
Chapter 9Probabilistic Proof SystemsA proof is whatever convinces me.Shimon Even (1935{2004)The glory attached to the creativity involved in �nding proofs makes us forget thatit is the less glori�ed process of veri�cation that gives proofs their value. Conceptu-ally speaking, proofs are secondary to the veri�cation process; whereas technicallyspeaking, proof systems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure presumes the notion of computation andfurthermore the notion of e�cient computation. This implicit stipulation is madeexplicit in the de�nition of NP, where e�cient computation is associated withdeterministic polynomial-time algorithms. However, as argued next, we can gain alot if we are willing to take a somewhat non-traditional step and allow probabilisticveri�cation procedures.In this chapter, we shall study three types of probabilistic proof systems, calledinteractive proofs, zero-knowledge proofs, and probabilistic checkable proofs. In eachof these three cases, we shall present fascinating results that cannot be obtainedwhen considering the analogous deterministic proof systems.Summary: The association of e�cient procedures with deterministicpolynomial-time procedures is the basis for viewing NP-proof systemsas the canonical formulation of proof systems (with e�cient veri�ca-tion procedures). Allowing probabilistic veri�cation procedures and,moreover, ruling by statistical evidence gives rise to various types ofprobabilistic proof systems. Indeed, these probabilistic proof systemscarry a probability of error (which is explicitly bounded and can bereduced by successive application of the proof system), yet they of-fer various advantages over the traditional (deterministic and errorless)proof systems.Randomized and interactive veri�cation procedures, giving rise to inter-active proof systems, seem much more powerful than their deterministic383

384 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScounterparts. In particular, such interactive proof systems exist for anyset in PSPACE � coNP (e.g., for the set of unsatis�ed propositionalformulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems (i.e., NP 6= coNP). We stress that a \proof"in this context is not a �xed and static object, but rather a randomized(and dynamic) process in which the veri�er interacts with the prover.Intuitively, one may think of this interaction as consisting of questionsasked by the veri�er, to which the prover has to reply convincingly.Such randomized and interactive veri�cation procedures allow for themeaningful conceptualization of zero-knowledge proofs, which are ofgreat theoretical and practical interest (especially in cryptography).Loosely speaking, zero-knowledge proofs are interactive proofs thatyield nothing (to the veri�er) beyond the fact that the assertion isindeed valid. For example, a zero-knowledge proof that a certain propo-sitional formula is satis�able does not reveal a satisfying assignment tothe formula nor any partial information regarding such an assignment(e.g., whether the �rst variable can assume the value true). Thus,the successful veri�cation of a zero-knowledge proof exhibit an extremecontrast between being convinced of the validity of a statement andlearning nothing else (while receiving such a convincing proof). It turnsout that, under reasonable complexity assumptions (i.e., assuming theexistence of one-way functions), every set in NP has a zero-knowledgeproof system.NP-proofs can be e�ciently transformed into a (redundant) form thato�ers a trade-o� between the number of locations (randomly) exam-ined in the resulting proof and the con�dence in its validity. In par-ticular, it is known that any set in NP has an NP-proof system thatsupports probabilistic veri�cation such that the error probability de-creases exponentially with the number of bits read from the allegedproof. These redundant NP-proofs are called probabilistically checkableproofs (or PCPs). In addition to their conceptually fascinating nature,PCPs are closely related to the study of the complexity of numerousnatural approximation problems.Introduction and PreliminariesConceptually speaking, proofs are secondary to the veri�cation process. Indeed,both in mathematics and in real-life, proofs are meaningful only with respect tocommonly agreed principles of reasoning, and the veri�cation process amounts tochecking that these principles were properly applied. Thus, these principles, whichare typically taken for granted, are more fundamental than any speci�c proof thatapplies them; that is, the mere attempt to reason about anything is based oncommonly agreed principles of reasoning.

385The commonly agreed principles of reasoning are associated with a veri�cationprocedure that distinguishes proper applications of these principles from improperones. A line of reasoning is considered valid with respect to such �xed principles(and is thus deemed a proof) if and only if it proceeds by a proper applicationsof these principles. Thus, a line of reasoning is considered valid if and only if it isaccepted by the corresponding veri�cation procedure. This means that, technicallyspeaking, proofs are de�ned in terms of a predetermined veri�cation procedure(or are de�ne with respect to such a procedure) . Indeed, this state of a�airs isbest illustrated in the formal study of proofs (i.e., logic), which is actually thestudy of formally de�ned proof systems: The point is that these proof systems arede�ned (often explicitly and sometimes only implicitly) in terms of their veri�cationprocedures.The notion of a veri�cation procedure presumes the notion of computation. Thisfact explains the historical interest of logicians in computer science (cf. [224, 54]).Furthermore, the veri�cation of proofs is supposed to be relatively easy, and hencea natural connection emerges between veri�cation procedures and the notion ofe�cient computation. This connection was made explicit by complexity theorists,and is captured by the de�nition of NP and NP-proof systems (cf. De�nition 2.5),which targets all e�cient veri�cation procedures.1Recall that De�nition 2.5 identi�es e�cient (veri�cation) procedures with de-terministic polynomial-time algorithms, and that it explicitly restricts the lengthof proofs to be polynomial in the length of the assertion. Thus, veri�cation isperformed in a number of steps that is polynomial in the length of the assertion.We comment that deterministic proof systems that allow for longer proofs (butrequire that veri�cation is e�cient in terms of the length of the alleged proof) canbe modeled as NP-proof systems by adequate padding (of the assertion).Indeed, NP-proofs provide the ultimate formulation of e�ciently veri�able proofs(i.e., proof systems with e�cient veri�cation procedures), provided that one asso-ciates e�cient procedures with deterministic polynomial-time algorithms. How-ever, as we shall see, we can gain a lot if we are willing to take a somewhatnon-traditional step and allow probabilistic (polynomial-time) algorithms and, inparticular, probabilistic veri�cation procedures.� Randomized and interactive veri�cation procedures seem much more powerfulthan their deterministic counterparts.� Such interactive proof systems allow for the construction of (meaningful)zero-knowledge proofs, which are of great conceptual and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form that sup-ports super-fast probabilistic veri�cation via very few random probes into thealleged proof.1In contrast, traditional proof systems are formulated based on rules of inference that seemnatural in the relevant context. The fact that these inference rules yield an e�cient veri�cationprocedure is merely a consequence of the correspondence between processes that seem naturaland e�cient computation.

386 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIn all these cases, explicit bounds are imposed on the computational complexity ofthe veri�cation procedure, which in turn is personi�ed by the notion of a veri�er.Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability oferror; yet, this probability is explicitly bounded and, furthermore, can be reducedby successive application of the proof system.One important convention. When presenting a proof system, we state allcomplexity bounds in terms of the length of the assertion to be proved (which isviewed as an input to the veri�er). Namely, when we say \polynomial-time" wemean time that is polynomial in the length of this assertion. Indeed, as will becomeevident, this is the natural choice in all the cases that we consider. Note that thisconvention is consistent with the foregoing discussion of NP-proof systems.2Notational Conventions. We denote by poly the set of all integer functionsthat are upper-bounded by a polynomial, and by log the set of all integer functionsbounded by a logarithmic function (i.e., f 2 log if and only if f(n) = O(log n)).All complexity measures mentioned in this chapter are assumed to be constructiblein polynomial-time.Organization. In Section 9.1 we present the basic de�nitions and results regard-ing interactive proof systems. The de�nition of an interactive proof systems is thestarting point for a discussion of zero-knowledge proofs, which is provided in Sec-tion 9.2. Section 9.3, which presents the basic de�nitions and results regardingprobabilistically checkable proofs (PCP), can be read independently of the othersections.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1).9.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and interactive computations,it is only natural to associate the notion of e�cient computation with probabilisticand interactive polynomial-time computations. This leads naturally to the notionof an interactive proof system in which the veri�cation procedure is interactive andrandomized, rather than being non-interactive and deterministic. Thus, a \proof"in this context is not a �xed and static object, but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think ofthis interaction as consisting of questions asked by the veri�er, to which the proverhas to reply convincingly.2Recall that De�nition 2.5 refers to polynomial-time veri�cation of alleged proofs, which inturn must have length that is bounded by a polynomial in the length of the assertion.

9.1. INTERACTIVE PROOF SYSTEMS 387The foregoing discussion, as well as the de�nition provided in Section 9.1.2,makes explicit reference to a prover, whereas a prover is only implicit in the tradi-tional de�nitions of proof systems (e.g., NP-proof systems). Before turning to theactual de�nition, we highlight and further discuss this issue as well as some otherconceptual issues.9.1.1 Motivation and PerspectiveWe shall discuss the various interpretations given to the notion of a proof in dif-ferent human contexts, and the attitudes that underly and/or accompany theseinterpretations. This discussion is aimed at emphasizing that the motivation forthe de�nition of interactive proof systems is not replacing the notion of a mathemat-ical proof, but rather capturing other forms of proofs that are of natural interest.We also discuss the roles of the prover and the veri�er, in these settings, and thegeneral notions of completeness and soundness.9.1.1.1 A static object versus an interactive processTraditionally in mathematics, a \proof" is a �xed sequence consisting of statementsthat are either self-evident or are derived from previous statements via self-evidentrules. Actually, both conceptually and technically, it is more accurate to substitutethe phrase \self-evident" by the phrase \commonly agreed" (because, at the lastaccount, self-evidence is a matter of common agreement). In fact, in the formalstudy of proofs (i.e., logic), the commonly agreed statements are called axioms,whereas the commonly agreed rules are referred to as derivation rules. We highlighta key property of mathematics proofs: these proofs are viewed as �xed (static)objects.In contrast, in other areas of human activity, the notion of a \proof" has amuch wider interpretation. In particular, a proof is not a �xed object but rathera process by which the validity of an assertion is established. For example, in thecontext of Law, standing a cross-examination by an opponent, who may ask toughand/or tricky questions, is considered a proof of the facts claimed by the witness.Likewise, various debates that take place in daily life have an analogous potential ofestablishing claims and are then perceived as proofs. This perception is quite com-mon in philosophical and political debates, and applies even in scienti�c debates.Needless to say, a key property of such debates is their interactive (\dynamic")nature. Interestingly, the appealing nature of such \interactive proofs" is re
ectedin the fact that they are mimicked (in a rigorous manner) in some mathemati-cal proofs by contradiction, which emulate an imaginary debate with a potential(generic) skeptic.Another di�erence between mathematical proofs and various forms of \dailyproofs" is that, while the former aim at certainty, the latter are intended (\only")for establishing claims beyond any reasonable doubt. Arguably, an explicitly boundederror probability (as present in our de�nition of interactive proof systems) is anextremely strong form of establishing a claim beyond any reasonable doubt.

388 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSWe also note that, in mathematics, proofs are often considered more importantthan their consequence (i.e., the theorem). In contrast, in many daily situations,proofs are considered secondary (in importance) to their consequence. These con-
icting attitudes are well-coupled with the di�erence between written proofs and\interactive" proofs: If one values the proof itself then one may insist on having itarchived, whereas if one only cares about the consequence then the way in whichit is reached is immaterial.Interestingly, the foregoing set of daily attitudes (rather than the mathematicalones) will be adequate in the current chapter, where proofs are viewed merely asa vehicle for the veri�cation of the validity of claims. (This attitude gets to anextreme in the case of zero-knowledge proofs, where we actually require that theproofs themselves be useless beyond being convincing of the validity of the claimedassertion.)In general, we will be interested in modeling various forms of proofs that mayoccur in the world, focusing on proofs that can be veri�ed by automated procedures.These veri�cation procedures are designed to check the validity of potential proofs,and are oblivious of additional features that may appeal to humans such as beauty,insightfulness, etc. In the current section we will consider the most general formof proof systems that still allow e�cient veri�cation.We note that the proof systems that we study refer to mundane theorems (e.g.,asserting that a speci�c propositional formula is not satis�able or that a party senta message as instructed by a predetermined protocol). We stress that the (meta)theorems that we shall state regarding these proof systems will be proved in thetraditional mathematical sense.9.1.1.2 Prover and Veri�erThe wide interpretation of the notion of a proof system, which includes interactiveprocesses of veri�cation, calls for the explicit introduction of two interactive players,called the prover and the veri�er. The veri�er is the party that employs theveri�cation procedure, which underlies the de�nition of any proof system, whilethe prover is the party that tries to convince the veri�er. In the context of static(or non-interactive) proofs, the prover is the transcendental entity providing theproof, and thus in this context the prover is often not mentioned at all (whendiscussing the veri�cation of alleged proofs). Still, explicitly mentioning potentialprovers may be bene�cial even when discussing such static (non-interactive) proofs.We highlight the \distrustful attitude" towards the prover, which underlies anyproof system. If the veri�er trusts the prover then no proof is needed. Hence,whenever discussing a proof system, one should envision a setting in which theveri�er is not trusting the prover, and furthermore is skeptic of anything that theprover says. In such a setting the prover's goal is to convince the veri�er, while theveri�er should make sure that it is not fooled by the prover. (See further discussionin x9.1.1.3.) Note that the veri�er is \trusted" to protect its own interests byemploying the predetermined veri�cation procedure; indeed, the asymmetry withrespect to who we trust is an artifact of our focus on the veri�cation process (ortask). In general, each party is trusted to protect its own interests (i.e., the veri�er

9.1. INTERACTIVE PROOF SYSTEMS 389is trusted to protect its own interests), but no party is trusted to protect theinterests of the other party (i.e., the prover is not trusted to protect the veri�er'sinterest of not being fooled by the prover).Another asymmetry between the two parties is that our discussion focuses onthe complexity of the veri�cation task and ignores (as a �rst approximation) thecomplexity of the proving task (which is only discussed in x9.1.5.1). Note that thisasymmetry is re
ected in the de�nition of NP-proof systems; that is, veri�cationis required to be e�cient, whereas for sets NP n P �nding adequate proofs isinfeasible. Thus, as a �rst approximation, we consider the question of what canbe e�ciently veri�ed when interacting with an arbitrary prover (which may bein�nitely powerful). Once this question is resolved, we shall also consider thecomplexity of the proving task (indeed, see x9.1.5.1).9.1.1.3 Completeness and SoundnessTwo fundamental properties of a proof system (i.e., of a veri�cation procedure) areits soundness (or validity) and completeness. The soundness property asserts thatthe veri�cation procedure cannot be \tricked" into accepting false statements. Inother words, soundness captures the veri�er's ability to protect itself from beingconvinced of false statements (no matter what the prover does in order to foolit). On the other hand, completeness captures the ability of some prover to con-vince the veri�er of true statements (belonging to some predetermined set of truestatements). Note that both properties are essential to the very notion of a proofsystem.We note that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proved (while no false statement can be\proved"). This fundamental phenomenon is given a precise meaning in resultssuch as G�odel's Incompleteness Theorem and Turing's theorem regarding the un-decidability of the Halting Problem. In contrast, recall that NP was de�ned as theclass of sets having proof systems that support e�cient deterministic veri�cation(of \written proofs"). This section is devoted to the study of a more liberal notionof e�cient veri�cation procedures (allowing both randomization and interaction).9.1.2 De�nitionLoosely speaking, an interactive proof is a game between a computationally boundedveri�er and a computationally unbounded prover whose goal is to convince theveri�er of the validity of some assertion. Speci�cally, the veri�er employs a proba-bilistic polynomial-time strategy (whereas no computational restrictions apply tothe prover's strategy). It is required that if the assertion holds then the veri�eralways accepts (i.e., when interacting with an appropriate prover strategy). On theother hand, if the assertion is false then the veri�er must reject with probabilityat least 12 , no matter what strategy is being employed by the prover. (The errorprobability can be reduced by running such a proof system several times.)We formalize the interaction between parties by referring to the strategies that

390 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe parties employ.3 A strategy for a party describes the party's next move (i.e.,its next message or its �nal decision) as a function of the common input (i.e.,the aforementioned assertion), its internal coin tosses, and all messages it hasreceived so far. That is, we assume that each party records the outcomes of its pastcoin tosses as well as all the messages it has received, and determines its movesbased on these. Thus, an interaction between two parties, employing strategiesA and B respectively, is determined by the common input, denoted x, and therandomness of both parties, denoted rA and rB . Assuming that A takes the �rstmove (and B takes the last move), the corresponding (t-round) interaction transcript(on common input x and randomness rA and rB) is �1; �1; :::; �t; �t, where �i =A(x; rA; �1; :::; �i�1) and �i = B(x; rB ; �1; :::; �i). The corresponding �nal decisionof A is de�ned as A(x; rA; �1; :::; �t).We say that a party employs a probabilistic polynomial-time strategy if its nextmove can be computed in a number of steps that is polynomial in the length ofthe common input. In particular, this means that, on input common input x, thestrategy may only consider a polynomial in jxj many messages, which are each ofpoly(jxj) length.4 Intuitively, if the other party exceeds an a priori (polynomial injxj) bound on the total length of the messages that it is allowed to send, then theexecution is suspended. Thus, referring to the aforementioned strategies, we saythat A is a probabilistic polynomial-time strategy if, for every i and rA; �1; :::; �i,the value of A(x; rA; �1; :::; �i) can be computed in time polynomial in jxj. Again,in proper use, it must hold that jrAj; t and the j�ij's are all polynomial in jxj.De�nition 9.1 (Interactive Proof systems { IP):5 An interactive proof system fora set S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy, denoted V , and a prover that executes a (computationally unbounded)strategy, denoted P , satisfying the following two conditions:� Completeness: For every x 2 S, the veri�er V always accepts after interactingwith the prover P on common input x.� Soundness: For every x 62 S and every strategy P �, the veri�er V rejects withprobability at least 12 after interacting with P � on common input x.We denote by IP the class of sets having interactive proof systems.The error probability (in the soundness condition) can be reduced by successiveapplications of the proof system. (This is easy to see in the case of sequentialrepetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,3An alternative formulation refers to the interactive machines that capture the behavior of eachof the parties (see, e.g., [90, Sec. 4.2.1.1]). Such an interactive machine invokes the correspondingstrategy, while handling the communication with the other party and keeping a record of allmessages received so far.4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy mustalso be bounded by a polynomial in the length of x.5We follow the convention of specifying strategies for both the veri�er and the prover. Analternative presentation only speci�es the veri�er's strategy, while rephrasing the completenesscondition as follows: There exists a prover strategy P such that, for every x 2 S, the veri�er Valways accepts after interacting with P on common input x.

9.1. INTERACTIVE PROOF SYSTEMS 391repeating the proving process for k times, reduces the probability that the veri�eris fooled (i.e., accepts a false assertion) to 2�k, and we can a�ord doing so for anyk = poly(jxj). Variants on the basic de�nition are discussed in Section 9.1.4.The role of randomness. Randomness is essential to the power of interactiveproofs; that is, restricting the veri�er to deterministic strategies yields a class ofinteractive proof systems that has no advantage over the class of NP-proof systems.The reason being that, in case the veri�er is deterministic, the prover can predictthe veri�er's part of the interaction. Thus, the prover can just supply its ownsequence of answers to the veri�er's sequence of (predictable) questions, and theveri�er can just check that these answers are convincing. Actually, we establishthat soundness error (and not merely randomized veri�cation) is essential to thepower of interactive proof systems (i.e., their ability to reach beyond NP-proofs).Proposition 9.2 Suppose that S has an interactive proof system (P; V) with nosoundness error; that is, for every x 62 S and every potential strategy P �, the veri�erV rejects with probability one after interacting with P � on common input x. ThenS 2 NP.Proof: We may assume, without loss of generality, that V is deterministic (by just�xing arbitrarily the contents of its random-tape (e.g., to the all-zero string) andnoting that both (perfect) completeness and perfect (i.e., errorless) soundness stillhold). Thus, the case of zero soundness error reduces to the case of deterministicveri�ers.Now, since V is deterministic, the prover can predict each message sent by V ,because each such message is uniquely determined by the common input and theprevious prover messages. Thus, a sequence of optimal prover's messages (i.e., asequence of messages leading V to accept x 2 S) can be (pre)determined (withoutinteracting with V) based solely on the common input x.6 Hence, x 2 S if and onlyif there exists a sequence of (prover's) messages that make (the deterministic) Vaccept x, where the question of whether a speci�c sequence (of prover's messages)makes V accept x depends only on the sequence and on the common input x(because V tosses no coins that may a�ect this decision).7 The foregoing conditioncan be checked in polynomial-time, and so a \passing sequence" constitutes anNP-witness for x 2 S. It follows that S 2 NP .Re
ection. The moral of the reasoning underlying the proof Proposition 9.2 isthat there is no point to interact with a party whose moves are easily predictable,because such moves can be determined without any interaction. This moral repre-sents the prover's point of view (regarding interaction with deterministic veri�ers).6As usual, we do not care about the complexity of determining such a sequence, since nocomputational bounds are placed on the prover.7Recall that in the case that V is randomized, its �nal decision also depends on its internalcoin tosses (and not only on the common input and on the sequence of prover's messages). Inthat case, the veri�er's own messages may reveal information about the veri�er's internal cointosses, which in turn may help the prover to answer with convincing messages.

392 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIn contrast, even an in�nitely powerful party (e.g., a prover) may gain by inter-acting with an unpredictable party (e.g., a randomized veri�er), because this in-teraction may provide useful information (e.g., information regarding the veri�er'scoin tosses, which in turn allows the prover to increase its probability of answer-ing convincingly). Furthermore, from the veri�er's point of view it is bene�cial tointeract with the prover, because the latter is computationally stronger (and thusits moves may not be easily predictable by the veri�er even in the case that theyare predictable in an information theoretic sense).9.1.3 The Power of Interactive ProofsWe have seen that randomness is essential to the power of interactive proof systemsin the sense that without randomness interactive proofs are not more powerful thanNP-proofs. Indeed, the power of interactive proof arises from the combination ofrandomization and interaction. We �rst demonstrate this point by a simple proofsystem for a speci�c coNP-set that is not known to have an NP-proof system, andnext prove the celebrated result IP = PSPACE , which suggests that interactiveproofs are much stronger than NP-proofs.9.1.3.1 A simple exampleOne day on the Olympus, bright-eyed Athena claimed that Nectarpoured out of the new silver-coated jars tastes less good than Nec-tar poured out of the older gold-decorated jars. Mighty Zeus, who wasforced to introduce the new jars by the practically oriented Hera, wasannoyed at the claim. He ordered that Athena be served one hundredglasses of Nectar, each poured at random either from an old jar or froma new one, and that she tell the source of the drink in each glass. Toeverybody's surprise, wise Athena correctly identi�ed the source of eachserving, to which the Father of the Gods responded \my child, you areeither right or extremely lucky." Since all gods knew that being luckywas not one of the attributes of Pallas-Athena, they all concluded thatthe impeccable goddess was right in her claim.The foregoing story illustrates the main idea underlying the interactive proof forGraph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-tive proof system is designed for proving dissimilarity of two given objects (in theforegoing story these are the two brands of Nectar, whereas in Construction 9.3these are two non-isomorphic graphs). We note that, typically, proving similaritybetween objects is easy, because one can present a mapping (of one object to theother) that demonstrates this similarity. In contrast, proving dissimilarity seemsharder, because in general there seems to be no succinct proof of dissimilarity (e.g.,clearly, showing that a particular mapping fails does not su�ce, while enumerat-ing all possible mappings (and showing that each fails) does not yield a succinctproof). More generally, it is typically easy to prove the existence of an easily veri-�able structure in a given object by merely presenting this structure, but proving

9.1. INTERACTIVE PROOF SYSTEMS 393the non-existence of such a structure seems hard. Formally, membership in anNP-set is proved by presenting an NP-witness, but it is not clear how to provethe non-existence of such a witness. Indeed, recall that the common belief is thatcoNP 6= NP .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there existsa 1-1 and onto mapping, �, from the vertex set V1 to the vertex set V2 such thatfu; vg 2 E1 if and only if f�(v); �(u)g 2 E2. This (\edge preserving") mapping�, in case it exists, is called an isomorphism between the graphs. The followingprotocol speci�es a way of proving that two graphs are not isomorphic, while it isnot known whether such a statement can be proved via a non-interactive process(i.e., via an NP-proof system).Construction 9.3 (Interactive proof for Graph Non-Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).� Veri�er's �rst step (V1): The veri�er selects at random one of the two inputgraphs, and sends to the prover a random isomorphic copy of this graph.Namely, the veri�er selects uniformly � 2 f1; 2g, and a random permutation� from the set of permutations over the vertex set V�. The veri�er constructsa graph with vertex set V� and edge setE def= ff�(u); �(v)g : fu; vg2E�gand sends (V� ; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the proverclaims, then the prover should be able to distinguish (not necessarily by ane�cient algorithm) isomorphic copies of one graph from isomorphic copies ofthe other graph. However, if the input graphs are isomorphic, then a randomisomorphic copy of one graph is distributed identically to a random isomorphiccopy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, theprover �nds a � 2 f1; 2g such that the graph G0 is isomorphic to the inputgraph G� . (If both �=1; 2 satisfy the condition then � is selected arbitrarily.In case no � 2 f1; 2g satis�es the condition, � is set to 0). The prover sends� to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals� (chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the commoninput). Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er's strategy in Construction 9.3 is easily implemented in probabilisticpolynomial-time. We do not known of a probabilistic polynomial-time implemen-tation of the prover's strategy, but this is not required. The motivating remarkjusti�es the claim that Construction 9.3 constitutes an interactive proof system for

394 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe set of pairs of non-isomorphic graphs.8 Recall that the latter is a coNP-set(which is not known to be in NP).9.1.3.2 The full power of interactive proofsThe interactive proof system of Construction 9.3 refers to a speci�c coNP-set thatis not known to be in NP . It turns out that interactive proof systems are powerfulenough to prove membership in any coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP 6= coNP, this establishes that interactiveproof systems are more powerful than NP-proof systems. Furthermore, the classof sets having interactive proof systems coincides with the class of sets that can bedecided using a polynomial amount of work-space.Theorem 9.4 (The IP Theorem): IP = PSPACE.Recall that it is widely believed that NP is a proper subset of PSPACE . Thus,under this conjecture, interactive proofs are more powerful than NP-proofs.Sketch of the Proof of Theorem 9.4We �rst show that coNP � IP , by presenting an interactive proof system forthe coNP-complete set of unsatis�able CNF formulae. Next we extend this proofsystem to obtain one for the PSPACE-complete set of unsatis�able Quanti�edBoolean Formulae. Finally, we observe that IP � PSPACE . Indeed, proving thatsome coNP-complete set has an interactive proof system is the core of the proofof Theorem 9.4 (see Exercise 9.2).We show that the set of unsatis�able CNF formulae has an interactive proofsystem by using algebraic methods, which are applied to an arithmetic generaliza-tion of the said Boolean problem (rather than to the problem itself). That is, inorder to demonstrate that this Boolean problem has an interactive proof system, we�rst introduce an arithmetic generalization of CNF formulae, and then constructan interactive proof system for the resulting arithmetic assertion (by capitalizingon the arithmetic formulation of the assertion). Intuitively, we present an iterativeprocess, which involves interaction between the prover and the veri�er, such that ineach iteration the residual claim to be established becomes simpler (i.e., containsone variable less). This iterative process seems to be enabled by the fact that thevarious claims refer to the arithmetic problem rather than to the original Booleanproblem. (Actually, one may say that the key point is that these claims refer to ageneralized problem rather than to the original one.)8In case G1 is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,both to G1 and to G2). In this case the graph G0 sent in Step (V1) uniquely determines the bit�. On the other hand, if G1 and G2 are isomorphic then, for every G0 sent in Step (V1), thenumber of isomorphisms between G1 and G0 equals the number of isomorphisms between G2 andG0. It follows that, in this case G0, yields no information about � (chosen by the veri�er), and sono prover may convince the veri�er with probability exceeding 1=2.

9.1. INTERACTIVE PROOF SYSTEMS 395Teaching note: We devote most of the presentation to establishing that coNP � IP,and recommend doing the same in class. Our presentation focuses on the main ideas,and neglects some minor implementation details (which can be found in [161, 204]).The starting point: We prove that coNP � IP by presenting an interactiveproof system for the set of unsatis�able CNF formulae, which is coNP-complete.Thus, our starting point is a given Boolean CNF formula, which is claimed to beunsatis�able.Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-mula, we replace the Boolean variables by integer variables, and replace the logicaloperations by corresponding arithmetic operations. In particular, the Boolean val-ues false and true are replaced by the integer values 0 and 1 (respectively),or-clauses are replaced by sums, and the top level conjunction is replaced by aproduct. This translation is depicted in Figure 9.1. Note that the Boolean formulaBoolean arithmeticvariable values false, true 0, 1connectives :x, _ and ^ 1� x, + and ��nal values false, true 0, positiveFigure 9.1: Arithmetization of CNF formulae.is satis�ed (resp., unsatis�ed) by a speci�c truth assignment if and only if evaluat-ing the resulting arithmetic expression at the corresponding 0-1 assignment yieldsa positive (integer) value (resp., yields the value zero). Thus, the claim that theoriginal Boolean formula is unsatis�able translates to the claim that the summa-tion of the resulting arithmetic expression, over all 0-1 assignments to its variables,yields the value zero. For example, the Boolean formula(x3 _ :x5 _ x17) ^ (x5 _ x9) ^ (:x3 _ :x4)is replaces by the arithmetic expression(x3 + (1� x5) + x17) � (x5 + x9) � ((1� x3) + (1� x4))and the Boolean formula is unsatis�able if and only if the sum of the correspondingarithmetic expression, taken over all choices of x1; x2; :::; x17 2 f0; 1g, equals 0.Thus, proving that the original Boolean formula is unsatis�able reduces to provingthat the corresponding arithmetic summation evaluates to 0. We highlight twoadditional observations regarding the resulting arithmetic expression:1. The arithmetic expression is a low degree polynomial over the integers; specif-ically, its (total) degree equals the number of clauses in the original Booleanformula.

396 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS2. For any Boolean formula, the value of the corresponding arithmetic expression(for any choice of x1; :::; xn 2 f0; 1g) resides within the interval [0; vm], wherev is the maximum number of variables in a clause, and m is the number ofclauses. Thus, summing over all 2n possible 0-1 assignments, where n � vmis the number of variables, yields an integer value in [0; 2nvm].Moving to a Finite Field: In general, whenever we need to check equalitybetween two integers in [0;M], it su�ces to check their equality mod q, whereq > M . The bene�t is that, if q is prime then the arithmetic is now in a �nite�eld (mod q), and so certain things are \nicer" (e.g., uniformly selecting a value).Thus, proving that a CNF formula is not satis�able reduces to proving an equalityof the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q); (9.1)where � is a low-degree multi-variate polynomial (and q can be represented usingO(j�j) bits). In the rest of this exposition, all arithmetic operations refer to the�nite �eld of q elements, denoted GF(q).Overview of the actual protocol: stripping summations in iterations.Given a formal expression as in Eq. (9.1), we strip o� summations in iterations,stripping a single summation at each iteration, and instantiate the correspondingfree variable as follows. At the beginning of each iteration the prover is supposedto supply the univariate polynomial representing the residual expression as a func-tion of the (single) currently stripped variable. (By Observation 1, this is a lowdegree polynomial and so it has a short description.)9 The veri�er checks that thepolynomial (say, p) is of low degree, and that it corresponds to the current value(say, v) being claimed (i.e., it veri�es that p(0) + p(1) � v). Next, the veri�er ran-domly instantiates the currently free variable (i.e., it selects uniformly r 2 GF(q)),yielding a new value to be claimed for the resulting expression (i.e., the veri�ercomputes v p(r), and expects a proof that the residual expression equals v).The veri�er sends the uniformly chosen instantiation (i.e., r) to the prover, and theparties proceed to the next iteration (which refers to the residual expression andto the new value v). At the end of the last iteration, the veri�er has a closed formexpression (i.e., an expression without formal summations), which can be easilychecked against the claimed value.A single iteration (detailed): The ith iteration is aimed at proving a claim ofthe form Xxi=0;1 � � � Xxn=0;1�(r1; :::; ri�1; xi; xi+1; :::; xn) � vi�1 (mod q); (9.2)9We also use Observation 2, which implies that we may use a �nite �eld with elements havinga description length that is polynomial in the length of the original Boolean formula (i.e., log2 q =O(vm)).

9.1. INTERACTIVE PROOF SYSTEMS 397where v0 = 0, and r1; :::; ri�1 and vi�1 are as determined in previous iterations.The ith iteration consists of two steps (messages): a prover step followed by averi�er step. The prover is supposed to provide the veri�er with the univariatepolynomial pi that satis�espi(z) def= Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; z; xi+1; :::; xn) mod q : (9.3)Note that, module q, the value pi(0)+pi(1) equals the l.h.s of Eq. (9.2). Denote byp0i the actual polynomial sent by the prover (i.e., the honest prover sets p0i = pi).Then, the veri�er �rst checks if p0i(0)+ p0i(1) � vi�1 (mod q), and next uniformlyselects ri 2 GF(q) and sends it to the prover. Needless to say, the veri�er willreject if the �rst check is violated. The claim to be proved in the next iteration isXxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; ri; xi+1; :::; xn) � vi (mod q); (9.4)where vi def= p0i(ri) mod q is computed by each party.Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,the prover can supply the correct polynomials (as determined in Eq. (9.3)), andthis will lead the veri�er to always accept.Soundness of the protocol: It su�ces to upper-bound the probability that, fora particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim(i.e., Eq. (9.4)) is valid. Indeed, let us focus on the ith iteration, and let vi�1 andpi be as in Eq. (9.2) and Eq. (9.3), respectively; that is, vi�1 is the (wrong) valueclaimed at the beginning of the ith iteration and pi is the polynomial representingthe expression obtained when stripping the current variable (as in Eq. (9.3)). Letp0i(�) be any potential answer by the prover. We may assume, without loss ofgenerality, that p0i(0) + p0i(1) � vi�1 (mod q) and that p0i is of low-degree (sinceotherwise the veri�er will de�nitely reject). Using our hypothesis (that the entryclaim of Eq. (9.2) is false), we know that pi(0) + pi(1) 6� vi�1 (mod q). Thus,p0i and pi are di�erent low-degree polynomials, and so they may agree on very fewpoints (if at all). Now, if the veri�er's instantiation (i.e., its choice of a random ri)does not happen to be one of these few points (i.e., pi(ri) 6� p0i(ri) (mod q)), thenthe ending claim (i.e., Eq. (9.4)) is false too (because the new value (i.e., vi) is setto p0i(ri) mod q, while the residual expression evaluates to pi(ri)). Details are leftas an exercise (see Exercise 9.3).This establishes that the set of unsatis�able CNF formulae has an interactiveproof system. Actually, a similar proof system (which uses a related arithmeti-zation { see Exercise 9.5) can be used to prove that a given formula has a givennumber of satisfying assignment; i.e., prove membership in the (\counting") setf(�; k) : jf� : �(�) = 1gj = kg : (9.5)

398 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSUsing adequate reductions, it follows that every problem in #P has an interactiveproof system (i.e., for every R 2 PC, the set f(x; k) : jfy : (x; y)2Rgj = kg is inIP). Proving that PSPACE � IP requires a little more work, as outlined next.Obtaining interactive proofs for PSPACE (the basic idea). We presentan interactive proof for the set of satis�ed Quanti�ed Boolean Formulae (QBF),which is complete for PSPACE (see Theorem 5.15).10 Recall that the number ofquanti�ers in such formulae is unbounded (e.g., it may be polynomially related tothe length of the input), that there are both existential and universal quanti�ers,and furthermore these quanti�ers may alternate. In the arithmetization of theseformulae, we replace existential quanti�ers by summations and universal quanti�ersby products. Two di�culties arise when considering the application of the foregoingprotocol to the resulting arithmetic expression. Firstly, the (integral) value ofthe expression (which may involve a big number of nested formal products) isonly upper-bounded by a double-exponential function (in the length of the input).Secondly, when stripping a summation (or a product), the expression may be apolynomial of high degree (due to nested formal products that may appear in theremaining expression).11 For example, both phenomena occur in the followingexpression Xx=0;1 Yy1=0;1 � � � Yyn=0;1 (x+ yn) ;which equals Px=0;1 x2n�1 � (1 + x)2n�1 . The �rst di�culty is easy to resolve byusing the fact (to be established in Exercise 9.7) that if two integers in [0;M] aredi�erent then they must be di�erent modulo most of the primes in the interval[3; poly(logM)]. Thus, we let the veri�er selects a random prime q of length thatis linear in the length of the original formula, and the two parties consider thearithmetic expression reduced modulo this q. The second di�culty is resolved bynoting that PSPACE is actually reducible to a special form of (non-canonical) QBFin which no variable appears both to the left and to the right of more than oneuniversal quanti�er (see the proof of Theorem 5.15 or alternatively Exercise 9.6).It follows that when arithmetizing and stripping summations (or products) fromthe resulting arithmetic expression, the corresponding univariate polynomial is oflow degree (i.e., at most twice the length of the original formula, where the factor10Actually, the following extension of the foregoing proof system yields a proof system for theset of unsatis�ed Quanti�ed Boolean Formulae (which is also complete for PSPACE). Alterna-tively, an interactive proof system for QBF can be obtained by extending the related proof systempresented in Exercise 9.5.11This high degree causes two di�culties, where only the second one is acute. The �rst di�cultyis that the soundness of the corresponding protocol will require working in a �nite �eld thatis su�ciently larger than this high degree, but we can a�ord doing so (since the degree is atmost exponential in the formula's length). The second (and more acute) di�culty is that thepolynomial may have a large (i.e., exponential) number of non-zero coe�cients and so the veri�ercannot a�ord to read the standard representation of this polynomial (as a list of all non-zerocoe�cients). Indeed, other succinct and e�ective representations of such polynomials may existin some cases (as in the following example), but it is unclear how to obtain such representationsin general.

