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1 Introduction

Expander graphs found numerous applications in the theory of computation,
ranging from the design of sorting networks [1] to the proof that undirected
connectivity is decidable in determinstic log-space [15]. In this survey we review
basic facts regarding expander graphs that are most relevant to the theory of
computation. For a wider perspective, the interested reader is referred to [10].

Loosely speaking, expander graphs are regular graphs of small degree that
exhibit various properties of cliques.1 In particular, we refer to properties such as
the relative sizes of cuts in the graph (i.e., relative to the number of edges), and
the rate at which a random walk converges to the uniform distribution (relative
to the logarithm of the graph size to the base of its degree).

Some technicalities. Typical presentations of expander graphs refer to one of
several variants. For example, in some sources, expanders are presented as bi-
partite graphs, whereas in others they are presented as ordinary graphs (and
are in fact very far from being bipartite). We shall follow the latter convention.
Furthermore, at times we implicitly consider an augmentation of these graphs
where self-loops are added to each vertex. For simplicity, we also allow parallel
edges.

We often talk of expander graphs while we actually mean an infinite collection
of graphs such that each graph in this collection satisfies the same property
(which is informally attributed to the collection). For example, when talking of
a d-regular expander (graph) we actually refer to an infinite collection of graphs
such that each of these graphs is d-regular. Typically, such a collection (or family)
contains a single N -vertex graph for every N ∈ S, where S is an infinite subset
of N. Throughout this section, we denote such a collection by {GN}N∈S, with
the understanding that GN is a graph with N vertices and S is an infinite set
of natural numbers.

1 Another useful intuition is that expander graphs exhibit various properties of random
regular graphs of the same degree.
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2 Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit
constructions, and two useful properties of expanders.

2.1 Two mathematical definitions

We start with two different definitions of expander graphs. These definitions are
qualitatively equivalent and even quantitatively related. We start with an alge-
braic definition, which seems technical in nature but is actually the definition
typically used in complexity theoretic applications, since it directly implies vari-
ous “mixing properties” (see §2.3). We later present a very natural combinatorial
definition (which is the source of the term “expander”).

The algebraic definition (eigenvalue gap). Identifying graphs with their
adjacency matrix, we consider the eigenvalues (and eigenvectors) of a graph
(or rather of its adjacency matrix). Any d-regular graph G = (V, E) has the
uniform vector as an eigenvector corresponding to the eigenvalue d, and if G
is connected and non-bipartite then the absolute values of all other eigenvalues
are strictly smaller than d. The eigenvalue bound, denoted λ(G) < d, of such a
graph G is defined as a tight upper-bound on the absolute value of all the other
eigenvalues. (In fact, in this case it holds that λ(G) < d − Ω(1/d|V |2).)2 The
algebraic definition of expanders refers to an infinite family of d-regular graphs
and requires the existence of a constant eigenvalue bound that holds for all the
graphs in the family.

Definition 1 (eigenvalue gap): An infinite family of d-regular graphs, {GN}N∈S,

where S ⊆ N, satisfies the eigenvalue bound β if for every N ∈ S it holds that

λ(GN ) ≤ β. In such a case, we say that {GN}N∈S is a family of (d, β)-expanders,

and call d − β its eigenvalue gap.

It will be often convenient to consider relative (or normalized) versions of the
foregoing quantities, obtained by division by d.

The combinatorial definition (expansion). Loosely speaking, expansion
requires that any (not too big) set of vertices of the graph has a relatively large
set of neighbors. Specifically, a graph G = (V, E) is c-expanding if, for every set
S ⊂ V of cardinality at most |V |/2, it holds that

ΓG(S)
def
= {v : ∃u∈S s.t. {u, v}∈E} (1)

has cardinality at least (1 + c) · |S|. Assuming the existence of self-loops on all
vertices, the foregoing requirement is equivalent to requiring that |ΓG(S) \ S| ≥
2 This follows from the connection to the combinatorial definition (see Theorem 3).

Specifically, the square of this graph, denoted G2, is |V |−1-expanding and thus it
holds that λ(G)2 = λ(G2) < d2 − Ω(|V |−2).
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c · |S|. In this case, every connected graph G = (V, E) is (1/|V |)-expanding.3

The combinatorial definition of expanders refers to an infinite family of d-regular
graphs and requires the existence of a constant expansion bound that holds for
all the graphs in the family.

Definition 2 (expansion): An infinite family of d-regular graphs, {GN}N∈S is

c-expanding if for every N ∈ S it holds that GN is c-expanding.

