Algorithmic and Analysis Techniques in Property Testing

Dana Ron*
School of EE
Tel-Aviv University

Ramat Aviv, [ISRAEL
danar@eng.tau.ac.il

Abstract

Property testing algorithms are “ultra”-efficient algorithms that decide whether a given
object (e.g., a graph) has a certain property (e.g., bipartiteness), or is significantly different
from any object that has the property. To this end property testing algorithms are given the
ability to perform (local) queries to the input, though the decision they need to make usually
concern properties with a global nature. In the last two decades, property testing algorithms
have been designed for many types of objects and properties, amongst them, graph properties,
algebraic properties, geometric properties, and more.

In this article we survey results in property testing, where our emphasis is on common
analysis and algorithmic techniques. Among the techniques surveyed are the following:

e The self-correcting approach, which was mainly applied in the study of property testing
of algebraic properties;

e The enforce and test approach, which was applied quite extensively in the analysis of
algorithms for testing graph properties (in the dense-graphs model), as well as in other
contexts;

e Szemerédi’s Regularity Lemma, which plays a very important role in the analysis of algo-
rithms for testing graph properties (in the dense-graphs model);

e The approach of Testing by implicit learning, which implies efficient testability of mem-
bership in many functions classes.

e Algorithmic techniques for testing properties of sparse graphs, which include local search
and random walks.

*This work was supported by the Israel Science Foundation (grant number 246/08).

Contents

42
42
45
48
48
49

49
50
52

54
o4

59
59
99
61
64
66

67
67
67
68
69
69
71

75

1 Introduction

Property testing algorithms are algorithms that perform a certain type of approzrimate decision.
Namely, standard (exact) decision algorithms are required to determine whether a given input is
a YES instance (has a particular property) or is a NO instance (does not have the property).
In contrast, property testing algorithms are required to determine (with high success probability)
whether the input has the property (in which case the algorithm should accept) or is far from
having the property (in which case the algorithm should reject). In saying that the input is far
from having the property we mean that the input should be modified in a non-negligible manner
so that it obtain the property.

To be precise, the algorithm is given a distance parameter, denoted €, and should reject inputs
that are e-far from having the property (according to a prespecified distance measure). If the input
neither has the property nor is far from having the property, then the algorithm can either accept
or reject. In other words, if the algorithm accepts, then we know (with high confidence) that the
input is close to having the property, and if it rejects, then we know (with high confidence) that
the input does not have the property.

Since a property testing algorithm should perform only an approximate decision and not an
exact one, we may expect it to be (much) more efficient than any exact decision algorithm for
the same property. In particular, as opposed to exact decision algorithms, which are considered
efficient if they run in time that is polynomial in the size of the input (and the best we can hope
for is linear-time algorithms), property testing algorithms may run in time that is sub-linear in the
size of the input (and hence we view them as being “ultra’-efficient). In such a case they cannot
even read the entire input. Instead, they are given query access to the input, where the form of
the queries depends on the type of input considered.

Since property testing algorithms access only a small part of the input, they are naturally
allowed to be randomized and to have a small probability of error (failure). In some cases they
have a non-zero error probability only on inputs that are far from having the property (and never
reject inputs that have the property). In such a case, when they reject an input, they always
provide (small) evidence that the input does not have the property.

By the foregoing discussion, when studying a specific property testing problem, one should
define a distance measure over inputs (which determines what inputs should be rejected), and one
should define the queries that the algorithm is allowed. For example, when dealing with functions
and their properties (e.g., linearity), the distance measure is usually defined to be the Hamming
distance normalized by the size of the domain, and queries are simply queries for values of the
function at selected elements of the domain. In other cases, such as graph properties, there are
several different natural models for testing (see Subsection for details).

1.1 Settings in which Property Testing is Beneficial

In addition to the intellectual interest in relating global properties to local patterns, property testing
algorithms are beneficial in numerous situations. A number of such settings are discussed next.

1. Applications that deal with huge inputs. This is the case when dealing with very large
databases in applications related to computational biology, astronomy, study of the Inter-
net, and more. In such cases, reading the entire input is simply infeasible. Hence, some form

of approximate decision, based on accessing only a small part of the input, is crucial.

2. Applications in which the inputs are not huge, but the property in question is N'P-hard. Here
too some form of approximation is necessary, and property testing algorithms provide one
such form. In fact, while “classical” approximation algorithms are required to run in time
polynomial in the size of the input, here we require even more of the algorithm: It should
provide an approximately good answer, but is allowed only sublinear time. For example, there
is a property testing algorithm that can be used to obtain a (1 + €)-factor approximation of
the size of the maximum cut in a dense graph, whose running time depends only on e,
and does not depend at all on the size of the graph. (In Subsection we further discuss
the relation between the notion of approximation provided by property testing and more
“classical” notions.)

3. Applications in which the inputs are not huge and the corresponding decision problem has
a polynomial-time algorithm, but we are interested in ultra-efficient algorithms, and do not
mind sacrificing some accuracy. For example, we may not mind accepting a graph that is
not perfectly bipartite, but is close to being bipartite (that is, it has a two-way partition with
relatively few “violating edges” within the two parts).

4. Scenarios similar to the one described in the previous item except that the final decision must
be exact (though a small probability of failure is allowed). In such a case we can first run the
testing algorithm, and only if it accepts do we run the exact decision procedure. Thus, we
save time whenever the input is far from having the property, and this is useful when typical
(but not all) inputs are far from having the property.

A related scenario, discussed in Subsection [[4] is the application of property testing as a
preliminary step to learning.

Thus, employing a property testing algorithm yields a certain loss in terms of accuracy, but our
gain, in terms of efficiency, is in many cases dramatic. Furthermore, in many cases the loss in
accuracy is inevitable either because the input is huge or the problem is hard.

1.2 A Brief Overview

Property testing first appeared (implicitly) in the work of Blum, Luby, and Rubinfeld [BLRI3],
who designed the well known Linearity testing algorithm. It was first explicitly defined in the
work of Rubinfeld and Sudan [RS96], who considered testing whether a function is a low-degree
polynomial. The focus of these works was on testing algebraic properties of functions, and they,
together with other works, had an important role in the design of Probabilistically Checkable Proofs
(PCP) systems (cf. [BELIT, BFLST, IGLRT91] [FGL.T96, [RS6, [FSOH, AS97, [ATMTIS)]).

The study of property testing in a more general context was initiated by Goldreich et al. [GGRIS].
They gave several general results, among them results concerning the relation between testing and
learning, and then focused on testing properties of graphs (in what we refer to as the dense-graphs
model). Following this work, property testing has been applied to many types of inputs and prop-
ertiest In particular, the study of algebraic properties of functions continued to play an important

In what follows in this subsection we do not give references to relevant works. These references can be found in
the body of this survey when each specific result is mentioned.

role, partly because of the relation to the area of error correcting codes (for a short explanation
concerning this relation, see the beginning of Section Bl). The study of graph properties was sig-
nificantly extended since the work of [GGRO8]. This includes a large number of works in the
dense-graphs model, as well as the introduction of other models (more suitable for graphs that are
sparse or that are neither dense nor sparse), and the design of algorithms that work within these
models. There has also been progress in the last few years on the design of testing algorithms for
properties of functions that can be viewed as logical rather than algebraic (such as functions that
have a small DNF representation). The study of such properties is of interest from the point of
view of learning theory (see Subsection [4]). Other families of properties to which the framework
of property testing has been applied include Geometric properties and “clusterability” of ensem-
bles of points, properties defined by restricted languages (e.g., regular languages), properties of
distributions and more.

In some cases the algorithms designed are extremely efficient: The number of operations they
perform does not depend at all on the size of the input, but only on the distance parameter €. In
other cases the dependence is some sublinear function of the size of the input (e.g., polylog(n) or
\/n, for inputs of size n), where in many of the latter cases there are matching (or almost matching)
lower bounds that justify this dependence on the size of the input.

While each algorithm has features that are specific to the property it tests, there are several
common algorithmic and analysis techniques. Perhaps the two better known analysis techniques
are the self-correcting approach, which is applied in the analysis of many testing algorithms of
algebraic properties, and Szemerédi’s Regularity Lemma [Sze78], which is central to the analysis of
testing graph properties in the dense-graphs model. Other techniques include the enforce and test
approach (that is also applied in the analysis of testing algorithms in the dense-graphs model, as
well as in testing certain metric properties and clustering properties), and the approach of testing
by implicit learning whose application gives a variety of results (among them testing of small DNF
formula). Indeed, as the title of this survey suggests, we organize the results presented according
to such common techniques.

In addition to the extension of the scope of property testing, there have been several extensions
and generalizations of the basic notion of property testing. One extension (which was already
introduced in [GGRIS|] but for which positive results appeared several years later) is allowing the
underlying distribution (with respect to which the distance measure is defined) to be different from
the uniform distribution (and in particular to be unknown - this is referred to as distribution-free
testing). Another natural extension is to tolerant testing. In tolerant testing the algorithm is given
two distance parameters: €; and €z, and it must distinguish between the case that the object is €1-
close to having the property (rather than perfectly having the property as in the original definition
of property testing), and the case that the object is eo-far from having the property. A related
notion is that of distance approximation where the task is to obtain an estimate of the distance to
having the property.

1.3 Property Testing and “Classical” Approximation

Consider for example the problem of deciding whether a given graph G = (V| E) has a clique of
size at least k, for k = pn where p is a fixed constant and n = |V|. The “classical” notion of an
approximation algorithm for this problem requires the algorithm to distinguish between the case
that the max-clique in the graph has size at least pn and, say, the case in which the max-clique has

size at most pn /2.

On the other hand, when we talk of testing the “p-Clique” property, the task is to distinguish
between the case that the graph has a clique of size pn, and the case in which it is e-far from the
any n-vertex graph that has a clique of size pn. Since this property is relevant only to dense graphs
(where |E| = ©(n?)), our notion of e-far in this context is that more than en? edges should be
added to the graph so that it have a clique of size pn. This is equivalent to the dual approzimation
task (cf., [HS87, [HSK]]) of distinguishing between the case that an n-vertex graph has a clique of
size pn and the case that in any subset of pn vertices, the number of missing edges (between pairs

of vertices in the subset) is more than en?.

The above two tasks are vastly different: Whereas the former task is NP-Hard, for p <
1/4 [BGS98, [H&s99], the latter task can be solved in exp(O(1/e2))-time, for any p,e > 0 [GGRIS.
We believe that there is no absolute sense in which one of these approximation tasks is better than
the other: Each of these tasks is relevant in some applications and irrelevant in others. We also
mention that in some cases the two notions coincide. For example, consider the problem of deciding
whether a graph has a cut of size at least k for K = pn? (where p is a fixed constant). Then a
testing algorithm for this problem will distinguish (with high probability) between the case that
the max-cut in the graph is of size at least pn? and the case in which the max-cut is of size less
than (p — €)n? (which for € = yp gives a “classical” (1 — «)-factor approximation to the size of the
max-cut).

Finally, we note that while property testing algorithms are decision algorithms, in many cases
they can be transformed into optimization algorithms that actually construct approximate solu-
tions. To illustrate this, consider the two aforementioned properties, which we refer to as p-Clique
and p-Cut. For the first property, suppose the graph has a clique of size at least pn. Then, building
on the testing algorithm, it is possible to obtain (with high probability), in time that grows only
linearly in n, a subset of pn vertices that is close to being a clique. (That is, the number of missing
edges between pairs of vertices in the subset is at most en?.) Similarly, for the second property,
if the graph has a cut of size at least pn?, then it is possible to obtain (with high probability), in
time linear in n, a cut of size at least (p — €)n?. In both cases the dependence on 1/¢ in the running
time is exponential (whereas a polynomial dependence cannot be obtained unless P = N'P).

For these problems and other partition problems (e.g., k-colorability), the testing algorithm
(when it accepts the input) actually defines an implicit partition. That is, after the execution
of the testing algorithm, it is possible to determine for each vertex (separately) to which part it
belongs in the approximately good partition, in time poly(1/e).

1.4 Property Testing and Learning

Following standard frameworks of learning theory, and in particular the PAC learning model of
Valiant [Val84] and its variants, when we say learning we mean outputting a good estimate of a
function to which we have query access (or from which we can obtain random labeled examples).
Thus, another view of property testing is as a relaxation of learning (with queries and under the
uniform distribution)E Namely, instead of asking that the algorithm output a good estimate of
the (target) function (which is possibly assumed to belong to a particular class of functions F),

2Testing under non-uniform distributions and testing with random examples (only) have been considered (and we
discuss the former in this survey), but most of the work in property testing deals with testing under the uniform
distributions and with queries.

we only require that the algorithm decide whether the function belongs to F or is far from any
function in F. Given this view, a natural motivation for property testing is to serve as a preliminary
step before learning: We can first run the testing algorithm in order to decide whether to use a
particular class of functions as our hypothesis class.

In this context too we are interested in testing algorithms that are more efficient than the
corresponding learning algorithms. As observed in [GGROSY]|, property testing is no harder than
proper learning (where the learning algorithm is required to output a hypothesis from the same
class of functions as the target function). Namely, if we have a proper learning algorithm for a class
of functions F, then we can use it as a subroutine to test the property of membership in F.

We also note that property testing is related to hypothesis testing (see e.g. [Kie87, Chap. 8]).
For a short discussion of this relation, see the introduction of [Ron08].

1.5 Organization of this Survey

In this survey we have chosen to present results in property testing with an emphasis on analysis
techniques and algorithmic techniques. Specifically:

e In Section Bl we discuss results whose analysis follows the Self-Correcting approach (e.g.,
testing linearity), and mention several implications of this approach.

e In Section Bl we discuss results whose analysis follows the Enforce-and-Test approach (e.g.,
testing bipartiteness in the dense-graphs model). In many cases this approach implies that
the testing algorithm can be transformed into an efficient approximate optimization algorithm
(as discussed in Subsection [[3).

e The approach of Testing by Implicit Learning, whose application leads to efficient testing of
many function classes (e.g., DNF formula with a bounded number of terms), is described in
Section B

e The Regularity Lemma of Szemerédi [Sze78], which is a very important tool in the analysis
of testing algorithms in the dense-graphs model, is presented in Section B together with its
application to testing triangle-freeness (in this model).

e In Section [we discuss algorithms for testing properties of sparse graphs that are based on
local search.

e The use of random walks by testing algorithms for properties of sparse graphs is considered
in Section B

e In Section @ we present two examples of lower bound proofs for property testing algorithms,
so as to give a flavor of the type of arguments used in such proofs.

e A small selection of other families of results, which did not fit naturally in the previous
sections (e.g., testing monotonicity of functions), are discussed in Section [

e We conclude the survey in Section [[Il with a discussion of several extensions and generaliza-
tions of property testing (e.g., tolerant testing).

1.6 Related Surveys

There are several surveys on property testing ([Gol98| [FisO1l [Ron01], and the more recent [Ron08§]),
which have certain overlaps with the current survey. In particular, the recent survey [[Ron(08| of the
current author presents property testing from a learning theory perspective. Thus the emphasis
in that survey is mainly on testing properties of functions (that is, testing for membership in
various function classes). Though the perspective taken in the current survey is different, there are
naturally several results that appear in both articles, possibly with different levels of detail.

For the broader context of sublinear-time approximation algorithms see [KR03, [CS06]. For a
survey on Streaming (where the constraint is sublinear space rather than time), see [Mut05].

2 Preliminaries

2.1 Basic Definitions and Notations

For any positive integer k, let [k] = {1,...,k}. For a string z = z1,...,z, € {0,1}", we use |z|
to denote the number of indices i such that x; = 1. We use ‘-’ to denote multiplication (e.g., a - b)
whenever we believe it aids readability.

Since many of the results we survey deal with testing properties of functions (or functional
representations of objects, such as graphs), we start with several definitions and notations pertaining
to functions.

For two functions f,g: X — R over a finite domain X we let

dist(f,) < Procx[f(x) # g(x)] (1)

denote the distance between the functions, where the probability is taken over a uniformly selected
r e X.

When we use the term “with high probability”, we mean with probability at least 1 — ¢ for a
small constant 6. When the claim is for higher success probability (e.g., 1 — poly(1/n) where n is
the input size), then this is stated explicitly. When considering the probability of a certain event
we usually denote explicitly over what the probability is taken (e.g., Proex[f(x) # g(z)]), unless it
is clear from the context (in which case we may write Pr[f(x) # g(x)]).

Let P be a property of functions (from domain X to range R). That is, P defines a subset of
functions, and so we shall use the notation g € P to mean that function g has the property P. For
a function f: X — R we define

dist(f,P) & min{dist(f,)} 2)

(where there may be more than one function g that attains the minimum on the right hand side).
If dist(f,P) = €, then we shall say that f is at distance € from (having) P (or has distance € to P).

Definition 2.1 (Testing (Function Properties)) A testing algorithm for property P (of func-
tions from domain X to range R) is given a distance parameter € and query access to an unknown
function f: X — R.

o [f f € P then the algorithm should accept with probability at least 2/3;

o If dist(f, P) > e then the algorithm should reject with probability at least 2/3.

We shall be interested in bounding both the query complexity and the running time of the testing
algorithm. In some cases our focus will be on the query complexity, putting aside the question of
time complexity. We observe that the choice of a success probability of 2/3 is arbitrary and can
clearly be improved to 1 — ¢, for any 6 > 0 at a multiplicative cost of log(1/d) in the complexity of
the algorithm. We say that a testing algorithm has one-sided error if it accepts every f € P with
probability 1. Otherwise, it has two-sided error.

One may consider variations of the abovemention notion of testing. In particular, the underlying
distribution (which determines the distance in Equation ([I), and hence in Equation (£])) may be
an arbitrary and unknown distribution (rather then the uniform distribution). We refer to this as
distribution-free testing, and discuss it in Subsection [Tl Another variant requires that testing be
performed based on random (uniform) examples alone; that is, queries cannot be performed. We
shall not discuss this variant in the current survey (and there are actually only few positive results
known in this model [KRO0]).

2.2 Testing Graph Properties

Much of the work in property testing deals with testing properties of graphs, where several models
have been studied. The first two models, described next, correspond to representations of graphs
as functions, and hence essentially coincide with Definition EXIl In all that follows, the number
of graph vertices is denoted by n. Unless stated otherwise, we consider undirected, simple graphs
(that is with no multiple edges and no self-loops). For a vertex v we let I'(v) denote its set of
neighbors, and we let deg(v) = |I'(v)| denote its degree.

2.2.1 The Dense-Graphs (Adjacency-Matrix) Model

The first model, introduced in [GGRO8], is the adjacency-matriz model. In this model the algorithm
may perform queries of the form: “is there an edge between vertices u and v in the graph?” That
is, the algorithm may probe the adjacency matrix representing the tested graph G = (V(G), E(G)),
which is equivalent to querying the function fg : V x V — {0,1}, where fg(u,v) = 1 if and only
if (u,v) € E. We refer to such queries as vertez-pair queries. The notion of distance is also linked
to this representation: A graph is said to be e-far from having property P if more than en? edge
modifications should be performed on the graph so that it obtains the property. We note that since
each edge appears twice in the functional representation (and there are no self-loops), to be exactly
consistent with the functional view-point, we should have said that a graph is e-far from having P if
more than e(g) edge modifications have to be be performed so that the graph obtains the property.
However, it will be somewhat simpler to work with the slighly different definition given here. This
model is most suitable for dense graphs in which the number of edges m is ©(n?). For this reason
we shall also refer to it as the dense-graphs model.

2.2.2 The Bounded-Degree (Incidence-Lists) Model.

The second model, introduced in [GR02], is the bounded-degree incidence-lists model. In this model,
the algorithm may perform queries of the form: “who is the i*" neighbor of vertex v in the graph?”
That is, the algorithm may probe the incidence lists of the vertices in the graph, where it is assumed
that all vertices have degree at most d for some fixed degree-bound d. This is equivalent to querying
the function fg : V x [d] — V U{I'} that is defined as follows: For each v € V' and i € [d], if the
degree of v is at least 7 then fg(v,1) is the i’th neighbor of v (according to some arbitrary but fixed
ordering of the neighbors), and if v has degree smaller than i, then fg(v,i) = I'. We refer to these
queries as neighbor queries.

Here too the notion of distance is linked to the representation: A graph is said to be e-far from
having property P if more than edn edge modifications should be performed on the graph so that
it obtains the property. In this case € measures (once again, up to a factor of 2), the fraction of
entries in the incidence lists representation (the domain of f¢, which has size dn), that should be
modified. This model is most suitable for graphs with m = ©(dn) edges; that is, whose maximum
degree is of the same order as the average degree. In particular, this is true for sparse graphs that
have constant degree. We shall refer to it in short either as the bounded-degree model or as the
incidence-lists model.

2.2.3 The Sparse-Graphs Model and the General-Graphs Model

In [PRO2] it was first suggested to decouple the questions of representation and type of queries
allowed from the definition of distance to having a property. Specifically, it was suggested that
distance be measured simply with respect to the number of edges, denoted m, in the graph (or
an upper bound on this number). Namely, a graph is said to be e-far from having a property, if
more than em edge modifications should be performed so that it obtain the property. In [PR02]
(where the focus was on sparse graphs), the algorithm is allowed the same type of queries as in the
bounded-degree incidence-lists model, and it can also query the degree of any given vertex.

The main advantage of the [PR02] model over the bounded-degree incidence-lists model is that
it is suitable for sparse graphs whose degrees may vary significantly. Hence we refer to it as the
sparse-graphs model. We note that while it may seem that the sparse-graphs model is (strictly)
more general than the bounded-degree model, this is not exactly true. The reason is that for some
properties a graph may be far from having the property in the bounded-degree model but close to
having it in the sparse-graphs model because it is far from any graph that has the property and
has degree at most d, but is close to a graph that has the property but doesn’t have the degree
limitation.

More generally, when the graph is not necessarily sparse (and not necessarily dense), we may
allow vertex-pair queries in addition to neighbor queries and degree queries. This model was first
studied by Krivelevich et al. [KKR04], and is referred to as the general-graphs model.

3 The Self-Correcting Approach
Recall that the goal of a testing algorithm for a particular property P is to distinguish between

the case that the tested object (function f) has the property P and the case that it is far from
any function that has P. To this end many testing algorithms run several independent executions

10

of some local test. For example, in the case of linearity, the algorithm tests whether f(z) +
fly) = f(z + y) for uniformly selected pairs x and y in the domain of f. The local tests are
such that if the function has the property, then they always pass. In order to show that the
testing algorithm rejects (with high constant probability) functions that are far from having the
property, the contrapositive statement is established. Namely, that if the testing algorithm accepts
a function f with sufficiently large constant probability (that is, the probability that a random
local test doesn’t pass is sufficiently low), then f is close to having the property.

For linearity and several other properties, this is done by defining a self-corrected version of
f. The self-corrected version is defined based on the values of f (hence the usage of self), and
the local tests. For example in the case of linearity, the self-corrected version, g/ (+), is such that
g7 () is the majority (or plurality) value of f(x +y) — f(y), taken over all points y in the domain.
Showing that g/ is close to f tends to be relatively easy, and the crux of the proof is in showing
that g7 indeed has the tested property (e.g., is a linear function).

A coding-theory perspective. The results described in this section also have an interpretation
from the point of view of coding theory. Namely, each of the properties (function classes) corre-
sponds to a code (or family of codes): The Hadamard code, Reed-Solomon codes, Reed Muller
codes, and Generalized Reed Muller codes, respectively. If we view functions as words (e.g., for the
domain {0,1}", the word is of length 2™), then the test distinguishes between codewords and words
that are e-far from every codeword. This is referred to as local testing of codes (see, e.g., [Gal05]).
Taking this point of view, the self-corrected version of a word that is not too far from being a
codeword corresponds to the closest codeword.

3.1 Linearity

For the sake of simplicity we consider functions from {0,1}" — {0,1}. The result extends to
functions f : G — H, where G and H are groups. Thus, here addition is modulo 2, and for
x,y € {0,1}, © + y is the bitwise sum (XOR) of the two strings, that is, it is the string z € {0,1}"
such that z; = z; + y;. For the sake of simplicity, here when we say “linear functions” we mean
linear functions that do not have a free term (as defined next). In order to allow a free term, the
test (Algorithm BI) should be slightly modified. Thus, strictly speaking, the algorithm is actually
a homomorphism testing algorithm.

Definition 3.1 (Linearity) We say that f : {0,1}" — {0,1} is a linear function if there exist
coefficients by, ..., b, € {0,1} such that for x = x1,...,2, € {0,1}", f(z) = D7 bix;. In other
words, there exists a subset S C {1,...,n} such that f(x) = > ,cq ;.

Linearity testing is essentially the first property testing problem studied, though the term
“Property Testing” was not yet explicitly defined at the time. Linearity testing was first studied
by Blum, Luby and Rubinfeld [BLR93] in the context of Program Testing. Namely, they were
interested in designing algorithms (program-testers) that, given access to a program that is supposed
to compute a particular function f, distinguish between the case that the program computes f
correctly on all inputs, and the case that it errs on at least a certain fraction € of the domain
elements. The program-tester should be much simpler than the program itself, and is typically
based on calls to the program and some basic operations on the resulting outputs.

11

In the case of testing whether a program computes a particular linear function, the program-
tester first distinguishes between the case that the program computes some linear function and
the case that the function it computes is far from any linear function. That is, it first performs
property testing of linearity. The starting point of the BLR test is the following characterization
of linear functions, which is not hard to verify (and some would actually use it as a definition of
linear functions).

Fact 3.1 A function f:{0,1}" — {0,1} is linear if and only if f(z) + f(y) = f(z +y) for every
z,y € {0,1}".

The BLR test is given in Figure [l

Algorithm 3.1: Linearity Test
1. Repeat the following ©(1/€) times.

(a) Uniformly and independently select x,y € {0,1}".
(b) If f(x)+ f(y) # f(x+y) then output reject (and exit).

2. If no iteration caused rejection then output accept.

Figure 1: The BLR linearity testing algorithm.

Before we prove the correctness of the algorithm, we remark on its complexity: the algorithm
performs only O(1/e€) queries. In particular, its query complexity is independent of n. This is in
contrast to the query complexity of any learning algorithm for the class of linear (parity) functions,
which is ©(n). This is true simply because every two linear functions have distance 1/2 between
them (under the uniform distribution), and a linear function is not uniquely determined by fewer
than n labeled points. We note that the difference in the running time between testing and learning
is less dramatic (linear in n versus quadratic in n), since the testing algorithm reads all n bits of
each sampled string.

Theorem 3.1 Algorithm [Tl is a one-sided error testing algorithm for linearity. Its query com-
plexity is O(1/e€).

