
On the Use of Complexity in Cryptography

Oded Goldreich∗

A computational complexity gap, captured in the definition of one-way functions, is a necessary
and sufficient condition for much of modern cryptography. Loosely speaking, one-way functions are
functions that are easy to compute but hard to invert (in an average-case sense). The existence of
one-way functions implies that P is different than NP , which means that such a complexity gap
is only wide conjectured to exist (rather than known for a fact). We demonstrate the use of this
gap in the case of two basic cryptographic tasks: The tasks of providing secret and authenticated
communication, which in turn are reduced to the construction of encryption and signature schemes.

Encryption schemes. Such schemes are supposed to provide secret communication between
parties in a setting in which these parties communicate over a channel that may be eavesdropped
by an adversary. There are two cases differing according to whether or not the communicating
parties have agreed on a common secret prior to the communication. In both cases, the encryption
scheme consists of three efficient procedures: key generation, encryption (denoted by E), and
decryption (D). Loosely speaking, on input a security parameter n, the key-generation procedure
outputs a (random) pair of corresponding (n-bit long) encryption and decryption keys, (e, d), such
that for every bit string x, it holds that Dd(Ee(x)) = x, where Ee(x) (resp., Dd(y)) denotes the
output of the encryption (resp., decryption) procedure on input (e, x) (resp., (d, y)).

The difference between the two cases lies in the way in which the scheme is employed and
this will be reflected in the definition of security. In the first case, known as the private-key case,
a set of mutually trustful parties jointly employ the key-generation process, prior to the actual
communication, obtaining a pair of keys (e, d). We stress that, in this case, the encryption key e

is known to all trusted parties and to them only. Later, each trusted party may encrypt messages
by applying Ee, and retrieve them (i.e., decrypt) by applying Dd. The information available to the
adversary, in this case, is a sequence of encrypted messages, sent over the channel, using a fixed
encryption key unknown to it. (We stress that the total amount of information encrypted using
this encryption key may be much greater than the length of the key, and so perfect information
theoretic secrecy is not possible).

In the second case, known as the public-key case, the receiver invokes the key-generation process,
publicizes the encryption key e (but not the decryption key d), and the sender uses e to generate
encryptions as before. This allows everybody (not only parties that the receiver trusts) to send
encrypted messages to the receiver; however, in such a case the adversary also knows the encryption
key e. Thus, the information available to the adversary in this case is a sequence of encrypted
messages, sent over the channel, using a fixed encryption key that is also known to it. In both
cases, security amounts to asserting that it is infeasible for the adversary to learn anything from
the information available to it. That is, whatever the adversary can efficiently compute from the

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

1



public information, can be efficiently computed from scratch.1

Note that in the private-key case, we may assume, without loss of generality, that e = d; whereas
in the public-key case, d must be hard to compute from e. Private-key encryption schemes exist if
and only if one-way functions exists. Public-key encryption schemes can be constructed based on a
seemingly stronger assumption; yet this assumption is implied by widely believed conjectures such
as the conjectured intractability of factoring integers.

Signature schemes. Here too we have two cases corresponding to whether or not a certain key
(here it is the verification key) is public. In both cases, the scheme consists of three probabilistic
polynomial-time procedures: key generation, signing (S), and verification (V ). On input a security
parameter n, the key-generation procedure outputs a (random) pair of corresponding (n-bit long)
signing and verification keys, (s, v), such that for every bit string x, it holds that Vv(x, Ss(x)) = 1,
where Ss(x) (resp., Vd(x, y)) denotes the output of the signing (resp., verification) procedure on
input (s, x) (resp., (v, x, y)).

The difference between the two cases lies in the way in which the scheme is employed and
this will be reflected in the definition of security. In the private-key case (also known as message-
authentication), the scheme is used to authenticate messages sent between mutually trustful parties
that communicate over a channel that may be subject to message corruptions (and/or message
insertion/deletion). It is assumed that the parties have jointly invoked the key-generation process
prior to the communication, obtaining a signing key s (which may, w.l.o.g, equal the verification
key v). Subsequently, the sender authenticates each message x by appending Ss(x) to it, and the
receiver verifies the authenticity by applying Vv. In the public-key case, the scheme is used in
order to allow universal verification of commitments made by parties. To this end, each party
invokes the key-generation process, deposits the resulting verification key v on a trusted public-
file, and keeps the corresponding signing key s secret. When the user later wishes to commit to
a document, it applies Ss to it, and this commitment is universally verifiable with respect to its
public verification-key.

In both cases, security amounts to asserting that it is infeasible for anybody given the public
information (but not having the signing key), to produce a valid signature (i.e., a commitment with
respect to the verification key) to a document for which such a commitment was not previously
supplied by a party holding the signing-key. That is, forgery should be infeasible even if the forger
may ask the legitimate user to sign documents of its choice; after such an attack the forger may
indeed present valid signatures to all documents for which it has requested a signature, but not to
any other document. (We stress that in case of public-key schemes this is required to hold even if
the forger has the verification key).

As in the case of encryption, in the private-key case, we may assume, without loss of generality,
that v = s; whereas in the public-key case, s must be hard to compute from v. Both private-key
and public-key signature schemes exist if and only if one-way functions exists.

Beyond encryption and signature schemes. We stress that cryptography encompasses much
more than methods for providing secret and authenticated communication. In general, cryptogra-
phy is concerned with the construction of schemes that maintain any desired functionality under
malicious attempts aimed at making these schemes deviate from their prescribed functionality.

1The actual formulation refers to the notion of computational indistinguishability. It asserts that for every distri-
bution ensemble of the first type (representing that which the adversary computes from the information available to
it) there exists a distribution ensemble of the second type (representing that which can be computed from scratch)
so that the two ensembles are computationally indistinguishable.

2



Loosely speaking, a secure implementation of a multi-party functionality is a multi-party protocol
in which the impact of malicious parties is effectively restricted to application of the prescribed
functionality to inputs chosen by the corresponding parties. One major result in this area states
that, under plausible assumptions regarding computational difficulty, any efficiently computed func-

tionality can be securely implemented.

3


