
From Logarithmic advice to Single-bit Advice

Oded Goldreich, Madhu Sudan, and Luca Trevisan

Abstract. Building on Barak’s work (Random’02), Fortnow and San-
thanam (FOCS’04) proved a time hierarchy for probabilistic machines
with one bit of advice. Their argument is based on an implicit transla-
tion technique, which allow to translate separation results for short (say
logarithmic) advice (as shown by Barak) into separations for a single-bit
advice. In this note, we make this technique explicit, by introducing an
adequate translation lemma.

Keywords: Machines that take advice, separations among complexity
classes.

An early version of this work appeared as TR04-093 of ECCC.

1 Introduction and High Level Description

Trying to address the open problem of providing a probabilistic time hierarchy,
Barak [1] presented a time hierarchy for slightly non-uniform probabilistic ma-
chines. Specifically, he showed that, in presence of double-logarithmic advice,
there exists a hierarchy of probabilistic polynomial-time. Subsequently, Fortnow
and Santhanam [2] showed that a similar hierarchy holds in the presence of a
single-bit advice. Their argument is based on an implicit translation technique,
which allow to translate separation results for short (say logarithmic) advice into
separations for a single-bit advice. In this note, we make this technique explicit,
by introducing an adequate translation lemma and showing that applying it to
Barak’s result [1] yields the aforementioned result of [2].

Interestingly (as in [2]), we rely on the fact that Barak [1] actually shows a
time separation that holds even when the more time-restricted machine is given
a somewhat longer advice. In contrast, arguably, the more natural statement of
such results refers to machines that use the same advice length.1

The basic idea underlying the proof in [2] is that short advice can be incor-
porated in the (length of the) instance of a padded set, while using a single bit
of advice to indicate whether or not the resulting instance length encodes a valid
advice. For this to work, the length of the resulting instance should indicate a
unique length of the original instance as well as a value of a corresponding advice
(for this instance length).

1 That is, in order to show, say, that BPtime(n3)/1 is not contained in BPtime(n2)/1,
we use the fact that Barak showed that BPtime(n6)/ log n is not contained
in BPtime(n4)/2 log n (rather than that BPtime(n6)/ log n is not contained in
BPtime(n4)/ log n).

106

Suppose we wish to treat a set S that is decidable (within some time bound)
using eight bits of advice. Viewing the possible values of the advice as integers in
{0, 1, ..., 255}, we define a (padded) set S′ as follows: the string x0255|x|+i is in S′

if and only if x ∈ S and i is an adequate advice for instances of length |x|. Note
that S′ can be decided using a single bit of advice that indicates whether the
instance length encodes a valid advice for S. Specifically, the advice bit for length
m instances (of S′) is 1 if and only if m mod 256 is a valid advice for instances
of length ⌊m/256⌋ (of S). Thus, on input y = x0255|x|+i, where i ∈ {0, ..., 255},
we accept if and only if the advice bit is 1 and the original machine accepts x
when given advice i.

Note that we should also show that if S is undecidable using less time (and,
say, nine bits of advice), then S′ is correspondingly hard (even using a single bit
of advice). This is shown by using a machine for deciding S′ as a subroutine for
deciding S, while using part of the advice (given for deciding S) for determining
an adequate instance for S′. In other words, we present a non-uniform reduction
of S to S′, where the non-uniformity is accounted for by the longer advice allowed
in deciding S.

2 Preliminaries

We consider advice-taking probabilistic machines, denoting by M(a, x) the out-
put distribution of machine M on input x and advice a. We denote by BPtime(T)/A
the class of sets decidable by advice-taking probabilistic machines of time com-
plexity T and advice complexity A. That is, S ∈ BPtime(T)/A if there exists a
probabilistic machine M and a sequence of strings (an)n∈N such that the follow-
ing conditions hold:

1. For every n ∈ N, it holds that |an| = A(n).
2. For every x ∈ {0, 1}∗, on input x and advice a|x|, machine M makes at most

T (|x|) steps.
3. For every x ∈ {0, 1}∗, it holds that Pr[M(a|x|, x) = χS(x)] ≥ 2/3, where

χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise.

We assume that the machine model supports some trivial computations with
little overhead. Specifically, we refer to computing the square root of the length
of the input in linear time. Our results hold with minor modifications in case the
machine model is less flexible (e.g., if computing the square root of the length
of the input requires quadratic time).

