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Preface

Indistinguishable things are identical.1

G.W. Leibniz (1646–1714)

This primer to the theory of pseudorandomness presents a fresh look at the question
of randomness, which arises from a complexity theoretic approach to randomness.
The crux of this (complexity theoretic) approach is the postulate that a distribution
is random (or rather pseudorandom) if it cannot be distinguished from the uniform
distribution by any efficient procedure. Thus, (pseudo)randomness is not an inherent
property of an object, but is rather subjective to the observer.

At the extreme, this approach says that the question of whether the world is
actually deterministic or allows for some free choice (which may be viewed as a source
of randomness) is irrelevant. What matters is how the world looks to us and to various
computationally bounded devices. That is, if some phenomenon looks random, then
we may treat it as if it is random. Likewise, if we can generate sequences that cannot
be distinguished from the uniform distribution by any efficient procedure, then we
can use these sequences in any efficient randomized application instead of the ideal
coin tosses that are postulated in the design of this application.

The pivot of the foregoing approach is the notion of computational indistinguisha-
bility, which refers to pairs of distributions that cannot be distinguished by efficient
procedures. The most fundamental incarnation of this notion associates efficient pro-
cedures with polynomial-time algorithms, but other incarnations that restrict atten-
tion to different classes of distinguishing procedures also lead to important insights.
Likewise, the effective generation of pseudorandom objects, which is of major con-
cern, is actually a general paradigm with numerous useful incarnations (which differ
in the computational complexity limitations imposed on the generation process).

Following the foregoing principles, we briefly outline some of the key elements
of the theory of pseudorandomness. Indeed, the key concept is that of a pseudo-
random generator, which is an efficient deterministic procedure that stretches short
random seeds into longer pseudorandom sequences. Thus, a generic formulation
of pseudorandom generators consists of specifying three fundamental aspects – the
stretch measure of the generators; the class of distinguishers that the generators are

1This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to
this principle are conceivable but will not occur in real life because God is much too benevolent. We
thus believe that he would have agreed to the theme of this text, which asserts that indistinguishable

things should be considered as if they were identical.

ix
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supposed to fool (i.e., the algorithms with respect to which the computational indis-
tinguishability requirement should hold); and the resources that the generators are
allowed to use (i.e., their own computational complexity).

The archetypical case of pseudorandom generators refers to efficient generators
that fool any feasible procedure; that is, the potential distinguisher is any proba-
bilistic polynomial-time algorithm, which may be more complex than the generator
itself (which, in turn, has time-complexity bounded by a fixed polynomial). These
generators are called general-purpose, because their output can be safely used in any
efficient application. Such (general-purpose) pseudorandom generators exist if and
only if there exist functions (called one-way functions) that are easy to evaluate but
hard to invert.

In contrast to such (general-purpose) pseudorandom generators, for the purpose
of derandomization (i.e., converting randomized algorithms into corresponding de-
terministic ones), a relaxed definition of pseudorandom generators suffices. In partic-
ular, for such a purpose, one may use pseudorandom generators that are somewhat
more complex than the potential distinguisher (which represents a randomized al-
gorithm to be derandomized). Following this approach, adequate pseudorandom
generators yield a full derandomization of probabilistic polynomial-time algorithms
(e.g., BPP = P), and such generators can be constructed based on the assump-
tion that some exponential-time solvable problems (i.e., problems in E) have no
sub-exponential size circuits.

Indeed, both the general-purpose pseudorandom generators and the aforemen-
tioned “derandomizers” demonstrate that randomness and computational difficulty
are related. This trade-off is not surprising in light of the fact that the very defi-
nition of pseudorandomness refers to computational difficulty (i.e., the difficulty of
distinguishing the pseudorandom distribution from a truly random one).

Finally, we mention that it is also beneficial to consider pseudorandom genera-
tors that fool space-bounded distinguishers and generators that exhibit some limited
random behavior (e.g., outputting a pairwise independent or a small-bias sequence).
Such (special-purpose) pseudorandom generators can be constructed without relying
on any computational complexity assumptions, because the behavior of the corre-
sponding (limited) distinguishers can be analyzed even at the current historical time.
Nevertheless, such (special-purpose) pseudorandom generators offer numerous appli-
cations.

Note: The study of pseudorandom generators is part of complexity theory (cf. e.g., [24]),
and some basic familiarity with complexity theory will be assumed in the current
text. In fact, the current primer is an abbreviated (and somewhat revised) version
of [24, Chap. 8]. Nevertheless, we believe that there are merits to providing a sep-
arate treatment of the theory of pseudorandomness, since this theory is of natural
interest to various branches of mathematics and science. In particular, we hope to
reach readers that may not have a general interest in complexity theory at large
and/or do not wish to purchase a book on the latter topic.

Acknowledgments. We are grateful to Alina Arbitman and Ron Rothblum for
their comments and suggestions regarding this primer.



Chapter 1

Introduction

The “question of randomness” has been puzzling thinkers for ages. Aspects of this
question range from philosophical doubts regarding the existence of randomness (in
the world) and reflections on the meaning of randomness (in our thinking) to technical
questions regarding the measuring of randomness. Among many other things, the
second half of the twentieth century has witnessed the development of three theories
of randomness, which address different aspects of the foregoing question.

The first theory (cf., [16]), initiated by Shannon [63], views randomness as rep-
resenting uncertainty, which in turn is modeled by a probability distribution on the
possible values of the missing data. Indeed, Shannon’s Information Theory is rooted
in probability theory. Information Theory focuses on distributions that are not per-
fectly random (i.e., encode information in a redundant manner), and characterizes
perfect randomness as the extreme case in which the uncertainty is maximized (i.e.,
in this case there is no redundancy at all). Thus, perfect randomness is associated
with a unique distribution– the uniform one. In particular, by definition, one cannot
(deterministically) generate such perfect random strings from shorter random seeds.

The second theory (cf., [41, 42]), initiated by Solomonoff [64], Kolmogorov [38],
and Chaitin [14], views randomness as representing the lack of structure, which in
turn is reflected in the length of the most succinct (effective) description of the object.
The notion of a succinct and effective description refers to a process that transforms
the succinct description to an explicit one. Indeed, this theory of randomness is
rooted in computability theory and specifically in the notion of a universal language
(equiv., universal machine or computing device). It measures the randomness (or
complexity) of objects in terms of the shortest program (for a fixed universal ma-
chine) that generates the object.1 Like Shannon’s theory, Kolmogorov Complexity
is quantitative and perfect random objects appear as an extreme case. However,
following Kolmogorov’s approach one may say that a single object, rather than a
distribution over objects, is perfectly random. Still, by definition, one cannot (de-
terministically) generate strings of high Kolmogorov Complexity from short random
seeds.

1We mention that Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Complexity
is uncomputable).

1



2 CHAPTER 1. INTRODUCTION

1.1 The Third Theory of Randomness

The third theory, which is the focus of the current primer, views randomness as an
effect on an observer and thus as being relative to the observer’s abilities (of anal-
ysis). The observer’s abilities are captured by its computational abilities (i.e., the
complexity of the processes that the observer may apply), and hence this theory of
randomness is rooted in complexity theory. This theory of randomness is explicitly
aimed at providing a notion of randomness that, unlike the previous two notions,
allows for an efficient (and deterministic) generation of random strings from shorter
random seeds. The heart of this theory is the suggestion to view objects as equal
if they cannot be distinguished by any efficient procedure. Consequently, a distri-
bution that cannot be efficiently distinguished from the uniform distribution will be
considered random (or rather called pseudorandom). Thus, randomness is not an
“inherent” property of objects (or distributions) but is rather relative to an observer
(and its computational abilities). To illustrate this perspective, let us consider the
following mental experiment.

Alice and Bob play “heads or tails” in one of the following four ways. In
each of them, Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by the
knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin is
spinning in the air. Although the outcome is determined in principle by
the motion of the coin, Bob does not have accurate information on the
motion. Thus we believe that, also in this case, Bob wins with probability
1/2.

The third alternative is similar to the second, except that Bob has at
his disposal sophisticated equipment capable of providing accurate in-
formation on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly connected
to a powerful computer programmed to solve the motion equations and
output a prediction. It is conceivable that in such a case Bob can sub-
stantially improve his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. At the extreme, even events that are fully
determined by public information may be perceived as random events by an observer
who lacks the relevant information and/or the ability to process it. Our focus will be
on the lack of sufficient processing power, and not on the lack of sufficient information.
The lack of sufficient processing power may be due either to the formidable amount
of computation required (for analyzing the event in question) or to the fact that the
observer happens to be very limited.

A natural notion of pseudorandomness arises: a distribution is pseudorandom if
no efficient procedure can distinguish it from the uniform distribution, where efficient
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procedures are associated with (probabilistic) polynomial-time algorithms. This spe-
cific notion of pseudorandomness is indeed the most fundamental one, and much of
this text is focused on it. Weaker notions of pseudorandomness arise as well – they
refer to indistinguishability by weaker procedures such as space-bounded algorithms,
constant-depth circuits, etc. Stretching this approach even further one may consider
algorithms that are designed (on purpose so) not to distinguish even weaker forms
of “pseudorandom” sequences from random ones. Such algorithms arise naturally
when trying to convert some natural randomized algorithm into deterministic ones;
see Chapter 5.

The preceding discussion has focused on one aspect of the pseudorandomness
question – the resources or type of the observer (or potential distinguisher). Another
important aspect is whether such pseudorandom sequences can be generated from
much shorter ones, and at what cost (or complexity). A natural approach requires
the generation process to be efficient, and furthermore to be fixed before the specific
observer is determined. Coupled with the aforementioned strong notion of pseudo-
randomness, this yields the archetypical notion of pseudorandom generators – those
operating in (fixed) polynomial-time and producing sequences that are indistinguish-
able from uniform ones by any polynomial-time observer. In particular, this means
that the distinguisher is allowed more resources than the generator. Such (general-

purpose) pseudorandom generators (discussed in Chapter 2) allow one to decrease the
randomness complexity of any efficient application, and are thus of great relevance
to randomized algorithms and cryptography. The term general-purpose is meant
to emphasize the fact that the same generator is good for all efficient applications,
including those that consume more resources than the generator itself.

Although general-purpose pseudorandom generators are very appealing, there are
important reasons for considering also the opposite relation between the complexi-
ties of the generation and distinguishing tasks; that is, allowing the pseudorandom
generator to use more resources (e.g., time or space) than the observer it tries to
fool. This alternative is natural in the context of derandomization (i.e., converting
randomized algorithms to deterministic ones), where the crucial step is replacing the
random input of an algorithm by a pseudorandom input, which in turn can be gen-
erated based on a much shorter random seed. In particular, when derandomizing a
probabilistic polynomial-time algorithm, the observer (to be fooled by the generator)
is a fixed algorithm. In this case employing a more complex generator merely means
that the complexity of the derived deterministic algorithm is dominated by the com-
plexity of the generator (rather than by the complexity of the original randomized
algorithm). Needless to say, allowing the generator to use more resources than the
observer that it tries to fool makes the task of designing pseudorandom generators
potentially easier, and enables derandomization results that are not known when
using general-purpose pseudorandom generators. The usefulness of this approach is
demonstrated in Chapters 3 through 5.

We note that the goal of all types of pseudorandom generators is to allow the
generation of “sufficiently random” sequences based on much shorter random seeds.
Thus, pseudorandom generators offer significant savings in the randomness complex-
ity of various applications (and in some cases eliminating randomness altogether).
Saving on randomness is valuable because many applications are severely limited in
their ability to generate or obtain truly random bits. Furthermore, typically, gener-
ating truly random bits is significantly more expensive than standard computation
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steps. Thus, randomness is a computational resource that should be considered on
top of time complexity (analogously to the consideration of space complexity).

1.2 Organization of the Primer

We start by presenting some standard conventions (see Section 1.3). Next, in Sec-
tion 1.4, we present the general paradigm underlying the various notions of pseudo-
random generators. The archetypical case of general-purpose pseudorandom genera-
tors is presented in Chapter 2. We then turn to alternative notions of pseudorandom
generators: generators that suffice for the derandomization of complexity classes
such as BPP are discussed in Chapter 3; pseudorandom generators in the domain
of space-bounded computations are discussed in Chapter 4; and several notions of
special-purpose generators are discussed in Chapter 5.

The text is organized to facilitate the possibility of focusing on the notion of
general-purpose pseudorandom generators (presented in Chapter 2). This notion
is most relevant to computer science at large, and consequently it is most relevant
to other sciences. Furthermore, the technical details presented in Chapter 2 are
relatively simpler than those presented in Chapters 3 and 4.

The appendices. For the benefit of readers who are less familiar with computer
science, we augment the foregoing material with six appendices. Appendix A provides
a basic treatment of hashing functions, which are used in Section 4.2 and are related
to the limited-independence generators discussed in Section 5.1. Appendix B provides
a brief introduction to the notion of randomness extractors, which are of natural
interest as well as being used in Section 4.2. Appendix C provides a proof of a key
result that is closely related to the material of Section 2.5. Appendix D provides
three illustrations to the use of randomness in computation. Appendix E presents
a couple of basic cryptographic applications of pseudorandom functions, which are
treated in Section 2.7.2. Appendix F provides definitions of some basic complexity
classes.

Relation to complexity theory. The study of pseudorandom generators is part
of complexity theory, and the interested reader is encouraged to further explore the
connections between pseudorandomness and complexity theory at large (cf. e.g., [24]).
In fact, the current primer is an abbreviated (and revised) version of [24, Chap. 8].

Preliminaries. We assume a basic familiarity with computational complexity;
that is, we assume that the reader is comfortable with the notion of efficient al-
gorithms and their association with polynomial-time algorithms (see, e.g., [24]). We
also assume that the reader is aware that very basic questions about the nature of
efficient computation are wide open (e.g., most notably, the P-vs-NP Question).

We also assume a basic familiarity with elementary probability theory (see any
standard textbook or brief reviews in [46, 47, 24]) and randomized algorithms (see,
e.g., either [47, 46] or [24, Chap. 6]). In particular, standard conventions regarding
random variables (presented next) will be extensively used.
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1.3 Standard Conventions

Throughout the entire text we refer only to discrete probability distributions. Specif-
ically, the underlying probability space consists of the set of all strings of a certain
length ℓ, taken with uniform probability distribution. That is, the sample space is
the set of all ℓ-bit long strings, and each such string is assigned probability measure
2−ℓ. Traditionally, random variables are defined as functions from the sample space
to the reals. Abusing the traditional terminology, we use the term random variable

also when referring to functions mapping the sample space into the set of binary
strings. We often do not specify the probability space, but rather talk directly about
random variables. For example, we may say that X is a random variable assigned
values in the set of all strings such that Pr[X =00] = 1

4 and Pr[X =111] = 3
4 . (Such a

random variable may be defined over the sample space {0, 1}2 such that X(11) = 00
and X(00) = X(01) = X(10) = 111.) One important case of a random variable is
the output of a randomized process (e.g., a probabilistic polynomial-time algorithm).

All of our probabilistic statements refer to random variables that are defined
beforehand. Typically, we may write Pr[f(X) = 1], where X is a random variable
defined beforehand (and f is a function). An important convention is that all oc-
currences of the same symbol in a probabilistic statement refer to the same (unique)
random variable. Hence, if B(·, ·) is a Boolean expression depending on two vari-
ables, and X is a random variable, then Pr[B(X, X)] denotes the probability that
B(x, x) holds when x is chosen with probability Pr[X = x]. For example, for every
random variable X , we have Pr[X =X ] = 1. We stress that if we wish to discuss the
probability that B(x, y) holds when x and y are chosen independently with identical
probability distribution, then we will define two independent random variables each
with the same probability distribution. Hence, if X and Y are two independent
random variables, then Pr[B(X, Y )] denotes the probability that B(x, y) holds when
the pair (x, y) is chosen with probability Pr[X =x] ·Pr[Y =y]. For example, for every
two independent random variables, X and Y , we have Pr[X =Y ] = 1 only if both X
and Y are trivial (i.e., assign the entire probability mass to a single string).

Throughout the entire text, Un denotes a random variable uniformly distributed
over the set of all strings of length n. Namely, Pr[Un =α] equals 2−n if α ∈ {0, 1}n and
equals 0 otherwise. We often refer to the distribution of Un as the uniform distribution

(neglecting to qualify that it is uniform over {0, 1}n). In addition, we occasionally
use random variables (arbitrarily) distributed over {0, 1}n or {0, 1}ℓ(n), for some
function ℓ :N→N. Such random variables are typically denoted by Xn, Yn, Zn, etc.
We stress that in some cases Xn is distributed over {0, 1}n, whereas in other cases it
is distributed over {0, 1}ℓ(n), for some function ℓ (which is typically a polynomial).
We often talk about probability ensembles, which are infinite sequences of random
variables {Xn}n∈N such that each Xn ranges over strings of length bounded by a
polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between
the random variables X and Y is defined as

1

2
·
∑

v

|Pr[X = v]− Pr[Y = v]| = max
S
{Pr[X ∈ S]− Pr[Y ∈ S]} (1.1)
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(see Exercise 1.1). We say that X is δ-close (resp., δ-far) to Y if the statistical
distance between them is at most (resp., at least) δ.

1.4 The General Paradigm

We advocate a unified view of various notions of pseudorandom generators. That is,
we view these notions as incarnations of a general abstract paradigm, to be presented
in this section. A reader who is interested only in one of these incarnations may still
use this section as a general motivation towards the specific definitions used later.
On the other hand, some readers may prefer reading this section after studying one
of the specific incarnations.

Gen
seed output  sequence

a  truly random  sequence
?

Figure 1.1: Pseudorandom generators – an illustration.

1.4.1 Three fundamental aspects

A generic formulation of pseudorandom generators consists of specifying three fun-
damental aspects – the stretch measure of the generators; the class of distinguishers
that the generators are supposed to fool (i.e., the algorithms with respect to which
the computational indistinguishability requirement should hold); and the resources
that the generators are allowed to use (i.e., their own computational complexity). Let
us elaborate.

Stretch function: A necessary requirement from any notion of a pseudorandom
generator is that the generator is a deterministic algorithm that stretches short
strings, called seeds, into longer output sequences.2 Specifically, this algorithm
stretches k-bit long seeds into ℓ(k)-bit long outputs, where ℓ(k) > k. The func-
tion ℓ :N→N is called the stretch measure (or stretch function) of the generator. In
some settings the specific stretch measure is immaterial (e.g., see Section 2.4).

Computational Indistinguishability: A necessary requirement from any notion
of a pseudorandom generator is that the generator “fools” some non-trivial algo-
rithms. That is, it is required that any algorithm taken from a predetermined class

2Indeed, the seed represents the randomness that is used in the generation of the output se-
quences; that is, the randomized generation process is decoupled into a deterministic algorithm and
a random seed. This decoupling facilitates the study of such processes.
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of interest cannot distinguish the output produced by the generator (when the gener-
ator is fed with a uniformly chosen seed) from a uniformly chosen sequence. Thus, we
consider a class D of distinguishers (e.g., probabilistic polynomial-time algorithms)
and a class F of (threshold) functions (e.g., reciprocals of positive polynomials), and
require that the generator G satisfies the following: For any D ∈ D, any f ∈ F , and
for all sufficiently large k it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k) , (1.2)

where Un denotes the uniform distribution over {0, 1}n, and the probability is taken
over Uk (resp., Uℓ(k)) as well as over the coin tosses of algorithm D in case it is
probabilistic. The reader may think of such a distinguisher, D, as an observer who
tries to tell whether the “tested string” is a random output of the generator (i.e.,
distributed as G(Uk)) or is a truly random string (i.e., distributed as Uℓ(k)). The
condition in Eq. (1.2) requires that D cannot make a meaningful decision; that is,
ignoring a negligible difference (represented by f(k)), D’s verdict is the same in both
cases.3 The archetypical choice is that D is the set of all probabilistic polynomial-
time algorithms, and F is the set of all functions that are the reciprocal of some
positive polynomial.

We note that there is a clear tension between the stretching and the computa-
tional indistinguishability conditions. Indeed, as shown in Exercise 1.2, the output of
any pseudorandom generator is “statistically distinguishable” from the corresponding
uniform distribution. However, there is hope that a restricted class of (computation-
ally bounded) distinguishers cannot detect the (statistical) difference; that is, be
fooled by some suitable generators. In fact, placing no computational requirements
on the generator (or, alternatively, imposing very mild requirements such as upper-
bounding the running-time by a double-exponential function), yields “generators”
that can fool any subexponential-size circuit family (see Exercise 1.3). However,
we are interested in the complexity of the generation process, which is the aspect
addressed next.

Complexity of Generation: This aspect refers to the complexity of the generator
itself, when viewed as an algorithm. That is, here we refer to the resources used by
the generator (e.g., its time and/or space complexity). The archetypical choice is
that the generator has to work in polynomial-time (i.e., make a number of steps that
is polynomial in the length of its input – the seed). Other choices will be discussed
as well.

1.4.2 Notational conventions

We will consistently use k for denoting the length of the seed of a pseudorandom
generator, and ℓ(k) for denoting the length of the corresponding output. In some
cases, this makes our presentation a little more cumbersome, where in these cases

3The class of threshold functions F should be viewed as determining the class of noticeable

probabilities (as a function of k). Thus, we require certain functions (i.e., those presented on the
l.h.s of Eq. (1.2)) to be smaller than any noticeable function on all but finitely many integers. We
call the former functions negligible. Note that a function may be neither noticeable nor negligible
(e.g., it may be smaller than any noticeable function on infinitely many values and yet larger than
some noticeable function on infinitely many other values).
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it is more natural to focus on a different parameter (e.g., the length of the pseu-
dorandom sequence) and let the seed-length be a function of the latter. However,
our choice has the advantage of focusing attention on the fundamental parameter of
pseudorandom generation process – the length of the random seed. We note that
whenever a pseudorandom generator is used to “derandomize” an algorithm, n will
denote the length of the input to this algorithm, and k will be selected as a function
of n.

1.4.3 Some instantiations of the general paradigm

Two important instantiations of the notion of pseudorandom generators relate to
polynomial-time distinguishers.

1. General-purpose pseudorandom generators correspond to the case where the
generator itself runs in polynomial-time and needs to withstand any probabilis-
tic polynomial-time distinguisher, including distinguishers that run for more
time than the generator. Thus, the same generator may be used safely in any
efficient application. (This notion is treated in Chapter 2.)

2. In contrast, pseudorandom generators intended for derandomization may run
for more time than the distinguisher, which is viewed as a fixed circuit having
size that is upper-bounded by a fixed polynomial. (This notion is treated in
Chapter 3.)

In addition, the general paradigm may be instantiated by focusing on the space-
complexity of the potential distinguishers (and the generator), rather than on their
time-complexity. Furthermore, one may also consider distinguishers that merely
reflect probabilistic properties such as pairwise independence, small-bias, and hitting
frequency.

Notes

Our presentation, which views vastly different notions of pseudorandom generators
as incarnations of a general paradigm, has emerged mostly in retrospect. We note
that, while the historical study of the various notions was mostly unrelated at a tech-
nical level, the case of general-purpose pseudorandom generators served as a source
of inspiration to most of the other cases. In particular, the concept of computa-
tional indistinguishability, the connection between hardness and pseudorandomness,
and the equivalence between pseudorandomness and unpredictability, appeared first
in the context of general-purpose pseudorandom generators (and inspired the de-
velopment of “generators for derandomization” and “generators for space bounded
machines”). Indeed, the study of the special-purpose generators (see Chapter 5) was
unrelated to all of these.

We mention that an alternative treatment of pseudorandomness, which puts more
emphasis on the relation between various techniques, is provided in [68]. In partic-
ular, the latter text highlights the connections between information theoretic and
computational phenomena (e.g., randomness extractors and canonical derandomiz-
ers), while the current text tends to decouple the two.
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Exercises

Exercise 1.1 Prove the equality in Eq. (1.1).

Guideline: Let S be the set of strings having a larger probability under the first distribu-

tion.

Exercise 1.2 Show that the output of any pseudorandom generator is “statistically
distinguishable” from the corresponding uniform distribution; that is, show that, for
any stretch function ℓ and any generator G of stretch ℓ, the statistical difference
between G(Uk) and Uℓ(k) is at least 1− 2−(ℓ(k)−k).

Exercise 1.3 Show that placing no computational requirements on the genera-
tor enables unconditional results regarding “generators” that fool any family of
subexponential-size circuits. That is, making no computational assumptions, prove
that there exist functions G : {0, 1}∗ → {0, 1}∗ such that {G(Uk)}k∈N is (strongly)
pseudorandom, while |G(s)| = 2|s| for every s ∈ {0, 1}∗. Furthermore, show that G
can be computed in double-exponential time.

Guideline: Use the Probabilistic Method (cf. [6]). First, for any fixed circuit C : {0, 1}n →
{0, 1}, upper-bound the probability that for a random set S ⊂ {0, 1}n of size 2n/2 the

absolute value of Pr[C(Un) = 1] − (|{x ∈ S : C(x) = 1}|/|S|) is larger than 2−n/8. Next,

using a union bound, prove the existence of a set S ⊂ {0, 1}n of size 2n/2 such that no

circuit of size 2n/5 can distinguish a uniformly distributed element of S from a uniformly

distributed element of {0, 1}n, where distinguishing means with a probability gap of at least

2−n/8.





Chapter 2

General-Purpose
Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is frequently
used in the design of sequential, parallel and distributed algorithms, and it is of course
central to cryptography. Whereas it is convenient to design such algorithms making
free use of randomness, it is also desirable to minimize the usage of randomness in
real implementations. Thus, general-purpose pseudorandom generators (as defined
next) are a key ingredient in an “algorithmic tool-box” – they provide an automatic
compiler of programs written with free usage of randomness into programs that make
an economical use of randomness.

Organization of this chapter. Since this is a relatively long chapter, a short
roadmap seems appropriate. In Section 2.1 we provide the basic definition of general-
purpose pseudorandom generators, and in Section 2.2 we describe their archetypical
application (which was alluded to in the former paragraph). In Section 2.3 we pro-
vide a wider perspective on the notion of computational indistinguishability that
underlies the basic definition, and in Section 2.4 we justify the little concern (shown
in Section 2.1) regarding the specific stretch function. In Section 2.5 we address the
existence of general-purpose pseudorandom generators. In Section 2.6 we motivate
and discuss a non-uniform version of computational indistinguishability. We con-
clude by reviewing other variants and reflecting on various conceptual aspects of the
notions discussed in this chapter (see Sections 2.7 and 2.8, resp.).

2.1 The Basic Definition

Loosely speaking, general-purpose pseudorandom generators are efficient determin-
istic programs that expand short randomly selected seeds into longer pseudoran-
dom bit sequences, where the latter are defined as computationally indistinguishable
from truly random sequences by any efficient algorithm. Identifying efficiency with
polynomial-time operation, this means that the generator (being a fixed algorithm)
works within some fixed polynomial-time, whereas the distinguisher may be any al-
gorithm that runs in polynomial-time. Thus, the distinguisher is potentially more

11
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complex than the generator; for example, the distinguisher may run in time that
is cubic in the running-time of the generator. Furthermore, to facilitate the devel-
opment of this theory, we allow the distinguisher to be probabilistic (whereas the
generator remains deterministic as stated previously). We require that such distin-
guishers cannot tell the output of the generator from a truly random string of similar
length, or rather that the difference that such distinguishers may detect (or “sense”)
is negligible. Here a negligible function is a function that vanishes faster than the
reciprocal of any positive polynomial.1

Definition 2.1 (general-purpose pseudorandom generator): A deterministic poly-
nomial-time algorithm G is called a pseudorandom generator if there exists a stretch
function, ℓ : N→N (satisfying ℓ(k) > k for all k), such that for any probabilistic
polynomial-time algorithm D, for any positive polynomial p, and for all sufficiently
large k it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | <
1

p(k)
(2.1)

where Un denotes the uniform distribution over {0, 1}n and the probability is taken
over Uk (resp., Uℓ(k)) as well as over the internal coin tosses of D.

Thus, Definition 2.1 is derived from the generic framework (presented in Section 1.4)
by taking the class of distinguishers to be the set of all probabilistic polynomial-time
algorithms, and taking the class of (noticeable) threshold functions to be the set
of all functions that are the reciprocals of some positive polynomial.2 Indeed, the
principles underlying Definition 2.1 were discussed in Section 1.4 (and will be further
discussed in Section 2.3).

We note that Definition 2.1 does not make any requirement regarding the stretch
function ℓ :N→N, except for the generic requirement that ℓ(k) > k for all k. Needless
to say, the larger ℓ is, the more useful the pseudorandom generator is. Of course, ℓ is
upper-bounded by the running-time of the generator (and hence by a polynomial).
In Section 2.4 we show that any pseudorandom generator (even one having minimal
stretch ℓ(k) = k + 1) can be used for constructing a pseudorandom generator having
any desired (polynomial) stretch function. But before doing so, we rigorously dis-
cuss the “saving in randomness” offered by pseudorandom generators, and provide a
wider perspective on the notion of computational indistinguishability that underlies
Definition 2.1.

2.2 The Archetypical Application

We note that “pseudorandom number generators” appeared with the first comput-
ers, and have been used ever since for generating random choices (or samples) for

1Definition 2.1 requires that the functions representing the distinguishing gap of certain algo-
rithms should be smaller than the reciprocal of any positive polynomial for all but finitely many k’s,
and the former functions are called negligible. The notion of negligible probability is robust in the
sense that any event that occurs with negligible probability will occur with negligible probability
also when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

2The latter choice is naturally coupled with the association of efficient computation with
polynomial-time algorithms: An event that occurs with noticeable probability occurs almost al-
ways when the experiment is repeated a “feasible” (i.e., polynomial) number of times.
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various applications. However, typical implementations use generators that are not
pseudorandom according to Definition 2.1. Instead, at best, these generators are
shown to pass some ad-hoc statistical test (cf., [37]). We warn that the fact that
a “pseudorandom number generator” passes some statistical tests, does not mean
that it will pass a new test and that it will be good for a future (untested) appli-
cation. Needless to say, the approach of subjecting the generator to some ad-hoc
tests fails to provide general results of the form “for all practical purposes using the
output of the generator is as good as using truly unbiased coin tosses.” In contrast,
the approach encompassed in Definition 2.1 aims at such generality, and in fact is
tailored to obtain it: The notion of computational indistinguishability, which un-
derlines Definition 2.1, covers all possible efficient applications and guarantees that
for all of them pseudorandom sequences are as good as truly random ones. Indeed,
any efficient randomized algorithm maintains its performance when its internal coin
tosses are substituted by a sequence generated by a pseudorandom generator. This
substitution is spelled out next.

Construction 2.2 (typical application of pseudorandom generators): Let G be a
pseudorandom generator with stretch function ℓ : N→N. Let A be a probabilistic
polynomial-time algorithm, and let ρ :N→N denote its randomness complexity. De-
note by A(x, r) the output of A on input x and the coin toss sequence r ∈ {0, 1}ρ(|x|).
Consider the following randomized algorithm, denoted AG:

On input x, set k = k(|x|) to be the smallest integer such that ℓ(k) ≥
ρ(|x|), uniformly select s ∈ {0, 1}k, and output A(x, r), where r is the
ρ(|x|)-bit long prefix of G(s).

That is, AG(x, s) = A(x, G′(s)), for |s| = k(|x|) = argmini{ℓ(i) ≥ ρ(|x|)}, where
G′(s) is the ρ(|x|)-bit long prefix of G(s).

Thus, using AG instead of A, the randomness complexity is reduced from ρ to ℓ−1◦ρ,
while (as we show next) it is infeasible to find inputs (i.e., x’s) on which the notice-
able behavior of AG is different from that of A. For example, if ℓ(k) = k2, then the
randomness complexity is reduced from ρ to

√
ρ. We stress that the pseudorandom

generator G is universal; that is, it can be applied to reduce the randomness com-
plexity of any probabilistic polynomial-time algorithm A. The following proposition
asserts that it is infeasible to find an input on which AG behaves differently than A.

Proposition 2.3 (analysis of Construction 2.2): Let A, ρ and G be as in Con-
struction 2.2, and suppose that ρ : N → N is one-to-one. Then, for every pair of
probabilistic polynomial-time algorithms, a finder F and a tester T , every positive
polynomial p and all sufficiently long n, it holds that

∑

x∈{0,1}n

Pr[F (1n) = x] · |∆A,T (x) | <
1

p(n)
(2.2)

where ∆A,T (x)
def
= Pr[T (x, A(x, Uρ(|x|))) = 1] − Pr[T (x, AG(x, Uk(|x|))) = 1], and the

probabilities are taken over the Um’s as well as over the internal coin tosses of the
algorithms F and T .
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Algorithm F represents a potential attempt to find an input x on which the output
of AG is distinguishable from the output of A, where F is given a length parameter n
(in unary) and is required to produce a corresponding n-bit string in poly(n)-time.3

This “attempt” (represented by F ) may be benign (as in the case that a user employs
algorithm AG on inputs that are generated by some probabilistic polynomial-time
application), but it may also be adversarial (as in the case that a user employs
algorithm AG on inputs that are provided by a potentially malicious party). The
potential tester, denoted T , represents the potential use of the output of algorithm
AG, and captures the requirement that this output be as good as a corresponding
output produced by A. Thus, T is given x as well as the corresponding output

produced either by AG(x)
def
= A(x, Uk(|x|)) or by A(x) = A(x, Uρ(|x|)), and it is

required that T cannot tell the difference. In the case that A is a probabilistic
polynomial-time decision procedure, this means that it is infeasible to find an x on
which AG decides incorrectly (i.e., differently than A). In the case that A is a search
procedure for some NP-relation, it is infeasible to find an x on which AG outputs a
wrong solution. For details, see Exercise 2.1.

