
On Security Preserving Reductions – Revised

Terminology

Oded Goldreich

Abstract. Many of the results in Modern Cryptography are actually
transformations of a basic computational phenomenon (i.e., a basic prim-
itive, tool or assumption) to a more complex phenomenon (i.e., a higher
level primitive or application). The transformation is explicit and is al-
ways accompanied by an explicit reduction of the violation of the security
of the complex phenomenon to the violation of the simpler one. A key
aspect is the efficiency of the reduction. We discuss and slightly modify
the hierarchy of reductions originally suggested by Leonid Levin.

Keywords: Foundations of Cryptography, Complexity, Reductions.

An early version of this article appeared as ePrint Report 2000/001. The current
revision is quite minimal.

1 Introduction

Modern Cryptography is concerned with the construction of efficient schemes
for which it is infeasible to violate the security feature. Thus, we need a notion of
efficient computations as well as a notion of infeasible ones. The computations
of the legitimate users of the scheme ought to be efficient, whereas violating
the security features (via an adversary) ought to be infeasible. Our notions of
efficient and infeasible computations are “asymptotic” (or rather functional):1

They refer to the running time as a function of the security parameter. This is
done in order to avoid cumbersome formulations that refer to the actual running-
time on a specific model for specific values of the security parameter. Still, one
can easily derive such specific statements from the asymptotic treatment.

Efficient computations are commonly modeled by computations that are poly-
nomial-time in the security parameter. The polynomial bounding the running-
time of the legitimate user’s strategy is fixed and typically explicit and small
(still in some cases it is indeed a valuable goal to make it even smaller). Here
(i.e., when referring to the complexity of the legitimate user) we are in the same
situation as in any algorithmic research. Things are different when referring
to our assumptions regarding the computational resources of the adversary. A
common approach is to postulate that the latter are polynomial-time too, where

1 Actually, the term “asymptotic” is misleading, since from the functional treatment of
the running-time (as a function of the security parameter), one can derive statements
for any value of the security parameter.



2

the polynomial is not a-priori specified. In other words, the adversary is restricted
to the class of efficient computations and anything beyond this is considered
to be infeasible. Although many definitions explicitly refer to this convention,
this convention is inessential to all known results (in the area). In all cases, a
more general (and yet more cumbersome) statement can be made by referring
to adversaries of running-time bounded by any function (or class of functions).
For example, for any function T : N → N (e.g., T (n) = 2

3
√

n), we may consider
adversaries that on security parameter n run for at most T (n) steps. Doing so
we (implicitly) define as infeasible any computation that (on security parameter
n) requires more than T (n) steps.

The results obtained in Modern Cryptography are in most cases conditional
ones. That is, based on some relatively simple intractability assumptions (e.g.,
the existence of one-way functions [3, Chap. 2]) one constructs and establishes
the security of more complex applications (e.g., unforgeable signature schemes [3,
Chap. 6]). In many cases these results are stated in an oversimplified form, where
a typical form reads if the function f cannot be inverted in polynomial-time, then
the scheme Sf (which utilizes f) cannot be broken in polynomial-time. However,
what is actually proved in such works is stronger. Typically, the proof of security
of Sf specifies, for any function T : N→N, a function T ′ : N→N such that if f
cannot be inverted on n-bit images in time T (n), then Sf cannot be broken on
inputs of length m in time T ′(m). Furthermore, typically, the relation between
T ′ and T takes the form

T ′(m) =
p−1

2
(T (p−1

1
(m)))

p3(m)
, (1)

where p1, p2, p3 are some fixed polynomials. Such a relation results from the fact
that the proof utilizes a reduction of the task of inverting f on strings of length
n to the task of breaking Sf on strings of length p1(n). Thus, assuming on the
contrary to the security claim that Sf can be broken in time T ′(m) on inputs of
length m = p1(n), one obtains an algorithm inverting f on inputs of length n in
time T (n) ≤ p3(p1(n)) · p2(T

′(p1(n))).
It should be clear (and it is indeed well-known) that the aforementioned

relation between T and T ′ determines the strength of the theoretical result as
well as its potential practical applicability. Specifically, in almost all the cases
the relation takes the form of Eq. (1), and in these cases one is interested in the
specific polynomials p1, p2, p3.