Let £ denote the class of linear functions over {0,1}". By Fact B, Algorithm Bl accepts every
function f € £ with probability 1. We turn to proving that if dist(f,£) > € then the algorithm
rejects with probability at least 2/3. Let e£(f) denote the distance of f to being linear. Namely,
if we let £ denote the set of all linear functions then e (f) ey dist(f, £). We would like to prove
that for every given € > 0, if € > e, (f) then the probability that the test rejects is at least 2/3.
This will follow from showing that if the constraint f(x)+ f(y) = f(z +y) is violated for relatively
few pairs (z,y), then f is close to some linear function. In other words (using the terminology
of [BLRO3, [RS96]), the characterization provided by Fact Blis robust. To this end we define:

def

n(f) = Pray[f(2) + f(y) # fl+y)], (3)

where in Equation (B]) and elsewhere in this subsection, the probability is taken over a uniform choice
of points in {0,1}". That is, n(f) is the probability that a single iteration of Algorithm Bl “finds

12

evidence” that f is not a linear function. We shall show that n(f) > e.(f)/c for some constant
¢ > 1 (this can actually be shown for ¢ =1 but the proof uses Discrete Fourier analysis [BCHT96]
while the proof we show builds on first principles). It directly follows that if e£(f) > e and the
number of iterations is at least 2¢/e, then the probability that the test rejects is at least

1—(Q—n(f))2/e>1—e2nle>1 25 9/3, (4)

thus establishing Theorem Bl

Somewhat unintuitively, showing that n(f) > e, (f)/c is easier if e, (f) is not too large. Specif-
ically, it is not hard to prove the following claim.

Claim 3.2 For every function f it holds that n(f) > 3ec(f)(1—=2e,(f)). In particular, if ex(f) < %

then n(f) > 3e(f) (and more generally, if n(f) = 3 —~ for v > 0, then n(f) > 6ves(f), which
gives a weak bound as n(f) approaches 1/2).

It remains to prove that even when e, (f) is not bounded away (from above) from 1/2 then still
n(f) > ec(f)/c for a constant c. To this end we define the following majority function: for each
fixed choice of z € {0,1}",

yo-{3 el s =0z ;

Let
def

= flz+y) - fly)=fy) + flz+y) (6)

be the Vote that y casts on the value of z. By the definition of g/ (z) it is the majority vote taken
over all y. Note that if f is linear then Vyf(:n) = f(z) for every y € {0,1}".

We shall prove two lemmas, stated next.

V/(z)

Lemma 3.3 dist(f,g/) < 2n(f).

Lemma 3.4 Ifn(f) < % then g7 is a linear function.

first that if n(f) > %, then the inequality clearly holds because e, (f) < 1. (In fact, since it
can be shown that ez (f) < 1/2 for every f, we actually have that n(f) > %ez(f).) Otherwise
(n(f) < %), since ¢/ is linear and dist(f,g) < 2n(f), we have that ez (f) < dist(f,g/) < 2n(f),
so that n(f) > ez (f)/2, and we are done. Since g/ is defined only based on f (and it is a linear
function close to f), we view it as the self-corrected version of f (with respect to linearity).

Proof of Lemma Let A(f,g9/) = {z : ¢/ (x) # f(2)} be the set of points on which f and
g/ differ. By the definition of g/ (z), it is the majority value of Vyf (x) taken over all y. Hence, for
every fixed choice of 2 € A(f, g/) we have that Pry[Vyf(x) # f(z)] > 1/2. Therefore,

P, [f(z) £ V) (2)] > Prow € A(f,g))] - Prylf(x) # VJ (2) |2 € A(f, 7))
> Py (@) # f(a)]. (7)

By combining Lemmas and B4 we get that n(f) > %65(f). To see why this is true, observe

v

Since Pry 4 [f(x) # Vyf(y:)] = n(f), it must hold that Pr.[¢f (z) # f(z)] < 2n(f). M

Proof of Lemma B4l In order to prove this lemma, we first prove the next claim.

13

Claim 3.5 For every x € {0,1}" it holds that Pry[g/ (z) = Vil ()] > 1—2n(f).

Note that by the definition of g/ as the “majority-vote function”, Pr,[g/(z) = Vyf (x)] > %
Claim B says that the majority is actually “stronger” (for small 7(f)).

Proof: Fixing x, let po(z) = Pry[Vyf(:U) = 0], and let p;(x) = Pry[Vyf(x) = 1]. We are interested
in lower bounding py s, (x), where, by the definition of g/, Pyt (z) () = max{pg(x),p1(x)}. Now,

Pyt () () = Pyr () (@) - (Po(2) + p1()) > (po(x))? + (p1(2))* . (8)

Since (po(z))? + (p1(x))? = Pl"y7z[Vyf(£L') = V/ ()], in order to lower bound Pyt (@) (2), it suffices to
lower bound Pry7z[Vyf (z) = V¥ (x)], which is what we do next. In what follows we shall use the fact
that the range of f is {0,1}.

Pr, [V (z) = V/(2)]

= Pry. [Vyf(:c)+Vf() 0]

= Pry.[f(y)+ flz+y)+ f(2) + flz+2) = 0]

= Pry.[f(y) +fla+2)+fly+a+2)+)+ fla+y) + flz+a+y) =0

> Pryff(y)+flz+2)+flytaz+2)=0A fe)+ flz+y) + flz+a+y)=0

= 1-Pr.[fy)+fxz+2)+fly+az+2)=1V fe)+ flz+y)+ flze+az+y) =1]

> 1= (Pry[f(y) + fla+2)+ fly+a+2)=1+Pr.[f(z) + flz+y) + flz+z+y) =1])
= 1-2n(f).

B (Claim B3

In order to complete the proof of Lemma B4l we show that for any two given points a,b € {0,1}",
g’ (a) + g7 (b) = g/ (a + b). We prove this by the probabilistic method. Specifically, we show that
there exists a point y for which the following three equalities hold simultaneously:

L g/(a) = fla+y) — fy) (=V{(a)).

2. g/(b) = f(b+ (a+y) — flaty) (= Vi, ®)

3. gf(a+b)=fla+b+y) — f(y) (=V(a+b)).
But in such a case,

g (a)+ g7 () = fb+a+y)— fy) =g/ (a+b), (9)

and we are done. To see why there exists such a point y, consider selecting y uniformly at random.
For each of the above three equalities, by Claim B the probability that the equality does not hold
is at most 27(f). By the union bound, the probability (over a uniform selection of y) that any one
of the three does not hold is at most 6n(f). Since n(f) < 1/6, this is bounded away from 1, and
so the probability that there exists a point y for which all three equalities hold simultaneously is
greater than 0, implying that such a point y indeed exists. B (Lemma B4))

14

3.1.1 Self-Correction in its Own Right

In the foregoing discussion we presented self-correction as an analysis technique. However, the
argument introduced directly implies that if f is not too far from being linear, then it can be
constructively self-corrected (which was also a task studied in [BLR93]). Namely, for any x of our
choice, if we want to know the value, on z, of the linear function closest to f, (or, in the coding
theory view, we want to know the correct bit in the position corresponding to x in the closest code-
word), then we do the following. We select, uniformly at random, y1,...,y; and take the majority
vote of Vy]i (z),... ,Vy{ (z) (where the choice of ¢ determines the probability that the majority is
correct). The fact that self-correction can be done constructively has several implications, which
we discuss in Subsection

3.2 Low-Degree Polynomials

Self-correcting is also applied in several results on testing low-degree polynomials over finite
fields [RS96, [FS95, IAKK™05, [KRO6, (MPRZ04]. Consider first the univariate case, that is, test-

d
ing whether a function f : F' — F for a finite field F' is of the form f(z) = > C’ifxi for a given

=0

degree bound d (where the coefficients C’if belong to F). In this case, the testing algorithm [RS96]
works by simply trying to interpolate the function f on ©(1/¢) collections of d+2 uniformly selected
points, and checking whether the resulting functions are all polynomial of degree at most d. Thus
the algorithm essentially works by trying to learn the function f (and the interpolated function
obtained is the self-corrected version of f),

When dealing with the more general case of multivariate polynomials, the results vary according
to the relation between the size of the field |F'| and the degree bound d. In what follows we give
the high level idea of the results, and note where self-correcting comes into play.

The case of large fields. In the first result, of Rubinfeld and Sudan [RS96] (which builds in
part on [FS95)]), it is assumed that |F| > d + 2 (and that F' is a prime field). The idea of the
algorithm is to select random lines in F'™, and to verify that the restriction of f to each line is a
(univariate) polynomial of degree at most d. To be precise, the algorithm does not query all points
on the line, but rather d + 2 evenly spaced points of the form f(x +i-y) (for uniformly selected
x,y € F™), and verifies that they obey a certain linear constraint.

Here the self-corrected version of f (denoted gf) is defined (for each x € F™) as the plurality
value taken over all y € F™ of the vote Vyf (z) of y on the value of x. This vote is the value that
f(x) “should have”, so that the restriction of f to the line defined by z and y will indeed be a
univariate polynomial of degree at most d (conditioned on the values that f has on xz + ¢ -y for
i # 0). This value is simply a linear combination of f(x +i-y) for 1 <i < d+ 1. Similarly to the
analysis of the linearity testing algorithm, it is shown that if the test accepts with sufficiently large
probability, then ¢/ is a polynomial of degree at most d and is close to f.

3In fact, a slightly more efficient version of the algorithm would select d+1 arbitrary points, find (by interpolating),
the unique polynomial g¥ of degree d that agrees with f on these points, and then check that g¥ agrees with f on an
additional sample of ©(1/¢) uniformly selected points.

15

Small fields and the general case. The case that |F| < d 4 2 was first studied by Alon et
al. [AKK™T05] for the special case of |F| = 2 (which corresponds to the well known Reed-Muller
codes). and was later generalized to |F| > 2 in [KRO6, HPRZ04] (where the two works differ
somewhat in the scope and the techniques). A main building block of the analysis of the general
case in [KRO6] is the following characterization of degree-d multivariate polynomials over finite
fields.

Theorem 3.2 Let F' = GF(q) where ¢ = p® and p is prime. Let d be an integer, and let f : F™ —

F. The function f is a polynomial of degree at most d if and only if its restriction to every affine
d+1
a—aq/p

subspace of dimension £ = { —‘ s a polynomial of degree at most d.

Theorem generalizes the characterization result of Friedl and Sudan [FS95] (on which the
aforementioned algorithm of [RS96] builds) which refers to the case ¢ — ¢/p > d + 1. That is, the
size of the field F' is sufficiently larger than the degree d, and the affine subspaces considered are
of dimension ¢ = 1.

The testing algorithm of [KRO6| utilizes the characterization in Theorem B2 (which is shown to
be robust). Specifically, the algorithm selects random affine subspaces (of dimension ¢ as defined
in Theorem B2), and checks that the restriction of the function f to each of the selected subspaces
is indeed a polynomial of degree at most d. Such a check is implemented by verifying that various
linear combinations of the values of f on the subspace sum to 0. Here too the self-corrected version
of f, g7, is defined for each = € F™ as the plurality value of a certain vote. In this case the vote
is taken over all £-tuples 1, ..., yg, which are linearly independent points in F". Each such tuple,
together with x, determines an affine subspace of dimension ¢, and the vote is the value that f(x)
“should have” so that the restriction of f to the subspace be a polynomial of degree at most d
(conditioned on the values of f on the other points in the subspace).

The query complexity and running times of the above algorithms depend on the relation between
|F| and d. Roughly speaking, for any degree d, as the field size |F| increases, the complexity
decreases from being exponential in d (e.g., when |F| = 2) to being polynomial in d when F is of
the same order as d (or larger). This behavior can be shown to be fairly tight by almost matching
lower bounds. More details on these algorithms and their analyses can be found in [Ron08, Sec. 3].

Extending the results for testing low-degree polynomials. The testability of low-degree
polynomials was significantly extended by Kaufman and Sudan [KSO8bD]. Using invariance proper-
ties of algebraic function classes, they give sufficient conditions for efficient testing. These conditions
imply previously known results as well as new ones (e.g., sub-families of polynomials with degree
that is linear in n). Self-correcting plays a role in their analysis as well.

Other techniques for testing algebraic properties. One of the analysis techniques that was
used early on in the study of testing linearity by Bellare et al. [BCHT96] is Fourier analysis. Bellare
et al. [BCHT96| reveal a relation between the Fourier coefficients of (an appropriate transforma-
tion of) a function f and its distance to linearity as well as a relation between these coefficients
and the probability that the BLR test [BLRO3| rejects f. Using these relations they gain better
understanding of the behavior of the linearity test.

16

Another technique that was applied more recently by Kaufman and Litsyn [[KL05| for testing
certain families of “almost-orthogonal” codes (e.g., dual-BCH) is the weight distribution (spectrum)
of a code and its dual.

3.3 Implications of Self-Correction
3.3.1 Self-Correcting and Distribution-Free testing

One interesting implication of self-correction is in the context of distribution-free testing. In
distribution-free testing there is an unknown underlying distribution D over the domain X, and
distance is defined with respect to this distribution. That is, for two functions f,g: X — R we let

distp(f,9) % Prowplf (@) # g(x)] (10)

and for a function f: X — R and a property (family of functions) P we let
distp(f,P) © min{distn(f,9)} - (11)
g

As in the “standard” definition of testing (when the underlying distribution is uniform), the algo-
rithm is given query access to the tested function f. In addition, the algorithm is given access to
examples x € X distributed according to D. The algorithm should still accept with probability at
least 2/3 iffd f € P, but now it should reject (with probability at least 2/3) if distp(f, P) > e.

The notion of distribution-free testing was introduced in [GGRIY]. However, in that paper it
was only observed that distribution-free (proper) learning implies distribution-free testing. Other
than that, in [GGRI8| there were only negative results about distribution-free testing of graph
properties, which have very efficient standard testing algorithms (that is, that work under the
uniform distribution). The first positive results for distribution-free testing (with queries) were
given by Halevy and Kushilevitz [HK03, [HK(7]. Here we describe their general result for obtaining
distribution-free testing algorithms from standard testing algorithms when the function class has a
(property) self-corrector.

Halevy and Kushilevitz introduce the notion of a property self-corrector, which generalizes the
notion of a self-corrector, introduced by Blum, Luby, and Rubinfeld [[BLR93]

Definition 3.2 A ~-self-corrector for a class of functions F is a probabilistic oracle machine M,
which is given oracle access to an arbitrary function f : X — R and satisfies the following conditions
(where M7 denotes the execution of M when given oracle access to f):

o If f € F then Pr[M7(z) = f(z)] =1 for every x € X.

o If there exists a function g € F such that dist(f,g) < v, then Pr[M7(z) = g(x)] > 2/3 for
every r € X.

In this definition, the distance (i.e., the measure dist(-,-)) is defined with respect to the uniform
distribution. However, it will be useful for distribution-free testing (when the distance (dist p(-,-))
is measured with respect to some fixed but unknown distribution (D)). Observe that the second
condition in Definition implies that g must be unique.

4An alternative definition would require that the algorithm accept (with high probability) if distp(f, P) = 0. We
adopt the requirement that f € P since the known results are under this definition.

17

Theorem 3.3 Let F be a class of functions that has a standard testing algorithm T and a ~y-self-
corrector M. Let Qr(-) be the query complexity of T (as a function of the distance parameter
€) and let Qur be the query complexity of M (that is, the number of queries required in order
to determine MT(x)). Then there exists a distribution-free testing algorithm for F with query

complezity O(Qr(min{e,v}) + Qar/e).

In Figure Bl we give the distribution-free testing algorithm referred to in Theorem We assume
that the distance parameter ¢ is smaller than v (or else we set € to 7).

Algorithm 3.2: Distribution-free test based on self-correction

1. Run the standard testing algorithm T on f, 24 (independent) times with the distance
parameter €. If T outputs reject in at least half of these executions then halt and output
reject.

2. Repeat 2/e times:

(a) Sample a point x € X according to the underlying distribution D.

(b) Repeat twice: Compute MS(x) and query f(z). If Mf(x) # f(x) then output
reject (and exit).

3. If no iteration caused rejection then output accept.

Figure 2: The distribution-free testing algorithm that is based on self-correction.

Proof of Theorem Clearly the query complexity of Algorithm is as stated in Theo-
rem Hence we turn to proving its correctness. Consider first the case that f € F. In such a
case the standard testing algorithm 7" should accept with probability at least 2/3, and the proba-
bility that it rejects in at least half of its 24 independent executions is less than 1/3. Assume such
an event did not occur. By the first condition in Definition B2 for every x € X, we have that
MY (x) = f(x) with probability 1. Hence the second step of the algorithm never causes rejection.
It follows that the algorithm accepts with probability at least 2/3. (Note that if 7" has one-sided
error then so does Algorithm B2])

In what follows, in order to distinguish between the case that distance is measured with re-
spect to the uniform distribution, and the case that it is measured with respect to the underlying
distribution D, we shall use the terms (e, U)-close (or far) and (e, D)-close (or far), respectively.
Assume now that f is (e, D)-far from F. If f is also (e, U)-far from F then it is rejected by T' with
probability at least 2/3, and is therefore rejected by the algorithm in its first step with probability
at least 2/3. Hence assume that f is (e, U)-close to F.

In such a case, by the second condition in Definition B2, for every z € X, Pr[M/(z) = g(z)] >
2/3, where ¢ is a fixed function in F that is (v,U)-close to f and the probability is taken over
the internal coin flips of M (recall that € < 7 so such a function g exists). In particular, for any
point z such that f(x) # g(x) we have that Pr[M/(z) # f(z)] > 2/3. Thus, if in one of the
(2/€) iterations of the second step of the algorithm we obtain such a point z, then the algorithm
rejects with probability at least 1 — (1/3)% = 8/9 (since it computes M/ (z) twice). But since f is
(e, D)-far from F, for every function h € F, we have that Pr,p[f(x) # h(z)] > €, and in particular
this is true of g. Hence the probability that the algorithm does not obtain any point z for which

18

f(z) # g(x) is at most (1 — €)¥¢ < exp(—2) < 1/6. Tt follows that the algorithm rejects with
probability at least 1 — (1/9 + 1/6) > 2/3, as required. W

In particular, Theorem can be applied to obtain distribution-free property testing algorithms
for all properties described in this section. Other properties (function classes) include singletons
(since they are a subclass of the class of linear functions), and k-juntas (since they are a subclass
of degree-k multivariate polynomials).

3.3.2 Self-Correcting and Testing Subclasses of Functions

Two other (related) results that build on self-correcting, are testing singletons (also known as
dictator functions) and testing monomials.

Definition 3.3 (Singletons and Monomials) A function f : {0,1}" — {0,1} is a singleton
function if there exists an i € [n] such that f(z) = xz; for every x € {0,1}" or f(zx) = &; for every
x € {0,1}".

We say that f is a monotone k-monomial for 1 < k < n if there exist k indices i1, ...,ix € [n]
such that f(x) = x;y N--- Ay, for every x € {0,1}". If we allow some of the x;;’s above to be
replaced with Z;;, then f is a k-monomial. The function f is a monomial if it is a k-monomial for
some 1 < k <n.

Here we describe the algorithm for testing singletons and explain how self-correcting comes into
play. The testing algorithm for k-monomials generalizes the algorithm for testing singletons and
also builds on self-correcting. We actually describe an algorithm for testing whether a function f
is a monotone singleton. In order to test whether f is a singleton we can check whether either f
or f pass the monotone singleton test. For the sake of succinctness, in what follows we refer to
monotone singletons simply as singletons.

For z,y € {0,1}" we shall use x A y to denote the bitwise ‘AND’ of the two strings. That is,
z = x Ay satisfies z; = x; Ay; for every 1 <i < n.
The following characterization of monotone k-monomials motivates our algorithm.

Lemma 3.6 Let f:{0,1}" — {0,1}. The function f is a monotone k-monomial if and only if the
following two conditions hold:

1 Pr{f(a) = 1] = ;
2. flx Ny) = f(z) A fy) for all z,y € {0,1}".

[\

In what follows we shall say that a pair of points z,y € {0,1}" are violating with respect to f if
flany) # f@) A fy).

Proof: If f is a k-monomial then clearly the conditions hold. We turn to prove the other direction.
We first observe that the two conditions imply that f(z) = 0 for all || < k, where |z| denotes the
number of ones in x. In order to verify this, assume in contradiction that there exists some x such
that |z| < k but f(x) = 1. Now consider any y such that y; = 1 whenever x; = 1. Then x Ay = =z,
and therefore f(xAy) = 1. But by the second item, since f(x) = 1, it must also hold that f(y) = 1.

19

However, since |z| < k, the number of such points y is strictly greater than 27~*

first item.

, contradicting the

Next let Fy % {z: f(x) =1}, and let y = A\ ., 2. Using the second item in the claim we get:

fo) =f(Ne)= A f@=1. (12)

€M e
However, we have just shown that f(z) = 0 for all |z| < k, and thus |y| > k. Hence, there exist k
indices 41, ..., such that Yi; =1 forall1 < j < k. But Yi; = /\ng1 x;;. Hence, z;) = ... =x;, =1
for every « € F. The first item now implies that f(z) = z;; A... Az;, for every z € {0,1}". W

Given Lemma B8] a natural candidate for a testing algorithm for singletons would take a sample
of uniformly selected pairs (x,y), and for each pair verify that it is not violating with respect to
f. In addition, the test would check that Pr[f(z) = 0] is roughly 1/2 (or else any monotone k-
monomial would pass the test). As shown in [PRS02], the correctness of this testing algorithm can
be proved as long as the distance between f and the closest singleton is bounded away from 1/2.
It is an open question whether this testing algorithm is correct in general.

We next describe a modified version of this algorithm, which consists of two stages. In the first
stage, the algorithm tests whether f belongs to (is close to) a more general class of functions (that
contains all singleton functions). In the second stage it applies a slight variant of the original test
(as described in the previous paragraph). Specifically, the more general class of functions is the
class £ of linear Boolean functions over {0,1}", which was discussed in Subsection Bl Clearly,
every singleton function f(x) = x; is a linear function. Hence, if f is a singleton function, then it
passes the first stage of the test (the linearity test) with probability 1. On the other hand, if it is
far from any linear function, then it will be rejected already by the linearity test. As we shall see, if
f is far from every singleton function, but it is close to some linear function that is not a singleton
function (so that it may pass the linearity test), then we can prove that it will be rejected in the
second stage of the algorithm with high probability.

In order to motivate the modification we introduce in the aforementioned “natural” singleton
test, we state the following lemma and discuss its implications.

Lemma 3.7 Let S C [n], and let gs(x) = >°,cqxi (where the sum is taken modulo 2). If |S] is
even then

1 1
Proylgs(z Ay) = gs(2) A gs()] = 5 + g
and if |S| is odd then
1 1
Pro.yl95(z A y) = gs(2) A gs(W)] = 5 + 3757

Proof: Let s = |S|, and let z,y be two strings such that (i) x has 0 < i < s ones in .S, that is,
{¢eS: xy=1} =1; (ii) x Ay has 0 < k < i ones in S; and (iii) y has a total of j + k ones in S,
where 0 < j < s —1.

If gs(x ANy) = gs(z) A gs(y), then either (1) ¢ is even and k is even, or (2) ¢ is odd and j is
even. Let Z; C {0,1}" x {0,1}" be the subset of pairs z,y that obey the first constraint, and let
Zy € {0,1}" x {0,1}" be the subset of pairs z,y that obey the second constraint. Since the two
subsets are disjoint,

Pryylgs(z Ay) = gs(x) A gs(y)] = 272"(1 21| + | Za]) - (13)

20

It remains to compute the sizes of the two sets. Since the coordinates of x and y outside S do not
determine whether the pair z,y belongs to one of these sets, we have

e (£ 02 05C0)

1=0,7 even k=0,k even

and

e (£ 050 £.0) e

=0, odd k=0 7=0,j even
The right-hand-side of Equation (4] equals
22n—23 . (225—2 + 23—1) _ 22n—2 + 22n—s—1 _ 22n . (2—2 + 2—(s+1))) (16)

The right-hand-side of Equation ([[H) equals 22" - (272 4 21} if 5 is odd and 22"~ if s is even.
The lemma follows by combining Equations ([dl) and (1) with Equation (I3). W

Hence, if f is a linear function that is not a singleton and is not the all-0 function, that is, f = g5
for |S| > 2, then the probability that a uniformly selected pair z,y is violating with respect to f is
at least 1/8. In this case, a sample of 16 such pairs will contain a violating pair with probability
at least 1 — (1 —1/8)16 >1—¢72 > 2/3.

However, what if f passes the linearity test but is only close to being a linear function? Let g
denote the linear function that is closest to f and let § be the distance between them. (Note that
g is unique, given that f is sufficiently close to a linear function). What we would like to do is
check whether g is a singleton, by selecting a sample of pairs x,y and checking whether it contains
a violating pair with respect to g. Observe that, since the distance between functions is measured
with respect to the uniform distribution, for a uniformly selected pair x,y, with probability at least
(1 —6)2, both f(x) = g(z) and f(y) = g(y). However, we cannot make a similar claim about
f(z Ay) and g(z A y), since x A y is not uniformly distributed. Thus it is not clear that we can
replace the violation test for g with a violation test for f. In addition we need to verify that g is
not the all-0 function.

The solution is to use a self-corrector for linear functions, essentially as defined in Definition
Namely, given query access to a function f: {0,1}" — {0,1}, which is strictly closer than 1/4 to
some linear function g, and an input « € {0,1}", the procedure Self-Correct(f, x) returns the value
of g(x), with probability at least 9/10. The query complexity of the procedure is constant.

The testing algorithm for singletons is given in Figure Bl

Theorem 3.4 Algorithm [Z3 is a one-sided error testing algorithm for monotone singletons. The
query complezity of the algorithm is O(1/¢).

Proof: Since the linearity testing algorithm has a one-sided error, if f is a singleton function
then it always passes the linearity test. In this case the self corrector always returns the value of
f on every given input point. In particular, Self-Correct(f, f) =f (T) = 1, since every monotone
singleton has value 1 on the all-1 vector. Similarly, no violating pair can be found in Step Bl Hence,
Algorithm always accepts a singleton.

21

Algorithm 3.3: Test for Singleton Functions

1. Apply the linearity test (Algorithm [Z1) to f with distance parameter min(1/5,¢). If
the test rejects then output reject (and exit).

2. If Self-Correct(f,1) = 0 (where 1 is the all-1 vector), then output reject (and exit).
3. Uniformly and independently select m = 64 pairs of points x,y.

e For each such pair, let b, = Self-Correct(f,x), by = Self-Correct(f,y) and bypy =
Self-Correct(f,z Ny).

o Check that bypy = by A by.

4. If one of the checks fails then output reject. Otherwise output accept.

Figure 3: The testing algorithm for singletons (that is based on self-correction).

Assume, without loss of generality, that e < 1/5. Consider the case in which f is e-far from any
singleton. If it is also e-far from any linear function, then it will be rejected with probability at
least 9/10 in the first step of the algorithm. Otherwise, there exists a unique linear function g such
that f is e-close to g. If g is the all-0 function, then f is rejected with probability at least 9/10 (in
Step B).

Otherwise, g is a linear function of at least 2 variables. By Lemma B, the probability that a
uniformly selected pair z,y is a violating pair with respect to g is at least 1/8. Given such a pair,
the probability that the self-corrector returns the value of g on all the three calls (that is, b, = g(z),
by = g(y), and byry = g(z Ay)), is at least (1 —1/10)% > 7/10. The probability that Algorithm
obtains a violating pair with respect to g and all calls to the self-corrector return the correct value,
is greater than 1/16. Therefore, a sample of 64 pairs will ensure that a violation byny # by A by
will be found with probability at least 9/10. The total probability that f is accepted, despite being
e-far from any singleton, is hence at most 3 - (1/10) < 1/3.