9.1. INTERACTIVE PROOF SYSTEMS 399of two is due to the single universal quanti�er that has this variable quanti�ed onits left and appearing on its right).IP is contained in PSPACE: We shall show that, for every interactive proofsystem, there exists an optimal prover strategy that can be implemented in polynomial-space, where an optimal prover strategy is one that maximizes the probability thatthe prescribed veri�er accepts the common input. It follows that IP � PSPACE,because (for every S 2 IP) we can emulate, in polynomial space, all possible inter-actions of the prescribed veri�er with any �xed polynomial-space prover strategy(e.g., an optimal one).Proposition 9.5 Let V be a probabilistic polynomial-time (veri�er) strategy. Then,there exists a polynomial-space computable (prover) strategy f that, for every x,maximizes the probability that V accepts x. That is, for every P � and every x itholds that the probability that V accepts x after interacting with P � is upper-boundedby the probability that V accepts x after interacting with f .Proof Sketch: For every common input x and any possible partial transcript
 ofthe interaction so far, the strategy12 f determines an optimal next-message for theprover by considering all possible coin tosses of the veri�er that are consistent with(x;
). Speci�cally, f is determined recursively such that f(x;
) = m if m maxi-mizes the number of outcomes of the veri�er's coin-tosses that are consistent with(x;
) and lead the veri�er to accept when subsequent prover moves are determinedby f (which is where recursion is used). That is, the veri�er's random sequence rsupport the setting f(x;
) = m, where
 = (�1; �1; :::; �t; �t), if the following twoconditions hold:1. r is consistent with (x;
), which means that for every i 2 f1; :::; tg it holdsthat �i = V (x; r; �1; :::; �i).2. r leads V to accept when the subsequent prover moves are determined by f ,which means at termination (i.e., after T rounds) it holds thatV (x; r; �1; :::; �t;m; �t+2; :::; �T) = 1 ;where for every i 2 ft+1; :::; T�1g it holds that �i+1 = f(x;
;m; �t+1; :::; �i; �i)and �i = V (x; r; �1; :::; �t;m; �t+2; :::; �i).Thus, f(x;
) = m if m maximizes the value of E[�f;V (x;R
 ;
;m)], where R
 isselected uniformly among the r's that are consistent with (x;
) and �f;V (x; r;
;m)indicates whether or not V accepts x in the subsequent interaction with f (whichrefers to randomness r and partial transcript (
;m)). It follows that the valuef(x;
) can be computed in polynomial-space when given oracle access to f(x;
; �; �).The proposition follows by standard composition of space-bounded computations(i.e., allocating separate space to each level of the recursion, while using the samespace in all recursive calls of each level).12For sake of convenience, when describing the strategy f , we refer to the entire partial tran-script of the interaction with V (rather than merely to the sequence of previous messages sentby V).

400 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.1.4 Variants and �ner structure: an overviewIn this subsection we consider several variants on the basic de�nition of interactiveproofs as well as �ner complexity measures. This is an advanced subsection, whichonly provides an overview of the various notions and results (as well as pointers toproofs of the latter).9.1.4.1 Arthur-Merlin games a.k.a public-coin proof systemsThe veri�er's messages in a general interactive proof system are determined arbi-trarily (but e�ciently) based on the veri�er's view of the interaction so far (whichincludes its internal coin tosses, which without loss of generality can take place atthe onset of the interaction). Thus, the veri�er's past coin tosses are not necessarilyrevealed by the messages that it sends. In contrast, in public-coin proof systems(a.k.a Arthur-Merlin proof systems), the veri�er's messages contain the outcomeof any coin that it tosses at the current round. Thus, these messages reveal therandomness used towards generating them (i.e., this randomness becomes public).Actually, without loss of generality, the veri�er's messages can be identical to theoutcome of the coins tossed at the current round (because any other string that theveri�er may compute based on these coin tosses is actually determined by them).Note that the proof systems presented in the proof of Theorem 9.4 are of thepublic-coin type, whereas this is not the case for the Graph Non-Isomorphism proofsystem (of Construction 9.3). Thus, although not all natural proof systems are ofthe public-coin type, by Theorem 9.4 every set having an interactive proof systemalso has a public-coin interactive proof system. This means that, in the context ofinteractive proof systems, asking random questions is as powerful as asking cleverquestions. (A stronger statement appears at the end of x9.1.4.3.)Indeed, public-coin proof systems are a syntactically restricted type of inter-active proof systems. This restriction may make the design of such systems moredi�cult, but potentially facilitates their analysis (and especially when the analy-sis refers to a generic system). Another advantage of public-coin proof systems isthat the veri�er's actions (except for its �nal decision) are oblivious of the prover'smessages. This property is used in the proof of Theorem 9.12.9.1.4.2 Interactive proof systems with two-sided errorIn De�nition 9.1 error probability is allowed in the soundness condition but not inthe completeness condition. In such a case, we say that the proof system has perfectcompleteness (or one-sided error probability). A more general de�nition allows anerror probability (upper-bounded by, say, 1=3) in both the completeness and thesoundness conditions. Note that sets having such generalized (two-sided error)interactive proofs are also in PSPACE, and thus (by Theorem 9.4) allowing two-sided error does not increase the power of interactive proofs. See further discussionat the end of x9.1.4.3.

9.1. INTERACTIVE PROOF SYSTEMS 4019.1.4.3 A hierarchy of interactive proof systemsDe�nition 9.1 only refers to the total computation time of the veri�er, and thusallows an arbitrary (polynomial) number of messages to be exchanged. A �nerde�nition refers to the number of messages being exchanged (also called the numberof rounds).13De�nition 9.6 (The round-complexity of interactive proof):� For an integer function m, the complexity class IP(m) consists of sets havingan interactive proof system in which, on common input x, at most m(jxj)messages are exchanged between the parties.14� For a set of integer functions, M , we let IP(M) def= Sm2M IP(m). Thus,IP = IP(poly).For example, interactive proof systems in which the veri�er sends a single messagethat is answered by a single message of the prover corresponds to IP(2). Clearly,NP � IP(1), yet the inclusion may be strict because in IP(1) the veri�er may tosscoins after receiving the prover's single message. (Also note that IP(0) = coRP.)De�nition 9.6 gives rise to a natural hierarchy of interactive proof systems,where di�erent \levels" of this hierarchy correspond to di�erent \growth rates" ofthe round-complexity of these systems. The following results are known regardingthis hierarchy.� A linear speed-up (see Appendix F.2 (or [22] and [110])): For every integerfunction, f , such that f(n) � 2 for all n, the class IP(O(f(�))) collapses tothe class IP(f(�)). In particular, IP(O(1)) collapses to IP(2).� The class IP(2) contains sets that are not known to be in NP ; e.g., GraphNon-Isomorphism (see Construction 9.3). However, under plausible intractabil-ity assumptions, IP(2) = NP (see [166]).� If coNP � IP(2) then the Polynomial-Time Hierarchy collapses (see [44]).It is conjectured that coNP is not contained in IP(2), and consequently that inter-active proofs with an unbounded number of message exchanges are more powerfulthan interactive proofs in which only a bounded (i.e., constant) number of messagesare exchanged.15The class IP(1), also denotedMA, seems to be the \real" randomized (and yetnon-interactive) version of NP : Here the prover supplies a candidate (polynomial-size) \proof", and the veri�er assesses its validity probabilistically (rather thandeterministically).13An even �ner structure emerges when considering also the total length of the messages sentby the prover (see [105]).14We count the total number of messages exchanged regardless of the direction ofcommunication.15Note that the linear speed-up cannot be applied for an unbounded number of times, becauseeach application may increase (e.g., square) the time-complexity of veri�cation.

402 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy, denoted AM(�),that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, forevery integer function f , it holds that AM(f) = IP(f). For f � 2, it is also thecase that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up forIP(�) is established by combining the following two results:1. Emulating IP(�) by AM(�) (see xF.2.1 or [110]): IP(f) � AM(f + 3).2. Linear speed-up for AM(�) (see xF.2.2 or [22]): AM(2f) � AM(f + 1).In particular, IP(O(1)) = AM(2), even ifAM(2) is restricted such that the veri�ertosses no coins after receiving the prover's message. (Note that IP(1) = AM(1)and IP(0) = AM(0) are trivial.) We comment that it is common to shorthandAM(2) by AM, which is indeed inconsistent with the convention of using IP asshorthand of IP(poly).The fact that IP(O(f)) = IP(f) is proved by establishing an analogous resultfor AM(�) demonstrates the advantage of the public-coin setting for the studyof interactive proofs. A similar phenomenon occurs when establishing that theIP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.8).9.1.4.4 Something completely di�erentWe stress that although we have relaxed the requirements from the veri�cationprocedure (by allowing it to interact with the prover, toss coins, and risk some(bounded) error probability), we did not restrict the validity of its assertions byassumptions concerning the potential prover. This should be contrasted with othernotions of proof systems, such as computationally-sound ones (see x9.1.5.2), inwhich the validity of the veri�er's assertions depends on assumptions concerningthe potential prover(s).9.1.5 On computationally bounded provers: an overviewRecall that our de�nition of interactive proofs (i.e., De�nition 9.1) makes no ref-erence to the computational abilities of the potential prover. This fact has twocon
icting consequences:1. The completeness condition does not provide any upper bound on the com-plexity of the corresponding proving strategy (which convinces the veri�er toaccept valid assertions).2. The soundness condition guarantees that, regardless of the computationale�ort spend by a cheating prover, the veri�er cannot be fooled to acceptinvalid assertions (with probability exceeding the soundness error).Note that providing an upper-bound on the complexity of the (prescribed) proverstrategy P of a speci�c interactive proof system (P; V) only strengthens the claimthat (P; V) is a proof system for the corresponding set (of valid assertions). Westress that the prescribed prover strategy is referred to only in the completeness

9.1. INTERACTIVE PROOF SYSTEMS 403condition (and is irrelevant to the soundness condition). On the other hand, relax-ing the de�nition of interactive proofs such that soundness holds only for a speci�cclass of cheating prover strategies (rather than for all cheating prover strategies)weakens the corresponding claim. In this advanced section we consider both pos-sibilities.Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-dent reading. It merely provides an overview of the various notions, and the reader isdirected to the chapter's notes for further detail (i.e., pointers to the relevant literature).9.1.5.1 How powerful should the prover be?Suppose that a set S is in IP . This means that there exists a veri�er V thatcan be convinced to accept any input in S but cannot be fooled to accept anyinput not in S (except with small probability). One may ask how powerful shoulda prover be such that it can convince the veri�er V to accept any input in S.Note that Proposition 9.5 asserts that an optimal prover strategy (for convincingany �xed veri�er V) can be implemented in polynomial-space, and that we cannotexpect any better for a generic set in PSPACE = IP (because the emulation ofthe interaction of V with any optimal prover strategy yields a decision procedurefor the set). Still, we may seek better upper-bounds on the complexity of someprover strategy that convinces a speci�c veri�er, which in turn corresponds to aspeci�c set S. More interestingly, considering all possible veri�ers that give rise tointeractive proof systems for S, we ask what is the minimum power required froma prover that satis�es the completeness requirement with respect to one of theseveri�ers?We stress that, unlike the case of computationally-sound proof systems (seex9.1.5.2), we do not restrict the power of the prover in the soundness condition,but rather consider the minimum complexity of provers meeting the completenesscondition. Speci�cally, we are interested in relatively e�cient provers that meetthe completeness condition. The term \relatively e�cient prover" has been giventhree di�erent interpretations, which are brie
y surveyed next.1. A prover is considered relatively e�cient if, when given an auxiliary input (inaddition to the common input in S), it works in (probabilistic) polynomial-time. Speci�cally, in case S 2 NP , the auxiliary input maybe an NP-proofthat the common input is in the set. Still, even in this case the interac-tive proof need not consist of the prover sending the auxiliary input to theveri�er; for example, an alternative procedure may allow the prover to bezero-knowledge (see Construction 9.10).This interpretation is adequate and in fact crucial for applications in whichsuch an auxiliary input is available to the otherwise polynomial-time parties.Typically, such auxiliary input is available in cryptographic applications inwhich parties wish to prove in (zero-knowledge) that they have correctly con-ducted some computation. In these cases, the NP-proof is just the transcript

404 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSof the computation by which the claimed result has been generated, and thusthe auxiliary input is available to the proving party.2. A prover is considered relatively e�cient if it can be implemented by a proba-bilistic polynomial-time oracle machine with oracle access to the set S itself.Note that the prover in Construction 9.3 has this property (and see alsoExercise 9.10).This interpretation generalizes the notion of self-reducibility of NP-proof sys-tems. Recall that by self-reducibility of an NP-set (or rather of the corre-sponding NP-proof system) we mean that the search problem of �nding anNP-witness is polynomial-time reducible to deciding membership in the set(cf. De�nition 2.14). Here we require that implementing the prover strategy(in the relevant interactive proof) be polynomial-time reducible to decidingmembership in the set.3. A prover is considered relatively e�cient if it can be implemented by a prob-abilistic machine that runs in time that is polynomial in the deterministiccomplexity of the set. This interpretation relates the time-complexity of con-vincing a \lazy person" (i.e., a veri�er) to the time-complexity of determiningthe truth (i.e., deciding membership in the set).Hence, in contrast to the �rst interpretation, which is adequate in settingswhere assertions are generated along with their NP-proofs, the current in-terpretation is adequate in settings in which the prover is given only theassertion and has to �nd a proof to it by itself (before trying to convince alazy veri�er of its validity).9.1.5.2 Computational-soundnessRelaxing the soundness condition such that it only refers to relatively-e�cient waysof trying to fool the veri�er (rather than to all possible ways) yields a fundamen-tally di�erent notion of a proof system. Assertions proved in such a system arenot necessarily correct; they are correct only if the potential cheating prover doesnot exceed the presumed complexity limits. As in x9.1.5.1, the notion of \rela-tive e�ciency" can be given di�erent interpretations, the most popular one beingthat the cheating prover strategy can be implemented by a (non-uniform) fam-ily of polynomial-size circuits. The latter interpretation coincides with the �rstinterpretation used in x9.1.5.1 (i.e., a probabilistic polynomial-time strategy thatis given an auxiliary input (of polynomial length)). Speci�cally, in this case, thesoundness condition is replaced by the following computational soundness conditionthat asserts that it is infeasible to fool the veri�er into accepting false statements.Formally:For every prover strategy that is implementable by a family of polynomial-size circuits fCng, and every su�ciently long x 2 f0; 1g� n S, the prob-ability that V accepts x when interacting with Cjxj is less than 1=2.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 405As in case of standard soundness, the computational-soundness error can be re-duced by repetitions. We warn, however, that unlike in the case of standard sound-ness (where both sequential and parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel repetitions.It is common and natural to consider proof systems in which the prover strate-gies considered both in the completeness and soundness conditions satisfy the samenotion of relative e�ciency. Protocols that satisfy these conditions with respectto the foregoing interpretation are called arguments. We mention that argumentsystems may be more e�cient (e.g., in terms of their communication complexity)than interactive proof systems.9.2 Zero-Knowledge Proof SystemsStandard mathematical proofs are believed to yield (extra) knowledge and notmerely establish the validity of the assertion being proved; that is, it is commonlybelieved that (good) proofs provide a deeper understanding of the theorem beingproved. At the technical level, an NP-proof of membership in some set S 2 NP nPyields something (i.e., the NP-proof itself) that is hard to compute (even whenassuming that the input is in S). For example, a 3-coloring of a graph constitutes anNP-proof that the graph is 3-colorable, but it yields information (i.e., the coloring)that seems infeasible to compute (when given an arbitrary 3-colorable graph).A natural question that arises is whether or not proving an assertion alwaysrequires giving away some extra knowledge. The setting of interactive proof systemsenables a negative answer to this fundamental question: In contrast to NP-proofs,which seem to yield a lot of knowledge, zero-knowledge (interactive) proofs yield noknowledge at all; that is, zero-knowledge proofs are both convincing and yet yieldnothing beyond the validity of the assertion being proved. For example, a zero-knowledge proof of 3-colorability does not yield any information about the graph(e.g., partial information about a 3-coloring) that is infeasible to compute fromthe graph itself. Thus, zero-knowledge proofs exhibit an extreme contrast betweenbeing convincing (of the validity of a assertion) and teaching anything on top ofthe validity of the assertion.Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., sinceit di�erentiates proof-veri�cation from learning). Still, the reader may wonderwhether such a phenomenon is desirable, because in many settings we do careto learn as much as possible (rather than learn as little as possible). However,in other settings (most notably in cryptography), we may actually wish to limitthe gain that other parties may obtained from a proof (and, in particular, limitthis gain to the minimal level of being convinced in the validity of the assertion).Indeed, the applicability of zero-knowledge proofs in the domain of cryptography isvast; they are typically used as a tool for forcing (potentially malicious) parties tobehave according to a predetermined protocol (without having them reveal theirown private inputs). The interested reader is referred to discussions in xC.4.3.3and xC.7.3.2 (and to detailed treatments in [90, 91]). We also mention that, inaddition to their direct applicability in Cryptography, zero-knowledge proofs serve

406 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS
X

?
!

?
!

 !

??
X is true!

Figure 9.2: Zero-knowledge proofs { an illustration.as a good bench-mark for the study of various questions regarding cryptographicprotocols.Teaching note: We believe that the treatment of zero-knowledge proofs provided inthis section su�ces for the purpose of a course in complexity theory. For an extensivetreatment of zero-knowledge proofs, the interested reader is referred to [90, Chap. 4].9.2.1 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond thevalidity of the assertion; that is, a veri�er obtaining such a proof only gains convic-tion in the validity of the assertion. This is formulated by saying that anything thatcan be feasibly obtained from a zero-knowledge proof is also feasibly computablefrom the (valid) assertion itself. The latter formulation follows the simulationparadigm, which is discussed next.9.2.1.1 A wider perspective: the simulation paradigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversarythat tries to gain knowledge from the (prescribed) prover.16 We wish to state thatno (feasible) adversary strategy for the veri�er can gain anything from the prover(beyond conviction in the validity of the assertion). The question addressed hereis how to formulate the \no gain" requirement.Let us consider the desired formulation from a wide perspective. A key ques-tion regarding the modeling of security concerns is how to express the intuitiverequirement that an adversary \gains nothing substantial" by deviating from theprescribed behavior of an honest user. The answer is that the adversary gains noth-ing if whatever it can obtain by unrestricted adversarial behavior can be obtained16Recall that when de�ning a proof system (e.g., an interactive proof system), we view theprover as a potential adversary that tries to fool the (prescribed) veri�er (into accepting invalidassertions).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 407within essentially the same computational e�ort by a benign (or prescribed) behav-ior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. Forexample, in the context of zero-knowledge, a benign behavior is any computationthat is based (only) on the assertion itself (while assuming that the latter is valid).Thus, a zero-knowledge proof is an interactive proof in which no feasible adversar-ial veri�er strategy can obtain from the interaction more than a \benign party"(which believes the assertion) can obtain from the assertion itself.The foregoing interpretation of \gaining nothing" means that any feasible ad-versarial behavior can be \simulated" by a benign behavior (and thus there is nogain in the former). This line of reasoning is called the simulation paradigm, andis pivotal to many de�nitions in cryptography (e.g., it underlies the de�nitions ofsecurity of encryption schemes and cryptographic protocols); for further details seeAppendix C.9.2.1.2 The basic de�nitionsWe turn back to the concrete task of de�ning zero-knowledge. Firstly, we com-ment that zero-knowledge is a property of some prover strategies; actually, moregenerally, zero-knowledge is a property of some strategies. Fixing any strategy(e.g., a prescribed prover), we consider what can be gained (i.e., computed) by anarbitrary feasible adversary (e.g., a veri�er) that interacts with the aforementioned�xed strategy on a common input taken from a predetermined set (in our case theset of valid assertions). This gain is compared against what can be computed by anarbitrary feasible algorithm (called a simulator) that is only given the input itself.The �xed strategy is zero-knowledge if the \computational power" of these two(fundamentally di�erent settings) is essentially equivalent. Details follow.The formulation of the zero-knowledge condition refers to two types of probabil-ity ensembles, where each ensemble associates a single probability distribution toeach relevant input (e.g., a valid assertion). Speci�cally, in the case of interactiveproofs, the �rst ensemble represents the output distribution of the veri�er afterinteracting with the speci�ed prover strategy P (on some common input), wherethe veri�er is employing an arbitrary e�cient strategy (not necessarily the speci�edone). The second ensemble represents the output distribution of some probabilisticpolynomial-time algorithm (which is only given the corresponding input (and doesnot interact with anyone)). The basic paradigm of zero-knowledge asserts that forevery ensemble of the �rst type there exist a \similar" ensemble of the second type.The speci�c variants di�er by the interpretation given to the notion of similarity.The most strict interpretation, leading to perfect zero-knowledge, is that similaritymeans equality.De�nition 9.7 (perfect zero-knowledge, over-simpli�ed):17 A prover strategy, P ,17In the actual de�nition one relaxes the requirement in one of the following two ways. The�rst alternative is allowing A� to run for expected (rather than strict) polynomial-time. Thesecond alternative consists of allowing A� to have no output with probability at most 1=2 andconsidering the value of its output conditioned on it having output at all. The latter alternativeimplies the former, but the converse is not known to hold.

408 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSis said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, there exists a probabilistic polynomial-time algorithm,A�, such that (P; V �)(x) � A�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � afterinteracting with the prover P on common input x, and A�(x) is a random variablerepresenting the output of algorithm A� on input x.We comment that any set in coRP has a perfect zero-knowledge proof system inwhich the prover keeps silence and the veri�er decides by itself. The same holdsfor BPP provided that we relax the de�nition of interactive proof system to allowtwo-sided error. Needless to say, our focus is on non-trivial proof systems; that is,proof systems for sets outside of BPP.A somewhat more relaxed interpretation (of the notion of similarity), leadingto almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-ity means statistical closeness (i.e., negligible di�erence between the ensembles).The most liberal interpretation, leading to the standard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge), is thatsimilarity means computational indistinguishability (i.e., failure of any e�cient pro-cedure to tell the two ensembles apart). Combining the foregoing discussion withthe relevant de�nition of computational indistinguishability (i.e., De�nition C.5),we obtain the following de�nition.De�nition 9.8 (zero-knowledge, somewhat simpli�ed): A prover strategy, P , issaid to be zero-knowledge over a set S if for every probabilistic polynomial-timeveri�er strategy, V �, there exists a probabilistic polynomial-time simulator, A�,such that for every probabilistic polynomial-time distinguisher, D, it holds thatd(n) def= maxx2S\f0;1gnfjPr[D(x; (P; V �)(x))=1]� Pr[D(x;A�(x))=1]jgis a negligible function.18 We denote by ZK the class of sets having zero-knowledgeinteractive proof systems.De�nition 9.8 is a simpli�ed version of the actual de�nition, which is presented inAppendix C.4.2. Speci�cally, in order to guarantee that zero-knowledge is preservedunder sequential composition it is necessary to slightly augment the de�nition (byproviding V � and A� with the same value of an arbitrary (poly(jxj)-bit long) aux-iliary input). Other de�nitional issues and related notions are brie
y discussed inAppendix C.4.4.18That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positivepolynomial p and for su�ciently large n, it holds that d(n) < 1=p(n)). Needless to say, d(n) def= 0if S \ f0; 1gn = ;.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 409On the role of randomness and interaction. It can be shown that onlysets in BPP have zero-knowledge proofs in which the veri�er is deterministic (seeExercise 9.13). The same holds for deterministic provers, provided that we consider\auxiliary-input" zero-knowledge (as in De�nition C.9). It can also be shown thatonly sets in BPP have zero-knowledge proofs in which a single message is sent (seeExercise 9.14). Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proof systems. (For further details, see [90, Sec. 4.5.1].)Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowestlevel of a knowledge-complexity hierarchy which quanti�es the \knowledge revealedin an interaction." Speci�cally, the knowledge complexity of an interactive proofsystem may be de�ned as the minimum number of oracle-queries required in orderto e�ciently simulate an interaction with the prover. (See [89, Sec. 2.3.1] forreferences.)9.2.2 The Power of Zero-KnowledgeWhen faced with a de�nition as complex (and seemingly self-contradictory) as thede�nition of zero-knowledge, one should indeed wonder whether the de�nition canbe met (in a non-trivial manner).19 It turns out that the existence of non-trivialzero-knowledge proofs is related to the existence of intractable problems in NP .In particular, we will show that if one-way functions exist then every NP-set has azero-knowledge proof system. (For the converse, see [90, Sec. 4.5.2] or [227].) But�rst, we demonstrate the non-triviality of zero-knowledge by a presenting a simple(perfect) zero-knowledge proof system for a speci�c NP-set that is not known tobe in BPP. In this case we make no intractability assumptions (yet, the result issigni�cant only if NP is not contained in BPP).9.2.2.1 A simple exampleA story not found in the Odyssey refers to the not so famous Labyrinthof the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-lenged godlike Odysseus to traverse the Labyrinth from its North Gateto its South Gate. Canny Odysseus doubted whether such a path ex-isted at all and asked beautiful Circe for a proof, to which she repliedthat if she showed him a path this would trivialize for him the chal-lenge of traversing the Labyrinth. \Not necessarily," clever Odysseusreplied, \you can use your magic to transport me to a random place inthe labyrinth, and then guide me by a random walk to a gate of mychoice. If we repeat this enough times then I'll be convinced that thereis a labyrinth-path between the two gates, while you will not reveal tome such a path." \Indeed," wise Circe thought to herself, \showingthis mortal a random path from a random location in the labyrinth to19Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system inwhich the veri�er just determines membership by itself. Thus, the issue is the existence of zero-knowledge proofs for sets outside BPP.

410 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe gate he chooses will not teach him more than his taking a randomwalk from that gate."The foregoing story illustrates the main idea underlying the zero-knowledge prooffor Graph Isomorphism presented next. Recall that the set of pairs of isomorphicgraphs is not known to be in BPP, and thus the straightforward NP-proof system(in which the prover just supplies the isomorphism) may not be zero-knowledge.Furthermore, assuming that Graph Isomorphism is not in BPP, this set has nozero-knowledge NP-proof system. Still, as we shall shortly see, this set does havea zero-knowledge interactive proof system.Construction 9.9 (zero-knowledge proof for Graph Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).If the input graphs are indeed isomorphic, then we let � denote an arbitraryisomorphism between them; that is, � is a 1-1 and onto mapping of the vertexset V1 to the vertex set V2 such that fu; vg 2 E1 if and only if f�(v); �(u)g 2E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy ofG2, and sends it to the veri�er. Namely, the prover selects at random, withuniform probability distribution, a permutation � from the set of permutationsover the vertex set V2, and constructs a graph with vertex set V2 and edge setE def= ff�(u); �(v)g : fu; vg2E2g :The prover sends (V2; E) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims,then the graph sent in Step P1 is isomorphic to both input graphs. However,if the input graphs are not isomorphic then no graph can be isomorphic toboth of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E0), from theprover, the veri�er asks the prover to show an isomorphism between G0 andone of the input graphs, chosen at random by the veri�er. Namely, the veri�eruniformly selects � 2 f1; 2g, and sends it to the prover (who is supposed toanswer with an isomorphism between G� and G0).� Prover's second Step (P2): If the message, �, received from the veri�er equals2 then the prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the proversends � � � (i.e., the composition of � on �, de�ned as � � �(v) def= �(�(v)))to the veri�er.(Indeed, the prover treats any � 6= 2 as � = 1. Thus, in the analysis we shallassume, without loss of generality, that � 2 f1; 2g always holds.)� Veri�er's second Step (V2): If the message, denoted , received from theprover is an isomorphism between G� and G0 then the veri�er outputs 1,otherwise it outputs 0.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 411The veri�er strategy in Construction 9.9 is easily implemented in probabilisticpolynomial-time. If the prover is given an isomorphism between the input graphs asauxiliary input, then also the prover's program can be implemented in probabilisticpolynomial-time. The motivating remark justi�es the claim that Construction 9.9constitutes an interactive proof system for the set of pairs of isomorphic graphs.Thus, we focus on establishing the zero-knowledge property.We consider �rst the special case in which the veri�er actually follows theprescribed strategy (and selects � at random, and in particular obliviously of thegraph G0 it receives). The view of this veri�er can be easily simulated by selecting� and at random, constructing G0 as a random isomorphic copy of G� (viathe isomorphism), and outputting the triple (G0; �;). Indeed (even in thiscase), the simulator behaves di�erently from the prescribed prover (which selectsG0 as a random isomorphic copy of G2, via the isomorphism �), but its outputdistribution is identical to the veri�er's view in the real interaction. However,the foregoing description assumes that the veri�er follows the prescribed strategy,while in general the veri�er may (adversarially) select � depending on the graphG0. Thus, a slightly more complicated simulation (described next) is required.A general clari�cation may be in place. Recall that we wish to simulate theinteraction of an arbitrary veri�er strategy with the prescribed prover. Thus, thissimulator must depend on the corresponding veri�er strategy, and indeed we shalldescribe the simulator while referring to such a generic veri�er strategy. Formally,this means that the simulator's program incorporates the program of the corre-sponding veri�er strategy. Actually, the following simulator uses the generic veri�erstrategy as a subroutine.Turning back to the speci�c protocol of Construction 9.9, the basic idea is thatsimulator tries to guess � and completes a simulation if its guess turns out to becorrect. Speci�cally, the simulator selects � 2 f1; 2g uniformly (hoping that theveri�er will later select � = �), and constructs G0 by randomly permuting G� (andthus being able to present an isomorphism between G� and G0). Recall that thesimulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 areisomorphic). The point is that if G1 and G2 are isomorphic, then the graph G0does not yield any information regarding the simulator's guess (i.e., �).20 Thus,the value � selected by the adversarial veri�er may depend on G0 but not on � ,which implies that Pr[�= �] = 1=2. In other words, the simulator's guess (i.e., �)is correct (i.e., equals �) with probability 1=2. Now, if the guess is correct then thesimulator can produce an output that has the correct distribution, and otherwisethe entire process is repeated.Digest: a few useful conventions. We highlight three conventions that wereeither used (implicitly) in the foregoing analysis or can be used to simplify thedescription of (this and/or) other zero-knowledge simulators.1. Without loss of generality, we may assume that the cheating veri�er strategyis implemented by a deterministic polynomial-size circuit (or, equivalently,20Indeed, this observation is identical to the observation made in the analysis of the soundnessof Construction 9.3.

412 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSby a deterministic polynomial-time algorithm with an auxiliary input).21This is justi�ed by �xing any outcome of the veri�er's coins, and observingthat our (uniform) simulation of the various (residual) deterministic strategiesyields a simulation of the original probabilistic strategy.2. Without loss of generality, it su�ces to consider cheating veri�ers that (only)output their view of the interaction (i.e., the common input, their internalcoin tosses, and the messages that they have received). In other words, itsu�ces to simulate the view that cheating veri�ers have of the real interaction.This is justi�ed by noting that the �nal output of any veri�er can be obtainedfrom its view of the interaction, where the complexity of the transformationis upper-bounded by the complexity of the veri�er's strategy.3. Without loss of generality, it su�ces to construct a \weak simulator" thatproduces output with some noticeable22 probability such that whenever anoutput is produced it is distributed \correctly" (i.e., similarly to the distri-bution occuring in real interactions with the prescribed prover).This is justi�ed by repeatedly invoking such a weak simulator (polynomially)many times and using the �rst output produced by any of these invocations.Note that by using an adequate number of invocations, we fail to producean output with negligible probability. Furthermore, note that a simulatorthat fails to produce output with negligible probability can be convertedto a simulator that always produces an output, while incurring a negligiblestatistic deviation in the output distribution.9.2.2.2 The full power of zero-knowledge proofsThe zero-knowledge proof system presented in Construction 9.9 refers to one spe-ci�c NP-set that is not known to be in BPP. It turns out that, under reasonableassumptions, zero-knowledge can be used to prove membership in any NP-set. In-tuitively, it su�ces to establish this fact for a single NP-complete set, and thus wefocus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.It is easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring of G (and the same holds for membership in any set in NP), but this NP-proof is not a zero-knowledge proof (unless NP � BPP). In fact, assuming NP 6�BPP, graph 3-colorability has no zero-knowledge NP-proof system. Still, as weshall shortly see, graph 3-colorability does have a zero-knowledge interactive proofsystem. This proof system will be described while referring to \boxes" in whichinformation can be hidden and later revealed. Such boxes can be implementedusing one-way functions (see, e.g., Theorem 9.11).21This observation is not crucial, but it does simplify the analysis (by eliminating the need tospecify a sequence of coin tosses in each invocation of the veri�er's strategy).22Recall that a probability is called noticeable if it is greater than the reciprocal of some positivepolynomial (in the relevant parameter).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 413Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):The description refers to abstract non-transparent boxes that can be perfectly lockedand unlocked such that these boxes perfectly hide their contents while being locked.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a randompermutation, �, over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V .Hence, the prover forms a random relabeling of the 3-coloring . The proversends to the veri�er a sequence of jV j locked and non-transparent boxes suchthat the vth box contains the value �(v).� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, andsends it to the prover.� Motivating Remark: The boxes are supposed to contain a 3-coloring of thegraph, and the veri�er asks to inspect the colors of vertices u and v. Indeed,for the zero-knowledge condition, it is crucial that the prover only respondsto pairs that correspond to edges of the graph.� Prover's second step: Upon receiving an edge fu; vg 2 E, the prover sends tothe veri�er the keys to boxes u and v.For simplicity of the analysis, if the veri�er sends fu; vg 62 E then the proverbehaves as if it has received a �xed (or random) edge in E, rather than sus-pending the interaction, which would have been the natural thing to do.� Veri�er's second step: The veri�er unlocks and opens boxes u and v, andaccepts if and only if they contain two di�erent elements in f1; 2; 3g.The veri�er strategy in Construction 9.10 is easily implemented in probabilisticpolynomial-time. The same holds with respect to the prover's strategy, providedthat it is given a 3-coloring of G as auxiliary input. Clearly, if the input graphis 3-colorable then the veri�er accepts with probability 1 when interacting withthe prescribed prover. On the other hand, if the input graph is not 3-colorable,then any contents put in the boxes must be invalid with respect to at least oneedge, and consequently the veri�er will reject with probability at least 1jEj . Hence,the foregoing protocol exhibits a non-negligible gap in the accepting probabilitiesbetween the case of 3-colorable graphs and the case of non-3-colorable graphs. Toincrease the gap, the protocol may be repeated su�ciently many times (of course,using independent coin tosses in each repetition).So far we showed that Construction 9.10 constitutes (a weak form of) an in-teractive proof system for Graph 3-Colorability. The point, however, is that theprescribed prover strategy is zero-knowledge. This is easy to see in the abstractsetting of Construction 9.10, because all that the veri�er sees in the real interac-tion is a sequence of boxes and a random pair of di�erent colors (which is easy tosimulate). Indeed, the simulation of the real interaction proceeds by presenting asequence of boxes and providing a random pair of di�erent colors as the contents

414 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSof the two boxes indicated by the veri�er. Note that the foregoing argument relieson the fact that the boxes (indicated by the veri�er) correspond to vertices thatare connected by an edge in the graph.This simple demonstration of the zero-knowledge property is not possible inthe digital implementation (discussed next), because in that case the boxes arenot totally una�ected by their contents (but are rather a�ected, yet in an indistin-guishable manner). Thus, the veri�er's selection of the inspected edge may dependon the \outside appearance" of the various boxes, which in turn may depend (inan indistinguishable manner) on the contents of these boxes. Consequently, wecannot determine the boxes' contents after a pair of boxes are selected, and so thesimple foregoing simulation is inapplicable. Instead, we simulate the interaction asfollows.1. We �rst guess (at random) which pair of boxes (corresponding to an edge)the veri�er would ask to open, and place a random pair of distinct colorsin these boxes (and garbage in the rest).23 Then, we hand all boxes to theveri�er, which asks us to open a pair of boxes (corresponding to an edge).2. If the veri�er asks for the pair that we chose (i.e., our guess is successful),then we can complete the simulation by opening these boxes. Otherwise, wetry again (i.e., repeat Step 1 with a new random guess and random colors).The key observation is that if the boxes hide the contents in the sense thata box's contents is indistinguishable based on it outside appearance, thenour guess will succeed with probability approximately 1=jEj. Furthermore,in this case, the simulated execution will be indistinguishable from the realinteraction.Thus, it su�ces to use boxes that hide their contents almost perfectly (rather thanbeing perfectly opaque). Such boxes can be implemented digitally.Teaching note: Indeed, we recommend presenting and analyzing in class only theforegoing abstract protocol. It su�ces to brie
y comment about the digital implemen-tation, rather than presenting a formal proof of Theorem 9.11 (which can be foundin [99] (or [90, Sec. 4.4])).Digital implementation (overview). We implement the abstract boxes (re-ferred to in Construction 9.10) by using adequately de�ned commitment schemes.Loosely speaking, such a scheme is a two-phase game between a sender and a re-ceiver such that after the �rst phase the sender is \committed" to a value and yet,at this stage, it is infeasible for the receiver to �nd out the committed value (i.e.,the commitment is \hiding"). The committed value will be revealed to the receiverin the second phase and it is guaranteed that the sender cannot reveal a value otherthan the one committed (i.e., the commitment is \binding"). Such commitment23An alternative (and more e�cient) simulation consists of putting random independent colorsin the various boxes, hoping that the veri�er asks for an edge that is properly colored. The latterevent occurs with probability (approximately) 2=3, provided that the boxes hide their contents(almost) perfectly.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 415schemes can be implemented assuming the existence of one-way functions (as inDe�nition 7.3); see xC.4.3.1.Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorabilityis NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-tems for any NP-set.24 Furthermore, NP-witnesses can be e�ciently transformedinto polynomial-size circuits that implement the corresponding (prescribed zero-knowledge) prover strategies.Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformlyhard) one-way functions, it holds that NP � ZK. Furthermore, every S 2 NP hasa (computational) zero-knowledge interactive proof system in which the prescribedprover strategy can be implemented in probabilistic polynomial-time, provided thatit is given as auxiliary-input an NP-witness for membership of the common inputin S.The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-avoidable, because the existence of zero-knowledge proofs for \hard on the average"problems implies the existence of one-way functions (and, likewise, the existenceof zero-knowledge proofs for sets outside BPP implies the existence of \auxiliary-input one-way functions").Theorem 9.11 has a dramatic e�ect on the design of cryptographic protocols(see Appendix C). In a di�erent vein we mention that, under the same assumption,any interactive proof can be transformed into a zero-knowledge one. (This trans-formation, however, does not necessarily preserve the complexity of the prover.)Theorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-uniformly hard) one-way functions, it holds that IP = ZK.Loosely speaking, Theorem 9.12 can be proved by recalling that IP = AM(poly)and modifying any public-coin protocol as follows: the modi�ed prover sends com-mitments to its messages rather than the messages themselves, and once the orig-inal interaction is completed it proves (in zero-knowledge) that the correspondingtranscript would have been accepted by the original veri�er. Indeed, the latter as-sertion is of the \NP type", and thus the zero-knowledge proof system guaranteedin Theorem 9.11 can be invoked for proving it.Re
ection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-complete in order to obtain a zero-knowledge proofs for any set inNP by using sucha protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completenessresult is used here in a \positive" way; that is, in order to construct somethingrather than in order to derive a (\negative") hardness result (cf., Section 2.2.4).2524Actually, we should either rely on the fact that the standard Karp-reductions are invertiblein polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge withrespect to auxiliary inputs (as in De�nition C.9).25Historically, the proof of Theorem 9.11 was probably the �rst positive application of NP-completeness. Subsequent positive uses of completeness results have appeared in the context of

416 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSPerfect and Statistical Zero-Knowledge. The foregoing results, which referto computational zero-knowledge proof systems, should be contrasted with theknown results regarding the complexity of statistical zero-knowledge proof systems:Statistical zero-knowledge proof systems exist only for sets in IP(2)\coIP(2), andthus are unlikely to exist for all NP-sets. On the other hand, the class StatisticalZero-Knowledge is known to contain some seemingly hard problems, and turnsout to have interesting complexity theoretic properties (e.g., being closed undercomplementation, and having very natural complete problems). The interestedreader is referred to [226].9.2.3 Proofs of Knowledge { a parenthetical subsectionTeaching note: Technically speaking, this topic belongs to Section 9.1, but its moreinteresting demonstrations refer to zero-knowledge proofs of knowledge { hence its cur-rent positioning.Loosely speaking, \proofs of knowledge" are interactive proofs in which the proverasserts \knowledge" of some object (e.g., a 3-coloring of a graph), and not merelyits existence (e.g., the existence of a 3-coloring of the graph, which in turn is equiv-alent to the assertion that the graph is 3-colorable). Note that the entity assertingknowledge is actually the prover's strategy, which is an automated computing de-vice, hereafter referred to as a machine. This raises the question of what do wemean by saying that a machine knows something.9.2.3.1 Abstract re
ectionsAny standard dictionary suggests several meanings for the verb to know, but theseare typically phrased with reference to the notion of awareness, a notion which iscertainly inapplicable in the context of machines. Instead, we should look for abehavioristic interpretation of the verb to know. Indeed, it is reasonable to linkknowledge with the ability to do something (e.g., the ability to write down whateverone knows). Hence, we may say that a machine knows a string � if it can outputthe string �. But this seems as total non-sense too: a machine has a well de�nedoutput { either the output equals � or it does not, so what can be meant by sayingthat a machine can do something?Interestingly, a sound interpretation of the latter phrase does exist. Looselyspeaking, by saying that a machine can do something we mean that the machinecan be easily modi�ed such that it (or rather its modi�ed version) does whateveris claimed. More precisely, this means that there exists an e�cient machine that,using the original machine as a black-box (or given its code as an input), outputswhatever is claimed.Technically speaking, using a machine as a black-box seems more appealingwhen the said machine is interactive (i.e., implements an interactive strategy).Indeed, this will be our focus here. Furthermore, conceptually speaking, whateverinteractive proofs (see the proof of Theorem 9.4), probabilistically checkable proofs (see the proofof Theorem 9.16), and the study of statistical zero-knowledge (cf. [226]).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 417a machine knows (or does not know) is its own business, whereas what can beof interest and reference to the outside is whatever can be deduced about theknowledge of a machine by interacting with it. Hence, we are interested in proofsof knowledge (rather than in mere knowledge).9.2.3.2 A concrete treatmentFor sake of simplicity let us consider a concrete question: how can a machine provethat it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloringto the veri�er. Yet, we claim that applying the protocol in Construction 9.10 (i.e.,the zero-knowledge proof system for 3-Colorability) is an alternative way of provingknowledge of a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possibleprover strategy and links the ability to \extract" a 3-coloring (of a given graph)from such a prover to the probability that this prover convinces the veri�er. That is,the de�nition postulates the existence of an e�cient universal way of \extracting" a3-coloring of a given graph by using any prover strategy that convinces this veri�erto accept this graph with probability 1 (or, more generally, with some noticeableprobability). On the other hand, we should no expect this extractor to obtainmuch from prover strategies that fail to convince the veri�er (or, more generally,convince it with negligible probability). A robust de�nition should allow a smoothtransition between these two extremes (and in particular between provers thatconvince the veri�er with noticeable probability and those that convince it withnegligible probability). Such a de�nition should also support the intuition by whichthe following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring ofa given graph provided that Bob has successfully convinced her that he knows thiscoloring.26 We stress that the zero-knowledge property of Alice's strategy shouldhold regardless of the proof-of-knowledge system used for proving Bob's knowledgeof a 3-coloring.Loosely speaking, we say that a strategy, V , constitutes a veri�er for knowledgeof 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloringof G when using P as a \black box"27 is inversely proportional to the probabilitythat V is convinced by P (to accept the graph G). Namely, the extraction of the3-coloring is done by an oracle machine, called an extractor, that is given access tothe strategy P (i.e., the function specifying the message that P sends in response toany sequence of messages it may receive). We require that the (expected) runningtime of the extractor, on input G and oracle access to P , be inversely related (bya factor polynomial in jGj) to the probability that P convinces V to accept G. Inparticular, if P always convinces V to accept G, then the extractor runs in expectedpolynomial-time. The same holds in case P convinces V to accept with noticeableprobability. On the other hand, if P never convinces V to accept, then nothing isrequired of the extractor. We stress that the latter special cases do not su�ce for26For simplicity, the reader may consider graphs that have a unique 3-coloring (up-to a rela-beling). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), whicharise naturally in some (cryptographic) applications.27Indeed, one may consider also non-black-box extractors.

