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ON THE IMPLEMENTATION OF HUGE RANDOM OBJECTS∗

ODED GOLDREICH† , SHAFI GOLDWASSER‡ , AND ASAF NUSSBOIM§

Abstract. We initiate a general study of the feasibility of implementing (huge) random objects,
and demonstrate its applicability to a number of areas in which random objects occur naturally. We
highlight two types of measures of the quality of the implementation (with respect to the desired
specification): The first type corresponds to various standard notions of indistinguishability (applied
to function ensembles), whereas the second type is a novel notion that we call truthfulness. Intuitively,
a truthful implementation of a random object of Type T must (always) be an object of Type T, and
not merely be indistinguishable from a random object of Type T. Our formalism allows for the
consideration of random objects that satisfy some fixed property (or have some fixed structure) as
well as the consideration of objects supporting complex queries. For example, we consider the truthful
implementation of random Hamiltonian graphs as well as supporting complex queries regarding such
graphs (e.g., providing the next vertex along a fixed Hamiltonian path in such a graph).
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1. Introduction. Suppose that you want to run some experiments on random
codes (i.e., subsets of {0, 1}n that contain K = 2Ω(n) strings). You actually take it for
granted that the random code will have large (i.e., linear) distance, because you are
willing to disregard the negligible probability that a random code will not have a large
distance. Suppose that you want to be able to keep succinct representations of these
huge codes and/or that you want to generate them using few random bits. A natural
idea that comes to mind is using pseudorandom functions [20] in order to efficiently
generate and store representations of these codes; that is, using the pseudorandom
function f : [K] → {0, 1}n, one can define the code Cf = {f(i) : i ∈ [K]}, and
efficiently produce codewords of Cf . But do the codes generated this way have a large
distance?

The point is that having a large distance is a global property of the code, which
in turn is a huge (i.e., exp(n)-sized) object. This global property cannot be decided
by looking at polynomially many (i.e., poly(n)-many) codewords, and so its violation
cannot be translated into a contradiction of the pseudorandomness of the function.
Indeed, the substitution of a random function (or a random code) by a pseudorandom
one is not guaranteed to preserve the global property. Specifically, all pseudorandom
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codes generated as suggested above may have small distance.1

So, can we efficiently generate random-looking codes of large distance? Specif-
ically, can we provide a probabilistic polynomial-time procedure that allows us to
sample codewords from a code of large distance such that the sampled codewords
look as if they were taken from a random code (which, in particular, means that we
do not generate linear codes). The answer is essentially positive; see section 4. How-
ever, this is merely an example of the types of questions that we deal with. Another
illustrative example is provided by the question of whether it is feasible to generate a
random-looking connected graph of huge size. Again, the huge graph should look ran-
dom and be connected, and we cannot obtain this by merely using a random function
(see Example 3.5).

The foregoing discussion alludes to the notion of a “truthful” implementation (of
a given specification), which will be central to this work. For example, if the spec-
ification calls for (random) codes of large distance, then the implementation should
provide such codes and not arbitrary random-looking codes. However, even when
discarding the question of truthfulness, a fundamental question arises: Which types of
random objects can be efficiently implemented in the sense that one cannot distinguish
the implementation from the corresponding specification?

We initiate a general study of the feasibility of implementing (huge) random
objects. The pivots of this study are the notions of a specification and an implemen-
tation (see section 1.1), where an implementation is related to the specification by
appropriate measures of indistinguishability and truthfulness (see section 1.2). After
establishing the basic formalism (in section 2), we explore several areas in which the
study of random objects occurs naturally. These areas include graph theory, coding
theory, and cryptography. The bulk of this work provides implementations of various
natural random objects, which were considered before in these areas (e.g., the study
of random graphs [8]).

1.1. Objects, specifications, and implementations. Our focus is on huge
objects; that is, objects that are of a size that is exponential in the running time of
the applications. Thus, these (possibly randomized) applications may inspect only
small portions of the object (in each randomized execution). The object may be
viewed as a function (or an oracle), and inspecting a small portion of it is viewed
as receiving answers to a small number of adequate queries. For example, when we
talk of huge dense graphs, we consider adjacency queries that are vertex-pairs with
answers indicating whether or not the queried pair is connected by an edge. When we
talk of huge bounded-degree graphs, we consider incidence queries that correspond to
vertices with answers listing all the neighbors of the queried vertex.

We are interested in classes of objects (or object types), which can be viewed
as classes of functions. (Indeed, we are not interested in the trivial case of generic
objects, which is captured by the class of all functions.) For example, when we
talk of simple undirected graphs in the adjacency predicate representation, we allow
only symmetric and nonreflexive Boolean functions. Similarly, when we talk of such
bounded-degree graphs in the incident-lists representation, we restrict the class of
functions in a less trivial manner (i.e., u should appear in the neighbor-list of v if and
only if v appears in the neighbor-list of u). More interestingly, we may talk of the

1Indeed, for each function fs taken from some pseudorandom ensemble {fs : [2|s|/10] →
{0, 1}|s|}s, it may hold that the Hamming distance between fs(is) and fs(is + 1) is one, for some
is that depends arbitrarily on fs. For example, given a pseudorandom ensemble {fs}, consider the
ensemble {fs,i} such that fs,i(i) = 0n, fs,i(i+ 1) = 0n−11, and fs,i(x) = fs(x) for all other x’s.
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class of connected (or Hamiltonian) graphs, in which case the class of functions is even
more complex. This formalism allows us to talk about objects of certain types (or of
objects satisfying certain properties). In addition, it captures “complex objects” that
support “compound queries” to more basic objects. Indeed, these complex objects
are defined in terms of the compound queries that they support (akin to abstract
data types that are defined in terms of the supported queries). For example, we
may consider an object that answers queries regarding a global property of a Boolean
function (e.g., the parity of all the function’s values). The queries may also refer to
a large number of values of the function (e.g., the parity of all values assigned to
arguments in an interval that is specified by the query).

We study probability distributions over classes of objects. Such a distribution
is called a specification. Formally, a specification is presented by a computation-
ally unbounded probabilistic Turing machine, where each setting of the machine’s
random-tape yields a huge object. The latter object is defined as the correspond-
ing input-output relation, and so queries to the object are associated with inputs to
the machine. We consider the distribution on functions obtained by selecting the
specification’s random-tape uniformly. For example, a random N -vertex Hamilto-
nian graph is specified by a computationally unbounded probabilistic machine that
uses its random-tape to determine such a (random Hamiltonian) graph, and answers
adjacency queries accordingly. Another specification may require also answering, in
addition to adjacency queries regarding a uniformly selected N -vertex graph, more
complex queries such as providing a clique of size log2N that contains the queried
vertex. We stress that the specification is not required to be even remotely efficient
(but for the sake of simplicity we assume that it is recursive).

Our ultimate goal will be to provide a probabilistic polynomial-time machine that
implements the desired specification. That is, we consider the probability distribution
on functions induced by fixing the random-tape of the latter machine in all possible
ways. Again, each possible fixing of the random-tape yields a function corresponding
to the input-output relation (of the machine per this content of its random-tape).
Thus, an implementation is a probabilistic machine, just as the specification, and it
defines a distribution on functions in the same manner. The key difference is that the
implementation is a probabilistic polynomial-time machine, whereas the specification
is rather arbitrary (or merely recursive).

1.2. Indistinguishability and truthfulness. Needless to say, the key ques-
tion is how does the implementation relate to the desired specification; that is, how
“good” is the implementation. We consider two aspects of this question. The first
(and more standard) aspect is whether one can distinguish the implementation from
the specification when given oracle access to one of them. Variants include perfect
indistinguishability, statistical indistinguishability, and computational indistinguisha-
bility.

We highlight a second aspect regarding the quality of implementation: the truth-
fulness of the implementation with respect to the specification, where being truthful
means that any possible function that appears with nonzero probability in the im-
plementation must also appear with nonzero probability in the specification. For
example, if the specification is of a random Hamiltonian graph, then a truthful im-
plementation must always yield a Hamiltonian graph. Likewise, if the specification
is of a random non-Hamiltonian graph, then a truthful implementation must always
yield a non-Hamiltonian graph. Indeed, these two examples are fundamentally differ-
ent, because with overwhelmingly high probability a random graph is Hamiltonian.
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(Thus, a relaxed notion of truthfulness is easy to obtain in the first case but not in
the second case.)2

Indeed, our presentation highlights the notion of truthfulness, and we justify below
the importance that we attach to this notion. Nevertheless, we stress that our work
also initiates the study of general implementations, regardless of truthfulness. That is,
we ask which specifications have implementations (which are indistinguishable from
them). We also stress that some of our constructions are interesting regardless of
their truthfulness.

The meaning of truthfulness. Seeking a truthful implementation of random
objects of a given Type T means aiming at the generation of pseudorandom objects
of Type T. That is, we want the generated object to always be of Type T, but we
are willing to settle for Type T objects that look as if they are truly random Type T
objects (although they are not). This means that we seek Type T objects that look
like random Type T objects, rather than objects that look like random Type T objects
although they are not of Type T at all. For example, a random function is not a
truthful implementation of a random permutation, although the two look alike to
anybody restricted to resources that are polynomially related to the length of the
inputs to the function. Beyond the intuitive conceptual appeal of truthfulness, there
are important practical considerations.

In general, when one deals (or experiments) with an object that is supposed to
be of Type T, one may assume that this object has all the properties enjoyed by
all Type T objects. If this assumption does not hold (even if one cannot detect
this fact during initial experimentation), then an application that depends on this
assumption may fail. One reason for the failure of the application may be that it uses
significantly more resources than those used in the initial experiments that failed to
detect the problem. See further discussion of this below. Another issue is that the
probability that the application fails may indeed be negligible (as is the probability
of detecting the failure in the initial experiments), but due to the importance of the
application we are unwilling to tolerate even a negligible probability of failure.

Indeed, the fact that truthfulness is not reflected by computational (or even sta-
tistical) indistinguishability raises the question of motivation. The question is, why
should we care about a property that we cannot test? The answer is that others
may be able to test this property and/or to benefit from its violation. The most
evident settings in which this may occur are multiparty settings consisting of parties
that have vastly different computational abilities (e.g., as underlying zero-knowledge
interactive proof and perfectly binding commitment schemes (cf., [18, Chap. 4])). In
such settings the indistinguishability requirement may refer to one (computationally
bounded) party, whereas truthfulness is essential for preventing events that refer to
actions of the other party (which is not computationally bounded). For example,
a pseudorandom function is computationally indistinguishable from a random per-
mutation, but if we face an opponent that is not computationally bounded and can
illegitimately benefit from finding an image that has multiple preimages, then we
should insist on using a truthful implementation of a random permutation. The same
considerations also apply if the opponent is computationally bounded but has extra
information regarding the pseudorandom function (e.g., the opponent may know the

2Here we refer to a relaxation of the notion of truthfulness that requires (only) that all but a
negligible part of the probability mass of the implementation is assigned to functions that appear
with nonzero probability in the specification. An implementation satisfying this relaxation will be
called almost-truthful.
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succinct description of the function, hereafter called its seed). Note that, in this ex-
ample, computational-indistinguishability may refer to one party (who does not know
the function’s seed), whereas truthfulness guarantees that the implemented function
is a permutation and thus that the opponent (who may know the seed) cannot find
an image that has multiple preimages.

Truthful implementations as an extension of complexity theory. Special-
izing our notion of a truthful implementation to the case of deterministic specifications
yields the standard notion of efficient computation; that is, a truthful implementa-
tion of a function f : {0, 1}∗ → {0, 1}∗ is nothing but a polynomial-time algorithm
for computing f . Similarly, an almost-truthful implementation of f is a probabilistic
polynomial-time algorithm for computing f (with exponentially vanishing error prob-
ability). Thus, our notion of truthful implementations extends the standard study of
polynomial-time computations from functions to probability distributions over func-
tions (i.e., specifications).

1.3. Organization. In section 2, we present formal definitions of the notions
discussed above as well as basic observations regarding these notions. These are
followed by a few known examples of nontrivial implementations of various random
objects (which are retrospectively cast nicely in our formulation). In section 3, we
state a fair number of new implementations of various random objects, while deferring
the constructions (and proofs) to subsequent corresponding sections (i.e., sections 4
through 9). These implementations demonstrate the applicability of our notions to
various domains such as functions, graphs, and codes. Indeed, sections 4 through 9
are mutually independent and can be read in arbitrary order.

We call the reader’s attention to sections 10 and 11, which contain conclusions and
open problems (section 10) as well as a brief review of subsequent work (section 11).

2. Formal setting and general observations. Throughout this work we let
n denote the feasibility parameter. Specifically, feasible-sized objects have an explicit
description of length poly(n), whereas huge objects have (an explicit description) size
exponential in n. The latter are described by functions from poly(n)-bit strings to
poly(n)-bit strings. Whenever we talk of efficient procedures we mean algorithms
running in poly(n)-time.

2.1. Specification. A huge random object is specified by a computationally
unbounded probabilistic Turing machine. For the fixed contents of the random-tape,
such a machine defines a (possibly partial) function on the set of all binary strings.
Such a function is called an instance of the specification. We consider the input-output
relation of this machine when the random-tape is uniformly distributed. Loosely
speaking, this is the random object specified by the machine.

For the sake of simplicity, we confine our attention to machines that halt with
probability 1 on every input. Furthermore, we will consider the input-output rela-
tion of such machines only on inputs of some specified length �, where � is always
polynomially related to the feasibility parameter n. Thus, for such a probabilistic
machine M and length parameter � = �(n), with probability 1 over the choice of the
random-tape for M , machine M halts on every �(n)-bit long input.

Definition 2.1 (specification). For a fixed function � :N→N, the instance spec-
ified by a probabilistic machine M , random-tape ω, and parameter n is the function
Mn,ω defined by letting Mn,ω(x) be the output of M on input x ∈ {0, 1}�(n) when using
the random-tape ω ∈ {0, 1}∞. The random object specified by M and n is defined as
Mn,ω for a uniformly selected ω ∈ {0, 1}∞.
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Note that, with probability 1 over the choice of the random-tape, the random
object (specified by M and n) depends only on a finite prefix of the random-tape. Let
us clarify our formalism by casting in it several simple examples which were considered
before (cf. [20, 34]).

Example 2.2 (a random function). A random function from n-bit strings to n-bit
strings is specified by the machine M that, on input x ∈ {0, 1}n (parameter n and
random-tape ω), returns the idxn(x)th n-bit block of ω, where idxn(x) is the index
of x within the set of n-bit long strings.

Example 2.3 (a random permutation). Let N = 2n. A random permutation over
{0, 1}n ≡ [N ] can be specified by uniformly selecting an integer i ∈ [N !]; that is, the
machine uses its random-tape to determine i ∈ [N !], and uses the ith permutation
according to some standard order. An alternative specification, which is easier to state
(but alas, even more inefficient), is obtained by a machine that repeatedly inspects
the N next n-bit strings on its random-tape, until encountering a run of N different
values, using these values as the permutation. Either way, once a permutation π over
{0, 1}n is determined, the machine answers the input x ∈ {0, 1}n with the output
π(x).

Example 2.4 (a random permutation coupled with its inverse). In continuation
of Example 2.3, we may consider a machine that selects π as before, and responds
to input (σ, x) with π(x) if σ = 1 and with π−1(x) otherwise. That is, the object
specified here provides access to a random permutation as well as to its inverse.

2.2. Implementations. Definition 2.1 places no restrictions on the complex-
ity of the specification. Our aim, however, is to implement such specifications effi-
ciently. We consider several types of implementations, where in all cases we aim at
efficient implementations (i.e., machines that respond to each possible input within
polynomial-time). Specifically, we consider the following two parameters:

1. The type of model used in the implementation. We will use either a polynomial-
time oracle machine having access to a random oracle or a standard proba-
bilistic polynomial-time machine (viewed as a deterministic machine having
access to a finite random-tape).

2. The similarity of the implementation to the specification; that is, the implemen-
tation may be perfect, statistically indistinguishable, or only computationally
indistinguishable from the specification (by probabilistic polynomial-time ora-
cle machines that try to distinguish the implementation from the specification
by querying it at inputs of their choice).

Our real goal is to derive implementations by ordinary machines (having as good a
quality as possible). We thus view implementations by oracle machines having access
to a random oracle merely as a clean abstraction, which is useful in many cases (as
indicated by Theorem 2.9).

Definition 2.5 (implementation by oracle machines). For a fixed (length) func-
tion � : N→ N, a (deterministic) polynomial-time oracle machine M , and oracle f ,
the instance implemented by Mf and parameter n is the function Mf defined by letting
Mf (x) be the output of M on input x ∈ {0, 1}�(n) when using the oracle f . The
random object implemented by M with parameter n is defined as Mf for a uniformly
distributed f : {0, 1}∗ → {0, 1}.

