
Contemplations on Testing Graph Properties

Oded Goldreich

Abstract. This article documents two programmatic comments regard-
ing testing graph properties, which I made during the Dagstuhl workshop
on Sublinear-Time Algorithms (July 2005). The first comment advocates
paying more attention to the dependence of the tester’s complexity on
the proximity parameter. The second comment advocates paying more
attention to the question of testing general graphs (rather than dense
or bounded-degree ones). In addition, this article includes a suggestion
to view and discuss property testing within the framework of promise
problems.

Keywords: Property testing, graph properties

An early version of this memo appeared on the author’s webpage (in July 2005).
The current revision is intentionally minimal. For a review of some subsequent
developements, the interested reader is directed to [15].

Preliminaries. We assume that the reader is familiar with the basic models and
results regarding testing graph properties (see surveys [15, 28]).

1 Complexity as a function of the proximity parameter

It is indeed an amazing fact that many properties can be tested within (query)
complexity that only depends on the proximity parameter (rather than also on
the size of the object being tested). This amazing statement seems to put in
shadow the question of what is the form of the aforementioned dependence,
and blurs the difference between a reasonable dependence (e.g., a polynomial
relation) and prohibiting one (e.g., a tower-function relation). We claim that, as
in the context of standard approximation problems (cf. [25]), the dependence of
the complexity on the approximation (or proximity) parameter is a key issue.

For the sake of simplicity we focus on the query complexity of testers, and
assume that it only depends on the proximity parameter ǫ. We highlight the
difference between the following types of dependencies, where ǫ-testing refers to
distinguishing between objects that have the property and objects that are ǫ-far
from having the property:

1. The query complexity is linearly related to the proximity parameter; that is,
ǫ-testing can be achieved by using O(1/ǫ) queries.

402

We note that, for any non-trivial graph property, the query complexity of
ǫ-testing in the adjacency matrix model is Ω(1/ǫ) (see [22, Prop. 6.1]).1 The
same lower-bound holds in the bounded-degree incidence list model.

2. The query complexity is polynomially related to the proximity parameter;
that is, ǫ-testing can be achieved by using poly(1/ǫ) queries.

For example, all graph property testers in [17] have query complexity poly(1/ǫ).
We note, however, that some of these testers (e.g., the one for 3-colorability)
have time complexity that is exponential in the proximity parameter ǫ, and
this seems unavoidable assuming that NP does not have sub-exponential
time algorithms. We wish to praise [4, 10] for further studying the query
complexity of testing k-colorability, and in particular for determining the
query complexity of non-adaptively testing bipartiteness (up to a polyloga-
rithmic factor).2

A natural problem that is ǫ-testable within query complexity that only de-
pends on ǫ, but requires a super-polynomial dependency on 1/ǫ was pointed
out by Alon [1]. He proved that ǫ-testing triangle-freeness requires at least
(1/ǫ)Ω(log(1/ǫ)) queries. We comment that this is quite far from the known
upper-bound (mentioned in Item 4).

3. The query complexity is exponentially related to the proximity parameter;
that is, ǫ-testing can be achieved by using exp(1/ǫ) queries.

We are not aware of any natural testing problem having this query complex-
ity.

4. The query complexity is related to the proximity parameter via a function
that grows tremendously fast. A notorious example is the tower function tf

defined inductively by tf(n) = exp(tf(n − 1)) with tf(1) = 2. (Indeed, tf
is the inverse of the log∗ function.)

Starting in [2], many positive results regarding testing graph properties in
the adjacency matrix model establish such a query complexity; that is, they
establish ǫ-testers of query complexity tf(poly(1/ǫ)) (and sometimes even
a tower of towers). In particular, ǫ-testing triangle freeness is known only
when using tf(poly(1/ǫ)) queries. This dependence is an artifact of these
results’ application of the Regularity Lemma (or stronger variants of it).