The query complexity of the algorithm is dominated by the query complexity of the linear
tester, which is O(1/¢€). The second stage takes constant time. W

4 The Enforce-and-Test Approach

In order to introduce the idea of the “enforce-and-test” approach, we start by giving a very simple
example: Testing whether a graph is a biclique. We later present the slightly more involved analysis
for the more general problem of testing whether a graph is bipartite, and shortly discuss other
properties for which the enforce-and-test approach is applied. We note that this approach was
most commonly (though not solely) applied when testing properties of graphs in the dense-graphs
model.

22

4.1 Testing Whether a Graph is a Biclique

A graph G = (V, E) is a biclique if there exists a partition (V7,V3) of the graph vertices such that
E = Vi x V, (that is, V; and V, are independent sets and there is a complete bipartite graph
between V; and V3). Recall that by the definition of the dense-graphs model, a graph is e-far from
being a biclique (and hence should be rejected with probability at least 2/3) if more than en? edge-
modification (additions and/or deletions) should be performed on the graph so that it becomes a
biclique. This is equivalent to saying that for every partition (V7,V5), the size of the symmetric
difference (E\ V; x Vo) U (V1 x Vo \ E) is greater than en?.

Consider the following algorithm. It first selects an arbitrary vertex vg. It then uniformly and
independently selects s = 2/e pairs of vertices (ui,w1), ..., (us, ws) and queries each pair (u;, w;)
as well as (vo, ;) and (vg,w;). If the algorithm encounters evidence that the graph is not a biclique
(that is, for some 1 < j < s we have that (u;,w;), (vo,u;), and (v, w;) are all edges or exactly one
of them is an edge), then it rejects. Otherwise it accepts. Since the algorithm only rejects when it
finds evidence that the graph is not a biclique, it accepts every biclique with probability 1.

In order to prove the if the tested graph is e-far from being a biclique, then the algorithm rejects
it with probability at least 2/3, we do the following. We view vg as enforcing a partition of all
graph vertices in the following manner. On one side of the partition (V7) we put vy together with
all vertices that it does not neighbor, and on the other side (V3), we put all the neighbors of vg. The
vertex vy enforces this partition in the sense that if the graph is indeed a biclique then this is the
only partition that obeys the biclique conditions. On the other hand, recall that if the graph is e-far
from being a biclique then for every partition (V1, V2) we have that |E\V; x Va|+ Vi x Vo \ E| > en?.
In particular this is true of the aforementioned partition where V3 = V \ T'(vg) and Vo = T'(vp)
(recall that I'(vg) denotes the set of neighbors of vy).

Therefore, with probability at least 1 —(1—¢)® > 1—exp(—es) > 2/3, among the s sampled pairs
(ur,wt), ..., (us, ws) there will be at least one pair (u;,w;) either in £\ Vi x V5 orin Vi x V5 \ E.
In the former case either u; and w; both belong to V1, and so the subgraph induced by u;, w; and
vo contains a single edge (uj,w;), or u; and w; both belong to Vs, and so the subgraph induced
by wuj, w; and vy contains all three edges. In the latter case this subgraph contains a single edge
(between v and either u; or w;). For an illustration, see Figure E

Va Va Vs
Vi Vi Vi

< i{' ﬂ(

Figure 4: An illustration of the three cases in the analysis of the biclique tester. On the left is an illustration
for the case that (u;,w;) € E\ Vi x V5 and uj,w; € Vi; In the middle is an illustration for the case that
(uj,w;) € E\Vi x Va and uj, w; € Va; On the right is an illustration for the case that (u;,w;) € Vi x Vo \ E,
and u; € V1, w; € V. In the last case the “missing edge” between u; and w; is marked by a dotted line.

23

The General Idea. As exemplified by the problem of testing whether a graph is a biclique,
the high-level idea behind the design and analysis of algorithms that follows the “enforce-and-test”
approach is roughly the following. The algorithm takes a sample from the tested object (e.g.,
a small random subgraph), and checks whether the sample has a particular property, which is
possibly, but not necessarily, the property tested. The analysis views the sample as consisting of
two parts. The first part is the “enforcing” part, and the second is the “testing” part. The goal of
the enforcing part is to implicitly induce certain constraints over the structure of the (yet unseen
portion) of the object. The constraints are such that if the object is far from having the property,
then with high probability over the choice of the testing part it will contain evidence that (together
with the enforce part) “proves” that the object does not have the tested property.

4.2 Testing Bipartiteness in the Dense-Graphs Model

Recall that a graph G = (V, E) is bipartite if there exists a partition (V7,V3) of the vertices where
there are no edges (u,w) such that u,w € Vj or u,w € Vo. We say in such a case that the partition
is bipartite. If a partition (V7,V3) is not bipartite, then we shall say that the edges (u,w) € E such
that u,w € Vi or u,w € Vo are violating edges with respect to (V1,V2). Recall that we can decide
(exactly) whether a graph is bipartite in linear time by running a Breadth First Search (BFS). By
the definition of the dense-graphs model, a graph G is e-far from (being) bipartite in this model if
(and only if) it is necessary to remove more than en? edges to make it bipartite.

The algorithm is very simple and is given in Figure Bl Note that the number of queries performed is
independent of the size of the graph, and only depends (polynomially) on 1/e. Clearly, if the graph

Algorithm 4.1: Bipartiteness Test
1. Take a sample S of © (6_2 : log(l/e)) vertices, selected uniformly at random;

2. Ask vertex-pair queries for all pairs in the sample, thus obtaining the induced subgraph
Gs;

3. Run a Breadth First Search (BFS) on Gg: if it is bipartite then accept, otherwise,
reject.

Figure 5: The bipartiteness testing algorithm (for dense graphs).

G is bipartite then it is accepted by Algorithm ET] with probability 1, and when the algorithm
rejects a graph it provides evidence “against” the graph in the form of a small subgraph (G g) that
is not bipartite. Hence, from this point on assume G is e-far from being bipartite, and we will show
that it is rejected with probability at least 2/3.

If G is e-far from bipartite then this means that for every partition (V7, V) of V', there are more
than en? violating edges with respect to (V1, V3). Consider the following initial attempt of analyzing
the algorithm: If we consider a single partition (V7,V3) (that has more than en? violating edges,
since the graph is e-far from bipartite), then it is easy to see that a sample of s = © (e7!-log(1/4))
vertices will “hit” the two end-points of such an edge (i.e., that is violating with respect to (V7,V3))
with probability at least 1 —9. The natural idea would be to take a union bound over all partitions.
The problem is that there are 2™ possible partitions and so in order for the union bound to work
we would have to take 6 < 27", implying that the sample should have size linear in n.

24

Instead, we shall think of the sample as consisting of two disjoint parts, U (the “enforce”
part) and W (the “test” part). The intuition is that in some sense U will introduce constraints
that will effectively reduce the number of “relevant” partitions of V' to a much smaller number
than 2", and then W will be used to “test” only them. We let [U| = © (¢! -log(1/e)) and
W[=0 (! log2lUl) =0 (e72 - log(1/e)).

We first introduce a couple of additional definitions:

Definition 4.1 For any fized partition (U1,Us) of U, we shall say that W is not compatible with
(U1, Us) if there is no partition (Wq, Wa) of W such that (U3 UW1q, Uy UW3) is a bipartite partition.

We would like to show that (since G is e-far from bipartite), with high probability over the choice
of U and W, no matter how we partition U into (Uy,Us), the subset W will not be compatible
with (U, Us) (implying that there is no bipartite partition of both U and W, which causes the
algorithm to reject).

Definition 4.2 Let (Uy,Usy) be a (bipartite) partition of U. We shall say that a verter w is a
witness against (U1, Us) if there exist up € Uy and ug € Uy such that (w,uy), (w,us) € E. We shall
say that a pair wy and we are witnesses against (Uy,Us) if (w1, wy) € E and there exist uy,uy € U
such that uy,us € Uy or uy,ug € Uy and (wi,uy), (wa,us) € E.

For an illustration of the notion of witnesses, see Figure 6

U, U, Ui Us
\ w1
w Wo

Figure 6: An illustration of a witness w, and a pair of witnesses w1, w2, both with respect to the partition
(Ul, Ug) of U.

Observation: If W contains a vertex w that is a witness against (U, Us) or a pair of vertices
wy and wy that are witnesses against (U1, Us) then W is not compatible with (U, Us). Hence, we
would like to show that with high probability over U and W, there are witnesses in W against
every partition of U.

Simplifying assumption: We first continue the analysis under the assumption that U is such
that every v € V has at least one neighbor in U. (We later remove this assumption). Under this
assumption, given a bipartite partition (Uy,Us) of U, we define a partition of all of V. For v € U
we put w in Vj if v € Uy and we put v in Vs if u € Us. For v € V' \ U (that is, almost all vertices
are considered here) if v has a neighbor in U; then we put v in V5 and otherwise (it has a neighbor
in Us), then we put it in V;. For an illustration, see Figure [1

Now, each one of these at most 2|Vl partitions of V contains more than en? violating edges.
Since (Uy,Us) is bipartite, and we put each vertex in V' \ U opposite its neighbor, these edges are

25

Figure 7: An illustration of the partition of V' that is defined based on (U, Us) when we make the simplifying
assumption that every vertex in V' has a neighbor in U. Violating edges (which correspond to witnesses) are
marked by bold lines.

of the form (wy,ws) € E where w; and wy both have a neighbor in U; or both have a neighbor in
Us, or they are of the form (w,us) where us € Uy and w has a neighbor uy € U; (so it was put in
V2). But this exactly coincides with our definition of witnesses against (U1, Usz). Therefore, if we
catch such a vertex (pair), then W in not compatible with (Uy, Us). For simplicity of the analysis,
even in the case that w is a witness because it was put in V7 but it has a neighbor us € Us, we
shall think of (ug,w) as a pair of witnesses, and so it won’t be considered sufficient that w € W
but we’ll require that uq, w € W.

We shall think of the uniform sample W as a sample over uniformly selected pairs of vertices.
Since the probability that we catch a pair of witnesses in a single trial is more than %2 = ¢, the
probability that we don’t catch any pair of witnesses in W is at most (1 — €)"WI/2, If we take
|W| = ©(|U|/e) then this is less than (1/6) - 271Yl. By a union bound over all two-way partitions
of U, the probability that for some (U;, Us), we have that W is compatible with (Uj, Us) is hence

at most 1/3. In other words, with probability at least 5/6 there is no bipartite partition of U UW.

It remains to remove the assumption that every vertex in V has a neighbor in U.

Definition 4.3 We say that a vertez in V has high degree if its degree is at least (¢/4)n. Otherwise
1t has low degree.

Lemma 4.1 With probability at least 5/6 over the choice of (4/€) -log(24/¢) vertices (denoted U),
all but at most (e/4)n of the high degree vertices in V' have a neighbor in U.

We prove this lemma momentarily, but first show how to modify the argument based on the
lemma. Assume U is as stated in the lemma (where we later take into account the probability of
1/6 that this is not the case). Then, given a partition (Uy,Us) of U, we define a partition of all
vertices similarly to what we did before. In particular, the vertices in U and their neighbors are
partitioned as before. All remaining vertices, which do not have a neighbor in U and whose set
is denoted R, are put arbitrarily in V7. For an illustration, see Figure Bl Once again, for every

26

Figure 8: An illustration of the partition of V' that is defined based on (Uy,Usz) when we remove the
simplifying assumption that every vertex in V" has a neighbor in U. Violating edges that are incident to R
are marked by dashed lines while violating edges which correspond to witnesses are marked by bold lines.

bipartite partition (U7, Us), the partition of V' just defined contains more than en? violating edges.
Now, some of these violating edges might not correspond to witnesses. In particular, some of these
edges might be incident to vertices in R. However, the total number of edges that are incident to
vertices in R is at most n- (e/4)n + (e/4)n-n = (¢/2)n?. Hence, there are at least (¢/2)n? violating
edges that correspond to witnesses, and we shall catch one with high constant probability.

More precisely, if [W| = O(e7! - |U|) = ©(e72 - log(1/¢)), then, conditioned on U being as in
Lemma ET] with probability at least 5/6 over the choice of W, there is a pair of witnesses in W
against every partition of U. The probability that either U is not as in Lemma Bl or W does not
include witnesses against some partition of U, is at most 1/3. It follows that with probability at
least 2/3 (over the choice of S = U UW) the algorithm rejects (since there is no bipartite partition
of S). It remains to prove Lemma FJl
Proof of Lemma BTl Consider any fixed high degree vertex v. The probability that U does not
contain any neighbor of v is at most (1 — (¢/4))IVl < €/24. Therefore, the expected fraction of high
degree vertices in V' that do not have a neighbor in U is at most €/24. By Markov’s inequality, the
probability that there is more than an €/4 fraction of such vertices in V' (that is, more than 6 times
the expected value), is at most 1/6. W

4.2.1 Reducing the Number of Queries

We first observe that by the foregoing analysis, we can modify the algorithm (see Figure @) so as
to reduce the query complexity and running time to ©(e 3 - log?(1/€)). The basic observation is
that we can actually partition the sample into two parts, U and W (as described in the analysis),
and we don’t need to perform all vertex-pair queries on pairs of vertices in W, but rather only on
a linear (in |W|) number of disjoint pairs.

27

Algorithm 4.2: Bipartiteness Test (Version II)

1. Take a sample U of © (6_1 'log(l/e)) vertices, uq,.. . ,us, selected uniformly, indepen-
dently, at random, and a sample W of © (6_2 . log(l/e)) vertices wi, ..., w; selected
uniformly, independently, at random.

2. Ask vertez-pair queries for all pairs (u;,uj) € U x U, (uj,wy) € U x W and for all
pairs (wop_1,wep) where 1 < € < [t/2]. Let the subgraph obtained be denoted H.

3. Run a Breadth First Search (BFS) on H: if it is bipartite then accept, otherwise,
reject.

Figure 9: The bipartiteness testing algorithm (version II).

A more sophisticated analysis of Alon and Krivelevich [AK02] shows that a sample of vertices
having size ©(e~!-log(1/e)) suffices for the original algorithm (Algorithm EZTI), so that the number
of queries performed is ©(e~2-log?(1/€)). The result of Alon and Krivelevich is optimal in terms of
the number of vertices that the tester inspects [AK02]. A natural question addressed by Bogdanov
and Trevisan [BT04] is whether Q(¢~2) queries are necessary. Bogdanov and Trevisan showed that
Q(e2) queries are indeed necessary for any non-adaptive tester. For adaptive testers they showed
that Q(e_g/ 2) queries are necessary This result still left open the question whether an adaptive
tester can indeed have query complexity that is o(e~2), and possibly even 0(6_3/ 2). This question
was answered affirmatively in [GROT] for the case that (almost) all vertices have degree O(en),
where the lower bounds of [BT04] holds under this condition. The algorithm of [GROT] works by
importing ideas from testing in the bounded-degree model to the dense-graphs model. They also
showed that O(e3/2) are sufficient when (almost) all vertices have degree Q(e'/?n). The general
question regarding the exact complexity of adaptively testing bipartiteness for general graphs (in
the dense-graphs model) is still open. We note that the power of adaptivity in the dense-graphs
model was further studied in [GR09].

4.2.2 Constructing an Approximately Good Bipartition

One interesting implication of the analysis of the bipartiteness tester is that if the graph is indeed
bipartite then it is possible to use the tester to obtain (with high constant probability) auxiliary
information that lets us construct an approximately good bipartition in time linear in n. To be
precise, we say that a partition (V7,Vs) is e-good if there are at most en? violating edges in G
with respect to (Vi,V2). Now suppose G is bipartite and we run Algorithm EZIl where we view the
sample as consisting of two parts: U and W (or we run Algorithm for which the partition of
the sample is explicit).

As shown in Lemma B, with high constant probability, all but at most (¢/4)n of the high
degree vertices in V' have a neighbor in U (where we said that a vertex has high degree if it has at
least (e/4)n neighbors). We shall say in such a case that U is an (e/4)-dominating-set. Assume from
this point on that U is indeed an (e/4)-dominating-set (where we take into account the probability

5A non-adaptive tester must choose all its queries in advance whereas an adaptive tester may choose its queries
based on answers to previous queries. In the dense-graphs model, for any fixed property the gap in the query
complexity between adaptive and non-adaptive testing algorithms is at most quadratic [AFKSO0, [GT03].

28

that this is not the case in our failure probability).

For each bipartite partition (Uy,Us) of U, consider the partition (U; U (V \T'(Uy)), U UT(Uy))
of V' (as defined in the analysis of the tester). By the argument used to prove the correctness of
the tester in the case that the graph is e-far from being bipartite, we have the following. With high
constant probability over the choice of W, for every (Uy, Us) such that (U3 U(V\T'(Uy)), U2 UT'(Uy))
is not e-good, there will be no bipartite partition (U; U W7, Uy U Wy) of the sample. Assume this is
in fact the case (where we add the probability that this is not the case to our failure probability).
Since G is bipartite, the BFS executed by the tester will find a bipartite partition (U; UW7, UsUW,),
implying that the partition (U U (V \ T'(Uy)), Uz UT'(U1)) must be e-good.

We can hence use the partition (Uy,Usz) to determine, for every vertex v € V to which side
it belongs in the e-good partition (U; U (V \ T'(Uy)), Uy UT(U;)) by simply performing all queries
between v and u € U.

4.3 Other Applications of the Enforce-and-Test Approach

There are also similar (though somewhat more complex) analyses of algorithms in the dense-graphs
model for testing k-colorability, p-Clique (having a clique of size pN), p-cut (having a cut of size
at least pN?), and in general for the family of all partition properties [GGRI8]. Namely, these
properties are defined by upper and lower bounds on the sizes of some constant number k& of
parts, and upper and lower bounds on the edge-densities between these parts and within each
part. The number of queries performed in all cases is polynomial in 1/e and exponential in k. The
time-complexity is exponential in 1/€, but this is inevitable (assuming P # N P) since partition
problems include N P-hard problems.

As in the case of bipartiteness, for all these properties, when the graph has the desired property,
the testing algorithm outputs some auxiliary information that lets us construct, in poly(1/e) - N
time, a partition that approximately obeys the property (recall that the number of parts, k, is
assumed to be a constant). For example, for p-Clique, the algorithm will find a subset of vertices of
size pN, such that at most eN? edges need to be added so that it becomes a clique. In the case of
p-Cut, the algorithm will construct a partition with at least (p —¢) N2 crossing edges (so that if we
run the algorithm with e =« - p, we get a cut of size at least (1 — «y) times the optimal). As in the
case of bipartiteness, the basic idea is that the partition of the sample that caused the algorithm
to accept is used to partition the whole graph.

Returning to the property of bipartiteness, we observe that the construction algorithm for p-
Cut (which constructs a partition with at least (p — €)N2 crossing edges) can be applied to get an
e-good bipartition even when the graph is not bipartite but rather is close (say, €/2-close) to being
bipartite. More generally, the construction algorithm for the general partition problem can be used
to construct approximately good partitions even when the graph does not have a corresponding
“perfect” partition.

Other property testing problems that are solved using the enforce-and-test approach include
testing metric properties [PRO3] and testing of clustering [ADPRO3]. In these cases it also holds
that the testing algorithms can be extended to solve approximate versions of the corresponding
search problems (e.g., finding good clusterings of all but a small fraction of the points). As we
discuss in Section [, the analysis of the bipartiteness tester in the bounded-degree model can also
be viewed as following the enforce-and-test approach, though this is perhaps less evident than in

29

other cases.

The enforce-and-test approach is also related to the framework of Czumaj and Sohler [[CS05],
in which the notion of Abstract Combinatorial Programs is defined, and based on these programs,
several (old and new) property testing algorithms are derived.

5 Testing by Implicit Learning

In this subsection we describe the results of Diakonikolas et al. [DLM™07]. They present a general
method for testing whether a function has a concise representation (e.g., an s-term DNF or an s-
node decision tree). Here we mostly focus on the Boolean case, though the technique in [DLM™07]
extends to general domains and ranges. The query complexity is always polynomial in the size
parameter s, and is quadratic in 1/e. The running time grows exponentially] with s.

The approach taken in [DLM™07] combines ideas from the junta testing algorithm(s) of Fischer
et al. [EKRT04] and ideas from learning theory (a k-junta is a function that depends on at most
k variables). As noted in the introduction, it was observed in [GGR98] that if we have a proper
learning algorithm for a class of functions F, then we can use it as a subroutine to test the property of
membership in F. However, for all the properties considered in [DLM™07|, proper learning requires
a number of queries that grows at least logarithmically with the number of variables, n. Therefore,
a more refined approach is required in order to obtain algorithms whose query complexity does not
depend on n.

The first key observation behind the general algorithm of [DLM™07] is that many classes of
functions that have a concise representation are “well-approximated” by small juntas that belong
to the class. That is, every function in the class is close to some other function in the class that is a
small junta. For example, for any choice of §, every s-term DNF is d-close to an s-term DNF that
depends only on at most slog(s/d) variables. This is true since by removing a term that has more
than log(s/d) variables, the error incurred is at most /s (recall that the underlying distribution is
uniform).

Given this observation, the algorithm works roughly as follows. It first finds a collection of
subsets of variables such that each subset contains a single variable on which the function depends
(in a non-negligible manner). If the number of such subsets is larger than some threshold k, then
the algorithm rejects. Otherwise, the algorithm creates a sample of labeled examples, where the
examples are points in {0, 1}k, that is, over the variables that the function depends on. It is
important to stress that the algorithm creates this sample without actually identifying the relevant
variables. Finally, the algorithm checks whether there exists a function of the appropriate form over
the small set of variables that is consistent with the sample. Roughly speaking, the algorithm works
by attempting to learn the structure of the junta that f is close to (without actually identifying its
variables). This is the essence of the idea of “testing by implicit learning”.

Since the results of [DLM™08| build on testing juntas, we first describe an algorithm for testing
whether a function is a small junta [FKRT04].

5In recent work [DLM™08] the dependence of the running time on s in the case of s-term polynomials over GF(2)
was reduced to polynomial.

30

5.1 A Building Block: Testing Juntas

We start with a formal definition.

Definition 5.1 (Juntas) A function f : {0,1}" — {0,1} is a k-junta for an integer k < n if f
is a function of at most k variables. Namely, there exists a set J C [n] where |J| < k such that
f(z) = f(y) for every z,y € {0,1}" that satisfy x; = y; for each i € J. We say in such a case that
J dominates the function f.

The main result of [FKRT04] is stated next.
Theorem 5.1 For every fixed k, the property of being a k-junta is testable using poly(k)/e queries.

Fischer et al. [FKR04] establish Theorem Bl by describing and analyzing several algorithms. The
algorithms vary in the polynomial dependence on k (ranging between(] O(k*) to O(k?)), and in
two properties: whether the algorithm is non-adaptive or adaptive (that is, queries may depend on
answers to previous queries), and whether it is has one-sided error or two-sided error. They also
prove a lower bound of Q(v/k) for non-adaptive algorithms, which was later improved to an Q(k)
lower bound for adaptive algorithms by Chockler and Gutreund [CG06], thus establishing that a
polynomial dependence on k is necessary. While we focus here on the domain {0,1}" and on the
case that the underlying distribution is uniform, Theorem BJ] holds for other domains and when
the underlying distribution is a product distribution.

In order to describe and analyze the testing algorithm, we first introduce some definitions and
notations. The domain of the functions we consider is always {0,1}" and it will be convenient to
assume that the range of the functions is {1, —1} = {(—1)%, (=1)!} (rather than {0,1}).

Partial Assignments. For a subset S C [n] we denote by A(S) the set of partial assignments
to the variables x; where ¢ € S. Each w € A(S) can be viewed as a string in {0, 1, *}", where for
every i € S, w; € {0,1}, and for every i ¢ S, w; = . In particular, A([n]) = {0,1}". For two
disjoint subsets S, S’ C [n], and for partial assignments w € A(S) and w’' € A(S"), we let wlw’
denote the partial assignment z € A(S U S’) defined by: z; = w;, for every i € S, z; = w, for every
i€ S, and z = w; = w, = x for every i € [n]\ {SUS'}. In particular, we shall consider the
case S’ = [n] \ S, so that wlw’ € {0,1}" is a complete assignment (and f(wUw’) is well defined).
Finally, for z € {0,1}" and S C [n], we let 7|5 denote the partial assignment w € A(S) defined by
w; = x; for every i € S, and w; = * for every i ¢ S. For the sake of conciseness, we shall use S as
a shorthand for [n]\ S.

Variation. For a function f:{0,1}" — {1,—1} and a subset S C [n], we define the variation of
f on S (or the variation of S with respect to f), denoted Vr(S), as the probability, taken over a

uniform choice of w € A(S) and z1, 23 € A(S), that f(wUz1) # f(wlze). That isf

Vi (5) € pr, AS) iz () [(WUz1) # fwlz)] . (17)

"The notation O(g(t)) for a function g of a parameter ¢t means O(g(t) - polylog(g(t)).

8We note that in [FKR04] a more general definition is given (for real-valued functions). For the sake of simplicity
we give only the special case of {1, —1}-valued function, and we slightly modify the definition by removing a factor
of 2.

31

The simple but important observation is that if f does not depend on any variable x; where i € S,
then Vr(S) = 0, and otherwise it must be non-zero (though possibly small). One useful property
of the variation is that it is monotone. Namely, for any two subsets S, T C [n],

VI‘f(S) SVI‘f(SUT) . (18)
Another property is that it is subadditive, that is, for any two subsets S,T C [n],

Vl"f(S U T) < VI"f(S) —{—Vl“f(T) . (19)

As we show next, the variation can also be used to bound the distance that a function has to
being a k-junta.

Lemma 5.1 Let f:{0,1}" — {1,—1} and let J C [n] be such that |J| <k and Vry(J) <e. Then
there exists a k-junta g that is dominated by J and is such that dist(f, g) < e.

Proof: We define the function g as follows: for each x € {0,1}" let

gla) < majority, ¢ 47, {f (x)s00)} - (20)

That is, for each w € A(J), the function g has the same value on all strings = € {0,1}" = A([n])
such that x; = w, and this value is simply the majority value of the function f taken over all
strings of this form.

We are interested in showing that Pr[f(x) = g(z)] > 1 —e. That is,

Pr e A, 2ea) [f(wl_lz) = majority, e 4 p{f(wlu)}| >1—€. (21)

Similarly to what was shown in the proof of Claim B, this probability is lower bounded by

PrweA(J)7z17z2eA(j)[f(wLIzl) = f(wUzg)], which is simply 1 — Vrg(J) >1—¢c. W

5.1.1 An Algorithm for Testing Juntas

Here we describe an algorithm for testing k-juntas, which has one-sided error, is non-adaptive, and
has query complexity O(k*/e). In [EKRF04] there are actually two algorithms with this complexity.
We have chosen to describe the one on which the more efficient algorithms (mentioned previously)
are based, and which also plays a role in the results described in Subsection We assume that
k > 1, since 1-juntas are simply singletons, for which we already know there is a testing algorithm.
The idea behind the algorithm is simple: It randomly partitions the variables into ©(k?2) disjoint
subsets. For each subset it checks whether it contains any variable on which the function depends.
If there are more than k subsets for which such a dependence is detected, then the algorithm rejects.
Otherwise it accepts. The algorithm is given in Figure [0

Theorem 5.2 Algorithm [l is a one-sided error testing algorithm for k-juntas. Its query com-
plezity is O(k*log k/e).