418 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSa satisfactory de�nition; see discussion in [90, Sec. 4.7.1].Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,have many applications to the design of cryptographic schemes and cryptographicprotocols (see, e.g., [90, 91]). These are enabled by the following general result.Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformlyhard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategycan be implemented in probabilistic polynomial-time, provided it is given such anNP-witness.9.3 Probabilistically Checkable Proof SystemsTeaching note: Probabilistically checkable proof (PCP) systems may be viewed asa restricted type of interactive proof systems in which the prover is memoryless andresponds to each veri�er message as if it were the �rst such message. This perspectivecreates a tighter link with previous sections, but is somewhat contrived. Indeed, sucha memoryless prover may be viewed as a static object that the veri�er may query atlocations of its choice. But then it is more appealing to present the model using the(more traditional) terminology of oracle machines rather than using (and degenerating)the terminology of interactive machines (or strategies).Probabilistically checkable proof systems can be viewed as standard (determinis-tic) proof systems that are augmented with a probabilistic procedure capable ofevaluating the validity of the assertion by examining few locations in the allegedproof. Actually, we focus on the latter probabilistic procedure, which in turn im-plies the existence of a deterministic veri�cation procedure (obtained by going overall possible random choices of the probabilistic procedure and making the adequateexaminations).Modeling such probabilistic veri�cation procedures, which may examine fewlocations in the alleged proof, requires providing these procedures with direct accessto the individual bits of the alleged proof (so that they need not scan the proofbit-by-bit). Thus, the alleged proof is a string, as in the case of a traditionalproof system, but the (probabilistic) veri�cation procedure is given direct accessto individual bits of this string.We are interested in probabilistic veri�cation procedures that access only fewlocations in the proof, and yet are able to make a meaningful probabilistic verdictregarding the validity of the alleged proof. Speci�cally, the veri�cation procedureshould accept any valid proof (with probability 1), but rejects with probabilityat least 1=2 any alleged proof for a false assertion. Such probabilistic veri�cationprocedures are called probabilistically checkable proof (PCP) systems.The fact that one can (meaningfully) evaluate the correctness of proofs byexamining few locations in them is indeed amazing and somewhat counter-intuitive.Needless to say, such proofs must be written in a somewhat non-standard format,

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 419because standard proofs cannot be veri�ed without reading them in full (since a
awmay be due to a single improper inference). In contrast, proofs for a PCP systemtend to be very redundant; they consist of super
uously many pieces of information(about the claimed assertion), but their correctness can be (meaningfully) evaluatedby checking the consistency of a randomly chosen collection of few related pieces.We stress that by a \meaningful evaluation" we mean rejecting alleged proofs offalse assertions with constant probability (rather than with probability that isinversely proportional to the length of the alleged proof).The main complexity measure associated with PCPs is indeed their query com-plexity. Another complexity measure of natural concern is the length of the proofsbeing employed, which in turn is related to the randomness complexity of thesystem. The randomness complexity of PCPs plays a key role in numerous appli-cations (e.g., in composing PCP systems as well as when applying PCP systems toderive inapproximability results), and thus we specify this parameter rather thanthe proof length.Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-merous inapproximability results (see Section 9.3.3), but our view is that the latteris merely one extremely important application of the fundamental notion of a PCPsystem. Our presentation is organized accordingly.9.3.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilis-tic polynomial-time veri�er having access to an oracle that represents an allegedproof (in redundant form). Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's cointosses. As in the case of interactive proof systems, it is required that if the asser-tion holds then the veri�er always accepts (i.e., when given access to an adequateoracle); whereas, if the assertion is false then the veri�er must reject with proba-bility at least 12 , no matter which oracle is used. The basic de�nition of the PCPsetting is given in Part (1) of the following de�nition. Yet, the complexity measuresintroduced in Part (2) are of key importance for the subsequent discussions.De�nition 9.14 (Probabilistically Checkable Proofs { PCP):1. A probabilistically checkable proof system (PCP) for a set S is a probabilisticpolynomial-time oracle machine, called veri�er and denoted V , that satis�esthe following two conditions:� Completeness: For every x 2 S there exists an oracle �x such that, oninput x and access to oracle �x, machine V always accepts x.� Soundness: For every x 62 S and every oracle �, on input x and accessto oracle �, machine V rejects x with probability at least 12 .2. We say that a probabilistically checkable proof system has query complexityq :N!N if, on any input of length n, the veri�er makes at most q(n) oracle

420 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSqueries.28 Similarly, the randomness complexity r :N ! N upper-bounds thenumber of coin tosses performed by the veri�er on a generic n-bit long input.For integer functions r and q, we denote by PCP(r; q) the class of sets havingprobabilistically checkable proof systems of randomness complexity r and querycomplexity q. For sets of integer functions, R and Q,PCP(R;Q) def= [r2R ; q2QPCP(r; q) :The error probability (in the soundness condition) of PCP systems can be reducedby successive applications of the proof system. In particular, repeating the processfor k times, reduces the probability that the veri�er is fooled by a false assertion to2�k, whereas all complexities increase by at most a factor of k. Thus, PCP systemsof non-trivial query-complexity (cf. Section 9.3.2) provide a trade-o� between thenumber of locations examined in the proof and the con�dence in the validity of theassertion.We note that the oracle �x referred to in the completeness condition of a PCPsystem constitutes a proof in the standard mathematical sense. Indeed any PCPsystem yields a standard proof system (with respect to a veri�cation procedurethat scans all possible outcomes of V 's internal coin tosses and emulates all thecorresponding checks). Furthermore, the oracles in PCP systems of logarithmicrandomness-complexity constitute NP-proofs (see Exercise 9.15). However, theoracles of a PCP system have the extra remarkable property of enabling a lazyveri�er to toss coins, take its chances and \assess" the validity of the proof withoutreading all of it (but rather by reading a tiny portion of it). Potentially, this allowsthe veri�er to examine very few bits of an NP-proof and even utilize very longproofs (i.e., of super-polynomial length).Adaptive versus non-adaptive veri�ers. De�nition 9.14 allows the veri�erto be adaptive; that is, the veri�er may determine its queries based on the an-swers it has received to previous queries (in addition to their dependence on theinput and on the veri�er's internal coin tosses). In contrast, non-adaptive veri�ersdetermine all their queries based solely on their input and internal coin tosses.Note that q adaptive (binary) queries can be emulated by Pqi=1 2i�1 < 2q non-adaptive (binary) queries. We comment that most constructions of PCP systemsuse non-adaptive veri�ers, and in fact in many sources PCP systems are de�ned asnon-adaptive.Randomness versus proof length. Fixing a veri�er V , we say that locationi (in the oracle) is relevant to input x if there exists a computation of V on inputx in which location i is queried (i.e., there exists ! and � such that, on inputx, randomness ! and access to the oracle �, the veri�er queries location i). Thee�ective proof length of V is the smallest function ` : N!N such that for everyinput x there are at most `(jxj) locations (in the oracle) that are relevant to x.28As usual in complexity theory, the oracle answers are binary values (i.e., either 0 or 1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 421We claim that the e�ective proof length of any PCP system is closely related toits randomness (and query) complexity. On one hand, if the PCP system hasrandomness-complexity r and query-complexity q, then its e�ective proof length isupper-bounded by 2r+q, whereas a bound of 2r � q holds for non-adaptive systems(see Exercise 9.15). Thus, PCP systems of logarithmic randomness complexity havee�ective proof length that is polynomial, and hence yield NP-proof systems. On theother hand, in some sense, the randomness complexity of a PCP system can beupper-bounded by the logarithm of the (e�ective) length of the proofs employed(provided we allow non-uniform veri�ers; see Exercise 9.16).On the role of randomness. The PCP Theorem (i.e., NP � PCP(log; O(1)))asserts that a meaningful probabilistic evaluation of proofs is possible based ona constant number of examined bits. We note that, unless P = NP , such aphenomena is impossible when requiring the veri�er to be deterministic. Firstly,note that PCP(0; O(1)) = P holds (as a special case of PCP(r; q) � Dtime(22rq+r �poly); see Exercise 9.17). Secondly, as shown in Exercise 9.19, P 6= NP implies thatNP is not contained in PCP(o(log); o(log)). Lastly, assuming that not all NP-setshave NP-proof systems that employs proofs of length ` (e.g., `(n) = n), it followsthat if 2r(n)q(n) < `(n) then PCP(r; q) does not contain NP (see Exercise 9.17again).9.3.2 The Power of Probabilistically Checkable ProofsThe celebrated PCP Theorem asserts that NP = PCP(log; O(1)), and this resultis indeed the focus of the current section. But before getting to it we make severalsimple observations regarding the PCP Hierarchy.We �rst note that PCP(poly; 0) equals coRP , whereas PCP(0; poly) equalsNP . It is easy to prove an upper bound on the non-deterministic time complexityof sets in the PCP hierarchy (see Exercise 9.17):Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomiallybounded integer function r, it holds that PCP(r; poly) � Ntime(2r � poly). Inparticular, PCP(log; poly) � NP.The focus on PCP systems of logarithmic randomness complexity re
ects an inter-est in PCP systems that utilize proof oracles of polynomial length (see discussion inSection 9.3.1). We stress that such PCP systems (i.e., PCP(log; q)) are NP-proofsystems with a (potentially amazing) extra property: the validity of the assertioncan be \probabilistically evaluated" by examining a (small) portion (i.e., q(n) bits)of the proof. Thus, for any �xed polynomially bounded function q, a result of theform NP � PCP(log; q) (9.6)is interesting (because it applies also to NP-sets having witnesses of length exceed-ing q). Needless to say, the smaller q { the better. The PCP Theorem asserts theamazing fact by which q can be made a constant.

422 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTheorem 9.16 (The PCP Theorem): NP � PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarith-mically many coins and makes only a constant number of queries exist for everyset in NP . This constant is essentially three (see x9.3.4.1). Before reviewing theproof of Theorem 9.16, we make a couple of comments.E�cient transformation of NP-witnesses to PCP oracles: The proof ofTheorem 9.16 is constructive in the sense that it allows to e�ciently transformany NP-witness (for an instance of a set in NP) into an oracle that makes thePCP veri�er accept (with probability 1). That is, for every (NP-witness relation)R 2 PC there exists a PCP veri�er V as in Theorem 9.16 and a polynomial-timecomputable function � such that for every (x; y)2R the veri�er V always accepts theinput x when given oracle access to the proof �(x; y) (i.e., Pr[V �(x;y)(x)=1] = 1).Recalling that the latter oracles are themselves NP-proofs, it follows that NP-proofscan be transformed into NP-proofs that o�er a trade-o� between the portion of theproof being read and the con�dence it o�ers. Speci�cally, for every " > 0, if one iswilling to tolerate an error probability of " then it su�ces to examine O(log(1="))bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), thesebit locations need to be selected at random.The foregoing strengthening of Theorem 9.16 o�ers a wider range of applica-tions than Theorem 9.16 itself. Indeed, Theorem 9.16 itself su�ces for \negative"applications such as establishing the infeasibility of certain approximation prob-lems (see Section 9.3.3). But for \positive" applications (see x9.3.4.2), typicallysome user (or a real entity) will be required to actually construct the PCP-oracle,and in such cases the strengthening of Theorem 9.16 will be useful.A characterization of NP: Combining Theorem 9.16 with Proposition 9.15 weobtain the following characterization of NP .Corollary 9.17 (The PCP characterization of NP): NP = PCP(log; O(1)).Road-map for the proof of the PCP Theorem: Theorem 9.16 is a culmina-tion of a sequence of remarkable works, each establishing meaningful and increas-ingly stronger versions of Eq. (9.6). A presentation of the full proof of Theorem 9.16is beyond the scope of the current work (and is, in our opinion, unsuitable for abasic course in complexity theory). Instead, we present an overview of the originalproof (see x9.3.2.2) as well as of an alternative proof (see x9.3.2.3), which was foundmore than a decade later. We will start, however, by presenting a weaker resultthat is used in both proofs of Theorem 9.16 and is also of independent interest.This weaker result (see x9.3.2.1) asserts that every NP-set has a PCP system withconstant query-complexity (albeit with polynomial randomness complexity); thatis, NP � PCP(poly; O(1)).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 423Teaching note: In our opinion, presenting in class any part of the proof of the PCPTheorem should be given low priority. In particular, presenting the connections betweenPCP and the complexity of approximation should be given a higher priority. As forrelative priorities among the following three subsections, we strongly recommend givingx9.3.2.1 the highest priority, because it o�ers a direct demonstration of the power ofPCPs. As for the two alternative proofs of the PCP Theorem itself, our recommendationdepends on the intended goal. On one hand, for the purpose of merely giving a tasteof the ideas involved in the proof, we prefer an overview of the original proof (providedin x9.3.2.2). On the other hand, for the purpose of actually providing a full proof, wede�nitely prefer the new proof (which is only outlined in x9.3.2.3).9.3.2.1 Proving that NP � PCP(poly; O(1))The fact that every NP-set has a PCP system with constant query-complexity(regardless of its randomness-complexity) already testi�es to the power of PCPsystems. It asserts that probabilistic veri�cation of proofs is possible by inspectingvery few locations in a (potentially huge) proof. Indeed, the PCP systems presentednext utilize exponentially long proofs, but they do so while inspecting these proofsat a constant number of (randomly selected) locations.We start with a brief overview of the construction. We �rst note that it su�cesto construct a PCP for proving the satis�ability of a given system of quadraticequations over GF(2), because this problem is NP-complete (see Exercise 2.25).29For an input consisting of a system of quadratic equations with n variables, theoracle (of this PCP) is supposed to provide the evaluation of all quadratic ex-pressions (in these n variables) at some �xed assignment to these variables. Thisassignment is supposed to satisfy the system of quadratic equations that is given asinput. We distinguish two tables in the oracle: the �rst table corresponding to all2n linear expressions and the second table to all 2n2 quadratic expressions. Eachtable is tested for self-consistency (via a \linearity test"), and the two tables aretested to be consistent with each other (via a \matrix-equality" test, which utilizes\self-correction"). Finally, we test that the assignment encoded in these tables sat-is�es the quadratic system that is given as input. This is done by taking a randomlinear combination of the quadratic equations that appear in the quadratic system,and obtaining the value assigned to the corresponding quadratic expression by theaforementioned tables (again, via self-correction). The key point is that each of theforegoing tests utilizes a constant number of Boolean queries, and has time (andrandomness) complexity that is polynomial in the size of the input. Details follow.Teaching note: The following text refers to notions such as the Hadamard encoding,testing and self-correction, which appear in other parts of this work (see, e.g., xE.1.1.2,Section 10.1.2. and x7.2.1.1, respectively). While a wider perspective (provided in theaforementioned parts) is always useful, the current text is self-contained.29Here and elsewhere, we denote by GF(2) the 2-element �eld.

424 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe starting point. We construct a PCP system for the set of satis�ablequadratic equations over GF(2). The input is a sequence of such equations over thevariables x1; :::; xn, and the proof oracle consist of two parts (or tables), which aresupposed to provide information regarding some satisfying assignment � = �1 � � � �n(also viewed as an n-ary vector over GF(2)). The �rst part, denoted T1, is sup-posed to provide a Hadamard encoding of the said satisfying assignment; that is,for every � 2 GF(2)n this table is supposed to provide the inner product mod 2 ofthe n-ary vectors � and � (i.e., T1(�) is supposed to equalPni=1 �i�i). The secondpart, denoted T2, is supposed to provide all linear combinations of the values ofthe �i�j 's; that is, for every � 2 GF(2)n2 (viewed as an n-by-n matrix over GF(2)),the value of T2(�) is supposed to equal Pi;j �i;j�i�j . (Indeed T1 is contained inT2, because �2 = � for any � 2 GF(2).) The PCP veri�er will use the two tablesfor checking that the input (i.e., a sequence of quadratic equations) is satis�ed bythe assignment that is encoded in the two tables. Needless to say, these tables maynot be a valid encoding of any n-ary vector (let alone one that satis�es the input),and so the veri�er also needs to check that the encoding is (close to being) valid.We will focus on this task �rst.Testing the Hadamard Code. Note that T1 is supposed to encode a linearfunction; that is, there must exist some � = �1 � � � �n 2 GF(2)n such that T1(�) =Pni=1 �i�i holds for every � = �1 � � ��n 2 GF(2)n. This can be tested by selectinguniformly �0; �00 2 GF(2)n and checking whether T1(�0) + T1(�00) = T1(�0 + �00),where �0+�00 denotes addition of vectors over GF(2). The analysis of this naturaltester turns out to be quite complex. Nevertheless, it is indeed the case that anytable that is 0:02-far from being linear is rejected with probability at least 0:01(see Exercise 9.20), where T is "-far from being linear if T disagrees with any linearfunction f on more than an " fraction of the domain (i.e., Prr[T (r) 6=f(r)] > ").By repeating the linearity test for a constant number of times, we may rejecteach table that is 0:02-far from being a codeword of the Hadamard Code withprobability at least 0:99. Thus, using a constant number of queries, the veri�errejects any T1 that is 0:02-far from being a Hadamard encoding of any � 2 GF(2)n,and likewise rejects any T2 that is 0:02-far from being a Hadamard encoding ofany � 0 2 GF(2)n2 . We may thus assume that T1 (resp., T2) is 0:02-close to theHadamard encoding of some � (resp., � 0).30 (Needless to say, this does not meanthat � 0 equals the outer produce of � with itself.)In the rest of the analysis, we �x � 2 GF(2)n and � 0 2 GF(2)n2 , and denote theHadamard encoding of � (resp., � 0) by f� :GF(2)n!GF(2) (resp., f� 0 :GF(2)n2!GF(2)). Recall that T1 (resp., T2) is 0:02-close to f� (resp., f� 0).Self-correction of the Hadamard Code. Suppose that T is "-close to a linearfunction f : GF(2)m! GF(2) (i.e., Prr[T (r) 6= f(r)] � "). Then, we can recoverthe value of f at any desired point x, by making two (random) queries to T .30Note that � (resp., � 0) is uniquely determined by T1 (resp., T2), because every two di�erentlinear functions GF(2)m ! GF(2) agree on exactly half of the domain (i.e., the Hadamard codehas relative distance 1=2).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 425Speci�cally, for a uniformly selected r 2 GF(2)m, we use the value T (x+r)�T (r).Note that the probability that we recover the correct value is at least 1�2", becausePrr[T (x + r) � T (r) = f(x + r) � f(r)] � 1 � 2" and f(x + r) � f(r) = f(x) bylinearity of f . (Needless to say, for " < 1=4, the function T cannot be "-close totwo di�erent linear functions.)31 Thus, assuming that T1 is 0:02-close to f� (resp.,T2 is 0:02-close to f� 0) we may correctly recover (i.e., with error probability 0:04)the value of f� (resp., f� 0) at any desired point by making 2 queries to T1 (resp.,T2). This process is called self-correction (cf., e.g., x7.2.1.1).
= = f (r) f (s)

srr s

.
τ τ

τA τFigure 9.3: Detail for testing consistency of linear and quadratic forms.Checking consistency of f� and f� 0. Suppose that we are given access tof� : GF(2)n ! GF(2) and f� 0 : GF(2)n2 ! GF(2), where f� (�) = Pi �i�iand f� 0(�0) = Pi;j � 0i;j�0i;j , and that we wish to verify that � 0i;j = �i�j for ev-ery i; j 2 f1; :::; ng. In other words, we are given a (somewhat weird) encodingof two matrices, A = (�i�j)i;j and A0 = (� 0i;j)i;j , and we wish to check whetheror not these matrices are identical. It can be shown (see Exercise 9.22) that ifA 6= A0 then Prr;s[r>As 6= r>A0s] � 1=4, where r and s are uniformly distributedn-ary vectors. Note that, in our case (where A = (�i�j)i;j and A0 = (� 0i;j)i;j), itholds that r>As = Pj(Pi ri�i�j)sj = f� (r)f� (s) (see Figure 9.3) and r>A0s =Pj(Pi ri� 0i;j)sj = f� 0(rs>), where rs> is the outer-product of s and r. Thus, (for(�i�j)i;j 6= (� 0i;j)i;j) we have Prr;s[f� (r)f� (s) 6= f� 0(rs>)] � 1=4.Recall, however, that we do not have direct access to the functions f� and f� 0 ,but rather to tables (i.e., T1 and T2) that are 0:02-close to these functions. Still,using self-correction, we can obtain the values of f� and f� 0 at any desired point,with very high probability. Actually, when implementing the foregoing consistencytest it su�ces to use self-correction for f� 0 , because we use the values of f� attwo independently and uniformly distributed points in GF(2)n (i.e., r; s) but thevalue f� 0 is required at rs>, which is not uniformly distributed in GF(2)n2 . Thus,we test the consistency of f� and f� 0 by selecting uniformly r; s 2 GF(2)n andR 2 GF(2)n2 , and checking that T1(r)T1(s) = T2(rs> +R)� T2(R).By repeating the aforementioned (self-corrected) consistency test for a constantnumber of times, we may reject an inconsistent pair of tables with probability atleast 0:99. Thus, in the rest of the analysis, we may assume that (�i�j)i;j = (� 0i;j)i;j .31Indeed, this fact follows from the self-correction argument, but a simpler proof merely refersto the fact that the Hadamard code has relative distance 1=2.

426 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSChecking that � satis�es the quadratic system. Suppose that we are givenaccess to f� and f� 0 as in the foregoing (where, in particular, � 0 = ��>). A keyobservation is that if � does not satisfy a system of (quadratic) equations then,with probability 1=2, it does not satisfy a random linear combination of theseequations. Thus, in order to check whether � satis�es the quadratic system (whichis given as input), we create a single quadratic equation by taking such a randomlinear combination, and check whether this quadratic equation is satis�ed by � .The punch-line is that testing whether � satis�es the quadratic equation Q(x) = �amounts to testing whether f� 0(Q) = �. Again, the actual checking is implementedby using self-correction (of the table T2).This completes the description of the veri�er. Note that this veri�er performsa constant number of codeword tests for the Hadamard Code, and a constantnumber of consistency and satis�ability tests, where each of the latter involves self-correction of the Hadamard Code. Each of the individual tests utilizes a constantnumber of queries (ranging between two and four) and uses randomness that isquadratic in the number of variables (and linear in the number of equations in theinput). Thus, the query-complexity is a constant and the randomness-complexityis at most quadratic in the length of the input (quadratic system). Clearly, ifthe input quadratic system is satis�able (by some �), then the veri�er accepts thecorresponding tables T1 and T2 (i.e., T1 = f� and T2 = f��>) with probability 1.On the other hand, if the input quadratic system is unsatis�able, then any pair oftables (T1; T2) will be rejected with constant probability (by one of the foregoingtests). It follows that NP � PCP(q; O(1)), where q is a quadratic polynomial.Re
ection. Indeed, the actual test of the satis�ability of the quadratic systemthat is given as input is facilitated by the fact that a satisfying assignment isencoded (in the oracle) in a very redundant manner, which �ts the �nal test ofsatis�ability. But then the burden of testing moves to checking that this encodingis indeed valid. In fact, most of the tests performed by the foregoing veri�er areaimed at verifying the validity of the encoding. Such a test of validity (of encoding)may be viewed as a test of consistency between the various parts of the encoding.All these themes are present also in more advanced constructions of PCP systems.9.3.2.2 Overview of the �rst proof of the PCP TheoremThe original proof of the PCP Theorem (Theorem 9.16) consists of three mainconceptual steps, which we brie
y sketch �rst and further discuss later.1. Constructing a (non-adaptive) PCP system for NP having logarithmic ran-domness and polylogarithmic query complexity; that is, this PCP has thedesired randomness complexity and a very low (but non-constant) query com-plexity. Furthermore, this proof system has additional properties that enableproof composition as in the following Step 3.2. Constructing a PCP system for NP having polynomial randomness and con-stant query complexity; that is, this PCP has the desired (constant) query

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 427complexity but its randomness complexity is prohibitingly high. (Indeed, weshowed such a construction in x9.3.2.1.) Furthermore, this proof system toohas additional properties enabling proof composition as in Step 3.3. The proof composition paradigm:32 In general, this paradigm allows to com-pose two proof systems such that the \inner" one is used for probabilisticallyverifying the acceptance criteria of the \outer" veri�er. The aim is to conductthis (\composed") veri�cation using much fewer queries than the query com-plexity of the \outer" proof system. In particular, the inner veri�er cannota�ord to read its input, which makes composition more subtle than the termsuggests.Loosely speaking, the outer veri�er should be robust in the sense that itssoundness condition guarantee that with high probability the oracle answersare \far" from satisfying the residual decision predicate (rather than merelynot satisfy it). (Furthermore, the latter predicate, which is well-de�ned bythe non-adaptive nature of the outer veri�er, must have a circuit of sizebounded by a polynomial in the number of queries.) The inner veri�er isgiven oracle access to its input and is charged for each query made to it, butis only required to reject with high probability inputs that are far from beingvalid (and, as usual, accept inputs that are valid). That is, the inner veri�eris actually a veri�er of proximity.Composing two such PCPs yields a new PCP for NP , where the new prooforacle consists of the proof oracle of the \outer" system and a sequence ofproof oracles for the \inner" system (one \inner" proof per each possiblerandom-tape of the \outer" veri�er). The resulting veri�er selects coins forthe outer-veri�er and uses the corresponding \inner" proof in order to verifythat the outer-veri�er would have accepted under this choice of coins. Notethat such a choice of coins determines locations in the \outer" proof that theouter-veri�er would have inspected, and the combined veri�er provides theinner-veri�er with oracle access to these locations (which the inner-veri�erconsiders as its input) as well as with oracle access to the corresponding\inner" proof (which the inner-veri�er considers as its proof-oracle).Note that composing an outer-veri�er of randomness-complexity r0 and query-complexity q0 with an inner-veri�er of randomness-complexity r00 and query-complexity q00 yields a PCP of randomness-complexity r(n) = r0(n)+r00(q0(n))and query-complexity q(n) = q00(q0(n)), because q0(n) represents the lengthof the input (oracle) that is accessed by the inner-veri�er. Recall that theouter-veri�er is non-adaptive, and thus if the inner-veri�er is non-adaptive(resp., robust) then so is the veri�er resulting from the composition, which isimportant in case we wish to compose the latter veri�er with another inner-veri�er.In particular, the proof system of Step 1 is composed with itself [using r0(n) =r00(n) = O(log n) and q0(n) = q00(n) = poly(logn)] yielding a PCP system (for32Our presentation of the composition paradigm follows [34], rather than the original presen-tation of [15, 14].

428 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSNP) of randomness-complexity r(n) = r0(n) + r00(q0(n)) = O(log n) and query-complexity q(n) = q00(q0(n)) = poly(log logn). Composing the latter system (usedas an \outer" system) with the PCP system of Step 2, yields a PCP system (forNP) of randomness-complexity r(n)+poly(q(n)) = O(log n) and query-complexityO(1), thus establishing the PCP Theorem.A more detailed overview { the plan. The foregoing description uses two(non-trivial) PCP systems and refers to additional properties such as robustnessand veri�cation of proximity. A PCP system of polynomial randomness-complexityand constant query-complexity (as postulated in Step 2) is outlined in x9.3.2.1. Wethus start by discussing the notions of verifying proximity and being robust, whiledemonstrating their applicability to the said PCP. Finally, we outline the otherPCP system that is used (i.e., the one postulated in Step 1).PCPs of Proximity. Recall that a standard PCP veri�er gets an explicit inputand is given oracle access to an alleged proof (for membership of the input in apredetermined set). In contrast, a PCP of proximity veri�er is given (direct) accessto two oracles, one representing an input and the other being an alleged proof,and its queries to both oracles are counted in its query-complexity. Typically, thequery-complexity of this veri�er is lower than the length of the input oracle, andhence this veri�er cannot a�ord reading the entire input and cannot be expectedto make absolute statements about it. Indeed, instead of deciding whether or notthe input is in a predetermined set, the veri�er is only required to distinguish thecase that the input is in the set from the case that the input is far from the set(where far means being at relative Hamming distance at least 0.01 (or any othersmall constant)).For example, consider a variant of the system of x9.3.2.1 in which the quadraticsystem is �xed33 and the veri�er needs to determine whether the assignment ap-pearing in the input oracle satis�es the said system or is far from any assignmentthat satis�es it. We use a proof oracle is as in x9.3.2.1, and a PCP veri�er ofproximity that proceeds as in x9.3.2.1 and in addition perform a proximity test toverify that the input oracle is close to the assignment encoded in the proof oracle.Speci�cally, the veri�er reads a uniformly selected bit of the input oracle and com-pares this value to the self-corrected value obtained from the proof oracle (i.e., fora uniformly selected i 2 f1; :::; ng, we compare the ith bit of the input oracle to theself-correction of the value T1(0i�110n�i), obtained from the proof oracle).Robust PCPs. Composing an \outer" PCP veri�er with an \inner" PCP veri-�er of proximity makes sense provided that the outer veri�er rejects in a \robust"manner. That is, the soundness condition of a robust veri�er requires that (withprobability at least 1/2) the oracle answers are far from any sequence that is ac-ceptable by the residual predicate (rather than merely that the answers are rejectedby this predicate). Indeed, if the outer veri�er is (non-adaptive and) robust, then33Indeed, in our applications the quadratic system will be \known" to the (\inner") veri�er,because it is determined by the (\outer") veri�er.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 429it su�ces that the inner veri�er distinguish (with the help of an adequate proof)answers that are valid from answers that are far from being valid.For example, if robustness is de�ned as referring to relative constant distance(which is indeed the case), then the PCP of x9.3.2.1 (as well as any PCP of con-stant query complexity) is trivially robust. However, we will not care about therobustness of this PCP, because we only use this PCP as an inner veri�er in proofcomposition. In contrast, we will care about the robustness of PCPs that are usedas outer veri�ers (e.g., the PCP presented next).Teaching note: Unfortunately, the construction of a PCP of logarithmic randomnessand polylogarithmic query complexity for NP involves many technical details. Further-more, obtaining a robust version of this PCP is beyond the scope of the current text.Thus, the following description should be viewed as merely providing a
avor of theunderlying ideas.PCP of logarithmic randomness and polylogarithmic query complexityfor NP . We focus on showing that NP � PCP(f; f), for f(n) = poly(logn),and the claimed result will follow by a relatively minor modi�cation (discussedafterwards). The proof system underlying NP � PCP(f; f) is based on an arith-metization of 3CNF formulae, which is di�erent from the one used in x9.1.3.2 (forconstructing an interactive proof system for coNP). We start by describing thisarithmetization, and later outline the PCP system that is based on it.In the current arithmetization, the names of the variables (resp., clauses) of a3CNF formula � are represented by binary strings of logarithmic (in j�j) length, anda generic variable (resp., clause) of � is represented by a logarithmic number of newvariables, which are assigned values in a �nite �eld F � f0; 1g. Indeed, throughoutthe rest of the description, we refer to the arithmetic operations of this �nite �eldF (which will have cardinality poly(j�j)). The (structure of the) 3CNF formula�(x1; :::; xn) is represented by a Boolean function C� : f0; 1gO(logn) ! f0; 1g suchthat C�(�; �1; �2; �3) = 1 if and only if, for i = 1; 2; 3, the ith literal in the �thclause of � has index �i = (
i; �i), which is viewed as a variable name augmented byits sign. Thus, for every � 2 f0; 1glog j�j there is a unique (�1; �2; �3) 2 f0; 1g3 log 2nsuch that C�(�; �1; �2; �3) = 1 holds. Next, we consider a multi-linear extensionof C� over F, denoted �; that is, � is the (unique) multi-linear polynomial thatagrees with C� on f0; 1gO(logn) � FO(log n).Turning to the PCP, we �rst note that the veri�er can reduce the original 3SAT-instance � to the aforementioned arithmetic instance �; that is, on input a 3CNFformula �, the veri�er �rst constructs C� and � (as in Exercise 7.12). Part of theproof oracle for this veri�er is viewed as function A : Flog n ! F, which is supposedto be a multi-linear extension of a truth assignment that satis�es � (i.e., for every
 2 f0; 1glogn � [n], the value A(
) is supposed to be the value of the
th variablein such an assignment). Thus, we wish to check whether, for every � 2 f0; 1glog j�j,it holds that X�1�2�32f0;1g3 log 2n�(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.7)

430 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSwhere A0(�) is the value of the �th literal under the (variable) assignment A;that is, for � = (
; �), where
 2 f0; 1glogn is a variable name and � 2 f0; 1gindicates the literal's type (i.e., whether the variable is negated), it holds thatA0(�) = (1� �) �A(
) + � � (1�A(
)). Thus, Eq. (9.7) holds if and only if the �thclause is satis�ed by the assignment induced by A (because A0(�) = 1 must holdfor at least one of the three literals � that appear in this clause).34As in x9.3.2.1, we cannot a�ord to verify all j�j instances of Eq. (9.7). Fur-thermore, unlike in x9.3.2.1, we cannot a�ord to take a random linear combinationof these j�j instances either (because this requires too much randomness). For-tunately, taking a \pseudorandom" linear combination of these equations is goodenough. Speci�cally, using an adequate (e�ciently constructible) small-bias prob-ability space (cf. x8.5.2.3) will do. Denoting such a space (of size poly(j�j � jF j)and bias at most 1=6) by S � Fj�j, we may select uniformly (s1; :::; sj�j) 2 S andcheck whether X��1�2�32f0;1g` s� ��(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.8)where ` def= log j�j+ 3 log 2n. The small-bias property guarantees that if A fails tosatisfy any of the equations of type Eq. (9.7) then, with probability at least 1=3(taken over the choice of (s1; :::; sj�j) 2 S), it is the case that A fails to satisfyEq. (9.8). Since jSj = poly(j�j � jF j) rather that jSj = 2j�j, we can select a samplein S using O(log j�j) coin tosses. Thus, we have reduced the original problem tochecking whether, for a random (s1; :::; sj�j) 2 S, Eq. (9.8) holds.Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-tically verify Eq. (9.8) by applying a \summation test" (as in the interactive prooffor coNP); that is, we refer to stripping the ` binary summations in iterations,where in each iteration the veri�er obtains a corresponding univariate polynomialand instantiates it at a random point. Indeed, the veri�er obtains the relevant uni-variate polynomials by making adequate queries (which specify the entire sequenceof choices made so far in the summation test).35 Note that after stripping the `summations, the veri�er end-ups with an expression that contains three unknownvalues of A0, which it may obtain by making corresponding queries to A. The sum-mation test involves tossing ` � log jFj coins and making (`+3) �O(log jFj) Booleanqueries (which correspond to ` queries that are each answered by a univariate poly-nomial of constant degree (over F), and three queries to A (each answered by anelement of F)). Soundness of the summation test follows by setting jF j � O(`),where ` = O(log j�j).Recall, however, that we may not assume that A is a multi-variate polynomial oflow degree. Instead, we must check that A is indeed a multi-variate polynomial of34Note that, for this � there exists a unique triple (�1; �2; �3) 2 f0; 1g3 log 2n such that�(�; �1; �2; �3) 6= 0. This triple (�1; �2; �3) encodes the literals appearing in the �th clause,and this clause is satis�ed by A if and only if 9i 2 [3] s.t. A0(�i) = 1.35The query will also contain a sequence (s1; :::; sj�j) 2 S, selected at random (by the veri�er)and �xed for the rest of the process.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 431low degree (or rather that it is close to such a polynomial), and use self-correctionfor retrieving the values of A (which are needed for the foregoing summation test).Fortunately, a low-degree test of complexities similar to those of the summationtest does exist (and self-correction is also possible within these complexities). Thus,using a �nite �eld F of poly(log(n)) elements, the foregoing yieldsNP � PCP(f; f)for f(n) def= O(log(n) � log log(n)).To obtain the desired PCP system of logarithmic randomness complexity, werepresent the names of the original variables and clauses by O(log n)log logn -long sequencesover f1; :::; logng, rather than by logarithmically-long binary sequences. This re-quires using low degree polynomial extensions (i.e., polynomial of degree (logn)�1),rather than multi-linear extensions. We can still use a �nite �eld of poly(log(n))elements, and so we need only O(log n)log logn �O(log logn) random bits for the summationand low-degree tests. However, the number of queries (needed for obtaining theanswers in these tests) grows, because now the polynomials that are involved haveindividual degree (log n) � 1 rather than constant individual degree. This merelymeans that the query-complexity increases by a factor of lognlog log n (since the individ-ual degree increases by a factor of logn but the number of variables decreases bya factor of log logn). Thus, we obtain NP � PCP(log; q) for q(n) def= O(log2 n).Warning: Robustness and PCP of proximity. Recall that, in order to usethe latter PCP system in composition, we need to guarantee that it (or a versionof it) is robust as well as to present a version that is a PCP of proximity. Thelatter version is relatively easy to obtain (using ideas as applied to the PCP ofx9.3.2.1), whereas obtaining robustness is too complex to be described here. Wecomment that one way of obtaining a robust PCP system is by a generic applicationof a (randomness-e�cient) \parallelization" of PCP systems (cf. [14]), which inturn depends heavily on highly e�cient low-degree tests. An alternative approach(cf. [34]) capitalizes of the speci�c structure of the summation test (as well as onthe evident robustness of a simple low-degree test).Re
ection. The PCP Theorem asserts a PCP system that obtains simultane-ously the minimal possible randomness and query complexity (up to a multiplica-tive factor, assuming that P 6= NP). The foregoing construction obtains thisremarkable result by combining two di�erent PCPs: the �rst PCP obtains loga-rithmic randomness but uses poly-logarithmically many queries, whereas the secondPCP uses a constant number of queries but has polynomial randomness complex-ity. We stress that each of these two PCP systems is highly non-trivial and veryinteresting by itself. We also highlight the fact that these PCPs are combined us-ing a very simple composition method (which refers to auxiliary properties such asrobustness and proximity testing).3636Advanced comment: We comment that the composition of PCP systems that lack theseextra properties is possible, but is far more cumbersome and complex. In some sense, this alterna-tive composition involves transforming the given PCP systems to ones having properties relatedto robustness and proximity testing.

