
Simplified Derandomization of BPP Using a

Hitting Set Generator

Oded Goldreich, Salil Vadhan, and Avi Wigderson

Abstract. A hitting-set generator is a deterministic algorithm that gen-
erates a set of strings such that this set intersects every dense set that
is recognizable by a small circuit. A polynomial time hitting-set gener-
ator readily implies RP = P , but it is not apparent what this implies
for BPP. Nevertheless, Andreev et al. (ICALP’96, and JACM 1998)
showed that a polynomial-time hitting-set generator implies the seem-
ingly stronger conclusion BPP = P . We simplify and improve their (and
later) constructions.

Keywords: Derandomization, RP, BPP, one-sided error versus two-
sided error.

This work is considered the final version of [7]. An early version of this work
appeared as TR00-004 of ECCC.

1 Introduction

The relation between randomized computations with one-sided error and ran-
domized computations with two-sided error is one of the most interesting ques-
tions in the area. Specifically, we refer to the relation betwen RP and BPP. In
particular, does RP = P imply BPP = P?

1.1 An affirmative partial answer

The breakthrough paper of Andreev et al. [2] (and its sequel [3]) gave a natural
setting in which the answer to the foregoing question is yes. The setting is a
specific natural way to prove RP = P , namely via “hitting-set generators” (see
exact definition below). Informally, such a generator outputs a set of strings that
hits every large efficiently-recognizable set (e.g., the witness set of a positive
input of an RP set). Having such a generator that runs in polynomial time
enables a trivial deterministic simulation of an RP algorithm by using each of
the generator’s outputs as the random pad of the given algorithm.

The main result of [2] was that such a generator (which immediately yields
deromization of 1-sided error algorithms) actually suffices for derandomizing 2-
sided error algorithms. In particular, the existence of polynomial-time hitting
set generators implies BPP = P .

56

Definition 1 (hitting set generator):1 An algorithm, G, is called a hitting set

generator for circuits if, on input n, s ∈ N (given in unary), it generates as output
a set of n-bit strings, G(n, s), such that every circuit of size s (on n input bits)
that accepts at least half its inputs, accepts at least one element from the set
G(n, s).

Since s is the essential complexity parameter (n ≤ s), we let tG(s) denote the
running time of the generator G on input (n, s), and NG(s) denote the size of
its output set. Clearly NG(s) ≤ tG(s). The result of Andreev et al. [2] is the
following:

Theorem 2 (derandomization via hitting sets [2]): If there exists a hitting-set
generator G running in time tG, then BPP ⊆ DT IME(poly(tG(poly(n))).

Indeed, the most important special case (i.e., tG(s) = poly(s)) is the following:

Corollary 3 (Theorem 2, specialized [2]): If G runs in polynomial time, then
BPP = P.

1.2 In quest of simplifications

Our main result is a simple proof of Theorem 2. Explaining what “simple” means
is not so simple. We start by explaining how the given generator (assumed in
the hypothesis of Theorem 2) is used in [2] (and in subsequent works [3, 4]) to
derandomize BPP. Indeed, later proofs (of [3] and then [4]) were much simpler
than [2], but while proving Corollary 3, they fell short of proving Theorem 2.2

Warning: The following discussion is carried out on an intuitive (and somewhat
vague) level. Readers who do not like such discussions may skip the rest of the
introduction, and proceed directly to the formal proof (presented in Sections 2
and 3).

The two different uses of the hitting set generator in [2]. The proof in [2] uses
the generator in two ways. The first use is literally as a producer of a hitting set
for all sufficiently dense and efficiently recognized sets. The second use (which
is more subtle) is as a hard function. Indeed, observe that the existence of such

1 In other settings, (pseudorandom) generators are defined as outputting a single
string. In terms of Definition 1 this means that, on input an index i ∈ {1, ..., |G(n, s)|}
(viewed as a seed), the generator outputs the ith string in G(n, s). However, in the
current context, the current convention (which in the standard terms means con-
sidsering the set of all possible outputs of the generator) seems simpler to work
with.