To simplify the presentation, we will associate binary strings with the integers
that they represents. That is, the ℓ-bit long binary string σℓ−1 · · ·σ0 will be

associated with the integer
∑ℓ−1

j=0 σj · 2j . Thus, when writing 0σℓ−1···σ0 , we mean

a binary string consisting of
∑ℓ−1

j=0 σj · 2j zeros.

3 Detailed Technical Presentation

We state our translation lemma for probabilistic machines, and note that an
analogous lemma holds for deterministic (and non-deterministic) machines.

107

Lemma 1 (Translation Lemma): Suppose that S is a set that is decided by some

advice-taking probabilistic machine M in time TM (n) using AM (n) ≤ ⌊log2 n⌋
bits of advice, where n denotes the length of the instance of S. Suppose further

that S is not decided by any a(n)-advice probabilistic machine in time t(n), where

a(n) ≥ AM (n). Then, there exists a set S′ = S′
M that is decided in probabilistic

time T ′ using a single bit of advice, where T ′(m) = TM (⌊√m⌋) + m, but is not

decidable by any (a(⌊√m⌋) − AM (⌊√m⌋))-advice probabilistic machine in time

t(⌊√m⌋) − m, where m denotes the length of the instance of S′.

Needless to say, the lemma can be generalized to handle AM (n) = O(log n), in
which case ⌊√m⌋ should be replaced by m1/O(1).

3.1 Using the Translation Lemma

Before proving the Translation Lemma, let us spell-out its main implication.

Corollary 2 (reducing non-uniformity in BPtime separations): Let T, A, t, a :
N → N such that a(n) ≥ A(n). If BPtime(T)/A contains sets not in BPtime(t)/a,

then BPtime(T ′)/1 contains sets not in BPtime(t′)/a′, where T ′(m)
def
= T (⌊√m⌋)+

m, t′(m)
def
= t(⌊√m⌋) − m and a′(m)

def
= a(⌊√m⌋) − A(⌊√m⌋).

For example, we can apply Corollary 2 to Barak’s result [1] that asserts the ex-
istence of a set S in, say, (BPtime(n6)/ log log n)\(BPtime(n4)/ log n). Doing so,
we conclude that there exists a set in (BPtime(m3)/1)\(BPtime(m2)/(0.5 logm−
log log m)), which in particular implies BPtime(m2)/1 ⊂ BPtime(m3)/1. Thus,
we can translate Barak’s separations, which refer to probabilistic machines with
logarithmic advice, into separations that refer to probabilistic machines with a
single bit of advice, as established by Fortnow and Santhanam [2]. (This con-
sequence is not surprising, because the Translation Lemma makes explicit the
ideas in [2].)

Note that in order to obtain an interesting consequence out of Corollary 2, we
need a(n) ≥ A(n)+1. In contrast, using a(n) = A(n) implies that BPtime(T ′)/1
contains sets not in BPtime(t′), which holds regardless of the hypothesis and for
any choice of T ′ > 0 and t′ (even for t′ ≫ T ′).

3.2 Proving the Translation Lemma

Recall that M decides S in time TM , using advice of length AM , where AM (n) ≤
⌊log2 n⌋. Fixing a sequence of advice strings (an)a∈N for machine M , we define
S′ depending on this sequence. Specifically,

S′ def
= {x0(|x|−1)|x|+a|x| : x ∈ S}. (1)

That is, y = x0(|x|−1)|x|+i ∈ S′ if and only if it holds that x ∈ S and a|x| = i.

Observe that |x0(|x|−1)|x|+i| = |x|2 + i and that, for every m ∈ {n2 + 0, ..., n2 +
2AM(n) − 1} (which in turn is contained in {n2, ..., (n + 1)2 − 1}), it holds that

108

⌊√m⌋ = n. In what follows, n (resp., m) will always denote the length of in-
stances to S (resp., S′).

