountered in natural
algorithmic applications.

A preliminary question that arises is whether every natural computational prob-
lem be solve efficiently when restricting attention to typical instances? The conjec-
ture that underlies this section is that, for a well-motivated choice of definitions, the
answer is negative; that is, our conjecture is that the “distributional version” of NP
is not contained in the average-case (or typical-case) version of P. This means that
some NP problems are not merely hard in the worst-case, but are rather “typically
hard” (i.e., hard on typical instances drawn from some simple distribution). Specif-
ically, hard instances may occur in natural algorithmic applications (and not only
in cryptographic (or other “adversarial”) applications that are design on purpose
to produce hard instances).®

The foregoing conjecture motivates the development of an average-case analogue
of NP-completeness, which will be presented in this section. Indeed, the entire
section may be viewed as an average-case analogue of Chapter 2. In particular, this
(average-case) theory identifies distributional problems that are “typically hard”
provided that distributional problems that are “typically hard” exist at all. If one
believes the foregoing conjecture then, for such complete (distributional) problems,
one should not seek algorithms that solve these problems efficiently on typical
instances.

Organization. A major part of our exposition is devoted to the definitional issues
that arise when developing a general theory of average-case complexity. These
issues are discussed in §10.2.1.1. In §10.2.1.2 we prove the existence of distributional
problems that are “NP-complete” in the corresponding average-case complexity
sense. Furthermore, we show how to obtain such a distributional version for any
natural NP-complete decision problem. In §10.2.1.3 we extend the treatment to
randomized algorithms. Additional ramifications are presented in Section 10.2.2.

10.2.1 The basic theory

In this section we provide a basic treatment of the theory of average-case com-
plexity, while postponing important ramifications to Section 10.2.2. The basic
treatment consists of the preferred definitional choices for the main concepts as

8We highlight two differences between the current context (of natural algorithmic applications)
and the context of cryptography. Firstly, in the current context and when referring to problems
that are typically hard, the simplicity of the underlying input distribution is of great concern:
the simpler this distribution, the more appealing the hardness assertion becomes. This concern
is irrelevant in the context of cryptography. On the other hand (see discussion at the beginning
of Section 7.1.1 and/or at end of §10.2.2.2), cryptographic applications require the ability to
efficiently generate hard instances together with corresponding solutions.
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well as the identification of complete problems for a natural class of average-case
computational problems.

10.2.1.1 Definitional issues

The theory of average-case complexity is more subtle than may appear at first
thought. In addition to the generic conceptual difficulty involved in defining relax-
ations, difficulties arise from the “interface” between standard probabilistic analysis
and the conventions of complexity theory. This is most striking in the defini-
tion of the class of feasible average-case computations. Referring to the theory of
worst-case complexity as a guideline, we shall address the following aspects of the
analogous theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems,
which are standard computational problems (see Section 1.2.2) coupled with
distributions on the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-
case analogue of classes such as P, we shall reject the first definition that
comes to mind (i.e., the naive notion of “average polynomial-time”), briefly
discuss several related alternatives, and adopt one of them for the main treat-
ment.

3. Identifying the class of interesting (distributional) problems. Seeking an
average-case analogue of the class AP, we shall avoid both the extreme
of allowing arbitrary distributions (which collapses average-case hardness to
worst-case hardness) and the opposite extreme of confining the treatment to
a single distribution such as the uniform distribution.

4. Developing an adequate notion of reduction among (distributional) problems.
As in the theory of worst-case complexity, this notion should preserve feasible
solveability (in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Step 1: Defining distributional problems. Focusing on decision problems,
we define distributional problems as pairs consisting of a decision problem and a
probability ensemble.® For simplicity, here a probability ensemble {Xo}lhen is a
sequence of random variables such that X, ranges over {0, 1}". Thus, (S, {Xn},en)
is the distributional problem consisting of the problem of deciding membership in
the set S with respect to the probability ensemble {X,},cn. (The treatment of
search problem is similar; see §10.2.2.1.) We denote the uniform probability ensemble
by U = {U,},.cn; that is, U, is uniform over {0,1}".

9We mention that even this choice is not evident. Specifically, Levin [153] (see discussion
in [88]) advocates the use of a single probability distribution defined over the set of all strings.
His argument is that this makes the theory less representation-dependent. At the time we were
convinced of his argument (see [88]), but currently we feel that the representation-dependent
effects discussed in [88] are legitimate. Furthermore, the alternative formulation of [153, 88|
comes across as unnatural and tends to confuse some readers.
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Step 2: Identifying the class of feasible problems. The first idea that
comes to mind is defining the problem (S, {X,},cn) as feasible (on the average)
if there exists an algorithm A that solves S such that the average running time
of A on X, is bounded by a polynomial in n (i.e., there exists a polynomial p
such that E[t4(X,)] < p(n), where t4(x) denotes the running-time of A on input
z). The problem with this definition is that it very sensitive to the model of
computation and is not closed under algorithmic composition. Both deficiencies
are a consequence of the fact that ¢4 may be polynomial on the average with
respect to {X,},en but t3 may fail to be so (e.g., consider ta(az'z") = 21¢'| if
2’ = 2" and ta(z'z") = |2'2"|* otherwise, coupled with the uniform distribution
over {0,1}"). We conclude that the average running-time of algorithms is not a
robust notion. We also doubt the naive appeal of this notion, and view the typical
running time of algorithms (as defined next) as a more natural notion. Thus, we
shall consider an algorithm as feasible if its running-time is typically polynomial.'®

We say that A is typically polynomial-time on X = {X,}, cn if there exists a
polynomial p such that the probability that A runs more that p(n) steps on X,
is negligible (i.e., for every polynomial ¢ and all sufficiently large n it holds that
Prita(X,) > p(n)] < 1/¢q(n)). The question is what is required in the “untypical”
cases, and two possible definitions follow.

1. The simpler option is saying that (S, {X,},cn) is (typically) feasible if there
exists an algorithm A that solves S such that A is typically polynomial-time
on X = {X,},en. This effectively requires A to correctly solve S on each
instance, which is more than was required in the motivational discussion.
(Indeed, if the underlying motivation is ignoring rare cases, then we should
ignore them altogether rather than ignoring them in a partial manner (i.e.,
only ignore their affect on the running-time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X)
is (typically) feasible if there exists an algorithm A such that A typically
solves S on X in polynomial-time; that is, there exists a polynomial p such
that the probability that on input X, algorithm A either errs or runs more
that p(n) steps is negligible. This formulation totally ignores the untypical
instances. Indeed, in this case we may assume, without loss of generality,
that A always runs in polynomial-time (see Exercise 10.11), but we shall not
do so here (in order to facilitate viewing the first option as a special case of
the current option).

We stress that both alternatives actually define typical feasibility and not average-
case feasibility. To illustrate the difference between the two options, consider the
distributional problem of deciding whether a uniformly selected (n-vertex) graph

10An alternative choice, taken by Levin [153] (see discussion in [88]), is considering as feasible
(wrt X = {Xn}, cN) any algorithm that runs in time that is polynomial in a function that is
linear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function
£:{0,1}* — N such that t(z) < p(4(x)) for every = and E[¢(X,)] = O(n). This definition is
robust (i.e., it does not suffer from the aforementioned deficiencies) and is arguably as “natural”
as the naive definition (i.e., E[t4(Xn)] < poly(n)).
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is 3-colorable. Intuitively, this problem is “typically trivial” (with respect to the
uniform distribution),!! because the algorithm may always say no and be wrong
with exponentially vanishing probability. Indeed, this trivial algorithm is admissi-
ble by the second approach, but not by the first approach. In light of the foregoing
discussions, we adopt the second approach.

Definition 10.14 (the class tpcP): We say that A typically solves (S, {X,},cn)
in polynomial-time if there exists a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible.> We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial-time.

Clearly, for every S € P and every probability ensemble X, it holds that (S, X) €
tpcP. However, tpcP contains also distributional problems (S, X) with S ¢ P
(see Exercises 10.12 and 10.13). The big question, which underlies the theory of
average-case complexity, is whether all natural distributional versions of NP are
in tpcP. Thus, we turn to identify such versions.

Step 3: Identifying the class of interesting problems. Seeking to identify
reasonable distributional versions of NP, we note that two extreme choices should
be avoided. On one hand, we must limit the class of admissible distributions so to
prevent the collapse of average-case harduess to worst-case hardness (by a selection
of a pathological distribution that resides on the “worst case” instances). On the
other hand, we should allow for various types of natural distributions rather than
confining attention merely to the uniform distribution.!® Recall that our aim is
addressing all possible input distributions that may occur in applications, and thus
there is no justification for confining attention to the uniform distribution. Still,
arguably, the distributions occuring in applications are “relatively simple” and so
we seek to identify a class of simple distributions. One such notion (of simple
distributions) underlies the following definition, while a more liberal notion will be
presented in §10.2.2.2.

Definition 10.15 (the class distNV'P): We say that a probability ensemble X =
{Xn}nen is simple if there exists a polynomial time algorithm that, on any input
r € {0,1}*, outputs Pr[X | < x|, where the inequality refers to the standard lexico-
graphic order of strings. We denote by distN'P the class of distributional problems
consisting of decision problems in N'P coupled with simple probability ensembles.

H1In contrast, testing whether a given graph is 3-colorable seems “typically hard” for other dis-
tributions (see either Theorem 10.19 or Exercise 10.27). Needless to say, in the latter distributions
both yes-instances and no-instances appear with noticeable probability.

12Recall that a function g : N - Nis negligible if for every positive polynomial ¢ and all
sufficiently large n it holds that p(n) < 1/g(n). We say that A errs on  if A(z) differs from the
indicator value of the predicate = € S.

13Confining attention to the uniform distribution seems misguided by the naive belief according
to which this distribution is the only one relevant to applications. In contrast, we believe that,
for most natural applications, the uniform distribution over instances is not relevant at all.
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Note that the uniform probability ensemble is simple, but so are many other “sim-
ple” probability ensembles. Actually, it makes sense to relax the definition such
that the algorithm is only required to output an approximation of Pr[X ;| < x], say,
to within a factor of 14272/ We note that Definition 10.15 interprets simplicity
in computational terms; specifically, as the feasibility of answering very basic ques-
tions regarding the probability distribution (i.e., determining the probability mass
assigned to a single (n-bit long) string and even to an interval of such strings). This
simplicity condition is closely related to being polynomial-time sampleable via a
monotone mapping (see Exercise 10.14).

Teaching note: The following two paragraphs attempt to address some doubts re-

garding Definition 10.15. One may postpone such discussions to a later stage.

We admit that the identification of simple distributions as the class of inter-
esting distribution is significantly more questionable than any other identification
advocated in this book. Nevertheless, we believe that we were fully justified in re-
jecting both the aforementioned extremes (i.e., of either allowing all distributions
or allowing only the uniform distribution). Yet, the reader may wonder whether
or not we have struck the right balance between “generality” and “simplicity” (in
the intuitive sense). One specific concern is that we might have restricted the class
of distributions too much. We briefly address this concern next.

A more intuitive and very robust class of distributions, which seems to contain
all distributions that may occur in applications, is the class of polynomial-time
sampleable probability ensembles (treated in §10.2.2.2). Fortunately, the combi-
nation of the results presented in §10.2.1.2 and §10.2.2.2 seems to retrospectively
endorse the choice underlying Definition 10.15. Specifically, we note that enlarging
the class of distributions weakens the conjecture that the corresponding class of
distributional NP problems contains infeasible problems. On the other hand, the
conclusion that a specific distributional problem is not feasible becomes more ap-
pealing when the problem belongs to a smaller class that corresponds to a restricted
definition of admissible distributions. Now, the combined results of §10.2.1.2 and
§10.2.2.2 assert that a conjecture that refers to the larger class of polynomial-time
sampleable ensembles implies a conclusion that refers to a (very) simple probability
ensemble (which resides in the smaller class). Thus, the current setting in which
both the conjecture and the conclusion refer to simple probability ensembles may
be viewed as just an intermediate step.