2 We note, however, that both [3] and [4] use their techniques to study other aspects of
the relationship between one-sided and two-sided error (i.e., aspects not addressed by
Theorem 2). In particular, Buhrman and Fortnow [4] resolve the promise-problem
analogue of the question “Does RP = P imply BPP = P?” in the positive. See
Section 1.3.

57

a generator G immediately implies the existence of a function on O(log tG(s))
bits that is computable in time tG(s) but cannot be computed by circuits of size
s (or else a contradiction is reached by considering a circuit that that accepts a
vast majority of the strings that are not generated by G).3 These two uses of G
are combined in a rather involved way for the derandomization of BPP.

It is interesting to note that for the case of tG(s) = poly(s), the aforemen-
tioned hard function can be plugged into the pseudorandom generator of [8], to
yield BPP = P as in Corollary 3. (Note, however, that [8] was not available to
the authors of [2] at the time (the two papers are independent).) Moreover, [8]
is far from “simple”, it does use the computational consequence (which we are
trying to avoid), and anyhow it is not strong enough to yield Theorem 2.

The two-level use of the hitting set generator in [3]. A considerably simpler proof
was given in [3]. There, the generator is used only in its “original capacity” as
a hitting set generator, without explicitly using any computational consequence
of its existence. In some sense, this proof is more clearly a “black-box” use of
the output set of the generator. However, something was lost. The running time
of the derandomization is replaced by poly(tG(tG(poly(n))).

On the one hand, this is not too bad. For the interesting case of tG(s) =
poly(s) (which implies RP = P), they still get the consequence BPP = P , as in
Corollary 3 (since iterating a polynomial function twice results in a polynomial).
On the other hand, if the function tG grows moderately such that tG(tG(n)) = 2n,
then we have as assumption a highly nontrivial derandomization of RP, but the
consequence is a completely trivial derandomization of BPP.

In our opinion, the best way to understand the origin of the iterated appli-
cation of the function tG in the aforementioned result is explained in the recent
paper of [4], which further simplifies the proof of [3]. They remind the reader
that the proofs [9, 10] putting BPP in Σ2∩Π2 actually gives much more. In fact,
viewed appropriately, it almost begs (with hindsight) the use of hitting sets!

The key is, that in both the ∀∃ and ∃∀ expressions for the BPP set, the
“witnesses” for the existential quantifier are abundant. Put differently, BPP ⊆
RPprRP , where prRP is the promise-problem version of RP. But if you have a
hitting set, you can use it first to derandomize the “oracle” part of the right-hand
side. This leaves us with an RT IME(tG(poly(n)) machine, which can again be
derandomized (using hitting sets for tG(poly(n)) size circuits).

In short, the “two quantifier” representation of BPP leads to a two-level
recursive application of the generator. It seems hopeless to reduce the number
of quantifiers to one in the BPP ⊆ Σ2 ∩Π2 result. So another route has to be
taken in order to prove Theorem 2 in a similar “direct” (or “black-box”) manner,
but without incurring the penalty arising from this two-level recursion.

Our proof. We eliminate the two-level recursion, obtaining a single application of
the hitting set generator, by “increasing the dimension to two” in the following

3 For example, consider a circuit C that accepts a (2 log
2
tG(s))-bit string, z, if and

only if z is not a prefix of any string in G(n, s).

58

sense. Inspired by Lautemann’s proof [9] of BPP ⊆ Σ2 ∩ Π2, we consider, for
each input to a given BPP algorithm that uses ℓ(n) random coins, a 2ℓ(n)-
by-2ℓ(n) Boolean matrix such that the (a, b)th entry represents the decision of
the algorithm when using the random pad a ⊕ b.4 In this matrix, the fraction
of incorrect answers in each row (resp., column) is small. The hitting set is
used to select a small subset of the rows and a small subset of the columns,
and the entries of this submatrix determine the result. Specifically, we will look
for “enough” (yet few) rows that are monochromatic, and decide accordingly.
The correctness and efficiency of the test are spelled out in Lemma 6, which is
essentially captured by the following simple Ramsey-type result.