The two definitions of expander graphs are related (see [6, Sec. 9.2] or [10,
Sec. 4.5]). Specifically, the “expansion bound” and the “eigenvalue bound” are
related as follows.

Theorem 3 (equivalence of the two definitions [3, 5]): Let G be a d-regular graph

having a self-loop on each vertex.4

1. The graph G is c-expanding for c ≥ (d − λ(G))/2d.
2. If G is c-expanding then d − λ(G) ≥ c2/(4 + 2c2).

Thus, any non-zero bound on the combinatorial expansion of a family of d-
regular graphs yields a non-zero bound on its eigenvalue gap, and vice versa.
Note, however, that the back-and-forth translation between these measures is
not tight. We note that most applications in complexity theory refer to the
algebraic definition, and that the loss incurred in Theorem 3 is immaterial for
them.

Amplification. The “quality of expander graphs improves” by raising these
graphs to any power t > 1 (i.e., raising their adjacency matrix to the tth power),
where this operation corresponds to replacing t-paths (in the original graphs)
by edges (in the resulting graphs). Specifically, when considering the algebraic
definition, it holds that λ(Gt) = λ(G)t, but indeed the degree also gets raised
to the power t. Still, the ratio λ(Gt)/dt deceases with t. An analogous phe-
nomenon occurs also under the combinatorial definition, provided that some
suitable modifications are applied. For example, if for every S ⊆ V it holds
that |ΓG(S)| ≥ min((1 + c) · |S|, |V |/2), then for every S ⊆ V it holds that
|ΓGt(S)| ≥ min((1 + c)t · |S|, |V |/2).

3 In contrast, a bipartite graph G = (V, E) is not expanding, because it always contains
a set S of size at most |V |/2 such that |ΓG(S)| ≤ |S| (although it may hold that
|ΓG(S) \ S| ≥ |S|).

4 Recall that in such a graph G = (V, E) it holds that ΓG(S) ⊇ S for every S ⊆ V , and
thus |ΓG(S)| = |ΓG(S) \ S| + |S|. Furthermore, in such a graph all eigenvalues are
greater than or equal to −d+1, and thus if d−λ(G) < 1 then this is due to a positive
eigenvalue of G. These facts are used for bridging the gap between Theorem 3 and
the more standard versions (see, e.g., [6, Sec. 9.2]) that refer to variants of both
definitions. Specifically, [6, Sec. 9.2] refers to Γ+

G (S) = ΓG(S) \ S and λ2(G), where
λ2(G) is the second largest eigenvalue of G, rather than referring to ΓG(S) and λ(G).
Note that, in general, ΓG(S) may be attained by the difference between the smallest
eigenvalue of G (which may be negative) and −d.
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The optimal eigenvalue bound. For every d-regular graph G = (V, E), it holds
that λ(G) ≥ 2γG ·

√
d − 1, where γG = 1 − O(1/ logd |V |). Thus, for any infinite

family of (d, λ)-expanders, it must holds that λ ≥ 2
√

d − 1.

2.2 Two levels of explicitness

Towards discussing various notions of explicit constructions of graphs, we need to
fix a representation of such graphs. Specifically, throughout this section, when
referring to an infinite family of graphs {GN}N∈S, we shall assume that the
vertex set of GN equals [N ]. Indeed, at times, we shall consider vertex sets having
a different structure (e.g., [m]× [m] for some m ∈ N), but in all these cases there
exists a simple isomorphism of these sets to the canonical representation (i.e.,
there exists an efficiently computable and invertible mapping of the vertex set
of GN to [N ]).

Recall that a mild notion of explicit constructiveness refers to the complexity

of constructing the entire object (i.e., the graph). Applying this notion to our set-
ting, we say that an infinite family of graphs {GN}N∈S is explicitly constructible

if there exists a polynomial-time algorithm that, on input 1N (where N ∈ S),
outputs the list of the edges in the N -vertex graph GN . That is, the entire graph
is constructed in time that is polynomial in its size (i.e., in poly(N)-time).

The foregoing (mild) level of explicitness suffices when the application re-
quires holding the entire graph and/or when the running-time of the application
is lower-bounded by the size of the graph. In contrast, other applications refer to
a huge virtual graph (which is much bigger than their running time), and only
require the computation of the neighborhood relation in such a graph. In this
case, the following stronger level of explicitness is relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs
{GN}N∈S is a polynomial-time algorithm that on input N ∈ S (in binary), a

vertex v in the N -vertex graph GN (i.e., v ∈ [N ]), and an index i ∈ [d], returns

the ith neighbor of v. That is, the “neighbor query” is answered in time that
is polylogarithmic in the size of the graph. Needless to say, this strong level of
explicitness implies the basic (mild) level.