In fact, Mf (x) depends only on the value of f on inputs of length bounded by
a polynomial in |x|. Similarly, an ordinary probabilistic polynomial-time (as in the
following definition) uses only a poly(|x|)-bit long random-tape when invoked on input
x. Thus, for feasibility parameter n, the machine handles �(n)-bit long inputs using a
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random-tape of length ρ(n) = poly(�(n)) = poly(n), where (without loss of generality
(w.l.o.g.)) ρ is 1-1.

Definition 2.6 (implementation by ordinary machines). For fixed functions
�, ρ : N→ N, an ordinary polynomial-time machine M , and a string r, the instance
implemented by M and random-tape r is the function Mr defined by letting Mr(x) be

the output of M on input x ∈ {0, 1}�(ρ−1(|r|)) when using the random-tape r. The
random object implemented by M with parameter n is defined as Mr for a uniformly
distributed r ∈ {0, 1}ρ(n).

We stress that an instance of the implementation is fully determined by the ma-
chine M and the random-tape r (i.e., we disallow “implementations” that construct
the object on the fly while depending on and keeping track of all previous queries and
answers).3

For a machine M (either a specification or an implementation), we identify the
pair (M,n) with the random object specified (or implemented) by machine M and
feasibility parameter n.

Definition 2.7 (indistinguishability of the implementation from the specifica-
tion). Let S be a specification, and let I be an implementation, both with respect to
the length function � :N→N. We say that I perfectly implements S if, for every n,
the random object (I, n) is distributed identically to the random object (S, n). We say
that I closely implements S if, for every oracle machine M that on input 1n makes at
most polynomially many queries, all of length �(n), the difference

(2.1) |Pr[M (I,n)(1n) = 1] − Pr[M (S,n)(1n) = 1]|
is negligible4 as a function of n. We say that I pseudoimplements S if the expression
in (2.1) is negligible for every probabilistic polynomial-time oracle machine M that
makes only queries of length equal to �(n).

We stress that the notion of a close-implementation does not say that the objects
(i.e., (I, n) and (S, n)) are statistically close; it merely says that they cannot be dis-
tinguished by a (computationally unbounded) machine that asks polynomially many
queries. Indeed, the notion of pseudoimplementation refers to the notion of computa-
tional indistinguishability (cf. [24, 40]) as applied to functions (see [20]). Clearly, any
perfect implementation is a close-implementation, and any close-implementation is a
pseudoimplementation. Intuitively, the oracle machine M , which is sometimes called
a (potential) distinguisher, represents a user that employs (or experiments with) the
implementation. It is required that such a user cannot distinguish the implemen-
tation from the specification, provided that the user is limited in its access to the
implementation or even in its computational resources (i.e., time).

Indeed, it is trivial to perfectly implement a random function (i.e., the specifi-
cation given in Example 2.2) by using an oracle machine (with access to a random
oracle). In contrast, the main result of Goldreich, Goldwasser, and Micali [20] can be
cast by saying that there exist a pseudoimplementation of a random function by an
ordinary machine, provided that pseudorandom generators (or, equivalently, a one-
way function [6, 40, 25]) do exist. In fact, under the same assumption, it is easy to
show that every specification having a pseudoimplementation by an oracle machine
also has a pseudoimplementation by an ordinary machine. A stronger statement will
be proven in Theorem 2.9.

3We mention that such “stateful implementations” were considered in the subsequent work of [7].
4A function μ : N → [0, 1] is called negligible if for every positive polynomial p and all sufficiently

large n’s it holds that μ(n) < 1/p(n).
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Truthful implementations. An important notion regarding (nonperfect) im-
plementations refers to the question of whether or not they satisfy properties that are
enjoyed by the corresponding specification. In other words, the question is whether
each instance of the implementation is also an instance of the specification. Whenever
this condition holds, we call the implementation truthful. Indeed, every perfect imple-
mentation is truthful, but this is not necessarily the case for close-implementations.
For example, a random function is a close-implementation of a random permutation
(because it is unlikely to find a collision among polynomially many preimages); how-
ever, a random function is not a truthful implementation of a random permutation.

Definition 2.8 (truthful implementations). Let S be a specification, and let I
be an implementation. We say that I is truthful to S if for every n the support of the
random object (I, n) is a subset of the support of the random object (S, n).

Much of this work is focused on truthful implementations. The following simple
result is very useful in the study of the latter. It asserts that we may focus on design-
ing implementations by oracle machines (having access to a random oracle), and au-
tomatically obtain standard implementations (by ordinary probabilistic polynomial-
time machines). We comment that this result is typically applied to (truthful) close-
implementations by oracle machines, yielding (truthful) pseudoimplementations by
ordinary machines.

Theorem 2.9. Suppose that one-way functions exist. Then any specification that
has a pseudoimplementation by an oracle machine (having access to a random oracle)
also has a pseudoimplementation by an ordinary machine. Furthermore, if the former
implementation is truthful, then so is the latter.

The sufficient condition is also necessary, because the existence of pseudorandom
functions (i.e., a pseudoimplementation of a random function by an ordinary ma-
chine) implies the existence of one-way functions. In view of Theorem 2.9, whenever
we seek truthful implementations (or, alternatively, whenever we do not care about
truthfulness at all), we may focus on implementations by oracle machines.

Proof. First, we replace the random oracle used by the former implementation
by a pseudorandom oracle (i.e., by a pseudorandom function that is available by the
results of [20, 25]). Thus, no probabilistic polynomial-time distinguisher can detect
the difference, except with negligible probability. Furthermore, the support of the
pseudorandom oracle is a subset of the support of the random oracle, and so the
truthful property is inherited by the latter implementation. Finally, we use an ordi-
nary machine to emulate the oracle machine that has access to a pseudorandom oracle;
that is, the ordinary machine selects a random seed for the pseudorandom function
and emulates the computation of the original oracle machine with the corresponding
oracle.

Almost-truthful implementations. Truthful implementations guarantee that
each instance of the implementation is also an instance of the specification (and is thus
“consistent with the specification”). A meaningful relaxation of this guarantee refers
to the case that almost all the probability mass of the implementation is assigned
to instances that are consistent with the specification (i.e., are in the support of the
latter). Specifically, we refer to the following definition.

Definition 2.10 (almost-truthful implementations). Let S be a specification,
and let I be an implementation. We say that I is almost-truthful to S if the probability
that (I, n) is not in the support of the random object (S, n) is bounded by a negligible
function in n.

Interestingly, almost-truthfulness is not preserved by the construction used in the
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proof of Theorem 2.9. In fact, there exists specifications that have almost-truthful
close-implementations by oracle machines but not by ordinary machines (see Theo-
rem 2.11). Thus, when studying almost-truthful implementations, one needs to deal
directly with ordinary implementations (rather than focus on implementations by
oracle machines). Indeed, we will present a few examples of almost-truthful imple-
mentations that are not truthful.

Theorem 2.11. There exists a specification that has an almost-truthful close-
implementation by an oracle machine but has no almost-truthful implementation by
an ordinary machine.

We stress that the theorem holds regardless of whether or not the latter (almost-
truthful) implementation is indistinguishable from the specification.

Proof. Consider the specification of a uniformly selected function f : {0, 1}n →
{0, 1} having (time-modified) Kolmogorov complexity [32, Definition 7.5.1]5 greater
than 2n−1. That is, the specification machine scans its random-tape, looking for a
block of 2n bits of (time-modified) Kolmogorov complexity greater than 2n−1, and
once found uses this block as a truth-table of the desired Boolean function. Since all
but a negligible fraction of the functions have Kolmogorov complexity greater than
2n−1, an almost-truthful close-implementation by an oracle machine may just use a
random function. On the other hand, any implementation by an ordinary machine (of
randomness complexity ρ) induces a function f : {0, 1}n → {0, 1} of (time-modified)
Kolmogorov complexity at most (O(1)+ρ(n))+log2(poly(n)·2n) = poly(n). Thus, any
such implementation yields a function that violates the specification, and so cannot
be even “remotely” truthful.

2.3. Known nontrivial implementations. In view of Theorem 2.9, when
studying truthful implementations, we focus on implementations by oracle machines.
In these cases, we shorthand the phrase implementation by an oracle machine by
the term implementation. Using the notion of truthfulness, we can cast the nontriv-
ial implementation of a random permutation provided by Luby and Rackoff [34] as
follows.

Theorem 2.12 (see [34]). There exists a truthful close-implementation of the
specification provided in Example 2.3. That is, there exists a truthful close-implementa-
tion of the specification that uniformly selects a permutation π over {0, 1}n and re-
sponses to the query x ∈ {0, 1}n with the value π(x).

Recall that Example 2.3 has a trivial close-implementation by a random function,
but this trivial implementation is not truthful. The point of Theorem 2.12 is that it
provides a truthful close-implementation of the specification provided in Example 2.3.
On the other hand, even when ignoring the issue of truthfulness, it is nontrivial to
provide a close-implementation of Example 2.4 (i.e., a random permutation along
with its inverse).6 However, Luby and Rackoff [34] have also provided a truthful
close-implementation of Example 2.4.

Theorem 2.13 (see [34]). There exists a truthful close-implementation of the
specification that uniformly selects a permutation π over {0, 1}n and responses to the
query (σ, x) ∈ {−1,+1} × {0, 1}n with the value πσ(x).

5Loosely speaking, the (standard) Kolmogorov complexity of a string s is the minimum length of
a program Π that produce s. The time-modified Kolmogorov complexity of a string s is the minimum,
taken over programs Π that produce s, of |Π|+ log2(time(Π)), where time(Π) is the running-time of
Π. We use time-modified Kolmogorov complexity in order to allow for a recursive specification.

6A random function will fail here, because the distinguisher may distinguish it from a random
permutation by asking for the inverse of a random image.
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Another known result that has the flavor of the questions that we explore was
obtained by Naor and Reingold [38]. Loosely speaking, they provided a truthful close-
implementation of a permutation selected uniformly among all permutations having
a certain cycle-structure.

Theorem 2.14 (see [38]). For any N = 2n, t = poly(n), and C = {(ci,mi) : i =
1, . . . , t} such that

∑t
i=1 mici = N , there exists a truthful close-implementation of a

uniformly distributed permutation that has mi cycles of size ci for i = 1, . . . , t.7 Fur-
thermore, the implementation instance that uses the permutation π can also support
queries of the form (x, j) to be answered by πj(x) for any x ∈ {0, 1}n and any integer
j (which is presented in binary).

We stress that the latter queries are served in poly(n)-time also in the case that
j � poly(n).

2.4. A few general observations. Theorem 2.11 asserts the existence of spec-
ifications that cannot be implemented in an almost-truthful manner by an ordinary
machine, regardless of the level of indistinguishability (of the implementation from
the specification). We can get negative results that refer also to implementations by
oracle machines, regardless of truthfulness, by requiring the implementation to be suf-
ficiently indistinguishable (from the specification). Specifically we have the following
proposition.

Proposition 2.15. The following refers to implementations by oracle machines
and disregards the issue of truthfulness.

1. There exist specifications that cannot be closely-implemented.
2. Assuming the existence of one-way functions, there exist specifications that

cannot be pseudoimplemented.

The hypothesis in part 2 can be relaxed: It suffices to assume the existence of
NP-sets for which it is feasible to generate hard instances. For details, see Appendix D.

Proof. Starting with part 2, we note that the specification may be a deterministic
process that inverts a one-way function f (as in the hypothesis) at images of the
user’s choice (i.e., the query x is answered by the lexicographically first element in
f−1(x)). Certainly, this specification cannot be pseudoimplemented, because such an
implementation would yield an algorithm that violates the hypothesis (of part 2).8

We may easily adapt this example such that the specification gives rise to a random
object. For example, the specification may require that, given a pair of strings, one
should use a random function to select one of these two strings, and answer with
this string’s inverse under the one-way function. A pseudoimplementation of this
specification can also be shown to contradict the hypothesis. This establishes part 2.

Turning to part 1, we consider any fixed function f that is computable in exponential-
time but cannot be inverted, except with negligible probability, by any polynomial-
time machine that uses a random oracle. Such a function can be shown to exist by

7Special cases include involutions (i.e., permutations in which all cycles have length 2), and
permutations consisting of a single cycle (of length N). These cases are cast by C = {(2, N/2)} and
C = {(N, 1)}, respectively. Note that this description presumes that C is fixed, which may be the
case only when N = 2n is fixed. Thus, a proper formulation should either postulate that C = C(N)
is efficiently computable from N or seek a “universal” object that answers queries in which C is given
as part of the query.

8Consider the performance of the specification (resp., implementation) when queried on a ran-
domly generated image, and note that the correctness of the answer can be efficiently verified. Thus,
since the specification always inverts f on the given image, a pseudoimplementation must do the
same (except with negligible probability), yielding a probabilistic polynomial-time algorithm that
inverts f .
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using a counting argument. The specification determines such a function, and inverts
it at inputs of the user’s choice. Observe that a close-implementation of such a function
is required to successfully invert the function at random images, which is impossible
(except for negligible probability, because the implementation is a polynomial-time
machine (which uses a random oracle)).

The randomness complexity of implementations. Looking at the proof of
Theorem 2.9, it is evident that as far as pseudoimplementations by ordinary machines
are concerned (and assuming the existence of one-way functions), randomness can be
reduced to any power of the feasibility parameter (i.e., to nε for every ε > 0). The same
holds with respect to truthful pseudoimplementations. On the other hand, the proof of
Theorem 2.11 suggests that this collapse in the randomness complexity cannot occur
with respect to almost-truthful implementations by ordinary machines (regardless of
the level of indistinguishability of the implementation from the specification).

Theorem 2.16 (a randomness hierarchy). For every polynomial ρ, there exists a
specification that has an almost-truthful close-implementation by an ordinary machine
that uses a random-tape of length ρ(n), but has no almost-truthful implementation by
an ordinary machine that uses a random-tape of length ρ(n)− ω(logn).

Proof. Let g(n) = ω(logn). Consider the specification that selects uniformly a
string r ∈ {0, 1}ρ(n) of (time-modified) Kolmogorov complexity at least ρ(n) − g(n),
and responds to the query i ∈ [2n] with the (1+(i mod ρ(n)))th bit of r. Since all but
an exp(−g(n)) = n−ω(1) fraction of the ρ(n)-bit long strings have such complexity,
this specification is closely-implemented in an almost-truthful manner by a machine
that uniformly selects r ∈ {0, 1}ρ(n) (and responds as the specification). However, any
implementation that uses a random-tape of length ρ′ yields a function that assigns the
first ρ(n) arguments values that yield a ρ(n)-bit long string of (time-modified) Kol-
mogorov complexity at most (O(1)+ρ′(n))+ log2(poly(n)) = ρ′(n)+O(log n). Thus,
for ρ′(n) = ρ(n)−2g(n), the implementation cannot even be “remotely” truthful.

Composing implementations. A simple observation that is used in our work
is that one can “compose implementations.” That is, if we implement a random
object R1 by an oracle machine that uses oracle calls to a random object R2, which
in turn has an implementation by a machine of type T, then we actually obtain an
implementation of R1 by a machine of type T. To state this result, we need to extend
Definition 2.5 such that it applies to oracle machines that use (or rather have access to)
arbitrary specifications (rather than a random oracle). Let us denote by (M (S,n), n)
an implementation by the oracle machine M (and feasibility parameter n) with oracle
access to the specification (S, n), where we assume for simplicity that S uses the same
feasibility parameter as M .

Theorem 2.17. Let Q ∈ {perfect, close, pseudo}. Suppose that the specification
(S1, n) can be Q-implemented by (M (S2,n), n) and that (S2, n) has a Q-implementation
by an ordinary machine (resp., by an oracle machine with a random oracle). Then,
(S1, n) has a Q-implementation by an ordinary machine (resp., by an oracle machine
with a random oracle). Furthermore, if both the implementations in the hypothesis
are truthful (resp., almost-truthful), then so is the implementation in the conclusion.

Proof. The idea is to simply replace (S2, n) by its implementation, denoted (I2, n),
and thus obtain an implementation (M (I2,n), n) of (S1, n). Next, by combining the
machines M and I2, we obtain a machine I of the same type as the type of machine
I2, and it holds that (I, n) yields a random object that is distributed identically
to (M (I2,n), n). Thus, we obtain an implementation (I, n) of (S1, n). Indeed, (I, n)
inherits the truthfulness (resp., almost-truthfulness) of the two given implementations
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(i.e., M (S2,·) and I2). Similarly, the analysis of the “quality” of the implementation
(I, n) relies on the “quality” of the two given implementations. The details follow.

If both M (I2,·) and I2 are perfect implementation of S1 and S2, respectively, then
I is a perfect implementation of S1. If the former are only close-implementations,
then, using the hypothesis that M is polynomial-time, it follows that M makes only
polynomially many queries to its oracle, and thus invoking M a polynomial number
of times results in a polynomial number of queries to its oracle. Using the second
hypothesis (i.e., the “quality” of I2), it follows that M

(I2,n) and M (S2,n) are indistin-
guishable by polynomially many queries. Using the first hypothesis (i.e., the “quality”
of M (S2,n)), it follows that (I, n) ≡ (M (I2,n), n) is a close-implementation of (S1, n).