32

Algorithm 5.1 : k-Junta Test

1. Forr = O(k?) select a random partition {S1,...,S,} of [n] by assigning each i € [n]
to a set S; with equal probability.

2. For each j € [r], perform the following dependence test at most
h = 4(log(k + 1) +4)r/e = O(k*log k/€)
times:

e Uniformly and independently select w € A(S;) and z1,2z2 € A(Sj). If f(wliz) #
f(wlzy) then declare that f depends on variables in S; (and continue to j +1).

3. If f is found to depend on more than k subsets S;, then output reject, otherwise output
accept.

Figure 10: Testing algorithm for juntas.

The bound on the query complexity of the algorithm is O(r-h) = O(k*log k/¢). The dependence
test declares that f depends on a set S; only if it has found evidence of such a dependence and
the algorithm rejects only if there are more than k disjoint sets for which such evidence is found.
Therefore, the algorithm never rejects a k-junta. We next turn to proving that if f is e-far from an
k-junta then it is rejected with probability at least 2/3.

Let 7 = (log(k + 1) + 4)/h and note that by the definition of h, 7 < €/(4r) (recall that r

is the number of sets in the random partition selected by the algorithm and h is the number of

applications of the dependence test). Define J = J,.(f) = {i € [n] : Vry({i}) > 7}. Thus J

consists of all i such that Vry({i}) < 7. We claim:

Lemma 5.2 If Vry(J) > € then Algorithm [l rejects with probability at least 2/3.

Lemma 5.3 If |J| > k then Algorithm B rejects with probability at least 2/3.

By Lemma Bl if f is e-far from any k-junta, then either Vrs(J) > e or |J| > k (or both).
By Lemmas and this implies that the algorithm rejects with probability at least 2/3. Both
lemmas rely on the following claim regarding the dependence test.

Claim 5.4 For any subset S, if Vry(S;) > 7, then the probability that Step [@ in Algorithm [21l
declares that f depends on variables in S; is at least 1 —1/(e*(k + 1)).

Proof: By the definition of the dependence test, the probability that a single application of the
test finds evidence that f depends on S; is exactly Vry(S;). Since 7 = (log(k + 1) + 4)/h, if
Vr¢(S;) > 7, the probability that the test fails to find such evidence in h independent applications
is at most (1 — 7)" < exp(—7h) < e */(k + 1), as claimed. W

We now prove Lemma B3] which is quite simple, and later sketch the proof of Lemma B2,
which is more complex.

Proof of Lemma First observe that if |J| > k, then the probability, over the choice of the
partition, that there are fewer than k -+ 1 sets S; such that S; NJ # 0, is O(k?/r). Since r = ck?

33

where c¢ is a constant, for an appropriate choice of ¢, this probability is at most 1/6. Assume from
this point on that are at least k + 1 sets S; such that S; NJ #) (where we later take into account
the probability that this is not the case).

By the monotonicity of the variation (Equation ([§)) and since Vry({i}) > 7 for each i € J, if
a set S; satisfies S;NJ # 0, then Vr¢(S;) > 7. By Claim B4l and the union bound, the probability
that the algorithm finds evidence of dependence for fewer than k+ 1 sets is less than 1/6. Summing
this probability with the probability that there are fewer than k + 1 sets S; such that S; NJ # 0,
the lemma follows. W

Proof Sketch of Lemma By the premise of the lemma, Vrf(J) > €. Since the variation is
subadditive (Equation (Id)), for any partition {S1,..., S}, > 77 Vrs(S; NJ) > e. Since the subsets
in the partition are equally distributed, we have that for each fixed choice of j, E[Vr ((S;NJ)] > €/r.
The main technical claim (whose proof we omit) is that with high probability Vr;(S; NJ) is not
much smaller than its expected value. To be precise, for each fixed choice of j, with probability
at least 3/4 (over the random choice of the partition), Vr(S; N J) > €/(4r). Recall that by the
definition of 7 (and of h as a function of r), we have that e/(4r) > 7.

Using this claim, we now show how Lemma follows. Recall that by monotonicity of the
variation, Vry(S;) > Vrs(S; NJ). We shall say that a set S; is detectable, if Vry(S;) > 7. Thus,
the expected number of detectable subsets is at least (3/4)r. Let o denote the probability that
there are fewer than r/8 detectable subsets. Then o < 2/7 (as the expected number of detectable
subsets is at most «(r/8) + (1 — a)r). Equivalently, with probability at least 5/7, there are at
least r/8 = Q(k?) > k + 1 detectable subsets. Conditioned on this event, by Claim B4l (and the
union bound), the probability that the algorithm detects dependence for fewer than J + 1 subsets
is at most 1/e*. Adding this to the probability that there are fewer than k + 1 detectable sets, the
lemma follows. W

5.1.2 More Efficient Algorithms

By allowing the algorithm to be adaptive, it is possible to reduce the query complexity to
O(k3log®(k + 1)/e), and by allowing the algorithm to have two-sided error, it can be reduced
to O(k?log®(k 4 1)/¢) (without the need for adaptivity). Here we give the high-level ideas for the
more efficient algorithms.

Both algorithms start by partitioning the variables into r = ©(k?) disjoint subsets
{S1,89,...,5,} as done in Algorithm BEJl The main idea used in the first improvement (the
adaptive algorithm) is to speed up the detection of subsets S; that have non-negligible variation
Vr(S5;), in the following manner of divide and conquer. Instead of applying the dependence test to
each subset separately, it is applied to blocks, each of which is a union of several subsets. If f is not
found to depend on a block, then all the variables in the block are declared to be “variation free”.
Otherwise (some dependence is detected), the algorithm partitions the block into two equally sized
sub-blocks, and continues the search on them.

The two-sided error test also applies the dependence test to blocks of subsets, only the blocks
are chosen differently and in particular, may overlap. The selection of blocks is done as follows.
For s = O(klogr) = O(klog k), the algorithm picks s random subsets of coordinates I ...,I5 C [r]
of size k, independently, each by uniformly selecting (without repetitions) k elements of [n]. For
each 1 < /¢ < s, block By is defined as By = |J el S;. The dependence test is then applied h times

34

to each block (where h is as in Algorithm BIl). For each subset S, the algorithm considers the
blocks that contain it. The algorithm declares that f depends on S}, if it found that f depends on
all blocks that contain S;. If there are more than k such subsets, or if f depends on at least a half

of the blocks, the the algorithm rejects, otherwise, it accepts. For further details of the analysis,
see [EKRT04].

An almost optimal tester for juntas. In a recent work [Bla09] Blais improves the dependence
on k and gives an almost optimal one-sided error tester for k-juntas whose query complexity is
O(k/e+ klogk) (recall that there is a (k) lower bound [[CGO6] for this problem). This algorithm
works for functions with arbitrary finite product domains and arbitrary finite ranges, as well as
with respect to any underlying product distribution.

5.2 The Algorithm for Testing by Implicit Learning

Before describing the algorithm in more detail, we give a central definition, and state the main
theorem.

Definition 5.2 Let F be a class of Boolean functions over {0,1}". For § > 0, we say that a
subclass Fs C F is a (9, ks)-approximator for F if the following two conditions hold.

o The subclass Fs is closed under permutations of the variables.

e For every function f € F there is a function f' € Fys such that dist(f’, f) < § and f" is a
ks-junta.

Returning to the case that F is the class of s-term DNF functions, we may take Fs to be the
subclass of F that consists of s-term DNF where each term is of size at most log(s/d), so that
ks = slog(s/d). Note that ks may be a function of other parameters determining the function class

F.

We shall use the notation .7?5 for the subset of functions in Fs that depend on the variables
Z1,...,T;. Moreover, we shall view these functions as taking only ks arguments, that is, being
over {0,1}%s.

We now state the main theorem of [DLMT07| (for the Boolean case).

Theorem 5.3 Let F be a class of Boolean functions over {0,1}™. Suppose that for each choice
of § >0, Fs C F is a (d,ks) approxzimator for F. Suppose also that for every e > 0 there is a ¢
satisfying

062

6 < — ~
k:g . log2(k5) - log? | Fs| - loglog(ks) - log(log | Fs|/€)

where ¢ is a fived constant. Let 6* be the largest value of § that satisfies Equation (Z3). Then there
is a two-sided error testing algorithm for F that makes O(k3. log? | Fs+|/€?) queries.

(22)

We note that Theorem extends to function classes with domain Q" and any range, in which case
there is a dependence on log |2 in Equation (22) and in the query complexity of the algorithm.

All results from [DLM™07] that appear in Table [are obtained by applying Theorem In
all these applications, ks grows logarithmically with 1/4, and log | Fs| is at most polynomial in k;.

35

Class of functions Number of Queries

decision lists O(1/€?)

size-s decision trees, size-s branching programs O(s*/e?)
s-term DNF, size-s Boolean formulae Q(log s/ loglog s)
s-sparse polynomials over GF'(2) O(s/e?), Q(/3)

size-s Boolean circuits O(s%/€?)
functions with Fourier degree < d 0(2%/¢2), Q(V/d)

s-sparse polynomials over a general field F' O((s|F|)*/€?), Q(y/s) for |F| = O(1)
size-s algebraic circuits and computation trees over I O(s|F|3/€%)

Table 1: Results obtained by [DLM™07| using the implicit learning approach.

This ensures that Equation (22)) can be satisfied. The most typical case in the applications is that
for a class F defined by a size parameter s, we have that ks < poly(s)log(1/6) and log|Fs| <
poly(s)polylog(1/8). This yields 6* = O(e2) /poly(s), and so the query complexity of the algorithm
is poly(s)/O(e?).

In particular, returning to the case that F is the class of s-term DNF, we have that ks =
slog(s/d) and |Fs| < (2slog(s/8))*1°8(/9) This implies that 6* = O(e2/s%), from which the upper
bound of 0(54 /€2) on the query complexity follows. As another example, consider the case that
F is the class of all decision lists. Then, for every ¢, if we let ﬁ(g be the subclass of decision lists
with length log(1/d), and we set ks = log(1/), then Fyis a (6, ks)-approximation for F. Since
| Fs| < 2-4%8(1/8) (1og(1/6))!, we get that * = O(?), from which the bound of O(1/€2) on the query
complexity follows.

The algorithm. The testing algorithm consists of three procedures. The first procedure, named
Identify-Critical-Subsets, is a slight variant of the two-sided error junta test of [FKR™04] (described
in Subsection BT2). This variant is executed with k = kg+, where 0* is as defined in Theorem
and with slightly larger constants than the original [FKR*04] algorithm. The main modification
is that instead of returning accept in the case of success, the procedure returns the at most kg
subsets of variables among S, ... S, that the function f was found to depend on by the test. In
the case of failure, it outputs reject like the two-sided error junta test.

The analysis of the two-sided error test can be slightly modified so as to ensure the following.
If f € F, so that it is 6*-close to a kg«-junta f’ € Fs«, then with high probability, Identify-Critical-
Subsets completes successfully and outputs ¢ < ks« subsets of variables S;,,...S;,. On the other
hand, it is still true that if f is far from any kgs«-junta, then ldentify-Critical-Subsets outputs reject
with high probability. Moreover, if f is such that with probability at least 1/3 the procedure
completes successfully and outputs ¢ < ks« subsets S;,,...,S;,, then these subsets satisfy the
following conditions. (1) For 7 = O(e/ks+), each variable x; for which Vry({i}) > 7 occurs in one
of the subsets S;;, and each of these subsets contains at most one such variable; (2) The total

).
We now turn to the second procedure, which is referred to as Construct-Sample. This procedure

receives as input the subsets S;,,...,5;, that were output by Identify-Critical-Subsets. Assume that
indeed the subsets satisfy the aforementioned conditions. For the sake of the discussion, let us

variation of all other variables is O(e/ log | Fs-

36

make the stronger assumption that every variable has either non-negligible variation with respect
to f or zero variation. This implies that each subset S;; output by Identify-Critical-Subsets contains
exactly one relevant variable (and there are no other relevant variables).

Given a point z € {0,1}", we would like to find the restriction of z to its ¢ < kg« relevant
variables (without actually determining these variables). Consider a subset S; ; output by Identify-
Critical-Subsets, and let z), for p € S;;, denote the relevant variable in S;;. We would like to
know whether 2z, = 0 or 2, = 1. To this end, we partition the variables in S;; into two subsets:
S?j (2) ={q€Si; : 2, =0}, and S}J (2) ={q € Si; : zg=1}. Now all we do is run the dependence
test (as defined in Algorithm BJI) sufficiently many times so as to ensure (with high probability)
that we determine whether p € S?j(z) (so that z, = 0), or p € Silj(z) (so that z, = 1). The
pseudo-code for the procedure appears in Figure [l

Procedure Construct-Sample(Input: S;,,...,S;,)

Let m = @(log|.7?5* /e). For t = 1,...,m construct a labeled example (xf, '), where
2t € {0,1}F5 as follows:

1. Uniformly select 2z € {0,1}", and let y* = f(2!).
2. For j=1,...,¢ do:
(a) For b € {0,1}, let SZI-’J_ (') ={q e Si, Zé = b}.

(b) For g = O(ks=log(m - ks«)/€) = @((k5*/6) log(log | Fs= |ks= /e)), run the depen-
dence test on SZQJ_ (2!) and on Silj (2!), g times (each).

(c) If there is evidence that f depends on both S?j (2!) and S}J (2!), then output reject

(and exit). If there is evidence that f depends on SZI-’J_ (2!) for b= 0 or b =1, then
t_

set T;

b. Otherwise set :z:; uniformly at random to be either 0 or 1.

3. For j=0+1,..., ks, set .CC; uniformly at random to be either 0 or 1.

Figure 11: The procedure for constructing a labeled sample.

The third procedure, Check-Consistency, is given as input the sample output by Construct-
Sample. If some function f’ € Fs« is consistent with the sample, then the procedure outputs
accept. Otherwise it outputs reject.

Proof Sketch of Theorem Consider first the case that f € F, so that it is §*-close to
some function f’ € Fs« where f’ is a kg«-junta. The parameter §* is selected to be sufficiently
small so that we can essentially assume that f = f’. Thus, we shall make this assumption in
this proof sketch. For 7 = ©(e/ks+), each variable z; such that Vry ({i}) > 7 will be referred to
as highly relevant. As discussed previously, with high probability, the procedure Identify-Critical-
Subsets outputs ¢ < ks- subsets S;,,...,S;, that satisfy the following conditions: (1) each highly
relevant variable occurs in one of these subsets; (2) each of the subsets contains at most one highly
relevant variable of f (in fact, exactly one relevant variable of f’); (3) all other variables are “very
irrelevant” (have small total variation).

Assuming the subsets output by ldentify-Critical-Subsets are as specified above, consider the
construction of z! € {0,1}k5* for any 1 < ¢ < m. Since each S;; contains exactly one relevant

37

variable, if this variable is highly relevant, then the following holds with high probability: one of
the executions of the dependence test finds evidence that either this variable is in .S ?j (2!) or that

it is in Silj (2%), and m§ is set accordingly. If the variable is not highly relevant, then either mz is set
correctly, as in the highly relevant case, or :cg is set randomly to 0 or 1. Since the total variation of
all non-highly-relevant variables is small, with high probability f’ (ZL'E) =y (recall that y* = f(z!)).

Thus, with high probability, we get a random sample of points in {0, 1}k“* that is labeled by the
ks«-junta f’. Since f’AG Fs+, in such a case the procedure Check-Consistency will output accept, as
required (recall that Fy« is closed under permutations of the variables).

We now turn to the case that f is e-far from F. If it is also (¢/2)-far from every kgs--junta, then
Identify-Critical-Subsets detects this with high probability, and rejects. Otherwise, f is (€/2)-close to
a ks+-junta. Note that f can still be rejected by either Identify-Critical-Subsets or by Create-Sample.
If this occurs with high probability, then we are done. Otherwise, by the properties of these two
procedures, with high probability there won’t be any function in Fs+ that is consistent with the
sample output by Create-Sample (based on the subsets output by Identify-Critical-Subsets). This is
true since otherwise it would imply that there is a function f” € Fs» C F that is (¢/2)-close to a
ks«-junta f’ such that dist(f, f') < e/2. But this would contradict the fact that f is e-far from F.
|

6 The Regularity Lemma

One of the most powerful tools for analyzing property testing algorithms in the dense-graphs model
is Szemerédi’s Regularity Lemma [Sze78| and variants of it.

6.1 Background

The first property testing result that uses (a variant of) the Regularity Lemma is implicit in work
of Alon et al. [ADL.794]. Their result implies that k-colorability is testable with query complexity
that is independent of n, where the dependence on 1/e is a tower of poly(1/e€) exponents. The first
explicit testing result that uses the Regularity Lemma is in the work of Alon et al. [AEKS00]. Alon
et al. [AEKSO0] give algorithms for the class of first order graph properties. These are properties
that can be formulated by first order expressions about graphs. This covers a large class of graph
properties (in particular coloring and subgraph-freeness properties). Here too the application of
the Regularity Lemma implies that the dependence on 1/e is a tower of poly(1/€) exponents.

A sequence of works by Alon and Shapira [AS06, [ASO5bl [AS05a], together with the work of Fis-
cher and Newman [FN(T7| culminated in a characterization of all graph properties that are testable
(in the dense-graphs model) using a number of queries that is independent of n [[AENSQ6]. As the
title of the paper says: “It’s all about regularity”. To be a little more precise, the characterization
says (roughly) that a graph property P is testable using a number of queries that is independent
of n if and only if testing P can be reduced to testing the property of satisfying one of a finitely
many Szemerédi-partitions [Sze78]. A different characterization, based on graph limits, was proved
independently by Borgs et al. [BCLT06].

Variants of the regularity lemma were also used to derive property testing results for directed
graphs [AS04] and for hypergraphs [KNR02, [AS0O3] [Fis05]. In what follows we first state the lemma
and then give an example of its application by analyzing a testing algorithm for ¢riangle-freeness.

38

6.2 Statement of the Lemma

In order to state the lemma, we need some definitions and notations. For any two non-empty
disjoint sets of vertices, A and B, we let E(A, B) denote the set of edges between A and B, and
we let e(A, B) = |E(A, B)|. The edge-density of the pair is defined as
def €(A, B)

d(A, B) Al B (23)
We say that a pair A, B is y-regular for some v € [0, 1] if for every two subsets A’ C A and B’ C B
satisfying |A’| > ~|A| and |B’| > v|B| we have that |d(A’, B") — d(A, B)| < . Note that if we
consider a random bipartite graph between A and B (where there is an edge between each pair
of vertices v € A and u € B with constant probability p), then it will be regular w.h.p. for some
constant . In what follows, when we refer to an equipartition A = {V1,...,Vi} of V, we mean
that for every 1 < j <k, [|Vi| = |V}|| £ 1.

Lemma 6.1 (Regularity Lemma) For every integer £y and for every v € (0,1], there exists a
number uy = ug(o,y) with the following property: Every graph G = (V, E) with n > ug vertices
has an equipartition A = {Vi,...,Vi} of V where by < k < ug for which all pairs (V;, V}) but at
most 7y - (g) of them are ~y-regular.

6.3 Testing Triangle-Freeness

For a graph G = (V, E) and a triple of distinct vertices (u,v,w), we say that (u,v,w) is a triangle
in G if all three pairs, (u,v), (u,w) and (v,w) are edges in the graph. A graph G = (V, E) is
triangle-free if it contains no triangles. The algorithm for testing triangle-freeness simply takes a
sample of size m = m(e) (which will be set later), queries all pairs of vertices in the sample to obtain
the induced subgraph, and accepts or rejects depending on whether it sees a triangle in the induced
subgraph. Clearly, if the graph is triangle-free, then the algorithm accepts with probability 1. It
remains to prove that if the graph is e-far from triangle-free, then (for sufficiently large m = m(e)),
the sample will contain a triangle with high constant probability.

An important note is in place concerning the size of m. Alon [Alo02] has shown that (as opposed
to bipartiteness and other partition problems) it does not suffice to take m that is polynomial in
1/e. That is, there exist graphs that are e-far from being triangle-free but for which a poly(1/e¢)-size
sample will not show any triangle. In other words, it is possible that the fraction of edges that need
to be removed in order to make a graph triangle-free is greater than e, but the fraction of triples of
vertices that are triangles (among all n? triples) is smaller than poly(e). We discuss this in more
detail in Subsection Bl As we shall see, the sample size m that we can show suffices for our needs,
is significantly higher than the lower bound, so there is quite a big gap between the upper and the
lower bound, and indeed it is an interesting open problem to reduce this gap.

Suppose we apply the regularity lemma with ¢y = 8/¢ and v = €/8. Our first observation is
that for this setting, the total number of edges in G that are between pairs of vertices that belong
to the same part V; of the partition is at most

n\2 1 5, 1 4 €4
k (k) p S 7 n®=gn (24)

39

It follows that if we define G as the graph that is the same as GG except that we remove all edges
within the parts of the regular partition, then G is at least (7/8)e-far from being triangle-free.

Next, since there are at most §- (g) < 1—66/<;2 non-regular pairs, the total number of edges between
non-regular pairs in the partition is at most

T (%)2 ==’ (25)

Therefore, if we continue by removing all these edges from G, and let the resulting graph be
denoted Go, then Gy is at least (3/4)e-far from being triangle-free.

XK L
ST ——‘")

%

%

Figure 12: An illustration of the three steps in the modification of the graph G, given its regular partition.
In the transformation from G to G; we remove all edges internal to the parts in the partition. In the
transformation from G; to G2 we remove all edges between non-regular pairs of parts (i.e., F(Vi,Vy) and
E(V3,V5)), and in the transformation from G to G3 we remove all edges between pairs of parts whose edge
density is relatively small (i.e., E(Va, Vs)).

We shall perform one more step of this kind (for an illustration of all three steps, see Figure [[2).
Consider all pairs (V;, V;) such that d(V;, V;) < §. That is, e(V;, V;) < § - (%)2 Since there are at
most k?/2 such pairs, the total number of edges between such pairs is at most inz. Therefore, if
we remove all these edges from (G5, and let the resulting graph be denoted G3, then G3 is at least
(e/2)-far from being triangle-free. In particular this means that there exists at least one triplet
(Vi,V;,Vp) such that all three edge densities, d(V;,V;), d(V;, V;) and d(V;, V) are at least €/2 in Gi3.
(If no such triplet exists then G would be triangle-free.) We shall show that since all three pairs
are (e/8)-regular, there are “many real triangles” (u,v,w) € V; x V; x V, so that a sufficiently large
sample will catch one.

For simplicity we denote the three subsets by Vi, Vs, V3. For each vertex v € Vi, we let I'y(v)
denote the set of neighbors that v has in V5, and by I's(v) the set of neighbors that v has in V3. We
shall say that v is helpful if both |T'a(v)| > £ (%) and [s(v)| > £ (%). Since (Va,V3) is a regular

40

pair,
3

e(Ta(v), Ts(v)) > (d(Va, V) —) (2)2 (%)2 S (26)

for some constant c. It follows that if we get a helpful vertex v from V7, and then we take an
additional sample of ©((ug)?/€) pairs of vertices (recall that k < wug), then we shall obtain a
triangle with high constant probability. It remains to show that there are relatively many helpful

Figure 13: An illustration of three parts such that all three pairs of parts are y-regular, and the edge density
between each pair is at least ¢/2. For every helpful vertex v in Vi, there are relatively many edges (u,w)
such that u € T'y(v) and w € T'3(v).

vertices in V7.

Consider any vertex z € Vj that is not helpful. We shall say that it is unhelpful of type 2 if
IT2(v)| < § (%), and that it is unhelpful of type 3 if [Ts(v)| < £ (%). Without loss of generality,
assume that there are more unhelpful vertices of type 2. Suppose that at least half the vertices in
Vi are unhelpful. Then at least a fourth are unhelpful of type 2. Let V7 consist of all these vertices,
so that V]| > v|Vi| (recall that v =¢/8 > 1/8). Let Vj = V5. But then,

: Vil - £ ()
d(Vi,V2) < Vi v d <d(V1,V2) —v (27)

o)}

and we have reached a contradiction to the regularity of the pair (Vi,V3). Hence, at least a
half of the vertices in V; are helpful (that is, € (%) vertices), and so a sample of size ©(ug) will
contain a helpful vertex with high probability. Therefore, if we take a sample of vertices having
size O(ug) + O((ug)?/€) = O((up)?/e), then the induced subgraph will contain a triangle with high
probability.

The above analysis may seem somewhat wasteful, but unless we find a way to remove the
dependence on the number of parts of the partition, given that this number is a tower of height
poly(1/e), it doesn’t make much of a difference if our dependence on this number is linear or
quadratic.

Other results based on the Regularity lemma. As noted previously, there are many other
results that build on the Regularity Lemma. While their analysis may be more complex than that
of triangle-freeness, the core of these arguments is the same. Specifically, what the regularity lemma
essentially says is that for any given , every graph G corresponds to a small graph, G over k()
vertices whose edges have weights in [0,1]. The correspondence is such that for every vertex in
the small graph there is a subset of vertices in G, where the subsets have (almost) the same size,

41

the edge-densities between the subsets in G equal the weights of the edges in G7, and all but a
~-fraction of the pairs of subsets are y-regular. It can then be shown that: (1) If G is e-far from a
certain property then for v = v(€), G7 is relatively far from a related property (where the distance
measure takes the edge-weights of G7 into account); (2) If G” is far from this property then, due
to the regularity of almost all pairs of subsets in G, a sufficiently large (i.e., that depends on k())
sample in G will provide evidence that G does not have the original property considered.

7 Local-Search Algorithms

Recall that when dealing with sparse graphs (where here this will refer to graphs with O(n) edges,
though some of the results are more general), we consider two models. In both models the algorithm
can perform queries of the form: “who is the ith neighbor of vertex v”, where if v has less than ¢
neighbor, then a special symbol is returned. The difference between the two models is in whether
there is a fixed degree-bound, denoted d, on the degrees of all vertices or whether no such bound
is assumed. In the first model, referred to as the bounded-degree model, a graph is said to be e-far
from having a specified property if more than edn edges modifications should be performed so that
the graph obtain the property (where its degree remains bounded by d). In the second model,
referred to as the sparse-graphs model, a graph is said to be e-far from having a specified property
if more than em edges modifications should be performed so that the graph obtain the property,
where m is the number of edges in the graph (or a given upper bound on this number).

In what follows we first present what is probably the simplest local-search type algorithm: the
algorithm for testing connectivity [GR02]. We then discuss the extension of this simple algorithm
to testing k-edge connectivity, and very shortly discuss what is known about testing k-vertex
connectivity. Testing minor-closed properties [BSSO8, [HKNOQ9] is considered in Subsection [,
and in Subsection we briefly mention other testing algorithms that are based on local search.