432 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS9.3.2.3 Overview of the second proof of the PCP TheoremThe original proof of the PCP Theorem focuses on the construction of two PCPsystems that are highly non-trivial and interesting by themselves, and combinesthem in a natural manner. Loosely speaking, this combination (via proof compo-sition) preserves the good features of each of the two systems; that is, it yieldsa PCP system that inherits the (logarithmic) randomness complexity of one sys-tem and the (constant) query complexity of the other. In contrast, the followingalternative proof is focused at the \ampli�cation" of PCP systems, via a gradualprocess of logarithmically many steps. We start with a trivial \PCP" system thathas the desired complexities but rejects false assertions with probability inverselyproportional to their length, and in each step we double the rejection probabilitywhile essentially maintaining the initial complexities. That is, in each step, theconstant query complexity of the veri�er is preserved and its randomness complex-ity is increased only by a constant term. Thus, the process gradually transformsan extremely weak PCP system into a remarkably strong PCP system (i.e., a PCPas postulated in the PCP Theorem).In order to describe the aforementioned process we need to rede�ne PCP sys-tems so to allow arbitrary soundness error. In fact, for technical reasons, it is moreconvenient to describe the process as an iterated reduction of a \constraint satisfac-tion" problem to itself. Speci�cally, we refer to systems of 2-variable constraints,which are readily represented by (labeled) graphs such that the vertices correspondto (non-Boolean) variables and the edges are associated with constraints.De�nition 9.18 (CSP with 2-variable constraints): For a �xed �nite set �, aninstance of CSP consists of a graph G = (V;E) (which may have parallel edgesand self-loops) and a sequence of 2-variable constraints � = (�e)e2E associatedwith the edges, where each constraint has the form �e : �2 ! f0; 1g. The valueof an assignment � : V ! � is the number of constraints satis�ed by �; that is,the value of � is jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�)(standing for violation) the fraction of unsatis�ed constraints under the best possibleassignment; that is,vlt(G;�) = min�:V!�� jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gjjEj �: (9.9)For various functions � : N ! (0; 1], we will consider the promise problem gapCSP�� ,having instances as in the foregoing, such that the yes-instances are fully satis-�able instances (i.e., vlt = 0) and the no-instances are pairs (G;�) for whichvlt(G;�) � �(jGj) holds, where jGj denotes the number of edges in G.Note that 3SAT is reducible to gapCSPf1;:::;7g� for �(m) = 1=m; see Exercise 9.23.Our goal is to reduce 3SAT (or rather gapCSPf1;:::;7g�) to gapCSP�c , for some �xed �-nite � and constant c > 0. The PCP Theorem will follow by showing a simple PCPsystem for gapCSP�c ; see Exercise 9.25. (The relationship between constraint satis-faction problems and the PCP Theorem is further discussed in Section 9.3.3.) Thedesired reduction of gapCSP�1=m to gapCSP�
(1) is obtained by iteratively applyingthe following reduction logarithmically many times.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 433Lemma 9.19 (amplifying reduction of gapCSP to itself): For some �nite � andconstant c > 0, there exists a polynomial-time computable function f such that, forevery instance (G;�) of gapCSP�, it holds that (G0;�0) = f(G;�) is an instanceof gapCSP� and the two instances are related as follows:1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).That is, satis�able instances are mapped to satis�able instances, whereas instancesthat violate a � fraction of the constraints are mapped to that violate at leasta min(2�; c) fraction of the constraints. Furthermore, the mapping increases thenumber of edges (in the instance) by at most a constant factor. We stress thatboth � and �0 consists of Boolean constraints de�ned over �2.Proof Outline:37 Before turning to the proof, let us highlight the di�culty thatit needs to address. Speci�cally, the lemma asserts a \violation amplifying e�ect"(i.e., Items 1 and 2), while maintaining the alphabet � and allowing only a moderateincrease in the size of the graph (i.e., Item 3). Waiving the latter requirementsallows a relatively simple proof that mimics (an augmented version of)38 the parallelrepetition of the corresponding PCP. Thus, the challenge is signi�cantly decreasingthe \size blow-up" that arises from parallel repetition and maintaining a �xedalphabet. The �rst goal (i.e., Item 3) calls for a suitable derandomization, andindeed we shall use the Expander Random Walk Generator (of Section 8.5.3).Those who read x9.3.2.2 may guess that the second goal (i.e., �xed alphabet)can be handled using the proof composition paradigm. (The rest of the overviewis intended to be understood also by those who did not read Section 8.5.3 andx9.3.2.2.)The lemma is proved by presenting a three-step reduction. The �rst step is apre-processing step that makes the underlying graph suitable for further analysis(e.g., the resulting graph will be an expander). The value of vlt may decreaseduring this step by a constant factor. The heart of the reduction is the secondstep in which we increase vlt by any desired constant factor. This is done by aconstruction that corresponds to taking a random walk of constant length on thecurrent graph. The latter step also increases the alphabet �, and thus a post-processing step is employed to regain the original alphabet (by using any innerPCP systems; e.g., the one presented in x9.3.2.1). Details follow.We �rst stress that the aforementioned � and c, as well as the auxiliary pa-rameters d and t (to be introduced in the following two paragraphs), are �xedconstants that will be determined such that various conditions (which arise in thecourse of our argument) are satis�ed. Speci�cally, t will be the last parameter to37For details, see [66].38Advanced comment: The augmentation is used to avoid using the Parallel RepetitionTheorem of [184]. In the augmented version, with constant probability (say half), a consistencycheck takes place between tuples that contain copies of the same variable (or query).

434 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSbe determined (and it will be made greater than a constant that is determined byall the other parameters).We start with the pre-processing step. Our aim in this step is to reduce the input(G;�) of gapCSP� to an instance (G1;�1) such that G1 is a d-regular expandergraph.39 Furthermore, each vertex in G1 will have at least d=2 self-loops, thenumber of edges will be preserved up to a constant factor (i.e., jG1j = O(jGj)), andvlt(G1;�1) = �(vlt(G;�)). This step is quite simple: essentially, the originalvertices are replaced by expanders of size proportional to their degree, and a big(dummy) expander is superimposed on the resulting graph (see Exercise 9.26).The main step is aimed at increasing the fraction of violated constraints by asu�ciently large constant factor. The intuition underlying this step is that theprobability that a random (t-edge long) walk on the expander G1 intersects a �xedset of edges is closely related to the probability that a random sample of (t) edgesintersects this set. Thus, we may expect such walks to hit a violated edge withprobability that is min(�(t ��); c), where � is the fraction of violated edges. Indeed,the current step consists of reducing the instance (G1;�1) of gapCSP� to an instance(G2;�2) of gapCSP�0 such that �0 = �dt and the following holds:1. The vertex set of G2 is identical to the vertex set of G1, and each t-edgelong path in G1 is replaced by a corresponding edge in G2, which is thus adt-regular graph.2. The constraints in �2 are the natural ones, viewing each element of �0 as a�-labeling of the (\distance � t") neighborhood of a vertex (see Figure 9.4),and checking that two such labelings are consistent as well as satisfy �1. Thatis, the following two types of constraints are introduced:(consistency): If there is a path of length at most t in G1, going from vertexu to vertex w and passing through vertex v, then the �2-constraintassociated with the G2-edge between vertices u and w mandates theequality of the entries corresponding to vertex v in the �0-labeling ofvertices u and w.(satisfying �1): If the G1-edge (v; v0) is on a path of length at most t startingat u then the �2-constraint associated with the G2-edge that corre-sponds to this path enforces the �1-constraint that is associated with(v; v0).Clearly, jG2j = dt�1 � jG1j = O(jG1j), because d is a constant and t will be setto a constant. (Indeed, the relatively moderate increase in the size of the graphcorresponds to the low randomness-complexity of selecting a random walk of lengtht in G1.)39A d-regular graph is a graph in which each vertex is incident to exactly d edges. Looselyspeaking, an expander graph has the property that each moderately balanced cut (i.e., partitionof its vertex set) has relatively many edges crossing it. An equivalent de�nition, also used in theactual analysis, is that the second eigenvalue of the corresponding adjacency matrix has absolutevalue that is bounded away from d. For further details, see xE.2.1.1.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 435
vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

The alphabet �0 as a labeling of the distance t = 3 neighborhoods,when repetitions are omitted. In this case d = 6 but the self-loopsare not shown (and so the \e�ective" degree is three). The two-sidedarrow indicates one of the edges in G1 that will contribute to the edgeconstraint between u and w in (G2;�2).Figure 9.4: The amplifying reduction in the second proof of the PCP Theorem.Turning to the analysis of this step, we note that vlt(G1;�1) = 0 impliesvlt(G2;�2) = 0. The interesting fact is that the fraction of violated constraintsincreases by a factor of
(pt); that is, vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c).Here we merely provide a rough intuition and refer the interested reader to [66]. Wemay focus on any �0-labeling to the vertices of G2 that is consistent with some �-labeling of G1, because relatively few inconsistencies (among the �-values assignedto a vertex by the �0-labeling of other vertices) can be ignored, while relativelymany such inconsistencies yield violation of the \equality constraints" of manyedges in G2. Intuitively, relying on the hypothesis that G1 is an expander, it followsthat the set of violated edge-constraints (of �1) with respect to the aforementioned�-labeling causes many more edge-constraints of �2 to be violated (because eachedge-constraint of �1 is enforced by many edge-constraints of �2). The point isthat any set F of edges of G1 is likely to appear on a min(
(t) � jF j=jG1j;
(1))fraction of the edges of G2 (i.e., t-paths of G1). (Note that the claim would have

436 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSbeen obvious if G1 were a complete graph, but it also holds for an expander.)40The factor of
(pt) gained in the second step makes up for the constant factorlost in the �rst step (as well as the constant factor to be lost in the last step).Furthermore, for a suitable choice of the constant t, the aforementioned gain yieldsan overall constant factor ampli�cation (of vlt). However, so far we obtained aninstance of gapCSP�0 rather than an instance of gapCSP�, where �0 = �dt . The pur-pose of the last step is to reduce the latter instance to an instance of gapCSP�. Thisis done by viewing the instance of gapCSP�0 as a (weak) PCP system (analogouslyto Exercise 9.25), and composing it with an inner-veri�er using the proof composi-tion paradigm outlined in x9.3.2.2. We stress that the inner-veri�er used here needsonly handle instances of constant size (i.e., having description length O(dt log j�j)),and so the veri�er presented in x9.3.2.1 will do. The resulting PCP-system usesrandomness r def= log2 jG2j+O(dt log j�j)2 and a constant number of binary queries,and has rejection probability
(vlt(G2;�2)), which is independent of the choice ofthe constant t. As in Exercise 9.23, for � = f0; 1gO(1), we can easily obtain an in-stance of gapCSP�, that has a
(vlt(G2;�2)) fraction of violated constraints. Fur-thermore, the size of the resulting instance (which is used as the output (G0;�0) ofthe three-step reduction) is O(2r) = O(jG2j), where the equality uses the fact thatd and t are constants. Recalling that vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c)and vlt(G1;�1) =
(vlt(G;�)), this completes the (outline of the) proof of theentire lemma.Re
ection. In contrast to the proof presented in x9.3.2.2, which combines tworemarkable constructs by using a simple composition method, the current proofof the PCP Theorem is based on developing a powerful \combining method" thatimproves the quality of the main system to which it is applied. This new method,captured by the Ampli�cation Lemma (Lemma 9.19), does not merely obtain thebest of the combined systems, but rather obtains a better system than the one given.However, the quality-ampli�cation o�ered by Lemma 9.19 is rather moderate, andthus many applications are required in order to derive the desired result. Takingthe opposite perspective, one may say that remarkable results are obtained by agradual process of many moderate ampli�cation steps.9.3.3 PCP and ApproximationThe characterization of NP in terms of probabilistically checkable proofs playsa central role in the study of the complexity of natural approximation problems(cf., Section 10.1.1). To demonstrate this relationship, we �rst note that any PCPsystem V gives rise to an approximation problem that consists of estimating themaximum acceptance probability for a given input; that is, on input x, the taskis approximating the probability that V accepts x when given oracle access tothe best possible � (i.e., we wish to approximate max�fPr[V �(x) = 1]g). Thus,if S 2 PCP(r; q) then deciding membership in S is reducible to approximating40We mention that, due to a technical di�culty, it is easier to establish the claimed bound of
(pt � vlt(G1;�1)) rather than
(t � vlt(G1;�1)).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 437the maximum among exp(2r+q) quantities (corresponding to all e�ective oracles),where each quantity can be evaluated in time 2r � poly. For (the validity of) thisreduction, an approximation up to a constant factor (of 2) will do.Note that the foregoing approximation problem is parameterized by a PCP ver-i�er V , and its instances are given their value with respect to this veri�er (i.e., theinstance x has value max�fPr[V �(x)=1]g). This per se does not yield a \natural"approximation problem. In order to link PCP systems with natural approxima-tion problems, we take a closer look at the approximation problem associated withPCP(r; q).For simplicity, we focus on the case of non-adaptive PCP systems (i.e., all thequeries are determined beforehand based on the input and the internal coin tossesof the veri�er). Fixing an input x for such a system, we consider the 2r(jxj) Booleanformulae that represent the decision of the veri�er on each of the possible outcomesof its coin tosses after inspecting the corresponding bits in the proof oracle. That is,each of these 2r(jxj) formulae depends on q(jxj) Boolean variables that represent thevalues of the corresponding bits in the proof oracle. Thus, if x is a yes-instance thenthere exists a truth assignment (to these variables) that satis�es all 2r(jxj) formulae,whereas if x is a no-instance then there exists no truth assignment that satis�esmore than 2r(jxj)�1 formulae. Furthermore, in the case that r(n) = O(log n), givenx, we can construct the corresponding sequence of formulae in polynomial-time.Hence, the PCP Theorem (i.e., Theorem 9.16) yields NP-hardness results regardingthe approximation of the number of simultaneously satis�able Boolean formulae ofconstant size. This motivates the following de�nition.De�nition 9.20 (gap problems for SAT and generalized-SAT): For constants q 2N and " > 0, the promise problem gapGSATq" refers to instances that are each asequence of q-variable Boolean formulae (i.e., each formula depends on at mostq variables). The yes-instances are sequences that are simultaneously satis�able,whereas the no-instances are sequences for which no Boolean assignment satis�esmore than a 1� " fraction of the formulae in the sequence. The promise problemgapSATq" is de�ned analogously, except that in this case each instance is a sequenceof disjunctive clause (i.e., each formula in each sequence consists of a single dis-junctive clause).Indeed, each instance of gapSATq" is naturally viewed as q-CNF formulae, and weconsider an assignment that satis�es as many clauses (of the input CNF) as possible.As hinted, NP � PCP(log; O(1)) implies that gapGSATO(1)1=2 is NP-complete, whichin turn implies that for some constant " > 0 the problem gapSAT3" is NP-complete.The converses hold too. All these claims are stated and proved next.Theorem 9.21 (equivalent formulations of the PCP Theorem). The followingthree conditions are equivalent:1. The PCP Theorem: there exists a constant q such that NP � PCP(log; q).2. There exists a constant q such that gapGSATq1=2 is NP-hard.

438 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS3. There exists a constant " > 0 such that gapSAT3" is NP-hard.The point of Theorem 9.21 is not its mere validity (which follows from the valid-ity of each of the three items), but rather the fact that its proof is quite simple.Note that Items 2 and 3 make no reference to PCP. Thus, their (easy to estab-lish) equivalence to Item 1 manifests that the hardness of approximating naturaloptimization problems lies at the heart of the PCP Theorem. In general, proba-bilistically checkable proof systems for NP yield strong inapproximability resultsfor various classical optimization problems (cf., Exercise 9.18 and Section 10.1.1).Proof: We �rst show that the PCP Theorem implies the NP-hardness of gapGSAT.We may assume, without loss of generality, that, for some constant q and everyS 2 NP , it holds that S 2 PCP(O(log); q) via a non-adaptive veri�er (becauseq adaptive queries can be emulated by 2q non-adaptive queries). We reduce S togapGSAT as follows. On input x, we scan all 2O(log jxj) possible sequence of outcomesof the veri�er's coin tosses, and for each such sequence of outcomes we determinethe queries made by the veri�er as well as the residual decision predicate (where thispredicate determines which sequences of answers lead this veri�er to accept). Thatis, for each random-outcome ! 2 f0; 1gO(log jxj), we consider the residual predicate,determined by x and !, that speci�es which q-bit long sequence of oracle answersmakes the veri�er accept x on coins !. Indeed, this predicate depends only on qvariables (which represent the values of the q corresponding oracle answers). Thus,we map x to a sequence of poly(jxj) formulae, each depending on q variables,obtaining an instance of gapGSATq. This mapping can be computed in polynomial-time, and indeed x 2 S (resp., x 62 S) is mapped to a yes-instance (resp., no-instance) of gapGSATq1=2.Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Speci�cally,gapGSATq1=2 reduces to gapSATq2�(q+1) , which in turn reduces to gapSAT3" for " =2�(q+1)=(q � 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT3",consider all possible conjunctions of 1=" disjunctive clauses in the given instance).We complete the proof by showing that Item 3 implies Item 1. (The sameargument shows that Item 2 implies Item 1.) This is done by showing that gapSAT3"is in PCP("�1 log; 3"�1), and using the reduction of NP to gapSAT3" to derive acorresponding PCP for each set in NP . In fact, we show that gapGSATq" is inPCP("�1 log; "�1q), and do so by presenting a very natural PCP system. In thisPCP system the proof oracle is supposed to be an satisfying assignment, and theveri�er selects at random one of the (q-variable) formulae in the input sequence,and checks whether it is satis�ed by the (assignment given by the) oracle. Thisamounts to tossing logarithmically many coins and making q queries. This veri�eralways accepts yes-instances (when given access to an adequate oracle), whereaseach no-instances is rejected with probability at least " (no matter which oracle isused). To amplify the rejection probability (to the desired threshold of 1/2), weinvoke the foregoing veri�er "�1 times (and note that (1� ")1=" < 1=2).Gap amplifying reductions { a re
ection. Item 2 (resp., Item 3) of Theo-rem 9.21 implies that GSAT (resp., 3SAT) can be reduce to gapGSAT1=2 (resp., to

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 439gapSAT3"). This means that there exist \gap amplifying" reductions of problemslike 3SAT to themselves, where these reductions map yes-instances to yes-instances(as usual), while mapping no-instances to no-instances that are \far" from beingyes-instances. That is, no-instances are mapped to no-instances of a special typesuch that a \gap" is created between the yes-instances and no-instances at theimage of the reduction. For example, in the case of 3SAT, unsatis�able formu-lae are mapped to formulae that are not merely unsatis�able but rather have noassignment that satis�es more than a 1 � " fraction of the clauses. Thus, PCPconstructions are essentially \gap amplifying" reductions.9.3.4 More on PCP itself: an overviewWe start by discussing variants of the PCP characterization of NP, and next turnto PCPs having expressing power beyond NP. Needless to say, the latter systemshave super-logarithmic randomness complexity.9.3.4.1 More on the PCP characterization of NPInterestingly, the two complexity measures in the PCP-characterization of NPcan be traded o� such that at the extremes we get NP = PCP(log; O(1)) andNP = PCP(0; poly), respectively.Proposition 9.22 For every S 2 NP, there exists a logarithmic function ` (i.e.,` 2 log) such that, for every integer function k that satis�es 0� k(n) � `(n), itholds that S 2 PCP(`� k;O(2k)). (Recall that PCP(log; poly) � NP .)Proof Sketch: By Theorem 9.16, we have S 2 PCP(`; O(1)). To show thatS 2 PCP(` � k;O(2k)), we consider an emulation of the corresponding veri�er inwhich we try all possibilities for the k(n)-bit long pre�x of its random-tape.Following the establishment of Theorem 9.16, numerous variants of the PCPCharacterization of NP were explored. These variants refer to a �ner analysis ofvarious parameters of probabilistically checkable proof systems (for sets in NP).Following is a brief summary of some of these studies.41The length of PCPs. Recall that the e�ective length of the oracle in anyPCP(log; log) system is polynomial (in the length of the input). Furthermore,in the PCP systems underlying the proof of Theorem 9.16 the queries refer only toa polynomially long pre�x of the oracle, and so the actual length of these PCPs forNP is polynomial. Remarkably, the length of PCPs for NP can be made nearly-linear (in the combined length of the input and the standard NP-witness), whilemaintaining constant query complexity, where by nearly-linear we mean linear upto a poly-logarithmic factor. (For details see [35, 66].) This means that a rel-atively modest amount of redundancy in the proof oracle su�ces for supportingprobabilistic veri�cation via a constant number of probes.41With the exception of works that appeared after [89], we provide no references for the resultsquoted here. We refer the interested reader to [89, Sec. 2.4.4].

440 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe number of queries in PCPs. Theorem 9.16 asserts that a constant num-ber of queries su�ce for PCPs with logarithmic randomness and soundness errorof 1=2 (for NP). It is currently known that this constant is at most �ve, whereaswith three queries one may get arbitrary close to a soundness error of 1=2. Theobvious trade-o� between the number of queries and the soundness error gives riseto the robust notion of amortized query-complexity, de�ned as the ratio between thenumber of queries and (minus) the logarithm (to based 2) of the soundness error.For every " > 0, any set in NP has a PCP system with logarithmic randomnessand amortized query-complexity 1+ " (cf. [118]), whereas only sets in P have PCPsof logarithmic randomness and amortized query-complexity less than 1.Free-bit complexity. The motivation to the notion of free bits came from thePCP{to{MaxClique connection (see Exercise 9.18 and [28, Sec. 8]), but we believethat this notion is of independent interest. Intuitively, this notion distinguishesbetween queries for which the acceptable answer is determined by previously ob-tained answers (i.e., the veri�er compares the answer to a value determined by theprevious answers) and queries for which the veri�er only records the answer forfuture usage. The latter queries are called free (because any answer to them is \ac-ceptable"). For example, in the linearity test (see x9.3.2.1) the �rst two queries arefree and the third is not (i.e., the test accepts if and only if f(x)+f(y) = f(x+y)).The amortized free-bit complexity is de�ne analogously to the amortized query com-plexity. Interestingly, NP has PCPs with logarithmic randomness and amortizedfree-bit complexity less than any positive constant.Adaptive versus non-adaptive veri�ers. Recall that a PCP veri�er is callednon-adaptive if its queries are determined solely based on its input and the outcomeof its coin tosses. (A general veri�er, called adaptive, may determine its queries alsobased on previously received oracle answers.) Recall that the PCP Characterizationof NP (i.e., Theorem 9.16) is established using a non-adaptive veri�er; however, itturns out that adaptive veri�ers are more powerful than non-adaptive ones in termsof quantitative results: Speci�cally, for PCP veri�ers making three queries andhaving logarithmic randomness complexity, adaptive queries provide for soundnesserror at most 0:51 (actually 0:5 + " for any " > 0) for any set in NP , whereasnon-adaptive queries provide soundness error 5=8 (or less) only for sets in P .Non-binary queries. Our de�nition of PCP allows only binary queries. Cer-tainly, non-binary queries can be emulated by binary queries, but the converse doesnot necessarily hold.42 For this reason, \parallel repetition" is highly non-trivial42Advanced comment: The source of trouble is the adversarial settings (implicit in thesoundness condition), which means that when several binary queries are packed into one non-binary query, the adversary need not respect the packing (i.e., it may answer inconsistently onthe same binary query depending on the other queries packed with it). This trouble becomesacute in the case of PCPs, because they do not correspond to a full information game. Indeed,in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, becausethey can be modeled as full information games: this is obvious in the case of public-coin systems,but also holds for general interactive proof systems (see Exercise 9.1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 441in the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-dent invocations of the same PCP is known, but it is not applicable for obtainingsoundness error smaller than a constant (while preserving logarithmic randomness).Nevertheless, using adequate \consistency tests" one may construct PCP systemsfor NP using logarithmic randomness, a constant number of (non-binary) queriesand soundness error exponential in the length of the answers. (Currently, this isknown only for sub-logarithmic answer lengths.)9.3.4.2 Stronger forms of PCP systems for NPAlthough the PCP Theorem is famous mainly for its negative applications to thestudy of natural approximation problems (see Section 9.3.3 and x10.1.1.2), its po-tential for direct positive applications is fascinating. Indeed, the vision of speeding-up the veri�cation of mundane proofs is exciting, where these proofs may refer tomundane assertions such as the correctness of a speci�c computation. Enablingsuch a speed-up requires a strengthening of the PCP Theorem such that it man-dates e�cient veri�cation time rather than \merely" low query-complexity of theveri�cation task. Such a strengthening is possible.Theorem 9.23 (Theorem 9.16 { strengthened): Every set S in NP has a PCPsystem V of logarithmic randomness-complexity, constant query-complexity, andquadratic time-complexity. Furthermore, NP-witnesses for membership in S can betransformed in polynomial-time to corresponding proof-oracles for V .The furthermore part was already stated in Section 9.3.2 (as a strengthening ofTheorem 9.16). Thus, the novelty in Theorem 9.23 is that it provides quadraticveri�cation time, rather than polynomial veri�cation time (where the polynomialmay depend arbitrarily on the set S). Theorem 9.23 is proved by noting that thatthe CNF formulae that is obtained by reducing S to 3SAT are highly uniform, andthus the veri�er V that is outlined in x9.3.2.2 can be implemented in quadratictime. Indeed, the most time-consuming operation required of V is evaluating thelow-degree extension � (of C�), which corresponds to the input formula �, at a fewpoints. In the context of x9.3.2.2, evaluating � in exponential-time su�ces (sincethis means time that is polynomial in j�j). Theorem 9.23 follows by showing thata variant of � can be evaluated in polynomial-time (since this means time that ispolylogarithmic in j�j); for details, see Exercise 9.29.PCPs of Proximity. Clearly, we cannot expect a PCP system (or any standardproof system for that matter) to have sub-linear veri�cation time (since linear-time is required for merely reading the input). Nevertheless, we may consider arelaxation of the veri�cation task (regarding proofs of membership in a set S). Inthis relaxation the veri�er is only required to reject any input that is \far" fromS (regardless of the alleged proof), and, as usual, accept any input that is in S(when accompanied with an adequate proof). Speci�cally, in order to allow sub-linear time veri�cation, we provide the veri�er V with direct access to the bitsof the input (which is viewed as an oracle) as well as with direct access to the

442 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSusual (PCP) proof-oracle, and require that the following two conditions hold (withrespect to some constant " > 0):Completeness: For every x 2 S there exists a string �x such that, when given accessto the oracles x and �x, machine V always accepts.Soundness with respect to proximity ": For every string x that is "-far from S (i.e.,for every x0 2 f0; 1gjxj \ S it holds that x and x0 di�er on at least "jxj bits)and every string �, when given access to the oracles x and �, machine Vrejects with probability at least 12 .Machine V is called a PCP of proximity, and its queries to both oracles are countedin its query-complexity. (Indeed, such a PCP of proximity was used in x9.3.2.2,and the notion is analogous to a relaxation of decision problems that is reviewedin Section 10.1.2.)We mention that every set in NP has a PCPs of proximity of logarithmicrandomness-complexity, constant query-complexity, and polylogarithmic time-complexity.This follows by using ideas as underlying the proof of Theorem 9.23 (see also Ex-ercise 9.29).9.3.4.3 PCP with super-logarithmic randomnessOur focus so far was on the important case where the veri�er tosses logarithmicallymany coins, and hence the \e�ective proof length" is polynomial. Here we mentionthat the PCP Theorem (or rather Theorem 9.23) scales up.43Theorem 9.24 (Theorem 9.16 { Generalized): Let t(�) be an integer function suchthat n<t(n)<2poly(n). Then, Ntime(t) � PCP(O(log t); O(1)).Recall that PCP(r; q) � Ntime(t), for t(n) = poly(n) � 2r(n). Thus, the NtimeHierarchy implies a hierarchy of PCP(�; O(1)) classes, for randomness complexityranging between logarithmic and polynomial functions.Chapter Notes(The following historical notes are quite long and still they fail to properly discussseveral important technical contributions that played an important role in the de-velopment of the area. For further details, the reader is referred to [89, Sec. 2.6.2].)Motivated by the desire to formulate the most general type of \proofs" thatmay be used within cryptographic protocols, Goldwasser, Micali and Racko� [108]introduced the notion of an interactive proof system. Although the main thrust oftheir work was the introduction of a special type of interactive proofs (i.e., onesthat are zero-knowledge), the possibility that interactive proof systems may be morepowerful from NP-proof systems was pointed out in [108]. Independently of [108],43Note that the sketched proof of Theorem 9.23 yields veri�cation time that is quadratic in thelength of the input and polylogarithmic in the length of the NP-witness.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 443Babai [17] suggested a di�erent formulation of interactive proofs, which he calledArthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted formof interactive proof systems, yet it was subsequently shown that these restrictedsystems are as powerful as the general ones (cf., [110]). The speed-up result (i.e.,AM(2f) � AM(f)) is due to [22] (improving over [17]).The �rst evidence to the power of interactive proofs was given by Goldreich, Mi-cali, and Wigderson [99], who presented an interactive proof system for Graph Non-Isomorphism (Construction 9.3). More importantly, they demonstrated the gen-erality and wide applicability of zero-knowledge proofs: Assuming the existence ofone-way function, they showed how to construct zero-knowledge interactive proofsfor any set in NP (Theorem 9.11). This result has had a dramatic impact onthe design of cryptographic protocols (cf., [100]). For further discussion of zero-knowledge and its applications to cryptography, see Appendix C. Theorem 9.12(i.e., ZK = IP) is due to [31, 129].Probabilistically checkable proof (PCP) systems are related to multi-prover in-teractive proof systems, a generalization of interactive proofs that was suggestedby Ben-Or, Goldwasser, Kilian and Wigderson [32]. Again, the main motivationcame from the zero-knowledge perspective; speci�cally, presenting multi-proverzero-knowledge proofs for NP without relying on intractability assumptions. Yet,the complexity theoretic prospects of the new class, denotedMIP, have not beenignored.The amazing power of interactive proof systems was demonstrated by usingalgebraic methods. The basic technique was introduced by Lund, Fortnow, Karlo�and Nisan [161], who applied it to show that the polynomial-time hierarchy (andactually P#P) is in IP . Subsequently, Shamir [204] used the technique to showthat IP = PSPACE , and Babai, Fortnow and Lund [19] used it to show thatMIP = NEXP . (Our entire proof of Theorem 9.4 follows [204].)The aforementioned multi-prover proof system of Babai, Fortnow and Lund [19](hereafter referred to as the BFL proof system) has been the starting point for fun-damental developments regarding NP . The �rst development was the discoverythat the BFL proof system can be \scaled-down" from NEXP to NP . This im-portant discovery was made independently by two sets of authors: Babai, Fortnow,Levin, and Szegedy [20] and Feige, Goldwasser, Lov�asz, and Safra [72]. However,the manner in which the BFL proof is scaled-down is di�erent in the two papers,and so are the consequences of the scaling-down.Babai et. al. [20] start by considering (only) inputs encoded using a special error-correcting code. The encoding of strings, relative to this error-correcting code, canbe computed in polynomial time. They presented an almost-linear time algorithmthat transforms NP-witnesses (to inputs in a set S 2 NP) into transparent proofsthat can be veri�ed (as vouching for the correctness of the encoded assertion)in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babaiet. al. [20] stress the practical aspects of transparent proofs; speci�cally, for rapidlychecking transcripts of long computations.In contrast, in the proof system of Feige et. al. [72, 73] the veri�er stayspolynomial-time and only two more re�ned complexity measures (i.e., the ran-

444 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSdomness and query complexities) are reduced to poly-logarithmic. This eliminatesthe need to assume that the input is in a special error-correcting form, and yieldsa re�ned (quantitative) version of the notion of probabilistically checkable proofsystems (introduced in [79]), where the re�nement is obtained by specifying therandomness and query complexities (see De�nition 9.14). Hence, whereas the BFLproof system [19] can be reinterpreted as establishing NEXP = PCP(poly; poly),the work of Feige et. al. [73] establishes NP � PCP(f; f), where f(n) = O(log n �log logn). (In retrospect, we note that the work of Babai et. al. [20] implies thatNP � PCP(log; polylog).)Interest in the new complexity class became immense since Feige et. al. [72, 73]demonstrated its relevance to proving the intractability of approximating some nat-ural combinatorial problems (speci�cally, for MaxClique). When using the PCP{to{MaxClique connection established by Feige et. al., the randomness and querycomplexities of the veri�er (in a PCP system for an NP-complete set) relate tothe strength of the negative results obtained for the approximation problems. Thisfact provided a very strong motivation for trying to reduce these complexities andobtain a tight characterization of NP in terms of PCP(�; �). The obvious challengewas showing that NP equals PCP(log; log). This challenge was met by Arora andSafra [15]. Actually, they showed that NP = PCP(log; q), where q(n) = o(log n).Hence, a new challenge arose; namely, further reducing the query complexity {in particular, to a constant { while maintaining the logarithmic randomness com-plexity. Again, additional motivation for this challenge came from the relevance ofsuch a result to the study of natural approximation problems. The new challengewas met by Arora, Lund, Motwani, Sudan and Szegedy [14], and is captured bythe PCP Characterization Theorem, which asserts that NP = PCP(log; O(1)).Indeed the PCP Characterization Theorem is a culmination of a sequence ofimpressive works [161, 19, 20, 73, 15, 14]. These works are rich in innovative ideas(e.g., various arithmetizations of SAT as well as various forms of proof composi-tion) and employ numerous techniques (e.g., low-degree tests, self-correction, andpseudorandomness). Our overview of the original proof of the PCP Theorem (inx9.3.2.1{9.3.2.2) is based on [14, 15].44 The alternative proof outlined in x9.3.2.3is due to Dinur [66].We mention some of the ideas and techniques involved in deriving even strongervariants of the PCP Theorem (which are surveyed in x9.3.4.1). These includethe Parallel Repetition Theorem [184], the use of the Long-Code [28], and theapplication of Fourier analysis in this setting [115, 116]. We also highlight thenotions of PCPs of proximity and robustness (see [34, 67]).Computationally-Sound Proof Systems. Argument systems were de�ned byBrassard, Chaum and Cr�epeau [48], with the motivation of providing perfect zero-knowledge arguments (rather than zero-knowledge proofs) for NP . A few yearslater, Kilian [144] demonstrated their signi�cance beyond the domain of zero-knowledge by showing that, under some reasonable intractability assumptions, ev-44Our presentation also bene�ts from the notions of PCPs of proximity and robustness, putforward in [34, 67].