Last, let us spell out the argument for the case of pseudoimplementations, while
using the term computationally indistinguishable as shorthand for indistinguishable
by probabilistic polynomial-time oracle machines. The first hypothesis asserts that
(M (S2,n), n) and (S1, n) are computationally indistinguishable, and the second hy-
pothesis asserts that (I2, n) and (S2, n) are computationally indistinguishable. Our
goal is to prove that (M (I2,n), n) and (S1, n) are computationally indistinguishable,
which (by the first hypothesis) reduces to proving that (M (I2,n), n) and (M (S2,n), n)
are computationally indistinguishable. Now suppose, towards the contradiction, that
a probabilistic polynomial-time machine D distinguishes (M (I2,n), n) from
(M (S2,n), n). Then, combining D and M , we obtain a machine that distinguishes
(I2, n) from (S2, n), which contradicts the second hypothesis. The key point is the fact
that M is probabilistic polynomial-time (because it is an implementation machine),
and so the combined distinguisher is also probabilistic polynomial-time (provided that
so is D).

2.5. Objects of feasible size. In contrast to the rest of this work, in the cur-
rent subsection we (shortly) discuss the complexity of generating random objects of
feasible size (rather than huge random objects). In other words, we are talking about
implementing a distribution on poly(n)-bit long strings, and doing so in poly(n)-time.
This problem can be cast in our general formulation by considering specifications that
ignore their input (i.e., have output that depend only on their random-tape). In other
words, we may view objects of feasible size as constant functions, and consider a speci-
fication of such random objects as a distribution on constant functions. Thus, w.l.o.g.,
the implementation may also ignore its input, and consequently, in this case there is
no difference between an implementation by ordinary machine and an implementation
by oracle machine with a random oracle.

We note that perfect implementations of such distributions were considered be-
fore (e.g., in [1, 5, 17]), and distributions for which such implementations exist are
called sampleable. In the current context, where the observer sees the entire object,
the distinction between perfect implementation and close-implementation seems quite
technical. What seems fundamentally different is the study of pseudoimplementations.

Theorem 2.18. There exist specifications of feasible-sized objects that have no
close-implementation, but do have (both truthful and nontruthful) pseudoimplementat-
ions.

Proof. Any evasive pseudorandom distribution (cf. [21]) yields such a specifi-
cation. Recall that a distribution is called evasive if it is infeasible to generate an
element in its support (except with negligible probability), and is called pseudoran-
dom if it is computationally indistinguishable from a uniform distribution on strings
of the same length. It is known that evasive pseudorandom distributions do exist [21].
Note that, by definition, an evasive distribution has no close-implementation. On
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the other hand, any pseudorandom distribution can be pseudoimplemented by the
uniform distribution (or any other pseudorandom distribution). Indeed, the latter
implementation is not even almost-truthful with respect to the evasive pseudorandom
distribution, because even a “remotely-truthful” implementation would violate the
evasiveness condition. To also allow the presentation of a truthful implementation,
we modify the specification such that with exponentially small probability it produces
some sampleable pseudorandom distribution, and otherwise, it produces the evasive
pseudorandom distribution. The desired truthful pseudoimplementation will always
produce the former distribution (i.e., the sampleable pseudorandom distribution), and
still the combined distribution has no close-implementation.

The proof of Theorem 2.18 (or rather the existence of evasive distributions) also
establishes the existence of specifications (of feasible-sized objects) that have no truth-
ful (and even no almost-truthful) implementation, regardless of the level of indistin-
guishability from the specification. Turning the table around, we ask whether there
exist specifications of feasible-sized objects that have no pseudoimplementations, re-
gardless of the truthfulness condition. A partial answer is provided by the following
result, which relies on a nonstandard assumption. Specifically, we assume the ex-
istence of a collision-resistant hash function; that is, a length-decreasing function
h : {0, 1}∗ → {0, 1}∗ such that it is infeasible to form collisions under h (i.e., it is
infeasible to find sufficiently long strings x �= y such that f(x) = f(y)).9

Proposition 2.19. Assuming the existence of a collision-resistant hash function,
there exists a specification of a random feasible-sized object that has no pseudoimple-
mentation.

Proof. The hypothesis implies the existence of a collision-resistant hash function h
that shrinks its argument by exactly one bit (i.e., |h(x)| = |x|−1).10 Referring to this

function h, consider the nonempty set Sn
def
= {(x, y) ∈ {0, 1}n+n : h(x) = h(y)}, and

note that membership in ∪n∈NSn is easy to decide, while ∪n∈NSn is evasive. Consider
the specification that consists of the uniform distribution over the set Sn, and note
that this specification cannot be pseudoimplemented, because the likely event in which
the implementation fails to hit Sn is easily detectable.

Open Problem 2.20 (stronger versions of Proposition 2.19). Provide a spec-
ification of a random feasible-sized object that has no pseudoimplementation while
relying on some standard intractability assumption.

Let us digress and consider close-implementations. For example, we note that
Bach’s elegant algorithm for generating random composite numbers along with their
factorization [4] can be cast as a close-implementation of the said distribution.11 We
stress the highly nontrivial nature of the foregoing implementation (while recalling
that it seems infeasible to find the factorization of a uniformly distributed composite
number). A more elementary set of examples refers to the generation of integers

9We stress that the assumption used here (i.e., the existence of a single collision-resistant hash
function) seems significantly stronger than the standard assumption that refers to the existence of
an ensemble of collision-resistant functions (cf. [12] and [19, Definition 6.2.5]).

10Given an arbitrary function h′ as in the hypothesis, consider the function h′′ defined by h′′(x) =
h′(h′(x)). Then, h′′ is collision-resistant and |h′′(x)| ≤ |x| − 2. Now, consider the function h defined

by h(x) = h′′(x)01|x|−|h′′(x)|−2, and note that |h(x)| = |x| − 1 while h is also collision-resistant.
11We mention that Bach’s motivation was to generate prime numbers P along with the factor-

ization of P − 1 in order to allow efficient testing of whether a given number is a primitive element
modulo P . Thus, one may say that Bach’s paper provides a close-implementation (by an ordinary
probabilistic polynomial-time machine) of the specification that selects at random an n-bit long
prime P and answers the query g by 1 if and only if g is a primitive element modulo P . Note that
the latter specification refers to a huge random object.
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(out of a huge domain) according to various “nice” distributions (e.g., the binomial
distribution of N trials).12 In fact, Knuth [29, sect. 3.4.1] considers the generation of
several such distributions, and his treatment (of integer-valued distributions) can be
easily adapted to fit our formalism. This direction is further pursued in Appendix A.
In general, recall that in the current context (where the observer sees the entire
object), a close-implementation must be statistically close to the specification. Thus,
almost-truthfulness follows “for free.”

Proposition 2.21. Any close-implementation of a specification of a feasible-
sized object is almost-truthful to it.

Multiple samples. Our general formulation can be used to specify an object
that whenever invoked returns an independently drawn sample from the same distri-
bution. Specifically, the specification may be by a machine that answers each “sample-
query” by using a distinct portion of its random-tape (as coins used to sample from
the basic distribution). Using a pseudorandom function, we may pseudoimplement
multiple samples from any distribution for which one can pseudoimplement a single
sample.

Proposition 2.22. Suppose that one-way functions exist, and let D = {Dn}
be a probability ensemble such that each Dn ranges over poly(n)-bit long strings. If
D can be pseudoimplemented, then so can the specification that answers each query
by an independently selected sample of D. Furthermore, the latter implementation is
by an ordinary machine and is truthful provided that the former implementation is
truthful.

Proof. Consider first an implementation by an oracle machine that merely uses
the random function to assign to each query a random-tape to be used by the pseu-
doimplementation of (the single sample of the distribution) D. Since truthfulness and
computational indistinguishability are preserved by multiple (independent) samples
(cf. [18, sect. 3.2.3] for the latter), we are done as far as implementations by oracle
machines are concerned. Using Theorem 2.9, the proposition follows.

3. Our main results. We obtain several new implementations of random ob-
jects. All our implementations are either truthful or almost-truthful with respect
to the corresponding specifications. We present the corresponding results in two
categories referring to whether they yield truthful or only almost-truthful implemen-
tations.

3.1. Truthful implementations. All implementations stated in this section
are by (polynomial-time) oracle machines (which use a random oracle). Correspond-
ing pseudoimplementations by ordinary (probabilistic polynomial-time) machines can
be derived using Theorem 2.9. Namely, assuming the existence of one-way functions,
each of the specifications considered below can be pseudoimplemented in a truthful
manner by an ordinary probabilistic polynomial-time machine.

The basic technique underlying the following implementations is the embedding
of additional structure that enables us to efficiently answer the desired queries in a
consistent way or to force a desired property. That is, this additional structure ensures
truthfulness (with respect to the specification). The additional structure may cause
the implementation to have a distribution that differs from that of the specification,

12That is, for a huge N = 2n, we want to generate i with probability pi
def
=

(N
i

)
/2N . Note that

i ∈ {0, 1, . . . , N} has feasible size, and yet the problem is not trivial (because we cannot afford to
compute all pi’s).
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but this difference is infeasible to detect (via the polynomially many queries). In fact,
the additional structure is typically randomized in order to make it undetectable, but
each possible choice of coins for this randomization yields a “valid” structure (which
in turn ensures truthfulness rather than only almost-truthfulness).

3.1.1. Supporting complex queries regarding Boolean functions. As men-
tioned above, a random Boolean function is trivially implemented (in a perfect way)
by an oracle machine. By this we mean that the specification and the implementation
merely serve the standard evaluation queries that refer to the values of a random
function at various positions (i.e., query x is answered by the value of the function at
x). Here we consider specifications that support more powerful queries.

Example 3.1 (answering some parity queries regarding a random function). Sup-
pose that, for a random function f : [2n] → {0, 1}, we wish to be able to provide
the parity of the values of f on any desired interval of [2n]. That is, we consider
a specification defined by the machine that, on input (i, j) where 1 ≤ i ≤ j ≤ 2n,
replies with the parity of the bits residing in locations i through j of its random-tape.
(Indeed, this specification refers to the length function �(n) = 2n.)

Clearly, the implementation cannot afford to compute the parity of the corre-
sponding values in its random oracle. Still, in section 5 we present a perfect imple-
mentation of Example 3.1, as well as truthful close-implementations of more general
types of random objects (i.e., answering any symmetric “interval” query). Specifically,
we prove the following theorem.

Theorem 3.2 (see Theorem 5.2).13 For every polynomial-time computable func-
tion g, there exists a truthful close-implementation of the following specification of
a random object. The specification machine uses its random-tape to define a ran-
dom function f : {0, 1}n → {0, 1}, and answers the query (α, β) ∈ {0, 1}n+n by
g(
∑

α≤s≤β f(s)).

3.1.2. Supporting complex queries regarding length-preserving func-
tions. In section 9 we consider specifications that, in addition to the standard evalua-
tion queries, answer additional queries regarding a random length-preserving function.
Such objects have potential applications in computational number theory, cryptog-
raphy, and the analysis of algorithms (cf. [15]). Specifically, we prove the following
theorem.

Theorem 3.3 (see Theorem 9.2).14 There exists a truthful close-implementation
of the following specification. The specifying machine uniformly selects a function
f : {0, 1}n → {0, 1}n, and, in addition to the standard evaluation queries, answers
the inverse-query y ∈ {0, 1}n with the set f−1(y).

Alternatively, the implementation may answer with a uniformly distributed preim-
age of y under f (and with a special symbol in case no such preimage exists). A
different type of query is supported by the following implementation.

Theorem 3.4 (see Theorem 9.1). There exists a truthful close-implementation
of the following specification. The specifying machine uniformly selects a function f :
{0, 1}n → {0, 1}n, and answers the query (x,m), where x ∈ {0, 1}n and m ∈ [2poly(n)],
with the value fm(x) (i.e., f iterated m times on x).

This result is related to questions studied in [38, 39]; for more details, see section 9.

13We mention that a related result was discovered before us by Naor and Reingold; see the discus-
sion at the end of section 5. We also mention that, indeed, the current formulation of Theorem 5.2
follows from the special case in which g is the identity function.

14Note that in the specification it may happen (with negligible probability) that |f−1(y)| >
poly(|y|), but this will never happen in the implementation.
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3.1.3. Random graphs of various types. Random graphs have been exten-
sively studied (cf. [8]), and, in particular, are known to have various properties. But
does it mean that we can provide truthful close-implementations of uniformly dis-
tributed (huge) graphs having any of these properties?

Let us first consider a specification for a random N -vertex graph, where N =
2n. Indeed, such a random graph can be specified by the machine, which, viewing
its random-tape ω as an N -by-N matrix (i.e., ω = (ωi,j)i,j∈[N ]), answers the input
(i, j) ∈ [N ]× [N ] with the value ωi,j if i < j, with the value ωj,i if i > j, and with the
value 0 otherwise (i.e., if i = j). Needless to say, this specification can be perfectly
implemented (by a machine that uses its random oracle in an analogous manner). But
how about implementing a uniformly distributed graph that has various properties?

Example 3.5 (uniformly distributed connected graphs). Suppose that we want
to implement a uniformly distributed connected graph (i.e., a graph uniformly se-
lected among all connected N -vertex graph). An adequate specification may scan its
random-tape, considering each N2-bit long portion of it as a description of a graph,
and answer adjacency-queries according to the first portion that yields a connected
graph. Note that the specification works in time Ω(N2), whereas an implementation
needs to work in poly(logN)-time. On the other hand, recall that a random graph is
connected with overwhelmingly high probability. This suggests implementing a ran-
dom connected graph by a random graph. Indeed, this yields a close-implementation,
but not a truthful one (because occasionally, yet quite rarely, the implementation will
yield an unconnected graph).15

In section 6 we present truthful close-implementations of Example 3.5 as well
as of other (specifications of) uniformly distributed graphs having various additional
properties. These are all special cases of the following general result.

Theorem 3.6 (see Theorem 6.2). Let Π be a monotone graph property that is
satisfied by a family of strongly constructible sparse graphs. That is, for some negligible
function μ (and every N), there exists a perfect implementation of a (single) N -vertex
graph with μ(logN) ·N2 edges that satisfies property Π. Then, there exists a truthful
close-implementation of a uniformly distributed graph that satisfies property Π.

We stress that Theorem 6.2 applies also to properties that are not satisfied (with
high probability) by a random graph (e.g., having a clique of size

√
N). The proof

of Theorem 6.2 relies on the following lemma, which may be of independent interest.
Loosely speaking, the lemma asserts that if a monotone graph property Π is satisfied
by some sparse graphs, then a uniformly distributed graph having property Π is
indistinguishable from a truly random graph.

Lemma 3.7 (see Lemma 6.3). Let Π be a monotone graph property that is satisfied
by some N -vertex graph having ε · (N2 ) edges. Then, any machine that makes at
most q adjacency queries to a graph cannot distinguish a random N -vertex graph
from a uniformly distributed N -vertex graph that satisfies Π, except with probability
O(q · √ε) + q ·N−(1−o(1)).

3.1.4. Supporting complex queries regarding random graphs. Suppose
that we want to implement a random N -vertex graph along with supporting, in ad-
dition to the standard adjacency queries, also some complex queries that are hard to
answer by making only adjacency queries. For example, suppose that on a query ver-
tex v we need to provide a clique of size log2N containing v. In section 7 we present

15Note that failing to obtain a truthful implementation (by an oracle machine) does not allow us
to derive (via Theorem 2.9) even an almost-truthful pseudoimplementation by an ordinary machine.
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truthful close-implementation of this specification.
Theorem 3.8 (see Theorem 7.2). There exists a truthful close-implementation

of the following specification. The specifying machine selects uniformly an N -vertex
graph and, in addition to the standard adjacency queries, answers (log-clique) queries
of the form v by providing a random 
log2N�-vertex clique that contains v (and a
special symbol if no such clique exists).

Another result of a similar flavor refers to implementing a random graph while
supporting additional queries that refer to a random Hamiltonian cycle in that graph.

Theorem 3.9 (see Theorem 7.3). There exists a truthful close-implementation
of the following specification. The specifying machine selects uniformly an N -vertex
graph G, and, in case G is Hamiltonian, it uniformly selects a (directed) Hamiltonian
cycle in G, which in turn defines a cyclic permutation σ : [N ]→ [N ]. In addition to
the standard adjacency queries, the specification answers travel queries of the form
(trav, v, t) by providing σt(v), and distance queries of the form (dist, v, w) by providing
the smallest t ≥ 0 such that w = σt(v).

3.1.5. Random bounded-degree graphs of various types. Random bounded-
degree graphs have also received considerable attention. In section 8 we present truth-
ful close-implementations of random bounded-degree graphs G = ([N ], E), where the
machine specifying the graph answers the query v ∈ [N ] with the list of neighbors of
vertex v. We stress that even implementing this specification is nontrivial if one in-
sists on truthfully implementing simple random bounded-degree graphs (rather than
graphs with self-loops and/or parallel edges). Furthermore, we present truthful close-
implementations of random bounded-degree graphs having additional properties such
as connectivity, Hamiltonicity, having logarithmic girth, etc. All of these properties
are special cases of the following result.