Indeed, the big question in the current context is whether dist AP is contained
in tpcP. A positive answer (especially if extended to sampleable ensembles) would
deem the P-vs-NP Question to be of little practical significant. However, our daily
experience as well as much research effort indicate that some NP problems are
not merely hard in the worst-case, but rather “typically hard”. This leads to the
conjecture that distA'P is not contained in tpcP.

Needless to say, the latter conjecture implies P # NP, and thus we should
not expect to see a proof of it. In particular, we should not expect to see a proof
that some specific problem in dist /P is not in tpcP. What we may hope to see
is “dist/N/P-complete” problems; that is, problems in distA/P that are not in tpcP
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unless the entire class distA/P is contained in tpcP. An adequate notion of a
reduction is used towards formulating this possibility.

Step 4: Defining reductions among (distributional) problems. Intuitively,
such reductions must preserve average-case feasibility. Thus, in addition to the
standard conditions (i.e., that the reduction be efficiently computable and yield a
correct result), we require that the reduction “respects” the probability distribu-
tion of the corresponding distributional problems. Specifically, the reduction should
not map very likely instances of the first (“starting”) problem to rare instances of
the second (“target”) problem. Otherwise, having a typically polynomial-time al-
gorithm for the second distributional problem does not necessarily yield such an
algorithm for the first distributional problem. Following is the adequate analogue
of a Cook reduction (i.e., general polynomial-time reduction), where the analogue
of a Karp-reduction (many-to-one reduction) can be easily derived as a special case.

Teaching note: One may prefer presenting in class only the special case of many-to-
one reductions, which suffices for Theorem 10.17. See Footnote 15.

Definition 10.16 (reductions among distributional problems): We say that the
oracle machine M reduces the distributional problem (S,X) to the distributional
problem (T,Y) if the following three conditions hold.

1. Efficiency: The machine M runs in polynomial-time.**

2. Validity: For every x € {0,1}*, it holds that M™*(z) =1 if an only if x € S,
where MT(x) denotes the output of the oracle machine M on input x and
access to an oracle for T.

3. Domination:'> The probability that, on input X, and oracle access to T,

machine M makes the query y is upper-bounded by poly(|y|) - Pr[Y],| = y].
That is, there exists a polynomial p such that, for every y € {0,1}* and every
n € N, it holds that

PriQ(Xn) 3 9] < p(ly|) - Pr[Y}y =yl (10.2)

where Q(x) denotes the set of queries made by M on input © and oracle access
toT.

In addition, we require that the reduction does not make too short queries;
that is, there exists a polynomial p' such that if y € Q(z) then p'(|y|) > |z|.

141p fact, one may relax the requirement and only require that M is typically polynomial-time
with respect to X. The validity condition may also be relaxed similarly.

15Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions
(i.e., MT(z) = 1 if and only if f(z) € T, where f is a polynomial-time computable function):
in this case Pr[Q(X») 2 ] is replaced by Pr[f(X.) = y]. That is, Eq. (10.2) simplifies to
Prif(X») = y] < p(ly]) - Pr[Y}y| = y]. Indeed, this condition holds vacuously for any y that is not
in the image of f.
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The Lh.s. of Eq. (10.2) refers to the probability that, on input distributed as X,,,
the reduction makes the query y. This probability is required not to exceed the
probability that y occurs in the distribution Y}, by more than a polynomial factor
in [y|. In this case we say that the L.h.s. of Eq. (10.2) is dominated by Pr[Y},| = y].

Indeed, the domination condition is the only aspect of Definition 10.16 that ex-
tends beyond the worst-case treatment of reductions and refers to the distributional
setting. The domination condition does not insist that the distribution induced by
Q(X) equals Y, but rather allows some slackness that, in turn, is bounded so to
guarantee preservation of typical feasibility (see Exercise 10.15).1°

We note that the reducibility arguments extensively used in Chapters 7 and 8
(see discussion in Section 7.1.2) are actually reductions in the spirit of Defini-
tion 10.16 (except that they refer to different types of computational tasks).

10.2.1.2 Complete problems

Recall that our conjecture is that distA/P is not contained in tpcP, which in turn
strengthens the conjecture P # NP (making infeasibility a typical phenomenon
rather than a worst-case one). Having no hope of proving that distAP is not
contained in tpcP, we turn to the study of complete problems with respect to that
conjecture. Specifically, we say that a distributional problem (5, X) is distA/P-
complete if (S, X) € dist /P and every (S’, X') € distA'P is reducible to (5, X)
(under Definition 10.16).

Recall that it is quite easy to prove the mere existence of NP-complete problems
and that many natural problems are NP-complete. In contrast, in the current con-
text, establishing completeness results is quite hard. This should not be surprising
in light of the restricted type of reductions allowed in the current context. The re-
striction (captured by the domination condition) requires that “typical” instances
of one problem should not be mapped to “untypical” instances of the other prob-
lem. However, it is fair to say that standard Karp-reductions (used in establishing
NP-completeness results) map “typical” instances of one problem to somewhat
“bizarre” instances of the second problem. Thus, the current subsection may be
viewed as a study of reductions that do not commit this sin.!”

Theorem 10.17 (distANP-completeness): distA'P contains a distributional prob-
lem (T,Y") such that each distributional problem in distN'P is reducible (per Defini-
tion 10.16) to (T,Y). Furthermore, the reductions are via many-to-one mappings.

Proof: We start by introducing such a (distributional) problem, which is a
natural distributional version of the decision problem Sy (used in the proof of

16We stress that the notion of domination is incomparable to the notion of statistical (resp.,
computational) indistinguishability. On one hand, domination is a local requirement (i.e., it
compares the two distribution on a point-by-point basis), whereas indistinguishability is a global
requirement (which allows rare exceptions). On the other hand, domination does not require
approximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-
tion is not symmetric. We comment that a more relaxed notion of domination that allows rare
violations (as in Footnote 14) suffices for the preservation of typical feasibility.

17The latter assertion is somewhat controversial. While it seems totally justified with respect
to the proof of Theorem 10.17, opinions regarding the proof of Theorem 10.19 may differ.
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Theorem 2.19). Recall that Sy contains the instance (M,z,1%) if there exists
y € U;i<¢{0,1}" such that machine M accepts the input pair (z,y) within ¢ steps.
We couple Sy with the “quasi-uniform” probability ensemble U’ that assigns to
the instance (M, z,1!) a probability mass proportional to 2=(M[+1=])  Specifically,
for every (M, x,1%) it holds that

o— (18] +]e])
(3)
e def

where n € |(M,2,1%)] % |M| + |z| + t. Note that, under a suitable natural
encoding, the ensemble U’ is indeed simple.'®

The reader can easily verify that the generic reduction used when reducing
any set in NP to Sy (see the proof of Theorem 2.19), fails to reduce distAP
to (Su,U’). Specifically, in some cases (see next paragraph), these reductions do
not satisfy the domination condition. Indeed, the difficulty is that we have to
reduce all dist/A/P problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., (Su,U’)). In contrast,
considering the distributions induced by the aforementioned reductions, we end
up with many distributional versions of Sy, and furthermore the corresponding
distributions are very different (and are not necessarily dominated by a single
distribution).

Let us take a closer look at the aforementioned generic reduction (of S to Sy),
when applied to an arbitrary (S, X) € distA/P. This reduction maps an instance
x to a triple (Ms,z, lpS(“”‘)), where Mg is a machine verifying membership in
S (while using adequate NP-witnesses) and pg is an adequate polynomial. The
problem is that x may have relatively large probability mass (i.e., it may be that
PriXp =a] > 2-121y while (Mg, z,175(2D) has “uniform” probability mass (i.e.,
(Mg, z,1Ps(2])) has probability mass smaller than 212l in U’). This violates the
domination condition (see Exercise 10.18), and thus an alternative reduction is
required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution. This means that the encoding
should shrink strings that have relatively large probability mass under the origi-
nal distribution. Specifically, this encoding will map x (taken from the ensemble
{Xn}nen) to a codeword 2’ of length that is upper-bounded by the logarithm of
1/Pr[X|;| = ], ensuring that Pr[X; =x] = O(271#'l). Accordingly, the reduction
will map « to a triple (Mg, x, ', 17" (*D), where |2'| < O(1) + log, (1/Pr[X |, =1])
and Mg x is an algorithm that (given z’ and x) first verifies that «’ is a proper
encoding of z and next applies the standard verification (i.e., Mg) of the problem
S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency,

PrU! = (M,z,1%)] = (10.3)

18For example, we may encode (M, z,1%), where M = 01 ---0}, € {0,1}* and z =71 --- 74 €
{0,1}¢, by the string 107 --- 00017171 - - - 74701t. Then (g) - Pr[U!, < (M,z,1%)] equals
(iparp el — 1) + 27 M (M€ {0, 1M1 M7 < MY+ 27 (MIFEED - fal € {0,131 1#) 2 o < @},
where i, ¢ ; is the ranking of {k,k + £} among all 2-subsets of [k + £+ t].
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validity, and domination). Thus, instead of forcing the structure of the original
distribution X on the target distribution U’, the reduction will incorporate the
structure of X in the reduced instance. A key ingredient in making this possible is
the fact that X is simple (as per Definition 10.15).

With the foregoing motivation in mind, we now turn to the actual proof; that
is, proving that any (S,X) € distA’P is reducible to (Su,U’). The following
technical lemma is the basis of the reduction. In this lemma as well as in the
sequel, it will be convenient to consider the (accumulative) distribution function

of the probability ensemble X. That is, we consider u(z) def Pr[X; < o], and
note that p : {0,1}* — [0,1] is polynomial-time computable (because X satisfies
Definition 10.15).

Coding Lemma:*® Let u : {0,1}* — [0, 1] be a polynomial-time computable function
that is monotonically non-decreasing over {0,1}™ for every n (i.e., u(z') < p(z")
for any 2’ < 2’ € {0,1}1*'l). For z € {0,1}"\ {0}, let z — 1 denote the string
preceding z in the lexicographic order of n-bit long strings. Then there exist an
encoding function C), that satisfies the following three conditions.

1. Compression: For every « it holds that |Cy(2)| < 1+ min{|z|,log,(1/p1'(z))},

where p'(z) Lef w(x) —p(z —1) if ¢ € {0}* and p/(0™) Lef 1(0™) otherwise.

2. Efficient Encoding: The function C}, is computable in polynomial-time.

3. Unique Decoding: For every n € N, when restricted to {0,1}", the function
C, is one-to-one (i.e., if Cy(x) = C,(z") and |z| = |2'| then z = z').