An additional requirement, which is often forgotten but is very important,
refers to the “tractability” of the set S. Specifically, we require the existence of
an efficient algorithm that given any n ∈ N finds an s∈S such that n ≤ s < 2n.
Corresponding to the two foregoing levels of explicitness, “efficient” may mean
either running in time poly(n) or running in time poly(log n). The requirement
that n ≤ s < 2n suffices in most applications, but in some cases a smaller interval
(e.g., n ≤ s < n +

√
n) is required, whereas in other cases a larger interval (e.g.,

n ≤ s < poly(n)) suffices.

Greater flexibility. In continuation to the foregoing paragraph, we comment that
expanders can be combined in order to obtain expanders for a wider range of
graph sizes. For example, given two d-regular c-expanding graphs, G1 = (V1, E1)
and G2 = (V2, E2) where |V1| ≤ |V2| and c ≤ 1, we can obtain a (d + 1)-regular
c/2-expanding graph on |V1|+ |V2| vertices by connecting the two graphs using a
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perfect matching of V1 and |V1| of the vertices of V2 (and adding self-loops to the
remaining vertices of V2). More generally, combining the d-regular c-expanding

graphs G1 = (V1, E1) through Gt = (Vt, Et), where N ′ def
=
∑t−1

i=1 |Vi| ≤ |Vt|,
yields a (d + 1)-regular c/2-expanding graph on

∑t
i=1 |Vi| vertices (by using a

perfect matching of ∪t−1
i=1Vi and N ′ of the vertices of Vt).

2.3 Two properties

The following two properties provide a quantitative interpretation to the state-
ment that expanders approximate the complete graph (or behave approximately
like a complete graph). When referring to (d, λ)-expanders, the deviation from
the behavior of a complete graph is represented by an error term that is linear
in λ/d.

The mixing lemma. Loosely speaking, the following (folklore) lemma asserts
that in expander graphs (for which λ ≪ d) the fraction of edges connecting two
large sets of vertices approximately equals the product of the densities of these
sets. This property is called mixing.

Lemma 4 (Expander Mixing Lemma): For every d-regular graph G = (V, E)
and for every two subsets A, B ⊆ V it holds that

∣

∣

∣

∣

∣

|(A × B) ∩ ~E|
| ~E|

− |A|
|V | ·

|B|
|V |

∣

∣

∣

∣

∣

≤ λ(G)
√

|A| · |B|
d · |V | ≤ λ(G)

d
(2)

where ~E denotes the set of directed edges (i.e., vertex pairs) that correspond to

the undirected edges of G (i.e., ~E = {(u, v) : {u, v}∈E} and | ~E| = d|V |).

In particular, |(A × A) ∩ ~E| = (ρ(A) · d ± λ(G)) · |A|, where ρ(A) = |A|/|V |. It

follows that |(A × (V \ A)) ∩ ~E| = ((1 − ρ(A)) · d ± λ(G)) · |A|.

Proof: Let N
def
= |V | and λ

def
= λ(G). For any subset of the vertices S ⊆ V , we

denote its density in V by ρ(S)
def
= |S|/N . Hence, Eq. (2) is restated as

∣

∣

∣

∣

∣

|(A × B) ∩ ~E|
d · N − ρ(A) · ρ(B)

∣

∣

∣

∣

∣

≤ λ
√

ρ(A) · ρ(B)

d .

We proceed by providing bounds on the value of |(A×B)∩ ~E|. To this end we let
a denote the N -dimensional Boolean vector having 1 in the ith component if and
only if i ∈ A. The vector b is defined similarly. Denoting the adjacency matrix of
the graph G by M = (mi,j), we note that |(A × B) ∩ ~E| equals a⊤Mb (because

(i, j) ∈ (A × B) ∩ ~E if and only if it holds that i ∈ A, j ∈ B and mi,j = 1). We
consider the orthogonal eigenvector basis, e1, ..., eN , where e1 = (1, ..., 1)⊤ and
ei

⊤ei = N for each i, and write each vector as a linear combination of the vectors
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in this basis. Specifically, we denote by ai the coefficient of a in the direction
of ei; that is, ai = (a⊤ei)/N and a =