Theorem 3.10 (see Theorem 8.4). Let d > 2 be fixed and Π be a graph property
that satisfies the following two conditions:

1. The probability that property Π is not satisfied by a uniformly chosen d-regular
N -vertex graph is negligible in logN .

2. Property Π is satisfied by a family of strongly constructible d-regular N -vertex
graphs having girth ω(log logN).

Then, there exists a truthful close-implementation of a uniformly distributed d-regular
N -vertex graph that satisfies property Π.

The proof relies on the following lemma, which may be of independent interest.
Loosely speaking, the lemma asserts that a random isomorphic copy of a fixed d-
regular graph of large girth is indistinguishable from a truly random d-regular graph.

Lemma 3.11 (see Lemma 8.1). For d > 2, let G = ([N ], E) be any d-regular
N -vertex graph having girth g. Let G′ be obtained by randomly permuting the vertices
of G (and presenting the incidence lists in some canonical order). Then, any machine
M that queries the graph for the neighborhoods of q vertices of its choice cannot dis-
tinguish G′ from a random d-regular N -vertex (simple) graph, except with probability
O(q2/(d− 1)(g−1)/2). In the case that d = 2 and q < g − 1, the probability bound can
be improved to O(q2/N).

3.2. Almost-truthful implementations. All implementations stated in this
section are by ordinary (probabilistic polynomial-time) machines. All these results
assume the existence of one-way functions.

Again, the basic technique is to embed a desirable structure, but (in contrast to
section 3.1) here the embedded structure forces the desired property only with very
high probability. Consequently, the resulting implementation is only almost-truthful,
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which is the reason that we have to directly present implementations by ordinary
machines.

A specific technique that we use is obtaining a function by taking a value-by-value
combination of a pseudorandom function and a function of a desired combinatorial
structure. The combination is done such that the combined function inherits both the
pseudorandomness of the first function and the combinatorial structure of the second
function (in analogy to a construction in [26]). In some cases, the combination is by a
value-by-value XOR, but in others it is by a value-by-value OR with a second function
that is very sparse.

3.2.1. Random codes of large distance. In continuation to the discussion in
the introduction, we prove the following theorem.

Theorem 3.12 (see Theorem 4.2). For δ = 1/6 and ρ = 1/9, assuming the
existence of one-way functions, there exists an almost-truthful pseudoimplementation
of the following specification: The specification machine uses its random-tape to uni-

formly select a code C ⊂ {0, 1}n having cardinality K
def
= 2ρn and distance at least δn,

and answers the query i ∈ [K] with the ith element in C.

We comment that the above description actually specifies (and implements) an
encoding algorithm for the corresponding code. It would be very interesting if one
can also implement a corresponding decoding algorithm; see further discussion in
section 4.

3.2.2. Random graphs of various types. Having failed to provide truthful
pseudoimplementations to the above specifications, we provide almost-truthful ones.

Theorem 3.13 (see Theorem 6.6). Let c(N) = (2 − o(1)) log2N be the largest
integer i such that the expected number of cliques of size i in a random N -vertex
graph is larger than one. Assuming the existence of one-way functions, there exist
almost-truthful pseudoimplementations of the following specifications:

1. A random graph of max-clique c(N)± 1: The specification uniformly selects
an N -vertex graph having maximum clique size c(N)± 1, and answers edge-
queries accordingly.

2. A random graph of chromatic number (1± o(1)) ·N/c(N): The specification

uniformly selects an N -vertex graph having chromatic number (1±log−1/32 N)·
N/c(N), and answers edge-queries accordingly.

We mention that Theorem 6.7 provides an almost-truthful pseudoimplementation
of a specification that refers to a uniformly distributed graph that satisfies both the
aforementioned properties as well as several other famous properties that are satisfied
(with high probablility (w.h.p.)) by random graphs. Thus, this implementation not
only looks as a random graph but rather satisfies all these properties of a random
graph (although determining whether a huge graph satisfies any of these properties is
infeasible).

One property of random graphs that was left out of Theorem 6.7 is having high
(global) connectivity property. That is, we seek an almost-truthful pseudoimplemen-
tation of a uniformly distributed graph having a high global connectivity property
(i.e., each pair of vertices is connected by many vertex-disjoint paths). Failing to
provide such an implementation, we provide instead an almost-truthful pseudoim-
plementation of a random graph for which almost all pairs of vertices enjoy a high
connectivity property.

Theorem 3.14 (see Theorem 6.8). For every positive polynomial p, assuming the
existence of one-way functions, there exists an almost-truthful pseudoimplementation
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of the following specification. The specifying machine selects a graph that is uniformly

distributed among all N -vertex graphs for which all but at most an ε(N)
def
= 1/p(log2N)

fraction of the vertex pairs are connected by at least (1 − ε(N)) ·N/2 vertex-disjoint
paths. Edge-queries are answered accordingly.

Interestingly, the same implementation works for all polynomials p; that is, the
implementation is independent of p, which is used only for defining the specification.
We note that a subsequent work by Alon and Nussboim [3] provides the implementa-
tion we failed to achieve (i.e., an almost-truthful pseudoimplementation of a uniformly
distributed graph having a high global connectivity property).

4. Implementing random codes of large distance. For sufficiently small
ρ, δ > 0, we consider codes having relative rate ρ and relative distance δ; that is, we
consider subsets C ⊂ {0, 1}n such that |C| = 2ρn and every two distinct codewords
(i.e., α, β ∈ C) disagree on at least δn coordinates. Such a code is called good.

A random set of K
def
= 2ρn strings of length n is good with overwhelmingly high

probability. Thus, for a random function f : [K] → {0, 1}n, setting C = {f(i) : i ∈
[K]} yields an almost-truthful close-implementation of a random code that is good,
where the specification is required to answer the query i with the ith codeword (i.e.,
the ith element in the code). Recall that it is not clear what happens when we replace
f by a pseudorandom function (i.e., it may be the case that the resulting code has
very small distance, although most pairs of codewords are definitely far apart). Thus,
in order to get an almost-truthful pseudoimplementation (by ordinary probabilistic
polynomial-time machines), we use a different approach.

Construction 4.1 (implementing a good random code). For k = ρn, we select
a random k-by-n matrix M , and consider the linear code generated by M (i.e., the
codewords are obtained by all possible linear combinations of the rows of M). Now,
using a pseudorandom function fs : {0, 1}k → {0, 1}n, where s ∈ {0, 1}n, we consider
the code CM,s = {fs(v)⊕vM : v ∈ {0, 1}k}. That is, our implementation uses the
random-tape (M, s), and provides the ith codeword of the code CM,s by returning
fs(i)⊕iM , where i ∈ [2k] is viewed as a k-dimensional row vector (or a k-bit long
string).

To see that Construction 4.1 is a pseudoimplementation of a random code, con-
sider what happens when the pseudorandom function is replaced by a truly random
one (in which case we may ignore the nice properties of the random linear code gener-
ated by M).16 Specifically, for any matrix M and any function f : [K]→ {0, 1}n, we
consider the code Cf

M = {f(v)⊕vM : v ∈ {0, 1}k}. Now, for any fixed choice ofM and

a truly random function φ : [K]→ {0, 1}n, the code Cφ
M is a random code. Thus, the

pseudorandomness of the function ensemble {fs}s∈{0,1}n implies that, for a uniformly

chosen s ∈ {0, 1}n, the code CM,s = Cfs
M is computationally indistinguishable from a

random code. The reason being that the ability to distinguish selected codewords of
Cfs

M (for a random s ∈ {0, 1}n) from codewords of Cφ
M (for a truly random function

φ : [K]→ {0, 1}n) yields the ability to distinguish the corresponding fs from φ.
To see that Construction 4.1 is almost-truthful to the good code property, fix any

(pseudorandom) function f and consider the code CM = {f(v)⊕vM : v ∈ {0, 1}k},
when M is a random k-by-n matrix. Fixing any pair of distinct strings v, w ∈ {0, 1}k,
we show that with probability at least 2−3k (over the possible choices of M), the

16In particular, note that the resulting code is unlikely to be linear. Furthermore, any n−O(1) >
k codewords are likely to be linearly independent (when we use either a random function or a
pseudorandom one).
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codewords f(v)⊕vM and f(w)⊕wM are at a distance of at least δn, and it follows
that with probability at least 1−2−k the code CM has a distance of at least δn. Thus,
for a randomM , we consider the Hamming weight of (f(v)⊕vM)⊕(f(w)⊕wM), which
in turn equals the Hamming weight of r⊕uM , where r = f(v)⊕f(w) and u = v⊕w
are fixed. The weight of r⊕uM behaves as a binomial distribution (with success
probability 1/2), and thus the probability that the weight is less than δn is upper-
bounded by 2−(1−H2(δ))·n, where H2 denotes the binary entropy function. So we
need 1 −H2(δ) · n > 3k to hold, and indeed it does hold for appropriate choices of
δ and ρ (e.g., δ = 1/6 and ρ = 1/9). Specifically, recalling that k = ρn, we need
1−H2(δ) > 3ρ to hold. We now get the following theorem.

Theorem 4.2. For any δ ∈ (0, 1/2) and ρ ∈ (0, 1 − H2(δ))/3, assuming the
existence of one-way functions, there exists an almost-truthful pseudoimplementation
by an ordinary machine of the following specification: The specification machine uses

its random-tape to uniformly select a code C ⊂ {0, 1}n having cardinality K
def
= 2ρn

and a distance of at least δn, and answers the query i ∈ [K] with the ith element in
C.

We comment that Construction 4.1 actually implements an encoding algorithm
for the corresponding code, which is actually what is required in the specification. It
would be very interesting if one could also implement a corresponding decoding algo-
rithm. Note that the real challenge is to achieve “decoding with errors” (i.e., decode
corrupted codewords rather than decode only uncorrupted codewords).17 Specifically,
we have the following open problem.

Open Problem 4.3 (implementing encoding and decoding for a good random
code). Provide an almost-truthful pseudoimplementation, even by an oracle machine,
to the following specification. For some δ ∈ (0, 1/2) and ρ ∈ (0,Ω(1 −H2(δ))), the
specification machine selects a code C ⊂ {0, 1}n as in Theorem 4.2, and answers
queries of two types:

Encoding queries: For i ∈ [K], the query (enc, i) is answered with the ith element in
C.

Decoding queries: For every w ∈ {0, 1}n that is at a distance of at most δn/3 from C,
the query (dec, w) is answered by the index of the (unique) codeword that is
closest to w.

Indeed, we are interested in an implementation by an ordinary machine, but as
stated in section 10, it may make sense to first consider implementations by oracle
machines. Furthermore, it would be nice to obtain truthful implementations, rather
than almost-truthful ones. In fact, it will be interesting to have even a truthful
pseudoimplementation of the specification stated in Theorem 4.2.

5. Boolean functions and interval-sum queries. In this section we show
that the specification of Example 3.1 can be perfectly implemented (by an oracle
machine). Recall that we seek to implement access to a random function f : {0, 1}n →
{0, 1} augmented with answers regarding the parity (or XOR) of the values of f on
given intervals, where the intervals are with respect to the standard lex-order of n-
bit string. That is, the query q = (α, β) ∈ {0, 1}n+n, where 0n ≤ α ≤ β ≤ 1n,
is to be answered by ⊕α≤s≤βf(s). The specification can answer this query in a
straightforward manner, but an implementation cannot afford to do so (because a
straightforward computation may take 2n = 2|q|/2 steps). Thus, the implementation

17Note that a simple modification of Construction 4.1 (e.g., replacing the ith codeword, w, by the
new codeword (i, w)) allows trivial decoding of uncorrupted codewords.
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will do something completely different.18

We present an oracle machine that uses a random function f ′ : ∪ni=0{0, 1}i →
{0, 1}. Using f ′, we define f : {0, 1}n → {0, 1} as follows. We consider a binary tree
of depth n and associate its ith level vertices with strings of length i such that the
vertex associated with the string s has a left (resp., right) child associated with the
string s0 (resp., s1). As a mental experiment, going from the root to the leaves, we
label the tree’s vertices as follows:

1. We label the root (i.e., the level-zero vertex, which is associated with λ) by
the value f ′(λ).

2. For i = 0, . . . , n − 1, and each internal vertex v at level i, we label its left
child by the value f ′(v0), and label its right child by the XOR of the label of
v and the value f ′(v0). (Thus, the label of v equals the XOR of the values of
its children.)

3. The value of f at α ∈ {0, 1}n is defined as the label of the leaf associated
with α.

By using induction on i = 0, . . . , n, it can be shown that the level i vertices are
assigned uniformly and independently distributed labels (which do depend, of course,
on the level i − 1 labels). Thus, f is a random function. Furthermore, the label of
each internal node v equals the XOR of the values of f on all leaves in the subtree
rooted at v.

Note that the random function f ′ is used to directly assign (random) labels to all
the left-siblings. The other labels (i.e., of right-siblings) are determined by XORing
the labels of the parent and the left-sibling. Furthermore, the label of each node in the
tree is determined by XORing at most n+1 values of f ′ (residing in appropriate left-
siblings). Specifically, the label of the vertex associated with σ1 · · ·σi is determined
by the f ′-values of the strings λ, 0, σ10, . . . , σ1 · · ·σi−10. Actually, the label of the
vertex associated with α1j , where α ∈ {λ} ∪ {0, 1}|α|−10 and j ≥ 0, is determined by
the f ′-values of j + 1 vertices (i.e., those associated with α, α0, α10, . . . , α1j−10), as
seen in the following:

label(α1j) = label(α1j−1)⊕ label(α1j−10)
...

= label(α)⊕ label(α0) · · · ⊕ label(α1j−20)⊕ label(α1j−10)
= f ′(α)⊕ f ′(α0) · · · ⊕ f ′(α1j−20)⊕ f ′(α1j−10).

Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries
to f ′. More generally, we can obtain the label assigned to each vertex by making at
most n + 1 queries to f ′. It follows that we can obtain the value of ⊕α≤s≤βf(s) by
making O(n2) queries to f ′. Specifically, the desired value is the XOR of the leaves
residing in at most 2n − 1 full binary subtrees, and so we merely need to XOR the
labels assigned to the roots of these subtrees. Actually, O(n) queries can be shown to

18The following implementation is not the simplest one possible, but we chose to present it because
it generalizes to yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A
simpler implementation of Example 3.1, which does not seem to generalize to the case of interval-sum
(as in Theorem 5.2), was suggested to us by Phil Klein, Silvio Micali, and Dan Spielman. The idea
is to reduce the problem of Example 3.1 to the special case where we need only serve interval-queries
for intervals starting at 0n; that is, we need only serve (interval) queries of the form (0n, β). (Indeed,
the answer to a query (α′, β′), where α′ �= 0n, can be obtained from the answers to the queries
(0n, α′′) and (0n, β′), where α′′ is the string preceding α′. Next observe that the query (0n, β) can
be served by f ′(β), where f ′ : {0, 1}n → {0, 1} is a random function (given as oracle).
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suffice, by taking advantage on the fact that we need not retrieve the labels assigned
to O(n) arbitrary vertices (but rather to vertices that correspond to roots of subtrees
with consecutive leaves). We now get the following theorem.

Theorem 5.1. There exists a perfect implementation (by an oracle machine) of
the specification of Example 3.1.

The foregoing procedure can be generalized to handling queries regarding any
(efficiently computable) symmetric function of the values assigned by f to any given
interval. In fact, it suffices to answer queries regarding the sum of these values. We
thus state the following result.

Theorem 5.2. There exists a truthful close-implementation (by an oracle ma-
chine) of the following specification of a random object. The specification machine
uses its random-tape to define a random function f : {0, 1}n → {0, 1}, and answers
the query (α, β) ∈ {0, 1}n+n by

∑
α≤s≤β f(s).

Note that, unlike in the case of Theorem 5.1, the implementation is not perfect,
which is the reason that we explicitly mention that it is truthful.

Proof. All that is needed in order to extend the “XOR construction” is to make
sure that the label of each vertex v equals the sum (rather than the sum mod 2) of the
labels of all the leaves in the subtree rooted at v. In particular, internal nodes should
be assigned random labels according to the binomial distribution, which makes the
implementation more complex (even for assigning labels to the root and more so for
assigning labels to left-siblings after their parents were assigned a label). Let us start
with an overview:

1. We label the root by a value generated according to the binomial distri-
bution; that is, the root (of the depth-n binary tree) is assigned the value

j with probability
(
N
j

)
/2N , where N

def
= 2n. This random assignment will

be implemented using the value f ′(λ), where here f ′ is a random func-
tion ranging over poly(n)-bit long strings rather than over a single bit (i.e.,
f ′ : ∪ni=0{0, 1}i → {0, 1}poly(n)).