We wish to stress that we do value the impressive results of [2, 5, 6, 14], which
refer to graph testers having query complexity that is independent of the graph
size but depend prohibitingly on the proximity parameter. We view such results
as an impressive first step, which called for further investigation directed at de-
termining the actual dependency of the complexity on the proximity parameter.

1 This result was conjectured in the earlier version, which mentioned the weaker lower
bound of Ω(

p
1/ǫ), which is easier to establish.

2 Alon and Krivelevich [4] presented an ǫ-tester that inspects the subgraph induced

by eO(1/ǫ) randomly chosen vertices (thus making eO(1/ǫ2) non-adaptive queries),
whereas Bogdanov and Trevisan [10] prove a lower-bound of Ω(1/ǫ2) non-adaptive
queries (and Ω(1/ǫ3/2) adaptive queries).

403

Addendum (2006): Recently, Alon et. al. [3] established a combinatorial char-
acterization of graph properties that are testable using a number of queries that
is independent of the graph size. This characterization provides a seemingly ul-
timate answer to the qualitative question of which graph properties are testable
within query complexity that is independent of the graph size and sets the stage
for a quantitative study of the said query complexity.

2 Models of testing graph properties

The bulk of algorithmic research regarding graphs refers to general graphs. Of
special interest are graphs that are neither very dense nor have a bounded-
degree. In contrast, research in testing properties of graphs started (in [17]) with
the study of dense graphs, next (starting in [18]) bounded-degree graphs were
considered, and general graphs were considered only in [27, 26]. This evolution
has historical reasons to be reviewed first.

Testing graph properties was initially conceived (in [17]) as a special case of
the general framework of testing properties of functions (cf. [29]). Thus, graphs
had to be represented by functions, and two standard representations of graphs
seemed most fitting in this context:

1. The adjacency matrix representation [17]: That is, a graph G = (V, E) is
represented by a function g : V × V → {0, 1} such that g(u, v) = 1 if and
only if {u, v} ∈ E. This representation corresponds to the so-called adjacency

queries, and suggests that the (relative) distance between graphs be mea-
sured as the fraction of vertex-pairs on which the corresponding adjacency
matrices differ.
Needless to say, when considering ǫ-testing, this model is interesting mostly
for ǫ-dense graphs (i.e., graphs G = (V, E) such that 2|E| > ǫ|V |2).
(A partial list of the works done in this model includes [1, 2, 4–7, 10, 14, 17,
23].)

2. The (bounded-degree) incidence list representation [18]: Specifically, for a
fixed integer d, the graph G = (V, E) is represented by a function g : V ×
[d] → V ∪{⊥} such that g(u, i) = v if v is the ith neighbor of u and g(u, i) = ⊥
if u has less than i neighbors. This representation corresponds to the so-called
neighbor queries, and suggests that the (relative) distance between graphs be
measured as the fraction of vertex-index pairs on which the corresponding
incidence lists differ.
Needless to say, this model can only be applied to graphs of maximum degree
d. Indeed, we may take d to be arbitrary large, but in this case the model is
interesting mostly for ǫ-testing graphs having average degree at least ǫd.
(Work done in this model includes [9, 18–20].)

The reader may note that both models were formulated in a way that identifies
the graphs with a specific functional representation, which in turn defines the
type of queries allowed to the tester as well as the notion of fractional distance
(which underlies the performance guarantee).

404

The identification of graphs with any specific functional representation was
abandoned by Parnas and Ron [27] who developed a more general model by
decoupling the type of queries allowed to the tester from the distance mea-
sure: Whatever is the mechanism of accessing the graph, the distance between
graphs is defined as the number of edges in their symmetric difference (rather
than the number of different entries with respect to some specific functional rep-
resentation). Furthermore, the relative distance may be defined as the size of
the symmetric difference divided by the actual (total) number of edges in both
graphs (rather than divided by some (possibly non-tight) upper-bound on the
latter quantity). As advocated by Kaufman et. al. [26], it may be reasonable to
allow the tester to perform both adjacency and neighbor queries (and indeed
each type of query may be useful in a different range of edge densities). Needless
to say, this model seems adequate for the study of testing properties of arbitrary
graphs, and it strictly generalizes the positive aspects of the two prior models
(i.e., the models based on the adjacency matrix and bounded-degree incidence
list representations).

