
Invitation to Complexity Theory

Oded Goldreich∗

Introduction

The strive for efficiency is ancient and universal, as time and other resources are always in shortage.
Thus, the question of which tasks can be performed efficiently is central to the human experience.

A key step towards the systematic study of the aforementioned question is a rigorous definition
of the notion of a task and of procedures for solving tasks. These definitions were provided by
computability theory, which emerged in the 1930’s with the work of Turing (and others). This
theory focuses on computational tasks, considers automated procedures (i.e., computing devices
and algorithms) that may solve such tasks, and studies the class of solvable tasks.

In focusing attention on computational tasks and algorithms, computability theory has set the
stage for the study of the computational resources (like time) that are required by such algorithms.
When this study focuses on the resources that are necessary for any algorithm that solves a partic-
ular task (or a task of a particular type), it is viewed as belonging to the theory of Computational
Complexity (also known as Complexity Theory). In contrast, when the focus is on the design and
analysis of specific algorithms (rather than on the intrinsic complexity of the task), the study is
viewed as belonging to a related area that may be called Algorithmic Design and Analysis. Fur-
thermore, Algorithmic Design and Analysis tends to be sub-divided according to the domain of
mathematics, science and engineering in which the computational tasks arise. In contrast, Com-
plexity Theory typically maintains a unity of the study of computational tasks that are solvable
within certain resources (regardless of the origins of these tasks).

Complexity Theory is a central field of the theoretical foundations of Computer Science. It
is concerned with the study of the intrinsic complexity of computational tasks. That is, a typical
Complexity theoretic study refers to the computational resources required to solve a computational
task (or a class of such tasks), rather than referring to a specific algorithm or an algorithmic
schema. Actually, research in Complexity Theory tends to start with and focus on the computational

resources themselves, and addresses the effect of limiting these resources on the class of tasks that
can be solved. Thus, Computational Complexity is the general study of the what can be achieved
within limited time (and/or other limitations on natural computational resources).

Absolute Goals and Relative Results

Saying that Complexity Theory is concerned with the study of the intrinsic complexity of com-
putational tasks means that its “final” goals include the determination of the complexity of any
well-defined task. Additional goals include obtaining an understanding of the relations between
various computational phenomena (e.g., relating one fact regarding computational complexity to
another). Indeed, we may say that the former type of goals is concerned with absolute answers

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

1



regarding specific computational phenomena, whereas the latter type is concerned with questions
regarding the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with goals of the
latter (“relative”) type. In fact, the failure to resolve questions of the “absolute” type, led to the
flourishing of methods for coping with questions of the “relative” type. Musing for a moment,
let us say that, in general, the difficulty of obtaining absolute answers may naturally lead to
seeking conditional answers, which may in turn reveal interesting relations between phenomena.
Furthermore, the lack of absolute understanding of individual phenomena seems to facilitate the
development of methods for relating different phenomena. Anyhow, this is what happened in
Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining absolute answers,
we must admit that there is something fascinating in the success to relate different phenomena: in
some sense, relations between phenomena are more revealing than absolute statements about indi-
vidual phenomena. Indeed, the first example that comes to mind is the theory of NP-completeness.
Let us consider this theory, for a moment, from the perspective of these two types of goals.

P, NP, and NP-completeness

Complexity theory has failed to determine the intrinsic complexity of tasks such as finding a sat-
isfying assignment to a given (satisfiable) propositional formula or finding a 3-coloring of a given
(3-colorable) graph. But it has succeeded in establishing that these two seemingly different com-
putational tasks are in some sense the same (or, more precisely, are computationally equivalent).
We find this success amazing and exciting, and hope that the reader shares these feelings. The
same feeling of wonder and excitement is generated by many of the other discoveries of Complexity
theory. Indeed, the reader is invited to join a fast tour of some of the other questions and answers
that make up the field of Complexity theory.

We will indeed start with the P versus NP Question. Our daily experience is that it is harder
to solve a problem than it is to check the correctness of a solution (e.g., think of either a puzzle
or a research problem). Is this experience merely a coincidence or does it represent a fundamental
fact of life (i.e., a property of the world)? Could you imagine a world in which solving any problem
is not significantly harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world? The denial of the
plausibility of such a hypothetical world (in which “solving” is not harder than “checking”) is what
“P different from NP” actually means, where P represents tasks that are efficiently solvable and
NP represents tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the task of proving
theorems versus the task of verifying the validity of proofs. Indeed, finding proofs is a special
type of the aforementioned task of “solving a problem” (and verifying the validity of proofs is a
corresponding case of checking correctness). Again, “P different from NP” means that there are
theorems that are harder to prove than to be convinced of their correctness when presented with a
proof. This means that the notion of a “proof” is meaningful; that is, proofs do help when seeking
to be convinced of the correctness of assertions. Here NP represents sets of assertions that can be
efficiently verified with the help of adequate proofs, and P represents sets of assertions that can be
efficiently verified from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is a fundamental
scientific question of far-reaching consequences. The fact that this question seems beyond our
current reach led to the development of the theory of NP-completeness. Loosely speaking, this