2. For i = 0, . . . , n − 1, and each internal vertex v at level i, we label its left
child as follows, by using the value f ′(v0). Suppose that v is assigned the
value T ≤ 2n−i. We need to select a random pair of integers (l, r) such
that l + r = T and 0 ≤ l, r ≤ 2n−i−1. Such a pair should be selected with
probability that equals the probability that, conditioned on l + r = T , the
pair (l, r) is selected when l and r are distributed according to the binomial
distribution (of 2n−i−1 trials). That is, let M = 2n−i be the number of leaves
in the tree rooted at v. Then, for l+ r = T and 0 ≤ l, r ≤M/2, the pair (l, r)

should be selected with probability
(
M/2
l

) · (M/2
r

)
/
(
M
l+r

)
.

3. As before, the value of f at α ∈ {0, 1}n equals the label of the leaf associated
with α.

Of course, the two types of sampling procedures above have to be implemented
in poly(n)-time, rather than in poly(2n)-time (and poly(n2n−i)-time, respectively).
These implementations cannot be perfect (because some of the events occur with prob-
ability 2−N = 2−2

n

), but it suffices to provide implementations that generate these
samples with approximately the right distribution (e.g., with deviation at most 2−n

or so). The details concerning these implementations are provided in Appendix A.

We stress that the sample (or label) generated for the (left-sibling) vertex associ-
ated with α = α′0 is produced based on the randomness provided by f ′(α). However,
the actual sample (or label) generated for this vertex also depends on the label assigned
to its parent. (Indeed, this is different from the case of XOR.) Thus, to determine
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the label assigned to any vertex in the tree, we need to obtain the labels of all its
ancestors (up to the root). Specifically, let S1(N, ρ) denote the value sampled from
the binomial distribution (on N trials), when the sampling algorithm uses coins ρ, and
let S2(M,T, ρ) denote the value assigned to the left-child, when its parent (which is
the root of a tree with M leaves) is assigned the value T , and the sampling algorithm
uses coins ρ. Then, the label of the vertex associated with α = σ1 · · ·σt, denoted
label(α), is obtained by computing the labels of all its ancestors as follows. First, we
compute label(λ)← S1(N, f ′(λ)). Next, for i = 1, . . . , t, we obtain label(σ1 · · ·σi) by
computing

label(σ1 · · ·σi−10)← S2(2
n−(i−1), label(σ1 · · ·σi−1), f ′(σ1 · · ·σi−10)),

and if necessary (i.e., σi = 1) by computing

label(σ1 · · ·σi−11)← label(σ1 · · ·σi−1)− label(σ1 · · ·σi−10).

That is, we first determine the label of the root (using the value of f ′ at λ), and next,
going along the path from the root to α, we determine the label of each vertex based
on the label of its parent (and the value of f ′ at the left-child of this parent). Thus,
the computation of the label of α requires only the value of f ′ on |α|+1 strings. As in
the case of XOR, this allows us to answer queries (regarding the sum of the f -values
in intervals) based on the labels of O(n) internal nodes, where each of these labels
depend only on the value of f ′ at O(n) points. (In fact, as in the case of XOR, one
may show that the values of these related internal nodes depend only on the value of
f ′ at O(n) points.)

Regarding the quality of the implementation, by the above description it is clear
that the label of each internal node equals the sum of the labels of its children, and
thus the implementation is truthful. To analyze its deviation from the specification,
we consider the mental experiment in which both sampling procedures are imple-
mented perfectly (rather than almost so), and show that in such a case the resulting
implementation is perfect. Specifically, using induction on i = 0, . . . , n, it can be
shown that the level i vertices are assigned labels that are independently distributed,
where each label is distributed as the binomial distribution of 2n−i trials. (Indeed, the
labels assigned to the vertices of level i do depend on the labels assigned in level i−1.)
Thus, if the deviation of the actual sampling procedures is bounded by 2−n ·ε, then the
actual implementation is at a statistical distance at most ε from the specification.19

The latter statement is actually stronger than what is required for establishing the
theorem.

Open problems. Theorem 5.2 provides a truthful implementation for any (fea-
sibly computable) symmetric function of the values assigned by a random function
over any interval of [N ] ≡ {0, 1}n. Two natural extensions are suggested below.

Open Problem 5.3 (nonsymmetric queries). Provide a truthful close-implemen-
tation to the following specification. The specification machine defines a random func-
tion f : {0, 1}n → {0, 1}, and answers queries of the form (α, β) ∈ {0, 1}n+n with
the value g(f(α), . . . , f(β)), where g is some simple function. For example, con-
sider g(σ1, . . . , σt) that returns the smallest i ∈ [t] such that σi · · ·σi+�1+log2 t	−1 =

11+�log2 t	 (and a special symbol if no such i exists). More generally, consider a spec-
ification machine that answers queries of the form (k, (α, β)) by returning smallest

19We can afford to set ε = exp(−poly(n)) < 1/poly(N), because the running time of the actual
sampling procedures is polylogarithmic in the desired deviation.
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i ∈ [t] such that σi · · ·σi+k−1 = 1k, where σj is the jth element in the sequence
(f(α), . . . , f(β)).

Note that the latter specification is interesting mostly for k ∈ {ω(logn), . . . , n+
ω(logn)}. For k ≤ ksm = O(log n), we may just make sure (in the implementation)
that any consecutive interval of length 2ksmn2 contains a run of ksm ones.20 Once this
is done, queries (referring to k ≤ ksm) may be served (by the implementation) in a
straightforward way (i.e., by scanning at most two such consecutive intervals, which
in turn contain 2ksm+1n2 = poly(n) values). Similarly, for k ≥ klg = n + ω(logn),
we may just make sure (in the implementation) that no pair of consecutive intervals,
each of length 5n, has a run of min(klg, 2n) ones.

Open Problem 5.4 (beyond interval queries). Provide a truthful close-implemen-
tation to the following specification. The specification machine defines a random func-
tion f : {0, 1}n → {0, 1}, and answers queries that succinctly describe a set S, taken
from a specific class of sets, with the value ⊕α∈Sf(α). In Example 3.1 the class of
sets is all intervals of [N ] ≡ {0, 1}n, represented by their pair of endpoints. Another
natural case is the class of subcubes of {0, 1}n; that is, a set S is specified by an n-
sequence over {0, 1, ∗} such that the set specified by the sequence (σ1, . . . , σn) contains
the n-bit long string α1 · · ·αn if and only if αi = σi for every σi ∈ {0, 1}.

In both cases (i.e., Open Problems 5.3 and 5.4), even if we do not require truth-
fulness, a pseudoimplementation may need to be “somewhat truthful” anyhow (i.e., if
the implementation answers the compound queries in a nonconsistent manner, then
it may be distinguished from the specification because a distinguisher may check con-
sistency). At a minimum, a potential implementation seems to be in trouble if it “lies
bluntly” (e.g., answers each query by an independent random bit).

An application to streaming algorithms. Motivated by a computational
problem regarding massive data streams, Feigenbaum et al. [14] considered the prob-
lem of constructing a sequence of N random variables, X1, . . . , XN , over {±1} such
that

1. The sequence is “range-summable” in the sense that given t ∈ [N ] the sum∑t
i=1 Xi can be computed in poly(logN)-time.

2. The random variables are almost 4-wise independent (in a certain technical
sense).

Using the techniques underlying Theorem 5.2, for any k ≤ poly(logN) (and in particu-
lar for k = 4), we can construct a sequence that satisfies the above properties. In fact,
we get a sequence that is almost k-wise independent in a stronger sense than stated
in [14] (i.e., we get a sequence that is statistically close to being k-wise independent).21

This is achieved by using the construction presented in the proof of Theorem 5.2, ex-
cept that f ′ is a function selected uniformly from a family of k·(n+1)-wise independent
functions rather than being a truly random function, where n = log2N (as above).
Specifically, we use functions that map {0, 1}n+1 ≡ ∪ni=0{0, 1}i to {0, 1}poly(n) in a
k ·(n+1)-wise independent manner, and recall that such functions can be specified by
poly(n) many bits and evaluated in poly(n)-time (since k ≤ poly(n)). In the analysis,
we use the fact that the values assigned by f ′ to vertices in each of the (n+1) levels of

20That is, the random function f : [N ] → {0, 1} is modified such that, for every j ∈ [N/2ksmn2],
the interval [(j − 1)2ksmn2 + 1, . . . , j2ksmn2] contains a run of ksm ones. This modification can be
performed on the fly by scanning the relevant interval and setting to 1 a random block of ksm locations
if necessary. Note that, with overwhelmingly high probability, no interval is actually modified.

21This construction was actually discovered before us by Naor and Reingold (cf. [16, Lemma 2]);
see further discussion of this at the end of this section.



IMPLEMENTATION OF HUGE RANDOM OBJECTS 2785

the tree are k-wise independent. Thus, we can prove by induction on i = 0, . . . , n that
each k vertices at level i are assigned labels according to the correct distribution (up
to a small deviation). Recall that, as stated in footnote 19, we can obtain statistical
deviation that is negligible in N (in this case, with respect to a k-wise independent
sequence).

A historical note. As noted above, the ideas underlying the proof of Theo-
rem 5.2 were discovered by Moni Naor and Omer Reingold (as early as 1999). Actually,
their construction was presented within the framework of limited independence (i.e.,
as in the former paragraph), rather than in the framework of random functions (used
throughout this section). In fact, Naor and Reingold came up with their construction
in response to a question raised by the authors of [14] (but their solution was not
incorporated in [14]). The Naor–Reingold construction was used in the subsequent
work of [16] (see [16, Lemma 2]).

6. Random graphs satisfying global properties. Suppose that you want to
run some simulations on huge random graphs. You actually take it for granted that
the random graph is going to be Hamiltonian, because you are willing to disregard
the negligible probability that a random graph is not Hamiltonian. Suppose that you
want to be able to keep succinct representations of these graphs and/or that you want
to generate them using few random bits. A natural idea that comes to mind is using
pseudorandom functions [20] in order to efficiently generate and store representations
of these graphs. But are the graphs generated this way really Hamiltonian?

The point is that being Hamiltonian is a global property of the graph, which in
turn is a huge (i.e., exp(n)-sized) object. This global property cannot be decided by
checking the adjacency of polynomially many (i.e., poly(n)-many) vertex-pairs, and
so its violation cannot be translated to a contradiction of the pseudorandomness of
the function. Indeed, the substitution of a random function (or a random graph) by
a pseudorandom one is not guaranteed to preserve the global property. Specifically,
it may be the case that all pseudorandom graphs are even disconnected.22 So, can we
efficiently generate huge Hamiltonian graphs? As we show below, the answer to this
question is positive.

In this section, we consider the implementation of various types of huge random
graphs. We stress that we refer to simple and labeled graphs; that is, we consider
graphs without self-loops or parallel edges, and with labeled vertices (i.e., the 3-vertex
graph consisting of the edge (1, 2) is different from the 3-vertex graph consisting of the
edge (1, 3)). In this section, implementing a graph means answering adjacency queries;
that is, the answer to the query (u, v) should indicate whether or not u and v are
adjacent in the graph. Recall that the implementation ought to work in time that is
polylogarithmic in the size of the graph, and thus cannot decide “global” properties of
the graph. That is, we deal with graphs having N = 2n vertices, and our procedures
run in poly(n)-time.

As in section 3, we present our results in two categories referring to whether they
yield truthful or only almost-truthful implementations. In the case of truthful im-
plementations, we show close-implementations by (polynomial-time) oracle machines
(which use a random oracle), while bearing in mind that corresponding pseudoim-

22Indeed, for each function fs taken from some pseudorandom ensemble {fs : [2n] × [2n] →
{0, 1}}s, it may hold that fs(vs, u) = fs(u, vs) = 0 for all u ∈ [2n], where vs depends arbitrarily
on fs. For example, given a pseudorandom ensemble {fs}, consider the ensemble {fs,v} such that
fs,v(v, u) = fs,v(u, v) = 0n for all u’s, and fs,v(x, y) = fs(x, y) for all other (x, y)’s.
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plementations by ordinary (probabilistic polynomial-time) machines can be derived
using Theorem 2.9. In contrast, in the case of almost-truthful implementations, we
work directly with ordinary (probabilistic polynomial-time) machines.

6.1. Truthful implementations. The main result of this section is Theo-
rem 6.2, which provides a wide family of monotone graph properties such that there
exists a truthful close-implementation of a uniformly selected graph having the corre-
sponding property. Before stating and proving this general result, we consider some
concrete special cases.

We first recall that a random graph (i.e., a uniformly distributed N -vertex graph)
can be perfectly implemented via an oracle machine that, on input (u, v) ∈ [N ]× [N ]
and access to the oracle f : [N ]× [N ]→ {0, 1}, returns 0 if u = v, f(u, v) if u < v, and
f(v, u) otherwise. (Indeed, we merely derive a symmetric and nonreflexive version of
f .)

Turning to a less trivial example, let us closely implement a random bipartite
graph with N vertices on each side. This can be done by viewing the random oracle
as two functions, f1 and f2, and answering queries as follows:

• The function f1 is used to closely implement a random partition of [2N ]
into two sets of equal size. Specifically, we use f1 to closely implement a

permutation π over [2N ], and let the first part be S
def
= {v : π(v) ∈ [N ]}. Let

χS(v)
def
= 1 if v ∈ S and χS(v)

def
= 0 otherwise.

• The query (u, v) is answered by 0 if χS(u) = χS(v). Otherwise, the answer
equals f2(u, v) if u < v and f2(v, u) otherwise.

The above implementation can be adapted to closely implement a random bipartite
graph (see details in Appendix B). Viewed in different terms, we have just discussed
the implementation of random graphs satisfying certain properties (e.g., being bipar-
tite).

We now turn to Example 3.5 (which specifies a uniformly distributed connected
graph). In continuation of the discussion in section 3, we now present a close-
implementation that is truthful.

Construction 6.1 (implementing a random connected graph). Use the oracle
to closely implement a random graph, represented by the symmetric and nonreflexive
random function g : [N ] × [N ] → {0, 1}, as well as a random permutation π over
[N ], which in turn is used to define a Hamiltonian path π(1)→ π(2)→ · · · → π(N).
Along with π, implement the inverse permutation π−1, where this is done by using
Theorem 2.13.23 Answer the query (u, v) by 1 if and only if either g(u, v) = 1 or (u, v)
is on the Hamiltonian path (i.e., |π−1(u)− π−1(v)| = 1).

Clearly, the above implementation is truthful with respect to a specification in
Example 3.5 (which mandates a connected graph).24 The implementation is statisti-
cally indistinguishable from the specification because, when making only poly(logN)
queries, it is unlikely to hit an edge of the added “Hamiltonian path” (defined by π).
(A proof of the latter statement appears below.) A similar strategy can be used for
any monotone graph property that satisfies the following condition:25

(C) The property is satisfied by a family of strongly constructible sparse graphs.
That is, for some negligible function μ (and every N), there exists a perfect

23That is, we use a truthful close-implementation of Example 2.4. In fact, we need only π−1, and
so the truthful close-implementation of Example 2.3 (as stated in Theorem 2.12) actually suffices.

24Indeed, Construction 6.1 actually implements a (random) Hamiltonian graph (by virtue of the
“forced Hamiltonian path” defined by π).

25Here C stands for “condition.”
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implementation of a (single) N -vertex graph with μ(logN) · N2 edges that
satisfies the property.

We have the following theorem.
Theorem 6.2 (Construction 6.1, generalized). Let Π be a monotone graph prop-

erty that satisfies Condition C. Then, there exists a truthful close-implementation (by
an oracle machine) of a uniformly distributed graph that satisfies property Π.

We comment that Condition C implies that a random N -vertex graph is statisti-
cally indistinguishable from a random N -vertex graph having property Π. This fact,
which may be of independent interest, is stated and proved first.

Lemma 6.3. Let Π be a monotone graph property that is satisfied by some N -
vertex graph having ε · (N2 ) edges. Then, any machine that makes at most q adjacency
queries to a graph cannot distinguish a random N -vertex graph from a uniformly
distributed N -vertex graph that satisfies Π, except with probability O(q · √ε) + q ·
N−(1−o(1)).

Proof. As in [23, sect. 4], without loss of generality, we may confine ourselves
to analyzing machines that inspect a random induced subgraph. That is, since both
graph classes are closed under isomorphism, it suffices to consider the statistical dif-
ference between the following two distributions:

1. The subgraph of a uniformly distributed N -vertex graph induced by a uni-

formly selected set of s
def
= q + 1 vertices.

2. The same vertex-induced subgraph (i.e., induced by a random set of s vertices)
of a uniformly distributed N -vertex graph that satisfies property Π.

Clearly, distribution (1) is uniform over the set of s-vertex graphs, and so we have

to show that approximately the same holds for distribution (2). Let T
def
=

(
N
2

)
and

M
def
= εT , and let G0 be an N -vertex graph with M edges that satisfies property Π.