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 445ery set in NP has a computationally-sound proof in which the randomness andcommunication complexities are poly-logarithmic.45 Interestingly, these argumentsystems rely on the fact that NP � PCP(f; f), for f(n) = poly(logn). We men-tion that Micali [164] suggested a di�erent type of computationally-sound proofsystems (which he called CS-proofs).Final comment: The current chapter is a revision of [89, Chap. 2]. In particular,more details are provided here for the main topics, whereas numerous secondarytopics discussed in [89, Chap. 2] are not mentioned here (or are only brie
y men-tioned here). We note that a few of the research directions that were mentionedin [89, Sec. 2.4.4] have received considerable attention in the period that elapsed,and improved results are currently known. In particular, the interested reader isreferred to [34, 35, 66] for a study of the length of PCPs, and to [118] for a studyof their amortized query complexity. Likewise, a few open problems mentionedin [89, Sec. 2.6.3] have been resolved; speci�cally, the interested reader is referredto [24, 171] for breakthrough results regarding zero-knowledge.ExercisesExercise 9.1 (parallel error-reduction for interactive proof systems) Provethat the error probability (in the soundness condition) can be reduced by parallelrepetitions of the proof system. (A proof appears in [89, Apdx. C.1].)Guideline: As a warm-up, consider the special case of public-coin interactive proof sys-tems. Next, generalize the analysis to arbitrary interactive proof systems, by considering(as a mental experiment) a \powerful veri�er" that emulates the original veri�er whilebehaving as in the public-coin model.Exercise 9.2 Prove that if S is Karp-reducible to a set in IP , then S 2 IP .Prove that if S is Cook-reducible to a set S0 such that both S0 and f0; 1g� nS0 arein IP , then S 2 IP .Exercise 9.3 Complete the details of the proof that coNP � IP (i.e., the �rstpart of the proof of Theorem 9.4). In particular, suppose that the protocol forunsatis�ability is applied to a CNF formula with n variables and m clauses. Then,what is the length of the messages sent by the two parties? What is the soundnesserror?Exercise 9.4 Present an interactive proof system for unsatis�ability such that oninput a CNF formula having n variables the parties exchange n=O(logn) messages.Guideline: Modify the (�rst part of the) proof of Theorem 9.4, by stripping O(log n)summations in each round.45We comment that interactive proofs are unlikely to have such low complexities; see [105].

446 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSExercise 9.5 (an interactive proof system for #P) Using the main part ofthe proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).Guideline: Use a slightly di�erent arithmetization of CNF formulae. Speci�cally, insteadof replacing the clause x_:y_ z by the term (x+(1�y)+ z), replace it by the term (1�((1�x)�y �(1�z))). The point is that this arithmetization maps Boolean assignments thatsatisfy the CNF formula to 0-1 assignments that when substituted in the correspondingarithmetic expression yield the value 1 (rather than yielding a somewhat arbitrary positiveinteger).Exercise 9.6 Show that QBF can be reduced to a special form of (non-canonical)46QBF in which no variable appears both to the left and to the right of more thanone universal quanti�er.Guideline: Consider a process (which proceeds from left to right) of \refreshing" vari-ables after each universal quanti�er. Let �(x1; :::; xs; y; xs+1; :::; xs+t) be a quanti�er-freeboolean formula and let Qs+1; :::; Qs+t be an arbitrary sequence of quanti�ers. Then, wereplace the quanti�ed (sub-)formula8yQs+1xs+1 � � � Qs+txs+t �(x1; :::; xs; y; xs+1; :::; xs+t)by the (sub-)formula8y9x01 � � � 9x0s[(^si=1(x0i = xi)) ^ Qs+1xs+1 � � � Qs+txs+t �(x01; :::; x0s; y; xs+1; :::; xs+t)] :Note that the variables x1; :::; xs do not appear to the right of the quanti�er Qs+1 inthe replaced formula, and that the length of the replaced formula grows by an additiveterm of O(s). This process of refreshing variables is applied from left to right on theentire sequence of universal quanti�ers (except the inner one, for which this refreshing isuseless).47Exercise 9.7 Prove that if two integers in [0;M] are di�erent then they must bedi�erent modulo most of the primes in the interval [3; L], where L = poly(logM)].Prove the same for the interval [L; 2L].Guideline: Let a 6= b 2 [0;M] and suppose that P1; :::; Pt is an enumeration of all theprimes that satisfy a � b (mod Pi). Using the Chinese Reminder Theorem, prove thatQ def= Qti=1 Pi �M (because otherwise a = b follows by combining a � b (mod Q) withthe hypothesis a; b 2 [0;M]). It follows that t < log2M . Using a lower-bound on thedensity of prime numbers, the claim follows.46See Appendix G.2.47For example, 9z18z29z38z49z58z6 �(z1; z2; z3; z4; z5; z6)is �rst replaced by9z18z29z01 [(z01 = z1) ^ 9z38z49z58z6 �(z01; z2; z3; z4; z5; z6)]and next (written as 9z18z029z01 [(z01 = z1) ^ 9z038z049z058z06 �(z01; z02; z03; z04; z05; z06)]) is replaced by9z18z029z01 [(z01 = z1) ^ 9z038z049z001 9z002 9z003[(^3i=1(z00i = z0i)) ^ 9z058z06�(z001 ; z002 ; z003 ; z04; z05; z06)]]:Thus, in the resulting formula, no variable appears both to the left and to the right of more thana single universal quanti�er.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 447Exercise 9.8 (on interactive proofs with two-sided error (following [81]))Let IP 0(f) denote the class of sets having a two-sided error interactive proof systemin which a total of f(jxj) messages are exchanged on common input x. Speci�cally,suppose that a suitable prover may cause every yes-instance to be accepted withprobability at least 2=3 (rather than 1), while no cheating prover can cause ano-instance to be accepted with probability greater than 1=3 (rather than 1=2).Similarly, let AM0 denote the public-coin version of IP 0.1. Establish IP 0(f) � AM0(f + 3) by noting that the proof of Theorem F.2,which establishes IP(f) � AM(f+3), extends to the two-sided error setting.2. Prove that AM0(f) � AM(f + 1) by extending the ideas underlying theproof of Theorem 6.9, which actually establishes that BPP � AM(1) (whereBPP = AM0(0)).Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for everyfunction f : N ! N n f1g, it holds that IP 0(f) = AM(f) = IP(f).Guideline (for Part 2): Fixing an optimal prover strategy for the given two-sidederror public-coin interactive proof, consider the set of veri�er coins that make the veri�eraccept any �xed yes-instance, and apply the ideas underlying the transformation of BPPtoMA = AM(1). For further details, see [81].Exercise 9.9 In continuation to Exercise 9.8, show that IP 0(f) = IP(f) for everyfunction f : N ! N (including f � 1).Guideline: Focus on establishing IP 0(1) = IP(1), which is identical to Part 2 of Exer-cise 6.12. Note that the relevant classes de�ned in Exercise 6.12 coincide with IP(1) andIP 0(1); that is,MA = IP(1) andMA(2) = IP 0(1).Exercise 9.10 Prove that every PSPACE-complete set S has an interactive proofsystem in which the designated prover can be implemented by a probabilisticpolynomial-time oracle machine that is given oracle access to S.Guideline: Use Theorem 9.4 and Proposition 9.5.Exercise 9.11 (checkers (following [38])) A probabilistic polynomial-time or-acle machine C is called a checker for the decision problem � if the following twoconditions hold:1. For every x it holds that Pr[C�(x)=1] = 1, where (as usual) Cf (x) denotesthe output of A on input x when given oracle access to f .2. For every f : f0; 1g� ! f0; 1g and every x such that f(x) 6= �(x) it holdsthat Pr[Cf (x)=1] � 1=2.Note that nothing is required in the case that f(x) = �(x) but f 6= �. Prove thatif both S1 = fx : �(x)=1g and S0 = fx : �(x)=0g have interactive proof systemsin which the designated prover can be implemented by a probabilistic polynomial-time oracle machine that is given oracle access to �, then � has a checker. UsingExercise 9.10, conclude that any PSPACE-complete problem has a checker.

448 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: On input x and oracle access to f , the checker �rst obtains � def= f(x). Theclaim �(x) = � is then checked by combining the veri�er of S� with the probabilisticpolynomial-time oracle machine that describes the designated prover, while referring itsqueries to the oracle f .Exercise 9.12 (weakly optimal deciders for checkable problems (following [132]))Prove that if a decision problem � has a checker (as de�ned in Exercise 9.11) thenthere exists a probabilistic algorithm A that satis�es the following two conditions:1. A solves the decision problem � (i.e., for every x it holds that Pr[A(x) =�(x)] � 2=3).2. For every probabilistic algorithm A0 that solves the decision problem �,there exists a polynomial p such that for every x it holds that tA(x) =p(jxj) �maxjx0j�p(jxj)ftA0(x0)g, where tA(z) (resp., tA0(z)) denotes the numberof steps taken by A (resp., A0) on input z.Note that, compared to Theorem 2.33, the claim of optimality is weaker, but on theother hand it applies to decision problems (rather than to candid search problems).Guideline: Use the ideas of the proof of Theorem 2.33, noting that the correctnessof the answers provided by the various candidate algorithms can be veri�ed by usingthe checker. That is, A invokes copies of the checker, while using di�erent candidatealgorithms as oracles in the various copies.Exercise 9.13 (on the role of soundness error in zero-knowledge proofs)Prove that if S has a zero-knowledge interactive proof system with perfect sound-ness (i.e., the soundness error equals zero) then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er. Consider the algorithm that on input x, accepts x if and only if M(x) representsa valid view of the veri�er in an accepting interaction (i.e., an interaction that leads theveri�er to accept the common input x). Use the simulation condition to analyze the casex 2 S, and the perfect soundness hypothesis to analyze the case x 62 S.Exercise 9.14 (on the role of interaction in zero-knowledge proofs) Provethat if S has a zero-knowledge interactive proof system with a uni-directional com-munication then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er, and let M 0(x) denote the part of this view that consists of the prover message.Consider the algorithm that on input x, obtains m M 0(x), and emulates the veri�er'sdecision on input x and messagem. Note that this algorithm ignores the part ofM(x) thatrepresents the veri�er's internal coin tosses, and uses fresh veri�er's coins when decidingon (x;m).Exercise 9.15 (on the e�ective length of PCP oracles) Suppose that V isa PCP veri�er of query-complexity q and randomness-complexity r. Show thatfor every �xed x, the number of possible locations in the proof oracle that are

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 449examined by V on input x (when considering all possible internal coin tosses of Vand all possible answers it may receive) is upper-bounded by 2q(jxj)+r(jxj). Showthat if V is non-adaptive then the upper-bound can be improved to 2r(jxj) � q(jxj).Guideline: In the non-adaptive case, all q queries are determined by V 's internal cointosses.Exercise 9.16 (on the e�ective randomness of PCPs) Suppose that a set Shas a PCP of query-complexity q that utilizes proof oracles of length `. Showthat, for every constant " > 0, the set S has a \non-uniform" PCP of querycomplexity q, soundness error 0:5 + " and randomness complexity r such thatr(n) = log2(`(n) +n)+O(1). By a \non-uniform PCP" we mean one in which theveri�er is a probabilistic polynomial-time oracle machine that is given direct accessto the bits of a non-uniform poly(`(n) + n)-bit long advice.Guideline: Consider a PCP veri�er V as in the hypothesis, and denote its randomnesscomplexity by rV . We construct a non-uniform veri�er V 0 that, on input of length n,obtains as advice a set Rn � f0; 1grV (n) of cardinality O((`(n) + n)="2), and emulates Von a uniformly selected element of Rn. Show that for a random Rn of the said size, theveri�er V 0 satis�es the claims of the exercise.(Extra hint: Fixing any input x 62 S and any oracle � 2 f0; 1g`(jxj), upper-bound the probabilitythat a random set Rn (of the said size) is bad, where Rn is bad if V accept x with probability0:5 + " when selecting its coins in Rn and using the oracle �.)Exercise 9.17 (on the complexity of sets having certain PCPs) Suppose thata set S has a PCP of query-complexity q and randomness-complexity r. Show thatS can be decided by a non-deterministic machine48 that, on input of length n, makesat most 2r(n) � q(n) truly non-deterministic steps (i.e., choosing between di�erentalternatives) and halts within a total number of 2r(n) � poly(n) steps. Concludethat S 2 Ntime(2r � poly) \Dtime(22rq+r � poly).Guideline: For each input x 2 S and each possible value ! 2 f0; 1gr(jxj) of the veri�er'srandom-tape, we consider a sequence of q(jxj) bit values that represent a sequence oforacle answers that make the veri�er accept. Indeed, for �xed x and ! 2 f0; 1gr(jxj),each setting of the q(jxj) oracle answers determine the computation of the correspondingveri�er (including the queries it makes).Exercise 9.18 (The FGLSS-reduction [73]) For any S 2 PCP(r; q), considerthe following mapping of instances for S to instances of the Independent Setproblem. The instance x is mapped to a graph Gx = (Vx; Ex), where Vx �f0; 1gr(jxj)+q(jxj) consists of pairs (!; �) such that the PCP veri�er accepts the inputx, when using coins ! 2 f0; 1gr(jxj) and receiving the answers � = �1 � � ��q(jxj) (tothe oracle queries determined by x, r and the previous answers). Note that Vx con-tains only accepting \views" of the veri�er. The set Ex consists of edges that con-nect vertices that represents mutually inconsistent views of the said veri�er; thatis, the vertex v = (!; �1 � � ��q(jxj)) is connected to the vertex v0 = (!0; �01 � � ��0q(jxj))if there exists i and i0 such that �i 6= �0i0 and qxi (v) = qxi0(v0), where qxi (v) (resp.,48See x4.2.1.3 for de�nition of non-deterministic machines.

450 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSqxi0(v0)) denotes the i-th (resp., i0-th) query of the veri�er on input x, when us-ing coins ! (resp., !0) and receiving the answers �1 � � ��i�1 (resp., �01 � � ��0i0�1).In particular, for every ! 2 f0; 1gr(jxj) and � 6= �0, if (!; �); (!; �0) 2 Vx, thenf(!; �); (!; �0)g 2 Ex.1. Prove that the mapping x 7! Gx can be computed in time that is polynomialin 2r(jxj)+q(jxj) � jxj.(Note that the number of vertices in Gx is upper-bounded by 2r(jxj)+f(jxj),where f � q is the free-bit complexity of the PCP veri�er.)2. Prove that, for every x, the size of the maximum independent set in Gx is atmost 2r(jxj).3. Prove that if x 2 S then Gx has an independent set of size 2r(jxj).4. Prove that if x 62 S then the size of the maximum independent set in Gx isat most 2r(jxj)�1.In general, denoting the PCP veri�er by V , prove that the size of the maximumindependent set in Gx is exactly 2r(jxj) �max�fPr[V �(x) = 1]g. (Note the similarityto the proof of Proposition 2.26.)Show that the PCP Theorem implies that the size of the maximum independent set(resp., clique) in a graph is NP-hard to approximate to within any constant factor.Guideline: Note that an independent set in Gx corresponds to a set of coins R and apartial oracle �0 such that V accepts x when using coins in R and accessing any oraclethat is consistent with �0. The FGLSS-reduction creates a gap of a factor of 2 betweenyes- and no-instances of S (having a standard PCP). Larger factors can be obtained byconsidering a PCP that results from repeating the original PCP for a constant number oftimes. The result for Clique follows by considering the complement graph.Exercise 9.19 Using the ideas of Exercise 9.18, prove that, for any t(n) = o(logn),it holds that NP � PCP(t; t) implies that P = NP.Guideline: We only use the fact that the FGLSS-reduction maps instances of S 2PCP(t; t) to instances of the Clique problem (and ignore the fact that we actually get astronger reduction to a \gap-Clique" problem). Furthermore, when applies to problemsin NP � PCP(t; t), the FGLSS-reduction runs in polynomial-time. The key observationis that the FGLSS-reduction maps instances of the Clique problem (which is in NP �PCP(o(log); o(log))) to shorter instances of the same problem (because 2o(logn) � n).Thus, iteratively applying the FGLSS-reduction, we can reduce instances of Clique toinstances of constant size. This yields a reduction of Clique to a �nite set, and NP = Pfollows (by the NP-completeness of Clique).Exercise 9.20 (a simple but partial analysis of the BLR Linearity Test)For Abelian groups G and H , consider functions from G to H . For such a (generic)function f , consider the linearity (or rather homomorphism) test that selects uni-formly r; s 2 G and checks that f(r)+f(s) = f(r+s). Let �(f) denote the distance

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 451of f from the set of homomorphisms (of G to H); that is, �(f) is the minimumtaken over all homomorphisms h : G ! H of Prx2G[f(x) 6= h(x)]. Using the fol-lowing guidelines, prove that the probability that the test rejects f , denoted "(f),is at least 3�(f)� 6�(f)2.1. Suppose that h is the homomorphism closest to f (i.e., �(f) = Prx2G[f(x) 6=h(x)]). Prove that "(f) = Prx;y2G[f(x) + f(y) 6= f(x+ y)] is lower-boundedby 3 � Prx;y[f(x) 6=h(x) ^ f(y)=h(y) ^ f(x+ y)=h(x+ y)].(Hint: consider three out of four disjoint cases (regarding f(x) ?= h(x), f(y) ?= h(y), andf(x+ y) ?= h(x+ y)) that are possible when f(x)+ f(y) 6=f(x+ y), where these three casesrefer to the disagreement of h and f on exactly one out of the three relevant points.)2. Prove that Prx;y[f(x) 6=h(x)^f(y)=h(y)^f(x+y)=h(x+y)] � �(f)�2�(f)2.(Hint: lower-bound the said probability by Prx;y[f(x) 6= h(x)]�(Prx;y[f(x) 6= h(x)^f(y) 6=h(y)] + Prx;y [f(x) 6= h(x) ^ f(x+ y) 6= h(x+ y)]).)Note that the lower-bound "(f) � 3�(f) � 6�(f)2 increases with �(f) only in thecase that �(f) � 1=4. Furthermore, the lower-bound is useless in the case that�(f) � 1=2. Thus an alternative lower-bound is needed in case �(f) approaches1=2 (or is larger than it); see Exercise 9.21.Exercise 9.21 (a better analysis of the BLR Linearity Test (cf. [40])) In con-tinuation to Exercise 9.20, use the following guidelines in order to prove that"(f) � min(1=6; �(f)=2). Speci�cally, focusing on the case that "(f) < 1=6, showthat f is 2"(f)-close to some homomorphism (and thus "(f) � �(f)=2).1. De�ne the vote of y regarding the value of f at x as �y(x) def= f(x+y)�f(y), andde�ne �(x) as the corresponding plurality vote (i.e., �(x) def= argmaxv2Hfjfy2G : �y(x)=vgjg).Prove that, for every x 2 G, it holds that Pry[�y(x) = �(x)] � 1� 2"(f).Extra guideline: Fixing x, call a pair (y1; y2) good if f(y1) + f(y2 � y1) = f(y2)and f(x+y1)+f(y2�y1) = f(x+y2). Prove that, for any x, a random pair (y1; y2)is good with probability at least 1� 2"(f). On the other hand, for a good (y1; y2),it holds that �y1(x) = �y2(x). Show that the graph in which edges correspond togood pairs must have a connected component of size at least (1� 2"(f)) � jGj. Notethat �y(x) is identical for all vertices y in this connected component, which in turncontains a majority of all y's in G.2. Prove that � is a homomorphism; that is, prove that, for every x; y 2 G, itholds that �(x) + �(y) = �(x + y).Extra guideline: Prove that �(x) + �(y) = �(x + y) holds by considering thesomewhat �ctitious expression px;y def= Prr2G[�(x) + �(y) 6= �(x+ y)], and showingthat px;y < 1 (and hence �(x) + �(y) 6= �(x+ y) is false). Prove that px;y < 1, byshowing that px;y � Prr " �(x) 6=f(x+ r)� f(r)_ �(y) 6=f(r)� f(r � y)_ �(x+ y) 6=f(x+ r)� f(r � y) # (9.10)

452 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSand using Item 1 (and some variable substitutions) for upper-bounding by 2"(f) <1=3 the probability of each of the three events in Eq. (9.10).3. Prove that f is 2"(f)-close to �.Extra guideline: Denoting B = fx2G : Pry2G[f(x) 6= �y(x)] � 1=2g, prove that"(f) � (1=2) � (jBj=jGj). Note that if x 2 G nB then f(x) = �(x).We comment that better bounds on the behavior of "(f) as a function of �(f) areknown.Exercise 9.22 (testing matrix identity) Let M be a non-zero m-by-n matrixover GF(p). Prove that Prr;s[r>Ms 6= 0] � (1 � p�1)2, where r (resp., s) is arandom m-ary (resp., n-ary) vector.Guideline: Prove that if v 6= 0n then Prs[v>s = 0] = p�1, and that ifM has rank � thenPrr[r>M = 0n] = p��.Exercise 9.23 (3SAT and CSP with two variables) Show that 3SAT is reducibleto gapCSPf1;:::;7g� for �(m) = 1=m, where gapCSP is as in De�nition 9.18. Further-more, show that the size of the resulting gapCSP instance is linear in the length ofthe input formula.Guideline: Given an instance of 3SAT, consider the graph in which vertices correspondto clauses of , edges correspond to pairs of clauses that share a variable, and the con-straints represent the natural consistency condition regarding partial assignments thatsatisfy the clauses. See a similar construction in Exercise 9.18.Exercise 9.24 (CSP with two Boolean variables) In contrast to Exercise 9.23,prove that for every positive function � : N ! (0; 1] the problem gapCSPf0;1g� issolvable in polynomial-time.Guideline: Reduce gapCSPf0;1g� to 2SAT.Exercise 9.25 Show that, for any �xed �nite � and constant c > 0, the problemgapCSP�c is in PCP(log; O(1)).Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance(G;�), provides a trivial encoding of the assignment; that is, for a satisfying assignment � :V ! �, the oracle responds to the query (v; i) with the ith bit in the binary representationof �(v). Consider a veri�er that uniformly selects an edge (u; v) of G and checks theconstraint �(u;v) when applied to the values �(u) and �(v) obtained from the oracle. Thisveri�er makes log2 j�j queries and reject each no-instance with probability at least c.Exercise 9.26 For any constant � and d � 14, show that gapCSP� can be reducedto itself such that the instance at the target of the reduction is a d-regular expander,and the fraction of violated constraints is preserved up to a constant factor. Thatis, the instance (G;�) is reduced to (G1;�1) such that G1 is a d-regular expandergraph and vlt(G1;�1) = �(vlt(G;�)). Furthermore, make sure that jG1j =O(jGj) and that each vertex in G1 has at least d=2 self-loops.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 453Guideline: First, replace each vertex of degree d0 > 3 by a 3-regular expander of sized0, and connect each of the original d0 edges to a di�erent vertex of this expander, thusobtaining a graph of maximum degree 4. Maintain the constraints associated with theoriginal edges, and associate the equality constraint (i.e., �(�; �) = 1 if and only if � = �)to each new edge (residing in any of the added expanders). Next, augment the resultingN1-vertex graph by the edges of a 3-regular expander of size N1 (while associating withthese edges the trivially satis�ed constraint; i.e., �(�; �) = 1 for all �; � 2 �). Finally,add at least d=2 self-loops to each vertex (using again trivially satis�ed constraints), soto obtain a d-regular graph. Prove that this sequence of modi�cations may only decreasethe fraction of violated constraints, and that the decrease is only by a constant factor.The latter assertion relies on the equality constraints associated with the small expandersused in the �rst step.Exercise 9.27 (free-bit complexity zero) Note that only sets in coRP havePCPs of query complexity zero. Furthermore, Exercise 9.17 implies that only setsin P have PCP systems of logarithmic randomness and query complexity zero.1. Show that only sets in P have PCP systems of logarithmic randomness andfree-bit complexity zero.(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bitcomplexity zero.)2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bitcomplexity zero (and linear randomness-complexity).Exercise 9.28 (free-bit complexity one) In continuation to Exercise 9.27, provethat only sets in P have PCP systems of logarithmic randomness and free-bit com-plexity one.Guideline: Consider an application of the FGLSS-reduction to a set having a PCP offree-bit complexity one and randomness-complexity r. Note that the question of whetherthe resulting graph has an independent set of size 2r can be expressed as a 2CNF formulaof size poly(2r), and see Exercise 2.22.Exercise 9.29 (Proving Theorem 9.23) Using the following guidelines, pro-vide a proof of Theorem 9.23. Let S 2 NP and consider the 3CNF formulaethat are obtained by the standard reduction of S to 3SAT (i.e., the one providedby the proofs of Theorems 2.21 and 2.22). Decouple the resulting 3CNF formulaeinto pairs of formulae (x; �) such that x represents the \hard-wiring" of the in-put x and � represents the computation itself. Referring to the mapping of 3CNFformulae to low-degree extensions presented in x9.3.2.2, show that the low-degreeextension � that correspond to � can be evaluated in polynomial-time (i.e., poly-nomial in the length of the input to �, which is O(log j�j)). Conclude that thelow-degree extension that corresponds to x ^ � can be evaluated in time jxj2. Al-ternatively, note that it su�ces to show that the assignment-oracle A (consideredin x9.3.2.2) satis�es � and is consistent with x (and is a low-degree polynomial).

454 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: Note that the circuit constructed in the proof of Theorem 2.21 is highlyuniform. In particular, the relation between wires and gates in this circuit can be repre-sented by constant-depth circuits of unbounded fan-in and polynomial-size (i.e., size thatis polynomial in the length of the indices of wires and gates).

Chapter 10Relaxing the RequirementsThe philosophers have only interpreted the world, invarious ways; the point is to change it.Karl Marx, Theses on FeuerbachIn light of the apparent infeasibility of solving numerous useful computational prob-lems, it is natural to ask whether these problems can be relaxed such that therelaxation is both useful and allows for feasible solving procedures. We stress twoaspects about the foregoing question: on one hand, the relaxation should be suf-�ciently good for the intended applications; but, on the other hand, it should besigni�cantly di�erent from the original formulation of the problem so to escape theinfeasibility of the latter. We note that whether a relaxation is adequate for anintended application depends on the application, and thus much of the materialin this chapter is less robust (or generic) than the treatment of the non-relaxedcomputational problems.Summary: We consider two types of relaxations. The �rst type ofrelaxation refers to the computational problems themselves; that is, foreach problem instance we extend the set of admissible solutions. Inthe context of search problems this means settling for solutions thathave a value that is \su�ciently close" to the value of the optimalsolution (with respect to some value function). Needless to say, thespeci�c meaning of `su�ciently close' is part of the de�nition of therelaxed problem. In the context of decision problems this means thatfor some instances both answers are considered valid; speci�cally, weshall consider promise problems in which the no-instances are \far"from the yes-instances in some adequate sense (which is part of thede�nition of the relaxed problem).The second type of relaxation deviates from the requirement that thesolver provides an adequate answer on each valid instance. Instead,the behavior of the solver is analyzed with respect to a predetermined455

456 CHAPTER 10. RELAXING THE REQUIREMENTSinput distribution (or a class of such distributions), and bad behaviormay occur with negligible probability where the probability is takenover this input distribution. That is, we replace worst-case analysis byaverage-case (or rather typical-case) analysis. Needless to say, a majorcomponent in this approach is limiting the class of distributions in a waythat, on one hand, allows for various types of natural distributions and,on the other hand, prevents the collapse of the corresponding notion ofaverage-case hardness to the standard notion of worst-case hardness.Organization. The �rst type of relaxation is treated in Section 10.1, where weconsider approximations of search (or rather optimization) problems as well asapproximate-decision problems (a.k.a property testing); see Section 10.1.1 and Sec-tion 10.1.2, respectively. The second type of relaxation, known as average/typical-case complexity, is treated in Section 10.2. The treatment of these two types isquite di�erent. Section 10.1 provides a short and high-level introduction to variousresearch areas, focusing on the main notions and illustrating them by reviewingsome results (while providing no proofs). In contrast, Section 10.2 provides a basictreatment of a theory (of average/typical-case complexity), focusing on some basicresults and providing a rather detailed exposition of the corresponding proofs.10.1 ApproximationThe notion of approximation is a very natural one, and has arisen also in otherdisciplines. Approximation is most commonly used in references to quantities (e.g.,\the length of one meter is approximately forty inches"), but it is also used whenreferring to qualities (e.g., \an approximately correct account of a historical event").In the context of computation, the notion of approximation modi�es computationaltasks such as search and decision problems. (In fact, we have already encounteredit as a modi�er of counting problems; see Section 6.2.2.)Two major questions regarding approximation are (1) what is a \good" approx-imation, and (2) can it be found easier than �nding an exact solution. The answerto the �rst question seems intimately related to the speci�c computational taskat hand and to its role in the wider context (i.e., the higher level application): agood approximation is one that su�ces for the intended application. Indeed, theimportance of certain approximation problems is much more subjective than theimportance of the corresponding optimization problems. This fact seems to standin the way of attempts at providing a comprehensive theory of natural approxi-mation problems (e.g., general classes of natural approximation problems that areshown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approx-imation problems seem to be signi�cantly easier than the corresponding original(\exact") problems. On the other hand, in numerous other cases, natural approx-imation problems are computationally equivalent to the original problems. Weshall exemplify both cases by reviewing some speci�c results, but will not provide

10.1. APPROXIMATION 457a general systematic classi�cation (because such a classi�cation is not known).1We shall distinguish between approximation problems that are of a \searchtype" and problems that have a clear \decisional"
avor. In the �rst case we shallrefer to a function that assigns values to possible solutions (of a search problem);whereas in the second case we shall refer to the distance between instances (of adecision problem).2 We note that, sometimes the same computational problemmay be cast in both ways, but for most natural approximation problems one of thetwo frameworks is more appealing than the other. The common theme underlyingboth frameworks is that in each of them we extend the set of admissible solutions.In the case of search problems, we augment the set of optimal solutions by allowingalso almost-optimal solutions. In the case of decision problems, we extend the setof solutions by allowing an arbitrary answer (solution) to some instances, whichmay be viewed as a promise problem that disallows these instances. In this case wefocus on promise problems in which the yes- and no-instances are far apart (andthe instances that violate the promise are closed to yes-instances).Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these resultsin the context of complexity theory, we recommend doing the same in class.10.1.1 Search or OptimizationAs noted in Section 2.2.2, many search problems involve a set of potential solutions(per each problem instance) such that di�erent solutions are assigned di�erent \val-ues" (resp., \costs") by some \value" (resp., \cost") function. In such a case, one isinterested in �nding a solution of maximum value (resp., minimum cost). A corre-sponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation ofthe desired level of approximation is part of the problem's de�nition. Let us elab-orate.For concreteness, we focus on the case of a value that we wish to maximize.For greater expressibility (or, actually, for greater
exibility), we allow the valueof the solution to depend also on the instance itself.3 Thus, for a (polynomiallybounded) binary relation R and a value function f : f0; 1g� � f0; 1g� ! R, weconsider the problem of �nding solutions (with respect to R) that maximize the1In contrast, systematic classi�cations of restricted classes of approximation problems areknown. For example, see [55] for a classi�cation of (approximate versions of) Constraint Satis-faction Problems.2In some sense, this distinction is analogous to the distinction between the two aforementioneduses of the word approximation.3This convention is only a matter of convenience: without loss of generality, we can expressthe same optimization problem using a value function that only depends on the solution byaugmenting each solution with the corresponding instance (i.e., a solution y to an instance x canbe encoded as a pair (x; y), and the resulting set of valid solutions for x will consist of pairs of theform (x; �)). Hence, the foregoing convention merely allows avoiding this cumbersome encodingof solutions.

458 CHAPTER 10. RELAXING THE REQUIREMENTSvalue of f . That is, given x (such that R(x) 6= ;), the task is �nding y 2 R(x) suchthat f(x; y) = vx, where vx is the maximum value of f(x; y0) over all y0 2 R(x).Typically, R is in PC and f is polynomial-time computable. Indeed, without lossof generality, we may assume that for every x it holds that R(x) = f0; 1g`(jxj) forsome polynomial ` (see Exercise 2.8).4 Thus, the optimization problem is recastas the following search problem: given x, �nd y such that f(x; y) = vx, wherevx = maxy02f0;1g`(jxj)ff(x; y0)g.We shall focus on relative approximation problems, where for some gap functiong : f0; 1g� ! fr2R : r�1g the (maximization) task is �nding y such that f(x; y) �vx=g(x). Indeed, in some cases the approximation factor is stated as a function ofthe length of the input (i.e., g(x) = g0(jxj) for some g0 : N ! fr2R : r�1g), butoften the approximation factor is stated in terms of some more re�ned parameterof the input (e.g., as a function of the number of vertices in a graph). Typically, gis polynomial-time computable.De�nition 10.1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` :N!N , and g : f0; 1g� ! fr2R : r�1g.Maximization version: The g-factor approximation of maximizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � vx=g(x)g,where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � g(x) � cxg,where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems, polynomial-timealgorithms provide meaningful approximations. A few examples will be mentionedin x10.1.1.1. In contrast, for numerous other NP-complete optimization problems,natural approximation problems are computationally equivalent to the correspond-ing optimization problem. A few examples will be mentioned in x10.1.1.2, wherewe also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) searchproblem.10.1.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding themaximum clique in a graph, we note that �nding a linear factor approximation istrivial (i.e., given a graph G = (V;E), we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). A famous non-trivial exampleis presented next.Proposition 10.2 (factor two approximation to minimum Vertex Cover): Thereexists a polynomial-time approximation algorithm that given a graph G = (V;E)4However, in this case (and in contrast to Footnote 3), the value function f must depend bothon the instance and on the solution (i.e., f(x; y) may no be oblivious of x).

10.1. APPROXIMATION 459outputs a vertex cover that is at most twice as large as the minimum vertex coverof G.We warn that an approximation algorithm for minimum Vertex Cover does notyield such an algorithm for the complementary search problem (of maximum IndependentSet). This phenomenon stands in contrast to the case of optimization, where anoptimal solution for one search problem (e.g., minimum Vertex Cover) yields anoptimal solution for the complementary search problem (maximum IndependentSet).Proof Sketch: The main observation is a connection between the set of maximalmatchings and the set of vertex covers in a graph. LetM be anymaximal matchingin the graph G = (V;E); that is, M � E is a matching but augmenting it by anysingle edge yields a set that is not a matching. Then, on one hand, the set of allvertices participating in M is a vertex cover of G, and, on the other hand, eachvertex cover of G must contain at least one vertex of each edge ofM . Thus, we can�nd the desired vertex cover by �nding a maximal matching, which in turn can befound by a greedy algorithm.Another example. An instance of the traveling salesman problem (TSP) consistsof a symmetric matrix of distances between pairs of points, and the task is �ndinga shortest tour that passes through all points. In general, no reasonable approx-imation is feasible for this problem (see Exercise 10.1), but here we consider twospecial cases in which the distances satisfy some natural constraints (and prettygood approximations are feasible).Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-rithms exist for the following two computational problems.1. Providing a 1.5-factor approximation for the special case of TSP in which thedistances satisfy the triangle inequality.2. For every " > 1, providing a (1+ ")-factor approximation for the special caseof Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points residein a k-dimensional Euclidean space, and the distances refer to the standardEuclidean norm).A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2is provided in [12]. We note the di�erence exempli�ed by the two items of Theo-rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a speci�cconstant factor, Part 2 provides such an algorithm for any constant factor. Such aresult is called a polynomial-time approximation scheme (abbreviated PTAS).10.1.1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �ndingthe maximum clique in a graph, we note that given a graph G = (V;E) �nding

460 CHAPTER 10. RELAXING THE REQUIREMENTSa (1 + jV j�1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. Indeed, this \result" is not really meaningful.In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that�nding a jV j1�o(1)-factor approximation of the maximum clique in a general graphG = (V;E) is as hard as �nding a maximum clique in a general graph. This followsfrom the fact that the approximation problem is NP-hard (cf. Theorem 10.5).The statement of such inapproximability results is made stronger by referringto a promise problem that consists of distinguishing instances of su�ciently farapart values. Such promise problems are called gap problems, and are typicallystated with respect to two bounding functions g1; g2 : f0; 1g� ! R (which replacethe gap function g of De�nition 10.1). Typically, g1 and g2 are polynomial-timecomputable.De�nition 10.4 (gap problem for approximation of f): Let f be as in De�ni-tion 10.1 and g1; g2 : f0; 1g� ! R.Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consistsof distinguishing between fx : vx � g1(x)g and fx : vx < g2(x)g, wherevx = maxy2f0;1g`(jxj)ff(x; y)g.Minimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consistsof distinguishing between fx : cx � g1(x)g and fx : cx > g2(x)g, wherecx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graphconsists of distinguishing between graphs G that have a clique of size g1(G) andgraphs G that have no clique of size g2(G). In this case, we typically let gi(G) be afunction of the number of vertices in G=(V;E); that is, gi(G) = g0i(jV j). Indeed,letting !(G) denote the size of the largest clique in the graphG, we let gapCliqueL;sdenote the gap problem of distinguishing between fG= (V;E) : !(G) � L(jV j)gand fG=(V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, we restate(and strengthen) the aforementioned jV j1�o(1)-factor inapproximability result ofthe maximum clique problem.Theorem 10.5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;sis NP-hard.The proof of Theorem 10.5 is based on a major re�nement of Theorem 9.16 thatrefers to a PCP system of amortized free-bit complexity that tends to zero (cf.x9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented inExercise 10.3.As we shall show next, results of the type of Theorem 10.5 imply the hardnessof a corresponding approximation problem; that is, the hardness of deciding a gapproblem implies the hardness of a search problem that refers to an analogous factorof approximation.

10.1. APPROXIMATION 461Proposition 10.6 Let f; g1; g2 be as in De�nition 10.4 and suppose that thesefunctions are polynomial-time computable. Then the gapg1;g2 problem of maximiz-ing f (resp., minimizing f) is reducible to the g1=g2-factor (resp., g2=g1-factor)approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even inthe case that the underlying optimization problem is self-reducible in some naturalsense). Indeed, this is another di�erence between the current context (of approx-imation) and the context of optimization problems, where the search problem isreducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve thegapg1;g2 problem, by making the query x, obtaining the answer y, and ruling thatx has value at least g1(x) if and only if f(x; y) � g2(x). Recall that we need toanalyze this reduction only on inputs that satisfy the promise. Thus, if vx � g1(x)then the oracle must return a solution y that satis�es f(x; y) � vx=(g1(x)=g2(x)),which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x) then f(x; y) �vx < g2(x) holds for any possible solution y.Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of mini-mizing the vertex cover of a graph, where s and L are constants and gs(G) = s � jV j(resp., gL(G) = L � jV j) for any graph G=(V;E). Then, Proposition 10.2 implies(via Proposition 10.6) that, for every constant s, the problem gapVCs;2s is solvablein polynomial-time. In contrast, su�ciently narrowing the gap between the twothresholds yields an inapproximability result. In particular:Theorem 10.7 For some constants s > 0 and L < 1 such that L > 43 � s (e.g.,s = 0:62 and L = 0:84), the problem gapVCs;L is NP-hard.The proof of Theorem 10.7 is based on a complicated re�nement of Theorem 9.16.Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).As noted, re�nements of the PCP Theorem (Theorem 9.16) play a key role inestablishing inapproximability results such as Theorems 10.5 and 10.7. In thatrespect, it is adequate to recall that Theorem 9.21 establishes the equivalence ofthe PCP Theorem itself and the NP-hardness of a gap problem concerning themaximization of the number of clauses that are satis�es in a given 3-CNF for-mula. Speci�cally, gapSAT3" was de�ned (in De�nition 9.20) as the gap problemconsisting of distinguishing between satis�able 3-CNF formulae and 3-CNF formu-lae for which each truth assignment violates at least an " fraction of the clauses.Although Theorem 9.21 does not specify the quantitative relation that underliesits qualitative assertion, when (re�ned and) combined with the best known PCPconstruction, it does yield the best possible bound.Theorem 10.8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.