2



theory identifies a set of computational problems that are as hard as NP. That is, the fate of
the P-versus-NP Question lies with each of these problems: if any of these problems is easy to
solve then so are all problems in NP. Thus, showing that a problem is NP-complete provides
evidence to its intractability (assuming, of course, “P different than NP”). Indeed, demonstrating
the NP-completeness of computational tasks is a central tool in indicating hardness of natural
computational problems, and it has been used extensively both in computer science and in other
disciplines. We note that NP-completeness indicates not only the conjectured intractability of a
problem but rather also its “richness” in the sense that the problem is rich enough to “encode”
any other problem in NP. The use of the term “encoding” is justified by the exact meaning of
NP-completeness, which in turn establishes relations between different computational problems
(without referring to their “absolute” complexity).

Some Advanced Topics

The foregoing discussion of NP-completeness hints to the importance of representation, since it
referred to different problems that encode one another. Indeed, the importance of representation
is a central aspect of complexity theory. In general, complexity theory is concerned with problems
for which the solutions are implicit in the problem’s statement (or rather in the instance). That
is, the problem (or rather its instance) contains all necessary information, and one merely needs
to process this information in order to supply the answer.1 Thus, complexity theory is concerned
with manipulation of information, and its transformation from one representation (in which the
information is given) to another representation (which is the one desired). Indeed, a solution to
a computational problem is merely a different representation of the information given; that is, a
representation in which the answer is explicit rather than implicit. For example, the answer to the
question of whether or not a given Boolean formula is satisfiable is implicit in the formula itself
(but the task is to make the answer explicit). Thus, complexity theory clarifies a central issue
regarding representation; that is, the distinction between what is explicit and what is implicit in a
representation. Furthermore, it even suggests a quantification of the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena that were consid-
ered also by past thinkers. Examples include the aforementioned concepts of solutions, proofs, and
representation as well as concepts like randomness, knowledge, interaction, secrecy and learning.
We next discuss the latter concepts and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective can be described
as ontological: they asked “what is randomness” and wondered whether it exists at all (or is the
world deterministic). The perspective of complexity theory is behavioristic: it is based on defining
objects as equivalent if they cannot be told apart by any efficient procedure. That is, a coin toss is
(defined to be) “random” (even if one believes that the universe is deterministic) if it is infeasible
to predict the coin’s outcome. Likewise, a string (or a distribution on strings) is “random” if it
is infeasible to distinguish it from the uniform distribution (regardless of whether or not one can
generate the latter). Interestingly, randomness (or rather pseudorandomness) defined this way is
efficiently expandable; that is, under a reasonable complexity assumption (to be discussed next),
short pseudorandom strings can be deterministically expanded into long pseudorandom strings.
Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that the
very definition of pseudorandomness refers to intractability (i.e., the infeasibility of distinguishing

1In contrast, in other disciplines, solving a problem may require gathering information that is not available in
the problem’s statement. This information may either be available from auxiliary (past) records or be obtained by
conducting new experiments.

3



a pseudorandomness object from a uniformly distributed object). Secondly, as stated, a complexity
assumption, which refers to the existence of functions that are easy to evaluate but hard to invert
(called one-way functions), implies the existence of deterministic programs (called pseudorandom

generators) that stretch short random seeds into long pseudorandom sequences. In fact, it turns out
that the existence of pseudorandom generators is equivalent to the existence of one-way functions.

Complexity theory offers its own perspective on the concept of knowledge (and distinguishes
it from information). Specifically, complexity theory views knowledge as the result of a hard
computation. Thus, whatever can be efficiently done by anyone is not considered knowledge.
In particular, the result of an easy computation applied to publicly available information is not
considered knowledge. In contrast, the value of a hard-to-compute function applied to publicly
available information is knowledge, and if somebody provides you with such a value then it has
provided you with knowledge. This discussion is related to the notion of zero-knowledge interactions,
which are interactions in which no knowledge is gained. Such interactions may still be useful,
because they may convince a party of the correctness of specific data that was provided beforehand.
For example, a zero-knowledge interactive proof may convince a party that a given graph is 3-
colorable without yielding any 3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as a vehicle for gaining
knowledge and/or gaining confidence. Let us highlight the latter application by noting that it may
be easier to verify an assertion when allowed to interact with a prover rather than when reading
a proof. Put differently, interaction with a good teacher may be more beneficial than reading
any book. We comment that the added power of such interactive proofs is rooted in their being
randomized (i.e., the verification procedure is randomized), because if the verifier’s questions can
be determined beforehand then the prover may just provide the transcript of the interaction as a
traditional written proof.