The purpose of this note is to discuss a popular classification of such reduc-
tions, attributed to Leonid Levin and presented in [12]. We suggest to modify
this classification a little.

2 Preliminaries

Actually, the foregoing discussion is over-simplified, because it refers only to
the running-time of the violating algorithms (and implicitly suggesting that we
talk of algorithms that succeed always or almost always). In many cases, the



3

statements are more complex, referring both to the running-time of algorithms
and to a (probabilistic) measure of success. Two such common measures are

1. The success probability of easily verified events. For example, the success
probability of an inverting algorithm (for a specific one-way function), or
the success probability of a forging algorithm (for a signature scheme).

2. The gap in probability between two experiments. An archetypical example is
the notion of computational indistinguishability. Here, for two distributions
ensembles, {Xn} and {Yn}, we consider the gap between the probability
that an algorithm A outputs 1 on input Xn and the probability A does
so on input Yn. Thus, definitions such as security of encryption schemes [7],
pseudorandomness [1, 13, 4], and (computational) zero-knowledge [8] fall into
this category.

The distinction between the foregoing two types is crucial for Levin’s suggestion
to incorporate the running-time and the success measure into a single measure
(see Section 2.2). Note that in order to succeed with probability at least 2/3 in
an attempt of the first type one has to repeat trying for Θ(1/ǫ(n)) times, where
ǫ(n) is the success probability in a single attempt. On the other hand, in order
to amplify a distinguishing gap of ǫ(n) into a gap of 2/3 we need to repeat the
experiment(s) for Θ(1/ǫ(n)2) times.2

2.1 The general form of security reductions

Before presenting Levin’s approach, let us present the general form that most
results take. Typically, one starts with a basic primitive, denoted f (for sake
of uniformity with the Introduction), and constructs a scheme Sf . (Each of the
two is coupled with its own notion of violation, determining the measure of
success.) The proof of security of Sf is by a reduction to violation of security
of f . That is, such a proof shows, for any t′ : N → N and e′ : N → R, how to
convert an algorithm violating Sf with time complexity t′ and success measure
e′ into an algorithm for violating f with time complexity t and success measure
e. Calling the former an Sf -violator and the latter an f -violator, the conversion
is by a reduction that typically specifies polynomials p1, p2, ..., p7 such that on
input of length n the f -violator invokes the Sf -violator on inputs of length
m = p1(n), and satisfies t(n) = p2(t

′(m)) · p3(1/e′(m)) · p4(m) as well as e(n) =
p5(e

′(m)) · p6(1/t(m)) · p7(1/m). It follows that, for any function T :N→N and
ǫ : N → R, if f cannot be violated on n-bit inputs in time T (n) with success
measure ǫ(n), then Sf cannot be violated on m-bit inputs in time T ′(m) with
success measure ǫ′(m), where T ′ and ǫ′ may be any pair of functions satisfying

T (p−1

1
(m)) = p2(T

′(m)) · p3(1/ǫ′(m)) · p4(m) (2)

ǫ(p−1

1
(m)) =

p5(ǫ
′(m))

p6(T (m)) · p7(m)
(3)

2 The above discussion refers to an abstract experiment (or pair of experiments).
When applied to the examples given above, repeating the experiment means things
like inverting a one-way function on one of several independently selected images, or
distinguishing between multiple samples of two ensembles.



4

where p1, p2, ..., p7 are the polynomials specified above. (Assuming, on the con-
trary, that Sf can be violated on m-bit inputs in time T ′(m) with success measure
ǫ′(m), implies – via the reduction – violation of f on n-bit inputs in time T (n)
with success measure ǫ(n).)

2.2 Levin’s notion of work

In order to simplify treatments as above, Levin suggested to incorporate the
running-time and the success-measure of each violating algorithm into a single
measure called work. The foregoing distinction between easily verifiable and non-
verifiable success measures is crucial to his suggestion. For a verifiable success
measure, the work of an algorithm A with running-time tA :N→N and success

measure ǫA : N→ R is defined as wA(n)
def
= tA(n)/ǫA(n). For a (non-verifiable)

success measure of the gap type, the work of an algorithm A with running-time

tA :N→N and success measure ǫA :N→R is defined as wA(n)
def
= tA(n)/ǫ2A(n).