462 CHAPTER 10. RELAXING THE REQUIREMENTSSharp thresholds. The aforementioned opposite results (regarding gapSAT3v) ex-emplify a sharp threshold on the (factor of) approximation that can be obtainedby an e�cient algorithm. Another appealing example refers to the following maxi-mization problem in which the instances are systems of linear equations over GF(2)and the task is �nding an assignment that satis�es as many equations as possible.Note that by merely selecting an assignment at random, we expect to satisfy halfof the equations. Also note that it is easy to determine whether there exists anassignment that satis�es all equations. Let gapLinL;s denote the problem of dis-tinguishing between systems in which one can satisfy at least an L fraction ofthe equations and systems in which one cannot satisfy an s fraction (or more)of the equations. Then, as just noted, gapLinL;0:5 is trivial (for every L � 0:5)and gapLin1;s is feasible (for every s < 1). In contrast, moving both thresholds(slightly) away from the corresponding extremes, yields an NP-hard gap problem:Theorem 10.9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.The proof of Theorem 10.9 is based on a major re�nement of Theorem 9.16. In fact,the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:the veri�er makes three queries and tests a linear condition regarding the answers,while using a logarithmic number of coin tosses. This veri�er accepts any yes-instance with probability at least 1 � " (when given oracle access to a suitableproof), and rejects any no-instance with probability at least 0:5 � " (regardlessof the oracle being accessed). A weaker result, which follows from Theorem 9.16itself, is presented in Exercise 10.5.Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations withrespect to the \location" of the \gap" for which the corresponding promise prob-lem is hard. Recall that both gapSAT and gapLin are formulated with respectto two thresholds, where each threshold bounds the fraction of \local" conditions(i.e., clauses or equations) that are satis�able in the case of yes- and no-instances,respectively. In the case of gapSAT, the high threshold (referring to yes-instances)was set to 1, and thus only the low threshold (referring to no-instances) remaineda free parameter. Nevertheless, a hardness result was established for gapSAT, andfurthermore this was achieved for an optimal value of the low threshold (cf. theforegoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-ting the high threshold to 1 makes the gap problem e�ciently solvable. Thus,the hardness of gapLin was established at a di�erent location of the high thresh-old. Speci�cally, hardness (for an optimal value of the ratio of thresholds) wasestablished when setting the high threshold to 1� ", for any " > 0.A �nal comment. All the aforementioned inapproximability results refer to ap-proximation (resp., gap) problems that are relaxations of optimization problemsin NP (i.e., the optimization problem is computationally equivalent to a decisionproblem in NP ; see Section 2.2.2). In these cases, the NP-hardness of the approx-imation (resp., gap) problem implies that the corresponding optimization problemis reducible to the approximation (resp., gap) problem. In other words, in these

10.1. APPROXIMATION 463cases nothing is gained by relaxing the original optimization problem, because therelaxed version remains just as hard.10.1.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering thedistance between instances, where a natural notion of distance is the Hammingdistance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,this relaxation (called property testing) refers to distinguishing inputs that residein a predetermined set S from inputs that are \relatively far" from any input thatresides in the set. Two natural types of promise problems emerge (with respect toany predetermined set S (and the Hamming distance between strings)):1. Relaxed decision w.r.t a �xed relative distance: Fixing a distance parameter�, we consider the problem of distinguishing inputs in S from inputs in ��(S),where ��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (10.1)and �(x1 � � �xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits onwhich x = x1 � � �xm and z = z1 � � � zm disagree. Thus, here we consider apromise problem that is a restriction (or a special case) of the problem ofdeciding membership in S.2. Relaxed decision w.r.t a variable distance: Here the instances are pairs (x; �),where x is as in Type 1 and � 2 [0; 1] is a (relative) distance parameter. Theyes-instances are pairs (x; �) such that x 2 S, whereas (x; �) is a no-instanceif x 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential questionof whether or not these relaxations lower the complexity of the original decisionproblem. The study of Type 2 formulation refers to a relatively secondary question,which assumes a positive answer to the �rst question; that is, assuming that therelaxed form is easier than the original form, we ask how is the complexity of theproblem a�ected by making the distance parameter smaller (which means makingthe relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1)relaxations that are solvable in polynomial-time. Actually, these algorithms runin sub-linear time (speci�cally, in polylogarithmic time), when given direct accessto the input. A few examples will be presented in x10.1.2.2 (but, as indicated inx10.1.2.2, this is not a generic phenomenon). Before turning to these examples, wediscuss several important de�nitional issues.10.1.2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hardproblems, but rather with solving these problems (as well as problems in P) insub-linear time. Needless to say, such results assume a model of computation in

464 CHAPTER 10. RELAXING THE REQUIREMENTSwhich algorithms have direct access to bits in the (representation of the) input (seeDe�nition 10.10).De�nition 10.10 (a direct access model { conventions): An algorithm with directaccess to its input is given its main input on a special input device that is accessedas an oracle (see x1.2.3.6). In addition, the algorithm is given the length of theinput and possibly other parameters on a secondary input device. The complexity ofsuch an algorithm is stated in terms of the length of its main input.Indeed, the description in x5.2.4.2 refers to such a model, but there the main inputis viewed as an oracle and the secondary input is viewed as the input. In thecurrent model, polylogarithmic time means time that is polylogarithmic in thelength of the main input, which means time that is polynomial in the length of thebinary representation of the length of the main input. Thus, polylogarithmic timeyields a robust notion of extremely e�cient computations. As we shall see, suchcomputations su�ce for solving various (property testing) problems.De�nition 10.11 (property testing for S): For any �xed � > 0, the promiseproblem of distinguishing S from ��(S) is called property testing for S (with respectto �).Recall that we say that a randomized algorithm solves a promise problem if itaccepts every yes-instance (resp., rejects every no-instance) with probability atleast 2=3. Thus, a (randomized) property testing for S accepts every input in S(resp., rejects every input in ��(S)) with probability at least 2=3.The question of representation. The speci�c representation of the input is ofmajor concern in the current context. This is due to (1) the e�ect of the represen-tation on the distance measure and to (2) the dependence of direct access machineson the speci�c representation of the input. Let us elaborate on both aspects.1. Recall that we de�ned the distance between objects in terms of the Hammingdistance between their representations. Clearly, in such a case, the choice ofrepresentation is crucial and di�erent representations may yield di�erent dis-tance measures. Furthermore, in this case, the distance between objects isnot preserved under various (natural) representations that are considered\equivalent" in standard studies of computational complexity. For example,in previous parts of this book, when referring to computational problemsconcerning graphs, we did not care whether the graph was represented by itsadjacency matrix or by its incidence-list. In contrast, these two representa-tions induce very di�erent distance measures and correspondingly di�erentproperty testing problems (see x10.1.2.2). Likewise, the use of padding (andother trivial syntactic conventions) becomes problematic (e.g., when using asigni�cant amount of padding, all objects are deemed close to one another(and property testing for any set becomes trivial)).

10.1. APPROXIMATION 4652. Since our focus is on sub-linear time algorithms, we may not a�ord trans-forming the input from one natural format to another. Thus, representationsthat are considered equivalent with respect to polynomial-time algorithms,may not be equivalent with respect to sub-linear time algorithms that havea direct access to the representation of the object. For example, adjacencyqueries and incidence queries cannot emulate one another in small time (i.e.,in time that is sub-linear in the number of vertices).Both aspects are further clari�ed by the examples provided in x10.1.2.2.The essential role of the promise. Recall that, for a �xed constant � > 0,we consider the promise problem of distinguishing S from ��(S). The promisemeans that all instances that are neither in S nor far from S (i.e., not in ��(S))are ignored, which is essential for sub-linear algorithms for natural problems. Thismakes the property testing task potentially easier than the corresponding stan-dard decision task (cf. x10.1.2.2). To demonstrate the point, consider the set Sconsisting of strings that have a majority of 1's. Then, deciding membership inS requires linear time, because random n-bit long strings with bn=2c ones cannotbe distinguished from random n-bit long strings with bn=2c + 1 ones by probinga sub-linear number of locations (even if randomization and error probability areallowed { see Exercise 10.8). On the other hand, the fraction of 1's in the input canbe approximated by a randomized polylogarithmic time algorithm (which yields aproperty tester for S; see Exercise 10.9). Thus, for some sets, deciding membershiprequires linear time, while property testing can be done in polylogarithmic time.The essential role of randomization. Referring to the foregoing example, wenote that randomization is essential for any sub-linear time algorithm that distin-guishes this set S from, say, �0:1(S). Speci�cally, a sub-linear time deterministicalgorithm cannot distinguish 1n from any input that has 1's in each position probedby that algorithm on input 1n. In general, on input x, a (sub-linear time) deter-ministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time com-plexity of algorithms. This success is due to the fact that these lower-bounds areactually information theoretic in nature; that is, these lower-bounds actually referto the number of queries performed by these algorithms.10.1.2.2 Two models for testing graph propertiesIn this subsection we consider the complexity of property testing for sets of graphsthat are closed under graph isomorphism; such sets are called graph properties. Inview of the importance of representation in the context of property testing, weexplicitly consider two standard representations of graphs (cf. Appendix G.1),which indeed yield two di�erent models of testing graph properties.

466 CHAPTER 10. RELAXING THE REQUIREMENTS1. The adjacency matrix representation. Here a graph G = ([N]; E) is rep-resented (in a somewhat redundant form) by an N -by-N Boolean matrixMG = (mi;j)i;j2[N] such that mi;j = 1 if and only if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graphG = ([N]; E) of degree at most d is represented (in a somewhat redundantform) by a mapping �G : [N]� [d]! [N][f?g such that �G(u; i) = v if v isthe ith neighbor of u and �G(u; i) = ? if v has less than i neighbors.We stress that the aforementioned representations determine both the notion ofdistance between graphs and the type of queries performed by the algorithm. Aswe shall see, the di�erence between these two representations yields a big di�erencein the complexity of corresponding property testing problems.Theorem 10.12 (property testing in the adjacency matrix representation): Forany �xed � > 0 and each of the following sets, there exists a polylogarithmic timerandomized algorithm that solves the corresponding property testing problem (withrespect to �).� For every �xed k � 2, the set of k-colorable graphs.� For every �xed � > 0, the set of graphs having a clique (resp., independentset) of density �.� For every �xed � > 0, the set of N-vertex graphs having a cut5 with at least� �N2 edges.� For every �xed � > 0, the set of N-vertex graphs having a bisection5with atmost � �N2 edges.In contrast, for some � > 0, there exists a graph property in NP for which propertytesting (with respect to �) requires linear time.The testing algorithms (asserted in Theorem 10.12) use a constant number ofqueries, where this constant is polynomial in the constant 1=�. In contrast, exactdecision procedures for the corresponding sets require a linear number of queries.The running time of the aforementioned algorithms hides a constant that is expo-nential in their query complexity (except for the case of 2-colorability where thehidden constant is polynomial in 1=�). Note that such dependencies seem essen-tial, since setting � = 1=N2 regains the original (non-relaxed) decision problems(which, with the exception of 2-colorability, are all NP-complete). Turning to thelower-bound (asserted in Theorem 10.12), we mention that the graph property forwhich this bound is proved is not a natural one. As in x10.1.2.1, the lower-boundon the time complexity follows from a lower-bound on the query complexity.Theorem 10.12 exhibits a dichotomy between graph properties for which prop-erty testing is possible by a constant number of queries and graph properties for5A cut in a graph G = ([N]; E) is a partition (S1; S2) of the set of vertices (i.e., S1 [S2 = [N]and S1 \ S2 = ;), and the edges of the cut are the edges with exactly one endpoint in S1. Abisection is a cut of the graph to two parts of equal cardinality.

10.1. APPROXIMATION 467which property testing requires a linear number of queries. A combinatorial charac-terization of the graph properties for which property testing is possible (in the ad-jacency matrix representation) when using a constant number of queries is known.6We note that the constant in this characterization may depend arbitrarily on � (andindeed, in some cases, it is a function growing faster than a tower of 1=� exponents).For example, property testing for the set of triangle-free graphs is possible by usinga number of queries that depends only on �, but it is known that this number mustgrow faster than any polynomial in 1=�.Turning back to Theorem 10.12, we note that the results regarding propertytesting for the sets corresponding to max-cut and min-bisection yield approximationalgorithms with an additive error term (of �N2). For dense graphs (i.e., N -vertexgraphs having
(N2) edges), this yields a constant factor approximation for thestandard approximation problem (as in De�nition 10.1). That is, for every constantc > 1, we obtain a c-factor approximation of the problem of maximizing the size of acut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,the result regarding clique yields a so called dual-approximation for maximumclique; that is, we approximate the minimum number of missing edges in the densestinduced subgraph of a given size.Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, ingeneral, for any graph property in the adjacency matrix representation.7 Also notethat property testing is trivial, under the adjacency matrix representation, for anygraph property S satisfying �o(1)(S) = ; (e.g., the set of connected graphs, the setof Hamiltonian graphs, etc).We now turn to the bounded incidence-lists representation, which is relevantonly for bounded degree graphs. The problems of max-cut, min-bisection and clique(as in Theorem 10.12) are trivial under this representation, but graph connectivitybecomes non-trivial, and the complexity of property testing for the set of bipartitegraphs changes dramatically.Theorem 10.13 (property testing in the bounded incidence-lists representation):The following assertions refer to the representation of graphs by incidence-lists oflength d.� For any �xed d and � > 0, there exists a polylogarithmic time randomizedalgorithm that solves the property testing problem for the set of connectedgraphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear time randomized algorithmthat solves the property testing problem for the set of bipartite graphs of degree6Describing this fascinating result of Alon et. al. [8], which refers to the notion of regularpartitions (introduced by Szemer�edi), is beyond the scope of the current text.7In this model, as shown next, property testing of non-dense graphs is trivial. Speci�cally,�xing the distance parameter �, we call a N-vertex graph non-dense if it has less than (�=2) � �N2 �edges. The point is that, for non-dense graphs, the property testing problem for any set S istrivial, because we may just accept any non-dense (N-vertex) graph if and only if S containssome non-dense (N-vertex) graph. Clearly, the decision is correct in the case that S does notcontain non-dense graphs. However, the decision is admissible also in the case that S does containsome non-dense graph, because in this case every non-dense graph is \�-close" to S (i.e., it is notin ��(S)).

468 CHAPTER 10. RELAXING THE REQUIREMENTSat most d. Speci�cally, on input an N-vertex graph, the algorithm runs foreO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N-vertex(3-regular) bipartite graphs requires
(pN) queries.� For some �xed d and � > 0, property testing for the set of N-vertex 3-colorablegraphs of degree at most d requires
(N) queries.The running time of the algorithms (asserted in Theorem 10.13) hides a constantthat is polynomial in 1=�. Providing a characterization of graph properties accord-ing to the complexity of the corresponding tester (in the bounded incidence-listsrepresentation) is an interesting open problem.Decoupling the distance from the representation. So far, we have con�nedour attention to the Hamming distance between the representations of graphs.This made the choice of representation even more important than usual (i.e., morecrucial than is common in complexity theory). In contrast, it is natural to considera notion of distance between graphs that is independent of their representation.For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�nedas the minimum of the size of symmetric di�erence between E1 and the set of edgesin a graph that is isomorphic to G2. The corresponding relative distance may bede�ned as the distance divided by jE1j+ jE2j (or by max(jE1j; jE2j)).10.1.2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyondthe domain of graph theory. In fact, this type of computational problems �rstemerged in the algebraic domain, where the instances (to be viewed as inputs tothe testing algorithm) are functions and the relevant properties are sets of algebraicfunctions. The archetypical example is the set of low-degree polynomials; that is,m-variate polynomials of total (or individual) degree d over some �nite �eld GF(q),where m; d and q are parameters that may depend on the length of the input (orsatisfy some relationships; e.g., q = d3 = m6). Note that, in this case, the inputis the (\full" or \explicit") description of an m-variate function over GF(q), whichmeans that it has length qm � log2 q. Viewing the problem instance as a functionsuggests a natural measure of distance (i.e., the fraction of arguments on which thefunctions disagree) as well as a natural way of accessing the instance (i.e., queryingthe function for the value of selected arguments).Note that we have referred to these computational problems, under a di�erentterminology, in x9.3.2.2 and in x9.3.2.1. In particular, in x9.3.2.1 we refereed tothe special case of linear Boolean functions (i.e., individual degree 1 and q = 2),whereas in x9.3.2.2 we used the setting q = poly(d) and m = d= log d (where d is abound on the total degree).Other domains of computational problems in which property testing was stud-ied include geometry (e.g., clustering problems), formal languages (e.g., testing

10.2. AVERAGE CASE COMPLEXITY 469membership in regular sets), coding theory (cf. Appendix E.1.2), probability the-ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone andjunta functions). As discuss at the end of x10.1.2.2, it is often natural to decou-ple the distance measure from the representation of the objects (i.e., the way ofaccessing the problem instance). This is done by introducing a representation-independent notion of distance between instances, which should be natural in thecontext of the problem at hand.10.2 Average Case ComplexityTeaching note: We view average-case complexity as referring to the performance on\average" (or rather typical) instances, and not as the average performance on randominstances. This choice is justi�ed in x10.2.1.1. Thus, it may be more justi�ed to refer tothe following theory by the name typical-case complexity. Still, the name average-casewas retained for historical reasons.Our approach so far (including in Section 10.1) is termed worst-case complex-ity, because it refers to the performance of potential algorithms on each legitimateinstance (and hence to the performance on the worst possible instance). That is,computational problems were de�ned as referring to a set of instances and perfor-mance guarantees were required to hold for each instance in this set. In contrast,average-case complexity allows ignoring a negligible measure of the possible in-stances, where the identity of the ignored instances is determined by the analysisof potential solvers and not by the problem's statement.A few comments are in place. Firstly, as just hinted, the standard statementof the worst-case complexity of a computational problem (especially one havinga promise) may also ignores some instances (i.e., those considered inadmissibleor violating the promise), but these instances are determined by the problem'sstatement. In contrast, the inputs ignored in average-case complexity are notinadmissible in any inherent sense (and are certainly not identi�ed as such by theproblem's statement). It is just that they are viewed as exceptional when claimingthat a speci�c algorithm solve the problem; that is, these exceptional instances aredetermined by the analysis of that algorithm. Needless to say, these exceptionalinstances ought to be rare (i.e., occur with negligible probability).The last sentence raises a couple of issues. Most importantly, a distributionon the set of admissible instances has to be speci�ed. In fact, we shall consider anew type of computational problems, each consisting of a standard computationalproblem coupled with a probability distribution on instances. Consequently, thequestion of which distributions should be considered in a theory of average-casecomplexity arises. This question and numerous other de�nitional issues will beaddressed in x10.2.1.1.Before proceeding, let us spell out the rather straightforward motivation to thestudy of the average-case complexity of computational problems: It is that, in real-life applications, one may be perfectly happy with an algorithm that solves theproblem fast on almost all instances that arise in the relevant application. That is,

470 CHAPTER 10. RELAXING THE REQUIREMENTSone may be willing to tolerate error provided that it occurs with negligible proba-bility, where the probability is taken over the distribution of instances encounteredin the application. The study of average-case complexity is aimed at exploring thepossible bene�t of such a relaxation, distinguishing cases in which a bene�t existsfrom cases in which it does not exist. A key aspect in such a study is a goodmodeling of the type of distributions (of instances) that are encountered in naturalalgorithmic applications.A preliminary question that arises is whether every natural computational prob-lem be solve e�ciently when restricting attention to typical instances? The conjec-ture that underlies this section is that, for a well-motivated choice of de�nitions, theanswer is negative; that is, our conjecture is that the \distributional version" of NPis not contained in the average-case (or typical-case) version of P. This means thatsome NP problems are not merely hard in the worst-case, but are rather \typicallyhard" (i.e., hard on typical instances drawn from some simple distribution). Specif-ically, hard instances may occur in natural algorithmic applications (and not onlyin cryptographic (or other \adversarial") applications that are design on purposeto produce hard instances).8The foregoing conjecture motivates the development of an average-case analogueof NP-completeness, which will be presented in this section. Indeed, the entiresection may be viewed as an average-case analogue of Chapter 2. In particular, this(average-case) theory identi�es distributional problems that are \typically hard"provided that distributional problems that are \typically hard" exist at all. If onebelieves the foregoing conjecture then, for such complete (distributional) problems,one should not seek algorithms that solve these problems e�ciently on typicalinstances.Organization. Amajor part of our exposition is devoted to the de�nitional issuesthat arise when developing a general theory of average-case complexity. Theseissues are discussed in x10.2.1.1. In x10.2.1.2 we prove the existence of distributionalproblems that are \NP-complete" in the corresponding average-case complexitysense. Furthermore, we show how to obtain such a distributional version for anynatural NP-complete decision problem. In x10.2.1.3 we extend the treatment torandomized algorithms. Additional rami�cations are presented in Section 10.2.2.10.2.1 The basic theoryIn this section we provide a basic treatment of the theory of average-case com-plexity, while postponing important rami�cations to Section 10.2.2. The basictreatment consists of the preferred de�nitional choices for the main concepts as8We highlight two di�erences between the current context (of natural algorithmic applications)and the context of cryptography. Firstly, in the current context and when referring to problemsthat are typically hard, the simplicity of the underlying input distribution is of great concern:the simpler this distribution, the more appealing the hardness assertion becomes. This concernis irrelevant in the context of cryptography. On the other hand (see discussion at the beginningof Section 7.1.1 and/or at end of x10.2.2.2), cryptographic applications require the ability toe�ciently generate hard instances together with corresponding solutions.

10.2. AVERAGE CASE COMPLEXITY 471well as the identi�cation of complete problems for a natural class of average-casecomputational problems.10.2.1.1 De�nitional issuesThe theory of average-case complexity is more subtle than may appear at �rstthought. In addition to the generic conceptual di�culty involved in de�ning relax-ations, di�culties arise from the \interface" between standard probabilistic analysisand the conventions of complexity theory. This is most striking in the de�ni-tion of the class of feasible average-case computations. Referring to the theory ofworst-case complexity as a guideline, we shall address the following aspects of theanalogous theory of average-case complexity.1. Setting the general framework. We shall consider distributional problems,which are standard computational problems (see Section 1.2.2) coupled withdistributions on the relevant instances.2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogue of classes such as P , we shall reject the �rst de�nition thatcomes to mind (i.e., the naive notion of \average polynomial-time"), brie
ydiscuss several related alternatives, and adopt one of them for the main treat-ment.3. Identifying the class of interesting (distributional) problems. Seeking anaverage-case analogue of the class NP , we shall avoid both the extremeof allowing arbitrary distributions (which collapses average-case hardness toworst-case hardness) and the opposite extreme of con�ning the treatment toa single distribution such as the uniform distribution.4. Developing an adequate notion of reduction among (distributional) problems.As in the theory of worst-case complexity, this notion should preserve feasiblesolveability (in the current distributional context).We now turn to the actual treatment of each of the aforementioned aspects.Step 1: De�ning distributional problems. Focusing on decision problems,we de�ne distributional problems as pairs consisting of a decision problem and aprobability ensemble.9 For simplicity, here a probability ensemble fXngn2N is asequence of random variables such thatXn ranges over f0; 1gn. Thus, (S; fXngn2N)is the distributional problem consisting of the problem of deciding membership inthe set S with respect to the probability ensemble fXngn2N. (The treatment ofsearch problem is similar; see x10.2.2.1.) We denote the uniform probability ensembleby U = fUngn2N; that is, Un is uniform over f0; 1gn.9We mention that even this choice is not evident. Speci�cally, Levin [153] (see discussionin [88]) advocates the use of a single probability distribution de�ned over the set of all strings.His argument is that this makes the theory less representation-dependent. At the time we wereconvinced of his argument (see [88]), but currently we feel that the representation-dependente�ects discussed in [88] are legitimate. Furthermore, the alternative formulation of [153, 88]comes across as unnatural and tends to confuse some readers.

472 CHAPTER 10. RELAXING THE REQUIREMENTSStep 2: Identifying the class of feasible problems. The �rst idea thatcomes to mind is de�ning the problem (S; fXngn2N) as feasible (on the average)if there exists an algorithm A that solves S such that the average running timeof A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial psuch that E[tA(Xn)] � p(n), where tA(x) denotes the running-time of A on inputx). The problem with this de�nition is that it very sensitive to the model ofcomputation and is not closed under algorithmic composition. Both de�cienciesare a consequence of the fact that tA may be polynomial on the average withrespect to fXngn2N but t2A may fail to be so (e.g., consider tA(x0x00) = 2jx0j ifx0 = x00 and tA(x0x00) = jx0x00j2 otherwise, coupled with the uniform distributionover f0; 1gn). We conclude that the average running-time of algorithms is not arobust notion. We also doubt the naive appeal of this notion, and view the typicalrunning time of algorithms (as de�ned next) as a more natural notion. Thus, weshall consider an algorithm as feasible if its running-time is typically polynomial.10We say that A is typically polynomial-time on X = fXngn2N if there exists apolynomial p such that the probability that A runs more that p(n) steps on Xnis negligible (i.e., for every polynomial q and all su�ciently large n it holds thatPr[tA(Xn) > p(n)] < 1=q(n)). The question is what is required in the \untypical"cases, and two possible de�nitions follow.1. The simpler option is saying that (S; fXngn2N) is (typically) feasible if thereexists an algorithm A that solves S such that A is typically polynomial-timeon X = fXngn2N. This e�ectively requires A to correctly solve S on eachinstance, which is more than was required in the motivational discussion.(Indeed, if the underlying motivation is ignoring rare cases, then we shouldignore them altogether rather than ignoring them in a partial manner (i.e.,only ignore their a�ect on the running-time).)2. The alternative, which �ts the motivational discussion, is saying that (S;X)is (typically) feasible if there exists an algorithm A such that A typicallysolves S on X in polynomial-time; that is, there exists a polynomial p suchthat the probability that on input Xn algorithm A either errs or runs morethat p(n) steps is negligible. This formulation totally ignores the untypicalinstances. Indeed, in this case we may assume, without loss of generality,that A always runs in polynomial-time (see Exercise 10.11), but we shall notdo so here (in order to facilitate viewing the �rst option as a special case ofthe current option).We stress that both alternatives actually de�ne typical feasibility and not average-case feasibility. To illustrate the di�erence between the two options, consider thedistributional problem of deciding whether a uniformly selected (n-vertex) graph10An alternative choice, taken by Levin [153] (see discussion in [88]), is considering as feasible(w.r.t X = fXngn2N) any algorithm that runs in time that is polynomial in a function that islinear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function` : f0; 1g� ! N such that t(x) � p(`(x)) for every x and E[`(Xn)] = O(n). This de�nition isrobust (i.e., it does not su�er from the aforementioned de�ciencies) and is arguably as \natural"as the naive de�nition (i.e., E[tA(Xn)] � poly(n)).

10.2. AVERAGE CASE COMPLEXITY 473is 3-colorable. Intuitively, this problem is \typically trivial" (with respect to theuniform distribution),11 because the algorithm may always say no and be wrongwith exponentially vanishing probability. Indeed, this trivial algorithm is admissi-ble by the second approach, but not by the �rst approach. In light of the foregoingdiscussions, we adopt the second approach.De�nition 10.14 (the class tpcP): We say that A typically solves (S; fXngn2N)in polynomial-time if there exists a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible.12 Wedenote by tpcP the class of distributional problems that are typically solvable inpolynomial-time.Clearly, for every S 2 P and every probability ensemble X , it holds that (S;X) 2tpcP. However, tpcP contains also distributional problems (S;X) with S 62 P(see Exercises 10.12 and 10.13). The big question, which underlies the theory ofaverage-case complexity, is whether all natural distributional versions of NP arein tpcP . Thus, we turn to identify such versions.Step 3: Identifying the class of interesting problems. Seeking to identifyreasonable distributional versions of NP , we note that two extreme choices shouldbe avoided. On one hand, we must limit the class of admissible distributions so toprevent the collapse of average-case hardness to worst-case hardness (by a selectionof a pathological distribution that resides on the \worst case" instances). On theother hand, we should allow for various types of natural distributions rather thancon�ning attention merely to the uniform distribution.13 Recall that our aim isaddressing all possible input distributions that may occur in applications, and thusthere is no justi�cation for con�ning attention to the uniform distribution. Still,arguably, the distributions occuring in applications are \relatively simple" and sowe seek to identify a class of simple distributions. One such notion (of simpledistributions) underlies the following de�nition, while a more liberal notion will bepresented in x10.2.2.2.De�nition 10.15 (the class distNP): We say that a probability ensemble X =fXngn2N is simple if there exists a polynomial time algorithm that, on any inputx 2 f0; 1g�, outputs Pr[Xjxj � x], where the inequality refers to the standard lexico-graphic order of strings. We denote by distNP the class of distributional problemsconsisting of decision problems in NP coupled with simple probability ensembles.11In contrast, testing whether a given graph is 3-colorable seems \typically hard" for other dis-tributions (see either Theorem 10.19 or Exercise 10.27). Needless to say, in the latter distributionsboth yes-instances and no-instances appear with noticeable probability.12Recall that a function � : N ! N is negligible if for every positive polynomial q and allsu�ciently large n it holds that �(n) < 1=q(n). We say that A errs on x if A(x) di�ers from theindicator value of the predicate x 2 S.13Con�ning attention to the uniform distribution seems misguided by the naive belief accordingto which this distribution is the only one relevant to applications. In contrast, we believe that,for most natural applications, the uniform distribution over instances is not relevant at all.

474 CHAPTER 10. RELAXING THE REQUIREMENTSNote that the uniform probability ensemble is simple, but so are many other \sim-ple" probability ensembles. Actually, it makes sense to relax the de�nition suchthat the algorithm is only required to output an approximation of Pr[Xjxj � x], say,to within a factor of 1� 2�2jxj. We note that De�nition 10.15 interprets simplicityin computational terms; speci�cally, as the feasibility of answering very basic ques-tions regarding the probability distribution (i.e., determining the probability massassigned to a single (n-bit long) string and even to an interval of such strings). Thissimplicity condition is closely related to being polynomial-time sampleable via amonotone mapping (see Exercise 10.14).Teaching note: The following two paragraphs attempt to address some doubts re-garding De�nition 10.15. One may postpone such discussions to a later stage.We admit that the identi�cation of simple distributions as the class of inter-esting distribution is signi�cantly more questionable than any other identi�cationadvocated in this book. Nevertheless, we believe that we were fully justi�ed in re-jecting both the aforementioned extremes (i.e., of either allowing all distributionsor allowing only the uniform distribution). Yet, the reader may wonder whetheror not we have struck the right balance between \generality" and \simplicity" (inthe intuitive sense). One speci�c concern is that we might have restricted the classof distributions too much. We brie
y address this concern next.A more intuitive and very robust class of distributions, which seems to containall distributions that may occur in applications, is the class of polynomial-timesampleable probability ensembles (treated in x10.2.2.2). Fortunately, the combi-nation of the results presented in x10.2.1.2 and x10.2.2.2 seems to retrospectivelyendorse the choice underlying De�nition 10.15. Speci�cally, we note that enlargingthe class of distributions weakens the conjecture that the corresponding class ofdistributional NP problems contains infeasible problems. On the other hand, theconclusion that a speci�c distributional problem is not feasible becomes more ap-pealing when the problem belongs to a smaller class that corresponds to a restrictedde�nition of admissible distributions. Now, the combined results of x10.2.1.2 andx10.2.2.2 assert that a conjecture that refers to the larger class of polynomial-timesampleable ensembles implies a conclusion that refers to a (very) simple probabilityensemble (which resides in the smaller class). Thus, the current setting in whichboth the conjecture and the conclusion refer to simple probability ensembles maybe viewed as just an intermediate step.Indeed, the big question in the current context is whether distNP is containedin tpcP. A positive answer (especially if extended to sampleable ensembles) woulddeem the P-vs-NP Question to be of little practical signi�cant. However, our dailyexperience as well as much research e�ort indicate that some NP problems arenot merely hard in the worst-case, but rather \typically hard". This leads to theconjecture that distNP is not contained in tpcP .Needless to say, the latter conjecture implies P 6= NP , and thus we shouldnot expect to see a proof of it. In particular, we should not expect to see a proofthat some speci�c problem in distNP is not in tpcP . What we may hope to seeis \distNP-complete" problems; that is, problems in distNP that are not in tpcP

10.2. AVERAGE CASE COMPLEXITY 475unless the entire class distNP is contained in tpcP . An adequate notion of areduction is used towards formulating this possibility.Step 4: De�ning reductions among (distributional) problems. Intuitively,such reductions must preserve average-case feasibility. Thus, in addition to thestandard conditions (i.e., that the reduction be e�ciently computable and yield acorrect result), we require that the reduction \respects" the probability distribu-tion of the corresponding distributional problems. Speci�cally, the reduction shouldnot map very likely instances of the �rst (\starting") problem to rare instances ofthe second (\target") problem. Otherwise, having a typically polynomial-time al-gorithm for the second distributional problem does not necessarily yield such analgorithm for the �rst distributional problem. Following is the adequate analogueof a Cook reduction (i.e., general polynomial-time reduction), where the analogueof a Karp-reduction (many-to-one reduction) can be easily derived as a special case.Teaching note: One may prefer presenting in class only the special case of many-to-one reductions, which su�ces for Theorem 10.17. See Footnote 15.De�nition 10.16 (reductions among distributional problems): We say that theoracle machine M reduces the distributional problem (S;X) to the distributionalproblem (T; Y) if the following three conditions hold.1. E�ciency: The machine M runs in polynomial-time.142. Validity: For every x 2 f0; 1g�, it holds that MT (x) = 1 if an only if x 2 S,where MT (x) denotes the output of the oracle machine M on input x andaccess to an oracle for T .3. Domination:15 The probability that, on input Xn and oracle access to T ,machine M makes the query y is upper-bounded by poly(jyj) � Pr[Yjyj = y].That is, there exists a polynomial p such that, for every y 2 f0; 1g� and everyn 2 N , it holds thatPr[Q(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.2)where Q(x) denotes the set of queries made byM on input x and oracle accessto T .In addition, we require that the reduction does not make too short queries;that is, there exists a polynomial p0 such that if y 2 Q(x) then p0(jyj) � jxj.14In fact, one may relax the requirement and only require that M is typically polynomial-timewith respect to X. The validity condition may also be relaxed similarly.15Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions(i.e., MT (x) = 1 if and only if f(x) 2 T , where f is a polynomial-time computable function):in this case Pr[Q(Xn) 3 y] is replaced by Pr[f(Xn) = y]. That is, Eq. (10.2) simpli�es toPr[f(Xn) = y] � p(jyj) � Pr[Yjyj = y]. Indeed, this condition holds vacuously for any y that is notin the image of f .

476 CHAPTER 10. RELAXING THE REQUIREMENTSThe l.h.s. of Eq. (10.2) refers to the probability that, on input distributed as Xn,the reduction makes the query y. This probability is required not to exceed theprobability that y occurs in the distribution Yjyj by more than a polynomial factorin jyj. In this case we say that the l.h.s. of Eq. (10.2) is dominated by Pr[Yjyj = y].Indeed, the domination condition is the only aspect of De�nition 10.16 that ex-tends beyond the worst-case treatment of reductions and refers to the distributionalsetting. The domination condition does not insist that the distribution induced byQ(X) equals Y , but rather allows some slackness that, in turn, is bounded so toguarantee preservation of typical feasibility (see Exercise 10.15).16We note that the reducibility arguments extensively used in Chapters 7 and 8(see discussion in Section 7.1.2) are actually reductions in the spirit of De�ni-tion 10.16 (except that they refer to di�erent types of computational tasks).10.2.1.2 Complete problemsRecall that our conjecture is that distNP is not contained in tpcP , which in turnstrengthens the conjecture P 6= NP (making infeasibility a typical phenomenonrather than a worst-case one). Having no hope of proving that distNP is notcontained in tpcP , we turn to the study of complete problems with respect to thatconjecture. Speci�cally, we say that a distributional problem (S;X) is distNP-complete if (S;X) 2 distNP and every (S0; X 0) 2 distNP is reducible to (S;X)(under De�nition 10.16).Recall that it is quite easy to prove the mere existence of NP-complete problemsand that many natural problems are NP-complete. In contrast, in the current con-text, establishing completeness results is quite hard. This should not be surprisingin light of the restricted type of reductions allowed in the current context. The re-striction (captured by the domination condition) requires that \typical" instancesof one problem should not be mapped to \untypical" instances of the other prob-lem. However, it is fair to say that standard Karp-reductions (used in establishingNP-completeness results) map \typical" instances of one problem to somewhat\bizarre" instances of the second problem. Thus, the current subsection may beviewed as a study of reductions that do not commit this sin.17Theorem 10.17 (distNP-completeness): distNP contains a distributional prob-lem (T; Y) such that each distributional problem in distNP is reducible (per De�ni-tion 10.16) to (T; Y). Furthermore, the reductions are via many-to-one mappings.Proof: We start by introducing such a (distributional) problem, which is anatural distributional version of the decision problem Su (used in the proof of16We stress that the notion of domination is incomparable to the notion of statistical (resp.,computational) indistinguishability. On one hand, domination is a local requirement (i.e., itcompares the two distribution on a point-by-point basis), whereas indistinguishability is a globalrequirement (which allows rare exceptions). On the other hand, domination does not requireapproximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-tion is not symmetric. We comment that a more relaxed notion of domination that allows rareviolations (as in Footnote 14) su�ces for the preservation of typical feasibility.17The latter assertion is somewhat controversial. While it seems totally justi�ed with respectto the proof of Theorem 10.17, opinions regarding the proof of Theorem 10.19 may di�er.