∑

i aiei. Note that a1 = (a⊤e1)/N =

|A|/N = ρ(A) and
∑N

i=1 a2
i = (a⊤a)/N = |A|/N = ρ(A). Similarly for b. It now

follows that

|(A × B) ∩ ~E| = a⊤M

N
∑

i=1

biei

=
N
∑

i=1

biλi · a⊤ei

where λi denotes the ith eigenvalue of M . Note that λ1 = d and for every i ≥ 2
it holds that |λi| ≤ λ. Thus,

|(A × B) ∩ ~E|
dN

=
N
∑

i=1

biλi · ai

d

= ρ(A)ρ(B) +

N
∑

i=2

λiaibi

d

∈
[

ρ(A)ρ(B) ± λ

d
·

N
∑

i=2

aibi

]

Using
∑N

i=1 a2
i = ρ(A) and

∑N
i=1 b2

i = ρ(B), and applying Cauchy-Schwartz

Inequality, we bound
∑N

i=2 aibi by
√

ρ(A)ρ(B). The lemma follows.

The random walk lemma. Loosely speaking, the first part of the following
lemma asserts that, as far as remaining “trapped” in some subset of the vertex
set is concerned, a random walk on an expander approximates a random walk
on the complete graph.

Lemma 5 (Expander Random Walk Lemma): Let G = ([N ], E) be a d-regular

graph, and consider walks on G that start from a uniformly chosen vertex and

take ℓ− 1 additional random steps, where in each such step we uniformly selects

one out of the d edges incident at the current vertex and traverses it.

– Let W be a subset of [N ] and ρ
def
= |W |/N . Then the probability that such a

random walk stays in W is at most

ρ ·
(

ρ + (1 − ρ) · λ(G)

d

)ℓ−1

.

(3)

– For any W0, ..., Wℓ−1 ⊆ [N ], the probability that a random walk of length ℓ
intersects W0 × W1 × · · · × Wℓ−1 is at most

√
ρ0 ·

ℓ−1
∏

i=1

√

ρi + (λ/d)2, (4)
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where ρi
def
= |Wi|/N .

The basic principle underlying Lemma 5 was discovered by Ajtai, Komlos, and
Szemerédi [2], who proved a bound as in Eq. (4). The better analysis yielding
the first part of Lemma 5 is due to [12, Cor. 6.1]. A more general bound that
refer to the probability of visiting W for a number of times that approximates
|W |/N is given in [9], which actually considers an even more general problem
(i.e., obtaining Chernoff-type bounds for random variables that are generated by
a walk on an expander). An alternative approach to obtaining such Chernoff-type
bounds has been recently presented in [11].

Proof of Equation (4). The basic idea is viewing events occuring during the
random walk as an evolution of a corresponding probability vector under suitable
transformations. The transformations correspond to taking a random step in G
and to passing through a “sieve” that keeps only the entries that correspond to
the current set Wi. The key observation is that the first transformation shrinks
the component that is orthogonal to the uniform distribution, whereas the second
transformation shrinks the component that is in the direction of the uniform
distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency

matrix of G divided by d), and let λ̂
def
= λ(G)/d (i.e., λ̂ upper-bounds the abso-

lute value of every eigenvalue of A except the first one). Note that the uniform
distribution, represented by the vector u = (N−1, ..., N−1)⊤, is the eigenvector
of A that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1
matrix that has 1-entries only on its diagonal such that entry (j, j) is set to 1
if and only if j ∈ Wi. Then, the probability that a random walk of length ℓ
intersects W0 × W1 × · · · × Wℓ−1 is the sum of the entries of the vector

v
def
= Pℓ−1A · · ·P2AP1AP0u. (5)

We are interested in upper-bounding ‖v‖1, and use ‖v‖1 ≤
√

N · ‖v‖, where
‖z‖1 and ‖z‖ denote the L1-norm and L2-norm of z, respectively (e.g., ‖u‖1 = 1
and ‖u‖ = N−1/2). The key observation is that the linear transformation PiA
shrinks every vector.