Proposition 4 (log-size dominating sets): For every n-vertex graph, either the
graph or its complement has a dominating set of size ⌈log2(n+1)⌉. Furthermore,
such a set can be found in polynomial time.

(Proposition 4 is seemingly new and may be of independent interest.)5

We end by observing that (like the previous results) our result holds in the
context of promise problems. Hence, the existence of hitting set generators pro-
vides an efficient way for approximately counting the fraction of inputs accepted
by a given circuit within additive polynomial fraction.

1.3 Perspective

As described above, Buhrman and Fortnow [4] prove that BPP ⊆ prRPprRP ,
and actually prBPP = prRPprRP . It follows immediately that prRP = prP
implies prBPP = prP , resolving the main question of this area for promise
classes! This result suggests two natural extensions that remain open. The first is
to obtain an analogue of their result for the standard classes of decision problems,
RP and BPP. (In [4], it is shown that such an extension cannot relativize.)
The second possible extension is to “scale” the result upwards. In fact, from
the hypothesis prRP ⊆ DT IME(t(n)), they obtain the conclusion prBPP ⊆
DT IME(poly(t(t(poly(n))))). Theorem 2, as proved in [2] and in this paper,
replaces the composition t(t(·)) with a single t(·) for the (very) special case
when the derandomization of prRP is via a hitting-set generator.

2 The Derandomization Procedure

Given L ∈ BPP, consider a probabilistic polynomial-time algorithm A for L. Let
ℓ = ℓ(n) be a fixed polynomial denoting the number of coin tosses made by A on

4 In a preliminary version of this work [7], we considered a different matrix such that
its (a, b)th entry represents the decision of the algorithm when using the random pad
a◦b. For that matrix to have the desired properties, it was necessary to first perform
drastic error reduction (using extractors) on the BPP algorithm, where this strategy
was inspired by [6]. The main simplification here is in avoiding this strategy.

5 Proposition 4 corresponds to the special case of Lemma 6 that refers to symmetric
matrices. Note that this special case actually suffices for our application.

59

inputs of length n; similarly, define s = s(n) such that the computation of A on
inputs of length n can be implemented by circuits of size s(n). We assume that
A has error probability at most 1/2ℓ(n); this can be achieved by straightforward
amplification of any BPP algorithm for L.

Let A(x, r) denote the output of algorithm A on input x ∈ {0, 1}n and
random-tape contents r ∈ {0, 1}ℓ(n). Our derandomization procedure, described
next, utilizes a hitting-set generator G as defined earlier (i.e., in Definition 1).

Derandomization procedure: On input x ∈ {0, 1}n, let A, ℓ, and s be as above.

1. Invoking the hitting-set generator G, obtain H ← G(ℓ , ℓ · s). That is, H is
a hitting set for circuits of size ℓ · s and input length ℓ. Denote the elements

of H by e1, ..., eN, where N
def
= NG(s) and each ei is in {0, 1}ℓ.

2. Construct an N-by-N matrix, M = (vi,j), such that vi,j = A(x, ei⊕ej). That
is, run A with all possible random-pads composed by XORing each of the
possible pairs of strings in H . (We merely use the fact that a⊕ b is easy to
compute and that for any a the mapping b 7→ a⊕ b is 1-1, and similarly for
any b and a 7→ a⊕ b.)

3. Using the procedure guaranteed by Lemma 6 (of Section 3 (below)), de-
termine whether for every ℓ columns there exists a row on which all these
columns have 1-value. If this procedure accepts, then accept, else reject. That
is, accept if and only if

∀c1, ..., cℓ ∈ [N] ∃r ∈ [N] s.t. ∧ℓ
i=1 (vci,r = 1). (1)

We first show that if x ∈ L, then Eq. (1) holds; and, analogously, if x 6∈ L, then

∀r1, ..., rℓ ∈ [N] ∃c ∈ [N] s.t. ∧ℓ
i=1 (vri,c = 0). (2)

Note that the foregoing description, by itself, does not establish the correctness
of the procedure. Neither did we specify how to efficiently implement Step 3,
To that end we use a general technical lemma (indeed Lemma 6) that implies
that it cannot be the case that both Eq. (1) and Eq. (2) hold. Furthermore, this
lemma asserts that one can efficiently determine which of the two conditions
does not hold. These aspects are deferred to the next section. But first we prove
the foregoing implications.