10.2. AVERAGE CASE COMPLEXITY 477Theorem 2.19). Recall that Su contains the instance hM;x; 1ti if there existsy 2 [i�tf0; 1gi such that machine M accepts the input pair (x; y) within t steps.We couple Su with the \quasi-uniform" probability ensemble U 0 that assigns tothe instance hM;x; 1ti a probability mass proportional to 2�(jM j+jxj). Speci�cally,for every hM;x; 1ti it holds thatPr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)�n2� (10.3)where n def= jhM;x; 1tij def= jM j + jxj + t. Note that, under a suitable naturalencoding, the ensemble U 0 is indeed simple.18The reader can easily verify that the generic reduction used when reducingany set in NP to Su (see the proof of Theorem 2.19), fails to reduce distNPto (Su; U 0). Speci�cally, in some cases (see next paragraph), these reductions donot satisfy the domination condition. Indeed, the di�culty is that we have toreduce all distNP problems (i.e., pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e., (Su; U 0)). In contrast,considering the distributions induced by the aforementioned reductions, we endup with many distributional versions of Su, and furthermore the correspondingdistributions are very di�erent (and are not necessarily dominated by a singledistribution).Let us take a closer look at the aforementioned generic reduction (of S to Su),when applied to an arbitrary (S;X) 2 distNP . This reduction maps an instancex to a triple (MS ; x; 1pS(jxj)), where MS is a machine verifying membership inS (while using adequate NP-witnesses) and pS is an adequate polynomial. Theproblem is that x may have relatively large probability mass (i.e., it may be thatPr[Xjxj= x] � 2�jxj) while (MS ; x; 1pS(jxj)) has \uniform" probability mass (i.e.,hMS ; x; 1pS(jxj)i has probability mass smaller than 2�jxj in U 0). This violates thedomination condition (see Exercise 10.18), and thus an alternative reduction isrequired.The key to the alternative reduction is an (e�ciently computable) encoding ofstrings taken from an arbitrary simple distribution by strings that have a similarprobability mass under the uniform distribution. This means that the encodingshould shrink strings that have relatively large probability mass under the origi-nal distribution. Speci�cally, this encoding will map x (taken from the ensemblefXngn2N) to a codeword x0 of length that is upper-bounded by the logarithm of1=Pr[Xjxj=x], ensuring that Pr[Xjxj=x] = O(2�jx0j). Accordingly, the reductionwill map x to a triple (MS;X ; x0; 1p0(jxj)), where jx0j < O(1) + log2(1=Pr[Xjxj=x])and MS;X is an algorithm that (given x0 and x) �rst veri�es that x0 is a properencoding of x and next applies the standard veri�cation (i.e., MS) of the problemS. Such a reduction will be shown to satisfy all three conditions (i.e., e�ciency,18For example, we may encode hM;x; 1ti, where M = �1 � � ��k 2 f0; 1gk and x = �1 � � � �` 2f0; 1g`, by the string �1�1 � � ��k�k01�1�1 � � � �`�`01t. Then �n2� � Pr[U 0n � hM;x; 1ti] equals(ijMj;jxj;t � 1) + 2�jMj � jfM 0 2 f0; 1gjMj : M 0 < Mgj + 2�(jMj+jxj) � jfx0 2 f0; 1gjxj : x0 � xgj,where ik;`;t is the ranking of fk; k + `g among all 2-subsets of [k + `+ t].

478 CHAPTER 10. RELAXING THE REQUIREMENTSvalidity, and domination). Thus, instead of forcing the structure of the originaldistribution X on the target distribution U 0, the reduction will incorporate thestructure of X in the reduced instance. A key ingredient in making this possible isthe fact that X is simple (as per De�nition 10.15).With the foregoing motivation in mind, we now turn to the actual proof; thatis, proving that any (S;X) 2 distNP is reducible to (Su; U 0). The followingtechnical lemma is the basis of the reduction. In this lemma as well as in thesequel, it will be convenient to consider the (accumulative) distribution functionof the probability ensemble X . That is, we consider �(x) def= Pr[Xjxj � x], andnote that � : f0; 1g� ! [0; 1] is polynomial-time computable (because X satis�esDe�nition 10.15).Coding Lemma:19 Let � : f0; 1g� ! [0; 1] be a polynomial-time computable functionthat is monotonically non-decreasing over f0; 1gn for every n (i.e., �(x0) � �(x00)for any x0 < x00 2 f0; 1gjx0j). For x 2 f0; 1gn n f0ng, let x � 1 denote the stringpreceding x in the lexicographic order of n-bit long strings. Then there exist anencoding function C� that satis�es the following three conditions.1. Compression: For every x it holds that jC�(x)j � 1+minfjxj; log2(1=�0(x))g,where �0(x) def= �(x) � �(x� 1) if x 62 f0g� and �0(0n) def= �(0n) otherwise.2. E�cient Encoding: The function C� is computable in polynomial-time.3. Unique Decoding: For every n 2 N , when restricted to f0; 1gn, the functionC� is one-to-one (i.e., if C�(x) = C�(x0) and jxj = jx0j then x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x(i.e., in this case x serves as its own encoding). Otherwise (i.e., �0(x) > 2�jxj)then C�(x) = 1z, where z is chosen such that jzj � log2(1=�0(x)) and the mappingof n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected toequal the shortest binary expansion of a number in the interval (�(x)��0(x); �(x)].Bearing in mind that this interval has length �0(x) and that the di�erent intervalsare disjoint, we obtain the desired encoding. Details follows.We focus on the case that �0(x) > 2�jxj, and detail the way that z is selected(for the encoding C�(x) = 1z). If x > 0jxj and �(x) < 1, then we let z be thelongest common pre�x of the binary expansions of �(x� 1) and �(x); for example,if �(1010) = 0:10010 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 10.Thus, in this case 0:z1 is in the interval (�(x�1); �(x)] (i.e., �(x�1) < 0:z1 � �(x)).For x = 0jxj, we let z be the longest common pre�x of the binary expansions of 0and �(x) and again 0:z1 is in the relevant interval (i.e., (0; �(x)]). Finally, for x suchthat �(x) = 1 and �(x�1) < 1, we let z be the longest common pre�x of the binaryexpansions of �(x�1) and 1�2�jxj�1, and again 0:z1 is in (�(x�1); �(x)] (because19The lemma actually refers to f0; 1gn, for any �xed value of n, but the e�ciency conditionis stated more easily when allowing n to vary (and using the standard asymptotic analysis ofalgorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-time computable functions that are monotonically non-decreasing over f0; 1g� (rather than overf0; 1gn). See further discussion in Exercise 10.19.

10.2. AVERAGE CASE COMPLEXITY 479�0(x) > 2�jxj and �(x � 1) < �(x) = 1 imply that �(x � 1) < 1 � 2�jxj < �(x)).Note that if �(x) = �(x � 1) = 1 then �0(x) = 0 < 2�jxj.We now verify that the foregoing C� satis�es the conditions of the lemma. Westart with the compression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j =1 + jxj � 1 + log2(1=�0(x)). On the other hand, suppose that �0(x) > 2�jxj andlet us focus on the sub-case that x > 0jxj and �(x) < 1. Let z = z1 � � � z` bethe longest common pre�x of the binary expansions of �(x � 1) and �(x). Then,�(x� 1) = 0:z0u and �(x) = 0:z1v, where u; v 2 f0; 1g�. We infer that�0(x) = �(x)� �(x � 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A�X̀i=1 2�izi < 2�jzj;and jzj < log2(1=�0(x)) � jxj follows. Thus, jC�(x)j � 1 + min(jxj; log2(1=�0(x)))holds in both cases. Clearly, C� can be computed in polynomial-time by computing�(x�1) and �(x). Finally, note that C� satis�es the unique decoding condition, byseparately considering the two aforementioned cases (i.e., C�(x) = 0x and C�(x) =1z). Speci�cally, in the second case (i.e., C�(x) = 1z), use the fact that �(x� 1) <0:z1 � �(x).In order to obtain an encoding that is one-to-one when applied to strings ofdi�erent lengths, we augment C� in the obvious manner; that is, we considerC 0�(x) def= (jxj; C�(x)), which may be implemented as C 0�(x) = �1�1 � � ��`�`01C�(x)where �1 � � ��` is the binary expansion of jxj. Note that jC 0�(x)j = O(log jxj) +jC�(x)j and that C 0� is one-to-one (over f0; 1g�).The machine associated with (S;X). Let � be the accumulative probability func-tion associated with the probability ensemble X , and MS be the polynomial-timemachine that veri�es membership in S while using adequate NP-witnesses (i.e.,x 2 S if and only if there exists y 2 f0; 1gpoly(jxj) such that M(x; y) = 1). Usingthe encoding function C 0�, we introduce an algorithm MS;� with the intension ofreducing the distributional problem (S;X) to (Su; U 0) such that all instances (ofS) are mapped to triples in which the �rst element equals MS;�. Machine MS;�is given an alleged encoding (under C 0�) of an instance to S along with an allegedproof that the corresponding instance is in S, and veri�es these claims in the ob-vious manner. That is, on input x0 and hx; yi, machine MS;� �rst veri�es thatx0 = C 0�(x), and next veri�ers that x 2 S by runningMS(x; y). Thus,MS;� veri�esmembership in the set S0 = fC 0�(x) : x 2 Sg, while using proofs of the form hx; yisuch that MS(x; y) = 1 (for the instance C 0�(x)).20The reduction. We maps an instance x (of S) to the triple (MS;�; C 0�(x); 1p(jxj)),where p(n) def= pS(n)+pC(n) such that pS is a polynomial representing the running-time of MS and pC is a polynomial representing the running-time of the encodingalgorithm.20Note that jyj = poly(jxj), but jxj = poly(jC0�(x)j) does not necessarily hold (and so S0 is notnecessarily in NP). As we shall see, the latter point is immaterial.

480 CHAPTER 10. RELAXING THE REQUIREMENTSAnalyzing the reduction. Our goal is proving that the foregoing mapping constitutesa reduction of (S;X) to (Su; U 0). We verify the corresponding three requirements(of De�nition 10.16).1. Using the fact that C 0� is polynomial-time computable (and noting that pis a polynomial), it follows that the foregoing mapping can be computed inpolynomial-time.2. Recall that, on input (x0; hx; yi), machine MS;� accepts if and only if x0 =C 0�(x) and MS accepts (x; y) within pS(jxj) steps. Using the fact that C 0�(x)uniquely determines x, it follows that x 2 S if and only if C 0�(x) 2 S0,which in turn holds if and only if there exists a string y such that MS;�accepts (C 0�(x); hx; yi) in at most p(jxj) steps. Thus, x 2 S if and only if(MS;�; C 0�(x); 1p(jxj)) 2 Su, and the validity condition follows.3. In order to verify the domination condition, we �rst note that the foregoingmapping is one-to-one (because the transformation x ! C 0�(x) is one-to-one). Next, we note that it su�ces to consider instances of Su that havea preimage under the foregoing mapping (since instances with no preimagetrivially satisfy the domination condition). Each of these instances (i.e., eachimage of this mapping) is a triple with the �rst element equal to MS;� andthe second element being an encoding under C 0�. By the de�nition of U 0, forevery such image hMS;�; C 0�(x); 1p(jxj)i 2 f0; 1gn, it holds thatPr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] = �n2��1 � 2�(jMS;�j+jC0�(x)j)> c � n�2 � 2�(jC�(x)j+O(log jxj));where c = 2�jMS;�j�1 is a constant depending only on S and � (i.e., on thedistributional problem (S;X)). Thus, for some positive polynomial q, wehave Pr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] > 2�jC�(x)j=q(n): (10.4)By virtue of the compression condition (of the Coding Lemma), we have2�jC�(x)j � 2�1�min(jxj;log2(1=�0(x))). It follows that2�jC�(x)j � Pr[Xjxj = x]=2: (10.5)Recalling that x is the only preimage that is mapped to hMS;�; C 0�(x); 1p(jxj)iand combining Eq. (10.4)& (10.5), we establish the domination condition.The theorem follows.Re
ections: The proof of Theorem 10.17 highlights the fact that the reductionused in the proof of Theorem 2.19 does not introduce much structure in the reducedinstances (i.e., does not reduce the original problem to a \highly structured special

10.2. AVERAGE CASE COMPLEXITY 481case" of the target problem). Put in other words, unlike more advanced worst-casereductions, this reduction does not map \random" (i.e., uniformly distributed)instances to highly structured instances (which occur with negligible probabilityunder the uniform distribution). Thus, the reduction used in the proof of The-orem 2.19 su�ces for reducing any distributional problem in distNP to a distri-butional problem consisting of Su coupled with some simple probability ensemble(see Exercise 10.20).21However, Theorem 10.17 states more than the latter assertion. That is, it statesthat any distributional problem in distNP is reducible to the same distributionalversion of Su. Indeed, the e�ort involved in proving Theorem 10.17 was due tothe need for mapping instances taken from any simple probability ensemble (whichmay not be the uniform ensemble) to instances distributed in a manner that isdominated by a single probability ensemble (i.e., the quasi-uniform ensemble U 0).Once we have established the existence of one distNP-complete problem, wemay establish the distNP-completeness of other problems (in distNP) by reduc-ing some distNP-complete problem to them (and relying on the transitivity ofreductions (see Exercise 10.17)). Thus, the di�culties encountered in the proof ofTheorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe dif-�culty arises: almost all known reductions in the theory of NP-completeness workby introducing much structure in the reduced instances (i.e., they actually reduceto highly structured special cases). Furthermore, this structure is too complex inthe sense that the distribution of reduced instances does not seem simple (in thesense of De�nition 10.15). Actually, as demonstrated next, the problem is notthe existence of a structure in the reduced instances but rather the complexity ofthis structure. In particular, if the aforementioned reduction is \monotone" and\length regular" then the distribution of the reduced instances is simple enough(i.e., is simple in the sense of De�nition 10.15):Proposition 10.18 (su�cient condition for distNP-completeness): Suppose thatf is a Karp-reduction of the set S to the set T such that, for every x0; x00 2 f0; 1g�,the following two conditions hold:1. (f is monotone): If x0 < x00 then f(x0) < f(x00), where the inequalities referto the standard lexicographic order of strings.222. (f is length-regular): jx0j = jx00j if and only if jf(x0)j = jf(x00)j.Then if there exists an ensemble X such that (S;X) is distNP-complete then thereexists an ensemble Y such that (T; Y) is distNP-complete.Proof Sketch: Note that the monotonicity of f implies that f is one-to-oneand that for every x it holds that f(x) � x. Furthermore, as shown next, fis polynomial-time invertible. Intuitively, the fact that f is both monotone and21Note that this cannot be said of most known Karp-reductions, which do map random instancesto highly structured ones. Furthermore, the same (structure creating property) holds for thereductions obtained by Exercise 2.31.22In particular, if jz0j < jz00j then z0 < z00. Recall that for jz0j = jz00j it holds that z0 < z00 ifand only if there exists w;u0; u00 2 f0; 1g� such that z0 = w0u0 and z00 = w1u00.

482 CHAPTER 10. RELAXING THE REQUIREMENTSpolynomial-time computable implies that a preimage can be found by a binarysearch. Speci�cally, given y = f(x), we search for x by iteratively halving theinterval of potential solutions, which is initialized to [0; y] (since x � f(x)). Notethat if this search is invoked on a string y that is not in the image of f , then itterminates while detecting this fact.Relying on the fact that f is one-to-one (and length-regular), we de�ne theprobability ensemble Y = fYngn such that for every x it holds that Pr[Yjf(x)j =f(x)] = Pr[Xjxj = x]. Speci�cally, letting `(m) = jf(1m)j and noting that ` isone-to-one and monotonically non-decreasing, we de�nePr[Yjyj=y] =8<: Pr[Xjxj=x] if x = f�1(y)0 if 9m s.t. y 2 f0; 1g`(m) n ff(x) : x2f0; 1gmg2�jyj otherwise (i.e., if jyj 62 f`(m) : m2Ng)23 .Clearly, (S;X) is reducible to (T; Y) (via the Karp-reduction f , which, due toour construction of Y , also satis�es the domination condition). Thus, using thehypothesis that distNP is reducible to (S;X) and the transitivity of reductions (seeExercise 10.17), it follows that every problem in distNP is reducible to (T; Y). Thekey observation, to be established next, is that Y is a simple probability ensemble,and it follows that (T; Y) is in distNP .Loosely speaking, the simplicity of Y follows by combining the simplicity ofX and the properties of f (i.e., the fact that f is monotone, length-regular, andpolynomial-time invertible). The monotonicity and length-regularity of f impliesthat Pr[Yjf(x)j�f(x)] = Pr[Xjxj�x]. More generally, for any y 2 f0; 1g`(m), it holdsthat Pr[Y`(m)�y] = Pr[Xm�x], where x is the lexicographicly largest string suchthat f(x) � y (and, indeed, if jxj < m then Pr[Y`(m)�y] = Pr[Xm�x] = 0).24 Notethat this x can be found in polynomial-time by the inverting algorithm sketched inthe �rst paragraph of the proof. Thus, we may compute Pr[Yjyj�y] by �nding theadequate x and computing Pr[Xjxj�x]. Using the hypothesis that X is simple, itfollows that Y is simple (and the proposition follows).On the existence of adequate Karp-reductions. Proposition 10.18 impliesthat a su�cient condition for the distNP-completeness of a distributional versionof a (NP-complete) set T is the existence of an adequate Karp-reduction from theset Su to the set T ; that is, this Karp-reduction should be monotone and length-regular. While the length-regularity condition seems easy to impose (by usingadequate padding), the monotonicity condition seems more problematic. Fortu-nately, it turns out that the monotonicity condition can also be imposed by usingadequate padding (or rather an adequate \marking" { see Exercises 2.30 and 10.21).We highlight the fact that the existence of an adequate padding (or \marking") isa property of the set T itself. In Exercise 10.21 we review a method for modifyingany Karp-reduction to a \monotonically markable" set T into a Karp-reduction (to23Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed atguaranteeing a \simple" distribution on n-bit strings (also in this case).24We also note that the case in which jyj is not in the image of ` can be easily detected andtaken care o� accordingly.

10.2. AVERAGE CASE COMPLEXITY 483T) that is monotone and length-regular. In Exercise 10.23 we provide evidence tothe thesis that all natural NP-complete sets are monotonically markable. Combin-ing all these facts, we conclude that any natural NP-complete decision problem canbe coupled with a simple probability ensemble such that the resulting distributionalproblem is distNP-complete. As a concrete illustration of this thesis, we state thecorresponding (formal) result for the twenty-one NP-complete problems treated inKarp's paper on NP-completeness [136].Theorem 10.19 (a modest version of a general thesis): For each of the twenty-one NP-complete problems treated in [136] there exists a simple probability ensemblesuch that the combined distributional problem is distNP-complete.The said list of problems includes SAT, Clique, and 3-Colorability.10.2.1.3 Probabilistic versionsThe de�nitions in x10.2.1.1 can be extended so that to account also for randomizedcomputations. For example, extending De�nition 10.14, we have:De�nition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Booleanfunction f , and a time-bound function t :N!N , we say that the string x is t-bad forA with respect to f if with probability exceeding 1=3, on input x, either A(x) 6= f(x)or A runs more that t(jxj) steps. We say that A typically solves (S; fXngn2N) inprobabilistic polynomial-time if there exists a polynomial p such that the probabilitythat Xn is p-bad for A with respect to the characteristic function of S is negligible.We denote by tpcBPP the class of distributional problems that are typically solvablein probabilistic polynomial-time.The de�nition of reductions can be similarly extended. This means that in De�ni-tion 10.16, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) arerandom variables rather than �xed objects. Furthermore, validity is required tohold (for every input) only with probability 2=3, where the probability space refersonly to the internal coin tosses of the reduction. Randomized reductions are closedunder composition and preserve typical feasibility (see Exercise 10.24).Randomized reductions allow the presentation of a distNP-complete problemthat refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-lishes the distNP-completeness of (Su; U 0), where U 0 is a quasi-uniform ensemble(i.e., Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�, where n = jhM;x; 1tij). We �rstnote that (Su; U 0) can be randomly reduced to (S0u; U 00), where S0u = fhM;x; zi :hM;x; 1jzji 2 Sug and Pr[U 00n = hM;x; zi] = 2�(jM j+jxj+jzj)=�n2� for every hM;x; zi 2f0; 1gn. The randomized reduction consists of mapping hM;x; 1ti to hM;x; zi,where z is uniformly selected in f0; 1gt. Recalling that U = fUngn2N denotes theuniform probability ensemble (i.e., Un is uniformly distributed on strings of lengthn) and using a suitable encoding we get.Proposition 10.21 There exists S 2 NP such that every (S0; X 0) 2 distNP israndomly reducible to (S;U).

484 CHAPTER 10. RELAXING THE REQUIREMENTSProof Sketch: By the forgoing discussion, every (S0; X 0) 2 distNP is randomlyreducible to (S0u; U 00), where the reduction goes through (Su; U 0). Thus, we focuson reducing (S0u; U 00) to (S00u; U), where S00u 2 NP is de�ned as follows. The stringbin`(juj)�bin`(jvj)�u�v�w is in S00u if and only if hu; v; wi 2 S0u and ` = dlog2 juvwje+1,where bin`(i) denotes the `-bit long binary encoding of the integer i 2 [2`�1] (i.e.,the encoding is padded with zeros to a total length of `). The reduction mapshM;x; zi to the string bin`(jxj)�bin`(jM j)�M�x�z, where ` = dlog2(jM j+ jxj+ jzj)e+1.Noting that this reduction satis�es all conditions of De�nition 10.16, the proposi-tion follows.10.2.2 Rami�cationsIn our opinion, the most problematic aspect of the theory described in Section 10.2.1is the choice to focus on simple probability ensembles, which in turn restricts \dis-tributional versions of NP" to the class distNP (De�nition 10.15). As indicatedx10.2.1.1, this restriction raises two opposite concerns (i.e., that distNP is eithertoo wide or too narrow).25 Here we address the concern that the class of sim-ple probability ensembles is too restricted, and consequently that the conjecturedistNP 6� tpcBPP is too strong (which would mean that distNP-completeness isa weak evidence for typical-case hardness). An appealing extension of the class ofsimple probability ensembles is presented in x10.2.2.2, yielding an correspondingextension of distNP, and it is shown that if this extension of distNP is not con-tained in tpcBPP then distNP itself is not contained in tpcBPP. Consequently,distNP-complete problems enjoy the bene�t of both being in the more restrictedclass (i.e., distNP) and being hard as long as some problems in the extended classis hard.Another extension appears in x10.2.2.1, where we extend the treatment fromdecision problems to search problems. This extension is motivated by the realiza-tion that search problem are actually of greater importance to real-life applications(cf. Section 2.1.1), and hence a theory motivated by real-life applications mustaddress such problems, as we do next.Prerequisites: For the technical development of x10.2.2.1, we assume familiar-ity with the notion of unique solution and results regarding it as presented inSection 6.2.3. For the technical development of x10.2.2.2, we assume familiaritywith hashing functions as presented in Appendix D.2. In addition, the technicaldevelopment of x10.2.2.2 relies on x10.2.2.1.10.2.2.1 Search versus DecisionIndeed, as in the case of worst-case complexity, search problems are at least as im-portant as decision problems. Thus, an average-case treatment of search problems25On one hand, if the de�nition of distNP were too liberal then membership in distNP wouldmean less than one may desire. On the other hand, if distNP were too restricted then theconjecture that distNP contains hard problems would have been very questionable.

10.2. AVERAGE CASE COMPLEXITY 485is indeed called for. We �rst present distributional versions of PF and PC (cf.Section 2.1.1), following the underlying principles of the de�nitions of tpcP anddistNP .De�nition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we con-sider only polynomially bounded search problems; that is, binary relations R �f0; 1g� � f0; 1g� such that for some polynomial q it holds that (x; y) 2 R impliesjyj � q(jxj). Recall that R(x) def= fy : (x; y)2Rg and SR def= fx : R(x) 6= ;g.� A distributional search problem consists of a polynomially bounded search prob-lem coupled with a probability ensemble.� The class tpcPF consists of all distributional search problems that are typ-ically solvable in polynomial-time. That is, (R; fXngn2N) 2 tpcPF if thereexists an algorithm A and a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible,where A errs on x 2 SR if A(x) 62 R(x) and errs on x 62 SR if A(x) 6= ?.� A distributional search problem (R;X) is in distPC if R 2 PC and X issimple (as in De�nition 10.15).Likewise, the class tpcBPPF consists of all distributional search problems thatare typically solvable in probabilistic polynomial-time (cf., De�nition 10.20). Thede�nitions of reductions among distributional problems, presented in the context ofdecision problem, extend to search problems.Fortunately, as in the context of worst-case complexity, the study of distribu-tional search problems \reduces" to the study of distributional decision problems.Theorem 10.23 (reducing search to decision): distPC � tpcBPPF if and only ifdistNP � tpcBPP. Furthermore, every problem in distNP is reducible to someproblem in distPC, and every problem in distPC is randomly reducible to someproblem in distNP.Proof Sketch: The furthermore part is analogous to the actual contents of theproof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.16). Indeed thereduction ofNP to PC presented in the proof of Theorem 2.6 extends to the currentcontext. Speci�cally, for any S 2 NP, we consider a relation R 2 PC such thatS = fx : R(x) 6= ;g, and note that, for any probability ensemble X , the identitytransformation reduces (S;X) to (R;X).A di�culty arises in the opposite direction. Recall that in the proof of The-orem 2.6 we reduced the search problem of R 2 PC to deciding membership inS0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rg 2 NP . The di�culty encountered here isthat, on input x, this reduction makes queries of the form hx; y0i, where y0 is apre�x of some string in R(x). These queries may induce a distribution that is notdominated by any simple distribution. Thus, we seek an alternative reduction.As a warm-up, let us assume for a moment that R has unique solutions (in thesense of De�nition 6.28); that is, for every x it holds that jR(x)j � 1. In this case

486 CHAPTER 10. RELAXING THE REQUIREMENTSwe may easily reduce the search problem of R 2 PC to deciding membership inS00R 2 NP , where hx; i; �i 2 S00R if and only if R(x) contains a string in which theith bit equals �. Speci�cally, on input x, the reduction issues the queries hx; i; �i,where i 2 [`] (with ` = poly(jxj)) and � 2 f0; 1g, which allows for determining thesingle string in the set R(x) � f0; 1g` (whenever jR(x)j = 1). The point is that thisreduction can be used to reduce any (R;X) 2 distPC (having unique solutions) to(S00R; X 00) 2 distNP , where X 00 equally distributes the probability mass of x (underX) to all the tuples hx; i; �i; that is, for every i 2 [`] and � 2 f0; 1g, it holds thatPr[X 00jhx;i;�ij = hx; i; �i] equals Pr[Xjxj = x]=2`.Unfortunately, in the general case, R may not have unique solutions. Nev-ertheless, applying the main idea that underlies the proof of Theorem 6.29, thisdi�culty can be overcome. We �rst note that the foregoing mapping of instancesof the distributional problem (R;X) 2 distPC to instances of (S00R; X 00) 2 distNPsatis�es the e�ciency and domination conditions even in the case that R does nothave unique solutions. What may possibly fail (in the general case) is the validitycondition (i.e., if jR(x)j > 1 then we may fail to recover any element of R(x)).Recall that the main part of the proof of Theorem 6.29 is a randomized reductionthat maps instances of R to triples of the form (x;m; h) such that m is uniformlydistributed in [`] and h is uniformly distributed in a family of hashing functionHm̀, where ` = poly(jxj) and Hm̀ is as in Appendix D.2. Furthermore, if R(x) 6= ;then, with probability
(1=`) over the choices of m 2 [`] and h 2 Hm̀, there existsa unique y 2 R(x) such that h(y) = 0m. De�ning R0(x;m; h) def= fy 2 R(x) :h(y)= 0mg, this yields a randomized reduction of the search problem of R to thesearch problem of R0 such that with noticeable probability26 the reduction mapsinstances that have solutions to instances having a unique solution. Furthermore,this reduction can be used to reduce any (R;X) 2 distPC to (R0; X 0) 2 distPC,where X 0 distributes the probability mass of x (under X) to all the triples (x;m; h)such that for every m 2 [`] and h 2 Hm̀ it holds that Pr[X 0j(x;m;h)j = (x;m; h)]equals Pr[Xjxj = x]=(` � jHm̀j). (Note that with a suitable encoding, X 0 is indeedsimple.)The theorem follows by combining the two aforementioned reductions. That is,we �rst apply the randomized reduction of (R;X) to (R0; X 0), and next reduce theresulting instance to an instance of the corresponding decision problem (S00R0 ; X 00),where X 00 is obtained by modifying X 0 (rather than X). The combined randomizedmapping satis�es the e�ciency and domination conditions, and is valid with notice-able probability. The error probability can be made negligible by straightforwardampli�cation (see Exercise 10.24).10.2.2.2 Simple versus sampleable distributionsRecall that the de�nition of simple probability ensembles (underlying De�nition 10.15)requires that the accumulating distribution function is polynomial-time computable.26Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it isgreater than the reciprocal of some positive polynomial. In the context of randomized reductions,the relevant parameter is the length of the input to the reduction.

10.2. AVERAGE CASE COMPLEXITY 487Recall that � : f0; 1g� ! [0; 1] is called the accumulating distribution function ofX = fXngn2N if for every n 2 N and x 2 f0; 1gn it holds that �(x) def= Pr[Xn � x],where the inequality refers to the standard lexicographic order of n-bit strings.As argued in x10.2.1.1, the requirement that the accumulating distribution func-tion is polynomial-time computable imposes severe restrictions on the set of ad-missible ensembles. Furthermore, it seems that these simple ensembles are indeed\simple" in some intuitive sense, and that they represent a reasonable (alas dis-putable) model of distributions that may occur in practice. Still, in light of the fearthat this model is too restrictive (and consequently that distNP-hardness is weakevidence for typical-case hardness), we seek a maximalistic model of distributionsthat may occur in practice. Such a model is provided by the notion of polynomial-time sampleable ensembles (underlying De�nition 10.24). Our maximality thesisis based on the belief that the real world should be modeled as a feasible ran-domized process (rather than as an arbitrary process). This belief implies that allobjects encountered in the world may be viewed as samples generated by a feasiblerandomized process.De�nition 10.24 (sampleable ensembles and the class sampNP): We say that aprobability ensemble X = fXngn2N is (polynomial-time) sampleable if there existsa probabilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holdsthat Pr[A(1jxj) = x] = Pr[Xjxj = x]. We denote by sampNP the class of distri-butional problems consisting of decision problems in NP coupled with sampleableprobability ensembles.We �rst note that all simple probability ensembles are indeed sampleable (seeExercise 10.25), and thus distNP � sampNP . On the other hand, there existsampleable probability ensembles that do not seem simple (see Exercise 10.26).Extending the scope of distributional problems (from distNP to sampNP) fa-cilitates the presentation of complete distributional problems. We �rst note thatit is easy to prove that every natural NP-complete problem has a distributionalversion in sampNP that is distNP-hard (see Exercise 10.27). Furthermore, it ispossible to prove that all natural NP-complete problem have distributional versionsthat are sampNP-complete. (In both cases, \natural" means that the correspond-ing Karp-reductions do not shrink the input, which is a weaker condition than theone in Proposition 10.18.)Theorem 10.25 (sampNP-completeness): Suppose that S 2 NP and that everyset in NP is reducible to S by a Karp-reduction that does not shrink the input.Then there exists a polynomial-time sampleable ensemble X such that any problemin sampNP is reducible to (S;X)The proof of Theorem 10.25 is based on the observation that there exists a polynomial-time sampleable ensemble that dominates all polynomial-time sampleable ensembles.The existence of this ensemble is based on the notion of a universal (sampling) ma-chine. For further details see Exercise 10.28.Theorem 10.25 establishes a rich theory of sampNP-completeness, but does notrelate this theory to the previously presented theory of distNP-completeness (see

488 CHAPTER 10. RELAXING THE REQUIREMENTS
distNP

sampNP

tpcBPP

distNP-complete [Thm 10.17 and 10.19]

sampNP-complete [Thm 10.25]

Figure 10.1: Two types of average-case completenessFigure 10.1). This is essentially done in the next theorem, which asserts that theexistence of typically hard problems in sampNP implies their existence in distNP .Theorem 10.26 (sampNP-completeness versus distNP-completeness): If sampNPis not contained in tpcBPP then distNP is not contained in tpcBPP.Thus, the two \typical-case complexity" versions of the P-vs-NP Question areequivalent. That is, if some \sampleable distribution" versions of NP are nottypically feasible then some \simple distribution" versions of NP are not typicallyfeasible. In particular, if sampNP-complete problems are not in tpcBPP thendistNP-complete problems are not in tpcBPP.The foregoing assertions would all follow if sampNP were (randomly) reducibleto distNP (i.e., if every problem in sampNP were reducible (under a randomizedversion of De�nition 10.16) to some problem in distNP); but, unfortunately, wedo not know whether such reductions exist. Yet, underlying the proof of Theo-rem 10.26 is a more liberal notion of a reduction among distributional problems.Proof Sketch: We shall prove that if distNP is contained in tpcBPP then thesame holds for sampNP (i.e., sampNP is contained in tpcBPP). Relying onTheorem 10.23 and Exercise 10.29, it su�ces to show that if distPC is contained intpcBPPF then the sampleable version of distPC, denoted sampPC, is containedin tpcBPPF. This will be shown by showing that, under a relaxed notion of arandomized reduction, every problem in sampPC is reduced to some problem indistPC. Loosely speaking, this relaxed notion (of a randomized reduction) onlyrequires that the validity and domination conditions (of De�nition 10.16 (whenadapted to randomized reductions)) hold with respect to a noticeable fraction ofthe probability space of the reduction.27 We start by formulating this notion, whenreferring to distributional search problems.27We warn that the existence of such a relaxed reduction between two speci�c distributionalproblems does not necessarily imply the existence of a corresponding (standard average-case)reduction. Speci�cally, although standard validity can be guaranteed (for problems in PC) by

10.2. AVERAGE CASE COMPLEXITY 489Teaching note: The following proof is quite involved and is better left for advancedreading. Its main idea is related to one of the central ideas underlying the currentlyknown proof of Theorem 8.11. This fact as well as numerous other applications of thisidea, provide additional motivation for reading the following proof.De�nition: A relaxed reduction of the distributional problem (R;X) to the distri-butional problem (T; Y) is a probabilistic polynomial-time oracle machine M thatsatis�es the following conditions with respect to a family of sets f
x � f0; 1gm(jxj) :x2 f0; 1g�g, where m(jxj) = poly(jxj) denotes an upper-bound on the number ofthe internal coin tosses of M on input x:Density (of
x): There exists a noticeable function � : N ! [0; 1] (i.e., �(n) >1=poly(n)) such that, for every x 2 f0; 1g�, it holds that j
xj � �(jxj)�2m(jxj).Validity (with respect to
x): For every r 2
x the reduction yields a correct an-swer; that is, MT (x; r) 2 R(x) if R(x) 6= ; and MT (x; r) = ? otherwise,whereMT (x; r) denotes the execution of M on input x, internal coins r, andoracle access to T .Domination (with respect to
x): There exists a positive polynomial p such that,for every y 2 f0; 1g� and every n 2 N , it holds thatPr[Q0(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.6)where Q0(x) is a random variable, de�ned over the set
x, representing theset of queries made by M on input x, coins in
x, and oracle access to T .That is, Q0(x) is de�ned by uniformly selecting r 2
x and considering theset of queries made byM on input x, internal coins r, and oracle access to T .(In addition, as in De�nition 10.16, we also require that the reduction doesnot make too short queries.)The reader may verify that this relaxed notion of a reduction preserves typicalfeasibility; that is, for R 2 PC, if there exists a relaxed reduction of (R;X) to(T; Y) and (T; Y) is in tpcBPPF then (R;X) is in tpcBPPF. The key observationis that the analysis may discard the case that, on input x, the reduction selectscoins not in
x. Indeed, the queries made in that case may be untypical and theanswers received may be wrong, but this is immaterial. What matter is that, oninput x, with noticeable probability the reduction selects coins in
x, and produces\typical with respect to Y " queries (by virtue of the relaxed domination condition).Such typical queries are answered correctly by the algorithm that typically solves(T; Y), and if x has a solution then these answers yield a correct solution to x(by virtue of the relaxed validity condition). Thus, if x has a solution then withnoticeable probability the reduction outputs a correct solution. On the other hand,the reduction never outputs a wrong solution (even when using coins not in
x),because incorrect solutions are detected by relying on R 2 PC.repeated invocations of the reduction, such a process will not redeem the violation of the standarddomination condition.