Proof Sketch: The proposition is proven by showing that any triple (A, F, T ) vio-
lating the claim can be converted into an algorithm D that distinguishes the output
of G from the uniform distribution, in contradiction to the hypothesis. The key
observation is that for every x ∈ {0, 1}n it holds that

∆A,T (x) = Pr[T (x, A(x, Uρ(n)))=1]− Pr[T (x, A(x, G′(Uk(n))))=1], (2.3)

where G′(s) is the ρ(n)-bit long prefix of G(s). Thus, a method for finding a string
x such that |∆A,T (x)| is large, yields a way of distinguishing Uℓ(k(n)) from G(Uk(n));

that is, given a sample r ∈ {0, 1}ℓ(k(n)) and using such a string x ∈ {0, 1}n, the
distinguisher outputs T (x, A(x, r′)), where r′ is the ρ(n)-bit long prefix of r. Indeed,
we shall show that the violation of Eq. (2.2), which refers to Ex←F (1n)[|∆A,T (x)|],
yields a violation of the hypothesis that G is a pseudorandom generator (by finding
an adequate string x and using it). This intuitive argument requires a slightly careful
implementation, which is provided next.

As a warm-up, consider the following algorithm D. On input r (taken from either
Uℓ(k(n)) or G(Uk(n))), algorithm D first obtains x← F (1n), where n can be obtained
easily from |r| (because ρ is one-to-one and 1n 7→ ρ(n) is computable via A). Next,
D obtains y = A(x, r′), where r′ is the ρ(|x|)-bit long prefix of r. Finally, D outputs
T (x, y). Note that D is implementable in probabilistic polynomial-time, and that

D(Uℓ(k(n))) ≡ T (Xn, A(Xn, Uρ(n))) , where Xn
def
= F (1n),

D(G(Uk(n))) ≡ T (Xn, A(Xn, G′(Uk(n)))) , where Xn
def
= F (1n).

Using Eq. (2.3), it follows that Pr[D(Uℓ(k(n))) = 1] − Pr[D(G(Uk(n))) = 1] equals
E[∆A,T (F (1n))], which implies that E[∆A,T (F (1n))] must be negligible (because oth-
erwise we derive a contradiction to the hypothesis that G is a pseudorandom gener-
ator). This yields a weaker version of the proposition asserting that E[∆A,T (F (1n))]
is negligible (rather than that E[|∆A,T (F (1n))|] is negligible).

3Indeed, providing n in unary (i.e., as 1n) and postulating that F runs in polynomial-time
implies that F should find x ∈ {0, 1}n in poly(n)-time.
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In order to prove that E[|∆A,T (F (1n))|] (rather than E[∆A,T (F (1n))]) is negligi-
ble, we need to modify D a little. Note that the source of trouble is that ∆A,T (·)
may be positive on some x’s and negative on others, and thus it may be the case
that E[∆A,T (F (1n))] is small (due to cancelations) even if E[|∆A,T (F (1n))|] is large.
This difficulty can be overcome by determining the sign of ∆A,T (·) on x = F (1n)
and changing the outcome of D accordingly; that is, the modified D will output
T (x, A(x, r′)) if ∆A,T (x) > 0 and 1 − T (x, A(x, r′)) otherwise. Thus, in each case,
the contribution of x to the distinguishing gap of the modified D will be |∆A,T (x)|.
We further note that if |∆A,T (x)| is small, then it does not matter much whether we
act as in the case of ∆A,T (x) > 0 or in the case of ∆A,T (x) ≤ 0. Thus, it suffices
to correctly determine the sign of ∆A,T (x) in the case that |∆A,T (x)| is large, which
is certainly a feasible (approximation) task. Details can be found in [24, Sec. 8.2.2].

Conclusion. Although Proposition 2.3 refers to standard probabilistic polynomial-
time algorithms, a similar construction and analysis applied to any efficient random-
ized process (i.e., any efficient multi-party computation). Any such process preserves
its behavior when replacing its perfect source of randomness (postulated in its analy-
sis) by a pseudorandom sequence (which may be used in the implementation). Thus,
given a pseudorandom generator with a large stretch function, one can considerably
reduce the randomness complexity of any efficient application.

2.3 Computational Indistinguishability

In this section we spell out (and study) the definition of computational indistin-
guishability that underlies Definition 2.1.

2.3.1 The general formulation

The (general formulation of the) definition of computational indistinguishability
refers to arbitrary probability ensembles. Here a probability ensemble is an infinite se-
quence of random variables {Zn}n∈N such that each Zn ranges over strings of length
that is polynomially related to n (i.e., there exists a polynomial p such that for every
n it holds that |Zn| ≤ p(n) and p(|Zn|) ≥ n). We say that {Xn}n∈N and {Yn}n∈N

are computationally indistinguishable if for every feasible algorithm A the difference

dA(n)
def
= |Pr[A(Xn)=1]− Pr[A(Yn)=1]| is a negligible function in n. That is:

Definition 2.4 (computational indistinguishability): The probability ensembles
{Xn}n∈N and {Yn}n∈N are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm D, every positive polynomial p, and all sufficiently
large n, it holds that

|Pr[D(Xn)=1]− Pr[D(Yn)=1]| <
1

p(n)
(2.4)

where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn)
and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (2.4), when viewed
as a function of n, is often called the distinguishing gap of D, where {Xn}n∈N and
{Yn}n∈N are understood from the context.
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We can think of D as representing somebody who wishes to distinguish two distri-
butions (based on a given sample drawn from one of the distributions), and think
of the output “1” as representing D’s verdict that the sample was drawn according
to the first distribution. Saying that the two distributions are computationally in-
distinguishable means that if D is a feasible procedure, then its verdict is not really
meaningful (because the verdict is almost as often 1 when the sample is drawn from
the first distribution as when the sample is drawn from the second distribution). We
comment that the absolute value in Eq. (2.4) can be omitted without affecting the
definition (see Exercise 2.2), and we will often do so without warning.

In Definition 2.1, we required that the probability ensembles {G(Uk)}k∈N and
{Uℓ(k)}k∈N be computationally indistinguishable. Indeed, an important special case
of Definition 2.4 is when one ensemble is uniform, and in such a case we call the
other ensemble pseudorandom.

2.3.2 Relation to statistical closeness

Two probability ensembles, {Xn}n∈N and {Yn}n∈N, are said to be statistically close (or
statistically indistinguishable) if for every positive polynomial p and all sufficiently
large n the variation distance between Xn and Yn (i.e., 1

2

∑
z |Pr[Xn =z]−Pr[Yn =z]|)

is bounded above by 1/p(n). Clearly, any two probability ensembles that are statisti-
cally close are computationally indistinguishable. Needless to say, this is a trivial case
of computational indistinguishability, which is due to information theoretic reasons.
In contrast, we shall be interested in non-trivial cases (of computational indistin-
guishability), which correspond to probability ensembles that are statistically far
apart.

Indeed, as claimed in Section 1.4 (see Exercise 1.3), there exist probability en-
sembles that are statistically far apart and yet are computationally indistinguish-
able. However, at least one of the two probability ensembles in Exercise 1.3 is not
polynomial-time constructible.4 We shall be much more interested in non-trivial
cases of computational indistinguishability in which both ensembles are polynomial-
time constructible. An important example is provided by the definition of pseudoran-
dom generators (see Exercise 2.6). As we shall see (in Theorem 2.14), the existence of
one-way functions implies the existence of pseudorandom generators, which in turn
implies the existence of polynomial-time constructible probability ensembles that are
statistically far apart and yet are computationally indistinguishable. We mention
that this sufficient condition is also necessary (see Exercise 2.8).

2.3.3 Indistinguishability by multiple samples

The definition of computational indistinguishability (i.e., Definition 2.4) refers to
distinguishers that obtain a single sample from one of the two relevant probability
ensembles (i.e., {Xn}n∈N and {Yn}n∈N). A very natural generalization of Defini-
tion 2.4 refers to distinguishers that obtain several independent samples from such
an ensemble.

4We say that {Zn}n∈N is polynomial-time constructible if there exists a polynomial-time algo-
rithm S such that S(1n) and Zn are identically distributed.
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Definition 2.5 (indistinguishability by multiple samples): Let s : N→N be poly-
nomially-bounded. Two probability ensembles, {Xn}n∈N and {Yn}n∈N, are compu-

tationally indistinguishable by s(·) samples if for every probabilistic polynomial-time
algorithm, D, every positive polynomial p(·), and all sufficiently large n, it holds that

∣∣∣Pr
[
D(X(1)

n , ..., X(s(n))
n )=1

]
− Pr

[
D(Y (1)

n , ..., Y (s(n))
n )=1

]∣∣∣ <
1

p(n)

where X
(1)
n through X

(s(n))
n and Y

(1)
n through Y

(s(n))
n are independent random vari-

ables such that each X
(i)
n is identical to Xn and each Y

(i)
n is identical to Yn.

It turns out that, in the most interesting cases, computational indistinguishability by
a single sample implies computational indistinguishability by any polynomial number
of samples. One such case is the case of polynomial-time constructible ensembles.
We say that the ensemble {Zn}n∈N is polynomial-time constructible if there exists
a polynomial-time algorithm S such that S(1n) and Zn are identically distributed
(i.e., when given the parameter n (in unary), algorithm S produces a sample of Zn

is poly(n)-time).

Proposition 2.6 (indistinguishability is preserved under multiple samples): Sup-

pose that X
def
= {Xn}n∈N and Y

def
= {Yn}n∈N are both polynomial-time constructible,

and s is a positive polynomial. Then, X and Y are computationally indistinguishable
by a single sample if and only if they are computationally indistinguishable by s(·)
samples.

Clearly, for every polynomial s ≥ 1, computational indistinguishability by s(·) sam-
ples implies computational indistinguishability by a single sample (see Exercise 2.4).
We now prove that, for efficiently constructible ensembles, indistinguishability by a
single sample implies indistinguishability by multiple samples.5 The proof provides
a simple demonstration of a central proof technique, known as the hybrid technique,
which is a special case of the so-called reducibility argument (cf. e.g., [22, Sec. 2.3.3]
or [24, Sec. 7.1.2]).

Proof Sketch:6 Using the counterpositive, we show that the existence of an ef-
ficient algorithm that distinguishes the ensembles X and Y using several samples,
implies the existence of an efficient algorithm that distinguishes the ensembles X and
Y using a single sample. That is, starting from the distinguishability of s(n)-long
sequences of samples (either drawn all from Xn or drawn all from Yn), we consider
hybrid sequences such that the ith hybrid consists of i samples of Xn followed by
s(n)− i samples of Yn. Note that the “homogeneous” sequences (which we assumed
to be distinguishable) are the extreme hybrids (i.e., the first and last hybrids). The
key observation is that distinguishing the extreme hybrids (towards the contradiction
hypothesis) implies distinguishing neighboring hybrids, which in turn yields a proce-
dure for distinguishing single samples of the two original distributions (contradicting
the hypothesis that these two distributions are indistinguishable by a single sample).
Details follow.

5The requirement that both ensembles are polynomial-time constructible is essential; see Exer-
cise 2.9.

6For more details see [22, Sec. 3.2.3].
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Suppose, towards the contradiction, that D distinguishes s(n) samples of Xn from
s(n) samples of Yn, with a distinguishing gap of δ(n). Denoting the ith hybrid by Hi

n

(i.e., Hi
n = (X

(1)
n , ..., X

(i)
n , Y

(i+1)
n , ..., Y

(s(n))
n )), this means that D distinguishes the

extreme hybrids (i.e., H0
n and H

s(n)
n ) with gap δ(n). It follows that D distinguishes

a random pair of neighboring hybrids (i.e., D distinguishes Hi
n from Hi+1

n , for a
randomly selected i) with gap at least δ(n)/s(n); the reason being that

Ei∈{0,...,s(n)−1}
[
Pr[D(Hi

n) = 1]− Pr[D(Hi+1
n ) = 1]

]

=
1

s(n)
·

s(n)−1∑

i=0

(
Pr[D(Hi

n) = 1]− Pr[D(Hi+1
n ) = 1]

)
(2.5)

=
1

s(n)
·
(
Pr[D(H0

n) = 1]− Pr[D(Hs(n)
n ) = 1]

)
=

δ(n)

s(n)
.

The key step in the argument is transforming the distinguishability of neighboring
hybrids into distinguishability of single samples of the original ensembles (thus deriv-
ing a contradiction). Indeed, using D, we obtain a distinguisher D′ of single samples:
Given a single sample, algorithm D′ selects i ∈ {0, ..., s(n) − 1} at random, gener-
ates i samples from the first distribution and s(n) − i− 1 samples from the second
distribution, invokes D with the s(n)-samples sequence obtained when placing the
input sample in location i + 1, and answers whatever D does. That is, on input z
and when selecting the index i, algorithm D′ invokes D on a sample from the dis-

tribution (X
(1)
n , ..., X

(i)
n , z, Y

(i+2)
n , ..., Y

(s(n))
n ). Thus, the construction of D′ relies on

the hypothesis that both probability ensembles are polynomial-time constructible.
The analysis of D′ is based on the following two facts:

1. When invoked on an input that is distributed according to Xn and selecting
the index i ∈ {0, ..., s(n) − 1}, algorithm D′ behaves like D(Hi+1

n ), because

(X
(1)
n , ..., X

(i)
n , Xn, Y

(i+2)
n , ..., Y

(s(n))
n ) ≡ Hi+1

n .

2. When invoked on an input that is distributed according to Yn and selecting
the index i ∈ {0, ..., s(n) − 1}, algorithm D′ behaves like D(Hi

n), because

(X
(1)
n , ..., X

(i)
n , Yn, Y

(i+2)
n , ..., Y

(s(n))
n ) ≡ Hi

n.

Thus, the distinguishing gap of D′ (between Yn and Xn) is captured by Eq. (2.5),
and the claim follows.

The hybrid technique – a digest: The hybrid technique constitutes a special
type of a “reducibility argument” in which the computational indistinguishability
of complex ensembles is proved using the computational indistinguishability of basic
ensembles. The actual reduction is in the other direction: efficiently distinguishing
the basic ensembles is reduced to efficiently distinguishing the complex ensembles,
and hybrid distributions are used in the reduction in an essential way. The following
three properties of the construction of the hybrids play an important role in the
argument:

1. The complex ensembles collide with the extreme hybrids. This property is essen-
tial because our aim is to prove something that relates to the complex ensembles
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(i.e., their indistinguishability), while the argument itself refers to the extreme
hybrids.

In the proof of Proposition 2.6 the extreme hybrids (i.e., H
s(n)
n and H0

n) collide
with the complex ensembles that represent s(n)-ary sequences of samples of
one of the basic ensembles.

2. The basic ensembles are efficiently mapped to neighboring hybrids. This prop-
erty is essential because our starting hypothesis relates to the basic ensembles
(i.e., their indistinguishability), while the argument itself refers directly to the
neighboring hybrids. Thus, we need to translate our knowledge (i.e., computa-
tional indistinguishability) of the basic ensembles to knowledge (i.e., computa-
tional indistinguishability) of any pair of neighboring hybrids. Typically, this
is done by efficiently transforming strings in the range of a basic distribution
into strings in the range of a hybrid such that the transformation maps the
first basic distribution to one hybrid and the second basic distribution to the
neighboring hybrid.

In the proof of Proposition 2.6 the basic ensembles (i.e., Xn and Yn) were effi-
ciently transformed into neighboring hybrids (i.e., Hi+1

n and Hi
n, respectively).

Recall that, in this case, the efficiency of this transformation relied on the
hypothesis that both of the basic ensembles are polynomial-time constructible.

3. The number of hybrids is small (i.e., polynomial). This property is essential
in order to deduce the computational indistinguishability of extreme hybrids
from the computational indistinguishability of each pair of neighboring hybrids.
Typically, the “distinguishability gap” established in the argument loses a fac-
tor that is proportional to the number of hybrids. This is due to the fact that
the gap between the extreme hybrids is upper-bounded by the sum of the gaps
between neighboring hybrids.

In the proof of Proposition 2.6 the number of hybrids equals s(n) and the
aforementioned loss is reflected in Eq. (2.5).

We remark that in the course of an hybrid argument, a distinguishing algorithm
referring to the complex ensembles is being analyzed and even invoked on arbitrary
hybrids. The reader may be annoyed by the fact that the algorithm “was not designed
to work on such hybrids” (but rather only on the extreme hybrids). However, an
algorithm is an algorithm: once it exists we can invoke it on inputs of our choice,
and analyze its performance on arbitrary input distributions.

2.4 Amplifying the Stretch Function

Recall that the definition of pseudorandom generators (i.e., Definition 2.1) makes a
minimal requirement regarding their stretch; that is, it is only required that the out-
put of such generators is longer than their input. Needless to say, we seek pseudoran-
dom generators with a much more significant stretch, because the stretch determines
the saving in randomness obtained in applications (e.g., via Construction 2.2). It
turns out (see Construction 2.7) that pseudorandom generators of any stretch func-

tion (and in particular of minimal stretch ℓ1(k)
def
= k+1) can be easily converted into

pseudorandom generators of any desired (polynomially bounded) stretch function, ℓ.
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On the other hand, since pseudorandom generators are required (by Definition 2.1)
to run in polynomial time, their stretch must be polynomially bounded.

Construction 2.7 (stretch amplification): Let G1 be a pseudorandom generator
with stretch function ℓ1(k) = k + 1, and let ℓ be any polynomially bounded stretch
function that is polynomial-time computable. Let

G(s)
def
= σ1σ2 · · ·σℓ(|s|) (2.6)

where x0 = s and xiσi = G1(xi−1), for i = 1, ..., ℓ(|s|). That is, σi is the last bit of
G1(xi−1) and xi is the |s|-bit long prefix of G1(xi−1).

Needless to say, G is polynomial-time computable and has stretch ℓ. An alternative
construction is considered in Exercise 2.10.

Proposition 2.8 (analysis of Construction 2.7): Let G1 and G be as in Construc-
tion 2.7. Then G constitutes a pseudorandom generator.

Proof Sketch: The proposition is proven using the hybrid technique, presented and
discussed in Section 2.3. Here (for i = 0, ..., ℓ(k)) we consider the hybrid distributions
Hi

k defined by

Hi
k

def
= U

(1)
i · gℓ(k)−i(U

(2)
k ),

where · denotes the concatenation of strings, gj(x) denotes the j-bit long prefix of

G(x), and U
(1)
i and U

(2)
k are independent uniform distributions (over {0, 1}i and

{0, 1}k, respectively). The extreme hybrids (i.e., H0
k and Hk

k ) correspond to G(Uk)
and Uℓ(k), whereas distinguishability of neighboring hybrids can be worked into dis-
tinguishability of G1(Uk) and Uk+1. Details follow.

Suppose that one could distinguish Hi
k from Hi+1

k . Defining F (z) (resp., L(z)) as
the first |z|−1 bits (resp., last bit) of z, and using gj(s) = L(G1(s)) ·gj−1(F (G1(s)))
(for j ≥ 1), we have

Hi
k ≡ U

(1)
i · L(G1(U

(2)
k )) · g(ℓ(k)−i)−1(F (G1(U

(2)
k )))

and

Hi+1
k = U

(1′)
i+1 · gℓ(k)−(i+1)(U

(2)
k )

≡ U
(1)
i · L(U

(2′)
k+1) · g(ℓ(k)−i)−1(F (U

(2′)
k+1)).

Now, incorporating the generation of U
(1)
i and the evaluation of gℓ(k)−i−1 into the

distinguisher, it follows that we distinguish G1(U
(2)
k ) from U

(2′)
k+1, in contradiction

to the pseudorandomness of G1. For further details see [24, Sec. 8.2.4] (or [22,
Sec. 3.3.3]).

Conclusion. In view of the foregoing, when talking about the mere existence of
pseudorandom generators, in the sense of Definition 2.1, we may ignore the specific
stretch function.
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2.5 Constructions

So far we have ignored the basic question of whether pseudorandom generators exist
at all. (Needless to say, the fact that we defined an object does not mean that it
exists.) Looking at the definition of pseudorandom generators, we may observe that
it implies the computational difficulty of inverting the transformation of seeds to
longer output sequences (see details following Theorem 2.14). Thus, the existence
of functions that are easy to compute but hard to invert, called one-way functions,
is a necessary condition to the existence of pseudorandom generators, Interestingly,
this condition is also sufficient; that is, pseudorandom generators can be constructed
based on any one-way function.

We note that proving the equivalence of two seemingly different conditions is
particularly beneficial when one of the two conditions seems simpler than the other
and/or when we have more intuition regarding its validity. In particular, the conjec-
tured existence of one-way functions is supported by the conjectured infeasibility of
several well-known computational problems (e.g., factoring integers, decoding ran-
dom linear codes, and computing logarithms in various finite groups).

2.5.1 Background: one-way functions

One-way functions are functions that are easy to compute but hard to invert (in an
average-case sense).

Definition 2.9 (one-way functions): A function f : {0, 1}∗→{0, 1}∗ is called one-

way if the following two conditions hold:

1. Easy to evaluate: There exists a polynomial-time algorithm A such that A(x) =
f(x) for every x ∈ {0, 1}∗.

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every
positive polynomial p, and all sufficiently large n, it holds that

Prx∈{0,1}n [A′(f(x), 1n) ∈ f−1(f(x))] <
1

p(n)
(2.7)

where the probability is taken uniformly over the possible choices of x ∈ {0, 1}n
and over the internal coin tosses of algorithm A′.

Algorithm A′ is given the auxiliary input 1n so as to allow it to run in time polynomial
in the length of x, which is important in case f drastically shrinks its input (e.g.,
|f(x)| = O(log |x|)). Typically (and, in fact, without loss of generality), the function
f is length preserving, in which case the auxiliary input 1n is redundant. Note that
A′ is not required to output a specific preimage of f(x); any preimage (i.e., element
in the set f−1(f(x))) will do. (Indeed, in case f is one-to-one, the string x is the only
preimage of f(x) under f ; but in general there may be other preimages.) It is required
that algorithm A′ fails (to find a preimage) with overwhelming probability, when the
probability is also taken over the input distribution. That is, f is “typically” hard
to invert, not merely hard to invert in some (“rare”) cases.
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On hard-core predicates. Recall that saying that a function f is one-way means
that given a typical y (in the range of f) it is infeasible to find a preimage of y
under f . This does not mean that it is infeasible to find partial information about
the preimage(s) of y under f . Specifically, it may be easy to retrieve half of the bits
of the preimage (e.g., given a one-way function f consider the function f ′ defined

by f ′(x, r)
def
= (f(x), r), for every |x|= |r|). We note that hiding partial information

(about the function’s preimage) plays an important role in the construction of pseu-
dorandom generators (as well as in other advanced constructs). With this motivation
in mind, we will show that essentially any one-way function hides specific partial in-
formation about its preimage, where this partial information is easy to compute from
the preimage itself. This partial information can be considered a “hard-core” of the
difficulty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)
predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),
can guess b(x) with success probability that is non-negligibly better than one half.

Definition 2.10 (hard-core predicates): A polynomial-time computable predicate
b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A′, every positive polynomial p(·), and all sufficiently large
n, it holds that

Prx∈{0,1}n [A′(f(x))=b(x)] <
1

2
+

1

p(n)

where the probability is taken uniformly over the possible choices of x ∈ {0, 1}n and
over the internal coin tosses of algorithm A′.

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗, there exist obvious
algorithms that guess b(x) from f(x) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (of any function), then it follows that b is almost unbiased
(i.e., for a uniformly chosen x, the difference |Pr[b(x) = 0] − Pr[b(x) = 1]| must be a
negligible function in n).

Since b itself is polynomial-time computable, the failure of efficient algorithms to
approximate b(x) from f(x) (with success probability that is non-negligibly higher
than one half) must be due either to an information loss of f (i.e., f not being one-
to-one) or to the difficulty of inverting f . For example, for σ∈{0, 1} and x′∈{0, 1}∗,
the predicate b(σx′) = σ is a hard-core of the function f(σx′)

def
= 0x′. Hence, in

this case the fact that b is a hard-core of the function f is due to the fact that f
loses information (specifically, the first bit: σ). On the other hand, in the case that
f loses no information (i.e., f is one-to-one) a hard-core for f may exist only if f
is hard to invert. In general, the interesting case is when being a hard-core is a
computational phenomenon rather than an information theoretic one (which is due
to “information loss” of f). It turns out that any one-way function has a modified
version that possesses a hard-core predicate.

Theorem 2.11 (a generic hard-core predicate): For any one-way function f , the
inner-product mod 2 of x and r, denoted b(x, r), is a hard-core of f ′(x, r) = (f(x), r).

In other words, Theorem 2.11 asserts that, given f(x) and a random subset S ⊆
{1, ..., |x|}, it is infeasible to guess

⊕
i∈S xi significantly better than with probability



2.5. CONSTRUCTIONS 23

1/2, where x = x1 · · ·xn is uniformly distributed in {0, 1}n. The proof of Theo-
rem 2.11 appears in Appendix C.7

2.5.2 A simple construction

Intuitively, the definition of a hard-core predicate implies a potentially interesting
case of computational indistinguishability. Specifically, as will be shown implicitly in
Proposition 2.12 and explicitly in Exercise 2.7, if b is a hard-core of the function f ,
then the ensemble {f(Un) · b(Un)}n∈N is computationally indistinguishable from the
ensemble {f(Un) ·U ′1}n∈N. Furthermore, if f is one-to-one then the foregoing ensem-
bles are statistically far apart, and thus constitute a non-trivial case of computational
indistinguishability. If f is also polynomial-time computable and length-preserving,
then this yields a construction of a pseudorandom generator.

Proposition 2.12 (A simple construction of pseudorandom generators): Let b be a
hard-core predicate of a polynomial-time computable one-to-one and length-preserving

function f . Then, G(s)
def
= f(s) · b(s) is a pseudorandom generator.

Proof Sketch: Considering a uniformly distributed s ∈ {0, 1}n, we first note that
the n-bit long prefix of G(s) is uniformly distributed in {0, 1}n, because f induces
a permutation on the set {0, 1}n. Hence, the proof boils down to showing that
distinguishing f(s) ·b(s) from f(s) ·σ, where σ is a random bit, yields a contradiction
to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictable from f(s)).
Intuitively, the reason is that such a hypothetical distinguisher also distinguishes
f(s) · b(s) from f(s) · b(s), where σ = 1 − σ, whereas distinguishing f(s) · b(s) from
f(s) · b(s) yields an algorithm for predicting b(s) based on f(s). For further details
see [24, Sec. 8.2.5.1] (or [22, Sec. 3.3.4]).

Combining Theorem 2.11, Proposition 2.12 and Construction 2.7, we obtain the
following result.

Theorem 2.13 (a sufficient condition for the existence of pseudorandom genera-
tors): If there exist one-to-one and length-preserving one-way functions, then, for
every polynomially bounded stretch function ℓ, there exists a pseudorandom genera-
tor of stretch ℓ.

Digest. The main part of the proof of Proposition 2.12 is showing that the (next-
bit) unpredictability of G(Uk) implies the pseudorandomness of G(Uk). The fact
that (next-bit) unpredictability and pseudorandomness are equivalent, in general, is
proven explicitly in the alternative proof of Theorem 2.13 provided next.

2.5.3 An alternative presentation

Let us take a closer look at the pseudorandom generators obtained by combining
Construction 2.7 and Proposition 2.12. For a stretch function ℓ :N→N, a one-to-one

7We provide this proof because, in our opinion, at the last account, the conversion of computa-
tional difficulty to pseudorandomness occurs in this result. In contrast, important results such as
Propositions 2.8 and 2.12 “only” transform one type of pseudorandomness into another. On the
other hand, the proof of Theorem 2.11 is too long to fit in the main text without damaging the
main thread of the presentation.
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one-way function f with a hard-core b, we obtain

G(s)
def
= σ1σ2 · · ·σℓ(|s|) , (2.8)

where x0 = s and xiσi = f(xi−1)b(xi−1) for i = 1, ..., ℓ(|s|). Denoting by f i(x) the
value of f iterated i times on x (i.e., f i(x) = f i−1(f(x)) and f0(x) = x), we rewrite
Eq. (2.8) as follows:

G(s)
def
= b(s) · b(f(s)) · · · b(f ℓ(|s|)−1(s)) . (2.9)

The pseudorandomness of G is established in two steps, using the notion of (next-
bit) unpredictability. An ensemble {Zk}k∈N is called unpredictable if any probabilistic
polynomial-time machine obtaining a (random)8 prefix of Zk fails to predict the next
bit of Zk with probability non-negligibly higher than 1/2. Specifically, we establish
the following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if it
is unpredictable. Recall that an ensemble is pseudorandom if it is computation-
ally indistinguishable from a uniform distribution (over bit strings of adequate
length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here
we actually need the other direction, which is less obvious. Still, using a hybrid
argument, one can show that (next-bit) unpredictability implies indistinguisha-
bility from the uniform ensemble. For details see Exercise 2.11.

2. A specific result asserting that the ensemble {G(Uk)}k∈N is unpredictable
from right to left. Equivalently, G′(Un) is polynomial-time unpredictable (from
left to right (as usual)), where G′(s) = b(f ℓ(|s|)−1(s)) · · · b(f(s)) · b(s) is the
reverse of G(s).

Using the fact that f induces a permutation over {0, 1}n, observe that the (j +
1)-bit long prefix of G′(Uk) is distributed identically to b(f j(Uk)) · · · b(f(Uk)) ·
b(Uk). Thus, an algorithm that predicts the j + 1st bit of G′(Un) based on
the j-bit long prefix of G′(Un) yields an algorithm that guesses b(Un) based on
f(Un). For details see Exercise 2.13.

Needless to say, G is a pseudorandom generator if and only if G′ is a pseudorandom
generator (see Exercise 2.12). We mention that Eq. (2.9) is often referred to as the
Blum-Micali Construction.9

2.5.4 A necessary and sufficient condition

Recall that given any one-way one-to-one length-preserving function, we can eas-
ily construct a pseudorandom generator. Actually, the one-to-one (and length-
preserving) requirement may be dropped, but the currently known construction –
for the general case – is quite complex.

8For simplicity, we define unpredictability as referring to prefixes of a random length (distributed
uniformly in {0, ..., |Zk|−1}). A more general definition allows the predictor to determine the length
of the prefix that it reads on the fly. This seemingly stronger notion of unpredictability is actually
equivalent to the one we use, because both notions are equivalent to pseudorandomness.

9Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. Indeed, this construction originates in [11].
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Theorem 2.14 (on the existence of pseudorandom generators): Pseudorandom gen-
erators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of one-
way functions, consider a pseudorandom generator G with stretch function ℓ(k) = 2k.

For x, y ∈ {0, 1}k, define f(x, y)
def
= G(x), and so f is polynomial-time computable

(and length-preserving). It must be that f is one-way, or else one can distinguish
G(Uk) from U2k by trying to invert f and checking the result: inverting f on the
distribution f(U2k) corresponds to operating on the distribution G(Uk), whereas the
probability that U2k has an inverse under f is negligible.

The interesting direction of the proof of Theorem 2.14 is the construction of
pseudorandom generators based on any one-way function. Since the known proof is
quite complex, we only provide a very rough overview of some of the ideas involved.
We mention that these ideas make extensive use of adequate hashing functions (e.g.,
pairwise independent hashing functions; see Appendix A).

We first note that, in general (when f may not be one-to-one), the ensemble
f(Uk) may not be pseudorandom, and so the construction of Proposition 2.12 (i.e.,
G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One idea
underlying the known construction is hashing f(Uk) to an almost uniform string
of length that almost equals its entropy.10 But “hashing f(Uk) down to length
comparable to the entropy” means shrinking the length of the output to, say, k′ < k.
This foils the entire point of stretching the k-bit seed. Thus, a second idea underlying
the construction is compensating for the loss of k− k′ bits by extracting these many
bits from the seed Uk itself. This is done by hashing Uk, and the point is that the
(k−k′)-bit long hash value does not make the inverting task any easier. Implementing
these ideas turns out to be more difficult than it seems, and indeed an alternative
construction would be most appreciated.

2.6 Non-uniformly Strong Pseudorandom
Generators

Recall that we said that truly random sequences can be replaced by pseudorandom
sequences without affecting any efficient computation that uses these sequences. The
specific formulation of this assertion, presented in Proposition 2.3, refers to random-
ized algorithms that take a “primary input” and use a secondary “random input” in
their computation. Proposition 2.3 asserts that it is infeasible to find a primary input
for which the replacement of a truly random secondary input by a pseudorandom
one affects the final output of the algorithm in a noticeable way. This, however, does
not mean that such primary inputs do not exist (but rather that they are hard to
find). Consequently, Proposition 2.3 falls short of yielding a (worst-case)11 “deran-

10This is done after guaranteeing that the logarithm of the probability mass of a value of f(Uk)
is typically close to the entropy of f(Uk). Specifically, given an arbitrary one-way function f ′, one
first constructs f by taking a “direct product” of sufficiently many copies of f ′. For example, for

x1, ..., xk2/3 ∈ {0, 1}k1/3
, we let f(x1, ..., xk2/3)

def
= f ′(x1), ..., f ′(xk2/3).

11Indeed, Proposition 2.3 yields an average-case derandomization of BPP. In particular, for
every polynomial-time constructible ensemble {Xn}n∈N, every Boolean function f ∈ BPP, and
every ε > 0, there exists a randomized algorithm A′ of randomness complexity rε(n) = nε such
that the probability that A′(Xn) 6= f(Xn) is negligible. A corresponding deterministic (exp(rε)-
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domization” of a complexity class such as BPP. To obtain such results, we need a
stronger notion of pseudorandom generators, presented next. Specifically, we need
pseudorandom generators that can fool all polynomial-size circuits, and not merely
all probabilistic polynomial-time algorithms.12

Definition 2.15 (strong pseudorandom generator – fooling circuits): A determinis-
tic polynomial-time algorithm G is called a non-uniformly strong pseudorandom gener-

ator if there exists a stretch function, ℓ :N→N, such that for any family {Ck}k∈N of
polynomial-size circuits, for any positive polynomial p, and for all sufficiently large
k, it holds that

|Pr[Ck(G(Uk)) = 1] − Pr[Ck(Uℓ(k)) = 1] | <
1

p(k)
.

Using such pseudorandom generators, we can “derandomize” BPP.

Theorem 2.16 (derandomization of BPP): If there exist non-uniformly strong pseu-

dorandom generators, then BPP is contained in
⋂

ε>0 Dtime(tε), where tε(n)
def
=

2nε

.

See Appendix F for definitions of the aforementioned complexity classes.