7.1 Connectivity

One of the most basic properties of graphs is connectivity. A graph is connected if there is a path
between every two vertices. Otherwise, the vertices in the graph are partitioned into connected
components, which are maximal subgraphs that are connected. The basic simple observation is
that if a graph is not connected, then the minimum number of edges that should be added to it in
order to make it connected is simply x(G) — 1 where £(G) is the number of connected components
in G. The implication of this simple observation for the sparse-graphs model is:

Claim 7.1 If a graph is e-far from being connected (as defined in the sparse-graphs model), then
it contains more than em + 1 connected components.

Proof: Assume, contrary to the claim that there are at most em + 1 connected components,
denoted C1,...,Cy. Then, by adding, for each 1 < j < ¢ —1 an edge between some vertex in C;
and some vertex in Cj;1, we obtain a connected graph. Since the number of edges added is at most
em, we reach a contradiction. W

In the bounded-degree model there is a small subtlety: Because of the degree constraint, we
can’t immediately get a contradiction as in the proof of Claim [[1l That is, it might be the case
that in some connected component C, all vertices have the maximum degree d, and we cannot

42

simply add edges incident to them. However, it is not hard to show that in such a case (since d
must be at least 2 or else the graph cannot be connected), it is possible to remove an edge from C
without disconnecting it, and thus obtain two vertices with degree less than d. Therefore, in the
bounded-degree model it also holds that if the graph is far from being connected then it contains
many connected components. For the sake of simplicity we continue with the sparse-graphs model.
Before doing so note that since x(G) < n, so that £(G)/n? < 1/n, in the dense-graphs model, every
graph is e-close to being connected for € > 1/n. In other words, it is trivial to test for connectivity
in the dense-graphs model.

Let davg = ™ (the average degree up to a factor of 2). Then Claim [ZT] implies the next claim.

Claim 7.2 If a graph is e-far from being connected, then it contains more than §daygn connected
components of size at most ﬁ each.

An implicit implication of Claim is that if € > ﬁ, then every graph is e-close to being
connected, so that the algorithm can immediately accept. Hence we assume from this point on
that e < -2

davg :
Proof: By Claim [[T1] the graph contains more than edaysn connected components. Assume,
contrary to the claim, that there are at most §daygn components of size at most ﬁ each. We
shall refer to such components as small components. Otherwise they are big. Consider all other

(big) components. Since they each contain more than ﬁ vertices, and they are disjoint, there

can be at most Wzavg) = 5daygn such big connected components. Adding the number of small
connected components we get a contradiction. M

Claim [ZTl suggests the algorithm given in Figure [T4l

Algorithm 7.1: Connectivity Testing Algorithm I

1. Uniformly and independently select ﬁ verticesﬂ

2. For each selected vertexr s perform a BFS starting from s until ﬁ vertices have

been reached or mo more new vertices can be reached (a small connected component
has been found).

3. If any of the above searches finds a small connected component, then the algorithm
rejects, otherwise it accepts.

“If € is so small so that the sample size is of the order of n, then the algorithm will take all graph vertices
and just run a BFS on the graph.

Figure 14: Connectivity testing algorithm (version I).

Correctness of the algorithm. Clearly, if the graph is connected, then the algorithm accepts
with probability 1. On the other hand, if the graph is e-far from being connected, then by Claim
there are at least §daygn vertices that belong to small connected components. If the algorithm
selects such a vertex in its first step, then it rejects. The probability that the algorithm does not
select such a vertex is (1 — Ed%)‘l/(“la"g) <e?<1/3.

43

The query complexity (and running time). Consider first the case that the maximum degree
in the graph is of the same order as the average degree d,yg. In this case the complexity is:

1 1 1
T " Qay = 5 2
© <5davg 6dawg a g> o <62dan> (8)

and in particular, when dayy = O(1) we get O(1/€?). More generally, the cost of the BFS is the

2
total number of edges observed in the course of the BFS, which is at most (E divg) and so we get

an upper bound of O (m)

Improving the query complexity. Note that there was a certain “waste” in our counting. On
one hand we performed, for each vertex selected, a BFS that may go up to dL vertices, since in
the worst case all small components have this number of vertices. On the other hand, when we
counted the number of vertices that belong to small connected components, then we assumed a
worst-case scenario in which there is just one vertex in each small component. These two worst-case
scenarios cannot occur together Specifically, if all small components indeed contain ﬁ vertices,
then (since there are at least 5 34— small components), every vertex belongs to a small component
so the probability of selecting a vertex from a small component is 1. In the other extreme, if all
small components are of size 1, then we will need to take a sample of size ©(1/edayg), but then it

will be enough to ask a constant number of queries for each of these vertices.

More generally, let us partition the (at least ﬁn) small connected components according
to their size. Specifically, for i = 1,...,¢ where ¢ = log(2/(edavg)) + 1, (where for simplicity we
ignore floors and ceilings), let B; consist of all connected components that contain at least 27!
vertices and at most 2° — 1 Vertices By our lower bound on the total number of small connected
components, ZZ 1 |Bi| > $davgn. Hence, there exists an index j for which |B;| > 1 - &davgn.
By definition of Bj, the number of vertices that belong to connected components in B; is at
least 2771 . |B;| > 2i—1. % * 5daygn, and if we uniformly and independently select a vertex, then
the probability that it belongs to a component in B; is i1 % - 5dayg. Therefore, if we select

e (%) vertices, uniformly at random, and from each we perform a BFS until we reach 27

vertices or a small connected component is detected, then we’ll find evidence of a small connected

component in B; with constant probability.

Since we don’t know what is the (an) index j for which |B;| > % - $davgn, we run over all

possibilities. Namely, we get the algorithm in Figure

The correctness of the algorithm follows from the discussion we had above. The query com-

44

Algorithm 7.2: Connectivity Testing Algorithm II
1. Fori=1 to { =1og(2/(edavg)) + 1 do

(a) Uniformly and independently select t; = % vertices.

(b) For each selected vertex s perform a BFS starting from s until 2¢ vertices have
been reached or no more new vertices can be reached (a small connected compo-
nent has been found).

2. If any of the above searches finds a small connected component, then the algorithm
rejects, otherwise it accepts.

Figure 15: Connectivity testing algorithm (version II).

plexity is bounded as follows:

14

l

i=1 aveg
4
yi .
= C/ . d 22 (30)
€ Gavg 527
l
< C/ . ? . 2é+l (31)
avg
log(1/(edavg))
" g
— Lo A Trave /) 2
¢ Edayg (32)

€davg

Therefore, we have saved a factor of © <M> (as compared to Algorithm [ZTl).

7.2 k-Edge Connectivity

Recall that a graph is k-edge connected (or in short, k-connected), if between every pair of vertices
in the graph there are k edge-disjoint paths. An equivalent definition is that the size of every
cut in the graph is at least k. Recall that the connectivity (1-connectivity) testing algorithm is
based on the observation that if a graph is far from being connected, then it contains many small
connected components (cuts of size 0). This statement generalizes as follows to k-connectivity for
k > 1 (based on e.g., [DWOIS, [DKL76, NGM9T]). If a graph is far from being k-connected, then it
contains many subsets C of vertices that are small and such that: (1) (C,C) = ¢ < k; (2) for every
C'C C, (C',C") > £. We say in this case that the subset C' is £-extreme.

As in the case of connectivity, we shall uniformly select a sufficient number of vertices and
for each we shall try and detect whether it belongs to a small f-extreme set C' for ¢ < k. The
algorithmic question is how to do this in time that depends only on the size of C and possibly d
(or davg) and k. There are special purpose algorithms for k = 2 and k = 3 (that are more efficient
than the general algorithm), but here we shall discuss how to deal with the general case of k > 3.

The problem is formalized as follows: Given a vertex v € C where C' is an f-extreme set for
¢ < kand |C| < t, describe a (possibly randomized) procedure for finding C' (with high probability),

45

when given access to neighbor queries in the graph. Here it will actually be somewhat simpler to
work in the bounded-degree model (though the algorithm can be easily modified to work in the
sparse-graphs (unbounded-degree) model).

The suggested procedure is an iterative procedure: at each step it has a current subset of vertices
S and it adds a single vertex to S until |S| = ¢ or a cut of size less than k is detected. To this end
the procedure maintains a cost that is assigned to every edge incident to vertices in S. Specifically,
initially S = {v}. At each step, the procedure considers all edges in the cut (S,5). If an edge was
not yet assigned a cost, then it is assigned a cost uniformly at random from [0,1]. Then the edge
in (S,5) that has the minimum cost among all cut edges is selected. If this edge is (u,v) where
u € S and v € S, then v is added to S. The procedure is repeated O(t?) times. Our goal is to
prove that a single iteration of the procedure succeeds in reaching S = C with probability at least
t=2 or possibly reaching S = C’ such that the cut (C’,C”) has size less than k (recall that £ may be
strictly smaller than k). Before doing so observe that the total running time is upper bounded by
O(t? -t - dlog(td)) = O(t3 - d). Since it is sufficient to consider ¢ that is polynomial in k and 1/(ed),
we obtain an algorithm whose complexity is polynomial in k& and 1/e.

For our purposes it will be convenient to represent C' by a single vertex z that has ¢ neighbors
in C. Since, if the procedure traverses an edge in the cut (C,C), we account for this as a failure in
detecting the cut, we are not interested in any other information regarding C. Let this new graph,
over at most t + 1 vertices, be denoted by G¢. Note that since C' is an f-extreme set, every vertex
v € C' has degree greater than . The first observation is that though our procedure assigns costs
in an online manner, we can think of the random costs being assigned ahead of time, and letting
the algorithm “reveal” them as it goes along.

Consider any spanning tree T' of the subgraph induced by C' (this is the graph G¢ minus the
“outside” vertex). We say that T is cheaper than the cut (C,C) if all t — 1 edges in T have costs
that are lower than all costs of edges in the cut (C,C).

Claim 7.3 Suppose that the subgraph induced by C has a spanning lree that is cheazﬁr than the
cut (C,C). Then the search process succeeds in finding the cut (C,C) or a cut (C',C") that has
size less than k.

Proof: We prove, by induction on the size of the current S, that S C C. Since the procedure
stops when it finds a cut of size less than k, it will stop when S = C, if it doesn’t stop before that.
Initially, S = {v} so the base of the induction holds. Consider any step of the procedure. By the
induction hypothesis, at the start of the step S C C. If S = C, then we are done. Otherwise,
S C C. But this means that there is at least one edge from the spanning tree in the current cut
(S, S) (that is, an edge connecting v € S to u € C'\ S). But since all edges in (C, C') have a greater
cost, one of the spanning tree edges must be selected, and the induction step holds. W

Karger’s Algorithm. It remains to prove that with probability €(¢~2), the subgraph induced
by C has a spanning tree that is cheaper than the cut (C,C). To this end we consider a randomized
algorithm for finding a minimum cut in a graph known as “Karger’s min-cut algorithm” [Kar93]|,
and its analysis.

Karger’s algorithm works iteratively as follows. It starts from the original graph (in which it
wants to find a min-cut) and at each step it modifies the graph and in particular decreases the
number of vertices in the graph. An important point is that the intermediate graphs may have

46

parallel edges (even if the original graph does not). The modification in each step is done by
contracting two vertices that have at least one edge between them. After the contraction we have
a single vertex instead of two, but we keep all edges to other vertices. That is, if we contract u and
v into a vertex w, then for every edge (u, z) such that z # v we have an edge (w, z) and similarly
for (v, z), z # u. The edges between u and v are discarded (i.e., we don’t keep any self-loops). The
algorithm terminates when only two vertices remain: Each is the contraction of one side of a cut,
and the number of edges between them is exactly the size of the cut.

The contraction in Karger’s algorithm is performed by selecting, uniformly at random, an edge
in the current graph, and contracting its two endpoints. Recall that we have parallel edges, so the
probability of contracting u and v depends on the number of edges between them. An equivalent
way to describe the algorithm is that we first uniformly select a random ordering (permutation) of
the edges, and then, at each step we contract the next edge (that is still in the graph) according to
this ordering. To get a random ordering we can simply assign random costs in [0, 1] to the edges
in the graph (which induces a random ordering of the edges).

Now, as a thought experiment, consider an execution of Karger’s min-cut algorithm on G¢
(whose min-cut is (C,{z})). If the algorithm succeeds in finding this cut (that is, it ends when C
is contracted into a single vertex and no edge between C' and x is contracted), then the edges it
contracted along the way constitute a spanning tree of C' and this spanning tree is cheaper than the
cut. So the probability that Karger’s algorithm succeeds is a lower bound on the probability that
there exists a spanning tree that is cheaper than the cut, which is a lower bound on the success
probability of the local-search procedure. Hence, it remains to lower bound the success probability
of Karger’s algorithm. (Observe that our local-search procedure also defines a spanning tree, but its
construction process is similar to Prim’s algorithm while Karger’s algorithm is similar to Kruskal’s
algorithm.)

Returning to the analysis of Karger’s algorithm, the simple key point is that, since C' is an
l-extreme set, at every step of the algorithm the degree of every vertex is at least £+ 1 (recall that

a vertex corresponds to a contracted subset C’ C C'). Thus, at the start of the ith contraction step
(n—(i—1))-(¢+1)+£
2

the current graph contains at least
is contracted is at least
t—1

H<1_(t—(i—1)§€(€+1)+€> - fj_2<1_(t_i).(2;+1)+€> (33)

edges. Hence, the probability that no cut edge

i=1 i=0

t—2 .

-1 —¢

- U=+ 34

_ iUty

IS Y ERICESY (35)
i1 6

> gm>t—2 (36)

(If ¢ is small, e.g., £ = 1, then the probability is even higher.) Thus, the success probability of
Karger’s algorithm, and hence of our local-search algorithm, is Q(t~2).

A Comment. Note that the local-search procedure does not select to traverse at each step a
random edge in the cut (5,5). To illustrate why this would not be a good idea, consider the case

47

in which &k = 1, C' is a cycle, and there is one edge from a vertex v in C to z. If we executed the
alternative algorithm, then once v would be added to .S, at each step the probability that the cut
edge is traversed, would be 1/3, and the probability this doesn’t happen would be exponential in
t. On the other hand, the way our procedure works, it succeeds with probability % because that is
the probability that the cut edge gets the maximum cost.

7.3 k-Vertex Connectivity.

A graph is k-vertex connected if between every two vertices there are k vertex-disjoint paths.
First note that being 1-vertex connectivity is the same as being l-edge connected, a property
we have already discussed. Testing k-vertex connectivity for £k = 2 and k = 3 was studied in the
bounded-degree model in [GRI7], and the algorithms proposed have query complexity (and running
time) O(e~2d~!) and O(e 3d~2), respectively. The general case of k > 3 was studied by Ito and
Yoshida [IY0S], and their algorithm has complexity O(d(ck/(ed))*) (for a constant c).

7.4 Minor Closed Properties

A graph property is said to be minor closed if it is closed under removal of edges, removal of
vertices and contraction of edgesE All properties defined by a forbidden minorl] (or minors) are
minor closed, and in particular this is true of planarity, outerplanarity, having a bounded tree-
width, and more. A graph property is hereditary if it is closed under removal of vertices (so that
every minor closed property is hereditary, but also other properties such as k-colorability). Czumaj,
Sohler and Shapira [CSS07] proved that every hereditary property is testable if the input graph
belongs to a family of graphs that is hereditary and “non-expanding” (that is, it does not contain
graphs with expansion greater than 1/ log2 n). The query complexity of their testing algorithm is
doubly-exponential in poly(1/e).

Building on some ideas from [CSS07], Benjamini, Schramm, and Shapira [BSS08] proved that
every minor closed property is testable (without any condition on the tested graph), using a num-
ber of queries that is triply-exponential in poly(1/€). This result was improved by Hassidim et
al. [HKNOO9] who reduced the complexity to singly-exponential in poly(1/€¢). We note that the spe-
cial case of testing cycle-freeness (which is equivalent to testing whether a graph is Kg-minor-free)
is considered in [GR02]. That work includes an algorithm for testing cycle-freeness in the bounded-
degree model with query complexity poly(1/€). We also mention that testing cycle-freeness in the
sparse (unbounded-degree) model requires §2(y/n) queries [PR0O2].

All the abovementioned algorithms perform local search. The [CSS07] algorithm searches for
evidence that the graph does not have the property, where this evidence is in the form of a forbidden
induced subgraph (of bounded size). Thus their algorithm has one-sided error. Finding such
evidence by performing a number of queries that does not depend on n is not possible in general
graphs (even for the simple case of the (minor closed) property of cycle-freeness there is a lower
bound of Q(y/n) on the number of queries necessary for any one-sided error algorithm [GR02]).

9When an edge (u,v) is contracted, the vertices u and v are replaced by a single vertex w, and the set of neighbors
of w is the union of the sets of neighbors of u and v.

10A graph H is a minor of a graph G if H can be obtained from G by vertex removals, edge removals, and edge
contractions. Robertson and Seymour [RS04] have shown that every minor-closed property can be expressed via a
constant number of forbidden minors (where it is possible to find such a minor if it exists, in cubic time [RS95]).

48

Instead, the algorithm of [BSSO8] uses local search in order to estimate the number of different
subgraphs of a bounded size, and it is shown that such an estimate can distinguish (with high
probability) between graphs that have any particular minor-closed property and graphs that are
far from having the property.

The algorithm of [HKNOQ9] has both a “one-sided error part” and a “two-sided error part”.
That is, it may reject either because it found “hard” evidence in the form of a small subgraph that
contains a forbidden H-minor, or because it found certain “circumstantial evidence”. The latter
type of evidence is based on the Separator Theorem of Alon, Seymour and Thomas [[ASTI0]. This
theorem implies that if a graph (with degree at most d) is H-minor free, then by removing at most
edn edges it is possible to obtain connected components that are all of size O(1/e?) (where the
constant in the O(-) notation depends on H). The algorithm of [HKNOQO9| first tries to estimate
the number of edges in G between the subsets of vertices that correspond to these connected
components. This is done by implementing what they call a Partition Oracle (where in the case
that the graph is minor closed, the parts of the partition correspond to small connected subsets
that are separated by a relatively small number of edges).

If the graph has the minor-closed property in question, then with high probability the estimate
on the number of edges between parts will be sufficiently small. On the other hand, if the graph is
far from from the property, then one of the following two events will occur (with high probability):
(1) The estimate obtained is large, so that the algorithm may reject; (2) The estimate obtained is
small (because the graph can be separated to small connected components by removing few edges
(even though the graph is far from being minor-closed)). In the latter case it can be shown that in
the second part of the algorithm, where the algorithm searches for a forbidden minor in the close
vicinity of a sample of vertices, a forbidden minor will be detected with high probability (since
many forbidden minors must reside within the small parts).

7.5 Other Local-Search Algorithms

There are also local-search algorithms for the following properties: being Eulerian, subgraph-
freeness [GR02], and having a diameter of a bounded size [PR02]. The dependence on 1/¢ in
all these cases is polynomial (and there is no dependence on the number, n, of graph vertices). In
some cases (subgraph-freeness) the algorithm works only in the bounded-degree model (and there
is a lower bound of Q(y/n) on the number of queries required in the sparse (unbounded-degree)
model). In the other cases there are algorithms that work in both models. All of these algorithms
are based on local search, though naturally, the local search may be somewhat different, and once
the local search is performed, different checks are performed. For example, in the case of the diame-
ter testing algorithm, it is important to account for the depth of the BFS. That is, we are interested
in the number of vertices reached when going to a certain distance from the selected vertices.

8 Random Walks Algorithms

In this section we discuss two algorithms that work in the bounded-degree model and are based on
random walks. The first is for testing bipartiteness and the second is for testing expansion. The
algorithm for testing bipartiteness was extended to the general model (and as a special case, to the
sparse-graphs model), in [KKR04]. We shortly discuss the [KKR04| result in Section [0

49

8.1 Testing Bipartiteness in Bounded-Degree Graphs

Recall that a graph G = (V, E) is bipartite if there exists a partition (Vi,Vs2) of V such that
E(Vi,Vi) U E(Va,V,) = 0. A graph is e-far from being bipartite in the bounded-degree model if
more than edn edges should be removed in order to make it bipartite. In other words, for every
partition (Vi,Va2) of V we have that |E(V1, V1) U E(Va, V)| > edn. It was first shown in [GR02]
that as opposed to the dense-graphs model, any algorithm for testing bipartiteness in the bounded-
degree model must perform (y/n) queries (for constant €). (See Subsection for a high level
idea of the proof.)

The algorithm we present [(GR99] almost matches this lower bound in terms of its dependence
on n. The query complexity and running time of the algorithm are O(y/n - poly(logn/e)). The
algorithm is based on performing random walks of the following (lazy) form: In each step of the
random walk on a graph of degree at most d, if the current vertex is v, then the walk continues
to each of v’s neighbors with equal probability % and remains in place with probability 1 — d%év).
An important property of such random walks on connected graphs is that, no matter in which
vertex we start, if we consider the distribution reached after t steps, then for sufficiently large ¢,
the distribution is very close to uniform. The sufficient number of steps ¢ depends on properties of
the graph (and of course on how close we need to be to the uniform distribution). In particular, if
it suffices that ¢ be relatively small (i.e., logarithmic in n), then we say that the graph is rapidly
mizing. In particular, ezpander graphs (in which subsets of vertices have relatively many neighbors
outside the subset), are rapidly mixing. We describe the algorithm in Figure [[0, and give a sketch
of the proof of its correctness for the case of rapidly mixing graphs.

Algorithm 8.1: Test-Bipartite (for bounded-degree graphs)
e Repeat T = O(L) times:

1. Uniformly select s in V.
2. If odd-cycle(s) returns found, then reject.

e In case the algorithm did not reject in any one of the above iterations, it accepts.

Procedure odd-cycle(s)

1. Let K% poly((logn)/e) - v/n, and L et poly((logn)/e);
2. Perform K random walks starting from s, each of length L;

3. If some vertex v is reached (from s) both on a prefix of a random walk corre-
sponding to an even-length path and on a prefix of a walk corresponding to an
odd-length path, then return found. Otherwise, return not-found.

Figure 16: The algorithm for testing bipartiteness in bounded-degree graphs.

Note that while the number of steps performed in each walk is exactly the same (L), the
lengths of the paths they induce (i.e., removing steps in which the walk stays in place), vary.
Hence, in particular, there are even-length paths and odd-length paths. Also note that if the graph
is bipartite, then it is always accepted, and so we only need to show that if the graph is e-far from
bipartite, then it is rejected with probability at least 2/3.

50

The rapidly-mixing case. Assume the graph is rapidly mixing (with respect to L). That is,
from each starting vertex s in (G, and for every v € V, the probability that a random walk of length
L = poly((logn)/e) ends at v is at least 5 and at most 2 — i.e., approximately the probability
assigned by the stationary distribution. (Recall that this ideal case occurs when G is an expander).
Let us fix a particular starting vertex s. For each vertex v, let pO be the probability that a random
walk (of length L) starting from s, ends at v and corresponds to an even-length path. Define p!

analogously for odd-length paths. Then, by our assumption on G, for every v, p) + pl > ﬁ

We consider two cases regarding the sum i, pY-pl — In case the sum is (relatively) “small”,
we show that there exists a partition (Vy,V;) of V' that is e-good, and so G is e-close to being
bipartite. Otherwise (i.e., when the sum is not “small”), we show that Pr[odd-cycle(s) = found] is
constant. This implies that if G is e-far from being bipartite, then necessarily the sum is not “small”
(or else we would get a contradiction by the first case). But this means that Pr[odd-cycle(s) = found|
is a constant for every s, so that if we select a constant number of starting vertices, with high
probability for at least one we’ll detect a cycle.

Consider first the case in which ° .\, p9 - p} is smaller than < for some suitable constant ¢ > 1
(¢ > 300 should suffice). Let the partition (Vo,V;) be defined as follows: Vo = {v : pO > pl} and
Vi = {v: pl > pl}. Consider a particular vertex v € V. By definition of Vj and our rapid-mixing
assumption, p? > ﬁ. Assume v has neighbors in Vj, and denote this set of neighbors by I'g(v), and
their number by do(v). Then for each such neighbor u € T'g(v), p), = p)(L) > £ as well. This can
be shown to imply that p?(L — 1) > ﬁ (The high level idea is to map walks of L steps that end
at v and correspond to even-length paths to walks of L — 1 steps that are obtained by removing one
step of staying in place (and hence also correspond to even-length paths).) However, since there is
a probability of 2—1d of taking a transition from u to v in walks on GG, we can infer that each neighbor

u contributes 2—1d . ﬁ to the probability pl. In other words,

1 1
1 _ E:_.OL_1> S
u€lo(v)

(37)

Therefore, if we denote by d;(v) the number of neighbors that a vertex v € Vi has in Vj, then

1 do(v) 1 di(v)
0.1 - - 20\Y) .
domr 2) 64dn | 2~ An 6ddn (38)
veV veVD veV;
1
= T2’ Z do(v) + Z di(v) (39)
veV) veVy

(where ¢’ is a constant). Thus, if there were many (more than edn) violating edges with respect
to (Vo, V1), then the sum) pY - pl would be at least -, contradicting our case hypothesis (for
c>d).

We now turn to the second case (Zvevpg pl>ec- ~). For every fixed pair i,j € {1,..., K},
(recall that K = Q(y/n) is the number of walks taken from s), consider the 0/1 random variable
7n;,; that is 1 if and only if both the ith and the jth walk end at the same vertex v but correspond
to paths with a different parity (of their lengths). Then Pr[n;; = 1] = >, 2 - p% - p}, and so
Eni] =Y ey 209 - ph. What we would like to have is a lower bound on P>, ;mi; = 0]. Since
there are K2 = (n/¢) such variables, the expected value of their sum is greater than 1. These

o1

random variables are not all independent from each other, nonetheless it is possible to obtain a
constant bound on the probability that the sum is 0 using Chebyshev’s inequality.

We note that the above analysis can be viewed as following the enforce-and-test approach: A
selected vertex s enforces a partition, and the walks taken from it test the partition.

The idea for the General Case. Unfortunately, we may not assume in general that for ev-
ery (or even some) starting vertex, all (or even almost all) vertices are reached with probability
©(1/n). Instead, for each vertex s, we may consider the set of vertices that are reached from s
with relatively high probability on walks of length L = poly((logn)/e). As was done above, we
could try and partition these vertices according to the probability that they are reached on random
walks corresponding to even-length and odd-length paths, respectively. The difficulty that arises is
how to combine the different partitions induced by the different starting vertices, and how to argue
that there are few violating edges between vertices partitioned according to one starting vertex and
vertices partitioned according to another (assuming they are exclusive).

To overcome this difficulty, the analysis of [GR99] proceeds in a different manner. Let us call a
vertex s good, if the probability that odd-cycle(s) returns found is at most 0.1. Then, assuming G is
accepted with probability greater than %, all but at most 15 of the vertices are good. It is possible
to define a partition in stages as follows. In the first stage we pick any good vertex s. What can
be shown is that not only is there a set of vertices S that are reached from s with high probability
and can be partitioned without many violations (due to the “goodness” of s), but also that there
is a small cut between S and the rest of the graph. Thus, no matter how we partition the rest of
the vertices, there cannot be many violating edges between S and V' \ S. We therefore partition S
(as above), and continue with the rest of the vertices in G.