Main Claim. For every z, it holds that ‖PiAz‖ ≤ (ρi + λ̂2)1/2 · ‖z‖.
Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas
Pi shrinks the component of z that is in the direction of u. Specifically, we
decompose z = z1 + z2 such that z1 is the projection of z on u and z2 is the
component orthogonal to u. Then, using the triangle inequality and other obvious
facts (which imply ‖PiAz1‖ = ‖Piz1‖ and ‖PiAz2‖ ≤ ‖Az2‖), we have

‖PiAz1 + PiAz2‖ ≤ ‖PiAz1‖ + ‖PiAz2‖
≤ ‖Piz1‖ + ‖Az2‖
≤ √

ρi · ‖z1‖ + λ̂ · ‖z2‖

where the last inequality uses the fact that Pi shrinks any uniform vector by
eliminating 1−ρi of its elements, whereas A shrinks the length of any eigenvector
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except u by a factor of at least λ̂. Using the Cauchy-Schwartz inequality5, we
get

‖PiAz‖ ≤
√

ρi + λ̂2 ·
√

‖z1‖2 + ‖z2‖2

=

√

ρi + λ̂2 · ‖z‖

where the equality is due to the fact that z1 is orthogonal to z2.

Recalling Eq. (5) and using the Main Claim (and ‖v‖1 ≤
√

N · ‖v‖), we get

‖v‖1 ≤
√

N · ‖Pℓ−1A · · ·P2AP1AP0u‖

≤
√

N ·
(

ℓ−1
∏

i=1

√

ρi + λ̂2

)

· ‖P0u‖.

Finally, using ‖P0u‖ =
√

ρ0N · (1/N)2 =
√

ρ0/N , we establish Eq. (4).

Rapid mixing. A property related to Lemma 5 is that a random walk starting
at any vertex converges to the uniform distribution on the expander vertices
after a logarithmic number of steps. Specifically, we claim that starting at any

distribution s (including a distribution that assigns all weight to a single vertex)
after ℓ steps on a (d, λ)-expander G = ([N ], E) we reach a distribution that is√

N · (λ/d)ℓ-close to the uniform distribution over [N ]. Using notation as in the

proof of Eq. (4), the claim asserts that ‖Aℓs−u‖1 ≤
√

N ·λ̂ℓ, which is meaningful
only for ℓ > 0.5 · log1/λ̂ N . The claim is proved by recalling that ‖Aℓs − u‖1 ≤√

N · ‖Aℓs − u‖ and using the fact that s − u is orthogonal to u (because the

former is a zero-sum vector). Thus, ‖Aℓs − u‖ = ‖Aℓ(s − u)‖ ≤ λ̂ℓ‖s − u‖ and
using ‖s − u‖ < 1 the claim follows.

3 Constructions

Many explicit constructions of (d, λ)-expanders are known. The first such con-
struction was presented in [14] (where λ < d was not explicitly bounded), and an
optimal construction (i.e., an optimal eigenvalue bound of λ = 2

√
d − 1) was first

provided in [13]. Most of these constructions are quite simple (see, e.g., §3.1),
but their analysis is based on non-elementary results from various branches of
mathematics. In contrast, the construction of Reingold, Vadhan, and Wigder-
son [16], presented in §3.2, is based on an iterative process, and its analysis is
based on a relatively simple algebraic fact regarding the eigenvalues of matrices.

5 That is, we get
√

ρi‖z1‖+λ̂‖z2‖ ≤
q

ρi + λ̂2 ·
p

‖z1‖2 + ‖z2‖2, by using
Pn

i=1
ai ·bi ≤

`
Pn

i=1
ai

2
´1/2 ·

`
Pn

i=1
bi

2
´1/2

, with n = 2, a1 =
√

ρi, b1 = ‖z1‖, etc.
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Before turning to these explicit constructions we note that it is relatively
easy to prove the existence of 3-regular expanders, by using the Probabilistic
Method (cf. [6]) and referring to the combinatorial definition of expansion.6

3.1 The Margulis–Gabber–Galil Expander

For every natural number m, consider the graph with vertex set Zm × Zm and
the edge set in which every 〈x, y〉 ∈ Zm × Zm is connected to the vertices
〈x ± y, y〉, 〈x ± (y + 1), y〉, 〈x, y ± x〉, and 〈x, y ± (x + 1)〉, where the arithmetic
is modulo m. This yields an extremely simple 8-regular graph with an eigenvalue
bound that is a constant λ < 8 (which is independent of m). Thus, we get:

Theorem 6 There exists a strongly explicit construction of a family of (8, 7.9999)-
expanders for graph sizes {m2 : m∈N}. Furthermore, the neighbors of a vertex

in these expanders can be computed in logarithmic-space.7

An appealing property of Theorem 6 is that, for every n ∈ N, it directly yields
expanders with vertex set {0, 1}n. This is obvious in case n is even, but can be
easily achieved also for odd n (e.g., use two copies of the graph for n − 1, and
connect the two copies by the obvious perfect matching).