Consider the set of all graphs that can be obtained from G0 by adding T−M
2 edges.

The number of these graphs is

(
T −M
T−M

2

)
=

2T−M

Θ(
√
T −M)

> 2T−M−O(1)− 1
2 ·log2 T .

That is, this set contains at least a 2−(M+O(1)+(log2 T )/2) = 2−ε
′·T fraction of all

possible graphs, where ε′ def
= ε + ((log2 T )/2T ). Let X = X1 · · ·XT ∈ {0, 1}T be a

random variable that is uniformly distributed over the set of all graphs that satisfy
property Π. Then X has entropy at least T − ε′T (i.e., H(X) ≥ T − ε′T ). It follows
that 1

T

∑T
i=1 H(Xi|Xi−1 · · ·X1) ≥ 1− ε′, where the index i ranges over all unordered

pairs of elements of [N ]. (Indeed, we assume some fixed order on these pairs.) Letting
ej(S) denote the jth pair in the set {(u, v)∈S × S : u < v}, we are interested in the

expected value of
∑(s2)

j=1 H(Xej(S)|Xej−1(S) · · ·Xe1(S)), where S is a uniformly selected
set of t vertices. Clearly,

H(Xej(S)|Xej−1(S) · · ·Xe1(S)) ≥ H(Xej(S)|Xej(S)−1 · · ·X1)

and so

ES

⎡
⎢⎣ (s2)∑
j=1

H(Xej(S)|Xej−1(S) · · ·Xe1(S))

⎤
⎥⎦ ≥ (

s

2

)
· (1− ε′)
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because for a uniformly distributed j ∈ [
(
s
2

)
] it holds that ES,j[H(Xej(S)|Xej(S)−1 · · ·

X1)] equals Ei [H(Xi|Xi−1 · · ·X1)], where i is uniformly distributed in [T ]. Thus, for
a random s-subset S, letting YS = (X(u,v)){(u,v)∈S×S:u<v}, we have ES [YS ] ≥ t− ε′′,

where t
def
=

(
s
2

)
and ε′′ def= tε′. It follows (see Appendix C) that the statistical difference

of YS from the uniform distribution over {0, 1}t is at most O(
√
ε′′), which in turn

equals O(q
√
ε+ T−(1−o(1))). The lemma follows.

Proof of Theorem 6.2. Let H = ([N ], E) be a graph satisfying Condition C.
In particular, given (u, v) ∈ [N ] × [N ], we can decide whether or not (u, v) ∈ E
in polynomial-time. Then, using the graph H instead of the Hamiltonian path in
Construction 6.1, we implement a (random) graph satisfying property Π. That is, we
answer the query (u, v) by 1 if and only if either g(u, v) = 1 or (u, v) is an edge in
(the “forced” copy of) H (i.e., (π−1(u), π−1(v)) ∈ E). Since Π is a monotone graph
property, the instances of the implementation always satisfy the property Π, and thus
the implementation is truthful. Furthermore, by Condition C and the fact that π is a
close-implementation of a random permutation, the probability that a machine that
queries the implementation for poly(logN) times hits an edge of H is negligible in
logN . Thus, such a machine cannot distinguish the implementation from a random
graph. Using Lemma 6.3 (with ε = μ(logN) and q = poly(logN)), the theorem
follows.

Examples. Indeed, monotone graph properties satisfying Condition C include
connectivity, Hamiltonicity, k-connectivity (for every fixed k),26 containing any fixed-
size graph (e.g., containing a triangle, or a 4-clique, or a K3.3, or a 5-cycle), having
a perfect matching, having diameter at most 2, containing a clique of size at least
log2N , etc. All the foregoing properties are satisfied, with overwhelmingly high prob-
ability, by a random graph. However, Theorem 6.2 can also be applied to (monotone)
properties that are not satisfied by a random graph; a notable example is the property
of containing a clique of size at least

√
N .

6.2. Almost-truthful implementations. Here we consider almost-truthful im-
plementations of specifications that refer to uniformly selected graphs that have vari-
ous properties that are satisfied by random graphs. (Needless to say, we will focus on
properties that are not covered by Theorem 6.2.)

We start by noting that if we are willing to settle for almost-truthful implemen-
tations by oracle machines, then all properties that hold (with sufficiently high prob-
ability) for random graphs can be handled easily. Specifically, we have the following
proposition.

Proposition 6.4. Let Π be any graph property that is satisfied by all but a
negligible (in logN) fraction of the N -vertex graphs. Then, there exists an almost-
truthful close-implementation (by an oracle machine) of a uniformly distributed graph
that satisfies property Π.

Indeed, the implementation is by a random graph (which in turn is implemented
via a random oracle). Note, however, that it is not clear what happens if we replace
the random graph by a pseudorandom one (cf. Theorem 2.11). Furthermore, the
proof of Theorem 2.11 can be extended to show that there exist graph properties that
are satisfied by random graphs but do not have an almost-truthful implementation

26In fact, we may have k = k(N) = μ(logN) ·N for any negligible function μ. The sparse graph
may consist of a complete bipartite graph with k(N) vertices on one side and N −k(N) ≈ N vertices
on the other side.
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by an ordinary machine.27 In light of the above, we now focus on almost-truthful
implementations by ordinary machines. As we shall see, the technique underlying
Construction 6.1 can also be used when the following relaxed form of Condition (C)
holds:
(C’) For some negligible function μ (and every N), there exists an almost-truthful

implementation (by ordinary machines) of a distribution overN -vertex graphs
that satisfy the property and have at most μ(logN) ·N2 edges.

Indeed, we may obtain a variant of Theorem 6.2 stating that, assuming the existence
of one-way functions, for every monotone graph property that satisfies Condition C’,
there exists an almost-truthful pseudoimplementation (by an ordinary machine) of a
uniformly distributed graph that satisfies property Π. However, our main focus in
the current subsection will be on nonmonotone graph properties (e.g., having a max-
clique of a certain size), and in this case we cannot apply Lemma 6.3. Instead, we
shall use the following observation, which refers to properties that are satisfied by
random graphs (e.g., having a max-clique of logarithmic size).

Proposition 6.5. Let Π be any graph property that is satisfied by all but a negligi-
ble (in logN) fraction of the N -vertex graphs. Let S be the specification that uniformly
selects an N -vertex graph that satisfies property Π, and answers edge-queries accord-
ingly, and let I be any pseudoimplementation of a uniformly distributed N -vertex
graph. Then I is a pseudoimplementation of S.

Indeed, Proposition 6.5 holds because the first hypothesis implies that S is compu-
tationally indistinguishable from a truly random graph, whereas the second hypothesis
asserts that I is computationally indistinguishable from a truly random graph.

Max-clique and chromatic number. We consider the construction of pseu-
dorandom graphs that preserve the max-clique and chromatic number of random
graphs.

Theorem 6.6. Let c(N) = (2− o(1)) log2N be the largest integer i such that the
expected number of cliques of size i in a random N -vertex graph is larger than one.
Assuming the existence of one-way functions, there exist almost-truthful pseudoimple-
mentations, by ordinary machines, of the following specifications:

1. A random graph of max-clique c(N)± 1: The specification uniformly selects
an N -vertex graph having maximum clique size c(N)± 1, and answers edge-
queries accordingly.

2. A random graph of chromatic number (1± o(1)) ·N/c(N): The specification

uniformly selects an N -vertex graph having chromatic number (1±log−1/32 N)·
N/c(N), and answers edge-queries accordingly.

That is, we are required to implement random-looking graphs having certain
properties. Indeed, a random N -vertex graph has the above two properties with
probability at least 1 − N−0.99 (cf. [8]). Thus, a random graph provides an almost-
truthful close-implementation (by an oracle machine) of a uniformly selected graph
having each of these properties, but it is not clear what happens when we replace
the random oracle by a pseudorandom function. (In fact, one can easily construct

27The proof of Theorem 2.11 relates to the Kolmogorov complexity of the function (or graph).
In order to obtain a graph property, we consider the minimum value of the Kolmogorov complexity
of any isomorphic copy of said graph, and consider the set of graphs for which this quantity is

greater than N2/4. The latter property is satisfied by all but at most 2N
2/4 · (N !) � 2N

2/3 graphs.
On the other hand, the property cannot be satisfied by an instance of an implementation via an
ordinary machine. Thus, any implementation (regardless of “quality”) must be nontruthful (to the
specification) in a strong sense.
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pseudorandom functions for which the replacement yields a graph with a huge clique
or, alternatively, with a very small chromatic number.) Note that Theorem 6.6 does
not follow from Theorem 6.2, because the properties at hand are not monotone.28

Thus, a different approach is needed.

Proof. We start with part 1. We define the adjacency function gclique : [N ]×[N ]→
{0, 1} of a graph by XORing a pseudorandom function f with a k-wise independent

function f ′ (i.e., gclique(v, w) = f(v, w)⊕f ′(v, w)), where k def
= 4n2 (and n = log2N).29

Recall that such k-wise independent functions can be constructed based on kn random
bits. The resulting function gclique is both k-wise independent and computationally
indistinguishable from a random graph (analogously to the construction in [26]). In
particular, using the pseudorandomness of gclique and the fact that a random graph
violates the specification with negligible probability (in logN), it follows that gclique

pseudoimplements a uniformly distributedN -vertex graph having max-clique c(N)±1.
(Indeed, the foregoing argument relies on Proposition 6.5.)

Next, we use the k-wise independence of gclique in order to show that gclique is
almost-truthful. The key observation is that the Bollobás–Erdös analysis [9] of the size
of the max-clique in a random graph refers only to the expected number of cliques of
size c(N)±2 and to the variance of this random variable. Thus, this analysis depends
only on the randomness of edges within pairs of (c(N)+2)-subsets of vertices; that is,

a total of 2 · (c(N)+2
2

)
< (c(N)+ 2)2 = (4− o(1)) · n2 vertex-pairs. Hence, the analysis

continues to hold for gclique (which is 4n2-independent), and so with overwhelming
probability gclique has max-clique size c(N) ± 1. It follows that gclique provides an
almost-truthful pseudoimplementation of a random N -vertex graph with max-clique
size c(N)± 1.

We now turn to part 2. We define the adjacency function gcolor : [N ]×[N ]→ {0, 1}
of a graph by taking the bit-wise conjunction of the graph gclique with a function h
selected uniformly in a set H (defined below); that is, gcolor(v, w) = 1 if and only if
gclique(v, w) = h(v, w) = 1. Intuitively, each function h ∈ H forces a cover of [N ] by
N/c(N) independent sets, each of size c(N), and so the chromatic number of gcolor

is at most N/c(N). On the other hand, by symmetry (of edges and nonedges), the
graph gclique does not only exhibit clique-number c(N)± 1 (which is irrelevant in this
part), but also has independence-number c(N) ± 1 (with overwhelming probability).
We will use the latter fact to show that, since each h ∈ H has only independent sets
of size c(N), taking the conjunction with gclique is unlikely to create an independent
set of size c(N) + 2. Thus, the chromatic number of gcolor is at least N/(c(N) + 1).
The details follow.

Each function h ∈ H partitions [N ] into χ(N)
def
= 
N/c(N)� forced independent

sets, where each set (except the last) is of size c(N). We define h(v, w) = 1 if and only
if v and w belong to different sets. Thus, such h causes each of these vertex-sets to be
an independent set in gcolor. The functions in H differ only in the partitions that they
use. It turns out that it suffices to use “sufficiently random” partitions. Specifically,
we use H = {hr}r∈R, where R = {r ∈ [N ] : gcd(r,N) = 1}, and consider for

each shift r ∈ R the partition into forced independent sets (S
(1)
r , . . . , S

(χ(N))
r ), where

S
(i)
r = {(i · c(N) + j) · r mod N : j = 1, . . . , c(N)} for i < χ(N) (and S

(χ(N))
r contains

the N − (χ(N)− 1) · c(N) remaining vertices). Note that the condition gcd(r,N) = 1

28For the coloring property, Condition C does not hold either.
29As elsewhere, we actually mean symmetric and nonreflexive functions that are obtained from

the values of the basic functions at values (u, v) such that u < v.
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ensures that this is indeed a proper partition of the vertex-set [N ]. Thus, hr(v, w) = 1

if and only if v and w do not reside in the same forced independent set S
(i)
r (i.e.,

hr(v, w) = 0 implies that |v − w| ≡ jr (mod N) for some j ∈ {1, . . . , (c(N)− 1)}).
To establish the pseudorandomness of the implementation, we first note that

gcolor is computationally indistinguishable from gclique (and, consequently, gcolor re-
tains gclique’s indistinguishability from a random graph). Indeed, it can be shown
that no efficient observer is likely to make a query (v, w) that is affected by hr, be-
cause hr(v, w) = 0 yields at most 2(c(N)− 1) = Θ(logN) candidates for r, which in
turn is selected uniformly in the set R, where |R| = NΩ(1). In addition, a random
graph has only a negligible probability (in logN) of having chromatic number different

from (1 ± log
−1/3
2 N) · N/c(N). Combining all this with Proposition 6.5 implies the

pseudorandomness of the implementation (w.r.t. the specification).
We now turn to the almost-truthfulness requirement. First, note that the chro-

matic number of gcolor is at most χ(N), because its vertex-set is covered by χ(N)
independent sets. On the other hand, we will show that with overwhelming proba-
bility, the graph gcolor does not contain an independent set of size c(N) + 2. Thus,
the chromatic number of gcolor is at least N/(c(N) + 1) > (1− (2/c(N))) · χ(N), and
so gcolor is an almost-truthful pseudoimplementation of the desired specification, and
the entire theorem follows. Thus, it is left to show that the independence-number of
gcolor is at most c(N)+ 1. The argument proceeds as follows. We fix any h = hr ∈ H

(so the forced independent sets S
(j)
r are fixed) and show that deleting edges as in-

structed by a k-wise independent function (i.e., by gclique) is unlikely to induce a
c(N) + 2 independent set. Note that the various candidate independent sets differ

w.r.t. their intersection with the forced independent sets S
(j)
r , and the analysis has

to take this into account. For example, if the candidate independent set does not

contain two vertices of the same set S
(j)
r , which is indeed the typical case, then the

analysis of gclique suffices. At the other extreme, there is the case that the candidate

independent set contains all vertices of some set S
(j)
r . In this case, we only have either

2c(N) or 2c(N) + 1 random events (i.e., regarding edges between S
(j)
r and the other

two vertices), but the number of possibilities that correspond to this case is smaller
than N3, and so the total probability for the corresponding bad event is less than
N3 · 2−2c(N) = N−1+o(1). The full analysis, given in Appendix C, consists of a rather
straightforward and tedious case analysis.

Combining properties of random graphs. So far, we have considered sev-
eral prominent properties that are satisfied (w.h.p.) by random graphs, and pro-
vided pseudoimplementations of uniformly distributed graphs that satisfy each of
these properties separately. Next, we discuss a construction of pseudorandom graphs
that simultaneously satisfy all those properties of random graphs.

Theorem 6.7. Let c(N) = (2− o(1)) log2N be as in Theorem 6.6. Assuming the
existence of one-way functions, there exists an almost-truthful pseudoimplementation,
by an ordinary machine, of the specification that uniformly selects an N -vertex graph
that satisfies the following four properties:

1. Being Hamiltonian.
2. Having clique number c(N)± 1.
3. Having independence number c(N)± 1.

4. Having chromatic number (1 ± log
−1/3
2 N) ·N/c(N).

The specification answers edge-queries accordingly.
Recall that being Hamiltonian implies being connected as well has containing a
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perfect matching.
Proof. Consider the following implementation that merely adds a (carefully cho-

sen) random looking Hamiltonian cycle gHam to the pseudorandom graph gcolor that
was defined in the proof of Theorem 6.6. That is, we define our adjacency function
gcombine : [N ]× [N ] → {0, 1} of a graph as the bit-wise disjunction of gcolor with the
adjacency function gHam (specified below); i.e., gcombine(v, w) = 1 if and only if either
gcolor(v, w) = 1 or gHam(v, w) = 1. Towards defining gHam, recall that in gcolor the

vertices are covered with χ(N)
def
= 
N/c(N)� disjoint independent sets {S(i)

r }χ(N)
i=1 ,

where each set (except the last) is of size c(N) and where the sets are defined using
a random shift r uniformly chosen in R = {r′ ∈ [N ] : gcd(r′, N) = 1}. We now define
gHam such that gHam does not violate any of the forced independent sets of gcolor, and
consequently, the χ(N) upper-bound on the chromatic number of gcolor is retained by
gcombine. Specifically, we define gHam using the same random shift r that is used to de-

fine the forced independent sets S
(i)
r : using an arbitrary integer d ∈ [c(N), N − c(N)]

that satisfies gcd(d,N) = 1, we set gHam
r (v, w) = 1 if and only if w = (v±dr) mod N .