Proof: The function C, is defined as follows. If p/(z) < 27/° then C,(z) = 0z
(ie., in this case x serves as its own encoding). Otherwise (i.e., u'(z) > 2~12I)
then C,(x) = 1z, where z is chosen such that |z| < log,(1/u'(z)) and the mapping
of n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected to
equal the shortest binary expansion of a number in the interval (u(z) —p'(z), p(x)].
Bearing in mind that this interval has length p'(z) and that the different intervals
are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that p'(z) > 2712, and detail the way that z is selected
(for the encoding C,(z) = 12). If 2 > 0/l and u(x) < 1, then we let z be the
longest common prefix of the binary expansions of u(z — 1) and u(x); for example,
if £(1010) = 0.10010 and ©(1011) = 0.10101111 then C,(1011) = 1z with z = 10.
Thus, in this case 0.z1 is in the interval (u(z—1), u(z)] (i.e., p(z—1) < 0.21 < p(z)).
For = = 0/*l, we let 2z be the longest common prefix of the binary expansions of 0
and p(z) and again 0.z1 is in the relevant interval (i.e., (0, u(z)]). Finally, for z such
that u(z) = 1 and p(z—1) < 1, we let z be the longest common prefix of the binary
expansions of u(z—1) and 1—271#*1=1 and again 0.z1 is in (u(z—1), u(z)] (because

19The lemma actually refers to {0,1}™, for any fixed value of n, but the efficiency condition
is stated more easily when allowing n to vary (and using the standard asymptotic analysis of
algorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-
time computable functions that are monotonically non-decreasing over {0, 1}* (rather than over
{0,1}™). See further discussion in Exercise 10.19.
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w(x) > 271 and p(r — 1) < p(z) = 1 imply that pu(z — 1) < 1 — 27171 < pu(z)).
Note that if pu(z) = p(z — 1) = 1 then p/(z) =0 < 27121,

We now verify that the foregoing C), satisfies the conditions of the lemma. We
start with the compression condition. Clearly, if u'(z) < 2~1°l then |C,(z)| =
1+ |z| <14 logy(1/p/(x)). On the other hand, suppose that u'(z) > 27/l and
let us focus on the sub-case that z > 01l and pu(z) < 1. Let z = 2, --- 2 be
the longest common prefix of the binary expansions of pu(z — 1) and u(z). Then,
w(z — 1) = 0.20u and pu(x) = 0.z1v, where w,v € {0,1}*. We infer that

’ _ poly(z]) 4 _
W) = pla)—ple—1) < [ D27+ Y 27| =) 27 < 275
i=1 i=041 i=1

and |z| < log,(1/p'(x)) < |z| follows. Thus, |Cp(z)| < 1+ min(|z|,logy(1/p'(x)))
holds in both cases. Clearly, C, can be computed in polynomial-time by computing
p(z—1) and p(z). Finally, note that C,, satisfies the unique decoding condition, by
separately considering the two aforementioned cases (i.e., Cy,(z) = Oz and Cy(z) =
1z). Specifically, in the second case (i.e., Cy(z) = 1z), use the fact that p(z —1) <
0.z21 < p(z). O

In order to obtain an encoding that is one-to-one when applied to strings of

different lengths, we augment C,, in the obvious manner; that is, we consider

C.(z) Lef (|z], Cu(z)), which may be implemented as C;, (z) = 0107 - - 0¢0,01C, ()

where oy --- 0y is the binary expansion of |z|. Note that |C] (z)| = O(log|z|) +
|Cu(z)| and that C), is one-to-one (over {0,1}").

The machine associated with (S, X). Let pu be the accumulative probability func-
tion associated with the probability ensemble X, and Mg be the polynomial-time
machine that verifies membership in S while using adequate NP-witnesses (i.e.,
z € S if and only if there exists y € {0,1}P°¥(#) such that M(z,y) = 1). Using
the encoding function C},, we introduce an algorithm Mg, with the intension of
reducing the distributional problem (S, X) to (Su,U’) such that all instances (of
S) are mapped to triples in which the first element equals Mg, ,. Machine Mg,
is given an alleged encoding (under C},) of an instance to S along with an alleged
proof that the corresponding instance is in 5, and verifies these claims in the ob-
vious manner. That is, on input ' and (z,y), machine Mg, first verifies that
z' = C),(z), and next verifiers that z € S by running Ms(z,y). Thus, Ms,, verifies
membership in the set 5" = {C},(z) : € S}, while using proofs of the form (z,y)
such that Mg(z,y) = 1 (for the instance C/,(z)).*

The reduction. We maps an instance z (of S) to the triple (MS,H,CL(x),IP(‘I‘)),

where p(n) def ps(n)+pc(n) such that pg is a polynomial representing the running-
time of Mg and p¢ is a polynomial representing the running-time of the encoding
algorithm.

20Note that |y| = poly(|z|), but |z| = poly(|C),(z)]) does not necessarily hold (and so S' is not

necessarily in NP). As we shall see, the latter point is immaterial.
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Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes
a reduction of (S,X) to (Su,U'). We verify the corresponding three requirements
(of Definition 10.16).

1. Using the fact that CL is polynomial-time computable (and noting that p
is a polynomial), it follows that the foregoing mapping can be computed in
polynomial-time.

2. Recall that, on input (z', (z,y)), machine Mg , accepts if and only if 2’ =
C(z) and Mg accepts (z,y) within ps(|z|) steps. Using the fact that C},(z)
uniquely determines =, it follows that x € S if and only if C} (z) € S,
which in turn holds if and only if there exists a string y such that Mg,
accepts (C,(z),(z,y)) in at most p(|z|) steps. Thus, z € S if and only if
(Ms,u, C), (), 17(=D) € Sy, and the validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation z — Cj () is one-to-
one). Next, we note that it suffices to consider instances of Sy that have
a preimage under the foregoing mapping (since instances with no preimage
trivially satisfy the domination condition). Each of these instances (i.e., each
image of this mapping) is a triple with the first element equal to Mg, and
the second element being an encoding under Cj,. By the definition of U’, for

every such image (Ms ,, C), (), 17(=Dy € {0,1}", it holds that

2
> c¢-n 2.2 (Cu(@)[+0og e]))

—1
PAU, = (Mg, C'(x), 172Dy = <”> - 9=(1Ms W +1CL (@)D

where ¢ = 27IMs.xl=1 is a constant depending only on S and p (i.e., on the

distributional problem (S, X)). Thus, for some positive polynomial ¢, we
have
PHUY, = (Ms,,,, (), 170D)] > 2101 g (). (10.4)

By virtue of the compression condition (of the Coding Lemma), we have
2-1Cu (@)l > 9—1-min(Je[log>(1/1' () Tt follows that

2710x) > PriX | = a]/2. (10.5)
Recalling that z is the only preimage that is mapped to (Ms ,, C, (), 1P(=D)y
and combining Eq. (10.4) & (10.5), we establish the domination condition.
The theorem follows. W
Reflections: The proof of Theorem 10.17 highlights the fact that the reduction

used in the proof of Theorem 2.19 does not introduce much structure in the reduced
instances (i.e., does not reduce the original problem to a “highly structured special
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case” of the target problem). Put in other words, unlike more advanced worst-case
reductions, this reduction does not map “random” (i.e., uniformly distributed)
instances to highly structured instances (which occur with negligible probability
under the uniform distribution). Thus, the reduction used in the proof of The-
orem 2.19 suffices for reducing any distributional problem in dist AP to a distri-
butional problem consisting of Sy coupled with some simple probability ensemble
(see Exercise 10.20).%!

However, Theorem 10.17 states more than the latter assertion. That is, it states
that any distributional problem in dist VP is reducible to the same distributional
version of Sy. Indeed, the effort involved in proving Theorem 10.17 was due to
the need for mapping instances taken from any simple probability ensemble (which
may not be the uniform ensemble) to instances distributed in a manner that is
dominated by a single probability ensemble (i.e., the quasi-uniform ensemble U').

Once we have established the existence of one distA/P-complete problem, we
may establish the distVP-completeness of other problems (in distAP) by reduc-
ing some distA"P-complete problem to them (and relying on the transitivity of
reductions (see Exercise 10.17)). Thus, the difficulties encountered in the proof of
Theorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe dif-
ficulty arises: almost all known reductions in the theory of NP-completeness work
by introducing much structure in the reduced instances (i.e., they actually reduce
to highly structured special cases). Furthermore, this structure is too complex in
the sense that the distribution of reduced instances does not seem simple (in the
sense of Definition 10.15). Actually, as demonstrated next, the problem is not
the existence of a structure in the reduced instances but rather the complexity of
this structure. In particular, if the aforementioned reduction is “monotone” and
“length regular” then the distribution of the reduced instances is simple enough
(i.e., is simple in the sense of Definition 10.15):

Proposition 10.18 (sufficient condition for distAP-completeness): Suppose that
f is a Karp-reduction of the set S to the set T such that, for every «',z" € {0,1}*,
the following two conditions hold:

1. (f is monotone): If ' < z'" then f(z') < f(z'"), where the inequalities refer
to the standard lexicographic order of strings.??

2. (f is length-regular): |2'| = |2"| if and only if |f(z")| = |f(z")].

Then if there exists an ensemble X such that (S, X) is distN"P-complete then there
exists an ensemble Y such that (T,Y) is distAP-complete.

Proof Sketch: Note that the monotonicity of f implies that f is one-to-one
and that for every z it holds that f(z) > z. Furthermore, as shown next, f
is polynomial-time invertible. Intuitively, the fact that f is both monotone and

21 Note that this cannot be said of most known Karp-reductions, which do map random instances
to highly structured ones. Furthermore, the same (structure creating property) holds for the
reductions obtained by Exercise 2.31.

221n particular, if |2’| < [2"'| then 2z’ < 2. Recall that for |2/| = [2""] it holds that 2’ < 2" if

and only if there exists w,u/,u” € {0,1}* such that z’ = wOu’ and 2" = wlu’.
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polynomial-time computable implies that a preimage can be found by a binary
search. Specifically, given y = f(z), we search for = by iteratively halving the
interval of potential solutions, which is initialized to [0,y] (since z < f(x)). Note
that if this search is invoked on a string y that is not in the image of f, then it
terminates while detecting this fact.

Relying on the fact that f is one-to-one (and length-regular), we define the
probability ensemble Y = {Y, }, such that for every x it holds that Pr[Y|s,) =
f(x)] = Pr[X|; = a]. Specifically, letting £(m) = |f(1™)| and noting that ¢ is
one-to-one and monotonically non-decreasing, we define

PriXp, =2] ifz=f""(y)
PriYj, =yl =4 0 if Im s.t. y € {0, 1} \ {f(x) : v€{0,1}™}
2~ 1yl otherwise (i.e., if [y| & {¢(m) : me N},

Clearly, (S,X) is reducible to (T,Y) (via the Karp-reduction f, which, due to
our construction of Y, also satisfies the domination condition). Thus, using the
hypothesis that dist AP is reducible to (5, X') and the transitivity of reductions (see
Exercise 10.17), it follows that every problem in distA/P is reducible to (7',Y"). The
key observation, to be established next, is that Y is a simple probability ensemble,
and it follows that (7,Y) is in distA/P.

Loosely speaking, the simplicity of Y follows by combining the simplicity of
X and the properties of f (i.e., the fact that f is monotone, length-regular, and
polynomial-time invertible). The monotonicity and length-regularity of f implies
that Pr[Y);(,) < f()] = Pr[X},| <z]. More generally, for any y € {0,1}*™), it holds
that Pr[Yy(m) <y] = Pr[X,, <z], where z is the lexicographicly largest string such
that f(z) <y (and, indeed, if |z| < m then Pr[Yy(,,) <y] = Pr[X,, <z] = 0).?* Note
that this « can be found in polynomial-time by the inverting algorithm sketched in
the first paragraph of the proof. Thus, we may compute Pr[Y},| <y| by finding the
adequate x and computing Pr[X |, <z]. Using the hypothesis that X is simple, it
follows that Y is simple (and the proposition follows). O

On the existence of adequate Karp-reductions. Proposition 10.18 implies
that a sufficient condition for the distA/P-completeness of a distributional version
of a (NP-complete) set T is the existence of an adequate Karp-reduction from the
set Sy to the set T'; that is, this Karp-reduction should be monotone and length-
regular. While the length-regularity condition seems easy to impose (by using
adequate padding), the monotonicity condition seems more problematic. Fortu-
nately, it turns out that the monotonicity condition can also be imposed by using
adequate padding (or rather an adequate “marking” — see Exercises 2.30 and 10.21).
We highlight the fact that the existence of an adequate padding (or “marking”) is
a property of the set T itself. In Exercise 10.21 we review a method for modifying
any Karp-reduction to a “monotonically markable” set T into a Karp-reduction (to

23Having Y, be uniform in this case is a rather arbitrary choice, which is merely aimed at
guaranteeing a “simple” distribution on n-bit strings (also in this case).