We wish to advocate further study of the latter model. We believe that this
model, which allows for a meaningful treatment of property testing of general
graphs, is the one that is most relevant to computer science applications. Fur-
thermore, it seems that designing testers in this model requires the development
of algorithmic techniques that may be applicable also in other areas of algorith-
mic research. As an example, we mention that techniques in [26] that underly
the average degree approximation of [21]. (Likewise techniques of [18] underly
the minimum spanning tree weight approximation of [11]; indeed, as noted next,
the bonuded-degree incidence list model is also more algorithmic oriented than
the adjacency matrix model.)

Let us focus on the algorithmic contents of property testing of graphs. We
first note that, ignoring a quadratic blow-up in the query complexity, property
testing in the adjacency matrix representation reduces to sheer combinatorics:
To ǫ-test if G has property P, it suffices to check whether a random induced graph
(of adequate size) of G has some “related” property P

′ (see [23]).3 In contrast,

3 In the original version of this article we wrote:

We mention that the transformation of [23] may increase the query complexity
in a quadratic manner. It is conceivable that an adaptive tester (which is less
dull from an algorithmic perspective) may perform better than the canonical
tester of [23] (which merely examines a random induced subgraph).

In fact, this possibility has subsequently materialized in [24] and [22]. In view of these
works, we feel that the foregoing sentiments (i.e., “reduction to sheer combinatorics”)
were somewhat overstated. As argued in Section 1, one should not dismiss the exact
dependence of the complexity on ǫ, and it seems that algorithmic ideas can contribute
to reducing the complexity by a constant power. We do not recall our thoughts
regarding this matter in July 2005, but it seems that we did not really believe in
the possibility that we mentioned as conceivable (i.e., that an adaptive tester may
perform better than a canonical tester), let alone when natural graph properties
were concerned.

405

property testing in the incidence list representation employs some non-trivial
algorithmic techniques such local search (cf. [18]) and random walks (cf. [19]).
Testers in the general (“flexible”) graph models seem to require even more algo-
rithmic ideas (cf. [26]).

To summarize, we advocate further study of the model of [27, 26] for two
reasons. The first reason is that we believe in the greater relevance of this model
to computer science applications. The second reason is that we believe in the
greater potential of this model to have cross fertilization with other branches of
algorithmic research.

A parenthetical comment: We seize the opportunity to call attention also to the
study of testing properties of directed graphs, initiated in [8].

3 Property testing as a type of a promise problem

We advocate viewing property testing within the framework of promise problems,
a framework introduced in [12] (see relatively recent survey [16]). Formally, a
promise problem is a partition of the set of all strings into three subsets:

1. The set of strings representing yes-instances.
2. The set of strings representing no-instances.
3. The set of disallowed strings (which represent neither yes-instances nor no-

instances).

The algorithm (or process) that is supposed to solve the promise problem is re-
quired to distinguish yes-instances from no-instances, and is allowed arbitrary
behavior on inputs that are neither yes-instances nor no-instances. Intuitively,
this algorithm (or rather its designer) is “promised” that the input is either
a yes-instance or a no-instance, and is only required to distinguish these two
cases. This generalizes the standard notion of a decision problem, in which each
string is either a yes-instances or a no-instance.

Gap problems constitute a special type of promise problems in which in-
stances are partitioned according to some metric leaving a “gap” between yes-
instances and no-instances. Standard approximation problems refer to one such
type of metric in which instances are positioned according to the value of the
best corresponding “solution” (with respect to some predetermined objective
function). Property testing refer to a second type of metric in which instances
are positioned according to their distance from the set of objects that satisfy
some predetermined property.