Theorem 6 is due to Gabber and Galil [7], building on the basic approach
suggested by Margulis [14]. We mention again that the (strongly explicit) (d, λ)-
expanders of [13] achieve the optimal eigenvalue bound (i.e., λ = 2

√
d − 1), but

there are annoying restrictions on the degree d (i.e., d − 1 should be a prime
congruent to 1 modulo 4) and on the graph sizes for which this construction
works.8

6 This can be done by considering a 3-regular graph obtained by combining an N-cycle
with a random matching of the first N/2 vertices and the remaining N/2 vertices. It is
actually easier to prove the related statement that refers to the alternative definition
of combinatorial expansion that refers to the relative size of Γ+

G (S) = ΓG(S) \ S
(rather than to the relative size of ΓG(S)). In this case, for a sufficiently small ε > 0
and all sufficiently large N , a random 3-regular N-vertex graph is “ε-expanding”
with overwhelmingly high probability. The proof proceeds by considering a (not
necessarily simple) graph G obtained by combining three uniformly chosen perfect
matchings of the elements of [N ]. For every S ⊆ [N ] of size at most N/2 and for every
set T of size ε|S|, we consider the probability that for a random perfect matching M
it holds that Γ+

M (S) ⊆ T . The argument is concluded by applying a union bound.
7 In fact, for m that is a power of two (and under a suitable encoding of the vertices),

the neighbors can be computed by a on-line algorithm that uses a constant amount
of space. The same holds also for a variant in which each vertex 〈x, y〉 is connected
to the vertices 〈x ± 2y, y〉, 〈x ± (2y + 1), y〉, 〈x, y ± 2x〉, and 〈x, y ± (2x + 1)〉. This
variant yields a better known bound on λ, i.e., λ ≤ 5

√
2 ≈ 7.071.

8 The construction in [13] allows graph sizes of the form (p3 − p)/2, where p ≡ 1
(mod 4) is a prime such that d−1 is a quadratic residue modulo p. As stated in [4,

Sec. 2], the construction can be extended to graph sizes of the form (p3k − p3k−2)/2,
for any k ∈ N and p as in the foregoing.
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3.2 The Iterated Zig-Zag Construction

The starting point of the following construction is a very good expander G of
constant size, which may be found by an exhaustive search. The construction
of a large expander graph proceeds in iterations, where in the ith iteration the
current graph Gi and the fixed graph G are combined, resulting in a larger graph
Gi+1. The combination step guarantees that the expansion property of Gi+1 is
at least as good as the expansion of Gi, while Gi+1 maintains the degree of Gi

and is a constant times larger than Gi. The process is initiated with G1 = G2

and terminates when we obtain a graph Gt of approximately the desired size
(which requires a logarithmic number of iterations).

1

2

35

6
1

2

35

6

4

4

u v

Fig. 1. Detail of the Zig-Zag product of G′ and G. In this example G′ is 6-regular and
G is a 3-regular graph having six vertices. In the graph G′ (not shown), the 2nd edge
of vertex u is incident at v, as its 5th edge. The wide 3-segment line shows one of the
corresponding edges of G′©z G, which connects the vertices 〈u, 3〉 and 〈v, 2〉.

The Zig-Zag product. The heart of the combination step is a new type of “graph
product” called Zig-Zag product. This operation is applicable to any pair of
graphs G = ([D], E) and G′ = ([N ], E′), provided that G′ (which is typically
larger than G) is D-regular. For simplicity, we assume that G is d-regular (where
typically d ≪ D). The Zig-Zag product of G′ and G, denoted G′©z G, is defined
as a graph with vertex set [N ] × [D] and an edge set that includes an edge
between 〈u, i〉 ∈ [N ] × [D] and 〈v, j〉 if and only if {i, k}, {ℓ, j} ∈ E and the kth

edge incident at u equals the ℓth edge incident at v. That is, 〈u, i〉 and 〈v, j〉 are
connected in G′©z G if there exists a “three step sequence” consisting of a G-step
from 〈u, i〉 to 〈u, k〉 (according to the edge {i, k} of G), followed by a G′-step
from 〈u, k〉 to 〈v, ℓ〉 (according to the kth edge of u in G′ (which is the ℓth edge
of v)), and a final G-step from 〈v, ℓ〉 to 〈v, j〉 (according to the edge {ℓ, j} of G).
See Figure 1 as well as further formalization (which follows).
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It will be convenient to represent graphs like G′ by their edge-rotation func-