24\We also note that the case in which |y| is not in the image of £ can be easily detected and
taken care off accordingly.
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T') that is monotone and length-regular. In Exercise 10.23 we provide evidence to
the thesis that all natural NP-complete sets are monotonically markable. Combin-
ing all these facts, we conclude that any natural NP-complete decision problem can
be coupled with a simple probability ensemble such that the resulting distributional
problem is distAVP-complete. As a concrete illustration of this thesis, we state the
corresponding (formal) result for the twenty-one NP-complete problems treated in
Karp’s paper on NP-completeness [136].

Theorem 10.19 (a modest version of a general thesis): For each of the twenty-
one NP-complete problems treated in [136] there exists a simple probability ensemble
such that the combined distributional problem is distAVVP-complete.

The said list of problems includes SAT, Clique, and 3-Colorability.

10.2.1.3 Probabilistic versions

The definitions in §10.2.1.1 can be extended so that to account also for randomized
computations. For example, extending Definition 10.14, we have:

Definition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f, and a time-bound function t:N— N, we say that the string x is t-bad for
A with respect to f if with probability exceeding 1/3, on input x, either A(z) # f(z)
or A runs more that t(|x|) steps. We say that A typically solves (S, {X,},cn) in
probabilistic polynomial-time if there exists a polynomial p such that the probability
that X,, is p-bad for A with respect to the characteristic function of S is negligible.
We denote by tpcBPP the class of distributional problems that are typically solvable
in probabilistic polynomial-time.

The definition of reductions can be similarly extended. This means that in Defini-
tion 10.16, both M7 (x) and Q(x) (mentioned in Items 2 and 3, respectively) are
random variables rather than fixed objects. Furthermore, validity is required to
hold (for every input) only with probability 2/3, where the probability space refers
only to the internal coin tosses of the reduction. Randomized reductions are closed
under composition and preserve typical feasibility (see Exercise 10.24).

Randomized reductions allow the presentation of a dist/NP-complete problem
that refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-
lishes the distA"P-completeness of (Su,U’), where U’ is a quasi-uniform ensemble
(ie., PriU, = (M,z,1%)] = 2-UMI+=D /(7)) where n = |(M,z,1%)]). We first
note that (Sy,U’) can be randomly reduced to (S, U"), where Sy, = {(M,x,z) :
(M, z, 15y € Sy} and Pr{U}} = (M, z)] = 2= UM IFlel+=D /() for every (M, z, 2) €
{0,1}™. The randomized reduction consists of mapping (M,x,1") to (M,x,z),
where z is uniformly selected in {0,1}". Recalling that U = {U,},cn denotes the
uniform probability ensemble (i.e., U,, is uniformly distributed on strings of length
n) and using a suitable encoding we get.

Proposition 10.21 There ezists S € NP such that every (S',X') € distN'P is
randomly reducible to (S,U).
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Proof Sketch: By the forgoing discussion, every (S’, X') € dist AP is randomly
reducible to (Sy,U"), where the reduction goes through (Sy,U’). Thus, we focus
on reducing (S, U") to (Sy,U), where S € NP is defined as follows. The string
bin,(Ju|)-bin,(|v|)uvw is in Sy if and only if (v, v, w) € Sj and £ = [log, |[uvw|] +1,
where bin, (i) denotes the ¢-bit long binary encoding of the integer i € [2°71] (i.e.,
the encoding is padded with zeros to a total length of £). The reduction maps
(M, z, z) to the string bin,(|z|ybin,(|M|)Mwxz, where £ = [log, (| M| + |x| + |2])]+1.
Noting that this reduction satisfies all conditions of Definition 10.16, the proposi-
tion follows. O

10.2.2 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 10.2.1
is the choice to focus on simple probability ensembles, which in turn restricts “dis-
tributional versions of NP” to the class dist VP (Definition 10.15). As indicated
§10.2.1.1, this restriction raises two opposite concerns (i.e., that distA/P is either
too wide or too narrow).2> Here we address the concern that the class of sim-
ple probability ensembles is too restricted, and consequently that the conjecture
dist VP & tpcBPP is too strong (which would mean that distA/P-completeness is
a weak evidence for typical-case hardness). An appealing extension of the class of
simple probability ensembles is presented in §10.2.2.2; yielding an corresponding
extension of dist VP, and it is shown that if this extension of distA/P is not con-
tained in tpcBPP then distA/P itself is not contained in tpcBPP. Consequently,
dist A"P-complete problems enjoy the benefit of both being in the more restricted
class (i.e., dist ’P) and being hard as long as some problems in the extended class
is hard.

Another extension appears in §10.2.2.1, where we extend the treatment from
decision problems to search problems. This extension is motivated by the realiza-
tion that search problem are actually of greater importance to real-life applications
(cf. Section 2.1.1), and hence a theory motivated by real-life applications must
address such problems, as we do next.

Prerequisites: For the technical development of §10.2.2.1, we assume familiar-
ity with the notion of unique solution and results regarding it as presented in
Section 6.2.3. For the technical development of §10.2.2.2, we assume familiarity
with hashing functions as presented in Appendix D.2. In addition, the technical
development of §10.2.2.2 relies on §10.2.2.1.

10.2.2.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least as im-
portant as decision problems. Thus, an average-case treatment of search problems

250n one hand, if the definition of distA/P were too liberal then membership in distA/P would
mean less than one may desire. On the other hand, if distA/P were too restricted then the
conjecture that dist AP contains hard problems would have been very questionable.
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is indeed called for. We first present distributional versions of PF and PC (cf.
Section 2.1.1), following the underlying principles of the definitions of tpcP and
distA'P.

Definition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we con-
sitder only polynomially bounded search problems; that is, binary relations R C
{0,1}* x {0,1}* such that for some polynomial q it holds that (x,y) € R implies
lyl < q(Jz]). Recall that R(z) < {y : (z,y) R} and Sp = {x : R(z) # 0}.
e A distributional search problem consists of a polynomially bounded search prob-
lem coupled with a probability ensemble.

e The class tpcPF consists of all distributional search problems that are typ-
ically solvable in polynomial-time. That is, (R,{Xn}neN) € tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible,
where A errs on x € Sg if A(x) € R(z) and errs on x & Sg if A(x) # L.

o A distributional search problem (R,X) is in distPC if R € PC and X is
simple (as in Definition 10.15).

Likewise, the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomial-time (cf., Definition 10.20). The
definitions of reductions among distributional problems, presented in the context of
decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distribu-
tional search problems “reduces” to the study of distributional decision problems.

Theorem 10.23 (reducing search to decision): distPC C tpcBPPF if and only if
distA/P C tpcBPP. Furthermore, every problem in dist NP is reducible to some

problem in distPC, and every problem in distPC is randomly reducible to some
problem in distA/P.

Proof Sketch: The furthermore part is analogous to the actual contents of the
proof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.16). Indeed the
reduction of NP to PC presented in the proof of Theorem 2.6 extends to the current
context. Specifically, for any S € NP, we consider a relation R € PC such that
S = {z : R(z) # 0}, and note that, for any probability ensemble X, the identity
transformation reduces (S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the proof of The-

orem 2.6 we reduced the search problem of R € PC to deciding membership in

Sk def (z,y"y : Fy" s.t. (z,y'y") € R} € NP. The difficulty encountered here is

that, on input z, this reduction makes queries of the form (z,y'), where y' is a
prefix of some string in R(x). These queries may induce a distribution that is not
dominated by any simple distribution. Thus, we seek an alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions (in the
sense of Definition 6.28); that is, for every z it holds that |R(z)| < 1. In this case
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we may easily reduce the search problem of R € PC to deciding membership in
St € N'P, where (z,i,0) € S} if and only if R(x) contains a string in which the
i*" bit equals o. Specifically, on input z, the reduction issues the queries (x,i,0),
where ¢ € [¢] (with £ = poly(|z|)) and o € {0,1}, which allows for determining the
single string in the set R(z) C {0,1}* (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X) € distPC (having unique solutions) to
(S%,X") € distN'P, where X" equally distributes the probability mass of « (under
X) to all the tuples (z,i,0); that is, for every i € [{] and o € {0,1}, it holds that
PriX |l ioy = (,0,0)] equals Pr[X|, = x]/2L.

Unfortunately, in the general case, R may not have unique solutions. Nev-
ertheless, applying the main idea that underlies the proof of Theorem 6.29, this
difficulty can be overcome. We first note that the foregoing mapping of instances
of the distributional problem (R, X) € distPC to instances of (S%,X") € distA'P
satisfies the efficiency and domination conditions even in the case that R does not
have unique solutions. What may possibly fail (in the general case) is the validity
condition (i.e., if |R(z)| > 1 then we may fail to recover any element of R(x)).

Recall that the main part of the proof of Theorem 6.29 is a randomized reduction
that maps instances of R to triples of the form (z,m,h) such that m is uniformly
distributed in [¢] and h is uniformly distributed in a family of hashing function
H}", where ¢ = poly(|z|) and H}" is as in Appendix D.2. Furthermore, if R(z) # 0

then, with probability ©(1/€) over the choices of m € [{] and h € H}*, there exists

a unique y € R(x) such that h(y) = 0™. Defining R'(z,m,h) = {y € R(x) :

h(y) =0}, this yields a randomized reduction of the search problem of R to the
search problem of R’ such that with noticeable probability?® the reduction maps
instances that have solutions to instances having a unique solution. Furthermore,
this reduction can be used to reduce any (R, X) € distPC to (R, X') € distPC,
where X' distributes the probability mass of x (under X) to all the triples (x, m,h)
such that for every m € [(] and h € Hi" it holds that Pr[X| .. . = (z,m,h)]
equals Pr[X|,| = x]/(¢-|H;"|). (Note that with a suitable encoding, X' is indeed
simple.)

The theorem follows by combining the two aforementioned reductions. That is,
we first apply the randomized reduction of (R, X) to (R', X'), and next reduce the
resulting instance to an instance of the corresponding decision problem (S%,, X"),
where X" is obtained by modifying X' (rather than X'). The combined randomized
mapping satisfies the efficiency and domination conditions, and is valid with notice-
able probability. The error probability can be made negligible by straightforward
amplification (see Exercise 10.24). O

10.2.2.2 Simple versus sampleable distributions

Recall that the definition of simple probability ensembles (underlying Definition 10.15)
requires that the accumulating distribution function is polynomial-time computable.

26Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it is
greater than the reciprocal of some positive polynomial. In the context of randomized reductions,
the relevant parameter is the length of the input to the reduction.
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Recall that p : {0,1}* — [0,1] is called the accumulating distribution function of

X ={X,}nen if for every n € N and = € {0,1}" it holds that u(z) = PriX, <z,
where the inequality refers to the standard lexicographic order of n-bit strings.

As argued in §10.2.1.1, the requirement that the accumulating distribution func-
tion is polynomial-time computable imposes severe restrictions on the set of ad-
missible ensembles. Furthermore, it seems that these simple ensembles are indeed
“simple” in some intuitive sense, and that they represent a reasonable (alas dis-
putable) model of distributions that may occur in practice. Still, in light of the fear
that this model is too restrictive (and consequently that distA/P-hardness is weak
evidence for typical-case hardness), we seek a maximalistic model of distributions
that may occur in practice. Such a model is provided by the notion of polynomial-
time sampleable ensembles (underlying Definition 10.24). Our maximality thesis
is based on the belief that the real world should be modeled as a feasible ran-
domized process (rather than as an arbitrary process). This belief implies that all
objects encountered in the world may be viewed as samples generated by a feasible
randomized process.