Indeed, property testing is a relaxation of decision problems, where this re-
laxation leaves a gap between instances that should be accepted (with high
probability) and instances that should be rejected (with high probability). The
former contain all instances that have the predetermined property, whereas the
latter contain all instances that are “far from having the property” (i.e., being
at large distance from any instance in the former set). Typically, the distance (or
proximity) parameter is given as input to the tester, which makes the positive

406

results stronger and more appealing (especially in light of a separation showed
in [7]). In contrast, negative results typically refer to a fixed value of the distance
parameter.

Thus, for any property P and any distance function (e.g., Hamming distance
between bit strings), two natural types of promise problems emerge:

1. Testing w.r.t variable distance: Here instances are pairs (x, δ), where x is a
description of an object and δ is a distance parameter. The yes-instances
are pairs (x, δ) such that x has property P, whereas (x, δ) is a no-instance if
x is δ-far from any x′ that has property P.

2. Testing w.r.t a fixed distance: Here we fix the distance parameter δ, and so
the instances are merely descriptions of objects, and the partition to yes

and no instances is as above.

For example, for some fixed integer d, consider the following promise problem, de-
noted BPGd, regarding bipartiteness of bounded-degree graphs. The yes-instance
are pairs (G, δ) such that G is a bipartite graph of maximum degree d, whereas
(G, δ) is a no-instance if G is an N -vertex graph of maximum degree d such that
more than δ · dN/2 edges must be omitted from G in order to obtain a bipartite
graph. Similarly, for fixed integer d and δ > 0, the promise problem BPGd,δ has
yes-instances that are bipartite graphs of maximum degree d and no-instances
that are N -vertex graphs of maximum degree d such that more than δ · dN/2
edges must be omitted from the graph in order to obtain a bipartite graph. In [18]
it was shown that any tester for BPG3, 0.01 must make Ω(

√
N) neighbor queries.

In contrast, for every d and δ, the tester presented in [19] decides BPGd,δ in time

Õ(
√

N/poly(δ)). In fact, this algorithm decides BPGd in time Õ(
√

N/poly(δ)),
where N and δ are explicitly given parameters.

The formulation typically used in the literature. Indeed, all research on prop-
erty testing refers to the two aforementioned types of promise problems, where
typically positive results refer to the first type and negative results refer to the
second type. However, most works do not provide a strictly formal statement
of their results (see further discussion next), because the formulation is rather
cumbersome and straightforward. Furthermore, in light of the greater focus on
positive results (and in accordance with the traditions of algorithmic research),
such a formal statement is believed to be unnecessary.4 Let us consider what is
required for a formal statement of property testing results.

– The starting point is a specification of a property and a distance function,
the combination of which yields a promise problem (of the first type).
[Needless to say, this starting point is common to all property testing work,
but the fact that it constitutes a promise problem is rarely stated.]

4 Needless to say, a higher level of rigor is typically required in negative statements.
Indeed, property testing is positioned between algorithmic research and complexity
theory, and seems to be more influenced by the mind-frame of algorithmic research.
(We comment that the positioning of a discipline is determined both by its contents
and by sociology-of-science factors.)

407

– The first step is to postulate that the potential “solvers” (i.e., property
testers) are probabilistic oracle machines that are given oracle access to the
“primary” input (i.e., the object in the aforementioned problem types).
[Indeed, this step need to be taken and is taken in all works in the area.]

– Secondly, for a formal asymptotic complexity statement, one needs to specify
the “secondary” (explicit) inputs, which consist of various problem-dependent
parameters (e.g., N and d in the foregoing examples) and the distance pa-
rameter δ (in case of BPGd and any other problem of the first aforementioned
type).
[This step is rarely done explicitly in the literature. The importance of this
step is highlighted in [6, 7], which explicitly distinguish testers that decide
obliviously of N from general testers the decision of which may depend on
N even in case their query complexity is independent of N .]

– Finally, one should state the complexity of the tester in terms of these explicit
inputs.
[Needless to say, this is always done...]