Another concept related to knowledge is that of secrecy: knowledge is something that one party
may have while another party does not have (and cannot feasibly obtain by itself) – thus, in some
sense knowledge is a secret. In general, complexity theory is related to Cryptography, where the
latter is broadly defined as the study of systems that are easy to use but hard to abuse. Typically,
such systems involve secrets, randomness and interaction as well as a complexity gap between
the ease of proper usage and the infeasibility of causing the system to deviate from its prescribed
behavior. Thus, much of Cryptography is based on complexity theoretic assumptions and its results
are typically transformations of relatively simple computational primitives (e.g., one-way functions)
into more complex cryptographic applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning from a teacher
versus learning from a book. Recall that complexity theory provides evidence to the advantage of
the former. This is in the context of gaining knowledge about publicly available information. In
contrast, computational learning theory is concerned with learning objects that are only partially
available to the learner (i.e., reconstructing a function based on its value at a few random locations
or even at locations chosen by the learner). Still, Complexity theory sheds light on the intrinsic
limitations of learning (in this sense).

Complexity theory deals with a variety of computational tasks. We have already mentioned
two fundamental types of tasks: searching for solutions (or rather “finding solutions”) and making

decisions (e.g., regarding the validity of assertions). We have also hinted that in some cases these
two types of tasks can be related. Now we consider two additional types of tasks: counting the

number of solutions and generating random solutions. Clearly, both the latter tasks are at least as
hard as finding arbitrary solutions to the corresponding problem, but it turns out that for some
natural problems they are not significantly harder. Specifically, under some natural conditions on

4



the problem, approximately counting the number of solutions and generating an approximately
random solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we note that the study of the complexity of
finding “approximate solutions” is also of natural importance. One type of approximation prob-
lems refers to an objective function defined on the set of potential solutions: Rather than finding a
solution that attains the optimal value, the approximation task consists of finding a solution that
attains an “almost optimal” value, where the notion of “almost optimal” may be understood in
different ways giving rise to different levels of approximation. Interestingly, in many cases, even a
very relaxed level of approximation is as difficult to obtain as solving the original (exact) search
problem (i.e., finding an approximate solution is as hard as finding an optimal solution). Surpris-
ingly, these hardness of approximation results are related to the study of probabilistically checkable

proofs, which are proofs that allow for ultra-fast probabilistic verification. Amazingly, every proof
can be efficiently transformed into one that allows for probabilistic verification based on probing
a constant number of bits (in the alleged proof). Turning back to approximation problems, we
mention that in other cases a reasonable level of approximation is easier to achieve than solving
the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. Another natural
relaxation is the study of average-case complexity, where the “average” is taken over some “simple”
distributions (representing a model of the problem’s instances that may occur in practice). We
stress that, although it was not stated explicitly, the entire discussion so far has referred to “worst-
case” analysis of algorithms. We mention that worst-case complexity is a more robust notion than
average-case complexity. For starters, one avoids the controversial question of what are the instances
that are “important in practice” and correspondingly the selection of the class of distributions
for which average-case analysis is to be conducted. Nevertheless, a relatively robust theory of
average-case complexity has been suggested, albeit it is less developed than the theory of worst-
case complexity.

In view of the central role of randomness in complexity theory (as evident, say, in the study of
pseudorandomness, probabilistic proof systems, and cryptography), one may wonder as to whether
the randomness needed for the various applications can be obtained in real-life. One specific ques-
tion, which received a lot of attention, is the possibility of “purifying” randomness (or “extracting
good randomness from bad sources”). That is, can we use “defected” sources of randomness in order
to implement almost perfect sources of randomness. The answer depends, of course, on the model
of such defected sources. This study turned out to be related to complexity theory, where the most
tight connection is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while relying on the
natural association of efficiency with time. However, time is not the only resource one should care
about. Another important resource is space: the amount of (temporary) memory consumed by the
computation. The study of space-complexity has uncovered several fascinating phenomena, which
seem to indicate a fundamental difference between space-complexity and time-complexity. For
example, in the context of space-complexity, verifying proofs of validity of assertions (of any specific
type) has the same complexity as verifying proofs of invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of some mountain
tops, and dizziness is to be expected. For a totally different touring experience, we refer the
interested reader to our book “Computational Complexity: A Conceptual Perspective” (Cambridge
University Press, 2008), which offers climbing the aforementioned mountains by foot, while stopping
often for appreciation of the view and reflection.

5



Absolute Results (a.k.a. Lower-Bounds). As stated in the beginning of this essay, absolute
results are not known for many of the “big questions” of complexity theory (most notably the
P-versus-NP Question). However, several highly non-trivial absolute results have been proved. For
example, it was shown that using negation can speed-up the computation of monotone functions
(which do not require negation for their mere computation). In addition, many promising techniques
were introduced and employed with the aim of providing a low-level analysis of the progress of
computation. However, as stated up-front, the focus of this article was elsewhere.

6