Definition 10.24 (sampleable ensembles and the class sampAP): We say that a
probability ensemble X = {X,},,cn 75 (polynomial-time) sampleable if there exists
a probabilistic polynomial-time algorithm A such that for every xz € {0,1}* it holds
that PrlA(1l*l) = 2] = Pr[X|, = x]. We denote by sampN'P the class of distri-
butional problems consisting of decision problems in NP coupled with sampleable
probability ensembles.

We first note that all simple probability ensembles are indeed sampleable (see
Exercise 10.25), and thus distA"P C sampAP. On the other hand, there exist
sampleable probability ensembles that do not seem simple (see Exercise 10.26).

Extending the scope of distributional problems (from dist VP to sampAP) fa-
cilitates the presentation of complete distributional problems. We first note that
it is easy to prove that every natural NP-complete problem has a distributional
version in sampA P that is distA’P-hard (see Exercise 10.27). Furthermore, it is
possible to prove that all natural NP-complete problem have distributional versions
that are sampAP-complete. (In both cases, “natural” means that the correspond-
ing Karp-reductions do not shrink the input, which is a weaker condition than the
one in Proposition 10.18.)

Theorem 10.25 (sampA P-completeness): Suppose that S € NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the input.

Then there exists a polynomial-time sampleable ensemble X such that any problem
in sampN'P is reducible to (S, X)

The proof of Theorem 10.25 is based on the observation that there exists a polynomial-
time sampleable ensemble that dominates all polynomial-time sampleable ensembles.
The existence of this ensemble is based on the notion of a universal (sampling) ma-
chine. For further details see Exercise 10.28.

Theorem 10.25 establishes a rich theory of samp A\ P-completeness, but does not
relate this theory to the previously presented theory of distAVP-completeness (see
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sampNP-complete [Thm 10.25]

distNP-complete [Thm 10.17 and 10.19]

Figure 10.1: Two types of average-case completeness

Figure 10.1). This is essentially done in the next theorem, which asserts that the
existence of typically hard problems in sampANP implies their existence in distA/P.

Theorem 10.26 (sampA P-completeness versus dist/VP-completeness): If sampN P
is not contained in tpcBPP then distA'P is not contained in tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are
equivalent. That is, if some “sampleable distribution” versions of NP are not
typically feasible then some “simple distribution” versions of NP are not typically
feasible. In particular, if sampNP-complete problems are not in tpcBPP then
dist N"P-complete problems are not in tpcBPP.

The foregoing assertions would all follow if sampN P were (randomly) reducible
to dist AP (i.e., if every problem in sampNP were reducible (under a randomized
version of Definition 10.16) to some problem in distAP); but, unfortunately, we
do not know whether such reductions exist. Yet, underlying the proof of Theo-
rem 10.26 is a more liberal notion of a reduction among distributional problems.

Proof Sketch: We shall prove that if dist AP is contained in tpcBPP then the
same holds for sampNP (i.e., sampAN P is contained in tpcBPP). Relying on
Theorem 10.23 and Exercise 10.29, it suffices to show that if distPC is contained in
tpcBPPF then the sampleable version of distPC, denoted sampPC, is contained
in tpcBPPF. This will be shown by showing that, under a relaxed notion of a
randomized reduction, every problem in sampPC is reduced to some problem in
distPC. Loosely speaking, this relaxed notion (of a randomized reduction) only
requires that the validity and domination conditions (of Definition 10.16 (when
adapted to randomized reductions)) hold with respect to a noticeable fraction of
the probability space of the reduction.?” We start by formulating this notion, when
referring to distributional search problems.

2"We warn that the existence of such a relaxed reduction between two specific distributional
problems does not necessarily imply the existence of a corresponding (standard average-case)
reduction. Specifically, although standard validity can be guaranteed (for problems in PC) by
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Teaching note: The following proof is quite involved and is better left for advanced
reading. Its main idea is related to one of the central ideas underlying the currently
known proof of Theorem 8.11. This fact as well as numerous other applications of this

idea, provide additional motivation for reading the following proof.

Definition: A relaxed reduction of the distributional problem (R, X) to the distri-
butional problem (7',Y) is a probabilistic polynomial-time oracle machine M that
satisfies the following conditions with respect to a family of sets {2, C {0, 1}(=])
x € {0,1}*}, where m(]z|) = poly(|z|) denotes an upper-bound on the number of
the internal coin tosses of M on input x:

Density (of 2,): There exists a noticeable function p : N — [0,1] (ie., p(n) >
1/poly(n)) such that, for every @ € {0,1}*, it holds that || > p(|z|)-2mU=D.

Validity (with respect to 2,): For every r € , the reduction yields a correct an-
swer; that is, M (z,7) € R(z) if R(z) # 0 and M*(z,r) = L otherwise,
where M7 (z,r) denotes the execution of M on input z, internal coins 7, and
oracle access to 1.

Domination (with respect to 2,): There exists a positive polynomial p such that,
for every y € {0,1}* and every n € N, it holds that

PriQ"(X,) 3 y] < p(ly]) - Pr[Y}y = 9], (10.6)

where Q'(z) is a random variable, defined over the set ., representing the
set of queries made by M on input z, coins in ., and oracle access to T.
That is, Q'(z) is defined by uniformly selecting r € 2, and considering the
set of queries made by M on input z, internal coins r, and oracle access to T'.
(In addition, as in Definition 10.16, we also require that the reduction does
not make too short queries.)

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R € PC, if there exists a relaxed reduction of (R, X) to
(T,Y) and (T,Y) is in tpcBPPF then (R, X) is in tpcBPPF. The key observation
is that the analysis may discard the case that, on input x, the reduction selects
coins not in Q.. Indeed, the queries made in that case may be untypical and the
answers received may be wrong, but this is immaterial. What matter is that, on
input x, with noticeable probability the reduction selects coins in 2., and produces
“typical with respect to Y queries (by virtue of the relaxed domination condition).
Such typical queries are answered correctly by the algorithm that typically solves
(T,Y), and if « has a solution then these answers yield a correct solution to x
(by virtue of the relaxed validity condition). Thus, if « has a solution then with
noticeable probability the reduction outputs a correct solution. On the other hand,
the reduction never outputs a wrong solution (even when using coins not in ),
because incorrect solutions are detected by relying on R € PC.

repeated invocations of the reduction, such a process will not redeem the violation of the standard
domination condition.
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Our goal is presenting, for every (R,X) € sampPC, a relaxed reduction of
(R, X) to a related problem (R',X') € distPC. (We use the standard notation
X ={Xo}pen and X' = {X },en)

An oversimplified case: For starters, suppose that X, is uniformly distributed on
some set S, C {0,1}" and that there is a polynomial-time computable and invert-
ible mapping p of S, to {0,1}*™) where £(n) = log,|S,|. Then, mapping z to
1l=I=t=Doy(z), we obtain a reduction of (R, X) to (R', X"), where X/, , is uniform
over {170y : v € {0,1}*™} and R (1" *™0v) = R(u ' (v)) (or, equivalently,
R(z) = R'(11*1=*U=Doy(x))). Note that X' is a simple ensemble and R’ € PC;
hence, (R', X') € distPC. Also note that the foregoing mapping is indeed a valid
reduction (i.e., it satisfies the efficiency, validity, and domination conditions). Thus,
(R, X) is reduced to a problem in distPC (and indeed the relaxation was not used
here).

A simple but more instructive case: Next, we drop the assumption that there is
a polynomial-time computable and invertible mapping p of S, to {0,1}*("™) but
maintain the assumption that X, is uniform on some set S, C {0,1}" and as-
sume that |S,| = 2¢™ is easily computable (from n). In this case, we may map
x € {0,1}" to its image under a suitable randomly chosen hashing function h, which
in particular maps n-bit strings to £(n)-bit strings. That is, we randomly map = to
(h,1"=4™")0h(z)), where h is uniformly selected in a set HE™ of suitable hash func-
tions (see Appendix D.2). This calls for redefining R’ such that R'(h,1"~4™0v)
corresponds to the preimages of v under h that are in S,,. Assuming that his a 1-1
mapping of S, to {0,1}4™) we may define R'(h, 1" “™0v) = R(x) such that z is
the unique string satisfying = € S,, and h(z) = v, where the condition z € S,, may
be verified by providing the internal coins of the sampling procedure that generate
x. Denoting the sampling procedure of X by S, and letting S(1™,r) denote the
output of S on input 1™ and internal coins r, we actually redefine R’ as

R'(h, 1" ™0v) = {(r,y) : W(SA™,7))=v Ay R(S(1™,7))}. (10.7)

We note that (r,y) € R'(h,11e1=¢0=Dop(z)) yields a desired solution y € R(z)
if S(1/*1,7) = x, but otherwise “all bets are off” (since y will be a solution for
S(1l,7) # ). Now, although typically A will not be a 1-1 mapping of S, to
{0,1}“”), it is the case that for each x € S,, with constant probability over the
choice of h, it holds that h(x) has a unique preimage in S, under h. (See the proof
of Theorem 6.29.) In this case (r,y) € R'(h, 11=1=¢U2Don(x)) implies S(11*l7) = =
(which, in turn, implies y € R(z)). We claim that the randomized mapping of
z to (h, 1" *™On(z)), where h is uniformly selected in HZWD, yields a relazed

||
reduction of (R, X) to (R',X'"), where X|, is uniform over HA « {1n=tm)y
v € {0,1}¥("}. Needless to say, the claim refers to the reduction that (on input z,
makes the query (h, 1"~*™0h(z)), and) returns y if the oracle answer equals (r,y)
and y € R(x).
The claim is proved by considering the set Q. of choices of h € H‘Z(‘lzl) for

T

which x € S, is the only preimage of h(x) under h that resides in S, (i.e.,
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{z' € S, : h(z') = h(x)}| = 1). In this case (i.e.,, h € Q) it holds that (r,y) €
R'(h,1121=t02Don(z)) implies that S(1!*l,r) = 2 and y € R(x), and the (relaxed)
validity condition follows. The (relaxed) domination condition follows by noting
that Pr[X,, =] ~ 2~%D  that = is mapped to (h, 11*I=*(=D0h(x)) with proba-
bility 1/|Hf$(‘|z|)|, and that x is the only preimage of (h, 11%1=¢1=D0h(z)) under the
mapping (among z' € S, such that Q, 3 h).

Before going any further, let us highlight the importance of hashing X, to ¢(n)-
bit strings. On one hand, this mapping is “sufficiently” one-to-one, and thus (with
constant probability) the solution provided for the hashed instance (i.e., h(x)) yield
a solution for the original instance (i.e., ). This guarantees the validity of the re-
duction. On the other hand, for a typical h, the mapping of X,, to h(X,,) covers the
relevant range almost uniformly. This guarantees that the reduction satisfies the
domination condition. Note that these two phenomena impose conflicting require-
ments that are both met at the correct value of ¢; that is, the one-to-one condition
requires £(n) > log, |Sy,|, whereas an almost uniform cover requires £(n) < log, |Sn|-
Also note that ¢(n) = log,(1/Pr[X,, = z]) for every z in the support of X,,; the
latter quantity will be in our focus in the general case.

The general case: Finally, we get rid of the assumption that X,, is uniformly dis-
tributed over some subset of {0,1}". All that we know is that there exists a prob-
abilistic polynomial-time (“sampling”) algorithm S such that S(1™) is distributed
identically to X,,. In this (general) case, we map instances of (R, X) according to
their probability mass such that x is mapped to an instance (of R') that consists of
(h, h(z)) and additional information, where h is a random hash function mapping
n-bit long strings to ¢,-bit long strings such that

£ Tlog, (1/Pr(X o =a])]. (10.8)

Since (in the general case) there may be more than 2% strings in the support of
X, we need to augment the reduced instance in order to ensure that it is uniquely
associated with z. The basic idea is augmenting the mapping of x to (h, h(x)) with
additional information that restricts X, to strings that occur with probability at
least 2%, Indeed, when X, is restricted in this way, the value of h(X,) uniquely
determines X,,.