In the next stage, and those that follow, we consider the subgraph H induced by the yet
“unpartitioned” vertices. If [H| < ¢n, then we can partition H arbitrarily and stop since the total
number of edges adjacent to vertices in H is less than §-dn. If [H| > £n, then it can be shown that
any good vertex s in H that has a certain additional property (which at least half of the vertices
in H have), determines a set S (whose vertices are reached with high probability from s) with the
following properties: S can be partitioned without having many violating edges among vertices in
S; and there is a small cut between S and the rest of H. Thus, each such set S accounts for the
violating edges between pairs of vertices that both belong to S as well as edges between pairs of
vertices such that one vertex belongs to S and one to V(H) \ S. Adding it all together, the total
number of violating edges with respect to the final partition is at most edn. For an illustration see
Figure [The core of the proof is hence in proving that indeed for most good vertices s there
exists a subset S as defined above. The analysis builds in part on techniques of Mihail [Mih89] who
proved that the existence of large cuts (good expansion) implies rapid mixing.

8.2 Testing Expansion

We have seen in the previous subsection that knowing that a graph is an expander can simplify
the analysis of a testing algorithm. Here we shortly discuss the problem of testing whether a graph
is an expander (using random walks). We say that a graph G = (V, E) is a (v, «)-expander if for
every subset U C V such that |[U| > yn (where n = |V|), we have that the number of neighbors
of vertices in U that are outside of U (i.e. [{v: v e V\U, and Ju € U s.t. (u,v) € E}|) is at

52

Figure 17: An illustration of several stages of the partitioning process in the case that the graph G passes
the test with sufficiently high probability. The vertices s1, so and s3 are “good” vertices, where the random
walks from each are used to obtain a partition with few violating edges in a part of a graph. The “boundaries”
between these parts are marked by broken lines, where the number of edges crossing between parts is relatively
small.

least - |U|. (A closely related definition sets a lower bound on the number of edges going out of U
relative to |U|, but here we use the vertex-expansion definition.) When -y is not explicitly specified,
then it is assumed to be 1/2.

The first result concerning testing expansion was a negative one: It was shown in [[GR02] that
testing expansion requires €2(y/n) queries (for constant €, v and «). The lower bound establishes
that it is hard to distinguish in less than \/n/c queries (for some constant c), between a random
3-regular graphs (which is a very good expander with high probability) and a graph that consists
of several such disjoint subgraphs (which is far from being even a weak expander).

In [GRO0O] it was conjectured that there is an almost matching upper bound in terms of the
dependence on n. Specifically, in [GR0O0] a random-walks based algorithm was proposed. The
basic underlying idea of the algorithm is that if a graph is a sufficiently good expander, then the
distribution induced by the end-points of random walks (of length that grows logarithmically with
n and also depends on the expansion parameter «) is close to uniform. The algorithm performs
v/n - poly(1/e) random walks, and counts the number of collisions (that is, the number of times
that the same vertex appears as an end-point of different walks). The algorithm rejects only if this
number is above a certain threshold. It was shown in [GRO0] that the algorithm indeed accepts
every sufficiently good expander. The harder direction of proving that the algorithm rejects
graphs that are far from being good (or even reasonably good) expanders was left open.

Several years later, Czumaj and Sohler [CS07] made progress on this problem and showed that
the algorithm of [GRO0] (with an appropriate setting of the parameters) can distinguish with high
probability between an a-expander (with degree-bound d) and a graph that is e-far from being an o’
expander for o/ = O (a2 /(d?log(n/ e))) The query complexity and running time of the algorithm
are O (d?y/nlog(n/e)a?¢3). This result was improved by Kale and Seshadhri [KSORal and by
Nachmias and Shapira [NS07] (who build on an earlier version of [KS07]) so that o/ = O(a?/d?)
(with roughly the same complexity - the dependence on n is slightly higher, and the dependence on
1/€ is lower). Tt is still open whether it is possible to improve the result further so that it hold for
o/ that depends linearly on « (thus decreasing the gap between accepted instances and the rejected

" The notion of expansion considered in [GRO0] was actually the algebraic one, based on the second largest eigen-
value of the graph, but this notion can be translated to vertex expansion.

93

instances).

9 Lower Bounds

We have mentioned quite a few lower bound results along the way, but haven’t given any details.
Here we give some details for two lower bounds so as to provide some flavor of the types of con-
structions and arguments used. Note that when dealing with lower bounds, there are two main
issues. One is whether or not we allow the algorithm to be adaptive, that is, whether its queries
may depend on previous answers, and the second is whether it is allowed to have two-sided error
or only one-sided error. Clearly, the strongest type of lower bound is one that holds for adaptive
algorithms that are allowed two-sided error, though weaker results may be informative as well.

9.1 A Lower Bound for Testing Triangle-Freeness

Recall that in Section [l we showed that there is an algorithm for testing triangle-freeness of dense
graphs that has a dependence on 1/e that is quite high. While there is no known matching lower
bound, we shall show that a super-polynomial dependence on 1/e is necessary [[Alo02]. Here we
give the proof only for the one-sided error case, and note that it can be extended to two-sided
error algorithms [AS04]. Namely, we shall show how to construct dense graphs that are e-far
from being triangle-free but for which it is necessary to perform a super-polynomial number of
queries in order to see a triangle. As shown in [AFKS00, IGT03|, if we ignore quadratic factors,
we may assume without loss of generality that the algorithm takes a uniformly selected sample of
vertices and makes its decision based on the induced subgraph. This “gets rid” of having to deal
with adaptivity. Furthermore, since we are currently considering one-sided error algorithms, the
algorithm may reject only if it obtains a triangle in the sample.

The construction of [Alo02] is based on graphs that are known as Behrend Graphs. These graphs
are defined by sets of integers that include no three-term arithmetic progression (abbreviated by
3AP). Namely, these are sets X C {1,...,m} such that for every three elements xz1,z9,23 € X,
if 9 —x1 = w3 — xo (i.e., 1 + x3 = 229), then necessarily 1 = xo = x3. Below we describe a
construction of such sets that are large (relative to m), and later explain how such sets determine
Behrend graphs.

Lemma 9.1 For every sufficiently large m there exists a set X C {1,...,m}, |X| > m'=90") where
g(m) = o(1), such that X contains no three-term arithmetic progression.

In particular, it is possible to obtain g(m) = ¢/+/log m for a small constant c. We present a simpler
proof that gives a weaker bound of g(m) = O(logloglogm/loglogm), but gives the idea of the
construction.

Proof: Let b = logm and k = L%J — 1. Since logm/logb = logm/loglogm we have that

k < b/2 for every m > 8. We arbitrarily select a subset of k different numbers {z1,..., 2} C
{0,...,b/2 — 1} and define

k
X = {Z$W(i)bi : 7 is a permutation of {1,... ,k}}) (40)

54

By the definition of X we have that | X| = k!. By using z! > (z/e)?, we get that

logm 1 logm
X| = k! = — | =1 > . ! 41
X <Log log mJ) (logm/loglogm)? loglogm (41)
log m
log log m 2 logm Tog log m (42)
logm e - loglogm
_ 22(10g loglog m—loglogm) | 21087”‘ loglogmil?gglzgzgloglogm > m _logllsggllsgg::+4 . (43)

Consider any three elements u, v, w € X such that u + v = 2w. By definition of X, these elements
are of the form u = Zle Loy, v = Zle Ly pyb' and w = Zle T,y € X, where my, my, Ty
are permutations over {1,...,k}. Since u +v = Zle(x,ru(i) + 2,))b" and z; < b/2 for every

1 <+ < k, it must be the case that for each 1,

T (i) T Tro (i) = 2T (i) - (44)

This implies that for every :
2 2 2
o) T L) 2 225,06 (45)

where the inequality in Equation (H3) is strict unless ¥,) = Tr, () = Tr,). (This follows from
the more general fact that for every convex function f, %Z?:l fla;) > f (% oy a;).) If we sum
over all i’s and there is at least one index i for which the inequality in Equation (HH) is strict we

get that
k

k k
2 2 2
DT T 2T > D 2,0 (46)
i=1 i=1 i=1

which is a contradiction since we took permutations of the same numbers. Thus, we get that
u=v=w. N

Remark. The better construction has a similar form. Define

k k
Xb,B:{Za:ibi : 0§x,~<g and Zg;?:B}

i=1 i=0
where k = {%J — 1 as before. Then it can be shown that there exists a choice of b and B for

. _om . 1-0(1/\logm)
which | X} g| > xpvlogm) '

Behrend graphs. Given a set X C {1,...,m} with no three-term arithmetic progression we
define the Behrend graph BG x as follows. It has 6m vertices that are partitioned into three parts:
Vi, Vo, and V3 where |V;| = i-m. For each i € {1,2,3} we associate with each vertex in V; a
different integer in {1,...,7-m}. The edges of the graph are defined as follows (for an illustration

see Figure [[J):

e The edges between V; and V5. For every z € X and j € {1,...,m} there is an edge between
jeViand (j+x) € Vo

95

e The edges between V5 and V3. For every € X and j € {1,...,2m} there is an edge between
(j+x) e Voand (5 +2z) € Va;

e The edges between V; and V3. For every x € X and j € {1,...,m} there is an edge between
j€Viand (j+2x) € V.

(Tt is also possible to construct a “nicer”, regular graph, by working modulo m.) We shall say that

an edge between j € V7 and j' € V5 or between j € V5 and j' € V3 is labeled by z, if ' = (j + z),
and we shall say that an edge between j € Vi and j' € V3 is labeled by z, if 7' = (j + 2x).

e

V3

Vo

Figure 18: An illustration of the structure of Behrend graphs.

The graph BGx contains 3| X |m edges. Since |X| = o(m) we don’t yet have a dense graph (or,
more precisely, if € is a constant, then the graph is not e-far from being triangle-free according to
the dense-graphs model), but we shall attend to that shortly. For every j € {1,...,m} and z € X,
the graph contains a triangle (j,(j + z), (j + 2x)) where j € V1, (j + z) € Vo and (j + 2x) € V3.
There are m - | X| such edge-disjoint triangles and every edge is part of one such triangle. That is,
in order to make the graph triangle-free it is necessary to remove a constant fraction of the edges.

On the other hand, we next show that, based on the assumption that X is 3AP-free, there are
no other triangles in the graph. To verify this consider any three vertices ji, jo, j3 where j; € V; and
such that there is a triangle between the three vertices. By definition of the graph, jo = (j1 + 1),
for some z; € X, j3 = (jo2 +x2), for some x9 € X, and j3 = (j1 +2x3), for some x3 € X. Therefore,
(j1 + x1 + z2) = (j1 + 2x3). That is, we get that 1 + x9 = 2x3. Since X contains no three-term
arithmetic progression, the last implies that ; = z9 = x3, meaning that the triangle (ji, j2,j3) is
of the form (4, (j + =), (j + 2x)).

To get a dense graph that is e-far from triangle-free for any given €, we “blow up” the graph
BGx. In “blowing-up” we mean that we replace each vertex in BG x by an independent set of s
vertices (where s will be determined shortly), and we put a complete bipartite graph between every
two such “super-vertices”. We make the following observations:

e The number of vertices in the resulting graph is 6m - s, and the number of edges is 3| X|m - s2.

e It is necessary to remove | X|m-s? edges in order to make the graph triangle-free. This follows
from the fact that there are | X|m edge-disjoint triangles in BG x, and when turning them
into “super-triangles” it is necessary to remove at least s? edges from each super-triangle.

o6

e There are | X|m - s® triangles in the graph (this follows from the construction of Bg(z), and
the blow-up, which replaces each triangle in the original graph with s triangles).

Given € and n, we select m to be the largest integer satisfying e < m~9(™) /36. This ensures that
m is a super-polynomial function of 1/e (for g(m) = ©(1//Iogm) we get that m > (c/e)clos(/e)
for a constant ¢ > 0.) Next we set s = n/(6m) so that 6m - s = n, and the number of edges that
should be removed is

|X|m - s?>m? 9 . s2 = (6ms)? - m™9™) /36 = en? .

Finally, if the algorithm takes a sample of size g, then the expected number of triangles in the
subgraph induced by the sample is at most

3 | X|ms? 3 m2-9(m) P 1
ns 63m3 L
If ¢ < m'/3 then this is much smaller than 1, implying that w.h.p. the algorithm won’t see a
triangle. But since m is super-polynomial in 1/€, ¢ must be super-polynomial as well.

As noted previously, this lower bound can be extended to hold for two-sided error algorithms [[AS04].

9.2 A Lower Bound for Testing Bipartiteness of Constant Degree Graphs

In this subsection we give a high-level description of the lower bound of Q(y/n) (for constant €) for
testing bipartiteness in the bounded-degree [GR02] The bound holds for adaptive two-sided error
algorithms. We use here some notions (e.g., violating edges) that were introduced in Subsection
(where we described an algorithm for testing bipartiteness in the bounded-degree model whose
complexity is O(y/n - poly(log n/e))).

To obtain such a lower bound we define two families of graphs. In one family all graphs are
bipartite, and in the other family (almost all) graphs are e-far from bipartite, for some constant
€ (e.g., € = 0.01). We then show that no algorithm that performs less than /m/c queries (for
some constant ¢) can distinguish with sufficiently high success probability between a graph selected
randomly from the first family and a graph selected randomly from the second family. This implies
that there is no testing algorithm whose query complexity is at most y/m/c. We explain how this
is proved (on a high level) momentarily, but first we describe the two families.

We assume that the number of vertices, n is even. Otherwise, the graphs constructed have one
isolated vertices, and the constructions are over the (even number of) n — 1 remaining vertices. In
both families all vertices reside on a cycle (since n is assumed to be even, the cycle is of even length).
The ordering of the vertices on the cycle is selected randomly among all n! permutations. In both
families, in addition to the cycle, we put a random matching between the vertices (thus bringing
the degree to 3). The only difference between the families is that in one family the matching is
totally random, while in the other it is constrained so that only pairs of vertices whose orderings
on the cycle have different parity (e.g., the 2nd and the 5th vertex) are allowed to be matched. In
other words, it is a random bipartite matching.

o7

Step 1. The first claim that needs to be established is that indeed almost all graphs in the first
family are far from being bipartite. This involves a basic counting argument, but needs to be
done carefully. Namely, we need to show that with high probability over the choice of the random
matching, every two-way partition has many (a constant fraction of) violating edges. We would
have liked to simply show that for each fixed partition, since we select the matching edges randomly,
with very high probability there are many violating edges among them, and then to take a union
bound over all two-way partitions. This doesn’t quite work, since the number of two-way partitions
is too large compared to the probability we get for each partition (that there are many violating
edges with respect to the partition). Instead, the counting argument is slightly refined, and in
particular, uses the cycle edges as well. The main observation is that we don’t actually need to
count in the union bound those partitions that already have many violating edges among the cycle
edges. The benefit is that the union bound now needs to be over a smaller number of partitions,
and the proof of the claim follows.

Step 2. Given an algorithm, we want to say something about the distribution induced on “query-
answer” transcripts, when the probability is taken both over the coin flips of the algorithm and
over the random choice of a graph (in either one of the two families). We want to show that if
the algorithm asks too few queries, then these transcripts are distributed very similarly. How is
such a transcript constructed? At each step the algorithm asks a query (based on the past, with
possible randomness) and is given an answer according to the randomly selected graph. The main
observation is that for the sake of the analysis, instead of generating the graph randomly and then
answering queries, it is possible to generate the graph (according to the correct distribution) during
the process of answering the algorithm’s queries.

To first illustrate this in an easier case (in the dense-graphs model, where the queries are
vertex-pair queries), think of selecting a graph randomly by independently letting each pair (u,v)
be an edge with probability p. In this case, whenever the algorithm asks a query, the process that
generates the graph flips a coin with bias p and answers. Clearly the distribution over query-answer
transcripts is the same if we first construct the graph and then let the algorithm run and perform
its queries, or if we construct the graph while answering the algorithm’s queries.

Going back to our problem, let’s think how this can be done for our graph distributions. In the
first query (v,i), both in case the query concerns a cycle edge or a matching edge (we can assume
that the algorithm knows the labeling of the three types of edges (e.g., 1 and 2 for cycle edges
and 3 for matching edge)), the answer is a uniformly selected vertex u, with the only constraint
that u # v. In general, at any point in time we can define the knowledge-graph that the algorithm
has. As long as the algorithm didn’t close a cycle (this will be an important event), the knowledge
graph consists of trees (for an illustration, see Figure [[d). Both processes will attribute to each new
vertex that is added to the graph its parity on the cycle. The only difference between the processes
is that in the process that constructs a bipartite graph, for each matching-edge query (v,3), the
parity of the matched vertex w is determined by the parity of v, while in the other family there is
some probability for each parity (depending on the number of vertices that already have a certain
parity).

The crucial point is that for each query (v,7), the probability that the query is answered by a
vertex that already appears in the knowledge graph is O(n’/n), where n’ is the number of vertices
in the knowledge graph (and it can be at most twice the number of queries already performed).
On the other hand, if the vertex in the answer is not in the knowledge graph, then in both cases

o8

Figure 19: An illustration of the knowledge graph, which consists of trees. The longer lines in the figure
correspond to matching edges (labeled by 3), and the shorter lines to cycle edges (labeled by 1 and 2).

it is a uniformly selected vertex. Now, if the total number of queries perform is less than /n/4,
then the probability that the algorithm gets as an answer a vertex in the knowledge graph, is less
than (v/n/4) - (v/n/4)/n = 1/16. Otherwise, the distributions on the query-answer transcripts are
identical.

10 Other Results

In this section we describe several families of results that did not fall naturally into the previous
sections. The list of results is clearly not comprehensive. In particular we note that one area that
was not covered is testing geometric properties (e.g. [EKKT00L [CSZ00, [CSOT]). See [CSO6] for some
works in this area (in the broader context of sublinear-time algorithms).

10.1 Testing Monotonicity

Let X be a partially ordered set (poset) and let R be a fully ordered set. We say that a function
f: X — R is monotone if for every x,y € R such that x is smaller than y (according to the partial
order defined over X) it holds that f(z) is smaller or equal to f(y) (according to the full order
defined over R). In what follows we discuss several special case, as well as the general case.

10.1.1 Testing Monotonicity in One Dimension

We start by considering the following problem of testing monotonicity in one dimension, or testing
“sortedness” (first studied by Ergun et al. [EKK™00]). Let f : [n] — R, where the range R is
some fully ordered set. The function f can also be viewed as a string of length n over R. We say
that f is monotone (or sorted) if f(i) < f(j) for all 1 < i < j < n. There are actually several
algorithms for testing this property [EKKT00, IGGLT00]. Their query complexity and running time
are O(logn/e), and Q(logn) queries are necessary for constant e (by combining the non-adaptive
lower bound of Ergun et al. [EKK™00] with a result of Fischer [Fis01]).

We first show that the “naive” algorithm, which simply takes a uniform sample of indices in
[n] and checks whether non-monotonicity is violated (i.e., whether in the sample there are i < j
such that f(i) > f(j)), requires ©(y/n) queries for constant €. To see why this is true, consider the

99

function f(i) =i+ 1 for odd i, 1 <i<mn—1,and f(i) =4 — 1 for even 4, 2 < i < n. That is, the
string corresponding to f is (assuming for simplicity that n is even): 2,1, 4,3, ..., n,n — 1. We
call each pair 4,7+ 1 where f(i) =i+ 1 and f(i + 1) = ¢ a matched pair. Note that the algorithm
rejects only if it gets a matched pair in the sample. On one hand, this function is 1/2-far from
being monotone, because in order to make it monotone it is necessary to modify its value on at least
one member of each matched pair. On the other hand, by the (lower bound part of the) birthday
paradox, the probability that a uniform sample of size s < /n/2 contains a matched pair is less
than 1/3.

In Figure B0l we give the “binary-search-based” algorithm of [EKK™00], where we assume with-
out loss of generality that all function values are distinct. This assumption can be made without loss
of generality because if this is not the case then we can replace each value f (i) with f'(i) = (f(i),1),
where (f(i),7) < (f(j),7)) if and only if either f(i) < f(j) or f(i) = f(j) but i < j. The distance
to monotonicity of the new function f’ is the same as the distance to monotonicity of the original
function f.

Algorithm 10.1: Testing Monotonicity for f : [n] — R
e Uniformly and independently at random select s = 2/e indices iy, ... ,is.

e For each index i, selected, query f(i,), and perform a binary search on f for f(i,)
(recall that f can be viewed as a string or array of length n).

o [f the binary search failed for any i., then output reject. Otherwise output accept.

Figure 20: Monotonicity testing algorithm for f : [n] — R.

Clearly, if the function f is monotone then the algorithm accepts with probability 1 since every
possible binary search must succeed. Assume from this point on that f is e-far from being monotone.
We show that the algorithm rejects with probability at least 2/3.

We say that an index j € [n] is a witness (to the non-monotonicity of f), if a binary search for

f(y) fails.
Lemma 10.1 If f is e-far from being monotone, then there are at least en witnesses.

Proof: Assume, contrary to the claim, that there are less than en witnesses. We shall show that
f is e-close to being monotone, in contradiction to the premise of the lemma. Specifically, we shall
show that if we consider all non-witnesses, then they constitute a monotone sequence. For each
pair of non-witnesses, j, 7’ where j < j’, consider the steps of the binary search for f(j) and f(j'),
respectively. Let u be the first index for which the two searches diverge. Namely, j < u < j’ (where
at least one of the inequalities must be strict because j < j’) and f(j) < f(u) < f(j') (where
again at least one of the inequalities must be strict since the function values are distinct). But
then f(j) < f(4'), as required. Now we are done since by modifying each witness to obtain the
value of the nearest non-witness, we can make f into a monotone function. The total number of
modifications equals the number of witnesses, which is at most en. W

Corollary 10.2 If f is e-far from monotone then Algorithm [l rejects f with probability at least
2/3.

60

Proof: The probability that the algorithm does not reject (i.e., accepts) equals the probability
€S

that no witness is selected in the sample. This probability is upper bounded by (1 —€)® < e~ =
e 2 < 1/3, as required. W

10.1.2 Testing Monotonicity in Higher Dimensions

For a function f : [n]™ — R (where, as before, the range R is a fully ordered set), we say that f is
monotone if f(z) < f(y) for every z,y such that x < y, where < denotes the natural partial order
over strings (that is, z1 ... 2y < y1...Yym if 2; < y; for every ¢ € [m], and z; < y; for at least one
i € [m]). Let em(f) denote the distance of f from the closest monotone function (with the same
domain and range).

Batu et al. [BRW05] extended the algorithm of [EKKT00] to higher dimensions, at an expo-
nential cost in the dimension m. The complexity of their algorithm is O((2logn)™e™!). Halevy
and Kushilevitz [HK03] reduced the complexity (for sufficiently large n) to O(m4™ logne™!), and
Ailon and Chazelle [AC0O6] further improved this bound to O(m2™ log ne~!).

Dodis et al. [DGLT99] showed that it is possible to obtain a linear dependence on m at a

cost of a logarithmic dependence on log|R|, where the dependence on log |R| can be replaced by
mlogn. An outline of the algorithm (Algorithm [IZ) is given in Figure ZIl The complexity of

Algorithm 10.2: (Outline of) Testing Monotonicity for f : [n|™ — R
1. Repeat the following t(m,e,n) times:

(a) Uniformly select i € [m], a € [n]*~! and B € [n]™".
(b) Perform a test on the one-dimensional function f; 5 : [n] — R that is defined

by fiap(x) = flaxp).

2. If no test caused rejection then accept.

Figure 21: Monotonicity testing algorithm (outline) for f : [n]™ — R.

Algorithm depends on the complexity of the test performed in Step [H and on the probability
that it rejects a uniformly selected f; o 3, which is then used to set t(m, e, n).

We note that the high level structure of the algorithm is reminiscent of the algorithm of [RS96)
for testing multivariate polynomials over large fields (shortly discussed in Subsection B2). Recall
that their algorithm considers restrictions of the tested function f to random lines, and checks that
each restriction is a univariate polynomial of bounded degree.

We first consider in more detail the case of testing monotonicity of Boolean functions over m
bit strings (that is, over the m-dimensional Boolean hypercube), and later talk about the general
case. That is, we consider testing a function f : {0,1}"" — {0,1} (which is equivalent to testing
f:[n]™ — R for n =2 and any R such that |R| = 2). Observe that in this case, since the size of
the domain of each f; o g is 2, the one-dimensional test in Step [H of Algorithm simply checks
whether f(i,,3)(0) < f(i,a,8)(1), or equivalently, whether f(a08) < f(alf) (as must be the
case if the function is monotone).

Thus, similarly to the tests for linearity and low-degree polynomials, we consider a characteriza-
tion of monotone functions and show that it is robust (though less robust than the characterization

61

we had for linear functions). The characterization is that a function f is monotone if and only if for
every pair z,y € {0,1}"" that differ only on the ith bit for some 1 < i < m, where z; = 0 and y; = 1
(so that x < y), it holds that f(x) < i(y) Clearly, if f is monotone, then the above holds, and the
other direction is also easy to verify[d Algorithm for the special case of f:{0,1}"™ — {0,1}
thus becomes the algorithm given in Figure

Algorithm 10.3: Testing Monotonicity for f: {0,1}"™ — {0, 1}
1. Repeat the following ©(m/e) times:

(a) Uniformly select i € [m] and x € {0,1}"™ such that x; = 0.

(b) Let y = x1...2i-1 1241 ... 2y (that is, y is obtained by flipping the ith bit of
(c) If f(x) > f(y) then reject (and exit).

2. If no test caused rejection then accept.

Figure 22: Monotonicity testing algorithm for f: {0,1}" — {0,1}.

As noted before, if f is monotone then the algorithm accepts with probability 1. We would like
to show that if eyj(f) > € then the algorithm rejects with probability at least 2/3. To this end we
define:

v {(z,y) : = and y differ on a single bit and = < y} , (47)

as the set of all neighboring pairs on the m-dimensional hypercube (where |U| = 2™~ . m),

V() E {@y) €U : fz)> fy)) (48)
as the set of all violating neighboring pairs, and
o) & L — el < £0) (19)

as the probability that a neighboring pair is violating. The main lemma is:

Lemma 10.3 For every f : {0,1}" — {0,1}, n(f) > 24

m

The correctness of the algorithm directly follows from Lemma [[L3] since the algorithm uniformly
selects ©(n/e) = Q(1/n(f)) (assuming enm(f) > €) pairs (z,y) € U and checks whether (z,y) €
V(f). We will sketch how f can be turned into a monotone function by performing at most
m - n(f) - 2" modifications. Since ep(f) - 2™ is the minimum number of modifications required to
make f monotone, Lemma follows. We first add a few more notations and definitions.

Definition 10.1 For any i € [m], we say that a function h : {0,1}"" — {0,1} s monotone in
dimension i, if for every o € {0,1}""" and 8 € {0,1}™", h(a08) < h(a18). For a set of indices
T C [m], we say that h is monotone in dimensions T, if for every i € T, the function h is monotone
in dimension 1.