tion, denoted R′ : [N ]× [D] → [N ]× [D], such that R′(u, i) = (v, j) if {u, v} is the
ith edge incident at u as well as the jth edge incident at v. That is, R′ rotates the
pair (u, i), which represents one “side” of the edge {u, v} (i.e., the side incident
at u as its ith edge), resulting in the pair (v, j), which represents the other side
of the same edge (which is the jth edge incident at v). For simplicity, we assume
that the (constant-size) d-regular graph G = ([D], E) is edge-colorable with d
colors, which in turn yields a natural edge-rotation function (i.e., R(i, α) = (j, α)
if the edge {i, j} is colored α). We will denote by Eα(i) the vertex reached from
i ∈ [D] by following the edge colored α (i.e., Eα(i) = j iff R(i, α) = (j, α)). The
Zig-Zag product of G′ and G, denoted G′©z G, is then defined as a graph with
the vertex set [N ] × [D] and the edge-rotation function

(〈u, i〉, 〈α, β〉) 7→ (〈v, j〉, 〈β, α〉) if R′(u, Eα(i)) = (v, Eβ(j)). (6)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of ver-

tex 〈u, i〉 ∈ [N ] × [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge) if
R(u, Eα(i)) = (v, Eβ(j)), where indeed Eβ(Eβ(j)) = j. Intuitively, based on
〈α, β〉, we first take a G-step from 〈u, i〉 to 〈u, Eα(i)〉, then viewing 〈u, Eα(i)〉 ≡
(u, Eα(i)) as a side of an edge of G′ we rotate it (i.e., we effectively take a G′-

step) reaching (v, j′)
def
= R′(u, Eα(i)), and finally we take a G-step from 〈v, j′〉

to 〈v, Eβ(j′)〉.
Clearly, the graph G′©z G is d2-regular and has D ·N vertices. The key fact,

proved in [16] (using techniques as in §2.3), is that the relative eigenvalue-value
of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-
values of the two graphs; that is, λ̄(G′©z G) ≤ λ̄(G′) + λ̄(G), where λ̄(·) denotes
the relative eigenvalue-bound of the relevant graph. The (qualitative) fact that
G′©z G is an expander if both G′ and G are expanders is very intuitive (e.g.,
consider what happens if G′ or G is a clique). Things are even more intuitive
if one considers the (related) replacement product of G′ and G, denoted G′©r G,
where there is an edge between 〈u, i〉 ∈ [N ] × [D] and 〈v, j〉 if and only if either

u = v and {i, j} ∈ E or the ith edge incident at u equals the jth edge incident

at v.

The iterated construction. The iterated expander construction uses the afore-
mentioned zig-zag product as well as graph squaring. Specifically, the construc-
tion starts9 with the d2-regular graph G1 = G2 = ([D], E2), where D = d4

and λ̄(G) < 1/4, and proceeds in iterations such that Gi+1 = G2
i©z G for

i = 1, 2, ..., t−1, where t is logarithmic in the desired graph size. That is, in each
iteration, the current graph is first squared and then composed with the fixed
(d-regular D-vertex) graph G via the zig-zag product. This process maintains
the following two invariants:

1. The graph Gi is d2-regular and has Di vertices.

9 Recall that, for a sufficiently large constant d, we first find a d-regular graph G =
([d4], E) satisfying λ̄(G) < 1/4, by exhaustive search.
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(The degree bound follows from the fact that a zig-zag product with a d-
regular graph always yields a d2-regular graph.)

2. The relative eigenvalue-bound of Gi is smaller than one half (i.e., λ̄(Gi) <
1/2).
(Here we use the fact that λ̄(G2

i−1©z G) ≤ λ̄(G2
i−1) + λ̄(G), which in turn

equals λ̄(Gi−1)
2 + λ̄(G) < (1/2)2 + (1/4). Note that graph squaring is used

to reduce the relative eigenvalue of Gi before increasing it by zig-zag product
with G.)

In order to show that we can actually construct Gi, we show that we can compute
the edge-rotation function that correspond to its edge set. This boils down to
showing that, given the edge-rotation function of Gi−1, we can compute the
edge-rotation function of G2

i−1 as well as of its zig-zag product with G. Note
that this entire computation amounts to two recursive calls to computations
regarding Gi−1 (and two computations that correspond to the constant graph
G). But since the recursion depth is logarithmic in the size of the final graph
(i.e., t = logD |vertices(Gt)|), the total number of recursive calls is polynomial
in the size of the final graph (and thus the entire computation is polynomial in
the size of the final graph). This suffices for the minimal (i.e., “mild”) notion of
explicitness, but not for the strong one.