Let g(n) denote the randomness complexity of S and S(1",r) denote the out-
put of S on input 1" and internal coin tosses 7 € {0,1}9("). Then, we randomly
map = to (h,h(z),h',v"), where h : {0,1}* — {0,1}% and A’ : {0,1}9(2D) —
{0,1}90=D =% are random hash functions and v € {0,1}202D~% is uniformly dis-
tributed. The instance (h,v,h',v") of the redefined search problem R’ has solutions
that consists of pairs (r, y) such that A(S(1™,r))=vAh'(r) = v and y€ R(S(1™,7)).
As we shall see, this augmentation guarantees that, with constant probability (over
the choice of h,h',v"), the solutions to the reduced instance (h,h(z),h',v") corre-
spond to the solutions to the original instance x.

The foregoing description assumes that, on input z, we can efficiently deter-
mine ¢,, which is an assumption that cannot be justified. Instead, we select ¢
uniformly in {0,1,...,q(]z|)}, and so with noticeable probability we do select the
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correct value (i.e., Pr[¢ = £;] =1/(q(|z|) + 1) = 1/poly(|z|)). For clarity, we make
n and £ explicit in the reduced instance. Thus, we randomly map z € {0,1}" to

(1,1 b, h(a), W', 0') € {0,1}", where ¢ € {0,1,...,q(n)}, h € H, h' € Hi(") ™",

and v € {0, l}q(”)’l are uniformly distributed in the corresponding sets.?® This
mapping will be used to reduce (R, X) to (R, X'), where R’ and X' = {X/, },, N
are redefined (yet again). Specifically, we let

R'(1",1 by, b, 0") = {(r,y) : H(S(1", 7)) =v Al (r)=v' Ay € R(S(1™,r))} (10.9)

and X/, assigns equal probability to each X, , (for £ € {0,1,...,n}), where each
X, is isomorphic to the uniform distribution over H: x {0,1}¢ x qu((s))J X
{0,1}9(™ ¢, Note that indeed (R', X') € distPC.

The foregoing randomized mapping is analyzed by considering the correct choice
for ¢; that is, on input x, we focus on the choice ¢ = £,. Under this conditioning (as
we shall show), with constant probability over the choice of h,h' and v', the instance
x is the only value in the support of X, that is mapped to (1%,1% h, h(z),h',v")
and satisfies {r : h(S(1™,r)) = h(z) A h'(r) = v'} # 0. It follows that (for such
h,h' and v') any solution (r,y) € R'(1™, 1% h, h(z),h',v") satisfies S(1,7) = =
and thus y € R(x), which means that the (relaxed) validity condition is satisfied.
The (relaxed) domination condition is satisfied too, because (conditioned on £ = ¢,
and for such h, h’,v") the probability that X, is mapped to (17, 1% h, h(z),h',v")
approximately equals Pr[X], , =(1", 1% h, h(z),h',v")].

We now turn to analyze the probability, over the choice of h, h' and v', that the
instance z is the only value in the support of X,, that is mapped to (17, 1%  h, h(z), k', v")
and satisfies {r : h(S(1",r)) = h(z) A W'(r) = v'} # 0. Firstly, we note that
{r: S(1™,r)=x}| > 27" ~% and thus, with constant probability over the choice
of ' € Hg(")_zz and v € {0,1}9(™~% there exists r that satisfies S(1",7) = x and

(n)
h'(r) ='. Furthermore, with constant probability over the choice of b’ € Hg((::))_zz

and v' € {0,1}%™~% it also holds that there are at most O(2%) strings r such
that h'(r) = v'. Fixing such A" and o', we let Sy = {S(1™,7) : b'(r) = '}
and we note that, with constant probability over the choice of h € HE, it holds
that x is the only string in Sps . that is mapped to h(z) under h. Thus, with
constant probability over the choice of h,h' and v’, the instance z is the only
value in the support of X,, that is mapped to (1™,1% h,h(z),h',v') and satisfies

{r:h(S(1",7)) = h(x) AR (r) ="} # 0. The theorem follows. O

Reflection: Theorem 10.26 implies that if sampA/P is not contained in tpcBPP
then every distA/P-complete problem is not in tpcBPP. This means that the
hardness of some distributional problems that refer to sampleable distributions im-
plies the hardness of some distributional problems that refer to simple distributions.

28 As in other places, a suitable encoding will be used such that the reduction maps strings of the
same length to strings of the same length (i.e., n-bit string are mapped to n/-bit strings, for n' =
poly(n)). For example, we may encode (1™, 1¢, h, h(z), k', v') as 1701¢019)=L0(R) (h(z))(h') (v'),
where each (w) denotes an encoding of w by a string of length (n' — (n + g(n) + 3))/4.
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Furthermore, by Proposition 10.21, this implies the hardness of distributional prob-
lems that refer to the uniform distribution. Thus, hardness with respect to some
distribution in an utmost wide class (which arguably captures all distributions that
may occur in practice) implies hardness with respect to a single simple distribution
(which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way func-
tions (see Section 7.1) implies the existence of problems in sampPC that are not in
tpcBPPF (which in turn implies the existence of such problems in distPC). Specif-
ically, for a length-preserving one-way function f, consider the distributional search
problem (R¢,{f(Un)},en), where Ry = {(f(r),r) : r € {0,1}*}.2° On the other
hand, it is not known whether the existence of a problem in sampPC \ tpcBPPF
implies the existence of one-way functions. In particular, the existence of a prob-
lem (R,X) in sampPC \ tpcBPPF represents the feasibility of generating hard
instances for the search problem R, whereas the existence of one-way function rep-
resents the feasibility of generating instance-solution pairs such that the instances
are hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hard
instances can be efficiently generated together with corresponding solutions. Our
world view is thus depicted in Figure 10.2, where lower levels indicate seemingly
weaker assumptions.

one-way functions exist

distNPisnot in tpcBPP
(equiv., sampNP is not in tpcBPP)

P isdifferent than NP

Figure 10.2: Worst-case vs average-case assumptions

Chapter Notes

In this chapter, we presented two different approaches to the relaxation of com-
putational problems. The first approach refers to the concept of approximation,
while the second approach refers to average-case analysis. We demonstrated that
various natural notions of approximation can be cast within the standard frame-
works, where the framework of promise problems (presented in Section 2.4.1) is
the least-standard framework we used (and it suffices for casting gap problems and

29Note that the distribution f(Uy,) is uniform in the special case that f is a permutation over

{0,1}".
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property testing). In contrast, the study of average-case complexity requires the
introduction of a new conceptual framework and addressing various definitional
issues.

A natural question at this point is what have we gained by relaxing the require-
ments. In the context of approximation, the answer is mixed: in some natural cases
we gain a lot (i.e., we obtained feasible relaxations of hard problems), while in other
natural cases we gain nothing (i.e., even extreme relaxations remain as intractable
as the original versions). In the context of average-case complexity, the negative
side seems more prevailing (at least in the sense of being more systematic). In par-
ticular, assuming the existence of one-way functions, every natural NP-complete
problem has a distributional version that is (typical-case) hard, where this version
refers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-
thermore, in this case, some problems in NP have hard distributional versions that
refer to the uniform distribution.

Approximation

The following bibliographic comments are quite laconic and neglect mentioning
various important works (including credits for some of the results mentioned in our
text). As usual, the interested reader is referred to corresponding surveys.

Search or Optimization. The interest in approximation algorithms increased
considerably following the demonstration of the NP-completeness of many nat-
ural optimization problems. But, with some exceptions (most notably [178]),
the systematic study of the complexity of such problems stalled till the discov-
ery of the “PCP connection” (see Section 9.3.3) by Feige, Goldwasser, Lovasz, and
Safra [72]. Indeed the relatively “tight” inapproximation results for max-Clique,
max-SAT, and the maximization of linear equations, due to Hastad [115, 116],
build on previous work regarding PCP and their connection to approximation (cf.,
e.g., [73, 15, 14, 28, 184]). Specifically, Theorem 10.5 is due to [115]3°, while The-
orems 10.8 and 10.9 are due to [116]. The best known inapproximation result for
minimum Vertex Cover (see Theorem 10.7) is due to [68], but we doubt it is tight
(see, e.g., [142]). Reductions among approximation problems were defined and
presented in [178]; see Exercise 10.7, which presents a major technique introduced
in [178]. For general texts on approximation algorithms and problems (as discussed
in Section 10.1.1), the interested reader is referred to the surveys collected in [121].
A compendium of NP optimization problems is available at [63].

Recall that a different type of approximation problems, which are naturally
associated with search problems, refer to approximately counting the number of
solutions. These approximation problems were treated in Section 6.2.2 in a rather
ad hoc manner. We note that a more systematic treatment of approximate counting
problems can be obtained by using the definitional framework of Section 10.1.1 (e.g.,
the notions of gap problems, polynomial-time approximation schemes, etc).

30See also [242].



10.2. AVERAGE CASE COMPLEXITY 495

Property testing. The study of property testing was initiated by Rubinfeld and
Sudan [194] and re-initiated by Goldreich, Goldwasser, and Ron [96]. While the
focus of [194] was on algebraic properties such as low-degree polynomials, the focus
of [96] was on graph properties (and Theorem 10.12 is taken from [96]). The model
of bounded-degree graphs was introduced in [102] and Theorem 10.13 combines
results from [102, 103, 41]. For surveys of the area, the interested reader is referred
to [76, 193).

Average-case complexity

The theory of average-case complexity was initiated by Levin [153], who in partic-
ular proved Theorem 10.17. In light of the laconic nature of the original text [153],
we refer the interested reader to a survey [88], which provides a more detailed
exposition of the definitions suggested by Levin as well as a discussion of the con-
siderations underlying these suggestions. (This survey [88] provides also a brief
account of further developments.)

As noted in §10.2.1.1, the current text uses a variant of the original definitions.
In particular, our definition of “typical-case feasibility” differs from the original
definition of “average-case feasibility” in totally discarding exceptional instances
and in even allowing the algorithm to fail on them (and not merely run for an
excessive amount of time). The alternative definition was suggested by several
researchers, and appears as a special case of the general treatment provided in [43].

Turning to §10.2.1.2, we note that while the existence of dist\"P-complete prob-
lems (cf. Theorem 10.17) was established in Levin’s original paper [153], the ex-
istence of distA/P-complete versions of all natural NP-complete decision problems
(cf. Theorem 10.19) was established more than two decades later in [157].

Section 10.2.2 is based on [29, 126]. Specifically, Theorem 10.23 (or rather the
reduction of search to decision) is due to [29] and so is the introduction of the class
sampAP. A version of Theorem 10.26 was proven in [126], and our proof follows
their ideas, which in turn are closely related to the ideas underlying the proof of
Theorem 8.11 (proved in [117]).

Recall that we know of the existence of problems in dist AP that are hard pro-
vided sampA P contains hard problems. However, these distributional problems do
not seem very natural (i.e., they either refer to somewhat generic decision problems
such as Sy or to somewhat contrived probability ensembles (cf. Theorem 10.19)).
The presentation of dist/A/P-complete problems that combine a more natural deci-
sion problem (like SAT or Clique) with a more natural probability ensemble is an
open problem.

Exercises

Exercise 10.1 (general TSP) For any adequate function g, prove that the fol-
lowing approximation problem is NP-Hard. Given a general TSP instance I, rep-
resented by a symmetric matrix of pairwise distances, the task is finding a tour of
length that is at most a factor g(I) of the minimum. Specifically, show that the
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result holds with g(I) = exp(|I|°°?) and for instances in which all distances are
positive integers.