Proof Sketch: For any S ∈ BPP and any ε > 0, we let A denote a probabilistic
polynomial-time decision procedure for S and let G denote a non-uniformly strong
pseudorandom generator stretching nε-bit long seeds into poly(n)-long sequences (to
be used by A as secondary input when processing a primary input of length n).
Combining A and G, we obtain an algorithm A′ = AG (as in Construction 2.2).
We claim that A and A′ may significantly differ in their (expected probabilistic)
decision on at most finitely many inputs, because otherwise we can use these inputs
(together with A) to derive a (non-uniform) family of polynomial-size circuits that
distinguishes G(Unε) and Upoly(n), contradicting the the hypothesis regarding G.
Specifically, an input x on which A and A′ differ significantly yields a circuit Cx that
distinguishes G(U|x|ε) and Upoly(|x|), by letting Cx(r) = A(x, r).13 Incorporating
the finitely many “bad” inputs into A′, we derive a probabilistic polynomial-time
algorithm that decides S while using randomness complexity nε.

Finally, emulating A′ on each of the 2nε

possible random sequences (i.e., seeds
to G) and ruling by majority, we obtain a deterministic algorithm A′′ as required.
That is, let A′(x, r) denote the output of algorithm A′ on input x when using coins
r ∈ {0, 1}nε

. Then A′′(x) invokes A′(x, r) on every r ∈ {0, 1}nε

, and outputs 1 if
and only if the majority of these 2nε

invocations have returned 1.

time) algorithm A′′ can be obtained, as in the proof of Theorem 2.16, and again the probability
that A′′(Xn) 6= f(Xn) is negligible, where here the probability is taken only over the distribution
of the primary input (represented by Xn). In contrast, worst-case derandomization, as captured by
the assertion BPP ⊆ Dtime(2rε ), requires that the probability that A′′(Xn) 6= f(Xn) is zero.

12Needless to say, strong pseudorandom generators in the sense of Definition 2.15 satisfy the basic
definition of a pseudorandom generator (i.e., Definition 2.1); see Exercise 2.14. We comment that
the underlying notion of computational indistinguishability (by circuits) is strictly stronger than
Definition 2.4, and that it is invariant under multiple samples (regardless of the constructibility of
the underlying ensembles); for details, see Exercise 2.15.

13Indeed, in terms of the proof of Proposition 2.3, the finder F consists of a non-uniform family of
polynomial-size circuits that print the “problematic” primary inputs that are hard-wired in them,
and the corresponding distinguisher D is thus also non-uniform.
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We comment that stronger results regarding derandomization of BPP are pre-
sented in Section 3.

On constructing non-uniformly strong pseudorandom generators. Non-
uniformly strong pseudorandom generators (as in Definition 2.15) can be constructed
using any one-way function that is hard to invert by any non-uniform family of
polynomial-size circuits, rather than by probabilistic polynomial-time machines. In
fact, the construction in this case is simpler than the one employed in the uniform
case (i.e., the construction underlying the proof of Theorem 2.14).

2.7 Stronger (Uniform-Complexity) Notions

The following two notions represent strengthening of the standard definition of pseu-
dorandom generators (as presented in Definition 2.1). Non-uniform versions of these
notions (strengthening Definition 2.15) are also of interest.

2.7.1 Fooling stronger distinguishers

One strengthening of Definition 2.1 amounts to explicitly quantifying the resources
(and success gaps) of distinguishers. We choose to bound these quantities as a
function of the length of the seed (i.e., k), rather than as a function of the length
of the string that is being examined (i.e., ℓ(k)). For a class of time bounds T (e.g.,

T = {t(k)
def
= 2c

√
k}c∈N) and a class of noticeable functions (e.g., F = {f(k)

def
=

1/t(k) : t ∈ T }), we say that a pseudorandom generator, G, is (T ,F)-strong if
for any probabilistic algorithm D having running-time bounded by a function in T
(applied to k)14, for any function f in F , and for all sufficiently large k’s, it holds
that

|Pr[D(G(Uk)) = 1] − Pr[D(Uℓ(k)) = 1] | < f(k).

An analogous strengthening may be applied to the definition of one-way functions.
Doing so reveals the weakness of the known construction that underlies the proof of
Theorem 2.14; it only implies that for some ε > 0 (ε = 1/8 will do), for any T and F ,
the existence of “(T ,F)-strong one-way functions” implies the existence of (T ′,F ′)-
strong pseudorandom generators, where T ′ = {t′(k)

def
= t(kε)/poly(k) : t ∈ T }

and F ′ = {f ′(k)
def
= poly(k) · f(kε) : f ∈ F}. What we would like to have is an

analogous result with T ′ = {t′(k)
def
= t(Ω(k))/poly(k) : t ∈ T } and F ′ = {f ′(k)

def
=

poly(k) · f(Ω(k)) : f ∈ F}.

2.7.2 Pseudorandom functions

Recall that pseudorandom generators provide a way to efficiently generate long pseu-
dorandom sequences from short random seeds. Pseudorandom functions are even
more powerful: they provide efficient direct access to the bits of a huge pseudoran-
dom sequence (which is not feasible to scan bit-by-bit). More precisely, a pseudoran-

dom function is an efficient (deterministic) algorithm that given a k-bit seed, s, and a

14That is, when examining a sequence of length ℓ(k) algorithm D makes at most t(k) steps, where
t ∈ T .
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k-bit argument, x, returns a k-bit string, denoted fs(x), such that it is infeasible to
distinguish the values of fs, for a uniformly chosen s ∈ {0, 1}k, from the values of a
truly random function F : {0, 1}k → {0, 1}k. That is, the (feasible) testing procedure
is given oracle access to the function (but not its explicit description), and cannot
distinguish the case when it is given oracle access to a pseudorandom function from
the case when it is given oracle access to a truly random function.

Definition 2.17 (pseudorandom functions): A pseudorandom function (ensemble),
is a collection of functions {fs :{0, 1}|s|→{0, 1}|s|}s∈{0,1}∗ that satisfies the following
two conditions:

1. (efficient evaluation) There exists an efficient (deterministic) algorithm that
given a seed, s, and an argument, x ∈ {0, 1}|s|, returns fs(x).

2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,
M , every positive polynomial p and all sufficiently large k, it holds that

∣∣Pr[MfUk (1k) = 1]− Pr[MFk(1k) = 1]
∣∣ <

1

p(k)

where Fk denotes a uniformly selected function mapping {0, 1}k to {0, 1}k.

One key feature of pseudorandom functions is that they can be generated and shared
by merely generating and sharing their seed; that is, a “random looking” function
fs : {0, 1}k → {0, 1}k, is determined by its k-bit seed s. Thus, parties wishing to
share a “random looking” function fs (determining 2k-many values), merely need to
generate and share among themselves the k-bit seed s. (For example, one party may
randomly select the seed s, and communicate it, via a secure channel, to all other
parties.) Sharing a pseudorandom function allows parties to determine (by them-
selves and without any further communication) random-looking values depending
on their current views of the environment (which need not be known a priori). To
appreciate the potential of this tool, one should realize that sharing a pseudorandom
function is essentially as good as being able to agree, on the fly, on the association of
random values to (on-line) given values, where the latter are taken from a huge set
of possible values. We stress that this agreement is achieved without communication
and synchronization: Whenever some party needs to associate a random value to a
given value, v ∈ {0, 1}k, it will associate to v the (same) random value rv ∈ {0, 1}k
(by setting rv = fs(v), where fs is a pseudorandom function agreed upon before-
hand). Concretely, the foregoing idea underlies the construction of secure private-key
encryption and message-authentication schemes based on pseudorandom functions
(see Appendix E). In addition to numerous applications in cryptography, pseudo-
random functions were also used to derive negative results in computational learning
theory [69] and in the study of circuit complexity (cf., Natural Proofs [55]).

Theorem 2.18 (how to construct pseudorandom functions): Pseudorandom func-
tions can be constructed using any pseudorandom generator.

Proof Sketch:15 Let G be a pseudorandom generator that stretches its seed by a
factor of two (i.e., ℓ(k) = 2k), and let G0(s) (resp., G1(s)) denote the first (resp.,

15See details in [22, Sec. 3.6.2].
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last) |s| bits in G(s). Let

Gσ|s|···σ2σ1(s)
def
= Gσ|s|

(· · ·Gσ2(Gσ1 (s)) · · ·),

define fs(x1x2 · · ·xk)
def
= Gxk···x2x1(s), and consider the function ensemble {fs :

{0, 1}|s|→ {0, 1}|s|}s∈{0,1}∗ . Pictorially, the function fs is defined by k-step walks
down a full binary tree of depth k having labels at the vertices. The root of the tree,
hereafter referred to as the level 0 vertex of the tree, is labeled by the string s. If an
internal vertex is labeled r, then its left child is labeled G0(r) whereas its right child
is labeled G1(r). The value of fs(x) is the string residing in the leaf reachable from
the root by a path corresponding to the string x.

We claim that the function ensemble {fs}s∈{0,1}∗ is pseudorandom. The proof

uses the hybrid technique (cf. Section 2.3): The ith hybrid, denoted Hi
k, is a function

ensemble consisting of 22i·k functions {0, 1}k→{0, 1}k, each determined by 2i random
k-bit strings, denoted s = 〈sβ〉β∈{0,1}i . The value of such a function hs at x = αβ,
where |β| = i, is defined to equal Gα(sβ). Pictorially, the function hs is defined
by placing the strings in s in the corresponding vertices of level i, and labeling
vertices of lower levels using the very rule used in the definition of fs. The extreme
hybrids correspond to our indistinguishability claim (i.e., H0

k ≡ fUk
and Hk

k is a
truly random function), and the indistinguishability of neighboring hybrids follows
from our indistinguishability hypothesis. Specifically, we show that the ability to
distinguish Hi

k from Hi+1
k yields an ability to distinguish multiple samples of G(Uk)

from multiple samples of U2k (by placing on the fly, halves of the given samples at
adequate vertices of the i + 1st level).

Variants. Useful variants (and generalizations) of the notion of pseudorandom
functions include Boolean pseudorandom functions that are defined over all strings
(i.e., fs : {0, 1}∗ → {0, 1}) and pseudorandom functions that are defined for other
domains and ranges (i.e., fs : {0, 1}d(|s|) → {0, 1}r(|s|), for arbitrary polynomially
bounded functions d, r : N → N). Various transformations between these variants
are known (cf. [22, Sec. 3.6.4] and [23, Apdx. C.2]).

2.8 Conceptual Reflections

We highlight several conceptual aspects of the foregoing computational approach to
randomness. Some of these aspects are common to other instantiation of the general
paradigm (esp., the one presented in Chapter 3).

Behavioristic versus Ontological. The behavioristic nature of the computa-
tional approach to randomness is best demonstrated by confronting this approach
with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string
is Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to the
phenomenon described by the string. A Kolmogorov-random string is thus a string
that does not have a substantially simpler (i.e., shorter) explanation than itself. Con-
sidering the simplest explanation of a phenomenon may be viewed as an ontological
approach. In contrast, considering the effect of phenomena on certain devices (or
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observations), as underlying the definition of pseudorandomness, is a behavioristic
approach. Furthermore, there exist probability distributions that are not uniform
(and are not even statistically close to a uniform distribution) and, nevertheless,
are indistinguishable from a uniform distribution (by any efficient device). Thus,
distributions that are ontologically very different, are considered equivalent by the be-
havioristic point of view taken in the definition of computational indistinguishability.

A relativistic view of randomness. We have defined pseudorandomness in
terms of its observer. Specifically, we have considered the class of efficient (i.e.,
polynomial-time) observers and defined as pseudorandom objects that look random
to any observer in that class. In subsequent chapters, we shall consider restricted
classes of such observers (e.g., space-bounded polynomial-time observers and even
very restricted observers that merely apply specific tests such as linear tests or hitting
tests). Each such class of observers gives rise to a different notion of pseudorandom-
ness. Furthermore, the general paradigm (of pseudorandomness) explicitly aims at
distributions that are not uniform and yet are considered as such from the point of
view of certain observers. Thus, our entire approach to pseudorandomness is rela-
tivistic and subjective (i.e., depending on the abilities of the observer).

Randomness and Computational Difficulty. Pseudorandomness and compu-
tational difficulty play dual roles: The general paradigm of pseudorandomness re-
lies on the fact that placing computational restrictions on the observer gives rise
to distributions that are not uniform and still cannot be distinguished from uniform
distributions. Thus, the pivot of the entire approach is the computational difficulty
of distinguishing pseudorandom distributions from truly random ones. Furthermore,
many of the constructions of pseudorandom generators rely either on conjectures or
on facts regarding computational difficulty (i.e., that certain computations are hard
for certain classes). For example, one-way functions were used to construct general-
purpose pseudorandom generators (i.e., those working in polynomial-time and fooling
all polynomial-time observers). Analogously, as we shall see in Section 3.2.3, the fact
that parity function is hard for polynomial-size constant-depth circuits can be used
to generate (highly non-uniform) sequences that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness
and unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions (cf. Sections 2.5 and 3.2). Here, we wish to highlight the
intuitive appeal of this connection.

Notes

The concept of computational indistinguishability, which underlies the entire compu-
tational approach to randomness, was suggested by Goldwasser and Micali [29] in
the context of defining secure encryption schemes. Indeed, computational indistin-
guishability plays a key role in cryptography (see [22, 23]). The general formulation
of computational indistinguishability is due to Yao [73]. Using the hybrid technique
of [29], Yao also observed that defining pseudorandom generators as producing se-
quences that are computationally indistinguishable from the corresponding uniform
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distribution is equivalent to defining such generators as producing unpredictable se-
quences. The latter definition originates in the earlier work of Blum and Micali [11].

Blum and Micali [11] pioneered the rigorous study of pseudorandom generators
and, in particular, the construction of pseudorandom generators based on some sim-
ple intractability assumption. In particular, they constructed pseudorandom gen-
erators assuming the intractability of the Discrete Logarithm Problem (over prime
fields). Their work also introduces basic paradigms that were used in all subsequent
improvements (cf., e.g., [73, 32]). We refer to the transformation of computational dif-
ficulty into pseudorandomness, the use of hard-core predicates (also defined in [11]),
and the iteration paradigm (cf. Eq. (2.9)).

Theorem 2.14 (by which pseudorandom generators exist if and only if one-way
functions exist) is due to H̊astad, Impagliazzo, Levin and Luby [32], building on the
hard-core predicate of [27] (see Theorem 2.11). Unfortunately, the current proof of
Theorem 2.14 is very complicated and unfit for presentation in this primer. Pre-
senting a simpler and tighter (cf. Section 2.7) proof is indeed an important research
project.

Pseudorandom functions were defined and first constructed by Goldreich, Gold-
wasser and Micali [25]. We also mention (and advocate) the study of a general theory
of pseudorandom objects initiated in [26]. Finally, we mention that a more detailed
treatment of general-purpose pseudorandom generators is provided in [22, Chap. 3].

Exercises

Exercise 2.1 Prove the following corollaries to Proposition 2.3.

1. Let A be a probabilistic polynomial-time algorithm solving a decision problem
χ : {0, 1}∗ → {0, 1} (in BPP), and let AG be as in Construction 2.2. Prove
that it is infeasible to find an x on which AG errs with probability that is
significantly higher than the error probability of A; that is, prove that on input
1n it is infeasible to find x ∈ {0, 1}n such that Pr[AG(x) 6= χ(x)] < Pr[A(x) =
χ(x)] + 0.01.

2. Let A be a probabilistic polynomial-time algorithm solving the search associ-
ated with the NP-relation R, and let AG be as in Construction 2.2. Prove that
it is infeasible to find an x on which AG outputs a wrong solution; that is,
assuming for simplicity that A has error probability 1/3, prove that on input
1n it is infeasible to find x ∈ {0, 1}n ∩ SR such that Pr[(x, AG(x)) 6∈ R] > 0.4,

where SR
def
= {x : ∃y (x, y)∈R}. Likewise, it is infeasible to find x ∈ {0, 1}n\SR

such that Pr[AG(x) 6= ⊥] > 0.4.

Exercise 2.2 Prove that omitting the absolute value in Eq. (2.4) keeps Definition 2.4
intact.
(Hint: Consider D′(z)

def
= 1 − D(z).)

Exercise 2.3 Prove that computational indistinguishability is an equivalence re-
lation (defined over pairs of probability ensembles). Specifically, prove that this
relation is transitive (i.e., X ≡ Y and Y ≡ Z implies X ≡ Z).
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Exercise 2.4 Prove that if {Xn}n∈N and {Yn}n∈N are computationally indistin-
guishable and A is a probabilistic polynomial-time algorithm, then {A(Xn)}n∈N and
{A(Yn)}n∈N are computationally indistinguishable.

Guideline: If D distinguishes the latter ensembles, then D′ such that D′(z)
def
= D(A(z))

distinguishes the former.

Exercise 2.5 In contrast to Exercise 2.4, show that the conclusion may not hold
when A is not computationally bounded. That is, show that there exists compu-
tationally indistinguishable ensembles, {Xn}n∈N and {Yn}n∈N, and an exponential-
time algorithm A such that {A(Xn)}n∈N and {A(Yn)}n∈N are not computationally
indistinguishable.

Guideline: For any pair of ensembles {Xn}n∈N and {Yn}n∈N, consider the Boolean function

f such that f(z) = 1 if and only if Pr[Xn = z] > Pr[Yn = z]. Show that |Pr[f(Xn) =

1] − Pr[f(Yn) = 1]| equals the statistical difference between Xn and Yn. Consider an

adequate (approximate) implementation of f (e.g., approximate Pr[Xn = z] and Pr[Yn = z]

up to ±2−2|z|).

Exercise 2.6 Show that the existence of pseudorandom generators implies the ex-
istence of polynomial-time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable.

Guideline: Lower-bound the statistical distance between G(Uk) and Uℓ(k), where G is a

pseudorandom generator with stretch ℓ.

Exercise 2.7 Relying on Theorem 2.11, provide a self-contained proof of the fact
that the existence of one-way one-to-one functions implies the existence of polynomial-
time constructible probability ensembles that are statistically far apart and yet are
computationally indistinguishable.

Guideline: Assuming that b is a hard-core of the function f , consider the ensembles

{f(Un) · b(Un)}n∈N and {f(Un) · U ′
1}n∈N. Prove that these ensembles are computationally

indistinguishable by using the main ideas of the proof of Proposition 2.12. Show that if f

is one-to-one, then these ensembles are statistically far apart.

Exercise 2.8 (following [20]) Prove that the sufficient condition in Exercise 2.6
is in fact necessary. Recall that {Xn}n∈N and {Yn}n∈N are said to be statistically

far apart if, for some positive polynomial p and all sufficiently large n, the variation
distance between Xn and Yn is greater than 1/p(n). Using the following three steps,
prove that the existence of polynomial-time constructible probability ensembles that
are statistically far apart and yet are computationally indistinguishable implies the
existence of pseudorandom generators.

1. Show that, without loss of generality, we may assume that the variation dis-
tance between Xn and Yn is greater than 1− exp(−n).

Guideline: For Xn and Yn as in the foregoing, consider Xn = (X
(1)
n , ..., X

(t(n))
n )

and Y n = (Y
(1)

n , ..., Y
(t(n))
n ), where the X

(i)
n ’s (resp., Y

(i)
n ’s) are independent copies

of Xn (resp., Yn), and t(n) = O(n · p(n)2). To lower-bound the statistical difference

between Xn and Y n, consider the set Sn
def
= {z : Pr[Xn = z] > Pr[Yn = z]} and the

random variable representing the number of copies in Xn (resp., Y n) that reside in

Sn.
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2. Using {Xn}n∈N and {Yn}n∈N as in Step 1, prove the existence of a false entropy
generator, where a false entropy generator is a deterministic polynomial-time
algorithm G such that G(Uk) has entropy e(k) but {G(Uk)}k∈N is computa-
tionally indistinguishable from a polynomial-time constructible ensemble that
has entropy greater than e(·) + (1/2).

Guideline: Let S0 and S1 be sampling algorithms such that Xn ≡ S0(Upoly(n)) and

Yn ≡ S1(Upoly(n)). Consider the generator G(σ, r) = (σ, Sσ(r)), and the distribution

Zn that equals (U1, Xn) with probability 1/2 and (U1, Yn) otherwise. Note that in

G(U1, Upoly(n)) the first bit is almost determined by the rest, whereas in Zn the first

bit is statistically independent of the rest.

3. Using a false entropy generator, obtain one in which the excess entropy is
√

k,
and using the latter construct a pseudorandom generator.

Guideline: Use the ideas presented in Section 2.5.4 (i.e., the discussion of the inter-

esting direction of the proof of Theorem 2.14).

Exercise 2.9 (multiple samples vs. single sample, a separation) In contrast
to Proposition 2.6, prove that there exist two probability ensembles that are compu-
tational indistinguishable by a single sample, but are efficiently distinguishable by
two samples. Furthermore, one of these ensembles is the uniform ensemble and the
other has a sparse support (i.e., only poly(n) many strings are assigned a non-zero
probability weight by the second distribution). Indeed, the second ensemble is not
polynomial-time constructible.

Guideline: Prove that, for every function d : {0, 1}n → [0, 1], there exists two strings, xn

and yn (in {0, 1}n), and a number p ∈ [0, 1] such that Pr[d(Un)=1] = p ·Pr[d(xn)=1]+(1−
p) · Pr[d(yn) = 1]. Generalize this claim to m functions, using m + 1 strings and a convex

combination of the corresponding probabilities.16 Conclude that there exists a distribution

Zn with a support of size at most m + 1 such that for each of the first (in lexicographic

order) m (randomized) algorithms A it holds that Pr[A(Un) = 1] = Pr[A(Zn) = 1]. Note

that with probability at least 1/(m + 1), two independent samples of Zn are assigned the

same value, yielding a simple two-sample distinguisher of Un from Zn.

Exercise 2.10 (amplifying the stretch function, an alternative) For G1 and

ℓ as in Construction 2.7, consider G(s)
def
= G

ℓ(|s|)−|s|
1 (s), where Gi

1(x) denotes G1

iterated i times on x (i.e., Gi
1(x) = Gi−1

1 (G1(x)) and G0
1(x) = x). Prove that G is a

pseudorandom generator of stretch ℓ. Reflect on the advantages of Construction 2.7
over the current construction (e.g., consider generation time).

Guideline: Use a hybrid argument, with the ith hybrid being Gi
1(Uℓ(k)−i), for i = 0, ..., ℓ(k)−

k. Note that Gi+1
1 (Uℓ(k)−(i+1)) = Gi

1(G1(Uℓ(k)−i−1)) and Gi
1(Uℓ(k)−i) = Gi

1(U|G1(Uℓ(k)−i−1)|),

and use Exercise 2.4.

Exercise 2.11 (pseudorandom vs. unpredictability) Prove that a probability
ensemble {Zk}k∈N is pseudorandom if and only if it is unpredictable. For simplicity,

16That is, prove that for every m functions d1, ..., dm : {0, 1}n → [0, 1] there exist m + 1 strings

z
(1)
n , ..., z

(m+1)
n and m + 1 non-negative numbers p1, ..., pm+1 that sum-up to 1 such that for every

i ∈ {1, ...,m} it holds that Pr[di(Un)=1] =
P

j pj · Pr[di(z
(j)
n )=1].
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we say that {Zk}k∈N is (next-bit) unpredictable if for every probabilistic polynomial-
time algorithm A it holds that Pri[A(Fi(Zk))=Bi+1(Zk)]− (1/2) is negligible, where
i ∈ {0, ..., |Zk| − 1} is uniformly distributed, and Fi(z) (resp., Bi+1(z)) denotes the
i-bit prefix (resp., i + 1st bit) of z.

Guideline: Show that pseudorandomness implies polynomial-time unpredictability; that

is, polynomial-time predictability violates pseudorandomness (because the uniform ensem-

ble is unpredictable regardless of computing power). Use a hybrid argument to prove that

unpredictability implies pseudorandomness. Specifically, the ith hybrid consists of the i-bit

long prefix of Zk followed by |Zk| − i uniformly distributed bits. Thus, distinguishing the

extreme hybrids (which correspond to Zk and U|Zk|) implies distinguishing a random pair

of neighboring hybrids, which in turn implies next-bit predictability. For the last step, use

an argument as in the proof of Proposition 2.12.

Exercise 2.12 Prove that a probability ensemble is unpredictable (from left to
right) if and only if it is unpredictable from right to left (or in any other canon-
ical order).

Guideline: Use Exercise 2.11, and note that an ensemble is pseudorandom if and only if

its reverse is pseudorandom.

Exercise 2.13 Let f be one-to-one and length preserving, and let b be a hard-core

predicate of f . For any polynomial ℓ, letting G′(s)
def
= b(f ℓ(|s|)−1(s)) · · · b(f(s)) · b(s),

prove that {G′(Uk)} is unpredictable (in the sense of Exercise 2.11).

Guideline: Suppose towards the contradiction that, for a uniformly distributed j ∈
{0, ..., ℓ(k) − 1}, given the j-bit long prefix of G′(Uk) an algorithm A′ can predict the

j + 1st bit of G′(Uk). That is, given b(fℓ(k)−1(s)) · · · b(fℓ(k)−j(s)), algorithm A′ predicts

b(fℓ(k)−(j+1)(s)), where s is uniformly distributed in {0, 1}k. Consider an algorithm A

that given y = f(x) approximates b(x) by invoking A′ on input b(f j−1(y)) · · · b(y), where

j is uniformly selected in {0, ..., ℓ(k) − 1}. Analyze the success probability of A using the

fact that f induces a permutation over {0, 1}n, and thus b(f j(Uk)) · · · b(f(Uk)) · b(Uk) is

distributed identically to b(fℓ(k)−1(Uk)) · · · b(fℓ(k)−j(Uk)) · b(fℓ(k)−(j+1)(Uk)).

Exercise 2.14 Prove that if G is a strong pseudorandom generator in the sense of
Definition 2.15, then it a pseudorandom generator in the sense of Definition 2.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability in

Eq. (2.1).

Exercise 2.15 (strong computational indistinguishability) Provide a defini-
tion of the notion of computational indistinguishability that underlies Definition 2.15
(i.e., indistinguishability with respect to (non-uniform) polynomial-size circuits).
Prove the following two claims:

1. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits is strictly stronger than Definition 2.4.

2. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits is invariant under (polynomially-many) multiple samples, even if
the underlying ensembles are not polynomial-time constructible.

Guideline: For Part 1, see the solution to Exercise 2.9. For Part 2 note that samples as

generated in the proof of Proposition 2.6 can be hard-wired into the distinguishing circuit.



Chapter 3

Derandomization of
Time-Complexity Classes

Let us take a second look at the process of derandomization that underlies the proof of
Theorem 2.16. First, a pseudorandom generator was used to shrink the randomness-
complexity of a BPP-algorithm, and then derandomization was achieved by scanning
all possible seeds to this generator. A key observation regarding this process is that
there is no point in insisting that the pseudorandom generator runs in time that
is polynomial in its seed length. Instead, it suffices to require that the generator
runs in time that is exponential in its seed length, because we are already incurring
such an overhead due to the scanning of all possible seeds. Furthermore, in this
context, the running-time of the generator may be larger than the running time of
the algorithm, which means that the generator need only fool distinguishers that
take fewer steps than the generator. These considerations motivate the following
definition of canonical derandomizers.

3.1 Defining Canonical Derandomizers

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A,
we first obtain a functionally equivalent algorithm AG (as in Construction 2.2) that
has (significantly) smaller randomness-complexity. Algorithm AG has to maintain
A’s input-output behavior on all (but finitely many) inputs. Thus, the set of the
relevant distinguishers (considered in the proof of Theorem 2.16) is the set of all
possible circuits obtained from A by hard-wiring any of the possible inputs. Such a
circuit, denoted Cx, emulates the execution of algorithm A on input x, when using
the circuit’s input as the algorithm’s internal coin tosses (i.e., Cx(r) = A(x, r)).
Furthermore, the size of Cx is quadratic in the running-time of A on input x, and
the length of the input to Cx equals the running-time of A (on input x).1 Thus,

1Indeed, we assume that algorithm A is represented as a Turing machine and refer to the standard
emulation of Turing machines by circuits. Thus, the aforementioned circuit Cx has size that is at
most quadratic in the running-time of A on input x, which in turn means that Cx has size that is
at most quadratic in the length of its own input. (In fact, the circuit size can be made almost-linear
in the running-time of A, by using a better emulation [54].) We note that many sources use the
fictitious convention by which the circuit size equals the length of its input; this fictitious convention
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the size of Cx is quadratic in the length of its own input, and the pseudorandom
generator in use (i.e., G) needs to fool each such circuit. Recalling that we may
allow the generator to run in exponential-time (i.e., time that is exponential in the
length of its own input (i.e., the seed))2, we arrive at the following definition.

Definition 3.1 (pseudorandom generator for derandomizing BPtime(·))3: Let ℓ ::
N→N be a monotonically increasing function. A canonical derandomizer of stretch ℓ
is a deterministic algorithm G that satisfies the following two conditions.

1. On input a k-bit long seed, G makes at most poly(2k · ℓ(k)) steps and outputs
a string of length ℓ(k).

2. For every circuit Dk of size ℓ(k)2 it holds that

|Pr[Dk(G(Uk)) = 1] − Pr[Dk(Uℓ(k)) = 1] | <
1

6
. (3.1)

The circuit Dk represents a potential distinguisher, which is given an ℓ(k)-bit long
string (sampled either from G(Uk) or from Uℓ(k)). When seeking to derandomize an
algorithm A of time-complexity t, the aforementioned ℓ(k)-bit long string represents
a possible sequence of coin tosses of A, when invoked on a generic (primary) input
of length n = t−1(ℓ(k)). Thus, for any x ∈ {0, 1}n, considering the circuit Dk(r) =
A(x, r), where |r| = t(n) = ℓ(k), we note that Eq. (3.1) implies that AG(x) =
A(x, G(Uk)) maintains the majority vote of A(x) = A(x, Uℓ(k)). On the other hand,
the time-complexity of G implies that the straightforward deterministic emulation
of AG(x) takes time 2k · (poly(2k · ℓ(k))+ t(n)), which is upper-bounded by poly(2k ·
ℓ(k)) = poly(2ℓ−1(t(n)) ·t(n)). This yields the following (conditional) derandomization
result.

Proposition 3.2 (using canonical derandomizers): Let ℓ, t : N→N be monotoni-
cally increasing functions and let ℓ−1(t(n)) denote the smallest integer k such that
ℓ(k) ≥ t(n). If there exists a canonical derandomizer of stretch ℓ, then, for every
time-constructible t : N→N, it holds that BPtime(t) ⊆ Dtime(T ), where T (n) =

poly(2ℓ−1(t(n)) · t(n)).

Proof Sketch: Just mimic the proof of Theorem 2.16, which in turn uses Construc-
tion 2.2. (Recall that given any randomized algorithm A and generator G, Construc-
tion 2.2 yields an algorithm AG of randomness-complexity ℓ−1◦t and time-complexity

can be justified by considering a (suitably) padded input.
2Actually, in Definition 3.1 we allow the generator to run in time poly(2kℓ(k)), rather than

in time poly(2k). This is done in order not to trivially rule out generators of super-exponential
stretch (i.e., ℓ(k) = 2ω(k)). However (see Exercise 3.2), the condition in Eq. (3.1) does not allow
for super-exponential stretch (or even for ℓ(k) = ω(2k)). Thus, in retrospect, the two formulations
are equivalent (because poly(2kℓ(k)) = poly(2k) for ℓ(k) = 2O(k)).

3Fixing a model of computation, we denote by BPtime(t) the class of decision problems that
are solvable by a randomized algorithm of time complexity t that has a two-sided error probability
of at most 1/3. Using 1/6 as the “threshold distinguishing gap” (in Eq. (3.1)) guarantees that if
Pr[Dk(Uℓ(k)) = 1] ≥ 2/3 (resp., Pr[Dk(Uℓ(k)) = 1] ≤ 1/3), then Pr[Dk(G(Uk)) = 1] > 1/2 (resp.,
Pr[Dk(G(Uk)) = 1] < 1/2). As we shall see, this suffices for a derandomization of BPtime(t) in

time T , where T (n) = poly(2ℓ−1(t(n)) · t(n)) (and we use a seed of length k = ℓ−1(t(n))).
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poly(2ℓ−1◦t) + t.)4 Observe that the complexity of the resulting deterministic proce-

dure is dominated by the 2k = 2ℓ−1(t(|x|)) invocations of AG(x, s) = A(x, G(s)), where

s ∈ {0, 1}k, and each of these invocations takes time poly(2ℓ−1(t(|x|))+t(|x|). Thus, on

input an n-bit long string, the deterministic procedure runs in time poly(2ℓ−1(t(n)) ·
t(n)). The correctness of this procedure (which takes a majority vote among the
2k invocations of AG) follows by combining Eq. (3.1) with the hypothesis that
Pr[A(x)=1] is bounded away from 1/2. Specifically, using the hypothesis |Pr[A(x)=
1]− (1/2)| ≥ 1/6, it follows that the majority vote of (AG(x, s))s∈{0,1}k equals 1 if
and only if Pr[A(x) = 1] > 1/2. Indeed, the implication is due to Eq. (3.1), when
applied to the circuit Cx(r) = A(x, r) (which has size at most |r|2).

The goal. In light of Proposition 3.2, we seek canonical derandomizers with a
stretch that is as large as possible. The stretch cannot be super-exponential (i.e., it
must hold that ℓ(k) = O(2k)), because there exists a circuit of size O(2k · ℓ(k)) that
violates Eq. (3.1) (see Exercise 3.2) whereas for ℓ(k) = ω(2k) it holds that O(2k ·
ℓ(k)) < ℓ(k)2. Thus, our goal is to construct a canonical derandomizer with stretch
ℓ(k) = 2Ω(k). Such a canonical derandomizer will allow for a “full derandomization
of BPP”:

Theorem 3.3 (derandomization of BPP, revisited): If there exists a canonical de-
randomizer of stretch ℓ(k) = 2Ω(k), then BPP = P.

Proof: Using Proposition 3.2, we get BPtime(t) ⊆ Dtime(T ), where T (n) =

poly(2ℓ−1(t(n)) · t(n)) = poly(t(n)).