Thus, the only step that is acutely missing in typical works is a rigorous defi-
nition of the relevant explicit inputs (especially, the various problem-dependent
parameters). Regardless of whether or not one explicitly uses the promise prob-
lem formulation, we suggest to be more careful about specifying the (problem-
dependent) explicit inputs given to the tester.

References

1. N. Alon. Testing subgraphs of large graphs. Random Structures and Algo-

rithms, Vol. 21, pages 359–370, 2002.
2. N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large

Graphs. Combinatorica, Vol. 20, pages 451–476, 2000.
3. N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Character-

ization of the Testable Graph Properties: It’s All About Regularity. In 38th

STOC, pages 251–260, 2006.
4. N. Alon and M. Krivelevich. Testing k-Colorability. SIAM Journal on

Disc. Math., Vol. 15 (2), pages 211-227, 2002.
5. N. Alon and A. Shapira. Every Monotone Graph Property is Testable. In 37th

STOC, pages 128–137, 2005.
6. N. Alon and A. Shapira. A Characterization of the (natural) Graph Properties

Testable with One-Sided. In 46th FOCS, to appear, 2005.
7. N. Alon and A. Shapira. A Separation Theorem in Property Testing. Unpub-

lished manuscript, 2004.
8. M. Bender and D. Ron. Testing acyclicity of directed graphs in sublinear time.

Random Structures and Algorithms, pages 184–205, 2002.
9. A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-

colorability in bounded-degree graphs. In 43rd FOCS, pages 93–102, 2002.
10. A. Bogdanov and L. Trevisan. Lower Bounds for Testing Bipartiteness in

Dense Graphs. In IEEE Conference on Computational Complexity, pages 75–
81, 2004.

408

11. B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum
spanning tree weight in sublinear time. In 19th ICALP, pages 190–200, 2001.

12. S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Inform. and Control, Vol. 61,
pages 159–173, 1984.

13. E. Fischer. The art of uninformed decisions: A primer to property testing. Bul-

letin of the European Association for Theoretical Computer Science, Vol. 75,
pages 97–126, 2001.

14. E. Fischer and I. Newman. Testing versus estimation of graph properties. In
37th STOC, pages 138–146, 2005.

15. O. Goldreich. Introduction to Testing Graph Properties. This volume.
16. O. Goldreich. On Promise Problems: In memory of Shimon Even (1935–2004).

ECCC, TR05-018, January 2005.
17. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. Journal of the ACM, pages 653–750, July
1998.

18. O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-

rithmica, pages 302–343, 2002.
19. O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree

graphs. Combinatorica, Vol. 19 (3), pages 335–373, 1999.
20. O. Goldreich and D. Ron. On Testing Expansion in Bounded-Degree Graphs.

ECCC, TR00-020, March 2000.
21. O. Goldreich and D. Ron. Approximating Average Parameters of Graphs.

ECCC, TR05-073, July 2005.
22. O. Goldreich and D. Ron. Algorithmic Aspects of Property Testing in the

Dense Graphs Model. ECCC, TR08-039, 2008.
23. O. Goldreich and L. Trevisan. Three theorems regarding testing graph prop-

erties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August
2003.

24. M. Gonen and D. Ron. On the Benefit of Adaptivity in Property Testing of
Dense Graphs. In Proc. of RANDOM’07, LNCS Vol. 4627, pages 525–539,
2007. To appear in Algorithmica (special issue of RANDOM and APPROX
2007).

25. D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS,
1996.

26. T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipar-
titeness in General Graphs. SIAM Journal on Computing , Vol. 33 (6), pages
1441–1483, 2004.

27. M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures

and Algorithms, Vol. 20 (2), pages 165–183, 2002.
28. D. Ron. Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS, Vol. 5 (2), pages 73–205, 2010.
29. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with

applications to program testing. SIAM Journal on Computing, 25(2), pages
252–271, 1996.