We first establish the pseudorandomness of the implementation. We note that
gcombine is computationally indistinguishable from gcolor, because no efficient observer
is likely to make a query (v, w) that is affected by gHam

r . Indeed, r is selected uni-
formly in the set R of size |R| = NΩ(1), while gHam

r (v, w) = 1 implies there are
only two candidates for r (a single candidate for each of the possible cases of either
(w = v + dr) mod N or (w = v − dr) mod N). Consequently, the computational
indistinguishability of gcolor from a random graph (which was established during the
proof of Theorem 6.6) is preserved by gcombine. We next recall (cf. [8]) that, only
with negligible probability (in logN), a random graph fails to exhibit properties 1–4
listed in Theorem 6.7. Hence, the pseudorandomness of the implementation (w.r.t.
the specification) follows from Proposition 6.5.

We now turn to establishing the almost-truthfulness claim. Regarding Hamil-
tonicity, note that our selection of r and d (which satisfies gcd(r,N) = 1 = gcd(d,N))
guarantees that the graph gHam

r is indeed a Hamiltonian cycle (because dr, 2dr, 3dr, . . . ,
Ndr are all distinct modulo N). It follows that gcombine is always Hamiltonian.

We now handle the independence number and chromatic number. Clearly, since
gcombine is obtained by adding edges to gcolor, the former retains gcolor’s properties of
almost surely having independence number at most c(N)+1 and chromatic number at

least N/(c(N) + 1). In addition, by the definition of the forced independent sets S
(i)
r ,

an arbitrary pair of vertices (v, w) belongs to the same S
(i)
r only if w = (v±jr) mod N ,

where j ∈ {1, . . . , c(N)−1}. On the other hand, gHam
r (v, w) = 1 implies that w = (v+

dr) mod N or w = (v−dr) mod N , where c(N) ≤ d ≤ N−c(N). Since gcd(r,N) = 1,
the foregoing implies that the edges of the Hamiltonian cycle gHam never violate any
of the forced independent sets of gcolor. Thus, as the forced independent sets are of
size c(N), and since these sets force a cover of [N ] with 
N/c(N)� independent sets, it
follows that gcombine achieves an independence number at least c(N) and a chromatic
number at most 
N/c(N)� (just as gcolor does).

The last property to consider is the clique number; that is, we now show that
gcombine has clique number c(N) ± 1 (almost surely). The argument is based on the
fact (taken from the proof of Theorem 6.6) that gclique has clique number c(N) ± 1
almost surely. Indeed, let c = c(N). As gcolor is obtained by omitting edges from
gclique and gcombine is (later) obtained by adding edges to gcolor, it suffices to establish
a c−1 lower bound on the clique number of gcolor and a c+1 upper bound on the clique
number of gcombine. To this end we fix (again) the random shift r (which specifies
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both the forced independent sets of gcolor as well as the Hamiltonian cycle gHam), and
establish the desired bounds when the probabilities are taken over by only the k-wise
independent graph gclique.

Towards proving the lower bound (on the clique number of gcolor), let Xclique and
Xcolor denote the random variables that count the number of (c− 1)-cliques in gclique

and in gcolor, respectively. By Chebyshev’s inequality the probability of having no

(c − 1)-cliques in gcolor is upper bounded by var(Xcolor)
(E(Xcolor))2 . Since it is known (see [9])

that var(Xclique)
(E(Xclique))2

is negligibly small (in logN), it suffices to show that

(6.1)
var (Xcolor)

(E(Xcolor))2
= O

(
var(Xclique)

(E(Xclique))2

)
.

We first argue that var (Xcolor) ≤ var (Xclique). Let T denote the collection of all
subsets of vertices of cardinality c− 1, and let Tcolor ⊂ T denote only those subsets
that contain at most one vertex from each forced independent set; that is, T contains
exactly all “potential cliques” of gclique, while Tcolor contains only the “potential
cliques” of gcolor. For each T ∈ T, let Xclique

T and Xcolor
T denote the random variables

that indicate whether T induces a clique in gclique and in gcolor, respectively. Since,
for any T, T ′ ∈ Tcolor, it holds that T induces a clique in gclique if and only if it
induces a clique in gcolor, we get var(Xclique

T ) = var (Xcolor
T ) and cov (Xclique

T , Xclique
T ′ ) =

cov (Xcolor
T , Xcolor

T ′ ). Since all the terms in the expansion

var (Xcolor) =
∑

T∈Tcolor

var (Xcolor
T ) +

∑
T 
=T ′∈Tcolor

cov (Xcolor
T , Xcolor

T ′ )

also appear in the expansion of var (Xclique), and as all terms in the expansion of
var (Xclique) are nonnegative, we get var(Xcolor) ≤ var(Xclique).

Next, we show that E(Xcolor) = (1−o(1))·E(Xclique). First, note thatE(Xclique) =(
N
c−1

) · 2−(c−1
2 ). On the other hand, the number of potential (c − 1)-cliques in gcolor

is lower-bounded by L
def
=

(�Nc 	
c−1

) · cc−1, because there are �Nc � forced independent

sets S(i) of size c, and a potential clique can be specified by first choosing c − 1 of
these sets S(i), and then choosing a single vertex from each set. Next, note that
all relevant edges are determined only by the 4n2-wise independent graph gclique,

and so E(Xcolor) ≥ L · 2−(c−1
2 ). Since L =

(�Nc 	
c−1

)
cc−1 = (1 − o(1)) · ( N

c−1
)
, we get

E(Xcolor) ≥ (1 − o(1)) · ( N
c−1

) · 2−(c−1
2 ), which in turn equals (1 − o(1)) · E(Xclique).

Having established (6.1), we conclude that (with very high probability) the c−1 lower
bound on the clique number of gcolor holds.

Our final task is to establish a c+1 upper bound on the clique number of gcombine;

that is, to show that for c′ def= c(N) + 2, w.h.p. gcombine contains no c′-cliques. Let us
first consider gcolor. Recall that by [9], gclique has a negligible probability (in logN)
of having a c′-clique. As gcolor is obtained by omitting edges from gclique, the same
holds for gcolor as well. Consequently, as gcombine is obtained by adding a single
Hamiltonian cycle gHam to gcolor, it suffices to give a negligible upper-bound only
on the probability that gcombine contains a c′-clique that intersects gHam (in at least
one edge). This is done by showing that the expected number of the latter cliques is
negligible (in logN).30

30Recall that we fixed the random shift r (which specifies both the forced independent sets of
gcolor as well as the enforced Hamiltonian path gHam

r ), and so probabilities are taken only over the
k-wise independent choices of the edges of gclique.



2794 ODED GOLDREICH, SHAFI GOLDWASSER, AND ASAF NUSSBOIM

We use the following terminology. Given a vertex-set V of size c′ (i.e., a potential
clique), we say that a vertex w ∈ V is a follower-vertex if its predecessor in gHam is
in V (i.e., if w − dr mod N is in {v mod N : v ∈ V }). Let Vk denote the collection
of all vertex-sets V of size c′ that have exactly k follower-vertices. We now bound
Ek, the expected number of cliques induced by vertex-sets V ∈ Vk. For V ∈ Vk,
the number of edges of gHam that have both endpoints in V is k. Since the rest of
the edges of V are decided by the 4n2-wise independent graph gclique, the probability

that V induces a (c − 1)-clique in gcombine is at most 2−(
c′
2 )+k. Next, observe that

|Vk| ≤
(

N
c′−k

) · (c′ − 1)k, because a set V ∈ Vk is defined by the choice of c′ − k
nonfollower and k (successive) choices of followers (where the ith follower is selected
as following one of the c′ − k + (i − 1) ≤ c′ − 1 vertices selected so far). Thus

Ek ≤
(

N

c′ − k

)
· (c′ − 1)k · 2−(c

′
2 )+k =

(
N

c′

)
· (N−1+o(1))k · 2−(c

′
2 ) �

(
N

c′

)
· 2−(c

′
2 ),

where the latter expression is upper-bounded by N−Ω(1) (see [9], while recalling that

c′ = c(N) + 2). If follows that
∑c′−1

k=1 Ek is negligible (in logN). This establishes
the upper-bound on the clique-number of gcombine, which completes the proof of the
entire theorem.

High connectivity. One property of random graphs, which consists of having
high (global) connectivity, was left out of Theorem 6.7. Indeed, in a random N -vertex
graph, every pair of vertices is connected by at least (1 − o(1))N/2 vertex-disjoint
paths. One interesting question is to provide an almost-truthful pseudoimplementa-
tion of a uniformly distributed graph having this high (global) connectivity property.
Unfortunately, at the time this research was conducted, we did not know how to do
this.31 A second best approach may be to provide an almost-truthful pseudoimple-
mentation of a random graph for which almost all pairs of vertices enjoy this “high
connectivity” property.

Theorem 6.8. For every positive polynomial p, assuming the existence of one-
way functions, there exists an almost-truthful pseudoimplementation by an ordinary
machine of the following specification. The specifying machine selects a graph that is

uniformly distributed among all N -vertex graphs for which all but at most an ε(N)
def
=

1/p(log2N) fraction of the vertex pairs are connected by at least (1 − ε(N)) · N/2
vertex-disjoint paths. Edge-queries are answered accordingly.

Interestingly, the same implementation works for all polynomials p; that is, the
implementation is independent of p, which is needed only for the definition of the
specification. In fact, in contrast to all other implementations presented in this work,
the implementation used in the proof of Theorem 6.8 is the straightforward one: It
uses a pseudorandom function to define a graph in the obvious manner. The crux of
the proof is in showing that this implementation is computationally indistinguishable
from the foregoing specification.

Proof. We use a pseudorandom function to define a graph G = ([N ], E) in the
straightforward manner, and answer adjacency queries accordingly. This yields a
pseudoimplementation of a truly random graph, which in turn has the strong connec-
tivity property (with overwhelmingly high probability). Fixing a polynomial p and

31We mention that subsequent work by Alon and Nussboim [3] has provided the implementation
we failed to achieve (i.e., an almost-truthful pseudoimplementation of a uniformly distributed graph
having a high global connectivity property).
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ε
def
= ε(N)

def
= 1/p(log2N), we prove that this implementation is almost-truthful to the

corresponding specification. That is, we show that, with overwhelmingly high proba-
bility, all but at most an ε fraction of the vertex-pairs are connected via (1− ε) ·N/2
vertex-disjoint paths. We will show that if this is not the case, then we can distinguish
a random graph (or function) from a pseudorandom one.

Suppose towards the contradiction that, with nonnegligible probability, a pseu-
dorandom graph violates the desired property. Fixing such a graph, G = ([N ], E),
our hypothesis means that at least an ε fraction of the vertex-pairs are connected
(in G) by fewer than (1 − ε) · N/2 vertex-disjoint paths. Consider such a generic

pair, denoted (u, v), and define S0
def
= ΓG(u) ∩ ΓG(v), S1

def
= ΓG(u) \ ΓG(v), and

S2
def
= ΓG(v) \ ΓG(u), where ΓG(w)

def
= {x∈ [N ] : (w, x)∈E}. Note that, if G were a

random graph, then we would expect to have |S0| ≈ |S1| ≈ |S2| ≈ N/4. Furthermore,
we would expect to see a large (i.e., size ≈ N/4) matching in the induced bipartite
graph B = ((S1, S2), E ∩ (S1 × S2)); that is, the bipartite graph having S1 on one
side and S2 on the other. So, the intuitive idea is to test that both these conditions
are satisfied in the pseudorandom graph. If they are, then u and v are “sufficiently
connected.” Thus, the hypothesis that an ε fraction of the vertex-pairs is not “suf-
ficiently connected” implies a distinguisher (by selecting vertex-pairs at random and
testing the above two properties). The problem with the foregoing outline is that it
is not clear how to efficiently test that the aforementioned bipartite graph B has a
sufficiently large matching.

To allow an efficient test (and thus an efficient distinguisher), we consider a more
stringent condition (which would still hold in a truly random graph). We consider

a fixed partition of [N ] into T
def
= N/m parts, (P1, . . . , PT ), such that |Pi| = m =

poly(n/ε), where n = log2N . (For example, we may use Pi = {(i − 1)m + j : j =
1, . . . ,m}.) If G were a random graph, then, with overwhelmingly high probability
(i.e., at least 1− exp(−m1/O(1)) > 1− exp(−n2)), we would have |S0 ∩Pi| = (m/4)±
m2/3 for all the i’s, and similarly, for S1 and S2. Furthermore, with probability at
least 1−exp(−n2), each of the bipartite graphs Bi induced by (Pi∩S1, Pi∩S2) would
have a matching of size at least (m/4) −m2/3. The key point is that we can afford
to test the size of the maximum matching in such a bipartite graph, because it has
2m = poly(n) vertices.

Let us wrap things up. If a pseudorandom graph does not have the desired
property, then at least an ε fraction of its vertex-pairs are connected by less than
(1 − ε)N/2 vertex-disjoint paths. Thus, sampling O(1/ε) vertex-pairs, we hit such a

pair with constant probability. For such a vertex-pair, we consider the sets Si,0
def
=

Pi ∩ S0, Si,1
def
= Pi ∩ S1, and Si,2

def
= Pi ∩ S2 for i = 1, . . . , T . It must be the case

that either an ε/2 fraction of the S0,i’s are of size less than (1− (ε/2)) · (m/4) or that
an ε/2 fraction of the bipartite subgraphs (i.e., Bi’s) induced by the pairs (S1,i, S2,i)
have no matching of size (1 − (ε/2)) · (m/4), because otherwise this vertex-pair is
sufficiently connected merely by virtue of these S0,i’s and the large matchings in the
Bi’s.

32 We use m > (8/ε)3 to guarantee that (m/4) − m2/3 > (1 − (ε/2))(m/4),
which implies that (for at least an ε/2 fraction of the i’s) some quantity (i.e., either
|S0,i| or the maximum matching in Bi) is strictly larger in a random graph than
in a pseudorandom graph. Now, sampling O(1/ε) of the i’s, we declare the graph

32That is, we get at least ((1− (ε/2)) ·T ) · ((1− (ε/2)) · (m/4)) > (1− ε)(N/4) paths going through
S0, and the same for paths that use the maximum matchings in the various Bi’s.



2796 ODED GOLDREICH, SHAFI GOLDWASSER, AND ASAF NUSSBOIM

to be random if all the corresponding S0,i’s have size at least (m/4) − m2/3 and if
all the corresponding bipartite graphs Bi’s have a maximum matching of size at least
(m/4)−m2/3. Thus, we distinguish a random function from a pseudorandom function,
in contradiction to the definition of the latter. The theorem follows.

Maximum matching in most induced bipartite graphs. The proof of The-
orem 6.8 can be adapted to prove the following theorem.

Theorem 6.9. For every positive polynomial p, assuming the existence of one-
way functions, there exists an almost-truthful pseudoimplementation by an ordinary
machine of a uniformly selected N -vertex graph that satisfies the following property:

For all but at most an ε(N)
def
= 1/p(log2N) fraction of the disjoint set-pairs (L,R) ⊆

[N ] × [N ], it holds that the bipartite graph induced by (L,R) has a matching of size
(1− ε(N)) ·min(|L|, |R|).

As in Theorem 6.8, the implementation is straightforward, and the issue is ana-
lyzing it.

Proof. Observe that almost all relevant set-pairs satisfy |L| ≈ |R| ≈ N/3, and
so we focus on these pairs. It can still be shown that in a random graph, with
overwhelmingly high probability, all the corresponding bipartite graphs (induced by
pairs (L,R), as above) have a sufficiently large matching. However, this will not
hold if we consider only matchings that conform with the small bipartite graphs Bi’s,
where the Bi’s are as in the proof of Theorem 6.8. Still, with overwhelmingly high
probability, almost all the bipartite graphs induced by pairs (L,R) as above will have
a sufficiently large matching that does conform with the small bipartite graphs Bi’s.
Thus, for ε = ε(N), the distinguisher just selects O(1/ε) different i’s, and for each
such i tests the size of the maximal matching for O(1/ε) random (L,R)’s. Needless to
say, the distinguisher does not select such huge sets, but rather selects their projection
on Pi. That is, for each such i (and each attempt), the distinguisher selects a random
pair of disjoint sets (Li, Ri) ⊂ Pi × Pi.

Digest. An interesting aspect regarding the proofs of Theorems 6.8 and 6.9 is
that in these cases, with overwhelmingly high probability, a random object in the
specification (S, n) has stronger properties than those of arbitrary objects in (S, n).
This fact makes it easier to distinguish a random object in (S, n) from an object
not in (S, n) (than to distinguish an arbitrary object in (S, n) from an object not
in (S, n)). For example, with overwhelmingly high probability, a random graph has
larger connectivity than is required in Theorem 6.8 and this connectivity is achieved
via very short paths (rather than arbitrary ones). This fact enables us to distinguish
(S, n) from an implementation that lacks sufficiently large connectivity.