Reflections: Recall that a canonical derandomizer G was defined in a way that
allows it to have time-complexity tG that is larger than the size of the circuits that
it fools (i.e., tG(k) > ℓ(k)2 is allowed). Furthermore, tG(k) > 2k was also allowed.
Thus, if indeed tG(k) = 2Ω(k) (as is the case in Section 3.2), then G(Uk) can be distin-
guished from Uℓ(k) in time 2k · tG(k) = poly(tG(k)) by trying all possible seeds.5 We
stress that the latter distinguisher is a uniform algorithm (and it works by invoking G
on all possible seeds). In contrast, for a general-purpose pseudorandom generator G
(as discussed in Chapter 2) it holds that tG(k) = poly(k), while for every polynomial
p it holds that G(Uk) is indistinguishable from Uℓ(k) in time p(tG(k)).

3.2 Constructing Canonical Derandomizers

The fact that canonical derandomizers are allowed to be more complex than the
corresponding distinguisher makes some of the techniques of Chapter 2 inapplicable

4Actually, given any randomized algorithm A and generator G, Construction 2.2 yields an al-
gorithm AG that is defined such that AG(x, s) = A(x, G′(s)), where |s| = ℓ−1(t(|x|)) and G′(s)
denotes the t(|x|)-bit long prefix of G(s). For simplicity, we shall assume here that ℓ(|s|) = t(|x|),
and thus use G rather than G′. Note that given n we can find k = ℓ−1(t(n)) by invoking G(1i) for
i = 1, ..., k (using the fact that ℓ :N→N is monotonically increasing). Also note that ℓ(k) = O(2k)
must hold (see Footnote 2), and thus we may replace poly(2k · ℓ(k)) by poly(2k).

5We note that this distinguisher does not contradict the hypothesis that G is a canonical de-
randomizer, because tG(k) > ℓ(k) definitely holds whereas ℓ(k) ≤ 2k typically holds (and so
2k · tG(k) > ℓ(k)2).
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in the current context. For example, the stretch function cannot be amplified as in
Section 2.4 (see Exercise 3.1). On the other hand, the techniques developed in the
current section are inapplicable to Chapter 2. For example, the pseudorandomness
of some canonical derandomizers (i.e., the generators of Construction 3.4) holds even
when the potential distinguisher is given the seed itself. This amazing phenomenon
capitalizes on the fact that the distinguisher’s time-complexity does not allow for
running the generator on the given seed.

3.2.1 The construction and its consequences

As in Section 2.5, the construction presented next transforms computational diffi-
culty into pseudorandomness, except that here both computational difficulty and
pseudorandomness are of a somewhat different form than in Section 2.5. Specifi-
cally, here we use Boolean predicates that are computable in exponential-time but
are strongly inapproximable; that is, we assume the existence of a Boolean predicate
and constants c, ε > 0 such that for all but finitely many m, the (residual) predicate
f : {0, 1}m → {0, 1} is computable in time 2cm but for any circuit C of size 2εm it
holds that Pr[C(Um) = f(Um)] < 1

2 +2−εm. (Needless to say, ε < c.) Such predicates
exist under the assumption that the class E (where E =

⋃
c>0 Dtime(2c·n)) contains

predicates of (almost-everywhere) exponential circuit complexity [34]. With these
preliminaries, we turn to the construction of canonical derandomizers with exponen-
tial stretch.

Construction 3.4 (The Nisan-Wigderson Construction):6 Let f : {0, 1}m→{0, 1}
and S1, ..., Sℓ be a sequence of m-subsets of {1, ..., k}. Then, for s ∈ {0, 1}k, we let

G(s)
def
= f(sS1) · · · f(sSℓ

) (3.2)

where sS denotes the projection of s on the bit locations in S ⊆ {1, ..., |s|}; that is, for
s = σ1 · · ·σk and S = {i1, ..., im} such that i1 < · · · < im, we have sS = σi1 · · ·σim .

Letting k vary and ℓ, m : N → N be functions of k, we wish G to be a canonical
derandomizer and ℓ(k) = 2Ω(k). One (obvious) necessary condition for this to happen
is that the sets must be distinct, and hence m(k) = Ω(k); consequently, f must
be computable in exponential-time. Furthermore, the sequence of sets S1, ..., Sℓ(k)

must be constructible in poly(2k)-time. Intuitively, the function f should be strongly
inapproximable, and furthermore it seems desirable to use a set system with relatively
small pairwise intersections (because this restricts the overlap among the various
inputs to which f is applied). Interestingly, these conditions are essentially sufficient.

Theorem 3.5 (analysis of Construction 3.4): Let α, β, γ, ε > 0 be constants satisfy-
ing ε > (2α/β) + γ, and consider the functions ℓ, m, T :N→N such that ℓ(k) = 2αk,
m(k) = βk, and T (n) = 2εn. Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f : {0, 1}∗→{0, 1} such
that for every family of T -size circuits {Cn}n∈N and all sufficiently large n it
holds that

Pr[Cn(Un) 6= f(Un)] ≥ 1

2
+

1

T (n)
. (3.3)

6Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. This construction originates in [49, 52].
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In this case we say that f is T -inapproximable.

2. There exists an exponential-time computable function S :N×N→2N such that:

(a) For every k and i ∈ {1, ..., ℓ(k)}, it holds that S(k, i) ⊆ {1, ..., k} and
|S(k, i)| = m(k).

(b) For every k and i 6= j, it holds that |S(k, i) ∩ S(k, j)| ≤ γ ·m(k).

Then, using G as defined in Construction 3.4 with Si = S(k, i), yields a canonical
derandomizer with stretch ℓ.

Before proving Theorem 3.5 we mention that, for any γ > 0, a function S as in
Condition 2 does exist for some m(k) = Ω(k) and ℓ(k) = 2Ω(k); see Exercise 3.3. We
also recall that T -inapproximable predicates do exist under the assumption that E
has (almost-everywhere) exponential circuit complexity (see [34] or [24, Sec. 8.2.1]).
Thus, combining such functions f and S and invoking Theorem 3.5, we obtain a
canonical derandomizer with exponential stretch based on the assumption that E
has (almost-everywhere) exponential circuit complexity. Combining this with Theo-
rem 3.3, we get the first part of the following theorem.

Theorem 3.6 (derandomization of BPP, revisited):

1. Suppose that E contains a decision problem that has almost-everywhere expo-
nential circuit complexity (i.e., there exists a constant ε0 > 0 such that, for
all but finitely many m’s, any circuit that correctly decides this problem on
{0, 1}m has size at least 2ε0m). Then, BPP = P.

2. Suppose that, for every polynomial p, the class E contains a decision problem
that has circuit complexity that is almost-everywhere greater than p. Then BPP
is contained in

⋂
ε>0 Dtime(tε), where tε(n)

def
= 2nε

.

Indeed, our focus is on Part 1, and Part 2 is stated for the sake of a wider perspective.
Both parts are special cases of a more general statement that can be proved by using
a generalization of Theorem 3.5 that refers to arbitrary functions ℓ, m, T : N→ N

(instead of the exponential functions in Theorem 3.5) that satisfy ℓ(k)2 + Õ(ℓ(k) ·
2m′(k)) < T (m(k)), where m′(k) replaces γ ·m(k). (For details, see Exercise 3.6.) We
note that Part 2 of Theorem 3.6 supersedes Theorem 2.16. We also mention that,
as in the case of general-purpose pseudorandom generators, the hardness hypothesis
used in each part of Theorem 3.6 is necessary for the existence of a corresponding
canonical derandomizer (see Exercise 3.8).

Additional comment. The two parts of Theorem 3.6 exhibit two extreme cases:
Part 1 (often referred to as the “high end”) assumes an extremely strong circuit
lower-bound and yields “full derandomization” (i.e., BPP = P), whereas Part 2
(often referred to as the “low end”) assumes an extremely weak circuit lower-bound
and yields weak but meaningful derandomization. Intermediate results (relying on
intermediate lower-bound assumptions) can be obtained analogous to Exercise 3.7,
but tight trade-offs are obtained differently (cf., [67]).
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3.2.2 Analyzing the construction (i.e., proof of Theorem 3.5)

Using the time-complexity upper-bounds on f and S, it follows that G can be com-
puted in exponential time. Thus, our focus is on showing that {G(Uk)} cannot
be distinguished from {Uℓ(k)} by circuits of size ℓ(k)2; specifically, that G satisfies
Eq. (3.1). In fact, we will prove that this holds for G′(s) = s ·G(s); that is, G fools
such circuits even if they are given the seed as auxiliary input. (Indeed, these circuits
are smaller than the running time of G, and so they cannot just evaluate G on the
given seed.)

We start by presenting the intuition underlying the proof. As a warm-up suppose
that the sets (i.e., S(k, i)’s) used in the construction are disjoint. In such a case
(which is indeed impossible because k < ℓ(k) · m(k)), the pseudorandomness of
G(Uk) would follow easily from the inapproximability of f , because in this case G
consists of applying f to non-overlapping parts of the seed (see Exercise 3.5). In
the actual construction being analyzed here, the sets (i.e., S(k, i)’s) are not disjoint
but have relatively small pairwise intersection, which means that G applies f on
parts of the seed that have relatively small overlap. Intuitively, such small overlaps
guarantee that the values of f on the corresponding inputs are “computationally
independent” (i.e., having the value of f at some inputs x1, ..., xi does not help in
approximating the value of f at another input xi+1). This intuition will be backed
by showing that, when fixing all bits that do not appear in the target input (i.e., in
xi+1), the former values (i.e., f(x1), ..., f(xi)) can be computed at a relatively small
computational cost. Thus, the values f(x1), ..., f(xi) do not (significantly) facilitate
the task of approximating f(xi+1). With the foregoing intuition in mind, we now
turn to the actual proof.

The actual proof employs a reducibility argument; that is, assuming towards the
contradiction that G′ does not fool some circuit of size ℓ(k)2, we derive a contra-
diction to the hypothesis that the predicate f is T -inapproximable. The argument
utilizes the relation between pseudorandomness and unpredictability (cf. Section 2.5).
Specifically, as detailed in Exercise 3.4, any circuit that distinguishes G′(Uk) from
Uℓ(k)+k with gap 1/6, yields a next-bit predictor of similar size that succeeds in pre-

dicting the next bit with probability at least 1
2 + 1

6ℓ′(k) > 1
2 + 1

7ℓ(k) , where the factor

of ℓ′(k) = ℓ(k) + k < (1 + o(1)) · ℓ(k) is introduced by the hybrid technique (cf.
Eq. (2.5)). Furthermore, given the non-uniform setting of the current proof, we may
fix a bit location i + 1 for prediction, rather than analyzing the prediction at a ran-
dom bit location. Indeed, i ≥ k must hold, because the first k bits of G′(Uk) are
uniformly distributed. In the rest of the proof, we transform the foregoing predictor
into a circuit that approximates f better than allowed by the hypothesis (regarding
the inapproximability of f).

Assuming that a small circuit C′ can predict the i + 1st bit of G′(Uk), when
given the previous i bits, we construct a small circuit C for approximating f(Um(k))
on input Um(k). The point is that the i + 1st bit of G′(s) equals f(sS(k,j+1)), where
j = i−k ≥ 0, and so C′ approximates f(sS(k,j+1)) based on s, f(sS(k,1)), ..., f(sS(k,j)),

where s ∈ {0, 1}k is uniformly distributed. Note that this is the type of thing that
we are after, except that the circuit we seek may only get sS(k,j+1) as input.

The first observation is that C′ maintains its advantage when we fix the best
choice for the bits of s that are not at bit locations Sj+1 = S(k, j + 1) (i.e., the bits
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s[k]\Sj+1
, where [k]

def
= {1, ...k}). That is, by an averaging argument, it holds that

max
s′∈{0,1}k−m(k)

{Prs∈{0,1}k [C′(s, f(sS1), ..., f(sSj )) = f(sSj+1) | s[k]\Sj+1
= s′]}

≥ p′
def
= Prs∈{0,1}k [C′(s, f(sS1), ..., f(sSj )) = f(sSj+1)].

Recall that by the hypothesis p′ > 1
2 + 1

7ℓ(k) . Hard-wiring the fixed string s′ into C′,

and letting π(x) denote the (unique) string s satisfying sSj+1 = x and s[k]\Sj+1
= s′,

we obtain a circuit C′′ that satisfies

Prx∈{0,1}m(k) [C′′(x, f(π(x)S1 ), ..., f(π(x)Sj )) = f(x)] ≥ p′.

The circuit C′′ is almost what we seek. The only problem is that C′′ gets as input
not only x, but also f(π(x)S1), ..., f(π(x)Sj ), whereas we seek an approximator of
f(x) that only gets x.

The key observation is that each of the “missing” values f(π(x)S1), ..., f(π(x)Sj )
depend only on a relatively small number of the bits of x. This fact is due to the
hypothesis that |St ∩ Sj+1| ≤ γ ·m(k) for t = 1, ..., j, which means that π(x)St is an

m(k)-bit long string in which mt
def
= |St ∩ Sj+1| bits are projected from x and the

rest are projected from the fixed string s′. Thus, given x, the value f(π(x)St) can be

computed by a (trivial) circuit of size Õ(2mt); that is, by a circuit implementing a
look-up table on mt bits. Using all these circuits (together with C′′), we will obtain
the desired approximator of f . Details follow.

We obtain the desired circuit, denoted C, that T -approximates f as follows.
The circuit C depends on the index j and the string s′ that are fixed as in the
foregoing analysis. Recall that C incorporates (Õ(2γ·|x|)-size) circuits for computing
x 7→ f(π(x)St), for t = 1, ..., j. On input x ∈ {0, 1}m(k), the circuit C computes the
values f(π(x)S1 ), ..., f(π(x)Sj ), invokes C′′ on input x and these values, and outputs
the answer as a guess for f(x). That is,

C(x) = C′′(x, f(π(x)S1 ), ..., f(π(x)Sj )) = C′(π(x), f(π(x)S1 ), ..., f(π(x)Sj )).

By the foregoing analysis, Prx[C(x) = f(x)] ≥ p′ > 1
2 + 1

7ℓ(k) , which is lower-bounded

by 1
2 + 1

T (m(k)) , because T (m(k)) = 2εm(k) = 2εβk ≫ 22αk ≫ 7ℓ(k), where the first

inequality is due to ε > 2α/β and the second inequality is due to ℓ(k) = 2αk.

The size of C is upper-bounded by ℓ(k)2 + ℓ(k) · Õ(2γ·m(k)) ≪ Õ(ℓ(k)2 · 2γ·m(k)) =

Õ(22α·(m(k)/β)+γ·m(k)) ≪ T (m(k)), where the last inequality is due to T (m(k)) =

2εm(k) ≫ Õ(2(2α/β)·m(k)+γ·m(k)) (which in turn uses ε > (2α/β) + γ). Thus, we
derived a contradiction to the hypothesis that f is T -inapproximable. This completes
the proof of Theorem 3.5.

3.2.3 Construction 3.4 as a general framework

The Nisan–Wigderson Construction (i.e., Construction 3.4) is actually a general
framework, which can be instantiated in various ways. Some of these instantiations,
which are based on an abstraction of the construction as well as of its analysis, are
briefly reviewed next.

We first note that the generator described in Construction 3.4 consists of a generic
algorithmic scheme that can be instantiated with any predicate f . Furthermore, this
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algorithmic scheme, denoted G, is actually an oracle machine that makes (non-
adaptive) queries to the function f , and thus the combination (of G and f) may
be written as Gf . Likewise, the proof of pseudorandomness of Gf (i.e., the bulk of
the proof of Theorem 3.5) is actually a general scheme that, for every f , yields a
(non-uniform) oracle-aided circuit C that approximates f by using an oracle call to
any distinguisher for Gf (i.e., C uses the distinguisher as a black-box). The circuit
C does depend on f (but in a restricted way). Specifically, C contains look-up
tables for computing functions obtained from f by fixing some of the input bits (i.e.,
look-up tables for the functions f(π(·)St)’s). The foregoing abstractions facilitate
the presentation of the following instantiations of the general framework underlying
Construction 3.4

Derandomization of constant-depth circuits. In this case we instantiate Con-
struction 3.4 using the parity function in the role of the inapproximable predicate
f , noting that parity is indeed inapproximable by “small” constant-depth circuits.7

With an adequate setting of parameters we obtain pseudorandom generators with
stretch ℓ(k) = exp(k1/O(1)) that fool “small” constant-depth circuits (see [49]). The
analysis of this construction proceeds very much like the proof of Theorem 3.5.
One important observation is that incorporating the (straightforward) circuits that
compute f(π(x)St) into the distinguishing circuit only increases its depth by two
levels. Specifically, the circuit C uses depth-two circuits that compute the values
f(π(x)St)’s, and then obtains a prediction of f(x) by using these values in its (sin-
gle) invocation of the (given) distinguisher.

The resulting pseudorandom generator, which uses a seed of polylogarithmic
length (equiv., ℓ(k) = exp(k1/O(1))), can be used for derandomizing RAC0 (i.e.,
random AC0)8, analogously to Theorem 3.3. Thus, we can deterministically ap-
proximate, in quasi-polynomial-time and up to an additive error, the fraction of
inputs that satisfy a given (constant-depth) circuit. Specifically, for any constant
d, given a depth-d circuit C, we can deterministically approximate the fraction of
the inputs that satisfy C (i.e., cause C to evaluate to 1) to within any additive con-
stant error9 in time exp((log |C|)O(d)). Providing a deterministic polynomial-time
approximation, even when d = 2 (i.e., CNF/DNF formulae) is an open problem.

Derandomization of probabilistic proof systems. A different (and more sur-
prising) instantiation of Construction 3.4 utilizes predicates that are inapproximable
by small circuits having oracle access to NP . The result is a pseudorandom gener-
ator robust against two-move public-coin interactive proofs (which are as powerful
as constant-round interactive proofs). The key observation is that the analysis of
Construction 3.4 provides a black-box procedure for approximating the underlying
predicate when given oracle access to a distinguisher (and this procedure is valid

7See references in [49].
8The class AC0 consists of all decision problems that are solvable by constant-depth circuits of

polynomial size (and unbounded fan-in).
9We mention that in the special case of approximating the number of satisfying assignment of a

DNF formula, relative error approximations can be obtained by employing a deterministic reduction
of relative error approximation to additive constant error approximation (see [21, Apdx. B.1.1] or [24,
§6.2.2.1]). Thus, using a pseudorandom generator that fools DNF formulae, we can deterministically
obtain a relative (rather than additive) error approximation to the number of satisfying assignment
in a given DNF formula.
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also in case the distinguisher is a non-deterministic machine). Thus, under suitably
strong (and yet plausible) assumptions, constant-round interactive proofs collapse to
NP . We note that a stronger result, which deviates from the foregoing framework,
has been subsequently obtained (cf. [45]).

Construction of randomness extractors. An even more radical instantiation of
Construction 3.4 was used to obtain explicit constructions of randomness extractors
(see Appendix B or [62]). In this case, the predicate f is viewed as (an error correcting
encoding of) a somewhat random function, and the construction makes sense because
it refers to f in a black-box manner. In the analysis we rely on the fact that f can be
approximated by combining relatively little information (regarding f) with (black-
box access to) a distinguisher for Gf . For further details see Section B.2.

3.3 Reflections Regarding Derandomization

Part 1 of Theorem 3.6 is often summarized by saying that (under some reasonable
assumptions) randomness is useless. We believe that this interpretation is wrong
even within the restricted context of traditional complexity classes, and is bluntly
wrong if taken outside of the latter context. Let us elaborate.

Taking a closer look at the proof of Theorem 3.3 (which underlies Theorem 3.6),
we note that a randomized algorithm A of time-complexity t is emulated by a
deterministic algorithm A′ of time complexity t′ = poly(t). Further noting that
A′ = AG invokes A (as well as the canonical derandomizer G) for Ω(t) times (be-
cause ℓ(k) = O(2k) implies 2k = Ω(t)), we infer that t′ = Ω(t2) must hold. Thus,
derandomization via (Part 1 of) Theorem 3.6 is not really for free.

More importantly, we note that derandomization is not possible in various dis-
tributed settings, when both parties may protect their conflicting interests by employ-
ing randomization. Notable examples include most cryptographic primitives (e.g.,
encryption) as well as most types of probabilistic proof systems (e.g., PCP). Addi-
tional settings where randomness makes a difference (either between impossibility
and possibility or between formidable and affordable cost) include distributed com-
puting (see [8]), communication complexity (see [39]), parallel architectures (see [40]),
sampling (see, e.g., [24, Apdx. D.3]), and property testing (see, e.g., [24, Sec. 10.1.2]).

Notes

As observed by Yao [73], a non-uniformly strong notion of pseudorandom generators
yields non-trivial derandomization of time-complexity classes. A key observation of
Nisan [49, 52] is that whenever a pseudorandom generator is used in this way, it
suffices to require that the generator runs in time that is exponential in its seed
length, and so the generator may have running-time greater than the distinguisher
(representing the algorithm to be derandomized). This observation motivates the def-
inition of canonical derandomizers as well as the construction of Nisan and Wigder-
son [49, 52], which is the basis for further improvements culminating in [34]. Part 1
of Theorem 3.6 (i.e., the so-called “high end” derandomization of BPP) is due to
Impagliazzo and Wigderson [34], whereas Part 2 (the “low end”) is from [52].
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The Nisan–Wigderson Generator [52] was subsequently used in several ways tran-
scending its original presentation. We mention its application towards fooling non-
deterministic machines (and thus derandomizing constant-round interactive proof
systems) and to the construction of randomness extractors (see [65] as well as [62]).

In contrast to the aforementioned derandomization results, which place BPP in
some worst-case deterministic complexity class based on some non-uniform (worst-
case) assumption, we now mention a result that places BPP in an average-case
deterministic complexity class based on a uniform-complexity (worst-case) assump-
tion. We refer specifically to a theorem, which is due to Impagliazzo and Wigder-
son [35] (but is not presented in the main text), that asserts the following: if
BPP is not contained in EXP (almost-everywhere) then BPP has deterministic sub-
exponential time algorithms that are correct on all typical cases (i.e., with respect to
any polynomial-time sampleable distribution).

In Section 3.2.3 we mentioned that Construction 3.4, instantiated with the parity
function, yields a pseudorandom generator that fools AC0 while using a seed of
polylogarithmic length. Alternative constructions follow by a recent result of [12] that
asserts that polylogarithmic-wise independence generators (see, e.g., Proposition 5.1)
fool AC0.

Exercises

Exercise 3.1 Show that Construction 2.7 may fail in the context of canonical de-
randomizers. Specifically, prove that it fails for the canonical derandomizer G′ that
is presented in the proof of Theorem 3.5.

Exercise 3.2 In relation to Definition 3.1 (and assuming ℓ(k) > k), show that there
exists a circuit of size O(2k · ℓ(k)) that violates Eq. (3.1).

Guideline: The circuit may incorporate all values in the range of G and decide by com-

paring its input to these values.

Exercise 3.3 (constructing a set system for Theorem 3.5) For every γ > 0,
show a construction of a set system S as in Condition 2 of Theorem 3.5, with m(k) =
Ω(k) and ℓ(k) = 2Ω(k).

Guideline: We assume, without loss of generality, that γ < 1, and set m(k) = (γ/2) ·k and

ℓ(k) = 2γm(k)/6. We construct the set system S1, ..., Sℓ(k) in iterations, selecting Si as the

first m(k)-subset of [k] that has sufficiently small intersections with each of the previous sets

S1, ..., Si−1. The existence of such a set Si can be proved using the Probabilistic Method

(cf. [6]). Specifically, for a fixed m(k)-subset S′, the probability that a random m(k)-subset

has intersection greater than γm(k) with S′ is smaller than 2−γm(k)/6, because the expected

intersection size is (γ/2) · m(k). Thus, with positive probability a random m(k)-subset has

intersection of size at most γm(k) with each of the previous i−1 < ℓ(k) = 2γm(k)/6 subsets.

Note that we construct Si in time
`

k
m(k)

´
·(i−1)·m(k) < 2k ·ℓ(k)·k, and thus S is computable

in time k2k · ℓ(k)2 < 22k.

Exercise 3.4 (pseudorandom vs. unpredictability, by circuits) In continua-
tion to Exercise 2.11, show that if there exists a circuit of size s that distinguishes
Zn from Uℓ with gap δ, then there exists an i < ℓ = |Zn| and a circuit of size s+O(1)
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that given an i-bit long prefix of Zn guesses the i + 1st bit with success probability
at least 1

2 + δ
ℓ .

Guideline: Defining hybrids as in Exercise 2.11, note that, for some i, the given circuit

distinguishes the ith hybrid from the i + 1st hybrid with gap at least δ/ℓ.

Exercise 3.5 Suppose that the sets Si’s in Construction 3.4 are disjoint and that
f : {0, 1}m → {0, 1} is T -inapproximable. Prove that for every circuit C of size
T −O(1) it holds that |Pr[C(G(Uk)) = 1]− Pr[C(Uℓ) = 1]| < ℓ/T .

Guideline: Prove the contrapositive using Exercise 3.4. Note that the value of the i + 1st

bit of G(Uk) is statistically independent of the values of the first i bits of G(Uk), and thus

predicting it yields an approximator for f . Indeed, such an approximator can be obtained

by fixing the first i bits of G(Uk) via an averaging argument.

Exercise 3.6 (Theorem 3.5, generalized) Let ℓ, m, m′, T :N→N satisfy ℓ(k)2 +

Õ(ℓ(k)2m′(k)) < T (m(k)). Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f :{0, 1}∗→{0, 1} that
is T -inapproximable.

2. There exists an exponential-time computable function S :N×N→2N such that
for every k and i = 1, ..., ℓ(k) it holds that S(k, i) ⊆ [k] and |S(k, i)| = m(k),
and |S(k, i) ∩ S(k, j)| ≤ m′(k) for every k and i 6= j.

Prove that using G as defined in Construction 3.4, with Si = S(k, i), yields a canon-
ical derandomizer with stretch ℓ.

Guideline: Following the proof of Theorem 3.5, just note that the circuit constructed for

approximating f(Um(k)) has size ℓ(k)2 + ℓ(k) · eO(2m′(k)) and success probability at least

(1/2) + (1/7ℓ(k)).

Exercise 3.7 (Part 2 of Theorem 3.6) Prove that if for every polynomial T there
exists a T -inapproximable predicate in E , then BPP ⊆ ⋂

ε>0 Dtime(tε), where

tε(n)
def
= 2nε

.

Guideline: Using Proposition 3.2, it suffices to present, for every polynomial p and every

constant ε > 0, a canonical derandomizer of stretch ℓ(k) = p(k1/ε). Such a derandomizer can

be presented by applying Exercise 3.6 using m(k) =
√

k, m′(k) = O(log k), and T (m(k)) =

ℓ(k)2 + eO(ℓ(k)2m′(k)). Note that T is a polynomial, revisit Exercise 3.3 in order to obtain

a set system as required in Exercise 3.6 (for these parameters), and use [24, Thm. 7.10].

Exercise 3.8 (canonical derandomizers imply hard problems) Prove that the
hardness hypothesis made in each part of Theorem 3.6 is essential for the existence
of a corresponding canonical derandomizer. More generally, prove that the existence
of a canonical derandomizer with stretch ℓ implies the existence of a predicate in E
that is T -inapproximable for T (n) = ℓ(n)1/O(1).

Guideline: We focus on obtaining a predicate in E that cannot be computed by circuits of

size ℓ, and note that the claim follows by applying the techniques in [24, §7.2.1.3]. Given a

canonical derandomizer G : {0, 1}k → {0, 1}ℓ(k), we consider the predicate f : {0, 1}k+1 →
{0, 1} that satisfies f(x) = 1 if and only if there exists s ∈ {0, 1}|x|−1 such that x is a prefix

of G(s). Note that f is in E and that an algorithm computing f yields a distinguisher of

G(Uk) and Uℓ(k).





Chapter 4

Space-Bounded
Distinguishers

In the previous two chapters we have considered generators that output sequences
that look random to any efficient procedure, where the latter were modeled by time-
bounded computations. Specifically, in Chapter 2 we considered indistinguishability
by polynomial-time procedures. A finer classification of time-bounded procedures
is obtained by considering their space-complexity; that is, restricting the space-
complexity of time-bounded computations. This restriction leads to the notion of
pseudorandom generators that fool space-bounded distinguishers. Interestingly, in
contrast to the notions of pseudorandom generators that were considered in Chap-
ters 2 and 3, the existence of pseudorandom generators that fool space-bounded
distinguishers can be established without relying on computational assumptions.

Prerequisites: Technically speaking, the current chapter is self-contained, but
various definitional choices are justified by reference to the standard definitions of
space-bounded randomized algorithms. Thus, a review of that model (as provided
in, e.g., [24, Sec. 6.1.5]) is recommended as conceptual background for the current
chapter.

4.1 Definitional Issues

Our main motivation for considering space-bounded distinguishers is to develop a
notion of pseudorandomness that is adequate for space-bounded randomized algo-
rithms. That is, such algorithms should essentially maintain their behavior when
their source of internal coin tosses is replaced by a source of pseudorandom bits
(which may be generated based on a much shorter random seed). We thus start by
recalling and reviewing the natural notion of space-bounded randomized algorithms.

Unfortunately, natural notions of space-bounded computations are quite subtle,
especially when non-determinism or randomization are concerned (see [24, Sec. 5.3]
and [24, Sec. 6.1.5], respectively). Two major definitional issues regarding random-
ized space-bounded computations are the need for imposing explicit time bounds and
the type of access to the random tape.

47
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1. Time bounds: The question is whether or not the space-bounded machines
are restricted to time-complexity that is at most exponential in their space-
complexity.1 Recall that such an upper-bound follows automatically in the
deterministic case, and can be assumed (without loss of generality) in the non-
deterministic case, but it does not necessarily hold in the randomized case. Fur-
thermore, failing to restrict the time-complexity of randomized space-bounded
machines makes them unnatural and unintentionally too strong (e.g., capa-
ble of emulating non-deterministic computations with no overhead in terms of
space-complexity).

Seeking a natural model of randomized space-bounded algorithms, we postu-
late that their time-complexity must be at most exponential in their space-
complexity.

2. Access to the random tape: Recall that randomized algorithms may be modeled
as machines that are provided with the necessary randomness via a special
random-tape. The question is whether the space-bounded machine has uni-
directional or bi-directional (i.e., unrestricted) access to its random-tape. (Al-
lowing bi-directional access means that the randomness is recorded “for free”;
that is, without being accounted for in the space-bound.)

Recall that uni-directional access to the random-tape corresponds to the natu-
ral model of an on-line randomized machine, which determines its moves based
on its internal coin tosses (and thus cannot record its past coin tosses “for
free”). Thus, we consider uni-directional access.2

Hence, we focus on randomized space-bounded computations that have time-complexity
that is at most exponential in their space-complexity and access their random-tape
in a uni-directional manner.

When seeking a notion of pseudorandomness that is adequate for the foregoing
notion of randomized space-bounded computations, we note that the corresponding
distinguisher is obtained by fixing the main input of the computation and viewing the
contents of the random-tape of the computation as the only input of the distinguisher.
Thus, in accordance with the foregoing notion of randomized space-bounded com-
putation, we consider space-bounded distinguishers that have a uni-directional access
to the input sequence that they examine. Let us consider the type of algorithms that
arise.

We consider space-bounded algorithms that have a uni-directional access to their
input. At each step, based on the contents of its temporary storage, such an algorithm
may either read the next input bit or stay at the current location on the input,
where in either case the algorithm may modify its temporary storage. To simplify
our analysis of such algorithms, we consider a corresponding non-uniform model in
which, at each step, the algorithm reads the next input bit and updates its temporary

1Alternatively, one can ask whether these machines must always halt or only halt with probability
approaching 1. It can be shown that the only way to ensure “absolute halting” is to have time-
complexity that is at most exponential in the space-complexity. (In the current discussion as well
as throughout this chapter, we assume that the space-complexity is at least logarithmic.)

2We note that the fact that we restrict our attention to uni-directional access is instrumental in
obtaining space-robust generators without making intractability assumptions. Analogous generators
for bi-directional space-bounded computations would imply hardness results of a breakthrough
nature in the area.
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storage according to an arbitrary function applied to the previous contents of that
storage (and to the new bit). Note that we have strengthened the model by allowing
arbitrary (updating) functions, which can be implemented by (non-uniform) circuits
having size that is exponential in the space-bound, rather than using (updating)
functions that can be (uniformly) computed in time that is exponential in the space-
bound. This strengthening is motivated by the fact that the known constructions of
pseudorandom generators remain valid also when the space-bounded distinguishers
are non-uniform and by the fact that non-uniform distinguishers arise anyhow in
derandomization.

The computation of the foregoing non-uniform space-bounded algorithms (or au-
tomata)3 can be represented by directed layered graphs, where the vertices in each
layer correspond to possible contents of the temporary storage and transition be-
tween neighboring layers corresponds to a step of the computation. Foreseeing the
application of this model for the description of potential distinguishers, we parame-
terize these layered graphs based on the index, denoted k, of the relevant ensembles
(e.g., {G(Uk)}k∈N and {Uℓ(k)}k∈N). That is, we present both the input length, de-
noted ℓ = ℓ(k), and the space-bound, denoted s(k), as functions of the parameter
k. Thus, we define a non-uniform automaton of space s :N→N (and depth ℓ :N→N)
as a family, {Dk}k∈N, of directed layered graphs with labeled edges such that the
following conditions hold:

• The digraph Dk consists of ℓ(k)+1 layers, each containing at most 2s(k) vertices.
The first layer contains a single vertex, which is the digraph’s (single) source
(i.e., a vertex with no incoming edges), and the last layer contains all the
digraph’s sinks (i.e., vertices with no outgoing edges).

• The only directed edges in Dk are between adjacent layers, going from layer i
to layer i + 1, for i ≤ ℓ(k). These edges are labeled such that each (non-sink)
vertex of Dk has two (possibly parallel) outgoing directed edges, one labeled 0
and the other labeled 1.