Proposition 5 (on the matrix constructed in Step 2): If x ∈ L (resp., x 6∈ L),
then Eq. (1) (resp., Eq. (2)) holds.

Proof: We shall prove a slightly more general statement. Let χL be the charac-
teristic function of L (i.e., χL(x) = 1 if x ∈ L and χL(x) = 0 otherwise). Then,
we next prove that, for every x ∈ {0, 1}n, for every ℓ rows (resp., columns) there
exists a column (resp., row) on which the value of the matrix is χL(x).

Fixing the input x ∈ {0, 1}n to algorithm A, we consider the circuit Cx which
takes an ℓ-bit input r and outputs A(x, r) (i.e., evaluates A on input x and coins
r). By our hypothesis regarding the error probability of A, it holds that

Prr∈{0,1}ℓ [Cx(r) 6= χL(x)] ≤
1

2ℓ .

60

It follows that for every y1, ..., yℓ ∈ {0, 1}ℓ, it holds that

Prz∈{0,1}ℓ [(∀i) Cx(yi ⊕ z) = χL(x)] ≥
1

2 .
(3)

Let y = (y1, ..., yℓ), and consider the circuit Cx,y(z)
def
= ∧ℓ

i=1(Cx(yi⊕z) = χL(x)).
Then, by the Eq. (3), it holds that Prz [Cx,y(z) = χL(x)] ≥ 1/2. On the other
hand, the size of Cx,y is merely ℓ times the size of Cx, which was at most s.
Thus, by definition of the hitting-set generator G, the set H = G(ℓ , ℓ · s) must
contain a string z such that Cx,y(z) = χL(x).

The foregoing holds for any y = (y1, ..., yℓ). Thus, for every y1, ..., yℓ ∈ H ⊆
{0, 1}ℓ, there exists z ∈ H such that A(x, yi⊕ z) = Cx(yi⊕ z) = χL(x) holds for
every i ∈ [ℓ]. Thus, we have proved that, for every ℓ rows in M , there exists a
column (in M) on which the value of the matrix is χL(x).

A similar argument applies to sets of ℓ columns in M . Specifically, for every
z1, ..., zℓ ∈ {0, 1}ℓ, it holds that

Pry∈{0,1}ℓ [(∀i) Cx(y ⊕ zi) = χL(x)] ≥
1

2 .
(4)

Again, we conclude that, for every z1, ..., zℓ ∈ H , there exists y ∈ H such that
Cx(y⊕ zi) = χL(x) holds for every i ∈ [ℓ]. Thus, for every ℓ columns in M there
exists a row (in M) on which the value of the matrix is χL(x). The proposition
follows. ⊓⊔

Digest. The foregoing procedure is a simplified version of the procedure given in
the preliminary version of this work [7]. Specifically, inspired by [6], the argument
in [7] relies on the explicit constructions of extractors for drastic error reduction
of the BPP algorithm. Here, we only use a mild (and trivial) error reduction.
This difference stems from the fact that the matrix considered in [7] is different
(i.e., the (a, b)th entry in the matrix considered in [7] represents the decision of
the algorithm when using the random pad a◦ b (rather than a⊕ b)). In contrast,
Steps 1 and 3 of the foregoing derandomization procedure are identical to the
steps in [7], and so is Lemma 6. Thus, our argument relies on two essential
ingredients: The first ingredient, adopted from [3], is the use of auxiliary circuits
(depending on Cx but not identical to it), in order to argue that a hitting-set
must have certain strong properties with respect to Cx. The second ingredient
is the constructive combinatorial result given by Lemma 6. (A third ingredient,
which consists of using extractors as in [7], is eliminated here.)