We first show that S′ is decidable by a probabilistic machine M ′ taking one
bit of advice and running in time TM (⌊√m⌋) + m. Machine M ′ checks whether
its input y ∈ {0, 1}m has the form x0(n−1)n+i, where |x| = n = ⌊√m⌋ and i < n,
and otherwise rejects y up-front. Given the advice bit σm, machine M ′ always
rejects if σm = 0 and invokes M on input x and advice i (viewed as an AM (n)-
bit long string) otherwise. Thus, M ′ accepts y = x0(|x|+1)|x|+i using advice σm

if and only if σm = 1 and M accepts x using advice i. The advice (bit) σm

regarding m-bit inputs is determined in correspondence to the aforementioned
parsing: the advice bit is 1 if and only if m = ⌊√m⌋2 + a⌊√m⌋. Indeed, this

setting of the advice σm guarantees that M ′ accepts y = x0(|x|−1)|x|+i if and
only if x ∈ S and i = a|x|. Thus, using adequate advice, M ′ decides S′. Indeed,
as required, the running time of M ′ is m + TM (⌊√m⌋), where m steps are used
to parse y (into x and i) and TM (|x|) steps are used to emulate M(i, x).

We next show that S′ is not decidable by any probabilistic machine that
runs in time t(⌊√m⌋)−m and takes a (a(⌊√m⌋)−AM (⌊√m⌋))-bit long advice.
Actually, for any monotonically non-decreasing functions t′ and a′, we will show
that if S′ is decidable by some probabilistic machine that runs in time t′(m) and
takes a′(m) bits of advice, then S is decidable by a probabilistic machine that
runs in time t′′(n) = t′(n2 + n) + n2 and takes a′′(n) = AM (n) + a′(n2 + n) bits
of advice.2 Suppose that M ′ is a machine deciding S′ as in the hypothesis, and
let advM ′(m) be the advice it uses for m-bit inputs. Then consider the following
machine M ′′ (designed to decide S) whose advice on inputs of length n is the pair
a′′

n = (an, advM ′(n2 + an)). On input x and advice (i, j), machine M ′′ invokes
M ′ on input x0(|x|−1)|x|+i with advice j. Thus, M ′′ accepts x when given the
(adequate) advice a′′

|x| if and only if M ′ accepts x0(|x|−1)|x|+a|x| when given the

advice advM ′(|x|2 + a|x|). It follows that M ′′ decides S, and does so within the
stated complexities.

Digest: We defined S′ based not only on S but rather based on an adequate
advice sequence (an)n∈N that vouches that S ∈ BPtime(T)/A (via a machine
M). Once S′ is defined, the proof proceeds in two steps:

1. Relying on the hypothesis that M decides S in time T using advice of length
A, we establish that S′ ∈ BPtime(T ′)/1, where T ′(m) = T (⌊√m⌋) + m.
The advice-bit for S′ is used in order to facilitate the partition of the
instances of S′ into two sets: a set of instances x0(|x|−1)|x|+i that satisfy
i = a|x|, and a set of instances that do not satisfy this condition. Machine
M is invoked only for instances of the first type, and instances of the second
type are rejected up-front.

2 Indeed, suppose that t′(m) = t(⌊√m⌋) − m and a′(m) = a(⌊√m⌋) − AM (⌊√m⌋),
then t′′(n) = t′(n2 + n) + n2 = (t(⌊

√
n2 + n⌋) − (n2 + n)) + n2 < t(n) and a′′(n) =

AM (n) + a′(n2 + n) = AM (n) + (a(n) − AM (n)) = a(n), in contradiction to the
lemma’s hypothesis.

109

2. Assuming that S′ ∈ BPtime(t′)/a′, we establish that S ∈ BPtime(t)/a,
where t(n) = t′(n2 + n) + n2 and a(n) = A(n) + a′(n2 + n).
This is done by “reducing” the problem of “deciding S with a(n) bits of
advice” to the problem of “deciding S′ with a′(m) bits of advice”, while the
reduction itself uses A(n) = a(n) − a′(m) bits of advice.

Subsequent work

We mention a subsequent related work by van Melkebeek and Pervyshev [3],
which provides a direct proof of a more general result. We still feel that there is
interest in the approach taken in the current work (i.e., the translation lemma
and its proof).

References

1. B. Barak. A Probabilistic-Time Hierarchy Theorem for ”Slightly Non-
uniform” Algorithms. In Random’02, LNCS 2483, pages 194–208, 2002.

2. L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polyno-
mial time. In 45th FOCS, pages 316–324, 2004.

3. D. van Melkebeek and K. Pervyshev. A Generic Time Hierarchy for Semantic
Models with One Bit of Advice. Computational Complexity, Vol. 16, pages
139–179, 2007.