The result of the computation of such an automaton, on an input of adequate length
(i.e., length ℓ where Dk has ℓ + 1 layers), is defined as the vertex (in last layer)
reached when following the sequence of edges that are labeled by the corresponding
bits of the input. That is, on input x = x1 · · ·xℓ, in the ith step (for i = 1, ..., ℓ) we
move from the current vertex (which resides in the ith layer) to one of its neighbors
(which resides in the i + 1st layer) by following the outgoing edge labeled xi. Using
a fixed partition of the vertices of the last layer, this defines a natural notion of
a decision (by Dk); that is, we write Dk(x) = 1 if on input x the automaton Dk

reached a vertex that belongs to the first part of the aforementioned partition.

Definition 4.1 (indistinguishability by space-bounded automata):

3We use the term automaton (rather than algorithm or machine) in order to remind the reader
that this computing device reads its input in a uni-directional manner. Alternative terms that may
be used are “real-time” or “on-line” machines. We prefer not using the term “on-line” machine in
order to keep a clear distinction between our notion and randomized algorithms that have free access
to their input (and on-line access to a source of randomness). Indeed, the automata considered here
arise from the latter algorithms by fixing their primary input and considering the random source
as their (only) input. We also note that the automata considered here are a special case of Ordered
Binary Decision Diagrams (OBDDs; see [71]).
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• For a non-uniform automaton, {Dk}k∈N, and two probability ensembles, {Xk}k∈N

and {Yk}k∈N, the function d :N→ [0, 1] defined as

d(k)
def
= |Pr[Dk(Xk) = 1]− Pr[Dk(Yk) = 1]|

is called the distinguishability-gap of {Dk} between the two ensembles.

• Let s :N→N and ε :N→ [0, 1]. A probability ensemble, {Xk}k∈N, is called (s, ε)-
pseudorandom if for any non-uniform automaton of space s(·), the distinguisha-
bility-gap of the automaton between {Xk}k∈N and the corresponding uniform
ensemble (i.e., {U|Xk|}k∈N) is at most ε(·).

• A deterministic algorithm G of stretch function ℓ is called an (s, ε)-pseudorandom

generator if the ensemble {G(Uk)}k∈N is (s, ε)-pseudorandom. That is, every
non-uniform automaton of space s(·) has a distinguishing gap of at most ε(·)
between {G(Uk)}k∈N and {Uℓ(k)}k∈N.

Thus, when using a random seed of length k, an (s, ε)-pseudorandom generator
outputs a sequence of length ℓ(k) that looks random to observers having space s(k).
Note that s(k) ≤ k is a necessary condition for the existence of (s, 0.5)-pseudorandom
generators, because a non-uniform automaton of space s(k) > k can recognize the
image of a generator (which contains at most 2k strings of length ℓ(k) > k). More
generally, there is a trade-off between k−s(k) and the stretch of (s, ε)-pseudorandom
generators; for details see Exercises 4.1 and 4.2.

Note: We stated the space-bound of the potential distinguisher (as well as the
stretch function) in terms of the seed-length, denoted k, of the generator. In contrast,
other sources present a parameterization in terms of the space-bound of the potential
distinguisher, denoted m. The translation is obtained by using m = s(k), and we
shall provide it subsequent to the main statements of Theorems 4.2 and 4.3.

4.2 Two Constructions

In contrast to the case of pseudorandom generators that fool time-bounded distin-
guishers, pseudorandom generators that fool space-bounded distinguishers can be
constructed without relying on any computational assumption. The following two
theorems exhibit two rather extreme cases of a general trade-off between the space-
bound of the potential distinguisher and the stretch function of the generator.4 We
stress that both theorems fall short of providing parameters as in Exercise 4.2, but
they refer to relatively efficient constructions. We start with an attempt to maximize
the stretch.

Theorem 4.2 (stretch exponential in the space-bound for s(k) =
√

k): For every
space constructible function s : N→N, there exists an (s, 2−s)-pseudorandom gen-
erator of stretch function ℓ(k) = min(2k/O(s(k)), 2s(k)). Furthermore, the generator
works in space that is linear in the length of the seed, and in time that is linear in
the stretch function.

4These two results have been “interpolated” in [7]: There exists a parameterized family of “space
fooling” pseudorandom generators that includes both results as extreme special cases.
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In other words, for every t ≤ m, we have a generator that takes a random seed of
length k = O(t ·m) and produces a sequence of length 2t that looks random to any
(non-uniform) automaton of space m (up to a distinguishing gap of 2−m). In partic-
ular, using a random seed of length k = O(m2), one can produce a sequence of length
2m that looks random to any (non-uniform) automaton of space m. Thus, one may
replace random sequences used by any space-bounded computation, by sequences that
are efficiently generated from random seeds of length quadratic in the space bound.
The common instantiation of the latter assertion is for log-space algorithms. In
Section 4.2.2, we apply Theorem 4.2 (and its underlying ideas) for the derandomiza-
tion of space-complexity classes such as BPL (i.e., the log-space analogue of BPP).
Theorem 4.2 itself is proved in Section 4.2.1.

We now turn to the case where one wishes to maximize the space-bound of po-
tential distinguishers. We warn that Theorem 4.3 only guarantees a subexponential
distinguishing gap (rather than the exponential distinguishing gap guaranteed in
Theorem 4.2).

Theorem 4.3 (polynomial stretch and linear space-bound): For any polynomial p
and for some s(k) = k/O(1), there exists an (s, 2−

√
s)-pseudorandom generator of

stretch function p. Furthermore, the generator works in linear-space and polynomial-
time (both stated in terms of the length of the seed).

In other words, we have a generator that takes a random seed of length k = O(m)
and produces a sequence of length poly(m) that looks random to any (non-uniform)
automaton of space m. Thus, one may convert any randomized computation utilizing
polynomial-time and linear-space into a functionally equivalent randomized compu-
tation of similar time and space complexities that uses only a linear number of coin
tosses.

4.2.1 Sketches of the proofs of Theorems 4.2 and 4.3

In both cases, we start the proof by considering a generic space-bounded distin-
guisher and show that the input distribution that this distinguisher examines can
be modified (from the uniform distribution into a pseudorandom one) without hav-
ing the distinguisher notice the difference. This modification (or rather a sequence
of modifications) yields a construction of a pseudorandom generator, which is only
spelled out at the end of the argument.

Sketch of the proof of Theorem 4.2 (see details in [50])

The main technical tool used in this proof is the “mixing property” of pairwise
independent hash functions (see Appendix A). A family of functions Hn, which map
{0, 1}n to itself, is called mixing if for every pair of subsets A, B ⊆ {0, 1}n for all but
very few (i.e., exp(−Ω(n)) fraction) of the functions h ∈ Hn, it holds that

Pr[Un ∈ A ∧ h(Un) ∈ B] ≈ |A|
2n
· |B|

2n
(4.1)

where the approximation is up to an additive term of exp(−Ω(n)). (See the gener-
alization of Lemma A.4, which implies that exp(−Ω(n)) can be set to 2−n/3.)
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We may assume, without loss of generality, that s(k) = Ω(
√

k), and thus ℓ(k) ≤
2s(k) holds. For any s(k)-space distinguisher Dk as in Definition 4.1, we consider
an auxiliary “distinguisher” D′k that is obtained by “contracting” every block of

n
def
= Θ(s(k)) consecutive layers in Dk, yielding a directed layered graph with ℓ′

def
=

ℓ(k)/n < 2s(k) layers (and 2s(k) vertices in each layer). Specifically,

• each vertex in D′k has 2n (possibly parallel) directed edges going to various
vertices of the next level; and

• each such edge is labeled by an n-bit long string such that the directed edge
(u, v) labeled σ1σ2 · · ·σn in D′k replaces the n-edge directed path between u
and v in Dk that consists of edges labeled σ1, σ2, ...., σn.

The graph D′k simulates Dk in the obvious manner; that is, the computation of D′k
on an input of length ℓ(k) = ℓ′ · n is defined by breaking the input into consecu-
tive substrings of length n and following the path of edges that are labeled by the
corresponding n-bit long substrings.

The key observation is that D′k cannot distinguish between a random ℓ′ · n-bit

long input (i.e., Uℓ′·n ≡ U
(1)
n U

(2)
n · · ·U (ℓ′)

n ) and a “pseudorandom” input of the form

U
(1)
n h(U

(1)
n )U

(2)
n h(U

(2)
n ) · · ·U (ℓ′/2)

n h(U
(ℓ′/2)
n ), where h ∈ Hn is a (suitably fixed) hash

function. To prove this claim, we consider an arbitrary pair of neighboring vertices,
u and v (in layers i and i + 1, respectively), and denote by Lu,v ⊆ {0, 1}n the set of
the labels of the edges going from u to v. Similarly, for a vertex w at layer i + 2, we
let L′v,w denote the set of the labels of the edges going from v to w. By Eq. (4.1),
for all but very few of the functions h ∈ Hn, it holds that

Pr[Un ∈ Lu,v ∧ h(Un) ∈ L′v,w] ≈ Pr[Un ∈ Lu,v] · Pr[Un ∈ L′v,w] , (4.2)

where “very few” and ≈ are as in Eq. (4.1). Thus, for all but exp(−Ω(n)) fraction of
the choices of h ∈ Hn, replacing the coins in the second transition (i.e., the transition
from layer i+1 to layer i+2) with the value of h applied to the outcomes of the coins
used in the first transition (i.e., the transition from layer i to i + 1), approximately
maintains the probability that D′k moves from u to w via v. Using a union bound (on
all triples (u, v, w) as in the foregoing), we note that, for all but 23s(k) ·ℓ′ ·exp(−Ω(n))
fraction of the choices of h ∈ Hn, the foregoing replacement approximately maintains
the probability that D′k moves through any specific two-edge path of D′k.

Using ℓ′ < 2s(k) and a suitable choice of n = Θ(s(k)), it holds that 23s(k) · ℓ′ ·
exp(−Ω(n)) < exp(−Ω(n)), and thus all but a “few” functions h ∈ Hn are good for
approximating all of these transition probabilities. (We stress that the same h can
be used in all of these approximations.) Thus, at the cost of extra |h| random bits, we
can reduce the number of true random coins used in transitions on D′k by a factor of
two, without significantly affecting the final decision of D′k (where again we use the
fact that ℓ′ ·exp(−Ω(n)) < exp(−Ω(n)), which implies that the approximation errors
do not accumulate to too much). In other words, at the cost of extra |h| random bits,
we can effectively contract the distinguisher to half its length while approximately
maintaining the probability that the distinguisher accepts a random input. That
is, fixing a good h (i.e., one that provides a good approximation to the transition
probability over all 23s(k) · ℓ′ two-edge paths), we can replace the two-edge paths
in D′k by edges in a new distinguisher D′′k (which depends on h) such that an edge
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(u, w) labeled r ∈ {0, 1}n appears in D′′k if and only if, for some v, the path (u, v, w)
appears in D′k with the first edge (i.e., (u, v)) labeled r and the second edge (i.e.,
(v, w)) labeled h(r). Needless to say, the crucial point is that Pr[D′′k (U(ℓ′/2)·n) = 1]
approximates Pr[D′k(Uℓ′·n)=1].

The foregoing process can be applied to D′′k resulting in a distinguisher D′′′k of
half the length, and so on. Each time we contract the current distinguisher by a
factor of two, and do so by randomly selecting (and fixing) a new hash function.
Thus, repeating the process for a logarithmic (in the depth of D′k) number of times
we obtain a distinguisher that only examines n bits, at which point we stop. In total,

we have used t
def
= log2(ℓ

′/n) < log2 ℓ(k) random hash functions. This means that we
can generate a (pseudorandom) sequence that fools the original Dk by using a seed
of length n + t · log2 |Hn|. Using n = Θ(s(k)) and an adequate family Hn (which,
in particular, satisfies |Hn| = 2O(n)), we obtain the desired (s, 2−s)-pseudorandom
generator, which indeed uses a seed of length O(s(k) · log2 ℓ(k)) = k.

Digest. The actual proof of Theorem 4.4 refers to a stronger class of distinguishers
that read n-bit long blocks at a time, and process each such block arbitrarily (as
long as the space occupied before and after reading this block is upper-bounded
by s(n)).5 Thus, the foregoing pseudorandom generator fools this stronger type of
distinguishers, which was used in order to facilitate the argument.

Rough sketch of the proof of Theorem 4.3 (see details in [53])

The main technical tool used in this proof is a suitable randomness extractor (see
Appendix B), which is indeed a much more powerful tool than hashing functions.
The basic idea is that when the distinguisher Dk is at some “distant” layer, say at
layer t = Ω(s(k)), it typically “knows” little about the random choices that led it
there. That is, Dk has only s(k) bits of memory, which leaves out t − s(k) bits of
“uncertainty” (or randomness) regarding the previous moves. Thus, much of the
randomness that led Dk to its current state may be “reused” (or “recycled”). To
reuse these bits we need to extract almost uniform distribution on strings of sufficient
length out of the aforementioned distribution (over {0, 1}t) that has entropy6 at least
t−s(k). Furthermore, such an extraction requires some additional truly random bits,
yet relatively few such bits. In particular, using k′ = Ω(log t) bits towards this end,
the extracted bits are exp(−Ω(k′)) away from uniform.

The gain from the aforementioned recycling is significant if recycling is repeated
sufficiently many times. Towards this end, we break the k-bit long seed into two
parts, denoted r′ ∈ {0, 1}k/2 and (r1, ..., r3

√
k), where |ri| =

√
k/6, and set n = k/3.

Intuitively, r′ will be used for determining the first n steps, and it will be reused (or
recycled) together with ri for determining the steps i·n+1 through (i+1)·n. Looking
at layer i · n, we consider the information regarding r′ that is “known” to Dk (when
reaching a specific vertex at layer i ·n). Typically, the conditional distribution of r′,
given that we reached a specific vertex at layer i · n, has (min-)entropy greater than
0.99 · ((k/2)−s(k)). Using ri (as a seed of an extractor applied to r′), we can extract

5This extra distinguishing power is referred to in [66, Sec. 3.4.2].
6Actually, a stronger technical condition needs to be and can be imposed on the latter distribu-

tion. Specifically, with overwhelmingly high probability, at layer t, automaton Dk is at a vertex that
can be reached in more than 20.99·(t−s(k)) different ways. In this case, the distribution representing
a random walk that reaches this vertex has min-entropy greater than 0.99 · (t − s(k)).
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0.9·((k/2)−s(k)−o(k)) > k/3 = n bits that are almost-random (i.e., 2−Ω(
√

k)-close to
Un) with respect to Dk, and use these bits for determining the next n steps. Hence,
using k random bits, we produce a sequence of length (1+3

√
k) ·n > k3/2 that fools

automata of space bound, say, s(k) = k/10. Specifically, using an extractor of the

form Ext : {0, 1}k/2×{0, 1}
√

k/6 → {0, 1}k/3, we map the seed (r′, r1, ..., r3
√

k) to the

output sequence (r′, Ext(r′, r1), ..., Ext(r′, r3
√

k)). Thus, we obtained an (s, 2−Ω(
√

s))-

pseudorandom generator of stretch function ℓ(k) = k3/2.
In order to obtain an arbitrary polynomial stretch rather than a specific poly-

nomial stretch (i.e., ℓ(k) = k3/2), we iteratively compose generators as above with
themselves (for a constant number of times). The basic composition combines an
(s1, ε1)-pseudorandom generator of stretch function ℓ1, denoted G1, with an (s2, ε2)-
pseudorandom generator of stretch function ℓ2, denoted G2. On input s ∈ {0, 1}k,
the resulting generator first computes G1(s), parses G1(s) into t consecutive k′-bit
long blocks, where k′ = s1(k)/2 and t = ℓ1(k)/k′, and applies G2 to each block (out-
putting the concatenation of the t results). This generator, denoted G, has stretch
ℓ(k) = t · ℓ2(k

′), and for s1(k) = Θ(k) we have ℓ(k) = ℓ1(k) · ℓ2(Ω(k))/O(k). The
pseudorandomness of G can be established via a hybrid argument (which refers to

the intermediate hybrid distribution G2(U
(1)
k′ ) · · ·G2(U

(t)
k′ ) and uses the fact that the

second step in the computation of G can be performed by a non-uniform automaton
of space s1/2).

4.2.2 Derandomization of space-complexity classes

As a direct application of Theorem 4.2, we obtain that BPL ⊆ Dspace(log2), where
BPL denotes the log-space analogue of BPP. (Recall that NL ⊆ Dspace(log2), but
it is not known whether or not BPL ⊆ NL.)7 A stronger derandomization result
can be obtained by a finer analysis of the proof of Theorem 4.2.

Theorem 4.4 BPL ⊆ SC, where SC denotes the class of decision problems that can
be solved by deterministic algorithms that run in polynomial-time and polylogarithmic-
space.

Thus, BPL (and, in particular, RL ⊆ BPL) is placed in a class not known to
contain NL. Another such result was subsequently obtained in [59]: Randomized

log-space can be simulated in deterministic space o(log2); specifically, in space log3/2.
We mention that the archetypical problem of RL was recently proved to be in L
(see [56]).

Sketch of the proof of Theorem 4.4 (see details in [51])

We are going to use the generator construction provided in the proof of Theorem 4.2,
but we will show that the main part of the seed (i.e., the sequence of hash functions)
can be fixed (depending on the distinguisher at hand). Furthermore, this fixing can
be performed in polylogarithmic space and polynomial-time. Specifically, wishing
to derandomize a specific log-space computation (which refers to a specific input),
we first obtain the corresponding distinguisher, denoted D′k, that represents this

7Indeed, the log-space analogue of RP, denoted RL, is contained in NL ⊆ Dspace(log2), and
thus the fact that Theorem 4.2 implies RL ⊆ Dspace(log2) is of no interest.
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computation (as a function of the outcomes of the internal coin tosses of the log-space
algorithm). The key observation is that the question of whether or not a specific hash
function h ∈ Hn is good for a specific D′k can be determined in space that is linear
in n = |h|/2 and logarithmic in the size of D′k. Indeed, the time-complexity of this
decision procedure is exponential in its space-complexity. It follows that we can find
a good h ∈ Hn, for a given D′k, within these complexities (by scanning through all
possible h ∈ Hn). Once a good h is found, we can also construct the corresponding
graph D′′k (in which edges represent two-edge paths in D′k), again within the same
complexity. Actually, it will be more instructive to note that we can determine a
step (i.e., an edge-traversal) in D′′k by making two steps (edge-traversals) in D′k. This
will allow us to fix a hash function for D′′k , and so on. Details follow.

The main claim is that the entire process of finding a sequence of t
def
= log2 ℓ′(k)

good hash functions can be performed in space t ·O(n+ log |Dk|) = O(n+ log |Dk|)2
and time poly(2n · |Dk|); that is, the time-complexity is sub-exponential in the space-
complexity (i.e., the time-complexity is significantly smaller than the generic bound

of exp(O(n + log |Dk|)2)). Starting with D
(1)
k = D′k, we find a good (for D

(1)
k )

hashing function h(1) ∈ Hn, which defines D
(2)
k = D′′k . Having found (and stored)

h(1), ..., h(i) ∈ Hn, which determine D
(i+1)
k , we find a good hashing function h(i+1) ∈

Hn for D
(i+1)
k by emulating pairs of edge-traversals on D

(i+1)
k . Indeed, a key point is

that we do not construct the sequence of graphs D
(2)
k , ..., D

(i+1)
k , but rather emulate

an edge-traversal in D
(i+1)
k by making 2i edge-traversals in D′k, using h(1), ..., h(i):

The (edge-traversal) move α ∈ {0, 1}n starting at vertex v of D
(i+1)
k translates to a

sequence of 2i moves starting at vertex v of D′k, where the moves are determined by
the 2i-long sequence (of n-bit strings)

h
(0i)

(α), h
(0i−201)

(α), h
(0i−210)

(α), h
(0i−211)

(α), ..., h
(1i)

(α),

where h
(σi···σ1)

is the function obtained by the composition of a subsequence of the

functions h(i), ..., h(1) determined by σi · · ·σ1. Specifically, h
(σi···σ1)

equals h(it′ ) ◦
· · · ◦ h(i2) ◦ h(i1), where i1 < i2 < · · · < it′ and {ij : j=1, ..., t′} = {j : σj =1}.

Recall that the ability to perform edge-traversals on D
(i+1)
k allows us to determine

whether a specific function h ∈ Hn is good for D
(i+1)
k . This is done by considering

all the relevant triples (u, v, w) in D
(i+1)
k , computing for each such (u, v, w) the

three quantities (i.e., probabilities) appearing in Eq. (4.2), and deciding accordingly.
Trying all possible h ∈ Hn, we find a function (to be denoted h(i+1)) that is good

for D
(i+1)
k . This is done while using an additional storage of s′ = O(n + log |D′k|)

(on top of the storage used to record h(1), ..., h(i)), and in time that is exponential in
s′. Thus, given D′k, we find a good sequence of hash functions, h(1), ..., h(t), in time
exponential in s′ and while using space s′+ t · log2 |Hn| = O(t ·s′). Such a sequence of

functions allows us to emulate edge-traversals on D
(t+1)
k , which in turn allows us to

(deterministically) approximate the probability that D′k accepts a random input (i.e.,
the probability that, starting at the single source vertex of the first layer, automaton
D′k reaches some accepting vertex at the last layer). This approximation is obtained

by computing the corresponding probability in D
(t+1)
k by traversing all 2n edges.

To summarize, given D′k, we can (deterministically) approximate the probability
that D′k accepts a random input in O(t · s′)-space and exp(O(s′ + n))-time, where
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s′ = O(n + log |D′k|) and t < log2 |D′k|. Recalling that n = Θ(log |D′k|), this means
O(log |D′k|)2-space and poly(|D′k|)-time. We comment that the approximation can
be made accurate up to an additive error term of 1/poly(|D′k|), whereas the deran-
domization can tolerate any additive error smaller than 1/6.

Notes

As stated in the first paper on the subject of “space-resilient pseudorandom gener-
ators” [2],8 this research direction was inspired by the derandomization result ob-
tained via the use of general-purpose pseudorandom generators. The latter result
(necessarily) depends on intractability assumptions, and so the objective was iden-
tifying natural classes of algorithms for which derandomization is possible without
relying on intractability assumptions (but rather by relying on intractability results
that are known for the corresponding classes of distinguishers). This objective was
achieved before for the case of constant-depth (randomized) circuits [49], but space-
bounded (randomized) algorithms offer a more appealing class that refers to natural
algorithms. Fundamentally different constructions of space-resilient pseudorandom
generators were given in several works, but are superseded by the two incomparable
results mentioned in Section 4.2: Theorem 4.2 (a.k.a Nisan’s Generator [50]) and
Theorem 4.3 (a.k.a the Nisan–Zuckerman Generator [53]). These two results have
been “interpolated” in [7]. Theorem 4.4 (BPL ⊆ SC) was proved by Nisan [51].

We mention that a few years ago, Reingold proved that undirected connectiv-
ity can be decided by (deterministic) algorithms of logarithmic space [56]. Prior to
his result, only a randomized algorithm of logarithmic space was known (see Ap-
pendix D.3).

Exercises

Exercise 4.1 (bounds on the stretch of (s, ε)-pseudorandom generators)
Referring to Definition 4.1, establish the following upper-bounds on the stretch ℓ of
(s, ε)-pseudorandom generators.

1. If s(k) ≥ 2 and ε(k) ≤ 1/2, then ℓ(k) < ε(k) · (k + 2) · 2k+2−s(k).

2. For every s(k) ≥ 1 and ε(k) < 1 it holds that ℓ(k) < 2k.

Guideline: Part 2 follows by combining Exercises 5.11 and 5.12. For Part 1, consider

towards the contradiction a generator of stretch ℓ(k) = ε(k) · (k + 2) · 2k+2−s(k) and an

enumeration, α(1), ..., α(2k) ∈ {0, 1}ℓ(k), of all 2k outputs of the generator (on k-bit long

seeds). Construct a non-uniform automaton of space s that accepts x1 · · ·xℓ(k) ∈ {0, 1}ℓ(k)

if for some i ∈ [ℓ(k)/(k + 2)] it holds that x(i−1)·(k+2)+1 · · ·xi·(k+2) equals some string in

Si, where Si contains the projection of the strings α((i−1)·2s(k)−1+1), ..., α(i·2s(k)−1) on the

coordinates (i − 1) · (k + 2) + 1, ..., i · (k + 2). Note that such an automaton accepts at least

(ℓ(k)/(k+2))·2s(k)−1 = 2ε(k)·2k of the possible outputs of the generator, whereas a random

(ℓ(k)-bit long) string is accepted with probability at most (ℓ(k)/(k + 2)) · 2(s(k)−1)−(k+2) =

ε(k)/2.

8Interestingly, this paper is more frequently cited for the Expander Random Walk technique,
which it has introduced.
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Exercise 4.2 (on the existence of (s, ε)-pseudorandom generators) For any
s and ε such that s(k) < k − 2 log2(k/ε(k)) − O(1), prove the existence of (non-
efficient) (s, ε)-pseudorandom generators of stretch ℓ(k) = Ω(ε(k)2 · 2k−s(k)/s(k)).

Guideline: Use the Probabilistic Method as in Exercise 1.3. Note that non-uniform au-

tomata of space s and time ℓ can be described by strings of length ℓ · 2s2s.

Exercise 4.3 (multiple samples and space-bounded distinguishers) Let
{Xk}k∈N and {Yk}k∈N be two probability ensembles that are (s, ε)-indistinguishable
by non-uniform automata (i.e., the distinguishability-gap of any non-uniform au-
tomaton of space s is bounded by the function ε). Then, for any function t :

N→N, prove that the ensembles {(X(1)
k , ..., X

(t(k))
k )}k∈N and {(Y (1)

k , ..., X
(t(k))
k )}k∈N

are (s, tε)-indistinguishable, where X
(1)
k through X

(t(k))
k and Y

(1)
k through Y

(t(k))
k are

independent random variables, with each X
(i)
k identical to Xk and each Y

(i)
k identical

to Yk.

Guideline: Use the hybrid technique. When distinguishing the ith and (i + 1)st hybrids,

note that the first i blocks (i.e., copies of Xk) as well as the last t(k) − (i + 1) blocks (i.e.,

copies of Yk) can be fixed and hard-wired into the non-uniform distinguisher.

Exercise 4.4 Provide a more explicit description of the generator outlined in the
proof of Theorem 4.2.

Guideline: for r ∈ {0, 1}n and h(1), ..., h(t) ∈ Hn, the generator outputs a 2t-long se-

quence of n-bit strings such that the ith string in this sequence equals h′(r), where h′ is a

composition of some of the h(j)’s.





Chapter 5

Special Purpose Generators

The pseudorandom generators considered so far were aimed at decreasing the amount
of randomness utilized by any algorithm of certain time and/or space complexity (or
even fully derandomizing the corresponding complexity class). For example, we
considered the derandomization of classes such as BPP and BPL. In the current
chapter our goal is less ambitious. We only seek to derandomize (or decrease the
randomness of) specific algorithms or rather classes of algorithms that use their
random bits in certain (restricted) ways. For example, the algorithm’s correctness
may only require that its sequence of coin tosses (or “blocks” in such a sequence)
are pairwise independent. Indeed, the restrictions that we shall consider here have a
concrete and “structural” form, rather than the abstract complexity theoretic forms
considered in previous chapters.

The aforementioned restrictions induce corresponding classes of very restricted
distinguishers, which in particular are much weaker than the classes of distinguishers
considered in previous chapters. These very restricted types of distinguishers induce
correspondingly weak types of pseudorandom generators (which produce sequences
that fool these distinguishers). Still, such generators have many applications (both
in complexity theory and in the design of algorithms).

We start with the simplest of these generators: the pairwise independence gen-
erator, and its generalization to t-wise independence for any t≥ 2. Such generators
perfectly fool any distinguisher that only observe t locations in the output sequence.
This leads naturally to almost pairwise (or t-wise) independence generators, which
also fool such distinguishers (albeit non-perfectly). The latter generators are implied
by a stronger class of generators, which is of independent interest: the small-bias
generators. Small-bias generators fool any linear test (i.e., any distinguisher that
merely considers the xor of some fixed locations in the input sequence). We finally
turn to the Expander Random Walk Generator: This generator produces a sequence
of strings that hit any dense subset of strings with probability that is close to the
hitting probability of a truly random sequence.1

Comment regarding our parameterization: To maintain consistency with
prior chapters, we continue to present the generators in terms of the seed length,

1Related notions such as samplers, dispersers, and extractors are not treated here (although they
were treated in [21, Sec. 3.6] and [24, Apdx. D.3&D.4]).
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denoted k. Since this is not the common presentation for most results presented
in the sequel, we provide (in footnotes) the common presentation in which the seed
length is determined as a function of other parameters.

5.1 Pairwise Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two
(resp., t) elements in the output sequence of the generator. Such local tests are
indeed very restricted, yet they arise naturally in many settings. For example, such
a test corresponds to a probabilistic analysis (of a procedure) that only relies on the
pairwise independence of certain choices made by the procedure. We also mention
that, in some natural range of parameters, pairwise independent sampling is as good
as sampling by totally independent sample points (see, e.g., [24, Apdx. D.1.2.4]).

A t-wise independence generator of block-length b :N→N (and stretch function ℓ)
is a relatively efficient deterministic algorithm (e.g., one that works in time polyno-
mial in the output length) that expands a k-bit long random seed into a sequence
of ℓ(k)/b(k) blocks, each of length b(k), such that any t blocks are uniformly and
independently distributed in {0, 1}t·b(k). That is, denoting the ith block of the gen-
erator’s output (on seed s) by G(s)i, we require that for every i1 < i2 < · · · < it (in
[ℓ(k)/b(k)]) it holds that

G(Uk)i1 , G(Uk)i2 , ..., G(Uk)it ≡ Ut·b(k). (5.1)

We note that this condition holds even if the inspected t blocks are selected adaptively
(see Exercise 5.1). In case t = 2, we call the generator pairwise independent.

5.1.1 Constructions

In the first construction, we refer to GF(2b(k)), the finite field of 2b(k) elements, and
associate its elements with {0, 1}b(k).

Proposition 5.1 (t-wise independence generator):2 Let t be a fixed integer and let
b, ℓ, ℓ′ : N→N such that b(k) = k/t, ℓ′(k) = ℓ(k)/b(k) > t and ℓ′(k) ≤ 2b(k). Let
α1, ..., αℓ′(k) be fixed distinct elements of the field GF(2b(k)). For s0, s1, ..., st−1 ∈
{0, 1}b(k), let

G(s0, s1, ..., st−1)
def
=




t−1∑

j=0

sjα
j
1 ,

t−1∑

j=0

sjα
j
2 , ...,

t−1∑

j=0

sjα
j
ℓ′(k)



 (5.2)

where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence generator
of block-length b and stretch ℓ.

That is, given a seed that consists of t elements of GF(2b(k)), the generator outputs
a sequence of ℓ′(k) such elements. The proof of Proposition 5.1 is left as an exercise
(see Exercise 5.2). It is based on the observation that, for any fixed v0, v1, ..., vt−1,

2In the common presentation of this t-wise independence generator, the length of the seed is
determined as a function of the desired block-length and stretch. That is, given the parameters b
and ℓ′ ≤ 2b, the seed length is set to t · b.



5.1. PAIRWISE INDEPENDENCE GENERATORS 61

the condition {G(s0, s1, ..., st−1)ij = vj}t−1
j=0 constitutes a system of t linear equations

over GF(2b(k)) (in the variables s0, s1, ..., st−1) such that the equations are linearly-
independent. (Thus, linear independence of certain expressions yields statistical
independence of the corresponding random variables.)

A somewhat tedious comment. We warn that Eq. (5.2) does not provide a fully
explicit construction (of a generator). What is missing is an explicit representation
of GF(2b(k)), which requires an irreducible polynomial of degree b(k) over GF(2). For

specific values of b(k), a good representation does exist; e.g., for d
def
= b(k) = 2 · 3e

(with e being an integer), the polynomial xd + xd/2 + 1 is irreducible over GF(2).
We note that a construction analogous to Eq. (5.2) works for every finite field

(e.g., a finite field of any prime cardinality), but the problem of providing an explicit
representation of such a field remains non-trivial also in other cases (e.g., consider
the problem of finding a prime number of size approximately 2b(k)). The latter fact
is the main motivation for considering the following alternative construction for the
case of t = 2.

The following construction uses (random) affine transformations (as possible
seeds). In fact, better performance (i.e., shorter seed length) is obtained by using
affine transformations affected by Toeplitz matrices. A Toeplitz matrix is a matrix
with all diagonals being homogeneous (see Figure 5.1); that is, T = (ti,j) is a Toeplitz
matrix if ti,j = ti+1,j+1 for all i, j. Note that a Toeplitz matrix is determined by its
first row and first column (i.e., the values of t1,j’s and ti,1’s).

+ =

m(k)

b(k)

Figure 5.1: An affine transformation affected by a Toeplitz matrix.

Proposition 5.2 (alternative pairwise independence generator, see Figure 5.1):3

Let b, ℓ, ℓ′, m : N→N such that ℓ′(k) = ℓ(k)/b(k) and m(k) = ⌈log2 ℓ′(k)⌉ = k −
2b(k) + 1. Associate {0, 1}n with the n-dimensional vector space over GF(2), and
let v1, ..., vℓ′(k) be fixed distinct vectors in the m(k)-dimensional vector space over

GF(2). For s ∈ {0, 1}b(k)+m(k)−1 and r ∈ {0, 1}b(k), let

G(s, r)
def
= (Tsv1 + r , Tsv2 + r , ..., Tsvℓ′(k) + r) (5.3)

3In the common presentation of this pairwise independence generator, the length of the seed is
determined as a function of the desired block-length and stretch. That is, given the parameters b
and ℓ′, the seed length is set to 2b + ⌈log2 ℓ′⌉ − 1.
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where Ts is a b(k)-by-m(k) Toeplitz matrix specified by the string s. Then, G is a
pairwise independence generator of block-length b and stretch ℓ.

That is, given a seed that represents an affine transformation defined by a b(k)-
by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs a
sequence of ℓ′(k) ≤ 2m(k) strings, each of length b(k). Note that k = 2b(k)+m(k)−1,
and that the stretching property requires ℓ′(k) > k/b(k). The proof of Proposition 5.2
is left as an exercise (see Exercise 5.3). This proof is also based on the observation
that linear independence of certain expressions yields statistical independence of the
corresponding random variables: here {G(s, r)ij = vj}2j=1 is a system of 2b(k) linear
equations over GF(2) (in Boolean variables representing the bits of s and r) such that
the equations are linearly-independent. We mention that a construction analogous
to Eq. (5.3) works for every finite field.