3 Correctness and Efficiency of the Derandomization

Proposition 5 shows that for every x either Eq. (1) or Eq. (2) holds. But, as stated
before, it is not even clear that Eq. (1) and Eq. (2) cannot hold simultaneously.
This is asserted next.

61

Lemma 6 (a generic technical lemma): For every k ≥ log2(n+1), every n-by-n
Boolean matrix either has k rows whose bit-wise disjunction is the all 1’s row, or
k columns whose bit-wise conjunction is the all 0’s column. Moreover, there is a
(deterministic) polynomial-time algorithm that given such a matrix find such a
set.

We prove the lemma momentarily. But first let use show that Eq. (1) and Eq. (2)
cannot hold simultaneously. We first note that in our case n = N = NG(s) and
k = ℓ, and furthermore n < 2ℓ (since there is no point in having G(ℓ, ·) contain
more than 2ℓ−1 + 1 < 2ℓ strings of length ℓ > 1). The claim then follows by
applying the following corollary to Lemma 6.

Corollary 7 (corollary to Lemma 6): For every n-by-n Boolean matrix and
every k ≥ log2(n + 1), it is impossible that both the following conditions hold:

1. For every k rows, there exists a column such that all the k rows have a
0-entry in this column.

2. For every k columns, there exists a row such that all the k columns have a
1-entry in this row.

Furthermore, assuming one of the foregoing conditions holds, deciding which one
holds can be done in (deterministic) polynomial-time.

Proof (of Corollary 7): Suppose Item (1) holds. Then, the bit-wise disjunction
of every k rows contains a 0-entry, and so it cannot be the all 1’s row. Likewise,
if Item (2) holds then the bit-wise conjenction of every k columns contains a
1-entry, and so it cannot be the all 0’s column. Thus, the case in which both
items holds stands in contradiction to Lemma 6. Furthermore, finding a set as
in the lemma indicates which of the two items does not hold. ⊓⊔

Proof of Lemma 6: Let B = (br,c) be an arbitray n-by-n Boolean matrix, and
consider the following iterative procedure, initiated with C0 = [n] and R = ∅.
For i = 1, 2, ..., take a row r not in R that has at least |Ci−1|/2 1’s in Ci−1 (i.e.,
r ∈ [n] \ R such that |{c∈Ci−1 : br,c =1}| ≥ |Ci−1|/2). Add r to R, and let Ci

be the part of Ci−1 that had 0’s in row r (i.e., Ci
def
= {c∈Ci−1 : br,c = 0}). We

get stuck if for any i, no row in the current set [n] \ R has at least |Ci−1|/2 1’s
in Ci−1. Otherwise, we terminate when Ci = ∅

If we never get stuck, then we generated at most log2(n + 1) ≤ k rows (since
|Ci| ≤ |Ci−1|/2, which implies that |C⌈log

2
(n+1)⌉| < 1). Furthermore, the bit-wise

disjunction of these rows is the all 1’s row (i.e., for the final R and every c ∈ [n],
it holds that ∨r∈Rbr,c = 1), since the ith row in R has 1-entries in every column
in Ci−1 \ Ci, and the last Ci is empty.

On the other hand, if we got stuck at iteration i, then we let S = Ci and
note that every row of B has at least |S|/2 0’s in the columns S. (This includes
the rows in the current R, which each have 0’s in all the columns in S ⊂ Ci−1 ⊂
· · · ⊂ C0.) In this case, an argument analogous to Adlemam’s proof [1] that

62

RP ⊆ P/poly implies that there exist a set of k columns C that contains a
0-entry in every row (i.e., for every r ∈ [n], it holds that ∧c∈Cbr,c = 0).6

Turning to the algorithmics, note that the foregoing procedure for construct-
ing R, S and C is implementable in polynomial-time. Thus, in case the “row”
procedure was completed successfully, we may output the set of rows R, and
otherwise the set C of columns. ⊓⊔