(We stress that the definition of work is problem specific and ad-hoc in nature.)3

In the sequel, we shall adopt Levin’s simplification. A reader feeling uncom-
fortable with this choice, may consider only algorithms with constant success
measure (in which case work is identical to time (up-to a constant factor)). Se-
curity will be defined as a (possibly postulated) lower bound on the work of
violating algorithms. For example, one may assume that the security of fac-
toring is exp(n1/4), and infer (based on this assumption)4 that pseudorandom
generators of security exp(n1/4) exist.

Definition (security): Let Π be some primitive with an associated notion of
violation that specifies a notion of success measure and induces a notion of work
of violating algorithms. We say that Π has security S : N→N if any algorithm
A violating Π has work function that grows faster than S.

3 Levin’s Hierarchy of Reductions (revisited)

In order to demonstrate the different quality of certain reductions, Levin has sug-
gested three types of reductions, which were later canonized in Luby’s book [12].
Letting S :N→N denote the security of the basic primitive, and S′ :N→N the
security of the complex primitive constructed from the former, the three types
of reductions are:

(L1) A reduction is linearly preserving if it guarantees S′(n) ≥ S(n)/poly(n).
(L2) A reduction is polynomially-preserving if it guarantees S′(n) ≥ S(n)e/poly(n),

for some constant e > 0.

3 The abstract discussion above does not fully justify the definition (see Footnote 2).
Furthermore, other functionalities of running-time and success-measure may make
sense too.

4 See [2, Sec. 3.4].



5

(L3) A reduction is weakly-preserving if it guarantees S′(n) ≥ S(nd)e/poly(n),
for some constants d, e > 0.

Levin has noted that, for nicely-behaved security measures, a reduction that
guarantees S′(n) ≥ S(n/d)e/poly(n), for some constants d, e > 0, is also polynomially-
preserving. The argument is based on the fact that in our context all primitives
are breakable within exponential time (i.e., time 2n on input length n), and so
one may assume without loss of generality that S(n) ≤ 2n. Furthermore, for
“nicely-behaved” functions S, which are exponentially bounds, and for c > 1
one may expect that S(cm) ≤ S(m)c holds. Thus, S′(n) ≥ S(n/d)e/poly(n) ≥
S(n)ed/poly(n). Still, it seems inappropriate to identify the effect of e and d in
a guarantee such as the foregoing (L2). Furthermore, when doing so, we lose
an important distinction, which is represented in the gap between the following
Types (T2) and (T3).

3.1 The revised hierarchy

(T1) A reduction is strongly preserving if it guarantees S′(n) ≥ S(n)/poly(n).
(This is identical to (L1) above.)

(T2) A reduction is linearly-preserving if, for some constant c ≥ 1, it guarantees

S′(n) ≥
S(n/c)

poly(n)

(This extends (T1), where c = 1, in an important way.)
(T3) A reduction is polynomially-preserving if, for some constants c ≥ 1 and

e > 0, it guarantees

S′(n) ≥
S(n/c)e

poly(n)

(Formally, (T3) extends (L2), where c = 1; but, for “nicely behaved se-
curity measures” (see the foregoing discussion), type (T3) is equivalent to
type (L2).)

(T4) A reduction is weakly-preserving if, for some constants c, d, e > 0, it guar-
antees

S′(n) ≥
S(cnd)e

poly(n)

(This is equivalent to (L3) above.)

Thus, we replace (L2) by the two distinct categories (T2) and (T3).

3.2 Discussion

On the relation between (T2), (T3) and (L2). Levin’s category (L2) is a special
case of our (T3). In light of the discussion about, we believe that Levin himself
would not care much about the extension of (L2) to (T3). In contrast, we believe
that the distinction between Types (T2) and (T3) is very important.



6

We note that many claims made by Luby [12] regarding (L2) actually refer
to either (T2) or (T3), and are valid for (L2) only under the above assumption
(i.e., S(cn) ≤ S(n)c, for every constant c > 1) which collapses (T3) into (L2).
Furthermore, when referring to (L2) one losses the important distinction between
Types (T2) and (T3). These considerations are examplified by considering the
following results.