A stronger notion of efficient generation. Ignoring the issue of finding a rep-
resentation for a large finite field, both the foregoing constructions are efficient in
the sense that the generator’s output can be produced in time that is polynomial in
its length. Actually, the aforementioned constructions satisfy a stronger notion of
efficient generation, which is useful in several applications. Specifically, there exists
a polynomial-time algorithm that given a seed, s ∈ {0, 1}k, and a block location
i ∈ [ℓ′(k)] (in binary), outputs the ith block of the corresponding output (i.e., the
ith block of G(s)). Note that, in the case of the first construction (captured by
Eq. (5.2)), this stronger notion depends on the ability to find a representation of
GF(2b(k)) in poly(k)-time.4 Recall that this is possible in the case that b(k) is of the
form 2 · 3e.

5.1.2 A taste of the applications

Pairwise independence generators do suffice for a variety of applications (cf., [72]).
Many of these applications are based on the fact that “Laws of Large Numbers” hold
for sequences of trials that are pairwise independent (rather than totally indepen-
dent). This fact stems from the application of Chebyshev’s Inequality, and is the
basis of the (rather generic) application to (“pairwise independent”) sampling. As a
concrete example, we mention the derandomization of a fast parallel algorithm for
the Maximal Independent Set problem (as presented in [47, Sec. 12.3]).5 In general,
whenever the analysis of a randomized algorithm only relies on the hypothesis that
some objects are distributed in a pairwise independent manner, we may replace its
random choices by a sequence of choices that is generated by a pairwise independence
generator. Thus, pairwise independence generators suffice for fooling distinguishers
that are derived from some natural and interesting randomized algorithms.

Referring to Eq. (5.2), we remark that, for any constant t ≥ 2, the cost of
derandomization (i.e., going over all 2k possible seeds) is exponential in the block-
length (because b(k) = k/t). On the other hand, the number of blocks is at most

4For the basic notion of efficiency, it suffices to find a representation of GF(2b(k)) in poly(ℓ(k))-
time, which can be done by an exhaustive search in the case that b(k) = O(log ℓ(k)).

5The core of this algorithm is picking each vertex with probability that is inversely proportional
to the vertex’s degree. The analysis only requires that these choices be pairwise independent.
Furthermore, these choices can be (approximately) implemented by uniformly selecting values in a
sufficiently large set.
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exponential in the block-length (because ℓ′(k) ≤ 2b(k)), and so if a larger number
of blocks is needed, then we can artificially increase the block-length in order to
accommodate this (i.e., set b(k) = log2 ℓ′(k)). Thus, the cost of derandomization is
polynomial in max(ℓ′(k), 2b′(k)), where ℓ′(k) denotes the desired number of blocks and
b′(k) the desired block-length. (In other words, ℓ′(k) denotes the desired number of
random choices, and 2b′(k) represents the size of the domain of each of these choices.)
It follows that whenever the analysis of a randomized algorithm can be based on a
constant amount of independence between feasibly-many random choices, each taken
within a domain of feasible size, then a feasible derandomization is possible.

5.2 Small-Bias Generators

As stated in Section 5.1.2, O(1)-wise independence generators allow for the efficient
derandomization of any efficient randomized algorithm the analysis of which is only
based on a constant amount of independence between the bits of its random-tape.
This restriction is due to the fact that t-wise independence generators of stretch ℓ
require a seed of length Ω(t · log ℓ). Trying to go beyond constant-independence in
such derandomizations (while using seeds of length that is logarithmic in the length of
the pseudorandom sequence) was the original motivation of the notion of small-bias
generators. Specifically, as we shall see in Section 5.2.2, small-bias generators yield
meaningful approximations of t-wise independence sequences (based on logarithmic-
length seeds).

While the aforementioned type of derandomizations remains an important ap-
plication of small-bias generators, the latter are of independent interest and have
found numerous other applications. In particular, small-bias generators fool “global
tests” that examine the entire output sequence and not merely a fixed number of
positions in it (as in the case of limited independence generators). Specifically, a
small-bias generator produces a sequence of bits that fools any linear test (i.e., a test
that computes a fixed linear combination of the bits).

For ε :N→ [0, 1], an ε-bias generator with stretch function ℓ is a relatively efficient
deterministic algorithm (e.g., working in poly(ℓ(k))-time) that expands a k-bit long
random seed into a sequence of ℓ(k) bits such that for any fixed non-empty set
S ⊆ {1, ..., ℓ(k)} the bias of the output sequence over S is at most ε(k). The bias

of a sequence of n (possibly dependent) Boolean random variables ζ1, ..., ζn ∈ {0, 1}
over a set S ⊆ {1, ..., n} is defined as

2 ·
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(5.4)

The factor of 2 was introduced to make these biases correspond to the Fourier coeffi-
cients of the distribution (viewed as a function from {0, 1}n to the reals). To see the
correspondence replace {0, 1} by {±1}, and substitute xor by multiplication. The
bias with respect to a set S is thus written as
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,

(5.5)

which is merely the (absolute value of the) Fourier coefficient corresponding to S.
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5.2.1 Constructions

Relatively efficient small-bias generators with exponential stretch and exponentially
vanishing bias are known.

Theorem 5.3 (small-bias generators):6 For some universal constant c > 0, let ℓ :
N→N and ε :N→ [0, 1] such that ℓ(k) ≤ ε(k) · exp(k/c). Then, there exists an ε-bias
generator with stretch function ℓ operating in time that is polynomial in the length
of its output.

In particular, we may have ℓ(k) = exp(k/2c) and ε(k) = exp(−k/2c). Four simple
constructions of small-bias generators that satisfy Theorem 5.3 are known (see [5]
and [66, Sec. 3.4]). One of these constructions is based on Linear Feedback Shift
Registers (LFSRs), where the seed of the generator is used to determine both the
“feedback rule” and the “start sequence” of the LFSR. Specifically, a feedback rule of a
t-long LFSR is an irreducible polynomial of degree t over GF(2), denoted f(x) = xt+∑t−1

j=0 fjx
j where f0 = 1, and the (ℓ-bit long) sequence produced by the corresponding

LFSR based on the start sequence s0s1 · · · st−1 ∈ {0, 1}t is defined as r0r1 · · · rℓ−1,
where

ri =

{
si if i ∈ {0, 1, ..., t− 1},∑t−1

j=0 fj · ri−t+j if i ∈ {t, t + 1, ..., ℓ− 1} (5.6)

(see Figure 5.2). As stated previously, in the corresponding small-bias generator the
k-bit long seed is used for selecting an almost uniformly distributed feedback rule f
(i.e., a random irreducible polynomial of degree t = k/2) and a uniformly distributed
start sequence s (i.e., a random t-bit string).7 The corresponding ℓ(k)-bit long output
r = r0r1 · · · rℓ(k)−1 is computed as in Eq. (5.6).

r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 5.2: The LFSR small-bias generator (for t = k/2).

6In the common presentation of this generator, the length of the seed is determined as a function
of the desired bias and stretch. That is, given the parameters ε and ℓ, the seed length is set to
c · log(ℓ/ε). We comment that using [5] the constant c is merely 2 (i.e., k ≈ 2 log2(ℓ/ε)), whereas
using [48] k ≈ log2 ℓ + 4 log2(1/ε).

7Note that an implementation of this generator requires an algorithm for selecting an almost
random irreducible polynomial of degree t = Ω(k). A simple algorithm proceeds by enumerating
all irreducible polynomials of degree t, and selecting one of them at random. This algorithm can
be implemented (using t random bits) in exp(t)-time, which is poly(ℓ(k)) if ℓ(k) = exp(Ω(k)). A
poly(t)-time algorithm that uses O(t) random bits is described in [5, Sec. 8].
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A stronger notion of efficient generation. As in Section 5.1.1, we note that the
aforementioned constructions satisfy a stronger notion of efficient generation, which
is useful in several applications. That is, there exists a polynomial-time algorithm
that given a k-bit long seed and a bit location i ∈ [ℓ(k)] (in binary), outputs the ith

bit of the corresponding output. (For details, see Exercise 5.10.)

5.2.2 A taste of the applications

An archetypical application of small-bias generators is for producing short and ran-
dom “fingerprints” (or “digests”) of strings such that equality and inequality among
strings is (probabilistically) reflected in equality and inequality between their corre-
sponding fingerprints. The key observation is that checking whether or not x = y is
probabilistically reducible to checking whether the inner product modulo 2 of x and
r equals the inner product modulo 2 of y and r, where r is produced by a small-bias
generator G. Thus, the pair (s, v), where s is a random seed to G and v equals the
inner product modulo 2 of z and G(s), serves as the randomized fingerprint of the
string z. One advantage of this reduction is that only a few bits (i.e., the seed of the
generator and the result of the inner product) need to be “communicated between
x and y” in order to enable the checking (see Exercise 5.6). A related advantage is
the low randomness complexity of this reduction, which uses |s| rather than |G(s)|
random bits, where |s|may be O(log |G(s)|). This low (i.e., logarithmic) randomness-
complexity underlies the application of small-bias generators to the construction of
PCP systems and amplifying reductions of gap problems regarding the satisfiability
of systems of equations (see, e.g., [24, Exer. 10.6]).

Small-bias generators have been used in a variety of areas (e.g., inapproxima-
tion, structural complexity, and applied cryptography; see the references in [21,
Sec. 3.6.2]). In addition, as shown next, small-bias generators seem an important
tool in the design of various types of “pseudorandom” objects.

Approximate independence generators. As hinted at the beginning of this
section, small-bias is related to approximate versions of limited independence.8 Ac-
tually, as implied by Exercise 5.7, even a restricted type of ε-bias (in which only
subsets of size t(k) are required to have bias upper-bounded by ε) implies that any
t(k) bits in the said sequence are 2t(k)/2 · ε(k)-close to Ut(k), where here we refer
to the variation distance (i.e., L1-Norm distance) between the two distributions.
(The max-norm of the difference is bounded by ε(k).)9 Combining Theorem 5.3
and the foregoing upper-bound, we obtain generators with exponential stretch (i.e.,
ℓ(k) = exp(Ω(k))) that produce sequences that are approximately Ω(k)-wise indepen-
dent in the sense that any t(k) = Ω(k) bits in them are 2−Ω(k)-close to Ut(k). Thus,
whenever the analysis of a randomized algorithm can be based on a logarithmic
amount of (almost) independence between feasibly-many binary random choices, a
feasible derandomization is possible (by using an adequate generator of logarithmic
seed length).10

8We warn that, unlike in the case of perfect independence, here we refer only to the distribution
on fixed bit locations. See Exercise 5.5 for further discussion.

9Both bounds are derived from the L2-Norm bound on the difference vector (i.e., the difference
between the two probability vectors). For details, see Exercise 5.7.

10Furthermore, as shown in Exercise 5.14, relying on the linearity of the construction presented in
Proposition 5.1, we can obtain generators with double-exponential stretch (i.e., ℓ(k) = exp(2Ω(k)))
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Extensions to non-binary choices were considered in various works (see refer-
ences in [21, Sec. 3.6.2]). Some of these works also consider the related problem of
constructing small “discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-
norm (of the deviation from uniform of any t locations), any ε-bias generator yields
a t-universal set generator, provided that ε < 2−t. The latter generator outputs
sequences such that in every subsequence of length t all possible 2t patterns occur
(i.e., each for at least one possible seed). Such generators have many applications.

5.2.3 Generalization

In this section, we outline a generalization of the treatment of small-bias generators
to the generation of sequences over an arbitrary finite field. Focusing on the case of a
field of prime cardinality, denoted GF(p), we first define an adequate notion of bias.
Generalizing Eq. (5.5), we define the bias of a sequence of n (possibly dependent)
random variables ζ1, ..., ζn ∈ GF(p) with respect to the linear combination (c1, ..., cn) ∈
GF(p)n as

∥∥E
[
ω

Pn
i=1 ciζi

]∥∥, where ω denotes the pth (complex) root of unity (i.e.,
ω = −1 if p = 2). Referring to Exercise 5.16, we note that upper-bounds on the biases
of ζ1, ..., ζn (with respect to any non-zero linear combinations) yield upper-bounds
on the distance of

∑n
i=1 ciζi from the uniform distribution over GF(p).

We say that S ⊆ GF(p)n is an ε-bias probability space if a uniformly selected
sequence in S has bias at most ε with respect to any non-zero linear combination
over GF(p). (Whenever such a space is efficiently constructible, it yields a corre-
sponding ε-biased generator.) We mention that the LFSR construction, outlined in
Section 5.2.1 and analyzed in Exercise 5.9, generalizes to GF(p) and yields an ε-bias
probability space of size (at most) p2e, where e = ⌈logp(n/ε)⌉. Such constructions
can be used in applications that generalize those in Section 5.2.2.

A different generalization. Recalling that small-bias generators fool all linear
tests, we consider generators that fool any test that can be represented by a poly-
nomial of degree d. It was recently proved that taking the sum of d independently
distributed outputs produced by a small-bias generator (on d independently chosen
seeds) yields a sequence that fools all degree d tests [70]. (Interestingly, this sequence
may not fool all polynomials of degree d + 1; see [66].)

5.3 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a
random walk on a large graph that has a small degree but an adequate “mixing”
property (in the sense that a random walk of logarithmic length that starts at any
fixed vertex reaches an almost uniformly distributed vertex). Such a graph is called
an expander, and by taking a random walk (of length ℓ′) on it we generate a sequence

that are approximately t(k)-independent (in the foregoing sense). That is, we may obtain generators

with stretch ℓ(k) = 22Ω(k)
producing bit sequences in which any t(k) = Ω(k) positions have variation

distance at most ε(k) = 2−Ω(k) from uniform; in other words, such generators may have seed-length
k = O(t(k) + log(1/ε(k)) + log log ℓ(k)). In the corresponding result for the max-norm distance, it
suffices to have k = O(log(t(k)/ε(k)) + log log ℓ(k)).
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of ℓ′ values over its vertex set, while using a random seed of length b+(ℓ′−1) · log2 d,
where 2b denotes the number of vertices in the graph and d denotes its degree. This
seed length should be compared against the ℓ′ ·b random bits required for generating a
sequence of ℓ′ independent samples from {0, 1}b (or taking a random walk on a clique
of size 2b). Interestingly, as we shall see, the pseudorandom sequence (generated by
the said random walk on an expander) behaves similarly to a truly random sequence
with respect to hitting any dense subset of {0, 1}b. Let us start by defining this
property (or rather by defining the corresponding hitting problem).

Definition 5.4 (the hitting problem): A sequence of (possibly dependent) random
variables, denoted (X1, ..., Xℓ′), over {0, 1}b is (ε, δ)-hitting if for any (target) set
T ⊆ {0, 1}b of cardinality at least ε · 2b, with probability at least 1− δ, at least one of
these variables hits T ; that is, Pr[∃i s.t. Xi∈T ] ≥ 1− δ.

Clearly, a truly random sequence of length ℓ′ over {0, 1}b is (ε, δ)-hitting for δ =
(1 − ε)ℓ′ . The aforementioned “expander random walk generator” (to be described
next) achieves similar behavior.11 Specifically, for arbitrary small c > 0 (which
depends on the degree and the mixing property of the expander), the generator’s
output is (ε, δ)-hitting for δ = (1− (1− c) · ε)ℓ′ . To describe this generator, we need
to discuss expanders.

5.3.1 Background: expanders and random walks on them

By expander graphs (or expanders) of degree d and eigenvalue bound λ < d, we
actually mean an infinite family of d-regular12, graphs, {GN}N∈S (S ⊆ N), such that
GN is a d-regular graph over N vertices and the absolute value of all eigenvalues, save
the biggest one, of the adjacency matrix of GN is upper-bounded by λ. For simplicity,
we shall assume that the vertex set of GN is [N ] (although in some constructions
a somewhat more redundant representation is more convenient). We will refer to
such a family as a (d, λ)-expander (for S). This technical definition is related to the
aforementioned notion of “mixing” (which refers to the rate at which a random walk
starting at a fixed vertex reaches uniform distribution over the graph’s vertices).

We are interested in explicit constructions of such graphs, by which we mean that
there exists a polynomial-time algorithm that on input N (in binary), a vertex v in
GN and an index i ∈ {1, ..., d}, returns the ith neighbor of v. (We also require that
the set S for which GN ’s exist is sufficiently “tractable” – say, that given any n ∈ N

one may efficiently find an s∈S such that n ≤ s < 2n.) Several explicit constructions
of expanders are known (cf., e.g., [44, 43, 57]). Below, we rely on the fact that for
every λ > 0, there exist d and an explicit construction of a (d, λ · d)-expander over
{2b : b ∈ N}.13 The relevant (to us) fact about expanders is stated next.

Theorem 5.5 (Expander Random Walk Theorem): Let G = (V, E) be an expander
graph of degree d and eigenvalue bound λ. Consider taking a random walk on G by
uniformly selecting a start vertex and taking ℓ′−1 additional random steps such that

11We comment that other pseudorandom generators that were considered in this text also exhibit
hitting properties; see Exercise 5.17.

12A graph is called d-regular if each of its vertices has exactly d neighbors.
13This can be obtained with d = poly(1/λ). In fact, d = O(1/λ

2
), which is optimal, can be

obtained too, albeit with graphs of sizes that are only approximately powers of two.
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at each step the walk uniformly selects an edge incident at the current vertex and

traverses it. Then, for any W ⊆ V and ρ
def
= |W |/|V |, the probability that such a

random walk stays in W is at most

ρ ·
(

ρ + (1 − ρ) · λ
d

)ℓ′−1

. (5.7)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting
property (i.e., when we consider hitting the set V \W and use ε = 1 − ρ); that is,
a set of density ε is hit with probability at least 1− δ, where δ = (1 − ε) · (1 − ε +
(λ/d) · ε)ℓ′−1 < (1− (1− (λ/d)) · ε)ℓ′ . A proof of Theorem 5.5 is given in [36], while
a proof of an upper-bound that is weaker than Eq. (5.7) is outlined next.

A weak version of the Expander Random Walk Theorem: Using notation
as in Theorem 5.5, we claim that the probability that a random walk of length ℓ′ stays
in W is at most (ρ + (λ/d)2)ℓ′/2. In fact, we make a more general claim that refers
to the probability that a random walk of length ℓ′ intersects W0×W1× · · ·×Wℓ′−1.
The claimed upper-bound is

√
ρ0 ·

ℓ′−1∏

i=1

√
ρi + (λ/d)

2
, (5.8)

where ρi
def
= |Wi|/|V |. In order to prove Eq. (5.8), we view the random walk as the

evolution of a corresponding probability vector under suitable transformations. The
transformations correspond to taking a random step in the graph and to passing
through a “sieve” that keeps only the entries that correspond to the current set
Wi. The key observation is that the first transformation shrinks the component
that is orthogonal to the uniform distribution, whereas the second transformation
shrinks the component that is in the direction of the uniform distribution. (See
Exercise 5.18.)

5.3.2 The generator

Using Theorem 5.5 and an explicit (2t, λ · 2t)-expander, we obtain a generator that
produces sequences that are (ε, δ)-hitting for δ that is almost optimal.

Proposition 5.6 (The Expander Random Walk Generator):14 For every constant
λ > 0, consider an explicit construction of (2t, λ·2t)-expanders for {2n : n∈N}, where
t∈N is a sufficiently large constant. For v ∈ [2n] ≡ {0, 1}n and i ∈ [2t] ≡ {0, 1}t,
denote by Γi(v) the vertex of the corresponding 2n-vertex graph that is reached from
vertex v when following its ith edge. For b, ℓ′ :N→N such that k = b(k)+(ℓ′(k)−1)·t <
ℓ′(k) · b(k), and for v0 ∈ {0, 1}b(k) and i1, ..., iℓ′(k)−1 ∈ [2t], let

G(v0, i1, ...., iℓ′(k)−1)
def
= (v0, v1, ...., vℓ′(k)−1), (5.9)

where vj = Γij (vj−1). Then, G has stretch ℓ(k) = ℓ′(k) · b(k), and G(Uk) is (ε, δ)-

hitting for any ε > 0 and δ = (1 − (1− λ) · ε)ℓ′(k).

14In the common presentation of this generator, the length of the seed is determined as a function
of the desired block-length and stretch. That is, given the parameters b and ℓ′, the seed length is
set to b + (ℓ′ − 1) · t.
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The stretch of G is maximized at b(k) ≈ k/2 (and ℓ′(k) = k/2t), but maximizing
the stretch is not necessarily the goal in all applications. In many applications,
the parameters n, ε and δ are given, and the goal is to derive a generator that
produces (ε, δ)-hitting sequences over {0, 1}n while minimizing both the length of the
sequence and the amount of randomness used by the generator (i.e., the seed length).
Indeed, Proposition 5.6 suggests using sequences of length ℓ′ ≈ ε−1 log2(1/δ) that
are generated based on a random seed of length n + O(ℓ′).

Expander random-walk generators have been used in a variety of areas (e.g., PCP
and inapproximability (see [10, Sec. 11.1]), cryptography (see [22, Sec. 2.6]), and the
design of various types of “pseudorandom” objects.

Notes

The various generators presented in Chapter 5 were not inspired by any of the other
types of pseudorandom generator (nor even by the generic notion of pseudorandom-
ness). Pairwise independence generators were explicitly suggested in [15] (and are
implicit in [13]). The generalization to t-wise independence (for t ≥ 2) is due to [4].
Small-bias generators were first defined and constructed by Naor and Naor [48], and
three simple constructions were subsequently given in [5]. The Expander Random
Walk Generator was suggested by Ajtai, Komlos, and Szemerédi [2], who discovered
that random walks on expander graphs provide a good approximation to repeated
independent attempts to hit any fixed subset of sufficient density (within the vertex
set). The analysis of the hitting property of such walks was subsequently improved,
culminating in the bound cited in Theorem 5.5, which is taken from [36, Cor. 6.1].

Exercises

Exercise 5.1 (adaptive t-wise independence tests) Recall that a generator G :
{0, 1}k → {0, 1}ℓ′(k)·b(k) is called t-wise independent if for any t fixed block positions,
the distribution G(Uk) restricted to these t blocks is uniform over {0, 1}t·b(k). Prove
that the output of a t-wise independence generator is (perfectly) indistinguishable
from the uniform distribution by any test that examines t of the blocks, even if
the examined blocks are selected adaptively (i.e., the location of the ith block to be
examined is determined based on the contents of the previously inspected blocks).

Guideline: First show that, without loss of generality, it suffices to consider deterministic

(adaptive) testers. Next, show that the probability that such a tester sees any fixed sequence

of t values at the locations selected adaptively (in the generator’s output) equals 2−t·b(k),

where b(k) is the block-length.

Exercise 5.2 (a t-wise independence generator) Prove that G as defined in
Proposition 5.1 produces a t-wise independent sequence over GF(2b(k)).

Guideline: For every t fixed sequence of indices i1, ..., it ∈ [ℓ′(k)], consider the distribution

of G(Uk)i1,...,it (i.e., the projection of G(Uk) on locations i1, ..., it). Show that for every

sequence of t possible values v1, ..., vt ∈ GF(2b(k)), there exists a unique seed s ∈ {0, 1}k

such that G(s)i1,...,it = (v1, ..., vt).
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Exercise 5.3 (pairwise independence generators) As a warm-up, consider a
construction analogous to the one in Proposition 5.2, except that here the seed spec-
ifies an arbitrary affine b(k)-by-m(k) transformation. That is, for s ∈ {0, 1}b(k)·m(k)

and r ∈ {0, 1}b(k), where k = b(k) ·m(k) + b(k), let

G(s, r)
def
= (Asv1 + r , Asv2 + r , ..., Asvℓ′(k) + r) (5.10)

where As is a b(k)-by-m(k) matrix specified by the string s. Show that G as in
Eq. (5.10) is a pairwise independence generator of block-length b and stretch ℓ. Next,
show that G as in Eq. (5.3) is a pairwise independence generator of block-length b
and stretch ℓ.

Guideline: The following description applies to both constructions. First note that for

every fixed i ∈ [ℓ′(k)], the ith element in the sequence G(Uk), denoted G(Uk)i, is uniformly

distributed in {0, 1}b(k). Actually, show that for every fixed s ∈ {0, 1}k−b(k), it holds that

G(s, Ub(k))i is uniformly distributed in {0, 1}b(k). Next note that it suffices to show that,

for every j 6= i, conditioned on the value of G(Uk)i, the value of G(Uk)j is uniformly

distributed in {0, 1}b(k). The key technical detail is showing that, for any non-zero vector

v ∈ {0, 1}m(k) and a uniformly selected s ∈ {0, 1}k−b(k), it holds that Asv (resp., Tsv) is

uniformly distributed in {0, 1}b(k). This is easy in case of a random b(k)-by-m(k) matrix,

and can be proven also for a random Toeplitz matrix.

Exercise 5.4 In continuation of the warm-up of Exercise 5.3, consider the following
construction (which appears in the proof of Theorem 2.11; see Appendix C). For
t > 1, let b(k) = k/t, and consider the mapping of (s1, ..., st) ∈ {0, 1}t·b(k) to (rJ ) ∈
{0, 1}(2t−1)·b(k) , where the J ’s range over all non-empty subsets of {1, 2, ..., t} and

rJ def
=

⊕
j∈J sj. Prove that G is a pairwise independence generator of block-length b

and stretch ℓ(k) = 2t−1
t · k.

Guideline: For J 6= J ′, it holds that rJ ⊕ rJ′

=
L

j∈K sj , where K denotes the symmetric

difference of J and J ′.

Exercise 5.5 (adaptive t-wise independence tests, revisited) Prove that, in
contrast to Exercise 5.1, with respect to non-perfect indistinguishability, there is a
discrepancy between adaptive and non-adaptive tests that inspect t locations.

1. Specifically, present a distribution over 2t−1-bit long strings in which every t
fixed bit positions are t ·2−t-close to uniform, but there exists a test that adap-
tively inspects t positions and distinguishes this distribution from the uniform
one with gap of 1/2.

Guideline: Modify the uniform distribution over ((t − 1) + 2t−1)-bit long strings

such that the first t − 1 locations indicate a bit position (among the rest) that is set

to zero.

2. On the other hand, prove that if every t fixed bit positions in a distribution X
are ε-close to uniform, then every test that adaptively inspects t positions can
distinguish X from the uniform distribution with gap at most 2t · ε.
Guideline: See Exercise 5.1.
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Exercise 5.6 Suppose that G is an ε-bias generator with stretch ℓ. Show that
equality between the ℓ(k)-bit strings x and y can be probabilistically checked (with
error probability (1 + ε)/2) by comparing the inner product modulo 2 of x and G(s)
to the inner product modulo 2 of y and G(s), where s ∈ {0, 1}k is selected uniformly.
Note that this method is a randomness-efficient approximation of comparing the
inner product modulo 2 of x and r to the inner product modulo 2 of y and r, where
r ∈ {0, 1}ℓ(k) is selected uniformly.
(Hint: Consider the special case in which y = 0ℓ(k).)

Exercise 5.7 (bias vs. statistical difference from uniform) Let X be a ran-
dom variable assuming values in {0, 1}t. Prove that if X has bias at most ε over any
non-empty set then the statistical difference between X and Ut is at most 2t/2 · ε,
and that for every x ∈ {0, 1}t it holds that Pr[X = x] = 2−t ± ε.

Guideline: Consider the probability function p : {0, 1}t → [0, 1] defined by p(x)
def
= Pr[X =

x], and let δ(x)
def
= p(x) − 2−t denote the deviation of p from the uniform probability

function. Viewing the set of real functions over {0, 1}t as a 2t-dimensional vector space,

consider two orthonormal bases for this space. The first basis consists of the (Kroniker)

functions {kα}α∈{0,1}t such that kα(x) = 1 if x = α and kα(x) = 0 otherwise. The second

basis consists of the (normalized Fourier) functions {fS}S⊆[t] defined by fS(x1 · · ·xt)
def
=

2−t/2
Q

i∈S(−1)xi (where f∅ ≡ 2−t/2).15 Note that the bias of X over any S 6= ∅ equals

|P
x p(x) ·2t/2fS(x)|, which in turn equals 2t/2|P

x δ(x)fS(x)|. Thus, for every S (including

the empty set), we have |P
x δ(x)fS(x)| ≤ 2−t/2ε, which means that the representation of

δ in the normalized Fourier basis is by coefficients that have each an absolute value of at

most 2−t/2ε. It follows that the L2-Norm of this vector of coefficients is upper-bounded

by
p

2t · (2−t/2ε)2 = ε, and the two claims follow by noting that they refer to norms of δ

according to the Kroniker basis. In particular, the L2-Norm is preserved under orthonormal

bases, the max-norm is upper-bounded by the L2-Norm, and the L1-Norm is upper-bounded

by
√

2t times the value of the L2-Norm.

Exercise 5.8 (on the existence of (non-explicit) small-bias generators)
Prove that, for k = log2(ℓ(k)/ε(k)2) + O(1), there exists a function G : {0, 1}k →
{0, 1}ℓ(k) such that G(Uk) has bias at most ε(k) over any non-empty subset of [ℓ(k)].

Guideline: Use the Probabilistic Method as in Exercise 1.3.

Exercise 5.9 (The LFSR small-bias generator (following [5])) Using the fol-
lowing guidelines (and letting t = k/2), analyze the construction outlined following
Theorem 5.3 (and depicted in Figure 5.2):

1. Prove that ri equals
∑t−1

j=0 c
(f,i)
j · sj , where c

(f,i)
j is the coefficient of zj in the

(degree t− 1) polynomial obtained by reducing zi modulo the polynomial f(z)

(i.e., zi ≡∑t−1
j=0 c

(f,i)
j zj (mod f(z))).

Guideline: Recall that zt ≡ Pt−1
j=0 fjz

j (mod f(z)), and thus for every i ≥ t

it holds that zi ≡ Pt−1
j=0 fjz

i−t+j (mod f(z)). Note the correspondence to ri =Pt−1
j=0 fj · ri−t+j.

15Verify that both bases are indeed orthogonal (i.e.,
P

x kα(x)kβ(x) = 0 for every α 6= β and
P

x fS(x)fT (x) = 0 for every S 6= T ) and normal (i.e.,
P

x kα(x)2 = 1 and
P

x fS(x)2 = 1).
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2. For any non-empty S ⊆ {0, ..., ℓ(k) − 1}, evaluate the bias of the sequence
r0, ..., rℓ(k)−1 over S, where f is a random irreducible polynomial of degree t
and s = (s0, ..., st−1) ∈ {0, 1}t is uniformly distributed. Specifically:

(a) For a fixed f and random s ∈ {0, 1}t, prove that
∑

i∈S ri has non-zero
bias if and only if f(z) divides

∑
i∈S zi.

(Hint: Note that
P

i∈S ri =
Pt−1

j=0

P

i∈S c
(f,i)
j sj , and use Item 1.)

(b) Prove that the probability that a random irreducible polynomial of degree
t divides

∑
i∈S zi is Θ(ℓ(k)/2t).

(Hint: A polynomial of degree n can be divided by at most n/d different irreducible

polynomials of degree d. On the other hand, the number of irreducible polynomials of

degree d over GF(2) is Θ(2d/d).)

Conclude that for random f and s, the sequence r0, ..., rℓ(k)−1 has bias O(ℓ(k)/2t).

Note that an implementation of the LFSR generator requires a mapping of random
k/2-bit long string to almost random irreducible polynomials of degree k/2. Such a
mapping can be constructed in exp(k)-time, which is poly(ℓ(k)) if ℓ(k) = exp(Ω(k)).
A more efficient mapping that uses a O(k)-bit long seed is described in [5, Sec. 8].

Exercise 5.10 Show that the LFSR small-bias generator, depicted in Figure 5.2 sat-
isfies a stronger notion of efficient generation; specifically, there exists a polynomial-
time algorithm that given a k-bit long seed and a bit location i ∈ [ℓ(k)] (in binary),
outputs the ith bit of the corresponding output.

Guideline: The assertion is based on the fact that when this generator is fed with seed
(f0, ..., f(k/2)−1, s0, ..., s(k/2)−1), its output sequence (r0, r1, ...., rℓ(k)) satisfies
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Exercise 5.11 (limitations on small-bias generators) Let G be an ε-bias gen-
erator with stretch ℓ, and view G as a mapping from GF(2)k to GF(2)ℓ(k). As such,
each bit in the output of G can be viewed as a polynomial16 in the k input variables
(each ranging in GF(2)). Prove that if ε(k) < 1 and each of these polynomials has

total degree at most d, then ℓ(k) ≤∑d
i=1

(
k
i

)
. Derive the following corollaries:

1. If ε(k) < 1, then ℓ(k) < 2k (regardless of d).17

16Recall that every Boolean function over GF(p) can be expressed as a polynomial of individual

degree at most p − 1.
17This upper-bound is optimal, because (efficient) ε-bias generators of stretch ℓ(k) = poly(ε(k)) ·

2k do exist (see [48]).
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2. If ε(k) < 1 and ℓ(k) > k, then G cannot be a linear transformation.18

Guideline (for the main claim): Note that, without loss of generality, all the aforemen-

tioned polynomials have a free term equal to zero (and have individual degree at most 1 in

each variable). Next, consider the vector space spanned by all d-monomials over k variables

(i.e., monomials having at most d variables). Since ε(k) < 1, the polynomials representing

the output bits of G must correspond to a sequence of independent vectors in this space.

Exercise 5.12 (a sanity check for space-bounded pseudorandomness) The
following fact is suggested as a sanity check for candidate pseudorandom generators
with respect to space-bounded automata. The fact (to be proven as an exercise) is
that, for every ε(·) and s(·) such that s(k) ≥ 1 for every k, if G is (s, ε)-pseudorandom
(as per Definition 4.1), then G is an ε-bias generator.

Exercise 5.13 In contrast to Exercise 5.12, prove that there exist exp(−Ω(n))-bias
distributions over {0, 1}n that are not (2, 0.666)-pseudorandom.