Proof of Theorem 2: Proposition 5 shows that for every x either Eq. (1)
or Eq. (2) holds, and furthermore that the former (resp., latter) holds whenever
x ∈ L (resp., x 6∈ L). As mentioned above, by applying Corollary 7, it follows that
only one of these equations may hold. Using the decision procedure guaranteed by
Corollary 7, we implement Step 3 in our derandomized procedure, and Theorem 2
follows. ⊓⊔

A finer analysis. For a BPP algorithm that uses ℓ coin tosses and can be im-
plemented by circuits of size s, our derandomization only invokes the hitting-set
generator with parameters (ℓ, s · ℓ), and otherwise it runs in polynomial time.
However, if the algorithm only has constant error probability, we must first
reduce the error to 1/2ℓ, which increases these parameters somewhat. Using
standard error reduction (running the algorithm O(log ℓ) times independently
and ruling by majority), we obtain the following more quantitative version of
our result:

Theorem 8 (Theorem 2, refined): Suppose there is a hitting set generator G
such that G(ℓ, s) is computable in time t(ℓ, s). Let L be a problem with a constant-
error BPP algorithm that, on inputs of length n, uses ℓ = ℓ(n) coin tosses and
can be implemented by circuits of size s = s(n). Then,

L ∈ DT IME(poly(t(ℓ′, s · ℓ′))),

where ℓ′ = O(ℓ log ℓ).

We comment that, by using random walks on expanders for error reduction, one
can replace t(ℓ′, s · ℓ′) by t(ℓ′′, s · ℓ′), where ℓ′′ = ℓ + O(log ℓ)≪ ℓ′.

Acknowledgments

The second author thanks Adam Klivans for explaining [7] to him.

6 Let us spell out the argument in the current setting. We initiate an iterative process
of picking columns from S such that at each iteration we pick a column that covers
the largest number of 0’s in the remaining rows. That is, we initialize R0 = [n] and
C = ∅, and for j = 1, 2, ..., take a column c not in C that has a maximal number of
0’s in Ri−1, add c to C, and let Rj be the part of Rj−1 that has 1’s in column c (i.e.,

Rj
def
= {r∈Ri−1 : br,c =1}). The point is that, by our hypothesis, for the current C,

the submatrix Rj−1 × (S \C) contains at least |Rj−1| · |S|/2 0’s, and therefore there
exists a column c ∈ S \ C such that |{r∈Ri−1 : br,c =0}| ≥ |Rj−1|/2.

63

References

1. L. Adleman. Two theorems on random polynomial-time. In 19th FOCS, pages
75–83, 1978.

2. A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandom-
ization method. Journal of the Association for Computing Machinery (J. of
ACM), 45(1), pages 179–213, 1998.
Hitting Sets Derandomize BPP. In XXIII International Colloquium on Algo-
rithms, Logic and Programming (ICALP’96), 1996.

3. A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim and L. Trevisan, Weak Ran-
dom Sources, Hitting Sets, and BPP Simulations. To appear in SIAM J. on
Comput.. Preliminary version in 38th FOCS, pages 264–272, 1997.

4. H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Pro-
ceedings of the 16th Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science, Springer, Berlin, 1999.

5. S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Inform. and Control, Vol. 61,
pages 159–173, 1984.

6. O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and
more). This volume. See also ECCC, TR97-045, 1997.

7. O. Goldreich and A. Widgerson. Improved derandomization of BPP using a
hitting set generator. Proceedings of Random99, LNCS 1671, Springer, pages
131–137, 1999.

8. R. Impagliazzo and A. Wigderson. P=BPP unless E has Subexponential Cir-
cuits: Derandomizing the XOR Lemma. In 29th STOC, pages 220–229, 1997.

9. C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing
Letters, Vol. 17, pages 215–217, 1983.

10. M. Sipser. A complexity-theoretic approach to randomness. In 15th STOC,
pages 330–335, 1983.

11. D. Zuckerman. Simulating BPP Using a General Weak Random Source. Al-
gorithmica, Vol. 16, pages 367–391, 1996.