Guideline: Use a reduction from Hamiltonian cycle problem. Specifically, reduce the
instance G = ([n], £) to an n-by-n distance matrix D = (d:;); je[n) such that d;; =
exp(poly(n)) if {7,j} € F and d; ; = 1.

Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-
factor approximation for the special case of TSP in which the distances satisfy the
triangle inequality.

Guideline: First note that the length of any tour is lower-bounded by the weight of
a minimum spanning tree in the corresponding weighted graph. Next note that such a
tree yields a tour (of length twice the weight of this tree) that may visit some points
several times. The triangle inequality guarantees that the tour does not become longer
by “shortcuts” that eliminate multiple visits at the same point.

Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 prove
that, for some constants 0 < a < b < 1 when setting L(N) = N® and s(N) = N¢,
it holds that gapClique,,  is NP-hard.

Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator
(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness and
query complexities that accepts no-instances of length n with probability at most 1/n.
The claim follows by applying the FGLSS-reduction (of Exercise 9.18), while noting that
z is reduced to a graph of size poly(|z|) such that the gap between yes- and no-instances
is at least a factor of |z|.

Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 prove
that, for some constants 0 < s < L <1, the problem gapVC, , is NP-hard.

Guideline: Note that combining Theorem 9.16 and Exercise 9.18 implies that for some
constants b < 1 it holds that gapClique; , is NP-hard, where L(N) =b- N and s(N) =
(b/2) - N. The claim follows using the relations between cliques, independent sets, and
vertex covers.

Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 prove
that, for some constants 0.5 < s < L <1, the problem gapLin; , is NP-hard.

Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT:: is NP-
Hard. Note that the result holds even if we restrict the instances to have exactly three
(not necessarily different) literals in each clause. Applying the reduction of Exercise 2.24,
note that, for any assignment 7, a clause that is satisfied by 7 is mapped to seven equations
of which exactly three are violated by 7, whereas a clause that is not satisfied by 7 is
mapped to seven equations that are all violated by 7.

Exercise 10.6 (natural inapproximability without the PCP Theorem) In
contrast to the inapproximability results reviewed in §10.1.1.2, the NP-completeness
of the following gap problem can be established (rather easily) without referring
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to the PCP Theorem. The instances of this problem are systems of quadratic
equations over GF(2) (as in Exercise 2.25), yes-instances are systems that have a
solution, and no-instances are systems for which any assignment violates at least
one third of the equations.

Guideline: By Exercise 2.25, when given such a quadratic system, it is NP-hard to
determine whether or not there exists an assignment that satisfies all the equations. Using
an adequate small-bias generator (cf. Section 8.5.2), present an amplifying reduction (cf.
Section 9.3.3) of the foregoing problem to itself. Specifically, if the input system has m
equations then we use a generator that defines a sample space of poly(m) many m-bit
strings, and consider the corresponding linear combinations of the input equations. Note
that it suffices to bound the bias of the generator by 1/6, whereas using an e-biased
generator yields an analogous result with 1/3 replaced by 0.5 — ¢.

Exercise 10.7 (enforcing multi-way equalities via expanders) The aim of
this exercise is presenting a technique (of Papadimitriou and Yannakakis [178]) that
is useful for designing reductions among approximation problems. Recalling that
gapSAT; | is NP-hard, our goal is proving NP-hard of the following gap problem,
denoted gapSAT*, which is a special case of gapSAT?. Specifically, the instances
are restricted to 3CNF formulae with each variable appearing in at most ¢ clauses,
where ¢ (as ¢) is a fixed constant. Note that the standard reduction of 3SAT to
the corresponding special case (see proof of Proposition 2.23) does not preserve an
approximation gap.®! The idea is enforcing equality of the values assigned to the
auxiliary variables (i.e., the copies of each original variable) by introducing equality
constraints only for pairs of variables that correspond to edges of an expander
graph (see Appendix E.2). For example, we enforce equality among the values of
2D 2(™) by adding the clauses z() v =zU) for every {i,j} € E, where E is the
set of edges of an m-vertex expander graph. Prove that, for some constants ¢ and
e > 0, the corresponding mapping reduces gapSAT; ; to gapSAT?*.

Guideline: Using d-regular expanders in the foregoing reduction, we map general 3CNF
formulae to 3CNF formulae in which each variable appears in at most 2d + 1 clauses.
Note that the number of added clauses is linearly related to the number of original clauses.
Clearly, if the original formula is satisfiable then so is the reduced one. On the other hand,
consider an arbitrary assignment 7' to the reduced formula ¢’ (i.e., the formula obtained
by mapping ¢). For each original variable z, if 7’ assigns the same value to almost all
copies of z then we consider the corresponding assignment in ¢. Otherwise, by virtue of
the added clauses, 7' does not satisfy a constant fraction of the clauses containing a copy
of z.

31Recall that in this reduction each occurrence of each Boolean variable is replaced by a new
copy of this variable, and clauses are added for enforcing the assignment of the same value to all
these copies. Specifically, the m occurrence of variable z are replaced by the variables z(1) | ..., z(")
while adding the clauses 2(0) v —z(+1) and Z(+1) v () (for i =1,...,,m — 1). The problem is
that almost all clauses of the reduced formula may be satisfied by an assignment in which half
of the copies of each variable are assigned one value and the rest are assigned an opposite value.
That is, an assignment in which z(1) = ... = 2(0) £ z(+1) — ... = (™) yiolates only one of the
auxiliary clauses introduced for enforcing equality among the copies of z. Using an alternative
reduction that adds the clauses z(¥) v =z(9) for every i,5 € [m] will not do either, because the
number of added clauses may be quadratic in the number of original clauses.
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Exercise 10.8 (deciding majority requires linear time) Prove that deciding
majority requires linear-time even in a direct access model and when using a ran-
domized algorithm that may err with probability at most 1/3.

Guideline: Consider the problem of distinguishing X,, from Y;, where X, (resp., Y3) is
uniformly distributed over the set of n-bit strings having exactly |n/2| (resp., |n/2] +1)
zeros. For any fixed set I C [n], denote the projection of X, (resp., Y) on I by X;, (resp.,
Y,). Prove that the statistical difference between X, and Y,, is bounded by O(|I|/n).
Note that the argument needs to be extended to the case that the examined locations are
selected adaptively.

Exercise 10.9 (testing majority in polylogarithmic time) Show that test-
ing majority (in the sense of Definition 10.11) can be done in polylogarithmic
time by probing the input at a constant number of randomly selected locations.

Exercise 10.10 (on the triviality of some testing problems) Show that the
following sets are trivially testable in the adjacency matrix representation (i.e., for
every 0 > 0 and any such set S, there exists a trivial algorithm that distinguishes
S from T's(.5)).

1. The set of connected graphs.
2. The set of Hamiltonian graphs.
3. The set of Eulerian graphs.
Indeed, show that in each case I's(S) = 0.

Guideline (for Item 3): Note that, in general, the fact that the sets S’ and S" are
testable within some complexity does not imply the same for the set S' N S".

Exercise 10.11 (an equivalent definition of tpcP) Prove that (S, X) € tpcP
if and only if there exists a polynomial-time algorithm A such that the probability
that A(X,,) errs (in determining membership in S) is a negligible function in n.

Exercise 10.12 (tpcP versus P — Part 1) Prove that tpcP contains a problem
(S, X) such that S is not even recursive. Furthermore, use X =U.

Guideline: Let S = {01/ : & € S}, where S’ is an arbitrary (non-recursive) set.

Exercise 10.13 (tpcP versus P — Part 2) Prove that there exists a distribu-
tional problem (S, X) such that S ¢ P and yet there exists an algorithm solving
S (correctly on all inputs) in time that is typically polynomial with respect to X.
Furthermore, use X = U.

Guideline: For any time-constructible function ¢ : N— N that is super-polynomial and
sub-exponential, use S = {0/"lz : z € §'} for any S’ € DTIME(?) \ P.

Exercise 10.14 (simple distributions and monotone sampling) We say that
a probability ensemble X = {X,,}, cn is polynomial-time sampleable via a monotone
mapping if there exists a polynomial p and a polynomial-time computable function
f such that the following two conditions hold:
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1. For every n, the random variables f(Up,)) and X,, are identically distributed.

2. For every n and every r’ < " € {0,1}*(") it holds that f(r') < f(r""), where
the inequalities refers to the standard lexicographic order of strings.

Prove that X is simple if and only if it is polynomial-time sampleable via a mono-
tone mapping.

Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-
time of the algorithm that on input  outputs Pr[X|,| <z]. (Thus, the binary representa-
tion of Pr[X|,;| £ z] has length at most p(|z|).) The desired function f : {0, 1M 0,1}
is obtained by defining f(r) = x if the number (represented by) 0.r resides in the interval
[Pr[X. < z], Pr[X,, <z]). Note that f can be computed by binary search, using the fact
that X is simple. Turning to the opposite direction, we note that any efficiently com-
putable and monotone mapping f : {0,1}?™ — {0,1}" can be efficiently inverted by a
binary search. Furthermore, similar methods allow for efficiently determining the interval
of p(n)-bit long strings that are mapped to any given n-bit long string.

Exercise 10.15 (reductions preserve typical polynomial-time solveability)
Prove that if the distributional problem (S, X) is reducible to the distributional
problem (5", X') and (S’, X') € tpcP, then (S, X) is in tpcP.

Guideline: Let B’ denote the set of exceptional instances for the distributional problem
(S’, X'); that is, B’ is the set of instances on which the solver in the hypothesis either
errs or exceeds the typical running-time. Prove that Pr[Q(X,) N B’ # 0] is a negligible
function (in n), using both Pr[y € Q(Xy)] < p(|y|)-Pr[X/,; = y] and |z| < p'(]y]|) for every
y € Q(x). Specifically, use the latter condition for inferring that ZyEB’ Prly € Q(X.)]
equals Zye{y’eB’:p’(\y’DZn} Prly € Q(X.)], which is upper-bounded by Zm:p, (m)>n p(m)-
Pr[X,, € B'] (which in turn is negligible in terms of n).

Exercise 10.16 (reductions preserve error-less solveability) In continuation
to Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-
ability by algorithms that never err and typically run in polynomial-time).

Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-
tributional problems (as in Definition 10.16) are transitive.

Guideline: The point is establishing the domination property of the composed reduction.
The hypothesis that reductions do not make too short queries is instrumental here.

Exercise 10.18 For any S € NP present a simple probability ensemble X such
that the generic reduction used in the proof of Theorem 2.19, when applied to
(S, X), violates the domination condition with respect to (Su,U’).

Guideline: Consider X = {X"}neN such that X,, is uniform over {0”/2$' x €

{0,132}

Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-
ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).
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1. A variant that refers to any efficiently computable function u : {0,1}* — [0, 1]
that is monotonically non-decreasing over {0, 1}* (i.e., u(z') < p(z") for any
' < z" € {0,1}*). That is, unlike in the proof of Theorem 10.17, here it
holds that p(0™*1) > u(1™) for every n.

2. As in Part 1, except that in this variant the function p is strictly increasing
and the compression condition requires that |C, ()| < log,(1/p'(z)) rather

than |C,(2)| < 1+ min{|z],log,(1/4' ()}, where 4/(z) = p(z) — p(w — 1).

In both cases, the proof is less cumbersome than the one presented in the main
text.

Exercise 10.20 Prove that for any problem (S, X) in dist VP there exists a simple
probability ensemble Y such that the reduction used in the proof of Theorem 2.19
suffices for reducing (S, X) to (Su,Y).

Guideline: Consider Y = {Y,.}, . such that Y, assigns to the instance (M,z,1°) a

probability mass proportional to 7, Lof Pr[X|.| ==|. Specifically, for every (M, =,1") it
holds that Pr[Y, = (M,z,1%)] = 27M Wz/(;), where n % [(M,z,1%)]| Lof | M| + |z| +¢.
Alternatively, we may set Pr[Y, = (M,z,1")] = 7, if M = Ms and t = ps(|z|) and

Pr[Y, = (M, x,1%)] = 0 otherwise, where Ms and Ps are as in the proof of Theorem 2.19.