Guideline: Show that the uniform distribution over the set
(

σ1 · · ·σn :
nX

i=1

σi ≡ 0 (mod 3)

)

has bias exp(−Ω(n)). An alternative construction appears in [66, Sec. 3.5].

Exercise 5.14 (approximate t-wise independence generators (cf. [48]))
Combining a small-bias generator as in Theorem 5.3 with the t-wise independence
generator of Eq. (5.2), and relying on the linearity of the latter, construct a generator
producing ℓ-bit long sequences in which any t positions are at most ε-away from
uniform (in variation distance), while using a seed of length O(t+log(1/ε)+log log ℓ).
(For max-norm a seed of length O(log(t/ε) + log log ℓ) suffices.)

Guideline: First note that, for any t, ℓ′ and b ≥ log2 ℓ′, the transformation of Eq. (5.2)

can be implemented by a fixed linear (over GF(2)) transformation of a t · b-bit seed into

an ℓ-bit long sequence, where ℓ = ℓ′ · b. It follows that, for b = log2 ℓ′, there exists a fixed

GF(2)-linear transformation T of a random seed of length t · b into a t-wise independent

bit sequence of the length ℓ (i.e., T Ut·b is t-wise independent over {0, 1}ℓ). Thus, every

t rows of T are linearly independent. The key observation is that when we replace the

aforementioned random seed by an ε′-bias sequence, every set of i ≤ t positions in the

output sequence has bias at most ε′ (because they define a non-zero linear test on the bits

of the ε′-bias sequence). Note that the length of the new seed (used to produce ε′-bias

sequence of length t · b) is O(log tb/ε′). Applying Exercise 5.7, we conclude that any t

positions are at most 2t/2 · ε′-away from uniform (in variation distance). Recall that this

was obtained using a seed of length O(log(t/ε′) + log log ℓ), and the claim follows by using

ε′ = 2−t/2 · ε.

Exercise 5.15 (small-bias generator and error-correcting codes) Show a cor-
respondence between ε-bias generators of stretch ℓ and binary linear error-correcting

18In contrast, bilinear ε-bias generators (i.e., with ℓ(k) > k) do exist; for example, G(s) = (s, b(s)),

where b(s1, ..., sk) =
Pk/2

i=1 sis(k/2)+i mod 2, is an ε-bias generator with ε(k) = exp(−Ω(k)). (Hint:
Focusing on bias over sets that include the last output bit, prove that, without loss of generality, it
suffices to analyze the bias of b(Uk).)
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codes mapping ℓ(k)-bit long strings to 2k-bit long strings such that every two code-
words are at distance (1± ε(k)) · 2k−1 apart.

Guideline: Associate {0, 1}k with [2k]. Then, a generator G : [2k] → {0, 1}ℓ(k) corresponds

to the code C : {0, 1}ℓ(k) → {0, 1}2k

such that, for every i ∈ [ℓ(k)] and j ∈ [2k], the ith bit

of G(j) equals the jth bit of C(0i−110ℓ(k)−i).

Exercise 5.16 (on the bias of sequences over a finite field) For a prime p, let

ζ be a random variable assigned values in GF(p) and δ(v)
def
= Pr[ζ = v]−(1/p). Prove

that maxv∈GF(p){|δ(v)|} is upper-bounded by b
def
= maxc∈{1,...,p−1}{‖E[ωcζ]‖}, where

ω denotes the pth (complex) root of unity, and that
∑

v∈GF(p) |δ(v)| is upper-bounded
by
√

p · b.
Guideline: Analogously to Exercise 5.7, view probability distributions over GF(p) as p-

dimensional vectors, and consider two bases for the set of complex functions over GF(p):

the Kroniker basis (i.e., ki(x) = 1 if x = i and ki(x) = 0) and the (normalized) Fourier

basis (i.e., fi(x) = p−1/2 · ωix). Note that the biases of ζ correspond to the inner products

of δ with the non-constant Fourier functions, whereas the distances of ζ from the uniform

distribution correspond to the inner products of δ with the Kroniker functions.

Exercise 5.17 (other pseudorandom generators and the hitting problem)
Show that various pseudorandom generators yield solutions to the hitting problem
(as defined in Definition 5.4). Specifically:

1. Show that a pairwise independence generator of block-length b and stretch ℓ
yields a sequence over {0, 1}b that is (ε, δ)-hitting for δ = O(1/εℓ′), where
ℓ′ = ℓ/b.

Advanced exercise: Show that when using t-wise independence. the error
bound can be reduced to δ = O(t2/εℓ′)⌊t/2⌋.

2. Referring to Definition 4.1, show that a (b, δ)-pseudorandom generator of stretch
ℓ yields a sequence over {0, 1}b that is (ε, δ)-hitting for δ = (1 − ε)ℓ/b + δ.

3. Consider modifications of the hitting problem in which the target set T is
restricted to be recognizable within some specified complexity.

(a) Show that a general-purpose pseudorandom generator of stretch ℓ yields
a sequence over {0, 1}b that is (ε, δ)-hitting for target sets in BPP and
δ = (1− ε)ℓ/b + 1/p, where p is an arbitrary polynomial.

(b) Referring to Definition 3.1, show that a canonical derandomizer of stretch
ℓ yields a sequence over {0, 1}b that is (ε, δ)-hitting for target sets that
are recognized by circuits of size ℓ2 and δ = (1− ε)ℓ/b + 1/6.

What is the advantage of using the expander random walk generator over each of
the foregoing options?

Exercise 5.18 (a version of the Expander Random Walk Theorem) Let G =
(V, E) be a graph as in Theorem 5.5. Prove that the probability that a random walk
of length ℓ′ intersects W0 ×W1 × · · · ×Wℓ′−1 ⊆ V ℓ′ is upper bounded by Eq. (5.8).

Guideline: Let A be a matrix representing the random walk on G (i.e., A is the adjacency

matrix of G divided by d), and let λ̂
def
= λ/d. Note that the uniform distribution, represented
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by the vector u = (N−1, ..., N−1)⊤, is the eigenvector of A that is associated with the largest

eigenvalue (which is 1), whereas all other eigenvalues have absolute value at most λ̂. Let

Pi be a 0-1 matrix that has 1-entries only on its diagonal such that entry (j, j) is set to 1

if and only if j ∈ Wi. Then, the probability that a random walk of length ℓ intersects

W0 × W1 × · · · × Wℓ−1 is the sum of the entries of the vector v
def
= Pℓ−1A · · ·P2AP1AP0u.

We are interested in upper-bounding ‖v‖1, and use ‖v‖1 ≤
√

N · ‖v‖, where ‖z‖1 and ‖z‖
denote the L1-norm and L2-norm of z, respectively (e.g., ‖u‖1 = 1 and ‖u‖ = N−1/2).

The key observation is that the linear transformation PiA shrinks every vector. For further

details, see [24, Apdx. E.2.1.3].

Exercise 5.19 Using notation as in Theorem 5.5, prove that the probability that a

random walk of length ℓ′ visits W more than αℓ′ times is smaller than
(

ℓ′

αℓ′

)
· (ρ +

(λ/d)2)αℓ′/2. For example, for α = 1/2 and λ/d <
√

ρ, we get an upper-bound of

(32ρ)ℓ′/4. We comment that much better bounds can be obtained (cf., e.g., [33]).

Guideline: Use a union bound on all possible sequences of m = αℓ′ visits, and upper-

bound the probability of visiting W in steps j1, ..., jm by applying Eq. (5.8) with Wi = W

if i ∈ {j1, ..., jm} and W = V otherwise.





Concluding Remarks

We discussed a variety of incarnations of the generic notion of a pseudorandom
generator, leading to vastly different concrete notions of pseudorandom generators.
Some of the latter notions are depicted in the following figure.

distinguisher’s generator’s stretch comments
type resources resources (i.e., ℓ(k))

gen.-purpose p(k)-time, ∀ poly. p poly(k)-time poly(k) Assumes OW

canon. derand. 2k/O(1)-time 2O(k)-time 2k/O(1) Assumes EvC

space-bounded s(k)-space, s(k) < k O(k)-space 2k/O(s(k)) runs in time
robustness k/O(1)-space O(k)-space poly(k) poly(k) · ℓ(k)

t-wise indepen. inspect t positions poly(k) · ℓ(k)-time 2k/O(t) (e.g., pairwise)

small bias linear tests poly(k) · ℓ(k)-time 2k/O(1) · ε(k)
expander “hitting” poly(k) · ℓ(k)-time ℓ′(k) · b(k)

random walk (0.5, 2−Ω(ℓ′(k)))-hitting for {0, 1}b(k), with ℓ′(k) = Ω(k − b(k)) + 1.

By OW we denote the assumption that one-way functions exists, and by EvC we denote the as-
sumption that the class E has (almost-everywhere) exponential circuit complexity.

Pseudorandom generators at a glance.

We highlight a key distinction between the case of general-purpose pseudorandom
generators (treated in Chapter 2) and the other cases (cf. e.g., Chapters 3 and 4):
in the former case the distinguisher is more complex than the generator, whereas in
the latter cases the generator is more complex than the distinguisher. Specifically, a
general-purpose generator runs in (some fixed) polynomial-time and needs to with-
stand any probabilistic polynomial-time distinguisher. In fact, some of the proofs
presented in Chapter 2 utilize the fact that the distinguisher can invoke the genera-
tor on seeds of its choice. In contrast, the Nisan-Wigderson Generator, analyzed in
Theorem 3.5, runs more time than the distinguishers that it tries to fool, and the
proof relies on this fact in an essential manner. Similarly, the space-complexity of
the space-resilient generators presented in Chapter 4 is higher than the space-bound
of the distinguishers that they fool.

Reiterating some of the notes of Chapter 1, we stress that our presentation, which
views vastly different notions of pseudorandom generators as incarnations of a general
paradigm, has emerged mostly in retrospect. Nevertheless, while the historical study
of the various notions was mostly unrelated at a technical level, the case of general-
purpose pseudorandom generators served as a source of inspiration to most of the
other cases. In particular, the concept of computational indistinguishability, the
connection between hardness and pseudorandomness, and the equivalence between
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pseudorandomness and unpredictability, appeared first in the context of general-
purpose pseudorandom generators (and inspired the development of “generators for
derandomization” and “generators for space bounded machines”).

We stress that the chapters’ notes do not mention several technical contributions
that played an important role in the development of the area. For further details,
the interested reader is referred to [21, Chap. 3].

Finally, we mention that the study of pseudorandom generators is part of com-
plexity theory, and the interested reader is encouraged to further explore the con-
nections between pseudorandomness and complexity theory at large (cf. e.g., [24]).



Appendix A

Hashing Functions

Hashing is extensively used in computer science, where the typical application is for
mapping arbitrary (unstructured) sets into a structured set of comparable size such
that the mapping is “almost uniform”. Specifically, hashing is used for mapping an
arbitrary 2m-subset of {0, 1}n to {0, 1}m in an “almost uniform” manner.

For any fixed set S of cardinality 2m, there exists a one-to-one mapping fS :
S → {0, 1}m, but this mapping is not necessarily efficiently computable (e.g., it
may require “knowing” the entire set S). On the other hand, no single function
f : {0, 1}n → {0, 1}m can map every 2m-subset of {0, 1}n to {0, 1}m in a one-to-one
manner (or even approximately so). Nevertheless, for every 2m-subset S ⊂ {0, 1}n,
a random function f : {0, 1}n → {0, 1}m has the property that, with overwhelmingly
high probability, f maps S to {0, 1}m such that no point in the range has too many
f -preimages in S. The problem is that a truly random function is unlikely to have
a succinct representation (let alone an efficient evaluation algorithm). We thus seek
families of functions that have a “random mapping” property (as in Item 1 of the
following definition), but do have a succinct representation as well as an efficient
evaluation algorithm (as in Items 2 and 3 of the following definition).

A.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {Hm
n }m<n

such that the following properties hold:

1. For every S ⊂ {0, 1}n, with high probability, a function h selected uniformly in
Hm

n maps S to {0, 1}m in an “almost uniform” manner. For example, we may
require that, for any |S| = 2m and each point y, with high probability over the
choice of h, it holds that |{x ∈ S : h(x) = y}| ≤ poly(n).

2. The functions in Hm
n have succinct representation. For example, we may re-

quire that Hm
n ≡ {0, 1}ℓ(n,m), for some polynomial ℓ.

3. The functions in Hm
n can be efficiently evaluated. That is, there exists a

polynomial-time algorithm that, on input a representation of a function, h
(in Hm

n ), and a string x∈ {0, 1}n, returns h(x). In some cases we make even
more stringent requirements regarding the algorithm (e.g., that it runs in linear
space).
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Condition 1 was left vague on purpose. At the very least, we require that the expected
size of {x ∈ S : h(x) = y} equals |S|/2m. We shall see (in Section A.3) that different
interpretations of Condition 1 are satisfied by different families of hashing functions.
We focus on t-wise independent hashing functions, defined next.

Definition A.1 (t-wise independent hashing functions): A family Hm
n of functions

from n-bit strings to m-bit strings is called t-wise independent if for every t distinct
domain elements x1, ..., xt ∈ {0, 1}n and every y1, ..., yt ∈ {0, 1}m it holds that

Prh∈Hm
n

[
t∧

i=1

h(xi) = yi

]
= 2−t·m

That is, a uniformly chosen h ∈ Hm
n maps every t domain elements to the range in

a totally uniform manner. Note that for t ≥ 2, it follows that the probability that a
random h ∈ Hm

n maps two distinct domain elements to the same image equals 2−m.
Such (families of) functions are called universal (cf. [13]), but we will focus on the
stronger condition of t-wise independence.

A.2 Constructions

The following constructions are merely a re-interpretation of the constructions pre-
sented in Section 5.1.1. (Alternatively, one may view the constructions presented in
Section 5.1.1 as a re-interpretation of the following two constructions.)

Construction A.2 (t-wise independent hashing): For t, m, n ∈ N such that m ≤ n,
consider the following family of hashing functions mapping n-bit strings to m-bit
strings. Each t-sequence s = (s0, s1, ..., st−1) ∈ {0, 1}t·n describes a function hs :
{0, 1}n → {0, 1}m such that hs(x) equals the m-bit prefix of the binary representation

of
∑t−1

j=0 sjx
j, where the arithmetic is that of GF(2n), the finite field of 2n elements.

Proposition 5.1 implies that Construction A.2 constitutes a family of t-wise inde-
pendent hash functions. Typically, we will use either t = 2 or t = Θ(n). To make
the construction totally explicit, we need an explicit representation of GF(2n); see
the comment following Proposition 5.1. An alternative construction for the case of
t = 2 may be obtained analogously to the pairwise independent generator of Propo-
sition 5.2. This construction, presented next, relies on Toeplitz matrices, where
T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1, for all i, j.

Construction A.3 (alternative pairwise independent hashing): For m ≤ n, con-
sider the family of hashing functions in which each pair (T, b), consisting of an n-
by-m Toeplitz matrix T and an m-dimensional vector b, describes a function hT,b :
{0, 1}n → {0, 1}m such that hT,b(x) = Tx + b.

Proposition 5.2 implies that Construction A.3 constitutes a family of pairwise inde-
pendent hash functions. Note that an n-by-m Toeplitz matrix can be specified by
n + m − 1 bits, yielding a description length of n + 2m − 1 bits. An alternative
construction (analogous to Eq. (5.10) and requiring m ·n+m bits of representation)
uses arbitrary n-by-m matrices rather than Toeplitz matrices.
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A.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned
in Section A.1. One concrete interpretation of this condition is given by the following
lemma (and another interpretation is implied by it: see Theorem A.5).

Lemma A.4 (uniform cover, per each range element): Let m ≤ n be integers, Hm
n

be a family of pairwise independent hash functions, and S ⊆ {0, 1}n. Then, for every
y ∈ {0, 1}m and every ε > 0, for all but at most a 2m

ε2|S| fraction of h ∈ Hm
n it holds

that

(1− ε) · |S|
2m

< |{x ∈ S : h(x) = y}| < (1 + ε) · |S|
2m .

(A.1)

Note that by pairwise independence (or rather even by 1-wise independence), the
expected size of {x ∈ S : h(x) = y} is |S|/2m, where the expectation is taken
uniformly over all h ∈ Hm

n . The lemma upper bounds the fraction of h’s that
deviate from the expected behavior (i.e., for which |h−1(y) ∩ S| 6= (1± ε) · |S|/2m).
Needless to say, the bound is meaningful only when |S| > 2m/ε2. Focusing on the
case that |S| > 2m and setting ε = 3

√
2m/|S|, we infer that for all but at most an

ε fraction of h ∈ Hm
n it holds that |{x ∈ S : h(x) = y}| = (1 ± ε) · |S|/2m. Thus,

each range element has approximately the right number of h-preimages in the set S,
under almost all h ∈ Hm

n .

Proof: Fixing an arbitrary set S ⊆ {0, 1}n and an arbitrary y ∈ {0, 1}m, we estimate
the probability that a uniformly selected h ∈ Hm

n violates Eq. (A.1). We define
random variables ζx, over the aforementioned probability space, such that ζx =
ζx(h) equal 1 if h(x) = y and ζx = 0 otherwise. The expected value of

∑
x∈S ζx is

µ
def
= |S| · 2−m, and we are interested in the probability that this sum deviates from

the expectation. Applying Chebyshev’s Inequality, we get

Pr

[∣∣∣∣∣µ−
∑

x∈S

ζx

∣∣∣∣∣ ≥ ε · µ
]

<
µ

ε2µ2

because Var[
∑

x∈S ζx] < |S| · 2−m by the pairwise independence of the ζx’s and the
fact that E[ζx] = 2−m. The lemma follows.

A generalization (called mixing). The proof of Lemma A.4 can be easily ex-
tended to show that for every set T ⊂ {0, 1}m and every ε > 0, for all but at most a

2m

|T |·|S|ε2 fraction of h ∈ Hm
n it holds that |{x ∈ S : h(x) ∈ T }| = (1± ε) · |T | · |S|/2m.

(Hint: redefine ζx = ζ(h) = 1 if h(x) ∈ T and ζx = 0 otherwise.) This assertion is
meaningful provided that |T | · |S| > 2m/ε2, and in the case that m = n it is called a
mixing property.

A useful corollary. The aforementioned generalization of Lemma A.4 asserts that,
for any fixed set of preimages S ⊂ {0, 1}n and any fixed sets of images T ⊂ {0, 1}m,
most functions in Hm

n behave well with respect to S and T (in the sense that they map
approximately the adequate fraction of S (i.e., |T |/2m) to T ). A seemingly stronger
statement, which is implied by Lemma A.4 itself, reverses the order of quantification
with respect to T ; that is, for all adequate sets S, most functions in Hm

n map S
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to {0, 1}m in an almost uniform manner (i.e., assign each set T approximately the
adequate fraction of S, where here the approximation is up to an additive deviation).
As we shall see, this is a consequence of the following theorem.

Theorem A.5 (a.k.a. Leftover Hash Lemma): Let Hm
n and S ⊆ {0, 1}n be as in

Lemma A.4, and define ε = 3
√

2m/|S|. Consider random variables X and H that
are uniformly distributed on S and Hm

n , respectively. Then, the statistical distance
between (H, H(X)) and (H, Um) is at most 2ε.

It follows that, for X and ε as in Theorem A.5 and any α > 0, for all but at most an
α fraction of the functions h ∈ Hm

n it holds that h(X) is (2ε/α)-close to Um. (Using
the terminology of the subsequent Section B.1, we may say that Theorem A.5 asserts
that Hm

n yields a strong extractor.) The proof of Theorem A.5 is omitted, and the
interested reader is referred to [24, Apdx. D.2.3].



Appendix B

On Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) random-
ness is crucial for the actual use of randomized algorithms, procedures and pro-
tocols. The latter are analyzed assuming that they are given access to a perfect
random source, while in reality one typically has access only to sources of weak (i.e.,
highly imperfect) randomness. This gap is bridged by using randomness extractors,
which are efficient procedures that (possibly with the help of little extra random-
ness) convert any source of weak randomness into an almost-perfect random source.
Thus, randomness extractors are devices that greatly enhance the quality of random
sources. In addition, randomness extractors are related to several other fundamental
problems (see, e.g., [24, Apdx. D.4.1] and [62]).

One key parameter, which was avoided in the foregoing abstract discussion, is
the class of weak random sources from which we need to extract almost perfect
randomness. Needless to say, it is preferable to make as little assumptions as possible
regarding the weak random source. In other words, we wish to consider a wide class
of such sources, and require that the randomness extractor (often referred to as
the extractor) “works well” for any source in this class. A general class of such
sources is defined in Section B.1, but first we wish to mention that even for very
restricted classes of sources no deterministic extractor can work.1 To overcome this
impossibility result, two approaches are used:

Seeded extractors: The first approach consists of considering randomized ex-
tractors that use a relatively small amount of randomness (in addition to the weak
random source). That is, these extractors obtain two inputs: a short truly random
seed and a relatively long sequence generated by an arbitrary source that belongs to
the specified class of sources. This suggestion is motivated in two different ways:

1. The application may actually have access to an almost-perfect random source,
but bits from this high-quality source are much more expensive than bits from
the weak (i.e., low-quality) random source. Thus, it makes sense to obtain a
few high-quality bits from the almost-perfect source and use them to “purify”
the cheap bits obtained from the weak (low-quality) source. Thus, combining

1For example, consider the class of sources that output n-bit strings such that no string oc-
curs with probability greater than 2−(n−1) (i.e., twice its probability weight under the uniform
distribution).
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many cheap (but low-quality) bits with few high-quality (but expensive) bits,
we obtain many high-quality bits.

2. In some applications (e.g., when using randomized algorithms), it may be pos-
sible to invoke the application multiple times, and use the “typical” outcome
of these invocations (e.g., rule by majority in the case of a decision procedure).
For such applications, we may proceed as follows: First we obtain an outcome
r of the weak random source, then we invoke the application multiple times
such that for every possible seed s we invoke the application feeding it with
extract(s, r), and finally we use the “typical” outcome of these invocations.
Indeed, this is analogous to the context of derandomization (see Section 3), and
likewise this alternative is typically not applicable to cryptographic and/or dis-
tributed settings.

Extraction from a few independent sources: The second approach consists
of considering deterministic extractors that obtain samples from a few (say two)
independent sources of weak randomness. Such extractors are applicable in any
setting (including in cryptography), provided that the application has access to the
required number of independent weak random sources.

In this appendix we focus on the first type of extractors (i.e., the seeded extrac-
tors). This choice is motivated by the applications in the main text as well by the
closer connection between seeded extractors and other topics in complexity theory.
We also mention that our understanding of seeded extractors seem much more ma-
ture than the current state of knowledge regarding extraction from a few independent
sources. Below we only present a definition that corresponds to the foregoing motiva-
tional discussion, and mention that its relation to other topics in complexity theory
is discussed in [24, Apdx. D.4.1] and in [62].

B.1 Definitions

A very wide class of weak random sources corresponds to sources in which no specific
output is too probable. That is, the class is parameterized by a (probability) bound
β and consists of all sources X such that for every x it holds that Pr[X = x] ≤ β. In
such a case, we say that X has min-entropy2 at least log2(1/β). Indeed, we represent
sources as random variables, and assume that they are distributed over strings of a
fixed length, denoted n. An (n, k)-source is a source that is distributed over {0, 1}n
and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform over
some subset of 2k strings. Such sources are called (n, k)-flat. A useful observation is
that each (n, k)-source is a convex combination of (n, k)-flat sources.

Definition B.1 (extractor for (n, k)-sources):

1. An algorithm Ext :{0, 1}n×{0, 1}d→{0, 1}m is called an extractor with error ε
for the class C if for every source X in C it holds that Ext(X, Ud) is ε-close to
Um. If C is the class of (n, k)-sources, then Ext is called a (k, ε)-extractor.

2Recall that the entropy of a random variable X is defined as
P

x Pr[X = x] · log2(1/Pr[X = x]).
Indeed the min-entropy of X equals minx{log2(1/Pr[X = x])}, and is always upper-bounded by its
entropy.
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2. An algorithm Ext is called a strong extractor with error ε for C if for every
source X in C it holds that (Ud, Ext(X, Ud)) is ε-close to (Ud, Um). A strong

(k, ε)-extractor is defined analogously.

Using the aforementioned “decomposition” of (n, k)-sources into (n, k)-flat sources, it
follows that Ext is a (k, ε)-extractor if and only if it is an extractor with error ε for the
class of (n, k)-flat sources. (A similar claim holds for strong extractors.) Thus, much
of the technical analysis is conducted with respect to the class of (n, k)-flat sources.
For example, by analyzing the case of (n, k)-flat sources it is easy to see that, for
d = log2(n/ε2)+O(1), there exists a (k, ε)-extractor Ext : {0, 1}n×{0, 1}d→ {0, 1}k.
(The proof employs the Probabilistic Method and uses a union bound on the (finite)
set of all (n, k)-flat sources.)3

We seek, however, explicit extractors; that is, extractors that are implementable
by polynomial-time algorithms. We note that the evaluation algorithm of any fam-
ily of pairwise independent hash functions mapping n-bit strings to m-bit strings
constitutes a (strong) (k, ε)-extractor for ε = 2−Ω(k−m) (see Theorem A.5). How-
ever, these extractors necessarily use a long seed (i.e., d ≥ 2m must hold (and in fact
d = n+2m−1 holds in Construction A.3)). In Section B.2 we survey constructions of
efficient (k, ε)-extractors that obtain logarithmic seed length (i.e., d = O(log(n/ε))).

On the importance of logarithmic seed length. The case of logarithmic seed
length (i.e., d = O(log(n/ε))) is of particular importance for a variety of reasons.
First, when emulating a randomized algorithm using a defected random source (as
in Item 2 of the motivational discussion of seeded extractors), the overhead is ex-
ponential in the length of the seed. Thus, the emulation of a generic probabilistic
polynomial-time algorithm can be done in polynomial time only if the seed length is
logarithmic. Similar considerations apply to other applications of extractors. Last,
we note that logarithmic seed length is an absolute lower-bound for (k, ε)-extractors,
whenever k < n− nΩ(1) (and the extractor is non-trivial (i.e., m ≥ 1 and ε < 1/2)).

B.2 Constructions

Recall that we seek explicit constructions of extractors; that is, functions Ext :
{0, 1}n×{0, 1}d→ {0, 1}m that can be computed in polynomial-time. The question,
of course, is of parameters; that is, having explicit (k, ε)-extractors with m as large
as possible and d as small as possible. We first note that, except for “pathological”
cases4, both m ≤ k + d − (2 log2(1/ε) − O(1)) and d ≥ log2((n − k)/ε2) − O(1)
must hold, regardless of the explicitness requirement. The aforementioned bounds
are in fact tight; that is, there exist (non-explicit) (k, ε)-extractors with m = k +
d− 2 log2(1/ε)−O(1) and d = log2((n− k)/ε2) + O(1). The obvious goal is meeting
these bounds via explicit constructions.

3Indeed, the key fact is that the number of (n, k)-flat sources is N
def
=

`2n

2k

´

. The probability

that a random function Ext : {0, 1}n × {0, 1}d → {0, 1}k is not an extractor with error ε for a

fixed (n, k)-flat source is upper-bounded by p
def
= 22k

· exp(−Ω(2d+kε2)), because p bounds the
probability that when selecting 2d+k random k-bit long strings there exists a set T ⊂ {0, 1}k that
is hit by more than ((|T |/2k) + ε) · 2d+k of these strings. Note that for d = log2(n/ε2) + O(1) it
holds that N · p ≪ 1. In fact, the same analysis applies to the extraction of m = k + log2 n bits
(rather than k bits).

4That is, for ε < 1/2 and m > d.
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Some known results. Despite tremendous progress on this problem (and occa-
sional claims regarding “optimal” explicit constructions), the ultimate goal has not
yet been reached. Nevertheless, the known explicit constructions are pretty close to
being optimal.

Theorem B.2 (explicit constructions of extractors): Explicit (k, ε)-extractors of the
form Ext : {0, 1}n × {0, 1}d → {0, 1}m exist for the following cases (i.e., settings of
the parameters d and m):

1. For d = O(log n/ε) and m = (1−α) · (k−O(d)), where α > 0 is an arbitrarily
small constant and provided that ε > exp(−k1−α).

2. For d = (1 + α) · log2 n and m = k/poly(log n), where ε, α > 0 are arbitrarily
small constants.

Proofs of Part 1 and Part 2 can be found in [30] and [61], respectively. We note that,
for the sake of simplicity, we did not quote the best possible bounds. Furthermore,
we did not mention additional incomparable results (which are relevant for different
ranges of parameters).

We refrain from providing an overview of the proof of Theorem B.2, but rather
review the conceptual insight that underlies many of the results that belong to the
current “generation” of constructions.

The pseudorandomness connection

The connection between extractors and certain pseudorandom generators, discov-
ered by Trevisan [65], is the starting point of the current generation of constructions
of extractors. This connection is surprising because it went in a non-standard di-
rection; that is, transforming certain pseudorandom generators into extractors. We
note that computational objects are typically more complex than the corresponding
information theoretical objects (cf. e.g., Appendix C and [24, Chap. 7]). Thus, if
pseudorandom generators and extractors are at all related (which was not suspected
before [65]), then this relation should not be expected to help in the construction
of extractors, which seem to be information theoretic objects. Nevertheless, the
discovery of this relation did yield a breakthrough in the study of extractors.5

But before describing the connection, let us wonder for a moment. Just looking at
the syntax, we note that pseudorandom generators have a single input (i.e., the seed),
while extractors have two inputs (i.e., the n-bit long source and the d-bit long seed).
But taking a second look at the Nisan–Wigderson Generator (i.e., the combination
of Construction 3.4 with an amplification of worst-case to average-case hardness),
we note that this construction can be viewed as taking two inputs: a d-bit long seed
and a “hard” predicate on d′-bit long strings (where d′ = Ω(d)).6 Now, an appealing
idea is to use the n-bit long source as a (truth-table) description of a (worst-case)
hard predicate (which indeed means setting n = 2d′

). The key observation is that
even if the source is only weakly random, then it is likely to represent a predicate that
is inapproximable (as in the hypothesis of Theorem 3.5).

5We note that once the connection became better understood, influence started going in the
“right” direction: from extractors to pseudorandom generators.

6Indeed, to fit the current context, we have modified some notation. In Construction 3.4 the
length of the seed is denoted by k and the length of the input for the predicate is denoted by m.
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Recall that the aforementioned construction is supposed to yield a pseudoran-
dom generator whenever it starts with a hard predicate. In the current context,
where there are no computational restrictions, pseudorandomness is supposed to
hold against any (computationally unbounded) distinguisher, and thus here pseudo-
randomness means being statistically close to the uniform distribution (on strings of
the adequate length, denoted ℓ). Intuitively, this makes sense only if the observed
sequence is shorter than the amount of randomness in the source (and seed), which
is indeed the case (i.e., ℓ < k + d, where k denotes the min-entropy of the source).
Hence, there is hope to obtain a good extractor this way.

To turn the hope into reality, we need a proof (which is sketched next). Looking
again at the Nisan–Wigderson Generator, we note that the proof of indistinguishabil-
ity of this generator provides a black-box procedure for approximating the underlying
predicate when given oracle access to any potential distinguisher. Specifically, in the
proofs of Theorem 3.5 (which holds for any ℓ = 2Ω(d′))7, this black-box procedure
was implemented by a relatively small circuit (which depends on the underlying
predicate). Hence, this procedure contains relatively little information (regarding
the underlying predicate), on top of the observed ℓ-bit long output of the extrac-
tor/generator. Specifically, for some fixed polynomial p, the amount of information
encoded in the procedure (and thus available to it) is upper-bounded by p(ℓ), while
the procedure is supposed to approximate the underlying predicate in the sense that
this approximation determines a set of at most p(ℓ) predicates that contain the orig-
inal predicate. Thus, b = p(ℓ)2 bits of information are supposed to fully determine
the underlying predicate, which in turn is identical to the n-bit long source. How-
ever, if the source has min-entropy exceeding b, then it cannot be fully determined
using only b bits of information.

It follows that the foregoing construction constitutes a (b + O(1), 1/6)-extractor
(outputting ℓ = bΩ(1) bits), where the constant 1/6 is the one used in the proof
of Theorem 3.5 (and the argument holds provided that b = nΩ(1)). Note that this
extractor uses a seed of length d = O(d′) = O(log n). The argument can be extended
to obtain (k, poly(1/k))-extractors that output kΩ(1) bits using seeds of length d =
O(log n), provided that k = nΩ(1).

We stress that the foregoing description has only referred to two abstract prop-
erties of the Nisan–Wigderson Generator: (1) the fact that this generator uses any
worst-case hard predicate as a black-box, and (2) the fact that its analysis uses any
distinguisher as a black-box.

7Recalling that n = 2d′
, the restriction ℓ = 2Ω(d′) implies ℓ = nΩ(1).





Appendix C

A Generic Hard-Core
Predicate

In this appendix, we provide a proof of Theorem 2.11. This is done because, in our
opinion, at the last account, the conversion of computational difficulty to pseudoran-
domness occurs in this result. On the other hand, the proof of Theorem 2.11 is too
long to fit to the main text without damaging the main thread of the presentation.

We mention that Theorem 2.11 may also be viewed as a “hardness amplification”
result. For further details and related “hardness amplification” results, the interested
reader is referred to [24, Chap. 7].

The basic strategy. The proof of Theorem 2.11 proceeds by a so-called reducibil-
ity argument, which is actually a reduction, but one that is analyzed with respect to
average case complexity. Specifically, we reduce the task of inverting f to the task of
predicting the hard-core of f ′, while making sure that the reduction (when applied to
input distributed as in the inverting task) generates a distribution as in the definition
of the predicting task. Thus, a contradiction to the claim that b is a hard-core of f ′

yields a contradiction to the hypothesis that f is hard to invert. We stress that this
argument is far more complex than analyzing the corresponding “probabilistic” situ-
ation (i.e., the distribution of (r, b(X, r)), where r ∈ {0, 1}n is uniformly distributed
and X is a random variable with super-logarithmic min-entropy (which represents
the “effective” knowledge of x, when given f(x)).1

Our starting point is a probabilistic polynomial-time algorithm A′ that satisfies,
for some polynomial p and infinitely many n’s, Pr[A′(f(Xn), Un) = b(Xn, Un)] >
(1/2) + (1/p(n)), where Xn and Un are uniformly and independently distributed

over {0, 1}n. Using a simple averaging argument, we focus on an ε
def
= 1/2p(n)

fraction of the x’s for which Pr[A′(f(x), Un) = b(x, Un)] > (1/2) + ε holds. We will
show how to use A′ in order to invert f , on input f(x), provided that x is in this
good set (which has density ε). The crux of the entire proof is thus captured by the
following result.