The strongly explicit version. To achieve a strongly explicit construction, we
slightly modify the iterative construction. Rather than letting Gi+1 = G2

i©z G,
we let Gi+1 = (Gi × Gi)

2©z G, where G′ × G′ denotes the tensor product of G′

with itself; that is, if G′ = (V ′, E′) then G′ × G′ = (V ′ × V ′, E′′), where

E′′ = {{〈u1, u2〉, 〈v1, v2〉} : {u1, v1}, {u2, v2}∈E′}

(i.e., 〈u1, u2〉 and 〈v1, v2〉 are connected in G′ ×G′ if for i = 1, 2 it holds that ui

is connected to vi in G′). The corresponding edge-rotation function is

R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈j1, j2〉),

where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2). We still use G1 = G2,
where (as before) G is d-regular and λ̄(G) < 1/4, but here G has D = d8

vertices.10 Using the fact that tensor product preserves the relative eigenvalue-
bound while squaring the degree (and the number of vertices), we note that
the modified iteration Gi+1 = (Gi × Gi)

2©z G yields a d2-regular graph with

(D2i
−1)2 · D = D2i+1

−1 vertices, and that λ̄(Gi+1) < 1/2 (because λ̄((Gi ×
Gi)

2©z G) ≤ λ̄(Gi)
2 + λ̄(G)). Computing the neighbor of a vertex in Gi+1 boils

down to a constant number of such computations regarding Gi, but due to the
tensor product operation the depth of the recursion is only double-logarithmic in
the size of the final graph (and hence logarithmic in the length of the description
of vertices in this graph).

10 The reason for the change is that (Gi × Gi)
2 will be d8-regular, since Gi will be

d2-regular.
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Digest. In the first construction, the zig-zag product was used both in order to
increase the size of the graph and to reduce its degree. However, as indicated by
the second construction (where the tensor product of graphs is the main vehicle
for increasing the size of the graph), the primary effect of the zig-zag product is
reducing the graph’s degree, and the increase in the size of the graph is merely a
side-effect.11 In both cases, graph squaring is used in order to compensate for the
modest increase in the relative eigenvalue-bound caused by the zig-zag product.
In retrospect, the second construction is the “correct” one, because it decouples
three different effects, and uses a natural operation to obtain each of them:
Increasing the size of the graph is obtained by tensor product of graphs (which
in turn increases the degree), the desired degree reduction is obtained by the
zig-zag product (which in turn slightly increases the relative eigenvalue-bound),
and graph squaring is used in order to reduce the relative eigenvalue-bound.

Stronger bound regarding the effect of the zig-zag product. In the foregoing de-
scription we relied on the fact, proved in [16], that the relative eigenvalue-bound
of the zig-zag product is upper-bounded by the sum of the relative eigenvalue-
bounds of the two graphs (i.e., λ̄(G′©z G) ≤ λ̄(G′)+ λ̄(G))). Actually, a stronger
upper-bound is proved in [16]: It holds that λ̄(G′©z G) ≤ f(λ̄(G′), λ̄(G))), where

f(x, y)
def
=

(1 − y2) · x
2

+

√

(

(1 − y2) · x
2

)2

+ y2 (7)

Indeed, f(x, y) ≤ (1 − y2) · x+ y ≤ x+ y. On the other hand, for x ≤ 1, we have

f(x, y) ≤ (1−y2)·x
2 + 1+y2

2 = 1 − (1−y2)·(1−x)
2 , which implies

λ̄(G′©z G) ≤ 1 − (1 − λ̄(G)2) · (1 − λ̄(G′))

2
. (8)

Thus, 1− λ̄(G′©z G) ≥ (1− λ̄(G)2) · (1− λ̄(G′))/2, and it follows that the zig-zag
product has a positive eigenvalue-gap if both graphs have positive eigenvalue-
gaps (i.e., λ(G′©z G) < 1 if both λ(G) < 1 and λ(G′) < 1). Furthermore, if
λ̄(G) < 1/

√
3 then 1 − λ̄(G′©z G) > (1 − λ̄(G′))/3. This fact plays an impor-

tant role in the celebrated proof that undirected connectivity is decidable in
determinstic log-space [15].
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