Exercise 10.21 (monotone markability and monotone reductions) In con-
tinuation to Exercise 2.30, we say that a set 1" is monotonically markable if there
exists a polynomial-time (marking) algorithm M such that

1. For every z,«a € {0,1}*, it holds that M(z,«) € T if and only if z € T'.

2. Monotonicity: for every |z'| = |2"| and o' < ', it holds that M(z',a') <
M(2",a'), where the inequalities refer to the standard lexicographic order
of strings.

3. Auxiliary length requirements:

(a) If |2'| = |2"| and |o/| = ||, then |M (2", a/)| = | M (2", a")].
(b) If |2'| < |2"| and |&'| < |&"|, then |M (2, a")| < |M (2", a")|.

(c) There exists a 1-1 polynomial p : N— N such that for every ¢ and every
z € UL_,{0,1}* there exists ¢ € [p(£)] such that |M(z,1%)| = p(£).

The first two requirements imply that |M(z, @)| is a function of |z| and |«/,
which increases with |«|. The third requirement implies that, for every ¢,
each string of length at most ¢ can be mapped to a string of length p(¢).

Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3
are new. Prove that if the set S is Karp-reducible to the set T' and T is monotoni-
cally markable then S is Karp-reducible to T by a reduction that is monotone and
length-regular (i.e., the reduction satisfies the conditions of Proposition 10.18).



10.2. AVERAGE CASE COMPLEXITY 501

Guideline: Given a Karp-reduction f from S to T, first obtain a length-regular reduction
f' from S to T (by applying the marking algorithm to f(z), while using Conditions 1
and 3c). In particular, one can guarantee that if |z'| > |z"'| then |f'(z")| > |f'(z")]. Next,
obtain a reduction f" that is also monotone (e.g., by letting f"(z) = M (f'(z),z), while

using Conditions 1 and 2).3?

Exercise 10.22 (monotone markability and markability) Prove that if a set
is monotonically markable (as per Exercise 10.21) then it is markable (as per Ex-
ercise 2.30).

Guideline: Let M denote the guaranteed monotone-marking algorithm. For starters,
assume that M is 1-1, and define M'(z,a) = M(z,(z,a)). Note that the preimage
(z,a) can be found by conducting a binary search (for each of the possible values of |z]).
In the general case, we modify the construction so that to guarantee that M’ is 1-1.
Specifically, let idx(n,m) = n + Z?:;n(z — 1) be the index of (n,m) in an enumeration
of all pairs of positive integers, and p be as in Condition 3c. Then, let M'(z,a) =
M(z,Cy(z),1a) ({2, @))), where t(n, m) = w(n+m) satisfies [M (17, 110m)| = p(idx(n, m))

and C¢(y) is a monotone encoding of y using a t-bit long string.

Exercise 10.23 (some monotonically markable sets) Referring to Exercise 10.21,
verify that each of the twenty-one NP-complete problems treated in in Karp’s first
paper on NP-completeness [136] is monotonically markable. For starters, consider

the sets SAT, Clique, and 3-Colorability.

Guideline: For SAT consider the following marking algorithm M. This algorithm uses two
(fixed) satisfiable formulae of the same length, denoted ¢ and 11, such that 1o < 1. For
any formula ¢ and any binary string o1---om € {0,1}™, it holds that M(¢,01---om) =
Yoy Ao ANg,, A ¢, where 9o and 11 use variables that do not appear in ¢. Note that
the multiple occurrences of ¢, can be easily avoided (by using “variations” of 1. ).

Exercise 10.24 (randomized reductions) Following the outline in §10.2.1.3,
provide a definition of randomized reductions among distributional problems.

1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-
sible solveability (i.e., typical solveability in probabilistic polynomial-time).
That is, if the distributional problem (S, X) is randomly reducible to the
distributional problem (S’, X') and (S’,X') € tpcBPP, then (S,X) is in
tpcBPP.

2. In analogy to Exercise 10.16, prove that randomized reductions preserve
solveability by probabilistic algorithms that err with probability at most 1/3
on each input and typically run in polynomial-time.

3. Prove that randomized reductions are transitive (cf. Exercise 10.17).

32 Actually, Condition 2 (combined with the length regularity of f') only takes care of mono-
tonicity with respect to strings of equal length. To guarantee monotonicity with respect to strings
of different length, we also use Condition 3b (and |f'(z')| > |f'(z"")| for |z'| > |z"'|).
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4. Show that the error probability of randomized reductions can be reduced
(while preserving the domination condition).

Extend the foregoing to reductions that involve distributional search problems.

Exercise 10.25 (simple vs sampleable ensembles — Part 1) Prove that any
simple probability ensemble is polynomial-time sampleable.

Guideline: See Exercise 10.14.

Exercise 10.26 (simple vs sampleable ensembles — Part 2) Assuming that
#P contains functions that are not computable in polynomial-time, prove that
there exists polynomial-time sampleable ensembles that are not simple.

Guideline: Consider any R € PC and suppose that p is a polynomial such that (z,y) € R
implies |y| = p(|z|). Then consider the sampling algorithm A that, on input 1™, uniformly
selects (z,y) € {0,1}"7% x {0,1}*™~Y and outputs #1 if (z,y) € R and z0 otherwise.
Note that #R(z) = 2/*17P1=D . prA(1l=1F1) = z1].

Exercise 10.27 (distributional versions of NPC problems — Part 1 [29])

Prove that if Sy is Karp-reducible to S by a mapping that does not shrink the input
then there exists a polynomial-time sampleable ensemble X such that any problem
in distA/P is reducible to (S, X).

Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su,U') to
(S, X), for some sampleable probability ensemble X. Consider first the case that the
standard reduction of Sy to S is length preserving, and prove that, when applied to a
sampleable probability ensemble, it induces a sampleable distribution on the instances
of S. (Note that U’ is sampleable (by Exercise 10.25).) Next extend the treatment to
the general case, where applying the standard reduction to U, induces a distribution on
UE{’B,E"){O, 1}™ (rather than a distribution on {0,1}").

Exercise 10.28 (distributional versions of NPC problems — Part 2 [29])
Prove Theorem 10.25 (i.e., if Sy is Karp-reducible to S by a mapping that does
not shrink the input then there exists a polynomial-time sampleable ensemble X
such that any problem in sampA/P is reducible to (S, X)).

Guideline: We establish the claim for S = Sy, and the general claim follows by using
the reduction of Su to S (as in Exercise 10.27). Thus, we focus on showing that, for
some (suitably chosen) sampleable ensemble X, any (S', X') € sampN P is reducible to
(Su, X). Loosely speaking, X will be an adequate convex combination of all sampleable
distributions (and thus X will neither equal U’ nor be simple). Specifically, X = {Xn}, cN
is defined such that the sampler for X, uniformly selects i € [n], emulates the execution of
the i*" algorithm (in lexicographic order) on input 1" for n® steps,®® and outputs whatever

33Needless to say, the choice to consider n algorithms (in the definition of X5, ) is quite arbitrary.
Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-
time) will do. (More generally, we may select the ith algorithm with p;, as long as p; is a noticeable
function of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rather
some other fixed polynomial number of steps) is quite arbitrary.
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the latter has output (or 0" in case the said algorithm has not halted within n® steps).
Prove that, for any (S", X'") € sampNP such that X" is sampleable in cubic time, the
standard reduction of S” to Su reduces (S”, X") to (Su, X) (as per Definition 10.15; i.e.,
in particular, it satisfies the domination condition).?* Finally, using adequate padding,
reduce any (S, X') € sampAN P to some (S, X"') € sampN P such that X" is sampleable
in cubic time.

Exercise 10.29 (search vs decision in the context of sampleable ensembles)
Prove that every problem in sampNP is reducible to some problem in sampPC,
and every problem in sampPC is randomly reducible to some problem in sampA/P.

Guideline: See proof of Theorem 10.23.

34Note that applying this reduction to X'’ yields an ensemble that is also sampleable in cubic
time. This claim uses the fact that the standard reduction runs in time that is less than cubic
(and in fact almost linear) in its output, and the fact that the output is longer than the input.
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Epilogue

Farewell, Hans — whether you live or end where you are! Your
chances are not good. The wicked dance in which you are caught
up will last a few more sinful years, and we would not wager
much that you will come out whole. To be honest, we are not
really bothered about leaving the question open. Adventures in
the flesh and spirit, which enhanced and heightened your ordi-
nariness, allowed you to survive in the spirit what you probably
will not survive in the flesh. There were majestic moments when
you saw the intimation of a dream of love rising up out of death
and the carnal body. Will love someday rise up out of this world-
wide festival of death, this ugly rutting fever that inflames the
rainy evening sky all round?

Thomas Mann, The Magic Mountain, The Thunderbolt.

We hope that this work has succeeded in conveying the fascinating flavor of the
concepts, results and open problems that dominate the field of computational com-
plexity. We believe that the new century will witness even more exciting develop-
ments in this field, and urge the reader to try to contribute to them. But before
bidding goodbye, we wish to express a few more thoughts.

As noted in Section 1.1.1, so far complexity theory has been far more success-
ful in relating fundamental computational phenomena than in providing definite
answers regarding fundamental questions. Consider, for example, the theory of NP-
completeness versus the P-versus-NP Question, or the theory of pseudorandomness
versus establishing the existence of one-way function (even under P # NP). The
failure to resolve questions of the “absolute” type is the source of common frustra-
tion and one often wonders about the reasons for this failure.

Our feeling is that many of these failures are really due to the difficulty of
the questions asked, and that one tends to underestimate their hardness because
they are so appealing and natural. Indeed, the underlying sentiment is that if
a question is appealing and natural then answering it should not be hard. We
doubt this sentiment. Our own feeling is that the more intuitive a question is,
the harder it may be to answer. Our view is that intuitive questions arise from
an encounter with the raw and chaotic reality of life, rather than from an artificial
construct which is typically endowed with a rich internal structure. Indeed, natural
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complexity classes and natural questions regarding computation arise from looking
at the reality of computation from the outside and thus lack any internal structure.
Specifically, complexity classes are defined in terms of the “external behavior” of
potential algorithms (i.e., the resources such algorithms require) rather than in
terms of the “internal structure” (of the problem). In our opinion, this “external
nature” of the definitions of complexity theoretic questions makes them hard to
resolve.

Another hard aspect regarding the “absolute” (or “lower-bound”) type of ques-
tions is the fact that they call for impossibility results. That is, the natural formu-
lation of these questions calls for proving the non-existence of something (i.e., the
non-existence of efficient procedures for solving the problem in question). Needless
to say, proving the non-existence of certain objects is typically harder than proving
existence of related objects (indeed, see Section 9.1). Still, proofs of non-existence
of certain objects are known in various fields and in particular in complexity theory,
but such proofs tend to either be trivial (see, e.g., Section 4.1) or are derived by
exhibiting a sophisticated process that transforms the original question to a trivial
one. Indeed, the latter case is the one that underlies many of the impressive suc-
cesses of circuit complexity, and all relative results of the “high-level” direction have
a similar nature (i.e., of relating one computational question to another). Thus,
we are not suggesting that the “absolute” questions of complexity theory cannot
be resolved, but are rather suggesting an intuitive explanation to the difficulties of
resolving them.

The obvious fact that difficult questions can be resolved is demonstrated by
several recent results, which are mentioned in this book and “forced” us to modify
earlier drafts of it. Examples include the log-space graph exploration algorithm
presented in Section 5.2.4 and the alternative proof of the PCP Theorem presented
in §9.3.2.3 as well as Theorem 10.19 and the brief mention of the results of [171, 240].