1The min-entropy of X is defined as minv{log2(1/Pr[X = v])}; that is, if X has min-entropy
m, then maxv{Pr[X = v]} = 2−m. The Leftover Hashing Lemma (see Appendix A) implies that,
in this case, Pr[b(X, Un) = 1|Un] = 1

2
± 2−Ω(m) , where Un denotes the uniform distribution over

{0, 1}n.
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Theorem C.1 (Theorem 2.11, revisited): There exists a probabilistic oracle ma-
chine that, given parameters n, ε and oracle access to any function B : {0, 1}n →
{0, 1}, halts after poly(n/ε) steps and with probability at least 1/2 outputs a list of
all strings x ∈ {0, 1}n that satisfy

Prr∈{0,1}n [B(r) = b(x, r)] ≥ 1

2
+ ε, (C.1)

where b(x, r) denotes the inner-product mod 2 of x and r.

This machine can be modified such that, with high probability, its output list does not
include any string x such that Prr∈{0,1}n [B(r) = b(x, r)] < 1

2 + ε
2 . However, the point

is that using the foregoing machine, we can obtain an f -preimage of f(x), whenever x

belongs to the good set (i.e., satisfies Eq. (C.1) with respect to B(r)
def
= A′(f(x), r)).

Indeed, Theorem 2.11 follows from Theorem C.1 by emulating an oracle B = Bx

such that the query r is answered with the value A′(f(x), r). That is, on input f(x),
we invoke the oracle machine while emulating the oracle B, and when the oracle
machine halts and provides a list of candidates we check whether this list contains
a preimage of f(x) under f and output such a preimage if found. (Alternatively, we
may just output at random one of the candidates in the said list.)

Proof: It is instructive to think about any string x that satisfies Eq. (C.1).2 We
are given access to an oracle (or “black box”) B that approximates b(x, ·) with a

non-negligible advantage over a coin toss; that is, px
def
= Prr∈{0,1}n [B(r) = b(x, r)] is

at least 1
2 +ε (as per Eq. (C.1)). Our task is to retrieve x, while making relatively few

(i.e., poly(n/ε)-many) queries to B. Note that this would have been easy if B makes
no errors at all (i.e., px = 1), but we face the case in which B’s error rate is extremely
high (i.e., it is only non-negligibly lower than the error rate of purely random noise).
Also note that retrieving x based on 2n queries to B is quite easy (also at a large
error rate), but our goal is to operate in time that is inversely proportional to the
advantage of B over a random coin toss.

A warm-up. Suppose for a moment that we replace the condition px ≥ 1
2 + ε by the

much relaxed condition px ≥ 3
4 + ε. In this case, retrieving x, by using B, is quite

easy: To retrieve the ith bit of x, denoted xi, we randomly select r ∈ {0, 1}|x|, and
obtain B(r) and B(r⊕ei), where ei = 0i−110|x|−i and v ⊕ u denotes the addition
mod 2 of the binary vectors v and u. A key observation underlying the foregoing
scheme as well as the rest of the proof is that b(x, r⊕s) = b(x, r)⊕ b(x, s), which can
be readily verified by writing b(x, y) =

∑n
i=1 xiyi mod 2 and noting that addition

modulo 2 of bits corresponds to their XOR. Now, note that if both B(r) = b(x, r)
and B(r⊕ ei) = b(x, r⊕ ei) hold, then B(r)⊕B(r⊕ ei) equals b(x, r)⊕ b(x, r⊕ ei) =
b(x, ei) = xi. The probability that both B(r) = b(x, r) and B(r ⊕ ei) = b(x, r ⊕ ei)
hold, for a random r, is at least 1 − 2 · (1 − px) ≥ 1

2 + 2ε. Hence, repeating the
foregoing procedure sufficiently many times (using independent random choices of
such r’s) and ruling by majority, we retrieve xi with very high probability. Similarly,
we can retrieve all the bits of x. However, the entire analysis refers to retrieving x
when px ≥ 3

4 + ε holds, whereas we need to retrieve x also if only px ≥ 1
2 + ε holds.

2We note that, in general, there may be O(1/ε2) strings that satisfy Eq. (C.1). We also note
that there may be at most one string x such that Prr[B(r)=b(x, r)] > 3/4 holds.
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The “error-doubling” phenomenon. The problem with the foregoing procedure is that
it doubles the original error probability of B(·) with respect to b(x, ·). Under the
unrealistic (foregoing) assumption that B’s error rate is non-negligibly smaller than
1
4 , the “error-doubling” phenomenon poses no problems. However, in general (and
even in the special case where B’s error is exactly 1

4 ) the foregoing procedure is
unlikely to retrieve x. Note that the error rate of B cannot be decreased by repeating
B several times (e.g., for every x, it may be that B always answers correctly on three
quarters of the possible r’s, and always errs on the remaining quarter). What is
required is an alternative way of using B, a way that does not double the original
error probability of B.

The key idea is generating the r’s in a way that allows invoking B only once per
each r (and i), instead of twice. Specifically, we will invoke B on r ⊕ ei in order to
obtain a “guess” for b(x, r⊕ei), and obtain b(x, r) in a different way (which does not
involve using B). The good news is that the error probability is no longer doubled,
since we only use B to get a “guess” of b(x, r ⊕ ei). The bad news is that we still
need to know b(x, r), and it is not clear how we can know b(x, r) without applying
B. The answer is that we can guess b(x, r) by ourselves. This is fine if we only
need to guess b(x, r) for one r (or logarithmically in |x| many r’s), but the problem
is that we need to know (and hence guess) the value of b(x, r) for polynomially
many r’s. The obvious way of guessing these b(x, r)’s yields an exponentially small
success probability. Instead, we generate these polynomially many r’s such that, on
one hand they are “sufficiently random” whereas, on the other hand, we can guess
all of the b(x, r)’s with noticeable success probability.3 Specifically, generating the
r’s in a specific pairwise independent manner will satisfy both of these (conflicting)
requirements. We stress that in case we are successful (in our guesses for all of the
b(x, r)’s), we can retrieve x with high probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(x, r)’s are guessed) is indeed in place. To generate m =

poly(|x|/ε) many r’s, we uniformly (and independently) select ℓ
def
= log2(m+1) strings

in {0, 1}|x|. Let us denote these strings by s1, ..., sℓ. We then guess b(x, s1) through
b(x, sℓ). Let us denote these guesses, which are uniformly (and independently) cho-
sen in {0, 1}, by σ1 through σℓ. Hence, the probability that all our guesses for the
b(x, si)’s are correct is 2−ℓ = 1

poly(|x|) . The different r’s correspond to the differ-

ent non-empty subsets of {1, 2, ..., ℓ}. Specifically, for every such subset J , we let

rJ def
=

⊕
j∈J sj . The reader can easily verify that the rJ ’s are pairwise independent

and each is uniformly distributed in {0, 1}|x|; see Exercise 5.4. The key observation
is that b(x, rJ ) = b(x,

⊕
j∈J sj) =

⊕
j∈J b(x, sj). Hence, our guess for b(x, rJ ) is⊕

j∈J σj , and with noticeable probability all of our guesses are correct. Wrapping
everything up, we obtain the following procedure, which makes oracle calls to B.

Retrieving procedure (accessing B, with parameters n and ε):
Set ℓ = log2(n/ε2) + O(1).
(1) Select uniformly and independently s1, ..., sℓ ∈ {0, 1}n.

Select uniformly and independently σ1, ..., σℓ ∈ {0, 1}.
(2) For every non-empty J ⊆ [ℓ], compute rJ ←⊕

j∈J sj and ρJ ←⊕
j∈J σj .

3Alternatively, we could try all polynomially many possible guesses, but our analysis does not
benefit from this alternative.
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(3) For i = 1, ..., n, determine the bit zi according to the majority vote
of the (2ℓ − 1)-long sequence of bits (ρJ ⊕B(rJ ⊕ ei))∅6=J⊆[ℓ].

(4) Output z1 · · · zn.

Note that the “voting scheme” employed in Step 3 uses pairwise independent sam-
ples (i.e., the rJ ’s), but works essentially as well as it would have worked with
independent samples (i.e., the independent r’s).4 That is, for every i and J , it holds
that Prs1,...,sℓ [B(rJ ⊕ ei) = b(x, rJ ⊕ ei)] = px (which is at least (1/2) + ε), where
rJ =

⊕
j∈J sj , and (for every fixed i) the events corresponding to different J ’s are

pairwise independent. It follows that if for every j ∈ [ℓ] it holds that σj = b(x, sj),
then for every i and J we have

Prs1,...,sℓ [ρJ ⊕B(rJ ⊕ ei) = b(x, ei)] (C.2)

= Prs1,...,sℓ [B(rJ ⊕ ei) = b(x, rJ ⊕ ei)] >
1

2
+ ε

where the equality is due to ρJ =
⊕

j∈J σj = b(x, rJ ) = b(x, rJ ⊕ ei) ⊕ b(x, ei).

Note that Eq. (C.2) refers to the correctness of a single vote for b(x, ei). Using m =
2ℓ−1 = O(n/ε2) and noting that these (Boolean) votes are pairwise independent, we
infer that the probability that the majority of these votes is wrong is upper-bounded
by 1/2n. Using a union bound on all i’s, we infer that with probability at least
1/2, all majority votes are correct and thus x is retrieved correctly. Recall that the
foregoing is conditioned on σj = b(x, sj) for every j ∈ [ℓ], which in turn holds with
probability 2−ℓ = (m + 1)−1 = Ω(ε2/n). Thus, each x that satisfies Eq. (C.1) is

retrieved correctly with probability p
def
= Ω(ε2/n).

Noting that x is merely a string for which Eq. (C.1) holds, it follows that the
number of strings that satisfy Eq. (C.1) is at most 1/p. Furthermore, by iterating

the foregoing procedure for Õ(1/p) times we can obtain all of these strings. The
theorem follows.

Digest. Theorem C.1 means that if given some information about x it is hard to
recover x, then given the same information and a random r it is hard to predict b(x, r).
Indeed, the foregoing statement is in the spirit of Theorem 2.11 itself, except that it
refers to any “information about x” (rather than to the value f(x)). To demonstrate
the point, let us rephrase the foregoing statement as follows: For every randomized
process Π, if given s it is hard to obtain Π(s), then given s and a uniformly distributed
r ∈ {0, 1}|Π(s)| it is hard to predict b(Π(s), r).

4Our focus here is on the accuracy of the approximation obtained by the sample, and not so much
on the error probability. We wish to approximate Pr[b(x, r)⊕B(r⊕ei) = 1] up to an additive term of
ε, because such an approximation allows us to correctly determine b(x, ei). A pairwise independent
sample of O(t/ε2) points allows for an approximation of a value in [0, 1] up to an additive term of ε
with error probability 1/t, whereas a totally random sample of the same size yields error probability
exp(−t). Since we can afford setting t = poly(n) and having error probability 1/2n, the difference
in the error probability between the two approximation schemes is not important here.



Appendix D

Using Randomness in
Computation

The underlying thesis of this primer is that randomness is playing an important
role in computation. But since this primer is directed also at readers who are not
closely familiar with the theory of computation, we feel that this thesis may require
a short justification. Furthermore, our guess is that the proposition that there is a
connection between computation and randomness may meet the skepticism of some
readers, because computation seems the ultimate manifestation of determinism.

Still, a more sophisticated look at computation reveals that algorithms for solving
standard search and decision problems as well as algorithmic strategies for multi-
party interaction may benefit by using random choices. This is easiest to demonstrate
in the domain of cryptography (see Appendix E) as well as in many other distributed
and/or interactive settings (see, e.g., [8, 39, 40] and [24, Chap. 9], respectively). In
this appendix, we consider the more basic setting of stand-alone computation, and
present three simple randomized algorithms that solve basic computational problems.
Many more examples can be found in [47].

D.1 A Simple Probabilistic Polynomial-Time
Primality Test

Although a deterministic polynomial-time primality tester was found a few years
ago [1], we believe that the following example provides a nice illustration to the
power of randomized algorithms. We present a simple probabilistic polynomial-time
algorithm for deciding whether or not a given number is a prime. The only Number
Theoretic facts that we use are:

Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square
roots mod p (and they sum up to p). That is, for every r ∈ {1, ..., p− 1}, the
equation x2 ≡ r2 (mod p) has two solutions modulo p (i.e., r and p− r).

Fact 2: For every odd composite number N such that N 6= M e for all integers M
and e, each quadratic residue mod N has at least four square roots mod N .
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Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime
p and a quadratic residue mod p, denoted s, returns the smallest among the two
modular square roots of s. There is no guarantee as to what the output is in the
case that the input is not of the aforementioned form (and in particular in the case
that p is not a prime). Thus, we actually present a probabilistic polynomial-time
reduction of testing primality to extracting square roots modulo a prime (which is a
search problem with a promise; see [24, Sec. 2.4.1]).

Construction D.1 (the reduction):1 On input a natural number N > 2, proceed as
follows:

1. If N is either even or an integer-power,2 then reject.

2. Uniformly select r ∈ {1, ..., N − 1}, and set s← r2 mod N .

3. Let r′ ← sqrt(s, N). If r′ ≡ ±r (mod N), then accept else reject.

Indeed, in the case that N is composite, the reduction invokes sqrt on an illegitimate
input (i.e., it makes a query that violates the promise of the problem at the target
of the reduction). In such a case, there is no guarantee as to what sqrt answers, but
actually a bluntly wrong answer only plays in our favor. In general, we will show
that if N is a composite number, then the reduction rejects with probability at least
1/2, regardless of how sqrt answers. We mention that there exists a probabilistic
polynomial-time algorithm for implementing sqrt.

Proposition D.2 (analysis of the reduction): Construction D.1 constitutes a proba-
bilistic polynomial-time reduction of testing primality to extracting square roots mod-
ule a prime. Furthermore, if the input is a prime, then the reduction always accepts,
and otherwise it rejects with probability at least 1/2.

We stress that Proposition D.2 refers to the reduction itself; that is, sqrt is viewed
as a (“perfect”) oracle that, for every prime P and quadratic residue s (mod P ),
returns r < s/2 such that r2 ≡ s (mod P ). Combining Proposition D.2 with a
probabilistic polynomial-time algorithm that computes sqrt with negligible error
probability, we obtain that testing primality is in BPP.

Proof: By Fact 1, on input a prime number N , Construction D.1 always accepts
(because in this case, for every r ∈ {1, ..., N−1}, it holds that sqrt(r2 mod N, N) ∈
{r, N − r}). On the other hand, suppose that N is an odd composite that is not an
integer-power. Then, by Fact 2, each quadratic residue s has at least four square
roots, and each of these square roots is equally likely to be chosen at Step 2 (in
other words, s yields no information regarding which of its modular square roots was
selected in Step 2). Thus, for every such s, the probability that either sqrt(s, N) or
N − sqrt(s, N) equal the root chosen in Step 2 is at most 2/4. It follows that, on
input a composite number, the reduction rejects with probability at least 1/2.

1Commonly attributed to Manuel Blum.
2This can be checked by scanning all possible powers e ∈ {2, ..., log2 N}, and (approximately)

solving the equation xe = N for each value of e (i.e., finding the smallest integer i such that ie ≥ N).
Such a solution can be found by a binary search.
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Reflection: Construction D.1 illustrates an interesting aspect of randomized algo-
rithms (or rather reductions); that is, their ability to take advantage of information
that is unknown to the invoked subroutine. Specifically, Construction D.1 generates
a problem instance (N, s), which hides crucial information (regarding how s was
generated; i.e., which r such that r2 ≡ s (mod N) was selected in Step 2). Thus,
sqrt(s, N) is oblivious of this hidden information (i.e., the identity of r), and so the
quantity of interest is Prr∈SN(s)[sqrt(s, N) ∈ {r, N − r}], where SN (s) denotes the
set of square roots of s modulo N .

Recall that testing primality is actually in P . However, the deterministic al-
gorithm demonstrating this fact is more complex than Construction D.1 (and its
analysis is even more complicated).

D.2 Testing Polynomial Identity

An appealing example of a (one-sided error) randomized algorithm refers to the
problem of determining whether two polynomials are identical. For simplicity, we
assume that we are given an oracle for the evaluation of each of the two polynomi-
als. An alternative presentation that refers to polynomials that are represented by
arithmetic circuits yields a standard decision problem in coRP (the class of decision
problems that are solvable by probabilistic polynomial-time algorithms that never
reject a yes-instance).3 Either way, we refer to multi-variant polynomials and to the
question of whether they are identical over any field (or, equivalently, whether they
are identical over a sufficiently large finite field). Note that it suffices to consider
finite fields that are larger than the degree of the two polynomials.

Construction D.3 (Polynomial-Identity Test): Let n be an integer and F be a finite
field. Given black-box access to p, q : Fn → F, uniformly select r1, ..., rn ∈ F, and
accept if and only if p(r1, ..., rn) = q(r1, ..., rn).

Clearly, if p ≡ q, then Construction D.3 always accepts. The following lemma implies
that if p and q are different polynomials, each of total degree at most d over the finite
field F, then Construction D.3 accepts with probability at most d/|F|.

Lemma D.4 [60, 74]: Let p : Fn → F be a non-zero polynomial of total degree d
over the finite field F. Then

Prr1,...,rn∈F[p(r1, ..., rn) = 0] ≤ d

|F| .
Proof: The lemma is proven by induction on n. The base case of n = 1 follows
immediately by the Fundamental Theorem of Algebra (i.e., any non-zero univariate
polynomial of degree d has at most d distinct roots). In the induction step, we write
p as a polynomial in its first variable with coefficients that are polynomials in the
other variables. That is,

p(x1, x2, ..., xn) =

d∑

i=0

pi(x2, ..., xn) · xi
1

3Equivalently, a set S is in coRP if and only if S
def
= {0, 1}∗ \ S is in RP.
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where pi is a polynomial of total degree at most d− i. Let j be the largest integer for
which pj is not identically zero. Dismissing the case j = 0 and using the induction
hypothesis, we have

Prr1,r2,...,rn [p(r1, r2, ..., rn) = 0]

≤ Prr2,...,rn[pj(r2, ..., rn) = 0]

+ Prr1,r2,...,rn [p(r1, r2, ..., rn) = 0 | pj(r2, ..., rn) 6= 0]

≤ d− j

|F| +
j

|F|

where the second term is upper bounded by fixing any sequence r2, ..., rn such that

pj(r2, ..., rn) 6= 0 and considering the univariate polynomial p′(x)
def
= p(x, r2, ..., rn)

(which by hypothesis is a non-zero polynomial of degree j).

Reflection: Lemma D.4 may be viewed as asserting that for every non-zero poly-
nomial of degree d over F at least a 1−(d/|F|) fraction of its domain does not evaluate
to zero. Thus, if d ≪ |F|, then most of the evaluation points constitute a witness
for the fact that the polynomial is non-zero. We know of no efficient deterministic
algorithm that, given a representation of the polynomial via an arithmetic circuit,
finds such a witness. Indeed, Construction D.3 attempts to find a witness by merely
selecting it at random.

D.3 The Accidental Tourist Sees It All

An appealing example of a randomized log-space algorithm is presented next. It
refers to the problem of deciding undirected connectivity, and demonstrates that this
problem is in RL (the log-space restriction of RP). We mention that a deterministic
log-space algorithm for this problem was found a few years ago (see [56]), but again
the deterministic algorithm and its analysis are more complicated.

For the sake of simplicity, we consider the following computational problem:
Given an undirected graph G and a pair of vertices (s, t), determine whether or
not s and t are connected in G. Note that deciding undirected connectivity (of a
given undirected graph) is log-space reducible to the foregoing problem (e.g., just
check the connectivity of all pairs of vertices).

Construction D.5 (the random walk test): On input (G, s, t), the randomized al-
gorithm starts a poly(|G|)-long random walk at vertex s, and accepts the triple if and
only if the walk passed through the vertex t. By a random walk we mean that at each
step the algorithm selects uniformly one of the neighbors of the current vertex and
moves to it.

Observe that the algorithm can be implemented in logarithmic space (because we
only need to store the current vertex as well as the number of steps taken so far). Ob-
viously, if s and t are not connected in G, then the algorithm always rejects (G, s, t).
Proposition D.6 implies that if s and t are connected (in G), then the algorithm
accepts with probability at least 1/2. It follows that undirected connectivity is in
RL.
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Proposition D.6 [3]: With probability at least 1/2, a random walk of length O(|V | ·
|E|) starting at any vertex of the graph G = (V, E) passes through all the vertices
that reside in the same connected component as the start vertex.

Thus, such a random walk may be used to explore the relevant connected component
(in any graph). Following this walk one is likely to see all that there is to see in that
component.

Proof Sketch: We will actually show that if G is connected, then, with probability
at least 1/2, a random walk starting at s visits all the vertices of G. For any pair
of vertices (u, v), let Xu,v be a random variable representing the number of steps
taken in a random walk starting at u until v is first encountered. The reader may
verify that for every edge {u, v} ∈ E it holds that E[Xu,v] ≤ 2|E|. Next, we let
cover(G) denote the expected number of steps in a random walk starting at s and
ending when the last of the vertices of V is encountered. Our goal is to upper-bound
cover(G). Towards this end, we consider an arbitrary directed cyclic-tour C that
visits all vertices in G, and note that

cover(G) ≤
∑

(u,v)∈C

E[Xu,v] ≤ |C| · 2|E|.

In particular, selecting C as a traversal of some spanning tree of G, we conclude that
cover(G) < 4 · |V | · |E|. Thus, with probability at least 1/2, a random walk of length
8 · |V | · |E| starting at s visits all vertices of G.





Appendix E

Cryptographic Applications
of Pseudorandom Functions

A major application of random (or unpredictable) values is to the area of Cryptog-
raphy. In fact, the very notion of a secret refers to such a random (or unpredictable)
value. Furthermore, various natural security concerns (e.g., private communication)
can be met by employing procedures that make essential use of such secrets and/or
random values.

The extensive use of randomness in Cryptography makes this field a main client
of pseudorandomness notions, techniques, and results. These are used not only in
order to save on randomness (as in other algorithmic applications), but are rather
essential to several basic cryptographic applications (see [23]).

In this appendix we focus on two major applications of pseudorandom functions
to Cryptography; specifically, we use pseudorandom functions to construct schemes
for providing secret and authenticated communication. That is, the two applications
are secret communication and authenticated communication. In each of these cases,
we first describe the application, and then describe how pseudorandom functions are
used in order to achieve it. Detailed analysis of the two constructions can be found
in [23, Sec. 5.3.3&6.3.1].

E.1 Secret Communication

The problem of providing secret communication over insecure media is the traditional
and most basic problem of Cryptography. The setting of this problem consists of two
parties communicating through a channel that is possibly tapped by an adversary.
The parties wish to exchange information with each other, but keep the “wire-tapper”
as ignorant as possible regarding the contents of this information. The canonical
solution to the above problem is obtained by the use of encryption schemes.

Loosely speaking, an encryption scheme is a protocol allowing these parties to
communicate secretly with each other. Typically, the encryption scheme consists
of a pair of algorithms. One algorithm, called encryption, is applied by the sender
(i.e., the party sending a message), while the other algorithm, called decryption, is
applied by the receiver. Hence, in order to send a message, the sender first applies
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the encryption algorithm to the message, and sends the result, called the ciphertext,
over the channel. Upon receiving a ciphertext, the other party (i.e., the receiver)
applies the decryption algorithm to it, and retrieves the original message (called the
plaintext).

In order for the foregoing scheme to provide secret communication, the commu-
nicating parties (at least the receiver) must know something that is not known to
the wire-tapper. (Otherwise, the wire-tapper can decrypt the ciphertext exactly as
done by the receiver.) This extra knowledge may take the form of the decryption
algorithm itself, or some parameters and/or auxiliary inputs used by the decryption
algorithm. We call this extra knowledge the decryption-key. Note that, without loss
of generality, we may assume that the decryption algorithm is known to the wire-
tapper, and that the decryption algorithm operates on two inputs: a ciphertext and
a decryption-key. (The encryption algorithm also takes two inputs: a corresponding
encryption-key and a plaintext.) We stress that the existence of a decryption-key, not
known to the wire-tapper, is merely a necessary condition for secret communication.

The point we wish to make is that the decryption-key must be generated by a
randomized algorithm. Suppose, in contrary, that the decryption-key is a predeter-
mined function of publicly available data (i.e., the key is generated by employing an
efficient deterministic algorithm to this data). Then, the wire-tapper can just obtain
the key in exactly the same manner (i.e., invoking the same algorithm on the said
data). We stress that saying that the wire-tapper does not know which algorithm to
employ or does not have the data on which the algorithm is employed just shifts the
problem elsewhere; that is, the question remains as to how do the legitimate parties
select this algorithm and/or the data to which it is applied ? Again, deterministically
selecting these objects based on publicly available data will not do. At some point,
the legitimate parties must obtain some object that is unpredictable by the wire-tapper,
and such unpredictability refers to randomness (or pseudorandomness).

However, the role of randomness in allowing for secret communication is not
confined to the generation of secret keys. To see why this is the case, we need to
understand what “secrecy” is (i.e., to properly define what is meant by this intuitive
term). Loosely speaking, we say that an encryption scheme is secure if it is infeasible
for the wire-tapper to obtain from the ciphertexts any additional information about
the corresponding plaintexts. In other words, whatever can be efficiently computed
based on the ciphertexts can be efficiently computed from scratch (or rather from
the a priori known data). Now, assuming that the encryption algorithm is determin-
istic, encrypting the same plaintext twice (using the same encryption-key) results in
two identical ciphertexts, which are easily distinguishable from any pair of different
ciphertexts resulting from the encryption of two different plaintexts. This problem
does not arise when employing a randomized encryption algorithm (as presented
next).

An encryption scheme based on pseudorandom functions. As indicated, an
encryption scheme must also specify a method for selecting keys. In the following
encryption scheme, the key is a uniformly selected n-bit string, denoted s. The
parties use this key to determine a pseudorandom function fs (as in Definition 2.17).
A plaintext x ∈ {0, 1}n is encrypted (using the key s) by uniformly selecting r ∈
{0, 1}n and producing the ciphertext (r, fs(r)⊕x), where α⊕β denotes the bit-by-bit
exclusive-or of the strings α and β. A ciphertext (r, y) is decrypted (using the key
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s) by computing fs(r) ⊕ y. The security of this scheme follows from the security of
an imaginary (ideal) scheme in which fs is replaced by a totally random function
F : {0, 1}n → {0, 1}n.

A small detour: public-key encryption schemes. The foregoing description
corresponds to the so-called model of a private-key encryption scheme, and requires
the communicating parties to agree beforehand on a corresponding pair of encryp-
tion/decryption keys. This need is removed in public-key encryption schemes, envi-
sioned by Diffie and Hellman [17] (and materialized by the RSA scheme of Rivest,
Shamir, and Adleman [58]). In a public-key encryption scheme, the encryption-key
can be publicized without harming the security of the plaintexts encrypted using it,
allowing anybody to send encrypted messages to Party X by using the encryption-key
publicized by Party X. But in such a case, as observed by Goldwasser and Micali [29],
the need for randomized encryption is even more clear. Indeed, if a deterministic en-
cryption algorithm is employed and the wire-tapper knows the encryption-key, then
it can identify the plaintext in the case that the number of possibilities is small. In
contrast, using a randomized encryption algorithm, the encryption of plaintext yes
under a known encryption-key may be computationally indistinguishable from the
encryption of the plaintext no under the same encryption-key. For further discus-
sion of the security and construction of encryption schemes, the interested reader is
referred to [23, Chap. 5].

E.2 Authenticated Communication

Message authentication is a task related to the setting discussed when motivating
private-key encryption schemes. Again, there are two designated parties that wish to
communicate over an insecure channel. This time, we consider an active adversary
that is monitoring the channel and may alter the messages sent over it. The parties
communicating through this insecure channel wish to authenticate the messages they
send such that their counterpart can tell an original message (sent by the sender)
from a modified one (i.e., modified by the adversary). Loosely speaking, a scheme

for message authentication should satisfy the following:

• each of the communicating parties can efficiently produce an authentication tag
to any message of its choice;

• each of the communicating parties can efficiently verify whether a given string
is an authentication tag of a given message; but

• it is infeasible for an external adversary (i.e., a party other than the commu-
nicating parties) to produce authentication tags to messages not sent by the
communicating parties.

Again, such a scheme consists of a randomized algorithm for selecting keys as well
as algorithms for tagging messages and verifying the validity of tags.

A message authentication scheme based on pseudorandom functions. In
the following message authentication scheme, a uniformly chosen n-bit key, s, is used
for specifying a pseudorandom function (as in Definition 2.17). Using the key s, a
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plaintext x ∈ {0, 1}n is authenticated by the tag fs(x), and verification of (x, y) with
respect to the key s amounts to checking whether y equals fs(x). Again, the security
of this scheme follows from the security of an imaginary (ideal) scheme in which fs is
replaced by a totally random function F : {0, 1}n → {0, 1}n. For further discussion
of message authentication schemes and the related notion of signature schemes, the
interested reader is referred to [23, Chap. 6].



Appendix F

Some Basic Complexity
Classes

This appendix presents definitions of most complexity classes mentioned in the
primer (i.e., the time-complexity classes Dtime, BPtime, P , BPP, NP, E , and
EXP as well as the space-complexity classes Dspace and BPL). Needless to say,
the appendix offers a very minimal discussion of these classes and the interested
reader is referred to [24].

Complexity classes are sets of computational problems, where each class contains
problems that can be solved with specific computational resources. To define a
complexity class one specifies a model of computation, a complexity measure (like
time or space), which is always measured as a function of the input length, and a
bound on the complexity (of problems in the class).

The prevailing model of computation is that of Turing machines. This model
captures the notion of algorithms. The two main complexity measures considered
in the context of algorithms are the number of steps taken by the algorithm (i.e.,
its time complexity) and the amount of “memory” or “work-space” consumed by the
computation (i.e., its space complexity).

P and NP. The class P consists of all decision problems that can be solved in
(deterministic) polynomial-time. A decision problem S is in NP if there exists
a polynomial p and a (deterministic) polynomial-time algorithm V such that the
following two conditions hold:

1. For every x ∈ S there exists y ∈ {0, 1}p(|x|) such that V (x, y) = 1.

2. For every x 6∈ S and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

A string y satisfying Condition 1 is called an NP-witness (for x). Clearly, P ⊆
NP and it is widely believed that the inclusion is strict; indeed, establishing this
conjecture is the celebrated P-vs-NP Question.

Reductions and NP-completeness (NPC). A problem is NP-complete if it
is in NP and every problem in NP is polynomial-time reducible to it, where a
polynomial-time reduction of problem Π to problem Π′ is a polynomial-time algorithm
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that solves Π by making queries to a subroutine that solves problem Π′ (such that the
running-time of the subroutine is not counted in the algorithm’s time complexity).
Thus, any algorithm for an NP-complete problem yields algorithms of similar time-
complexity for all problems in NP .

Typically, NP-completeness is defined while restricting the reduction to make a
single query and output its answer. Such a reduction, called a Karp-reduction, is
represented by a polynomial-time computable mapping that maps yes-instances of
Π to yes-instances of Π′ (and no-instances of Π to no-instances of Π′). Hundreds of
NP-complete problems are listed in [19].

Probabilistic polynomial-time (BPP). A decision problem S is in BPP if there
exists a probabilistic polynomial-time algorithm A such that the following two con-
ditions hold:

1. For every x ∈ S it holds that Pr[A(x)=1] ≥ 2/3.

2. For every x 6∈ S it holds that Pr[A(x)=0] ≥ 2/3.

That is, the algorithm has two-sided error probability (of 1/3), which can be further
reduced by repetitions. We stress that due to the two-sided error probability of
BPP, it is not known whether or not BPP is contained in NP . In contrast, for
the corresponding one-sided error probability class, denoted RP , it holds that P ⊆
RP ⊆ BPP ∩ NP . Specifically, a decision problem S is in RP if there exists a
probabilistic polynomial-time algorithm A such that (1) for every x ∈ S it holds
that Pr[A(x)=1] ≥ 2/3 whereas (2) for every x 6∈ S it holds that Pr[A(x)=0] = 1.

The exponential-time classes E and EXP. The classes E and EXP consist of
all problems that can be solved (by a deterministic algorithm) in time 2O(n) and
2poly(n), respectively, for n-bit long inputs. Clearly, NP ⊆ EXP .

Generic time-complexity classes. In general, one may define a complexity class
for every time bound and every type of machine (i.e., deterministic, and probabilis-
tic), but polynomial and exponential bounds seem most natural and very robust.
Indeed, for any time bound function t : N→N, we may define the class Dtime(t)
(resp., BPtime(t)) that consists of all problems that can be solved by a deterministic
(resp., probabilistic) algorithm in time t(n) for n-bit long inputs.

Space complexity classes. When defining space-complexity classes, one counts
only the space consumed by the actual computation, and not the space occupied by
the input and output. This is formalized by postulating that the input is read from
a read-only device (resp., the output is written on a write-only device). Analogously
to the generic time complexity classes, for any space bound function s : N→N, we
may define the class Dspace(s) that consists of all problems that can be solved by
a deterministic algorithm in space s(n) for n-bit long inputs.

We shall also consider the complexity class BPL that consists of all decision
problems that are solvable by randomized algorithms of logarithmic space-complexity
(and polynomial-time complexity). Thus, BPL ⊆ BPP.
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We also mention the classes L, RL, and NL, which are the logarithmic space-
complexity analogues of P , RP , and NP, respectively. Indeed, L ⊆ RL ⊆ NL holds
(analogously to P ⊆ RP ⊆ NP).
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