490 CHAPTER 10. RELAXING THE REQUIREMENTSOur goal is presenting, for every (R;X) 2 sampPC, a relaxed reduction of(R;X) to a related problem (R0; X 0) 2 distPC. (We use the standard notationX = fXngn2N and X 0 = fX 0ngn2N.)An oversimpli�ed case: For starters, suppose that Xn is uniformly distributed onsome set Sn � f0; 1gn and that there is a polynomial-time computable and invert-ible mapping � of Sn to f0; 1g`(n), where `(n) = log2 jSnj. Then, mapping x to1jxj�`(jxj)0�(x), we obtain a reduction of (R;X) to (R0; X 0), where X 0n+1 is uniformover f1n�`(n)0v : v 2 f0; 1g`(n)g and R0(1n�`(n)0v) = R(��1(v)) (or, equivalently,R(x) = R0(1jxj�`(jxj)0�(x))). Note that X 0 is a simple ensemble and R0 2 PC;hence, (R0; X 0) 2 distPC. Also note that the foregoing mapping is indeed a validreduction (i.e., it satis�es the e�ciency, validity, and domination conditions). Thus,(R;X) is reduced to a problem in distPC (and indeed the relaxation was not usedhere).A simple but more instructive case: Next, we drop the assumption that there isa polynomial-time computable and invertible mapping � of Sn to f0; 1g`(n), butmaintain the assumption that Xn is uniform on some set Sn � f0; 1gn and as-sume that jSnj = 2`(n) is easily computable (from n). In this case, we may mapx 2 f0; 1gn to its image under a suitable randomly chosen hashing function h, whichin particular maps n-bit strings to `(n)-bit strings. That is, we randomly map x to(h; 1n�`(n)0h(x)), where h is uniformly selected in a set H`(n)n of suitable hash func-tions (see Appendix D.2). This calls for rede�ning R0 such that R0(h; 1n�`(n)0v)corresponds to the preimages of v under h that are in Sn. Assuming that h is a 1-1mapping of Sn to f0; 1g`(n), we may de�ne R0(h; 1n�`(n)0v) = R(x) such that x isthe unique string satisfying x 2 Sn and h(x) = v, where the condition x 2 Sn maybe veri�ed by providing the internal coins of the sampling procedure that generatex. Denoting the sampling procedure of X by S, and letting S(1n; r) denote theoutput of S on input 1n and internal coins r, we actually rede�ne R0 asR0(h; 1n�`(n)0v) = fhr; yi : h(S(1n; r))=v ^ y2R(S(1n; r))g: (10.7)We note that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) yields a desired solution y 2 R(x)if S(1jxj; r) = x, but otherwise \all bets are o�" (since y will be a solution forS(1jxj; r) 6= x). Now, although typically h will not be a 1-1 mapping of Sn tof0; 1g`(n), it is the case that for each x 2 Sn, with constant probability over thechoice of h, it holds that h(x) has a unique preimage in Sn under h. (See the proofof Theorem 6.29.) In this case hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) implies S(1jxj; r) = x(which, in turn, implies y 2 R(x)). We claim that the randomized mapping ofx to (h; 1n�`(n)0h(x)), where h is uniformly selected in H`(jxj)jxj , yields a relaxedreduction of (R;X) to (R0; X 0), where X 0n0 is uniform over H`(n)n � f1n�`(n)0v :v 2 f0; 1g`(n)g. Needless to say, the claim refers to the reduction that (on input x,makes the query (h; 1n�`(n)0h(x)), and) returns y if the oracle answer equals hr; yiand y 2 R(x).The claim is proved by considering the set
x of choices of h 2 H`(jxj)jxj forwhich x 2 Sn is the only preimage of h(x) under h that resides in Sn (i.e.,

10.2. AVERAGE CASE COMPLEXITY 491jfx0 2 Sn : h(x0) = h(x)gj = 1). In this case (i.e., h 2
x) it holds that hr; yi 2R0(h; 1jxj�`(jxj)0h(x)) implies that S(1jxj; r) = x and y 2 R(x), and the (relaxed)validity condition follows. The (relaxed) domination condition follows by notingthat Pr[Xn = x] � 2�`(jxj), that x is mapped to (h; 1jxj�`(jxj)0h(x)) with proba-bility 1=jH`(jxj)jxj j, and that x is the only preimage of (h; 1jxj�`(jxj)0h(x)) under themapping (among x0 2 Sn such that
x0 3 h).Before going any further, let us highlight the importance of hashing Xn to `(n)-bit strings. On one hand, this mapping is \su�ciently" one-to-one, and thus (withconstant probability) the solution provided for the hashed instance (i.e., h(x)) yielda solution for the original instance (i.e., x). This guarantees the validity of the re-duction. On the other hand, for a typical h, the mapping of Xn to h(Xn) covers therelevant range almost uniformly. This guarantees that the reduction satis�es thedomination condition. Note that these two phenomena impose con
icting require-ments that are both met at the correct value of `; that is, the one-to-one conditionrequires `(n) � log2 jSnj, whereas an almost uniform cover requires `(n) � log2 jSnj.Also note that `(n) = log2(1=Pr[Xn = x]) for every x in the support of Xn; thelatter quantity will be in our focus in the general case.The general case: Finally, we get rid of the assumption that Xn is uniformly dis-tributed over some subset of f0; 1gn. All that we know is that there exists a prob-abilistic polynomial-time (\sampling") algorithm S such that S(1n) is distributedidentically to Xn. In this (general) case, we map instances of (R;X) according totheir probability mass such that x is mapped to an instance (of R0) that consists of(h; h(x)) and additional information, where h is a random hash function mappingn-bit long strings to `x-bit long strings such that`x def= dlog2(1=Pr[Xjxj=x])e: (10.8)Since (in the general case) there may be more than 2`x strings in the support ofXn, we need to augment the reduced instance in order to ensure that it is uniquelyassociated with x. The basic idea is augmenting the mapping of x to (h; h(x)) withadditional information that restricts Xn to strings that occur with probability atleast 2�`x . Indeed, when Xn is restricted in this way, the value of h(Xn) uniquelydetermines Xn.Let q(n) denote the randomness complexity of S and S(1n; r) denote the out-put of S on input 1n and internal coin tosses r 2 f0; 1gq(n). Then, we randomlymap x to (h; h(x); h0; v0), where h : f0; 1gjxj ! f0; 1g`x and h0 : f0; 1gq(jxj) !f0; 1gq(jxj)�`x are random hash functions and v0 2 f0; 1gq(jxj)�`x is uniformly dis-tributed. The instance (h; v; h0; v0) of the rede�ned search problem R0 has solutionsthat consists of pairs hr; yi such that h(S(1n; r))=v^h0(r) = v0 and y2R(S(1n; r)).As we shall see, this augmentation guarantees that, with constant probability (overthe choice of h; h0; v0), the solutions to the reduced instance (h; h(x); h0; v0) corre-spond to the solutions to the original instance x.The foregoing description assumes that, on input x, we can e�ciently deter-mine `x, which is an assumption that cannot be justi�ed. Instead, we select `uniformly in f0; 1; :::; q(jxj)g, and so with noticeable probability we do select the

492 CHAPTER 10. RELAXING THE REQUIREMENTScorrect value (i.e., Pr[` = `x] = 1=(q(jxj) + 1) = 1=poly(jxj)). For clarity, we maken and ` explicit in the reduced instance. Thus, we randomly map x 2 f0; 1gn to(1n; 1`; h; h(x); h0; v0) 2 f0; 1gn0 , where ` 2 f0; 1; :::; q(n)g, h 2 Hǹ, h0 2 Hq(n)�`q(n) ,and v0 2 f0; 1gq(n)�` are uniformly distributed in the corresponding sets.28 Thismapping will be used to reduce (R;X) to (R0; X 0), where R0 and X 0 = fX 0n0gn02Nare rede�ned (yet again). Speci�cally, we letR0(1n; 1`; h; v; h0; v0) = fhr; yi : h(S(1n; r))=v^h0(r)=v0^y2R(S(1n; r))g (10.9)and X 0n0 assigns equal probability to each Xn0;` (for ` 2 f0; 1; :::; ng), where eachXn0;` is isomorphic to the uniform distribution over Hǹ � f0; 1g` � Hq(n)�`q(n) �f0; 1gq(n)�`. Note that indeed (R0; X 0) 2 distPC.The foregoing randomized mapping is analyzed by considering the correct choicefor `; that is, on input x, we focus on the choice ` = `x. Under this conditioning (aswe shall show), with constant probability over the choice of h; h0 and v0, the instancex is the only value in the support of Xn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. It follows that (for suchh; h0 and v0) any solution hr; yi 2 R0(1n; 1`x ; h; h(x); h0; v0) satis�es S(1n; r) = xand thus y 2 R(x), which means that the (relaxed) validity condition is satis�ed.The (relaxed) domination condition is satis�ed too, because (conditioned on ` = `xand for such h; h0; v0) the probability that Xn is mapped to (1n; 1`x ; h; h(x); h0; v0)approximately equals Pr[X 0n0;`x=(1n; 1`x ; h; h(x); h0; v0)].We now turn to analyze the probability, over the choice of h; h0 and v0, that theinstance x is the only value in the support ofXn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Firstly, we note thatjfr : S(1n; r)=xgj � 2q(n)�`x , and thus, with constant probability over the choiceof h0 2 Hq(n)�`xq(n) and v0 2 f0; 1gq(n)�`x, there exists r that satis�es S(1n; r) = x andh0(r) = v0. Furthermore, with constant probability over the choice of h0 2 Hq(n)�`xq(n)and v0 2 f0; 1gq(n)�`x , it also holds that there are at most O(2`x) strings r suchthat h0(r) = v0. Fixing such h0 and v0, we let Sh0;v0 = fS(1n; r) : h0(r) = v0gand we note that, with constant probability over the choice of h 2 H`xn , it holdsthat x is the only string in Sh0;v0 that is mapped to h(x) under h. Thus, withconstant probability over the choice of h; h0 and v0, the instance x is the onlyvalue in the support of Xn that is mapped to (1n; 1`x ; h; h(x); h0; v0) and satis�esfr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. The theorem follows.Re
ection: Theorem 10.26 implies that if sampNP is not contained in tpcBPPthen every distNP-complete problem is not in tpcBPP. This means that thehardness of some distributional problems that refer to sampleable distributions im-plies the hardness of some distributional problems that refer to simple distributions.28As in other places, a suitable encoding will be used such that the reduction maps strings of thesame length to strings of the same length (i.e., n-bit string are mapped to n0-bit strings, for n0 =poly(n)). For example, we may encode h1n; 1`; h; h(x); h0; v0i as 1n01`01q(n)�`0hhihh(x)ihh0ihv0i,where each hwi denotes an encoding of w by a string of length (n0 � (n+ q(n) + 3))=4.

10.2. AVERAGE CASE COMPLEXITY 493Furthermore, by Proposition 10.21, this implies the hardness of distributional prob-lems that refer to the uniform distribution. Thus, hardness with respect to somedistribution in an utmost wide class (which arguably captures all distributions thatmay occur in practice) implies hardness with respect to a single simple distribution(which arguably is the simplest one).Relation to one-way functions. We note that the existence of one-way func-tions (see Section 7.1) implies the existence of problems in sampPC that are not intpcBPPF (which in turn implies the existence of such problems in distPC). Specif-ically, for a length-preserving one-way function f , consider the distributional searchproblem (Rf ; ff(Un)gn2N), where Rf = f(f(r); r) : r 2 f0; 1g�g.29 On the otherhand, it is not known whether the existence of a problem in sampPC n tpcBPPFimplies the existence of one-way functions. In particular, the existence of a prob-lem (R;X) in sampPC n tpcBPPF represents the feasibility of generating hardinstances for the search problem R, whereas the existence of one-way function rep-resents the feasibility of generating instance-solution pairs such that the instancesare hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hardinstances can be e�ciently generated together with corresponding solutions. Ourworld view is thus depicted in Figure 10.2, where lower levels indicate seeminglyweaker assumptions.
P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 10.2: Worst-case vs average-case assumptionsChapter NotesIn this chapter, we presented two di�erent approaches to the relaxation of com-putational problems. The �rst approach refers to the concept of approximation,while the second approach refers to average-case analysis. We demonstrated thatvarious natural notions of approximation can be cast within the standard frame-works, where the framework of promise problems (presented in Section 2.4.1) isthe least-standard framework we used (and it su�ces for casting gap problems and29Note that the distribution f(Un) is uniform in the special case that f is a permutation overf0; 1gn.

494 CHAPTER 10. RELAXING THE REQUIREMENTSproperty testing). In contrast, the study of average-case complexity requires theintroduction of a new conceptual framework and addressing various de�nitionalissues.A natural question at this point is what have we gained by relaxing the require-ments. In the context of approximation, the answer is mixed: in some natural caseswe gain a lot (i.e., we obtained feasible relaxations of hard problems), while in othernatural cases we gain nothing (i.e., even extreme relaxations remain as intractableas the original versions). In the context of average-case complexity, the negativeside seems more prevailing (at least in the sense of being more systematic). In par-ticular, assuming the existence of one-way functions, every natural NP-completeproblem has a distributional version that is (typical-case) hard, where this versionrefers to a sampleable ensemble (and, in fact, even to a simple ensemble). Fur-thermore, in this case, some problems in NP have hard distributional versions thatrefer to the uniform distribution.ApproximationThe following bibliographic comments are quite laconic and neglect mentioningvarious important works (including credits for some of the results mentioned in ourtext). As usual, the interested reader is referred to corresponding surveys.Search or Optimization. The interest in approximation algorithms increasedconsiderably following the demonstration of the NP-completeness of many nat-ural optimization problems. But, with some exceptions (most notably [178]),the systematic study of the complexity of such problems stalled till the discov-ery of the \PCP connection" (see Section 9.3.3) by Feige, Goldwasser, Lov�asz, andSafra [72]. Indeed the relatively \tight" inapproximation results for max-Clique,max-SAT, and the maximization of linear equations, due to H�astad [115, 116],build on previous work regarding PCP and their connection to approximation (cf.,e.g., [73, 15, 14, 28, 184]). Speci�cally, Theorem 10.5 is due to [115]30, while The-orems 10.8 and 10.9 are due to [116]. The best known inapproximation result forminimum Vertex Cover (see Theorem 10.7) is due to [68], but we doubt it is tight(see, e.g., [142]). Reductions among approximation problems were de�ned andpresented in [178]; see Exercise 10.7, which presents a major technique introducedin [178]. For general texts on approximation algorithms and problems (as discussedin Section 10.1.1), the interested reader is referred to the surveys collected in [121].A compendium of NP optimization problems is available at [63].Recall that a di�erent type of approximation problems, which are naturallyassociated with search problems, refer to approximately counting the number ofsolutions. These approximation problems were treated in Section 6.2.2 in a ratherad hoc manner. We note that a more systematic treatment of approximate countingproblems can be obtained by using the de�nitional framework of Section 10.1.1 (e.g.,the notions of gap problems, polynomial-time approximation schemes, etc).30See also [242].

10.2. AVERAGE CASE COMPLEXITY 495Property testing. The study of property testing was initiated by Rubinfeld andSudan [194] and re-initiated by Goldreich, Goldwasser, and Ron [96]. While thefocus of [194] was on algebraic properties such as low-degree polynomials, the focusof [96] was on graph properties (and Theorem 10.12 is taken from [96]). The modelof bounded-degree graphs was introduced in [102] and Theorem 10.13 combinesresults from [102, 103, 41]. For surveys of the area, the interested reader is referredto [76, 193].Average-case complexityThe theory of average-case complexity was initiated by Levin [153], who in partic-ular proved Theorem 10.17. In light of the laconic nature of the original text [153],we refer the interested reader to a survey [88], which provides a more detailedexposition of the de�nitions suggested by Levin as well as a discussion of the con-siderations underlying these suggestions. (This survey [88] provides also a briefaccount of further developments.)As noted in x10.2.1.1, the current text uses a variant of the original de�nitions.In particular, our de�nition of \typical-case feasibility" di�ers from the originalde�nition of \average-case feasibility" in totally discarding exceptional instancesand in even allowing the algorithm to fail on them (and not merely run for anexcessive amount of time). The alternative de�nition was suggested by severalresearchers, and appears as a special case of the general treatment provided in [43].Turning to x10.2.1.2, we note that while the existence of distNP-complete prob-lems (cf. Theorem 10.17) was established in Levin's original paper [153], the ex-istence of distNP-complete versions of all natural NP-complete decision problems(cf. Theorem 10.19) was established more than two decades later in [157].Section 10.2.2 is based on [29, 126]. Speci�cally, Theorem 10.23 (or rather thereduction of search to decision) is due to [29] and so is the introduction of the classsampNP. A version of Theorem 10.26 was proven in [126], and our proof followstheir ideas, which in turn are closely related to the ideas underlying the proof ofTheorem 8.11 (proved in [117]).Recall that we know of the existence of problems in distNP that are hard pro-vided sampNP contains hard problems. However, these distributional problems donot seem very natural (i.e., they either refer to somewhat generic decision problemssuch as Su or to somewhat contrived probability ensembles (cf. Theorem 10.19)).The presentation of distNP-complete problems that combine a more natural deci-sion problem (like SAT or Clique) with a more natural probability ensemble is anopen problem.ExercisesExercise 10.1 (general TSP) For any adequate function g, prove that the fol-lowing approximation problem is NP-Hard. Given a general TSP instance I , rep-resented by a symmetric matrix of pairwise distances, the task is �nding a tour oflength that is at most a factor g(I) of the minimum. Speci�cally, show that the

496 CHAPTER 10. RELAXING THE REQUIREMENTSresult holds with g(I) = exp(jI j0:99) and for instances in which all distances arepositive integers.Guideline: Use a reduction from Hamiltonian cycle problem. Speci�cally, reduce theinstance G = ([n]; E) to an n-by-n distance matrix D = (di;j)i;j2[n] such that di;j =exp(poly(n)) if fi; jg 2 E and di;j = 1.Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-factor approximation for the special case of TSP in which the distances satisfy thetriangle inequality.Guideline: First note that the length of any tour is lower-bounded by the weight ofa minimum spanning tree in the corresponding weighted graph. Next note that such atree yields a tour (of length twice the weight of this tree) that may visit some pointsseveral times. The triangle inequality guarantees that the tour does not become longerby \shortcuts" that eliminate multiple visits at the same point.Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 provethat, for some constants 0 < a < b < 1 when setting L(N) = N b and s(N) = Na,it holds that gapCliqueL;s is NP-hard.Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness andquery complexities that accepts no-instances of length n with probability at most 1=n.The claim follows by applying the FGLSS-reduction (of Exercise 9.18), while noting thatx is reduced to a graph of size poly(jxj) such that the gap between yes- and no-instancesis at least a factor of jxj.Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 provethat, for some constants 0 < s < L < 1, the problem gapVCs;L is NP-hard.Guideline: Note that combining Theorem 9.16 and Exercise 9.18 implies that for someconstants b < 1 it holds that gapCliqueL;s is NP-hard, where L(N) = b �N and s(N) =(b=2) � N . The claim follows using the relations between cliques, independent sets, andvertex covers.Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 provethat, for some constants 0:5 < s < L < 1, the problem gapLinL;s is NP-hard.Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT3" is NP-Hard. Note that the result holds even if we restrict the instances to have exactly three(not necessarily di�erent) literals in each clause. Applying the reduction of Exercise 2.24,note that, for any assignment � , a clause that is satis�ed by � is mapped to seven equationsof which exactly three are violated by � , whereas a clause that is not satis�ed by � ismapped to seven equations that are all violated by � .Exercise 10.6 (natural inapproximability without the PCP Theorem) Incontrast to the inapproximability results reviewed in x10.1.1.2, the NP-completenessof the following gap problem can be established (rather easily) without referring

10.2. AVERAGE CASE COMPLEXITY 497to the PCP Theorem. The instances of this problem are systems of quadraticequations over GF(2) (as in Exercise 2.25), yes-instances are systems that have asolution, and no-instances are systems for which any assignment violates at leastone third of the equations.Guideline: By Exercise 2.25, when given such a quadratic system, it is NP-hard todetermine whether or not there exists an assignment that satis�es all the equations. Usingan adequate small-bias generator (cf. Section 8.5.2), present an amplifying reduction (cf.Section 9.3.3) of the foregoing problem to itself. Speci�cally, if the input system has mequations then we use a generator that de�nes a sample space of poly(m) many m-bitstrings, and consider the corresponding linear combinations of the input equations. Notethat it su�ces to bound the bias of the generator by 1=6, whereas using an "-biasedgenerator yields an analogous result with 1=3 replaced by 0:5� ".Exercise 10.7 (enforcing multi-way equalities via expanders) The aim ofthis exercise is presenting a technique (of Papadimitriou and Yannakakis [178]) thatis useful for designing reductions among approximation problems. Recalling thatgapSAT30:1 is NP-hard, our goal is proving NP-hard of the following gap problem,denoted gapSAT3;c" , which is a special case of gapSAT3" . Speci�cally, the instancesare restricted to 3CNF formulae with each variable appearing in at most c clauses,where c (as ") is a �xed constant. Note that the standard reduction of 3SAT tothe corresponding special case (see proof of Proposition 2.23) does not preserve anapproximation gap.31 The idea is enforcing equality of the values assigned to theauxiliary variables (i.e., the copies of each original variable) by introducing equalityconstraints only for pairs of variables that correspond to edges of an expandergraph (see Appendix E.2). For example, we enforce equality among the values ofz(1); :::; z(m) by adding the clauses z(i) _ :z(j) for every fi; jg 2 E, where E is theset of edges of an m-vertex expander graph. Prove that, for some constants c and" > 0, the corresponding mapping reduces gapSAT30:1 to gapSAT3;c" .Guideline: Using d-regular expanders in the foregoing reduction, we map general 3CNFformulae to 3CNF formulae in which each variable appears in at most 2d + 1 clauses.Note that the number of added clauses is linearly related to the number of original clauses.Clearly, if the original formula is satis�able then so is the reduced one. On the other hand,consider an arbitrary assignment � 0 to the reduced formula �0 (i.e., the formula obtainedby mapping �). For each original variable z, if � 0 assigns the same value to almost allcopies of z then we consider the corresponding assignment in �. Otherwise, by virtue ofthe added clauses, � 0 does not satisfy a constant fraction of the clauses containing a copyof z.31Recall that in this reduction each occurrence of each Boolean variable is replaced by a newcopy of this variable, and clauses are added for enforcing the assignment of the same value to allthese copies. Speci�cally, them occurrence of variable z are replaced by the variables z(1); :::; z(m),while adding the clauses z(i) _ :z(i+1) and z(i+1) _ :z(i) (for i = 1; :::;m � 1). The problem isthat almost all clauses of the reduced formula may be satis�ed by an assignment in which halfof the copies of each variable are assigned one value and the rest are assigned an opposite value.That is, an assignment in which z(1) = � � � = z(i) 6= z(i+1) = � � � = z(m) violates only one of theauxiliary clauses introduced for enforcing equality among the copies of z. Using an alternativereduction that adds the clauses z(i) _ :z(j) for every i; j 2 [m] will not do either, because thenumber of added clauses may be quadratic in the number of original clauses.

498 CHAPTER 10. RELAXING THE REQUIREMENTSExercise 10.8 (deciding majority requires linear time) Prove that decidingmajority requires linear-time even in a direct access model and when using a ran-domized algorithm that may err with probability at most 1=3.Guideline: Consider the problem of distinguishing Xn from Yn, where Xn (resp., Yn) isuniformly distributed over the set of n-bit strings having exactly bn=2c (resp., bn=2c+1)zeros. For any �xed set I � [n], denote the projection of Xn (resp., Yn) on I by X 0n (resp.,Y 0n). Prove that the statistical di�erence between X 0n and Y 0n is bounded by O(jIj=n).Note that the argument needs to be extended to the case that the examined locations areselected adaptively.Exercise 10.9 (testing majority in polylogarithmic time) Show that test-ing majority (in the sense of De�nition 10.11) can be done in polylogarithmictime by probing the input at a constant number of randomly selected locations.Exercise 10.10 (on the triviality of some testing problems) Show that thefollowing sets are trivially testable in the adjacency matrix representation (i.e., forevery � > 0 and any such set S, there exists a trivial algorithm that distinguishesS from ��(S)).1. The set of connected graphs.2. The set of Hamiltonian graphs.3. The set of Eulerian graphs.Indeed, show that in each case ��(S) = ;.Guideline (for Item 3): Note that, in general, the fact that the sets S0 and S00 aretestable within some complexity does not imply the same for the set S0 \ S00.Exercise 10.11 (an equivalent de�nition of tpcP) Prove that (S;X) 2 tpcPif and only if there exists a polynomial-time algorithm A such that the probabilitythat A(Xn) errs (in determining membership in S) is a negligible function in n.Exercise 10.12 (tpcP versus P { Part 1) Prove that tpcP contains a problem(S;X) such that S is not even recursive. Furthermore, use X = U .Guideline: Let S = f0jxjx : x 2 S0g, where S0 is an arbitrary (non-recursive) set.Exercise 10.13 (tpcP versus P { Part 2) Prove that there exists a distribu-tional problem (S;X) such that S 62 P and yet there exists an algorithm solvingS (correctly on all inputs) in time that is typically polynomial with respect to X .Furthermore, use X = U .Guideline: For any time-constructible function t : N!N that is super-polynomial andsub-exponential, use S = f0jxjx : x 2 S0g for any S0 2 Dtime(t) n P.Exercise 10.14 (simple distributions and monotone sampling) We say thata probability ensemble X = fXngn2N is polynomial-time sampleable via a monotonemapping if there exists a polynomial p and a polynomial-time computable functionf such that the following two conditions hold:

10.2. AVERAGE CASE COMPLEXITY 4991. For every n, the random variables f(Up(n)) andXn are identically distributed.2. For every n and every r0 < r00 2 f0; 1gp(n) it holds that f(r0) � f(r00), wherethe inequalities refers to the standard lexicographic order of strings.Prove that X is simple if and only if it is polynomial-time sampleable via a mono-tone mapping.Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-time of the algorithm that on input x outputs Pr[Xjxj�x]. (Thus, the binary representa-tion of Pr[Xjxj�x] has length at most p(jxj).) The desired function f : f0; 1gp(n) ! f0; 1gnis obtained by de�ning f(r) = x if the number (represented by) 0:r resides in the interval[Pr[Xn <x];Pr[Xn �x]). Note that f can be computed by binary search, using the factthat X is simple. Turning to the opposite direction, we note that any e�ciently com-putable and monotone mapping f : f0; 1gp(n) ! f0; 1gn can be e�ciently inverted by abinary search. Furthermore, similar methods allow for e�ciently determining the intervalof p(n)-bit long strings that are mapped to any given n-bit long string.Exercise 10.15 (reductions preserve typical polynomial-time solveability)Prove that if the distributional problem (S;X) is reducible to the distributionalproblem (S0; X 0) and (S0; X 0) 2 tpcP , then (S;X) is in tpcP .Guideline: Let B0 denote the set of exceptional instances for the distributional problem(S0; X 0); that is, B0 is the set of instances on which the solver in the hypothesis eithererrs or exceeds the typical running-time. Prove that Pr[Q(Xn) \ B0 6= ;] is a negligiblefunction (in n), using both Pr[y 2 Q(Xn)] � p(jyj) �Pr[X 0jyj = y] and jxj � p0(jyj) for everyy 2 Q(x). Speci�cally, use the latter condition for inferring that Py2B0 Pr[y 2 Q(Xn)]equalsPy2fy02B0:p0(jy0j)�ng Pr[y 2 Q(Xn)], which is upper-bounded byPm:p0(m)�n p(m) �Pr[X 0m2B0] (which in turn is negligible in terms of n).Exercise 10.16 (reductions preserve error-less solveability) In continuationto Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-ability by algorithms that never err and typically run in polynomial-time).Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-tributional problems (as in De�nition 10.16) are transitive.Guideline: The point is establishing the domination property of the composed reduction.The hypothesis that reductions do not make too short queries is instrumental here.Exercise 10.18 For any S 2 NP present a simple probability ensemble X suchthat the generic reduction used in the proof of Theorem 2.19, when applied to(S;X), violates the domination condition with respect to (Su; U 0).Guideline: Consider X = fXngn2N such that Xn is uniform over f0n=2x0 : x0 2f0; 1gn=2g.Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).

500 CHAPTER 10. RELAXING THE REQUIREMENTS1. A variant that refers to any e�ciently computable function � : f0; 1g� ! [0; 1]that is monotonically non-decreasing over f0; 1g� (i.e., �(x0) � �(x00) for anyx0 < x00 2 f0; 1g�). That is, unlike in the proof of Theorem 10.17, here itholds that �(0n+1) � �(1n) for every n.2. As in Part 1, except that in this variant the function � is strictly increasingand the compression condition requires that jC�(x)j � log2(1=�0(x)) ratherthan jC�(x)j � 1 +minfjxj; log2(1=�0(x))g, where �0(x) def= �(x)� �(x � 1).In both cases, the proof is less cumbersome than the one presented in the maintext.Exercise 10.20 Prove that for any problem (S;X) in distNP there exists a simpleprobability ensemble Y such that the reduction used in the proof of Theorem 2.19su�ces for reducing (S;X) to (Su; Y).Guideline: Consider Y = fYngn2N such that Yn assigns to the instance hM;x; 1ti aprobability mass proportional to �x def= Pr[Xjxj = x]. Speci�cally, for every hM;x; 1ti itholds that Pr[Yn = hM;x; 1ti] = 2�jMj � �x=�n2�, where n def= jhM; x; 1tij def= jM j + jxj + t.Alternatively, we may set Pr[Yn = hM;x; 1ti] = �x if M = MS and t = pS(jxj) andPr[Yn = hM;x; 1ti] = 0 otherwise, where MS and PS are as in the proof of Theorem 2.19.Exercise 10.21 (monotone markability and monotone reductions) In con-tinuation to Exercise 2.30, we say that a set T is monotonically markable if thereexists a polynomial-time (marking) algorithm M such that1. For every z; � 2 f0; 1g�, it holds that M(z; �) 2 T if and only if z 2 T .2. Monotonicity: for every jz0j = jz00j and �0 < �00, it holds that M(z0; �0) <M(z00; �00), where the inequalities refer to the standard lexicographic orderof strings.3. Auxiliary length requirements:(a) If jz0j = jz00j and j�0j = j�00j, then jM(z0; �0)j = jM(z00; �00)j.(b) If jz0j � jz00j and j�0j < j�00j, then jM(z0; �0)j < jM(z00; �00)j.(c) There exists a 1-1 polynomial p : N!N such that for every ` and everyz 2 [ì=1f0; 1gi there exists t 2 [p(`)] such that jM(z; 1t)j = p(`).The �rst two requirements imply that jM(z; �)j is a function of jzj and j�j,which increases with j�j. The third requirement implies that, for every `,each string of length at most ` can be mapped to a string of length p(`).Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3are new. Prove that if the set S is Karp-reducible to the set T and T is monotoni-cally markable then S is Karp-reducible to T by a reduction that is monotone andlength-regular (i.e., the reduction satis�es the conditions of Proposition 10.18).

10.2. AVERAGE CASE COMPLEXITY 501Guideline: Given a Karp-reduction f from S to T , �rst obtain a length-regular reductionf 0 from S to T (by applying the marking algorithm to f(x), while using Conditions 1and 3c). In particular, one can guarantee that if jx0j > jx00j then jf 0(x0)j > jf 0(x00)j. Next,obtain a reduction f 00 that is also monotone (e.g., by letting f 00(x) = M(f 0(x); x), whileusing Conditions 1 and 2).32Exercise 10.22 (monotone markability and markability) Prove that if a setis monotonically markable (as per Exercise 10.21) then it is markable (as per Ex-ercise 2.30).Guideline: Let M denote the guaranteed monotone-marking algorithm. For starters,assume that M is 1-1, and de�ne M 0(z; �) = M(z; hz; �i). Note that the preimage(z; �) can be found by conducting a binary search (for each of the possible values of jzj).In the general case, we modify the construction so that to guarantee that M 0 is 1-1.Speci�cally, let idx(n;m) = n +Pn+mi=2 (i � 1) be the index of (n;m) in an enumerationof all pairs of positive integers, and p be as in Condition 3c. Then, let M 0(z; �) =M(z; Ct(jzj;j�j)(hz; �i)), where t(n;m) = !(n+m) satis�es jM(1n; 1t(n;m))j = p(idx(n;m))and Ct(y) is a monotone encoding of y using a t-bit long string.Exercise 10.23 (some monotonically markable sets) Referring to Exercise 10.21,verify that each of the twenty-one NP-complete problems treated in in Karp's �rstpaper on NP-completeness [136] is monotonically markable. For starters, considerthe sets SAT, Clique, and 3-Colorability.Guideline: For SAT consider the following marking algorithmM . This algorithm uses two(�xed) satis�able formulae of the same length, denoted 0 and 1, such that 0 < 1. Forany formula � and any binary string �1 � � ��m 2 f0; 1gm, it holds that M(�; �1 � � ��m) = �1 ^ � � � ^ �m ^ �, where 0 and 1 use variables that do not appear in �. Note thatthe multiple occurrences of � can be easily avoided (by using \variations" of �).Exercise 10.24 (randomized reductions) Following the outline in x10.2.1.3,provide a de�nition of randomized reductions among distributional problems.1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-sible solveability (i.e., typical solveability in probabilistic polynomial-time).That is, if the distributional problem (S;X) is randomly reducible to thedistributional problem (S0; X 0) and (S0; X 0) 2 tpcBPP, then (S;X) is intpcBPP.2. In analogy to Exercise 10.16, prove that randomized reductions preservesolveability by probabilistic algorithms that err with probability at most 1=3on each input and typically run in polynomial-time.3. Prove that randomized reductions are transitive (cf. Exercise 10.17).32Actually, Condition 2 (combined with the length regularity of f 0) only takes care of mono-tonicity with respect to strings of equal length. To guarantee monotonicity with respect to stringsof di�erent length, we also use Condition 3b (and jf 0(x0)j > jf 0(x00)j for jx0j > jx00j).

502 CHAPTER 10. RELAXING THE REQUIREMENTS4. Show that the error probability of randomized reductions can be reduced(while preserving the domination condition).Extend the foregoing to reductions that involve distributional search problems.Exercise 10.25 (simple vs sampleable ensembles { Part 1) Prove that anysimple probability ensemble is polynomial-time sampleable.Guideline: See Exercise 10.14.Exercise 10.26 (simple vs sampleable ensembles { Part 2) Assuming that#P contains functions that are not computable in polynomial-time, prove thatthere exists polynomial-time sampleable ensembles that are not simple.Guideline: Consider any R 2 PC and suppose that p is a polynomial such that (x; y) 2 Rimplies jyj = p(jxj). Then consider the sampling algorithm A that, on input 1n, uniformlyselects (x; y) 2 f0; 1gn�1 � f0; 1gp(n�1) and outputs x1 if (x; y) 2 R and x0 otherwise.Note that #R(x) = 2jxj+p(jxj) � Pr[A(1jxj+1)=x1].Exercise 10.27 (distributional versions of NPC problems { Part 1 [29])Prove that if Su is Karp-reducible to S by a mapping that does not shrink the inputthen there exists a polynomial-time sampleable ensemble X such that any problemin distNP is reducible to (S;X).Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su; U 0) to(S;X), for some sampleable probability ensemble X. Consider �rst the case that thestandard reduction of Su to S is length preserving, and prove that, when applied to asampleable probability ensemble, it induces a sampleable distribution on the instancesof S. (Note that U 0 is sampleable (by Exercise 10.25).) Next extend the treatment tothe general case, where applying the standard reduction to U 0n induces a distribution on[poly(n)m=n f0; 1gm (rather than a distribution on f0; 1gn).Exercise 10.28 (distributional versions of NPC problems { Part 2 [29])Prove Theorem 10.25 (i.e., if Su is Karp-reducible to S by a mapping that doesnot shrink the input then there exists a polynomial-time sampleable ensemble Xsuch that any problem in sampNP is reducible to (S;X)).Guideline: We establish the claim for S = Su, and the general claim follows by usingthe reduction of Su to S (as in Exercise 10.27). Thus, we focus on showing that, forsome (suitably chosen) sampleable ensemble X, any (S0; X 0) 2 sampNP is reducible to(Su; X). Loosely speaking, X will be an adequate convex combination of all sampleabledistributions (and thusX will neither equal U 0 nor be simple). Speci�cally, X = fXngn2Nis de�ned such that the sampler for Xn uniformly selects i 2 [n], emulates the execution ofthe ith algorithm (in lexicographic order) on input 1n for n3 steps,33 and outputs whatever33Needless to say, the choice to consider n algorithms (in the de�nition of Xn) is quite arbitrary.Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-time) will do. (More generally, we may select the ith algorithm with pi, as long as pi is a noticeablefunction of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rathersome other �xed polynomial number of steps) is quite arbitrary.

10.2. AVERAGE CASE COMPLEXITY 503the latter has output (or 0n in case the said algorithm has not halted within n3 steps).Prove that, for any (S00; X 00) 2 sampNP such that X 00 is sampleable in cubic time, thestandard reduction of S00 to Su reduces (S00; X 00) to (Su; X) (as per De�nition 10.15; i.e.,in particular, it satis�es the domination condition).34 Finally, using adequate padding,reduce any (S0; X 0) 2 sampNP to some (S00; X 00) 2 sampNP such that X 00 is sampleablein cubic time.Exercise 10.29 (search vs decision in the context of sampleable ensembles)Prove that every problem in sampNP is reducible to some problem in sampPC,and every problem in sampPC is randomly reducible to some problem in sampNP .Guideline: See proof of Theorem 10.23.

34Note that applying this reduction to X00 yields an ensemble that is also sampleable in cubictime. This claim uses the fact that the standard reduction runs in time that is less than cubic(and in fact almost linear) in its output, and the fact that the output is longer than the input.

504 CHAPTER 10. RELAXING THE REQUIREMENTS

EpilogueFarewell, Hans { whether you live or end where you are! Yourchances are not good. The wicked dance in which you are caughtup will last a few more sinful years, and we would not wagermuch that you will come out whole. To be honest, we are notreally bothered about leaving the question open. Adventures inthe
esh and spirit, which enhanced and heightened your ordi-nariness, allowed you to survive in the spirit what you probablywill not survive in the
esh. There were majestic moments whenyou saw the intimation of a dream of love rising up out of deathand the carnal body. Will love someday rise up out of this world-wide festival of death, this ugly rutting fever that in
ames therainy evening sky all round?Thomas Mann, The Magic Mountain, The Thunderbolt.We hope that this work has succeeded in conveying the fascinating
avor of theconcepts, results and open problems that dominate the �eld of computational com-plexity. We believe that the new century will witness even more exciting develop-ments in this �eld, and urge the reader to try to contribute to them. But beforebidding goodbye, we wish to express a few more thoughts.As noted in Section 1.1.1, so far complexity theory has been far more success-ful in relating fundamental computational phenomena than in providing de�niteanswers regarding fundamental questions. Consider, for example, the theory of NP-completeness versus the P-versus-NP Question, or the theory of pseudorandomnessversus establishing the existence of one-way function (even under P 6= NP). Thefailure to resolve questions of the \absolute" type is the source of common frustra-tion and one often wonders about the reasons for this failure.Our feeling is that many of these failures are really due to the di�culty ofthe questions asked, and that one tends to underestimate their hardness becausethey are so appealing and natural. Indeed, the underlying sentiment is that ifa question is appealing and natural then answering it should not be hard. Wedoubt this sentiment. Our own feeling is that the more intuitive a question is,the harder it may be to answer. Our view is that intuitive questions arise froman encounter with the raw and chaotic reality of life, rather than from an arti�cialconstruct which is typically endowed with a rich internal structure. Indeed, natural505

506 CHAPTER 10. RELAXING THE REQUIREMENTScomplexity classes and natural questions regarding computation arise from lookingat the reality of computation from the outside and thus lack any internal structure.Speci�cally, complexity classes are de�ned in terms of the \external behavior" ofpotential algorithms (i.e., the resources such algorithms require) rather than interms of the \internal structure" (of the problem). In our opinion, this \externalnature" of the de�nitions of complexity theoretic questions makes them hard toresolve.Another hard aspect regarding the \absolute" (or \lower-bound") type of ques-tions is the fact that they call for impossibility results. That is, the natural formu-lation of these questions calls for proving the non-existence of something (i.e., thenon-existence of e�cient procedures for solving the problem in question). Needlessto say, proving the non-existence of certain objects is typically harder than provingexistence of related objects (indeed, see Section 9.1). Still, proofs of non-existenceof certain objects are known in various �elds and in particular in complexity theory,but such proofs tend to either be trivial (see, e.g., Section 4.1) or are derived byexhibiting a sophisticated process that transforms the original question to a trivialone. Indeed, the latter case is the one that underlies many of the impressive suc-cesses of circuit complexity, and all relative results of the \high-level" direction havea similar nature (i.e., of relating one computational question to another). Thus,we are not suggesting that the \absolute" questions of complexity theory cannotbe resolved, but are rather suggesting an intuitive explanation to the di�culties ofresolving them.The obvious fact that di�cult questions can be resolved is demonstrated byseveral recent results, which are mentioned in this book and \forced" us to modifyearlier drafts of it. Examples include the log-space graph exploration algorithmpresented in Section 5.2.4 and the alternative proof of the PCP Theorem presentedin x9.3.2.3 as well as Theorem 10.19 and the brief mention of the results of [171, 240].