2Given & < y that differ on more than one bit, consider a sequence of intermediate points between z and y
(according to the partial order) where every two consecutive points in this sequence differ on a single bit.

62

We next define a switch operator, S; that transforms any function h to a function S;(h) that is
monotone in dimension 7.

Definition 10.2 Let h: {0,1}" — {0,1}. For every i € [m], the function S;(h) : {0,1}" — {0,1}
is defined as follows: For every o € {0,1}""" and every 8 € {0,1}™", if h(a 03) > h(a1() then
Si(h)(«08) = h(a1p), and S;(h)(a13) = h(a03). Otherwise, S;(h) is defined as equal to h on
the strings 006 and a1 (.

Let ot

Di(f) = Ha: Si(f)(@) # f(2)}] (50)
so that D;(f) is twice the number of pairs in V(f) that differ on the ¢’th bit (and Y ;" D;(f) =
2-[V(HD-

Lemma 10.4 For every h: {0,1}"™ — {0,1} and for every i,j € [m], D;(S;(h)) < D;(h).

As a direct corollary of Lemma [[0.4] (applying it to the special case that D;(h) = 0 for every i in a
subset T') we get:

Corollary 10.5 For every h : {0,1} — {0,1} and j € [m], if h is monotone in dimensions
T C [m], then S;(h) is monotone in dimensions T U {j}.

We won’t prove Lemma [[{L4] here but we shall show how Lemma (and hence the correctness
of the algorithm) follows. Let g = S, (Sp—1(--- (S1(f))---). By the definition of g,

Astf,9) < g Do DUSa (o (S1()) 61)
i=1

By successive applications of Lemma [T0.4],

Di(Si—1(--- (51(f))-++) < Di(Sia(--- (51(f))--) < -+ < Di(f), (52)
and so (by combining Equations (BI) and (B2)),

dist(f,9) < — - > Dils) (53)

By successive application of Corollary LA, the function ¢ is monotone, and hence dist(f,g) >
em(f). Therefore,

ZD) > dist(f,g) - 2™ > em(f) - 2™ . (54)
On the other hand, by definition of D;(f),
Y Di(f) = 2Vl = 2-0(f)- Ul = n(f)-2"-m. (55)
Lemma [[03] follows by combining Equations (B4l) and (B3)).

63

Extending the Result to f: [n]™ — {0,1} for n > 2. In this case it is possible to define 1-
dimensional tests (for Step [[H in Algorithm [[2)) that select a pair of points ¢ < 7 in [n] according
to particular distributions and check whether f; 4 g(0) < fi 0.8(7). By extending the analysis from
the case n = 2, and in particular modifying the switching operator S;(-) to a sorting operator,
it can be shown that for some distributions, ©(m(logn)e~1) such tests suffice (and for another
distribution, ©((m/e€)?) tests suffice (the latter is for the uniform distribution on pairs)).

Extending the Result to f : [n|™ — R for n > 2 and R > 2. By performing a range reduction,
it is shown in [DGLT99] that O(mlognlog |R|e~!) queries suffice.

General Posets. Fischer et al. [FLNT02] consider the more general case in which the domain is
any poset (and not necessary [n|™). They show that testing monotonicity of Boolean functions over
general posets is equivalent to the problem of testing 2CNF assignments (namely, testing whether
a given assignment satisfies a fixed 2CNF formula or is far from any such assignment). They also
show that for every poset it is possible to test monotonicity over the poset with a number of queries
that is sublinear in the size of the domain poset; specifically, the complexity grows like a square
root of the size of the poset. Finally, they give some efficient algorithms for several special classes
of posets (e.g., posets that are defined by trees).

10.2 Testing in the General Graphs Model

Recall that in the general graphs model the distance measure between graphs (and hence to a
property) is defined with respect to the number of edges in the graph (or an upper bound on this
number), as in the sparse graphs model. Since the algorithm may have to deal with graphs of
varying density, it is allowed to perform both neighbor queries and vertex queries (as well as degree
queries).

Testing Bipartiteness. The general graphs model was first studied by Krivelevich et
al. [KKR04]. Their focus was on the property of bipartiteness, which exhibits the following in-
teresting phenomenon. As shown in Subsection EE2], for dense graphs there is an algorithm whose
query complexity is poly(1/e) [GGRO8 [AK02]. In contrast, as sketched in Subsection @2 for
bounded-degree graphs there is a lower bound of Q(y/n) [GR02] (and, as described in Subsec-
tion BJ], there is an almost matching upper bound [GR99]). The question Krivelevich et al. asked
is: what is the complexity of testing bipartiteness in general graphs (using the general model)?

They answer this question by describing and analyzing an algorithm for testing bipartiteness
in general graphs whose query complexity (and running time) is O(min(y/n,n?/m) - poly(logn/e)).
Thus, as long as the average degree of the graph is O(y/n), the running time (in terms of the
dependence on n) is O(y/n), and once the average degree goes above this threshold, the running
time starts decreasing.

Krivelevich et al. first consider the case that the graph is almost reqular. That is, the maximum
degree d and the average degree d,ys are of the same order. They later show how to reduce the
problem of testing bipartiteness of general graphs (where d may be much larger than davg) to
bipartiteness of almost-regular graphs. This reduction involves emulating the execution of the

64

algorithm on an “imaginary” almost-regular graph where the queries to this imaginary graph can
be answered by performing queries to the “real” graph G.

The algorithm for almost-regular graphs builds on the testing algorithm for bipartiteness of
bounded-degree graphs [GR99] (which is described in Subsection and whose query complexity
is O(y/n - poly(logn/e))). In fact, as long as d < y/n, the algorithm is equivalent to the algorithm
in [GR99]. In particular, as in [(GR99], the algorithm selects ©(1/¢€) starting vertices and from each
it performs several random walks (using neighbor queries), each walk of length poly(logn/e). If
d < y/n then the number of these walks is O(y/n - poly(logn/e)), and the algorithm simply checks
whether an odd-length cycle was detected in the course of these random walks.

If d > \/n then there are two important modifications: (1) The number of random walks
performed from each vertex is reduced to O(y/n/d - poly(logn/e)); (2) For each pair of end
vertices that are reached by walks that correspond to paths whose lengths have the same parity,
the algorithm performs a vertex-pair query. Similarly to the d < \/n case, the graph is rejected if
an odd-length cycle is found in the subgraph induced by all queries performed.

Krivelevich et al. also present an almost matching lower bound of Q(min(y/n,n2/m)) (for a
constant €). This bound holds for all testing algorithms (that is, for those which are allowed a
two-sided error and are adaptive). Furthermore, the bound holds for regular graphs.

Testing Triangle-Freeness. Another property that was studied in the general model is testing
triangle-freeness (and more generally, subgraph-freeness) [AKKR06]. Recall that for this property
there is an algorithm in the dense-graphs model whose complexity depends only on 1/e [AFKSO0]
(see Subsection [E3]), and the same is true for constant-degree graphs [GR02]. Here too the question
is what is the complexity of testing the property in general graphs. In particular this includes graphs
that are sparse (that is, m = O(n)), but do not have constant degree.

The main finding of Alon et al. [AKKROf] is a lower bound of Q(n!/?) on the necessary number
of queries for testing triangle-freeness that holds whenever the average degree d,yg is upper-bounded
by n'=*("™ where v(n) = o(1). Since when d = ©(n) the number of queries sufficient for testing
is independent of n [AFKS00], we observe an abrupt, threshold-like behavior of the complexity of
testing around n. Additionally, they provide sub-linear upper bounds for testing triangle-freeness
that are at most quadratic in the corresponding lower bounds (which vary as a function of the
graph density).

Testing k-colorability. Finally, a study of the complexity of testing k-colorability (for k& > 3)
is conducted by Ben-Eliezer et al. [BKKROS]. For this property there is an algorithm with query
complexity poly(1/¢) in the dense-graphs model [GGRI8, [AK(02] (where the algorithm uses only
vertex-pair queries), and there is a very strong lower bound of Q(n) for testing in the bounded-
degree model [BOT02] (where the algorithm uses neighbor queries). Ben-Eliezer et al. consider the
complexity of testing k-colorability as a function of the average degree day, in models that allow
different types of queries (and in particular may allow only one type of query). In particular they
show that while for vertex-pair queries, testing k-colorability requires a number of queries that is
a monotone decreasing function in the average degree d,g, the query complexity in the case of
neighbor queries remains roughly the same for every density and for large values of k. They also
study a new, stronger, query model, which is related to the field of Group Testing.

65

10.3 Testing Membership in Regular Languages and Other Languages

Alon et al. [AKNSOT] consider the following problem of testing membership in a regular language.
For a predetermined regular language L C {0,1}", the tester for membership in L should accept
every word w € L with probability at least 2/3, and should reject with probability at least 2/3
every word w that differs from any w’ € L on more than €|w| bits. We stress that the task is not
to decide whether a language is regular, but rather the language is predetermined, and the test is
for membership in the language.

The query complexity and running time of the testing algorithm for membership in a regular
language is O(1/¢), that is, independent of the length n of w. (The running time is dependent on the
size of the (smallest) finite automaton accepting L, but this size is considered to be a fixed constant
with respect to n). Alon et al. [AKNSOT] also show that a very simple context free language (of all
strings of the form vvfuu®, where w!* denotes the reversal of a string w), cannot be tested using

o(y/n) queries.

One important subclass of the context-free languages is the Dyck language, which includes
strings of properly balanced parentheses. Strings such as “(()())” belong to this class, whereas
strings such as “(()” or “) (” do not. If we allow more than one type of parentheses then “(]])” is
a balanced string but “([)]” is not. Formally, the Dyck language D,, contains all balanced strings
that contain at most m types of parentheses. Thus for example “(()())” belongs to D1 and “(]
|)” belongs to Dy. Alon et al. [AKNSOT] show that membership in D; can be tested by performing
O(1/e€) queries, whereas membership in Dy cannot be tested by performing o(log n) queries.

Parnas et al. [PRRO3] present an algorithm that tests whether a string w belongs to D,,. The
query complexity and running time of the algorithm are O (n2/ 3/ 63), where n is the length of w.
The complexity does not depend on m, the number of different types of parentheses. They also
prove a lower bound of Q(nl/ " /logn) on the query complexity of any algorithm for testing D,
for m > 1. Finally they consider the context free language for which Alon et al. [AKNSOI] gave
a lower bound of Q(y/n): Lrgyv = {uu"vv" : u,v € ¥*}. They show that Lrgy can be tested in
O(%\/ﬁ) time, thus almost matching the lower bound.

Newman [New(2] extend the result of Alon et al. [AKNSOT] for regular languages and give an
algorithm that has query complexity poly(1/e) for testing whether a word w is accepted by a given
constant-width oblivious read-once branching program. (It is noted in [Bol05] that the result can
be extended to the non-oblivious case.) On the other hand, Fischer et al. [ENS04] show that testing
constant width oblivious read-twice branching programs requires Q(n?) queries, and Bollig [Bol05]
shows that testing read-once branching programs of quadratic size (with no bound on the width)
requires Q(n'/?) queries (improving on [BW03]).

In both [ENS04] and [Bol05] lower bounds for membership in sets defined by CNF formulae
are also obtained, but the strongest result is in [BSHRO5]: an ©(n) lower bound for 3CNF (over n
variables). This should be contrasted with an O(y/n) upper bound that holds for 2CNF [FLNT02].
More generally, Ben-Sasoon et al. [BSHR05] provide sufficient conditions for linear properties to be
hard to test, where a property is linear if its elements form a linear space.

66

11 Extensions, Generalizations, and Related Problems

11.1 Distribution-Free Testing

The notion of distribution-free testing was already introduced and discussed in Subsection B3] (in
the context of applications of self-correcting). Here we mention a few other results in this model.

In addition to the result described in Subsection B3l Halevy and Kushilevitz [HK03, [HK07]
describe a distribution-free monotonicity testing algorithm for functions f : [n]”™ — R with query
complexity O((2logn)™/e). Note that the complexity of the algorithm has exponential depen-
dence on the dimension m of the input. This is in contrast to some of the standard testing
algorithms [GGLT00, [DGLT99] where the dependence on m is linear (to be precise, the complex-
ity is O(mlognlog|R|/e€), where |R)| is the effective size of the range of the function, that is, the
number of distinct values of the function). In a further investigation of distribution-free testing
of monotonicity [HK05, [HK07], Halevy and Kushilevitz showed that the exponential dependence
on m is unavoidable even in the case of Boolean functions over the Boolean hypercube (that is,
f:{0,1}™" — {0,1}).

Motivated by positive results for standard testing of several classes of Boolean functions (as
described in Section H) Glasner and Servedio [GS(O07] ask whether these results can be extended to
the distribution-free model of testing. Specifically, they consider monotone and general monomials
(conjunction), decisions lists, and linear threshold functions. They prove that for these classes, in
contrast to standard testing, where the query complexity does not depend on the number of variables
n, every distribution-free testing algorithm must make Q((n/logn)'/5) queries (for constant €).
While there is still a gap between this lower bound and the upper bound implied by learning these
classes, a strong dependence on n is unavoidable in the distribution-free case.

Finally we note that Halevy and Kushilevitz [HK04] also study distribution-free testing of graph
properties in sparse graphs, and give an algorithm for distribution-free testing of connectivity, with
similar complexity to the standard testing algorithm for this property.

11.2 Testing in the Orientation Model

In the orientation model, introduced by Halevy et al. [HLNT05], there is a fixed and known under-
lying undirected graph G. For an unknown orientation of the edges of G (that is, each edge has a
direction), the goal is to determine whether the resulting directed graph has a prespecified property
or is far from having it. Here distance is measured as the fraction of edges whose orientation should
be flipped (edges cannot be removed or added). To this end, the algorithm may query the direction
of edges of its choice. Note that since the underlying undirected graph G is known in advance, the
model allows to perform any preprocessing on G with no cost in terms of the query complexity of
the algorithm.

Halevy et al. [HLNTO5] first show the following relation between the orientation model and
the dense-graphs model: for every graph property P there is a property of orientations P together
with an underlying graph G, such that P is testable in the dense-graphs model if and only if P
is testable in the orientation model (with respect to G). They also study the following properties
in orientation model: being drain-source-free, being H-free for a fixed forbidden digraph H, and
being strongly connected.

In follow-up work, Halevy et al. [HLNT07] study testing properties of constraint-graphs. Here,

67

each of the two orientations of an edge is thought of as an assignment of 0 or 1 to a variable
associated with the edge. A property is defined by the underlying graph and a function on each
vertex, where the arity of the function is the degree of the vertex. An assignment to the variables
(an orientation of the graph) has the property if the function at every vertex is satisfied by the
assignment to its incident edges. The main result in [HLNT07] is that for a certain family of such
constraint graphs it is possible to test whether an assignment to the edges satisfies all constraints
or is e-far from any satisfying assignment by performing 20(1/€) queries. This result has several
implications, among them that for every read-twice CNF formula ¢ it is possible to test assignments
for the property of satisfying ¢ by performing 20(1/€) queries to the assignment. This positive result
stands in contrast to the negative results of [FLNT02] and [BSHRO5] for testing satisfiability of
slightly more general CNF formula.

Chakroborty et al. [CELT07] consider a property of orientations that was proposed in [HLNT05]:
testing st-connectivity. They give a one-sided error algorithm for testing st-connectivity in the ori-
entation model whose query complexity is double-exponential in 1/€2. Interestingly, the algorithm
works by reducing the st-connectivity testing problem to the problem of testing languages that are
decidable by branching problems, where this problem was solved by Newman [New(02] (as mentioned

in Subsection [L3).

Another natural property of orientations, which was suggested in [HLNTOT], is testing whether
an orientation is Eulerian. As mentioned briefly in Subsection [ZH it is possible to test whether
an undirected graph is Eulerian by performing poly(1/€) queries, both in the bounded-degree
model [GR0O2] and in the sparse (unbounded-degree) model [PR02]. These results can be extended
to directed graphs [Ore9]. Unfortunately, in the orientation model there is no algorithm for
testing whether an orientation is Eulerian whose query complexity is poly(1/e) in general. Fischer
et al. [FLM™08] show that for general graphs there is a lower bound of Q(m) (where m is the number
of graph edges) for one-sided error testing. For bounded-degree graphs they give a lower bound of
Q(m!/*) for non-adaptive one-sided error testing, and an Q(logm) lower bound for one-sided error
adaptive testing. For two-sided error testing the lower bounds are roughly logarithmic functions of
the corresponding one-sided error lower bounds (in the case of bounded-degree graphs).

Their upper bound for general graphs is O ((dm log m)z/ 34/ 3) for one-sided error testing, and
min {O(d1/3m2/36_4/3), O(d3/16m3/4e_5/4)} for two-sided error testing (where d is the maximum
degree in the graph). They also give more efficient algorithms for special cases. In particular, if the

graph is an a-expander, then the complexity depends only on d and 1/(e«), where the dependence
is linear.

11.3 Tolerant Testing and Distance Approximation

Two natural extensions of property testing, first explicitly studied in [[PRRO6], are tolerant testing
and distance approximation. A tolerant property testing algorithm is required to accept objects
that are e1-close to having a given property P and reject objects that are eo-far from having property
P, for 0 < €1 < €2 < 1. Standard property testing refers to the special case of e; = 0. Ideally, a
tolerant testing algorithm should work for any given €; < €2, and have complexity that depends
on €3 — €1. However, in some cases the relation between €; and e; may be more restricted (e.g.,
€1 = €2/2). A closely related notion is that of distance approximation where the goal is to obtain
an estimate of the distance that the object has to a property. In particular, we would like the

68

estimate to have an additive error of at most § for a given error parameter ¢, or we may also allow
a multiplicative error |13

In [PRRO6] it was first observed that some earlier works imply results in these models. In
particular this is true for coloring and other partition problems on dense graphs [GGRI§|, connec-
tivity of sparse graphs [CRT01], edit distance between strings [BEKT03| and L; distance between
distributions [BERT00| (which will be discussed in Subsection [TA]). The new results obtained
in [PRRO6] are for monotonicity of functions f : [n] — R, and clusterability of a set of points. The
first result was later improved in [ACCL0O4] and extended to higher dimensions in [F'R(09].

In [FEQ6] it is shown that there exist properties of Boolean functions for which there exists
a test that makes a constant number of queries, yet there is no such tolerant test. In contrast,
in [FNQO7] it is shown that every property that has a testing algorithm in the dense-graphs model
whose complexity is only a function of the distance parameter €, has a distance approximation
algorithm with an additive error § in this model, whose complexity is only a function of N
Distance approximation in sparse graphs is studied in [MR09]. Guruswami and Rudra [GROS]
present tolerant testing algorithms for several constructions of locally testable codes, and Kopparty
and Saraf [KS09] study tolerant linearity testing under general distributions and its connection to
locally testable codes.

11.4 Testing and Estimating Properties of Distributions

In this subsection we discuss a research direction that is closely related to property testing (where
some of the problems can be viewed as actually falling into the property testing framework).

Given access to samples drawn from an unknown distribution p (or several unknown distribu-

tions, p',...,p™) and some measure over distributions (respectively, m-tuples of distributions),
the goal is to approximate the value of this measure for the distribution p (respectively, the distri-
butions p',...,p™), or to determine whether the value of the measure is below some threshold «

or above some threshold 3. In either case, the algorithm is allowed a constant failure probability.
For example, given access to samples drawn according to two distributions p and g, we may want
to decide whether [p—q| < a or |p—q| > 3 (for certain settings of o and). The goal is to perform
the task by observing a number of samples that is sublinear in the size of the domain over which
the distribution(s) is (are) defined. In what follows, the running times of the algorithms mentioned
are linear (or almost linear) in their respective sample complexities. We shortly review the known
results and then give details for one of the results: Approximating the entropy of a distribution.

11.4.1 Summary of Results

Testing that distributions are close. Batu et al. [BERT00] consider the problem of deter-
mining whether the distance between a pair of distributions over n elements is small (less than

max {ﬁ, 32;—21/3}), or large (more than €) according to the L; distance. They give an algorithm

13We note that if one does not allow an additive error (that is, § = 0), but only allows a multiplicative error, then
a dependence on the distance that the object has to the property must be allowed.

The dependence on § may be quite high (a tower of height polynomial in 1/4), but there is no dependence on
the size of the graph.

15 An alternative model may allow the algorithm to obtain the probability that the distribution assigns to any
element of its choice. We shall not discuss this model.

69

for this problem that takes O(n%*?logn/e*) independent samples from each distribution. This
result is based on testing closeness according to the Lo distance, which can be performed using
O(1/€*) samples. This in turn is based on estimating the deviation of a distribution from uniform
(which we mentioned in Subsection in the context of testing expansion) [GRO0].

In recent work (discussed in more detail below), Valiant [Val08] shows that Q(n?/3) samples are
also necessarily for this testing problem (with respect to the L; distance). For the more general
problem of distinguishing between the case that the two distributions are €;-close and the case that
they are ex-far, where €; and ey are both constants, Valiant [Val08] proves an almost linear (in n)
lower bound.

One can also consider the problem of testing whether a distribution p is close to a fixed and
known distribution g, or is far from it (letting g be the uniform distribution is a special case of
this problem). Batu et al. [BEFT01] show that it is possible to distinguish between the case that

the distance in Ly norm is O <%) and the case that the distance is greater than e using

O(y/npoly(1/€)) samples from p.

Testing random variables for independence. Batu et al. [BEET01] also show that it is
possible to test whether a distribution over [n] x [m] is independent or is e-far from any independent
joint distribution, using a sample of size O(n?3m?poly(1/e)).

Approximating the entropy. A very basic and important measure of distributions is their
(binary) entropy. The main result of Batu et al. [BDKROA] is an algorithm that computes a
~v-multiplicative approximation of the entropy using a sample of size O(n(1+")/ v logn) for distri-
butions with entropy (/n) where n is the size of the domain of the distribution and 7 is an
arbitrarily small positive constant. They also show that Q(nl/ (272)) samples are necessary. A lower
bound that matches the upper bound of Batu et al. [BDKR05] is proved in [Val0§].

Approximating the support size. Another natural measure for distributions is their support
size. To be precise, consider the problem of approximating the support size of a distribution when
each element in the distribution appears with probability at least % This problem is closely related
to the problem of approximating the number of distinct elements in a sequence of length n. For
both problems, there is a nearly linear in n lower bound on the sample complexity, applicable even
for approximation with additive error [RRRS0OT].

A unifying approach to testing symmetric properties of distributions. Valiant [Val0§]
obtains the lower bounds mentioned in the foregoing discussion as part of a general study of
estimating symmetric measures over distributions (or pairs of distributions). That is, he considers
measures of distributions that are preserved under renaming of the elements in the domain of the
distributions. Roughly speaking, his main finding is that for every such property, there exists a
threshold such that elements whose probability weight is below the threshold “do not matter” in
terms of the task of estimating the measure (with a small additive error). This implies that such
properties have a “canonical estimator” that computes its output based on its estimate of the
probability weight of elements that appear sufficiently often in the sample (“heavy elements”), and

70

essentially ignores those elements that do not appear sufficiently often'd In the other direction,
lower bounds can be derived by constructing pairs of distributions on which the value of the
estimated measure is significantly different, but that give the same probability weight to the heavy
elements (and may completely differ on all light elements).

Other results. Other works on testing/estimating properties of distributions include [AAKT07,
BKR04, [RS0O5].

11.4.2 Estimating the Entropy

In this subsection we give the details for the algorithm that estimates the entropy of a distribu-
tion [BDKRO5]. Consider a distribution p over the set [n] where the probability of element 7 is
denoted by p;. Recall that the entropy of the distribution p is defined as follows:

def = =
H(p) = = pilogp; = pilog(1/p;) (56)
i=1 i=1

Given access to samples i € [n] distributed according to p, we would like to estimate H(p) to
within a multiplicative factor 7. That is, we seek an algorithm that obtains an estimate H such
that H(p)/y < H < v - H(p) with probability at least 2/3 (as usual, we can increase the success
probability to 1 — § by running the algorithm O(log(1/9)) times and outputting the median value).

We next describe the algorithm of [BDKR05] whose sample complexity and running time are
Lin
O <nvT log n> conditioned on H(p) = Q(v/n). If there is no lower bound on the entropy, then it

is impossible to obtain any multiplicative factor [BDKROS], and even if the entropy is quite high

a1
(i.e., at least logn /4% — 2), then n+? o(1)

The main result of [BDKRO5| is:

samples are necessary.

Theorem 11.1 For any v > 1 and 0 < €y < 1/2, there exists an algorithm that can approrimate
the entropy of a distribution over [n] whose entropy is at least 60(14—7,\/260) to within a multiplicative

factor of (1 + 2€q)~y with probability at least 2/3 in time O <n1/72 log n652>.
The main idea behind the algorithm is the following. Elements in [n] are classified as either heavy
or light depending on their probability mass. Specifically, for any choice of a > 0,

Bup) ¥ {icn] : pi>n}. (57)

16yaliant talks about testing, and refers to his algorithm as a “canonical tester”. We have chosen to use the
terms “estimation” and “canonical estimator” for the following reason. When one discusses “testing” properties of
distributions then the task may be to distinguish between the case that the measure in question is 0 (close to 0) and
the case that it is above some threshold ¢, rather than distinguishing between the case that the measure is below €;
(for €1 that is not necessarily close to 0) and above ez, which is essentially an additive estimation task. This is true
for example in the case of testing closeness of distributions. The two tasks just described are different types of tasks,
and, in particular, for the former task, low-frequency elements may play a role (as is the case in testing closeness
of distributions where the collision counts of low-frequency elements play a role). Thus, saying that low-frequency
elements may be ignored when testing properties distributions is not precise. The statement is true for estimating
(symmetric) measures of distributions.

71

The algorithm separately approximates the contribution to the entropy of the heavy elements and
of the light elements, and then combines the two.

In order to describe the algorithm and analyze it, we shall need the following notation. For a
distribution p and a set T,

wp(T) = Zp,- and Hrp(p) = — Zp,- log(pi) - (58)
€T €T
Note that if 77,7 are disjoint sets such that 77 U Ty = [n] then H(p) = Hr,(p) + Hp,(p). The
algorithm (Algorithm [[TTJ) is given in Figure

Algorithm 11.1: Algorithm Approximate-Entropy(~, €g)
1. Set a =1/~
2. Get m = ©(n*logney?) samples from p.

3. Let q be the empirical probability vector of the n elements. That is, q; is the number
of times i appears in the sample divided by m.

4. Let By = {i : ¢>1Q—e)n }.

5. Take an additional sample of size m = ©(n®logn/e2) from p and let w(S) be the total
empirical weight of elements in S = [n] \ By in the sample.

6. Output H = Hﬁa(q) + w.

Figure 23: The algorithm for approximating the entropy of a distribution.

In the next two subsections we analyze separately the contribution of the heavy elements and
the contribution of the light elements to the estimate computed by Algorithm [ITTl
Approximating the contribution of heavy elements
The next lemma follows by applying a multiplicative Chernoff bound.