– A hard-core predicate for any one-way function [6]: The original reduc-
tion of [6] (as well as the better known alternative reduction (as presented
in [2, §2.5.2.1–3])) is of Type (T3).5 In contrast, the improved reduction of
Levin [11] (see also [2, §2.5.2.4]) is of Type (T2).

– Security-preserving amplification of one-way function [5]: The reduction demon-
strating this result for the case of one-way permutations is of Type (T2). In
contrast, the known reduction (of [5]) for the case of regular one-way func-
tions is only of Type (T3), for some range of parameters.6

Thus, the distinctions between the strengths of the aforementioned pairs of re-
sults are reflected in the distinction between (T2) and (T3), but are not reflected
by Levin’s Hierarchy (since these results are all of type (L2)). We chose these
examples because they are famous cases in which the entire point of the corre-
sponding work is obtaining an improvement in quality of reductions among the
studied primitives. Thus, the distinction between (T2) and (T3) is essential for
making the point (as demonstrated above).

Beyond (T4). With the exception of a single case, all results we are aware of (in
the field) are proven by a reduction of Type (T4), or lower. The only exception
is Levin’s observation regarding the existence of a universal one-way function
(cf., [10] and [2, Sec. 2.4.1]).

A final warning. It should be clear that the above classification (as well as
the one suggested in [12]) is ad-hoc in nature. Namely, it only represents our
knowledge of the current reductions, and an attempt to classify them in a way
that reflects their theoretical strength and practical applicability. Each type may
be further refined according to the constants (and/or polynomials) appearing in
its definition. Furthermore, in some cases (depending on such refinements), a
reduction with higher type may be preferable (in practice) to one with lower
type (e.g.,. 2

√
n < n100 for n < 106).

5 The claim in [12] by which the reduction is of type (L2) is correct only for “nicely
behaved security measures” (see foregoing discussion).

6 Actually, in the regular case, the construction in [5] depends on the security of the
basic (weak) one-way function, and so we have a family of reductions one per each
security function S (which needs to be efficiently computable). These reductions are

of Type (T3), provided that, for some d < 1, S(n) < 2n
d

. Otherwise they are only
of Type (T4).



7

An out of scope comment: As discussed in Footnote 6, some results are proven by
a construction that depend on the security of the basic scheme; that is, for every
security function S, a different construction of a complex primitive is presented
(assuming that the basic one has security S). One should prefer results proven
via a single construction, which is oblivious of the security of the basic scheme.
The security of the resulting construct will depend on the security of the basic
one, but the latter need not be known a-priori. In practical terms this means
that one may make a weak assumption regarding the basic scheme such that this
assumption guarantees sufficient security for the construct. If the basic scheme
turns out to be more secure than originally assumed then the resulting construct
will benefit in security (as per the security guarantee given with the reduction).
In contrast, when the construction depends on the assumed security, better than
postulated security of the basic scheme may not translate to better security of
the construct.

Acknowledgments

We are grateful to Mihir Bellare for helpful comments.

References

1. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM J. on Comput., Vol. 13, pages 850–864, 1984.
Preliminary version in 23rd FOCS, 1982.

2. O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University
Press, 2001.

3. O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

4. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Func-
tions. J. of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

5. O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman.
Security Preserving Amplification of Hardness. In 31st FOCS, pages 318–326,
1990.

6. O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function.
In 21st STOC, pages 25–32, 1989.

7. S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Comp. and

Sys. Sci., Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th

STOC, 1982.
8. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of In-

teractive Proof Systems. SIAM J. on Comput., Vol. 18, pages 186–208, 1989.
Preliminary version in 17th STOC, 1985. Earlier versions date to 1982.

9. S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. on Comput., April 1988,
pages 281–308.

10. L.A. Levin. One-Way Function and Pseudorandom Generators. Combinator-

ica, Vol. 7, pages 357–363, 1987.



8

11. L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3),
pages 1102–1103, 1993.

12. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton Uni-
versity Press, 1996.

13. A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS,
pages 80–91, 1982.