Lemma 11.1 For m = 20n“log n/e% and q as defined in the algorithm, with probability at least
— % the following two conditions hold for every i € [n]:

1. If p; > 1;:8 n~% (in particular this is true of i € B,(p)) then |p; — qi| < eopi;

2. Ifp; < L‘r—zgn_o‘ then ¢; < (1 —€p)n™.

By Lemma [[TJ] we get that with high probability, B,(p) C Ea, and for every ¢ € B, (even if
i ¢ Ba(p)), |gi—pi| < €op;. The next lemma bounds the deviation of Hr(q) from Hp(p) conditioned
on ¢; being close to p; for every i € T.

Lemma 11.2 For every set T such that for every i € T, |q; — pi| < €opi,

|Hr(q) — Hr(p)| < eoHr(p) + 2eowp(T) .

72

Proof: For i € T, let ¢; be defined by ¢; = (1+ ¢;)p; where by the premise of the lemma, |¢;| < €.

Hr(q)— Hr(p) = — > (1+&)pilog((1+e)pi)+ > pilogp; (59)
i€T i€T
= = (+e)pilogpi— > (1+e)pilog(l+e)+ > pilogp; (60
i€T i€T ieT
= = apilog(l/pi) = > (1 +e)pilog(l+e) . (61)
i€T i€T

If we now consider the absolute value of this difference:

|Hr(q) — Hr(p)| < | epilog(1/pi)| + | Y (1 + €)pilog(l +€;) (62)
i€T i€T
<) leilpilog(1/pi) + Y (1 + e)pilog(l + €) (63)
i€T i€T
< eoHT(p) =+ 260wT(p) . (64)

|
Approximating the contribution of light elements
Recall that S = [n] \ Bq so that, By Lemma [[TI], with high probability S C [n] \ Ba(p).

Claim 11.3 Let w(S) be the fraction of samples, among m = O((n®/e3)logn) that belong to S (as
defined in Algorithm ILT). If wp(S) > n~ then with probability 1 —1/n,

(1 —ep)wp(S) <w(S) < (1+ eo)wp(S) -
The claim directly follows by a multiplicative Chernoff bound.
Lemma 11.4 Ifp; < n~“ for every i € S then
a-logn-wp(S) < Hs(p) < logn-wp(S)+1.

Proof: Conditioned on a particular weight wp(S), the entropy Hs(p) is maximized when p; =
wp(S)/|S| for all i. In this case

Hs(p) = wp(S)log(|S|/wp(S)) (65)
= wp(S5)log|S| + wp(5)log(1/wp(S)) (66)
< wp(S)logn +1 (67)

On the other hand, Hg(p) is minimized when its support is minimized. Since p; < n~® for every
i € S, this means that n®wp(S5) of the elements have the maximum probability p; = n®, and all
others have 0 probability. In this case Hg(p) = awp(S)logn. N

73

Putting it together

We now prove Theorem [Tl based on Algorithm [Tl By Lemma [Tl we have that with high
probability:

1. If i € Bo(p) then i € B,. That is, p; < n~® for every i € S = [n] \ Ba.
2. Every i € Ba satisfies |q; — pi| < €op;.

Assume from this point on that the above two properties hold. Let B be a shorthand for Ea and
let S = [n]\ B be as defined in Algorithm [Tl Assume first that wp(S) > n~*. In this case,
Lemma [[TA tells us that (since a = 1/+?%)

%-wp(S)-logn < Hs(p) < wp(S)logn +1 (68)
or equivalently: .
ogn (Hs(p) — 1) < wp(S) < oz -y*-Hs(p) . (69)
By Claim T3]
(1 —e0)wp(S) < w(S) < (1+ e)wp(S) (70)

If we now use Equations (9) and ([l) and apply Lemma (using |g; — pi| < eop; for every
i € B), we get:

0(9)1 1+ S) 1
Hp(q) + % < (14) Hp(p) + 260 + . EO)wfy’()logn (71)
< (+eo) - (Hp(p) +vHs(p)) + 26 (72)
< (1+4e)vH(p) + 260 (73)
< (14 2e0)7H(p) (74)
where in the last inequality we used the fact that v > 1, and H(p) > 6()(;4—77260) > 4 so that
2¢9 < €9 -y - H(p). Similarly,
wy(S) logn 1 — ep)wp(S)logn
Hp(q) + q(% > (1—eg)Hp(p) —2e0 + 1= ,]YD() (75)
H -1
> () (Hatp) + L) o (76)
H(p)
—_ 77
v(1 + 2¢p) (77)

(the last inequality follows from the lower bound on H(p) by tedious (though elementary) manip-
ulations). Finally, if wp(S) < n~* then by Claim wq(S) < (1 +€o)n™® with high probability.
Therefore, wy(S)logn/vy is at most (1 + €g)n~*logn/y (and at least 0). It is not hard to verify
that the contribution to the error is negligible, assuming « is bounded away from 1.

We note that if p is monotone, that is p; > p;41 for all i, then there is a more sophisticated
algorithm that uses poly(logn,log~) samples [RS05].

Acknowledgements.

We would like to thank an anonymous reviewer for many helpful comments.

74

References

[AAK*07]

[ACO6]

[ACCLO4]

[ADL*+94]

[ADPRO3]

[AFKS00]

[AFNS06]

[AK02]

[AKK™*05]

[AKKRO6]

[AKNSO1]

[ALM™T98]

[Alo02]

N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. Testing k-
wise and almost k-wise independence. In Proceedings of the Thirty-Ninth Annual ACM
Symposium on the Theory of Computing, pages 496-505, 2007.

N. Ailon and B. Chazelle. Information theory in property testing and monotonicity
testing in higher dimensions. Information and Computation, 204:1704-1717, 2006.

N. Ailon, B. Chazelle, S. Comandur, and D. Liue. Estimating the distance to a monotone
function. In Proceedings of the FEight International Workshop on Randomization and
Computation (RANDOM), pages 229-236, 2004.

N. Alon, R. A. Duke, H. Lefmann, V. Rodl, and R. Yuster. The algorithmic aspects of
the regularity lemma. Journal of Algorithms, 16:80-109, 1994.

N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. SIAM Journal on
Discrete Math, 16(3):393-417, 2003.

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.
Combinatorica, 20:451-476, 2000.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the
testable graph properties: It’s all about regularity. In Proceedings of the Thirty-Eighth
Annual ACM Symposium on the Theory of Computing, pages 251-260, 2006.

N. Alon and M. Krivelevich. Testing k-colorability. SIAM Journal on Discrete Math,
15(2):211-227, 2002.

N. Alon, M. Krivelevich, T. Kaufman, S. Litsyn, and D. Ron. Testing Reed-Muller
codes. IEEE Transactions on Information Theory, 51(11):4032-4038, 2005. An extended
abstract of this paper appeared under the title: Testing Low-Degree Polynomials over
GF(2), in the proceedings of RANDOM 2003.

N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle freeness in general
graphs. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 279-288, 2006.

N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable
with a constant number of queries. SIAM Journal on Computing, pages 1842-1862,
2001.

S. Arora, C. Lund, R. Motwani, M. Sudan, , and M. Szegedy. Proof verification and
the hardness of approximation problems. Journal of the ACM, 45(1):501-555, 1998. a
preliminary version appeard in Proc. 3374 FOCS, 1992.

N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, 21:359—
370, 2002.

75

[AS97]

[AS03]
[AS04]

[AS05a]

[ASO5b]

[AS06]

[AST90]

[BCHT96]

[BCLT06]

[BDKRO5]

[BEKT03]

[BFF+01]

[BFLII]

[BFLS91]

S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proceedings
of the Thirty-Second Annual ACM Symposium on the Theory of Computing (STOC),
pages 485-495, 1997.

N. Alon and A. Shapira. Testing satisfiability. Journal of Algorithms, 47:87-103, 2003.

N. Alon and A. Shapira. Testing subgraphs in directed graphs. Journal of Computer
and System Sciences, 69:354-482, 2004.

N. Alon and A. Shapira. A characterization of the (natural) graph properties testable
with one-sided error. In Proceedings of the Forty-Sixzth Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 429438, 2005.

N. Alon and A. Shapira. Every monotone graph property is testable. In Proceedings
of the Thirty-Seventh Annual ACM Symposium on the Theory of Computing (STOC),
pages 129-137, 2005. To appear in SICOMP.

N. Alon and A. Shapira. A characterization of easily testable induced subgraphs. Com-
binatorics Probability and Computing, 15:791-805, 2006.

N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for graphs with an
excluded minor and its applications. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing (STOC), pages 293-299, 1990.

M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity testing over
characteristic two. IEEE Transactions on Information Theory, 42(6):1781-1795, 1996.

C. Borgs, J. Chayes, L. Lovasz, V. T. S6s, B. Szegedy, and K. Vesztergombi. Graph lim-
its and parameter testing. In Proceedings of the Thirty-Fighth Annual ACM Symposium
on the Theory of Computing, pages 261-270, 2006.

T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating
the entropy. SIAM Journal on Computing, 35(1):132-150, 2005.

T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and Rahul
Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings of
the Thirty-Fifth Annual ACM Symposium on the Theory of Computing (STOC), pages
316-324, 2003.

T. Batu, E. Fischer, L. Fortnow, R. Kumar, and R. Rubinfeld. Testing random variables
for independence and identity. In Proceedings of the Forty-Second Annual Symposium
on Foundations of Computer Science (FOCS), pages 442—451, 2001.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1(1):3-40, 1991.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing (STOC), pages 21-31, 1991.

76

[BFR*00]

[BGS98]

[BKKROS]

[BKROA]

[Bla09]

[BLR93)

[Bol05)]

[BOT02]

[BRWOS5]

[BSHRO5]

[BSS08]

[BTOA]

[BWO3]

[CFL*07]

[CGO6]

T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing that distribu-
tions are close. In Proceedings of the Forty-First Annual Symposium on Foundations of
Computer Science (FOCS), pages 259-269, 2000.

M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability —
towards tight results. STAM Journal on Computing, 27(3):804-915, 1998.

I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of
query types in property testing: the case of testing k-colorability. In Proceedings of the
Ninteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing montone and
unimodal distributions. In Proceedings of the Thirty-Sizth Annual ACM Symposium on
the Theory of Computing (STOC), pages 381-390, 2004.

E. Blais. Testing juntas almost optimally. In Proceedings of the Fourty-First Annual
ACM Symposium on the Theory of Computing, pages 151-158, 2009.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of the ACM, 47:549-595, 1993.

B. Bollig. Property testing and the branching program size. In Proceedings of FCT,
Lecture notes in Computer Science 3623, pages 258—-269, 2005.

A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proceedings of the Forty-Third Annual Symposium on
Foundations of Computer Science (FOCS), pages 93102, 2002.

T. Batu, R. Rubinfeld, and P. White. Fast approximate PCPs for multidimensional
bin-packing problems. Information and Computation, 196(1):42-56, 2005.

E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF properties are hard to test.
SIAM Journal on Computing, 35(1):1-21, 2005.

I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. In Proceedings of the Fourtieth Annual ACM Symposium on the
Theory of Computing, pages 393—-402, 2008.

A. Bogdanov and L. Trevisan. Lower bounds for testing bipartiteness in dense graphs.
In Proceedings of the Nintheenth Computationa Complexity Conference (CCC), 2004.

B. Bollig and 1. Wegener. Functions that have read-once branching programs of
quadratic sizze are not necessarily testable. Information Processing Letters, 87(1):25-29,
2003.

S. Chakraborty, E. Fischer, O. Lachish, A. Matsliah, and I. Newman. Testing st-
connectivity. In Proceedings of the Eleventh International Workshop on Randomization
and Computation (RANDOM), pages 380-394, 2007.

H. Chockler and D. Gutfreund. A lower bound for testing juntas. Information Processing
Letters, 90(6):301-305, 2006.

7

[CRTO1]

[CS01]

[CS05]

[CS06]

[CS07]

[CSS07]

[CSZ00]

[DGL*99]

[DKL76]

[DLM*07]

[DLMT08]

[DW9g]

[EKK+00]

[FFO6]

B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree
weight in sublinear time. In Automata, Languages and Programming: Twenty-Eighth
International Colloquium (ICALP), pages 190-200, 2001.

A. Czumaj and C. Sohler. Property testing with geometric queries. In Proceedings of
the Ninth Annual European Symposium on Algorithms (ESA), pages 266-277, 2001.

A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property
testers. SIAM Journal on Computing, 34(3):580-615, 2005.

A. Czumaj and C. Sohler. Sublinear-time algorithms. Bulletin of the EATCS, 89:23-47,
2006.

A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. In Proceedings
of the Forty-Eighth Annual Symposium on Foundations of Computer Science (FOCS),
pages 570-578, 2007.

A. Czumaj, A. Shapira, and C. Sohler. Testing hereditary properties of non-expanding
bounded-degree graphs. Technical Report TR07-083, Electronic Colloquium on Com-
putational Complexity (ECCC), 2007.

A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computation geometry. In
Proceedings of the Eighth Annual European Symposium on Algorithms (ESA), pages
155-166, 2000.

Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnit-
sky. Improved testing algorithms for monotonocity. In Proceedings of the Third In-

ternational Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 97-108, 1999.

E. A. Dinic, A. V. Karazanov, and M. V. Lomonosov. On the structure of the system
of minimum edge cuts in a graph. Studies in Discrete Optimizations, pages 290-306,
1976. In Russian.

1. Diakonikolas, H. K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. A. Servedio, and
A. Wan. Testing for concise representations. In Proceedings of the Forty-Fighth Annual
Symposium on Foundations of Computer Science (FOCS), pages 549-557, 2007.

I. Diakonikolas, H. K. Lee, K. Matulef, , R. A. Servedio, and A. Wan. Efficient testing
of sparse GF(2) polynomials. In Automata, Languages and Programming: Thirty-Fifth
International Colloquium (ICALP), pages 502-514, 2008.

Y. Dinitz and J. Westbrook. Maintaining the classes of 4-edge-connectivity in a graph
on-line. Algorithmica, 20(3):242-276, 1998.

F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
Journal of Computer and System Sciences, 60(3):717-751, 2000.

E. Fischer and L. Fortnow. Tolerant versus intolerant testing for boolean properties.
Theory of Computing, 2:173-183, 2006.

78

[FGL*96]

[Fis01]

[Fis05)]

[FKR104]

[FLM™*08]

[FLN*02]

[FNO7]

[FNS04]

[FROY]

[FS95]

[GGL*00]

[GGROS]

[GLR*91]

[Gol9g]

U. Feige, S. Goldwasser, L. Lovéasz, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete. Journal of the ACM, pages 268-292, 1996.

E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of
the European Association for Theoretical Computer Science, 75:97-126, 2001.

E. Fischer. Testing graphs for colorability properties. Random Structures and Algo-
rithms, 26(3):289-309, 2005.

E. Fischer, G. Kindler, D. Ron, S. Safra, and S. Samorodnitsky. Testing juntas. Journal
of Computer and System Sciences, 68(4):753-787, 2004.

E. Fischer, O. Lachish, A. Matsliah, I. Newman, and O. Yahalom. On the query
complexity of testing orientations for being FEulerian. In Proceedings of the Twelveth
International Workshop on Randomization and Computation (RANDOM), pages 402—
415, 2008.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Sam-
rodnitsky. Monotonicity testing over general poset domains. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on the Theory of Computing (STOC), pages
474-483, 2002.

E. Fischer and I. Newman. Testing versus estimation of graph properties. SIAM Journal
on Computing, 37(2):482-501, 2007.

E. Fischer, I. Newman, and J. Sgall. Functions that have read-twice constant width
branching programs are not necessarily testable. Random Structures and Algorithms,
24(2):175-193, 2004.

S. Fattal and D. Ron. Approximating the distance to monotonicity in high dimensions.
To appear in Transactions on Algorithms, 2009.

K. Friedl and M. Sudan. Some improvements to total degree tests. In
Proceedings of the S8rd Annual Israel Symposium on Theory of Computing
and Systems, pages 190-198, 1995. Corrected version available online at
http://theory.lcs.mit.edu/ madhu/papers/friedl.ps.

O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing mono-
tonicity. Combinatorica, 20(3):301-337, 2000.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45(4):653-750, 1998.

P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self test-
ing/correcting for polynomials and for approximate functions. In Proceedings of the
Thirty-Second Annual ACM Symposium on the Theory of Computing (STOC), pages
32-42, 1991.

O. Goldreich. Combinatorial property testing - a survey. In Randomization Methods in
Algorithm Design, pages 45—60, 1998.

79

[Gol05]

[GRY7]

[GRYY]

[GROO]

[GRO2]

[GROS]

[GRO7]

[GROY]

[GS07]

[GTO3]

[HAs99]

[HKO03]

[HKO0A]

[HKO05]

O. Goldreich. Short locally testable codes and proofs (a survey). Technical Report
TR05-014, Electronic Colloquium on Computational Complexity (ECCC), 2005.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing (STOC),
pages 406-415, 1997. This is an extended abstract of [[(GR02] which includes algorithms
for testing 2-vertex connectivity and 3-vertex connectivity.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335-373, 1999.

O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. FElectronic
Collogium on Computational Complexity, 7(20), 2000.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
pages 302-343, 2002.

V. Guruswami and A. Rudra. Tolerant locally testable codes. In Proceedings of the
Ninth International Workshop on Randomization and Computation (RANDOM), pages
306-317, 2005.

M. Gonen and D. Ron. On the benefits of adaptivity in property testing of dense
graphs. In Proceedings of the Eleventh International Workshop on Randomization and
Computation (RANDOM), pages 525-537, 2007. To appear in Algorithmica.

O. Goldreich and D. Ron. Algorithmic aspects of property testing in the dense graphs
model. In Proceedings of the Thirteenth International Workshop on Randomization and
Computation (RANDOM), pages 520-533, 2009.

D. Glasner and R. A. Servedio. Distribution-free testing lower bounds for basic Boolean
functions. In Proceedings of the Eleventh International Workshop on Randomization and
Computation (RANDOM), pages 494-508, 2007.

O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties.
Random Structures and Algorithms, 23(1):23-57, 2003.

J. Hastad. Clique is hard to approximate within n'=¢. Acta Mathematica, 182:105-142,
1999.

S. Halevy and E. Kushilevitz. Distribution-free property testing. In Proceedings of the
Seventh International Workshop on Randomization and Approxzimation Techniques in
Computer Science (RANDOM), pages 341-353, 2003.

S. Halevy and E. Kushilevitz. Distribution-free connectivity testing. In Proceedings
of the Eight International Workshop on Randomization and Computation (RANDOM),
pages 393-404, 2004.

S. Halevy and E. Kushilevitz. A lower bound for distribution-free monotonicity testing.
In Proceedings of the Ninth International Workshop on Randomization and Computation
(RANDOM), pages 330-341, 2005.

80

[HKO7]

[HKNOOY]

[HLNTO5]

[HLNTO7]

[HS87]

[HSS8)

[IY08]

[JPRZ04]

[Kar93)]

[Kie87]
[KKRO4]

[KLO5)]

[KNR02]

[KROO]

S. Halevy and E. Kushilevitz. Distribution-free property testing. SIAM Journal on
Computing, 37(4):1107-1138, 2007.

A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In Proceedings of the Fiftieth Annual Symposium on Foundations
of Computer Science (FOCS), 2009.

S. Halevy, O. Lachish, I. Newman, and D. Tsur. Testing orientation properties. Techni-
cal Report TR05-153, Electronic Colloquium on Computational Complexity (ECCC),
2005.

S. Halevy, O. Lachish, I. Newman, and D. Tsur. Testing properties of constraint-graphs.
In Proceedings of the Twenty-Second IEEE Annual Conference on Computational Com-
plezity (CCC), pages 264-277, 2007.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. Journal of the ACM, 34(1):144-162,
January 1987.

D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine
scheduling on uniform processors: Using the dual approximation approach. SIAM Jour-
nal on Computing, 17(3):539-551, 1988.

H. Ito and Y. Yoshida. Property testing on k-vertex connectivity of graphs. In Automata,
Languages and Programming: Thirty-Fifth International Colloguium (ICALP), pages
539-550, 2008.

C. S. Jutla, A. C. Patthak, A. Rudra, and D. Zuckerman. Testing low-degree poly-
nomials over prime fields. In Proceedings of the Forty-Fifth Annual Symposium on
Foundations of Computer Science (FOCS), 2004.

D. Karger. Global min-cuts in RNC and other ramifications of a simple mincut al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 21-30, 1993.

J. C. Kiefer. Introduction to Statistical Inference. Springer Verlag, 1987.

T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in
general graphs. SIAM Journal on Computing, 33(6):1441-1483, 2004.

T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In
Proceedings of the Forty-Sizth Annual Symposium on Foundations of Computer Science
(FOCS), pages 317-326, 2005.

Y. Kohayakawa, B. Nagle, and V. Rodl. Efficient testing of hypergraphs. In Automata,
Languages and Programming: Twenty-Ninth International Colloquium (ICALP), pages
1017-1028, 2002.

M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal
of Computer and System Sciences, 61(3):428-456, 2000.

81

[KRO3]

[KRO6]

[KS07]

[KS08a]

[KS08b]

[KS09)]

[Mih89]

[MR09)]

[Mut05]

[New(02]

INGM97]

[NSO07]

[Ore09]
[PRO2]

[PRO3]

[PRRO3]

R. Kumar and R. Rubinfeld. Sublinear time algorithms. Samir Khuller’s SIGACT News
column, 2003.

T. Kaufman and D. Ron. Testing polynomials over general fields. SIAM Journal on
Computing, 35(3):779-802, 2006.

S. Kale and C. Seshadhri. Testing expansion in bounded degree graphs. Technical
Report TR0O7-076, Electronic Colloquium on Computational Complexity (ECCC), 2007.

S. Kale and C. Seshadhri. Testing expansion in bounded degree graphs. In Automata,
Languages and Programming: Thirty-Fifth International Colloguium (ICALP), pages
527-538, 2008.

T. Kaufman and M. Sudan. Algebraic property testing: The role of invariance. In
Proceedings of the Fourtieth Annual ACM Symposium on the Theory of Computing,
pages 403—-412, 2008. For a full version see the ECCC technical report TRO7-111.

S. Kopparty and S. Saraf. Tolerant linearity testing and locally testable codes. In Pro-
ceedings of the Thirteenth International Workshop on Randomization and Computation
(RANDOM), pages 601-614, 2009.

M. Mihail. Conductance and convergence of Markov chains - A combinatorial treatment
of expanders. In Proceedings of the Thirtieth Annual Symposium on Foundations of
Computer Science (FOCS), pages 526-531, 1989.

S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse
graphs. Transactions on Algorithms, 5(2), 2009. Article number 22.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005.

I. Newman. Testing membership in languages that have small width branching pro-
grams. SIAM Journal on Computing, 31(5):1557-1570, 2002.

D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the
edge-connectivity. SIAM Journal on Computing, 26(4):1139-1165, 1997.

A. Nachmias and A. Shapira. Testing the expansion of a graph. Technical Report
TRO7-118, Electronic Colloquium on Computational Complexity (ECCC), 2007.

Y. Orenstein. Private communication. To appear in Y. Orenstein’s MSC thesis, 2009.

M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algo-
rithms, 20(2):165-183, 2002.

M. Parnas and D. Ron. Testing metric properties. Information and Computation,
187(2):155-195, 2003.

M. Parnas, D. Ron, and R. Rubinfeld. Testing membership in parenthesis languages.
Random Structures and Algorithms, 22(1):98-138, 2003.

82

[PRROG]

[PRS02]

[Ron01]

[Ron08]

[RRRS07]

[RS95]

[RS96]

[RS04]

[RS05]

[SzeT8]

[Val84]
[Valos]

M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approxi-
mation. Journal of Computer and System Sciences, 72(6):1012-1042, 2006.

M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae. SIAM
Journal on Discrete Math, 16(1):20-46, 2002.

D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597-649,
2001. Editors: S. Rajasekaran, P. M. Pardalos, J. H. Reif and J. D. P. Rolim.

D. Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, 1(3):307-402, 2008.

S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith. Strong lower bonds for approx-
imating distributions support size and the distinct elements problem. In Proceedings
of the Forty-Eighth Annual Symposium on Foundations of Computer Science (FOCS),
pages 559-568, 2007. To appear in SIAM Journal on Computing.

N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory Series B, 63(1):65-110, 1995.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory Series B, 92(2):325-357, 2004.

R. Rubinfeld and R. Servedio. Testing monotone high-dimensional distributions. In
Proceedings of the Thirty-Seventh Annual ACM Symposium on the Theory of Computing
(STOC), pages 147156, 2005.

E. Szemerédi. Regular partitions of graphs. In Proceedings, Colloque Inter. CNRS,
pages 399-401, 1978.

L. G. Valiant. A theory of the learnable. CACM, 27(11):1134-1142, November 1984.

P. Valiant. Testing symmetric properties of distributions. In Proceedings of the Fourtieth
Annual ACM Symposium on the Theory of Computing, pages 383-392, 2008.

83

	Introduction
	Settings in which Property Testing is Beneficial
	A Brief Overview
	Property Testing and ``Classical'' Approximation
	Property Testing and Learning
	Organization of this Survey
	Related Surveys

	Preliminaries
	Basic Definitions and Notations
	Testing Graph Properties
	The Dense-Graphs (Adjacency-Matrix) Model
	The Bounded-Degree (Incidence-Lists) Model.
	The Sparse-Graphs Model and the General-Graphs Model

	The Self-Correcting Approach
	Linearity
	Self-Correction in its Own Right

	Low-Degree Polynomials
	Implications of Self-Correction
	Self-Correcting and Distribution-Free testing
	Self-Correcting and Testing Subclasses of Functions

	The Enforce-and-Test Approach
	Testing Whether a Graph is a Biclique
	Testing Bipartiteness in the Dense-Graphs Model
	Reducing the Number of Queries
	Constructing an Approximately Good Bipartition

	Other Applications of the Enforce-and-Test Approach

	Testing by Implicit Learning
	A Building Block: Testing Juntas
	An Algorithm for Testing Juntas
	More Efficient Algorithms

	The Algorithm for Testing by Implicit Learning

	The Regularity Lemma
	Background
	Statement of the Lemma
	Testing Triangle-Freeness

	Local-Search Algorithms
	Connectivity
	k-Edge Connectivity
	k-Vertex Connectivity.
	Minor Closed Properties
	Other Local-Search Algorithms

	Random Walks Algorithms
	Testing Bipartiteness in Bounded-Degree Graphs
	Testing Expansion

	Lower Bounds
	A Lower Bound for Testing Triangle-Freeness
	A Lower Bound for Testing Bipartiteness of Constant Degree Graphs

	Other Results
	Testing Monotonicity
	Testing Monotonicity in One Dimension
	Testing Monotonicity in Higher Dimensions

	Testing in the General Graphs Model
	Testing Membership in Regular Languages and Other Languages

	Extensions, Generalizations, and Related Problems
	Distribution-Free Testing
	Testing in the Orientation Model
	Tolerant Testing and Distance Approximation
	Testing and Estimating Properties of Distributions
	Summary of Results
	Estimating the Entropy

	References