A different perspective. The proofs of Theorems 6.8 and 6.9 actually establish
that, for the corresponding specifications, the almost-truthfulness of an implementa-
tion follows from its computational indistinguishability (w.r.t. the specification).33

An interesting research project is to characterize the class of specifications for which
the foregoing implication holds; that is, characterize the class of specifications that
satisfy Condition 1 in Theorem 6.10. Clearly, any pseudoimplementation of such a
specification is almost-truthful, and Theorem 6.10 just asserts that having a pseu-
doimplementation by an oracle machine suffices (provided one-way functions exist).

33That is, these proofs establish the first condition in Theorem 6.10, whereas the second condition
is established by the straightforward construction of a random graph.
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Theorem 6.10. Suppose that S is a specification for which the following two
conditions hold:

1. Every pseudoimplementation of S is almost-truthful to S. In fact, it suffices
that this condition holds w.r.t. implementations by an ordinary probabilistic
polynomial-time machine.

2. S has an almost-truthful pseudoimplementation by an oracle machine that has
access to a random oracle.

Then, assuming the existence of one-way function, S has an almost-truthful pseu-
doimplementation by an ordinary probabilistic polynomial-time machine.

Proof. Let I be the implementation guaranteed by Condition 2, and let I ′ be the
implementation derived from I by replacing the random oracle with a pseudorandom
function. Then, I ′ is a pseudoimplementation of S. Using Condition 1, it follows that
I ′ is almost-truthful to S.

7. Supporting complex queries regarding random graphs. In this section
we provide truthful implementations of random graphs while supporting complex
queries, in addition to the standard adjacency queries. Specifically, we consider three
types of complex but natural queries (see Proposition 7.1, and Theorems 7.2 and 7.3,
respectively). The graph model is as in section 6, and as in section 6.1 we present our
(truthful) implementations in terms of oracle machines. Let us start with a simple
example.

Proposition 7.1 (distance queries and shortest path queries). There exists
a truthful close-implementation by an oracle machine of the following specification.
The specifying machine selects uniformly an N -vertex graph, and answers distance
queries regarding any pair of vertices. Furthermore, there exists a truthful close-
implementation of the related specification that returns a uniformly distributed path
of shortest length.

Proof. Consider the property of having diameter at most 2. This property satisfies
Condition C (e.g., by an N -vertex star). Thus, using Theorem 6.2, we obtain a close-
implementation of a random graph, while our implementation always produces a graph
having diameter at most 2 (or rather, exactly 2). Now, we answer the query (u, v)
by 1 if the edge (u, v) is in the graph, and by 2 otherwise. For the furthermore-part,
we add

√
N such stars, and serve queries regarding paths of length 2 by using the

center of one of these stars (which is selected by applying an independent random
function to the query pair).

The foregoing example is not very impressive because the user could have served
the distance queries in the same way (by using only adjacency queries to the standard
implementation of a random graph). (A random shortest path could have also been
found by using the standard implementation.) The only advantage of Proposition 7.1
is that it provides a truthful implementation of the distance queries (rather than
merely an almost-truthful one obtained via the trivial implementation). A more
impressive example follows.

Serving log-sized clique queries. Recall that a random N -vertex graph is
likely to have many (log2N)-vertex cliques that include each of the vertices of the
graph, whereas it seems hard to find such cliques (where by hard we mean unlikely to
achieve in time poly(logN), and not merely in time poly(N)). Below we provide an
implementation of a service that answers queries of the form v ∈ [N ] with a log-sized
clique containing the vertex v.

Theorem 7.2. There exists a truthful close-implementation of the following
specification. The specifying machine selects uniformly an N -vertex graph, and, in
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addition to the standard adjacency queries, answers (log-clique) queries of the form v
by providing a random 
log2N�-vertex clique that contains v (and a special symbol if
no such clique exists).

Proof. Let � = 
log2N� − 1 and consider a simple partition of [N ] to T = 
N/��
subsets, S1, . . . , ST , such that |Si| = � for i = 1, . . . , T −1 (e.g., Si = {(i−1)�+j : j =
1, . . . , �}). Use the oracle to closely implement a random graph, G′ = ([N ], E′), as
well as a random onto function34 f : [N ]→ [T ] and a random invertible permutation
π : [N ]→ [N ] (as in Theorem 2.13). The graph we implement will consist of the
union of G′ with N cliques, where the ith clique resides on the vertex set {i}∪{π(j) :
j ∈ Sf(i)}. The log-clique queries are served in the obvious manner; that is, query
v is answered with {v} ∪ {π(u) : u ∈ Sf(v)}. Indeed, for simplicity, we ignore the
unlikely case that v ∈ {π(u) : u ∈ Sf(v)}; this can be redeemed by modifying the
implementation as discussed at the end of the proof.

Implementing the adjacency queries is slightly more tricky. The query (u, v) is
answered by 1 if and only if either (u, v) ∈ E or u and v reside in one of the N cliques
we added. The latter case may happen if and only if one of the following subcases
holds:

1. Either u ∈ {π(w) : w ∈ Sf(v)} or v ∈ {π(w) : w ∈ Sf(u)}; that is, either
π−1(u) ∈ Sf(v) or π−1(v) ∈ Sf(u). Each of these conditions is easy to check
by invoking f and π−1.

2. There exists an x such that u, v ∈ {π(w) : w ∈ Sf(x)}, which means that
π−1(u), π−1(v) ∈ Sf(x). Equivalently, recalling that f is onto, we may check
whether there exists a y such that π−1(u), π−1(v) ∈ Sy, which in turn is easy
to determine using the simple structure of the sets Sy’s (i.e., we merely test
whether or not 
π−1(u)/�� = 
π−1(v)/��).

Thus, our implementation is truthful to the specification. To see that it is a close-
implementation of the specification, observe first that it is unlikely that two different
log-clique queries are “served” by the same clique (because this means forming a
collision under f). Conditioned on this rare event not occurring, the log-clique queries
are served by disjoint random cliques, which is essentially what would happen in a
random graph (provided that at most poly(logN) queries are made). Finally, it is
unlikely that the answers to the adjacency queries that are not determined by prior
log-clique queries will be affected by the sparse subgraph (of N small cliques) that we
inserted under a random permutation.

Finally, we address the problem ignored above (i.e., the rare case when the query
v is in the corresponding set {π(u) : u ∈ Sf(v)}). We modify the foregoing imple-
mentation by setting � = 
log2N� (rather than � = 
log2N� − 1), and using corre-
sponding sets of size �. Note that, under this modification, for most vertices v, the
set {v} ∪ {π(u) : u ∈ Sf(v)} has size � + 1 (whereas for a few vertices v this set has
size �). Thus, in the modified implementation, a query v is answered with a random
�-subset of {v} ∪ {π(u) : u ∈ Sf(v)} that contains v (i.e., we use another random
function g : [N ] → [�] that indicates which element of {π(u) : u ∈ Sf(v)} to drop in
the case that v �∈ {π(u) : u ∈ Sf(v)}). The theorem then follows.

Another example: Queries regarding a fixed Hamiltonian cycle. We con-
sider the implementation of a random graph along with answering queries regarding a
fixed random Hamiltonian cycle in it, where such a cycle exists with overwhelmingly

34Such a function can be obtained by combining the identity function over [T ] with a random
function f ′ : {T + 1, . . . , N}→ [T ], and randomly permuting the domain of the resulting function.
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high probability. Specifically, we consider queries of the form what is the distance
between two vertices on the cycle?

Theorem 7.3. There exists a truthful close-implementation of the following spec-
ification. The specifying machine selects uniformly an N -vertex Hamiltonian graph
G, and uniformly selects a (directed) Hamiltonian cycle in G, which in turn defines
a cyclic permutation σ : [N ]→ [N ]. In addition to the standard adjacency queries,
the specification answers travel queries of the form (trav, v, t) by providing σt(v), and
distance queries of the form (dist, v, w) by providing the smallest t ≥ 0 such that
w = σt(v).

We stress that the implementation must answer each possible query in time that
is polynomial in the length of the vertex’s name (which may be logarithmic in the
distance t).

Proof. It will be convenient to use the vertex set V = {0, 1, . . . , N − 1} (instead
of [N ]). We use the random oracle to closely implement a random graph G′ = (V,E′)
as well as a random permutation π : V →V along with its inverse. We define a graph

G = (V,E) by E
def
= E′ ∪ C, where C = {(π(i), π(i + 1 mod N)) : i∈V }, and use C

to answer the special (Hamiltonian) queries. That is, we answer the query (trav, v, t)
by π(π−1(v) + t mod N), and the query (dist, v, w) by π−1(w)− π−1(v) mod N . The
standard adjacency query (u, v) is answered by 1 if and only if either (u, v) ∈ E or
π−1(u) ≡ π−1(v)± 1 (mod N). (Indeed, the above construction is reminiscent of the
“fast-forward” construction of [38] (stated in Theorem 2.14).)

To see that the above truthful implementation is statistically indistinguishable
from the specification, we use the following three observations:

1. If a (labeled) graph appears in the specification (resp., in the implementa-
tion), then all its (labeled) isomorphic copies appear in it. Consequently, for
any fixed Hamiltonian cycle, the set of Hamiltonian graphs in which this cycle
has been selected in the specification (resp., in the implementation) is isomor-
phic to the set of Hamiltonian graphs in which any other fixed Hamiltonian
cycle has been selected. Thus, we may consider the conditional distribution
induced on the specification (resp., on the implementation) by fixing any such
Hamiltonian cycle.

2. Conditioned on any fixed Hamiltonian cycle being selected in the implemen-
tation, the rest of the graph selected by the implementation is truly random.

3. Conditioned on any fixed Hamiltonian cycle being selected in the specifica-
tion, the rest of the graph selected by the specification is indistinguishable
from a random graph. The proof of this assertion is similar to the proof of
Lemma 6.3. The key point is proving that, conditioned on a specific Hamilto-
nian cycle being selected, the (rest of the) graph selected by the specification
has sufficiently high entropy. Note that here we refer to the entropy of the
remaining

(
N
2

)−N edges, and that the vertex-pairs are not all identical but
rather fall into categories depending on their distance as measured on the
selected Hamiltonian cycle. We need to show that a random vertex-pair in
each of these categories has a sufficiently high (conditional) entropy. Thus,
this observation requires a careful proof, to be presented next.

Indeed, the foregoing discussion suggests that we may give the entire Hamiltonian
cycle to the machine that inspects the rest of the graph (in an attempt to distinguish
the implementation from the specification). Thus, we assume, w.l.o.g., that this
machine makes no adjacency queries regarding edges that participate in the cycle.
The first observation says that we may consider any fixed cycle, and the second
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observation says that a machine that inspects the rest of the implementation (i.e.,
the graph that is constructed by the implementation) sees truly random edges. The
third observation, proved below, asserts that making a few queries to the rest of the
conditional space of the specification yields answers that also look random.

We consider the conditional distribution of the rest of the graph selected by the
specification, given that a specific Hamiltonian cycle was selected. (Indeed, we ignore
the negligible (in N) probability that the graph selected by the specification is not
Hamiltonian.) Essentially, the argument proceeds as follows. First, we note that (by
Bayes’ Law) the conditional probability that a specific graph is selected is inversely
proportional to the number of Hamiltonian cycles in that graph. Next, using known
results on the concentration of the latter number in random graphs (see, e.g., [28,
Theorem. 4]), we infer that in all but an N−2 fraction of the N -vertex graphs the
number of Hamiltonian cycles is at least an exp(−2(lnN)1/2) > N−1 fraction of its
expected number. Thus, we conclude that the conditional entropy of the selected
graph (conditioned on the selected cycle) is

(
N
2

)−N − o(N). The details follow.

For T =
(
N
2

)
, let X = X1 · · ·XT denote the graph selected by the specification,

and let Y (G) denote the Hamiltonian cycle selected (by the specification) given that
the graph G was selected. Let #HC(G) denote the number of Hamiltonian cycles
in the graph G, where cyclic shifts and transpositions of cycles are counted as if
they were different cycles (and so the number of Hamiltonian cycles in an N -clique
is N !). Thus, E(#HC(X)) = 2−N · (N !). An N -vertex graph G is called good if
#HC(G) > 2−N · ((N − 1)!), and G denotes the set of good N -vertex graphs. For a
Hamiltonian cycle C, we denote by G(C) the set of graphs in G that contain the cycle
C. Then, it holds that

H(X |Y (X) = C) ≥
∑

G∈G(C)

Pr[X = G|Y (X) = C] · log2(1/Pr[X = G|Y (X) = C])

≥ (1−N−2) · min
G∈G(C)

{− log2(Pr[X = G|Y (X) = C])}

= (1−N−2) · min
G∈G(C)

⎧⎨
⎩

log2(Pr[Y (X) = C])
− log2(Pr[Y (X) = C|X = G])
− log2(Pr[X = G])

⎫⎬
⎭

= (1−N−2) · min
G∈G(C)

{
log2(1/N !) + log2(#HC(G)) +

(
N

2

)}
.

Using the fact that G is good (i.e., G ∈ G(C)), it follows that log2(#HC(G)) >
log2(2

−N · ((N − 1)!)), which in turn equals log2(N !)−N − log2N . We thus get

(7.1) H(X |Y (X) = C) > (1−N−2) ·
((

N

2

)
−N − log2N

)
.

Recall that the condition Y (X) = C determines N vertex-pairs in X , and so the
entropy of the remaining T ′ =

(
N
2

)−N pairs is at least T ′− log2N . Partitioning these
(undetermined) pairs according to their distances in C, we conclude that the entropy
of the N/2 pairs in each such distance class is at least (N/2) − log2N . (Indeed, the
distance classes of undetermined pairs do not contain distance 1 (nor N − 1), which
correspond to the forced cycle-edges.) We stress that our analysis holds even if the
machine inspecting the graph is given the Hamiltonian cycle for free. This machine
may select the induced subgraph that it wants to inspect, but this selection is deter-
mined up to a shifting of all vertices (i.e., a rotation of the cycle). This randomization
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suffices for concluding that the expected entropy of the inspected subgraph (which
may not include cycle edges) is at least (1−((2 log2N)/N))·(t2), where t is the number
of vertices in the subgraph. As in the proof of Lemma 6.3, this implies that the in-

spected subgraph is at a distance of at most O(
√
((log2N)/N) · (t2)) < t ·N−(1−o(1))/2

from a random t-vertex graph. The theorem then follows.

8. Random bounded-degree graphs and global properties. In this sec-
tion we consider huge bounded-degree simple graphs, where the vertices are labeled
(and there are no self-loops or parallel edges). We consider specifications of various
distributions over such graphs, where in all cases the specifying machine responds to
neighborhood queries (i.e., the queries correspond to vertices, and the answer to query
v is the list of all vertices that are adjacent to vertex v).

The first issue that arises is whether we can implement a random bounded-degree
graph or alternatively a random regular graph. Things would have been quite simple
if we were also allowing nonsimple graphs (i.e., having self-loops and parallel edges).
For example, a random d-regular N -vertex nonsimple graph can be implemented
by pairing at random the dN possible “ports” of the N vertices. We can avoid
self-loops (but not parallel edges) by generating the graph as a union of d perfect
matchings of the elements in [N ]. In both cases, we would get a close-implementation
of a random d-regular N -vertex (simple) graph, but parallel edges will still appear
with constant probability (and thus this implementation is not truthful w.r.t. simple
graphs). In order to obtain a random simple d-regular N -vertex graph, we need to
take an alternative route. The key observation underlying this alternative is captured
by the following lemma.

Lemma 8.1. For d > 2, let G = ([N ], E) be any d-regular N -vertex graph having
girth g. Let G′ be obtained by randomly permuting the vertices of G (and presenting
the incidence lists in some canonical order). Then, any machine M that queries the
graph for the neighborhoods of q vertices of its choice cannot distinguish G′ from a
random d-regular N -vertex (simple) graph, except with probability O(q2/(d−1)(g−1)/2).
In the case d = 2 and q < g − 1, the probability bound can be improved to O(q2/N).

Recall that the girth of a graph G is the length of the shortest simple cycle in G,
and that (d−1)(g−2)/2 < N always holds (for a d-regular N -vertex graph of girth g).35

Note that Lemma 8.1 is quite tight: For example, in the case d = 2, for g � √N ,
the N -vertex graph G may consist of a collection of g-cycles, and taking a walk of
length g in G′ (by making g − 1 queries) will always detect a cycle G′, which allows
us to distinguish G′ from a random 2-regular N -vertex (in which the expected length
of a cycle going through any vertex is Ω(N)). In the case d ≥ 3, the graph G may
consist of connected components, each of size (d − 1)g � N , and taking a random
walk of length (d − 1)g/2 in G′ is likely to visit some vertex twice, which allows us
to distinguish G′ from a random d-regular N -vertex (wherein this event may occur
only after

√
N steps). Below, we will use Lemma 8.1 with the following setting of

parameters.

Corollary 8.2. For fixed d > 2 and g(N) = ω(log logN), let G = ([N ], E)
be any d-regular N -vertex graph having girth g(N). Let G′ be obtained from G as
in Lemma 8.1. Then, any machine M that queries the graph for the neighborhoods
of poly(logN) vertices of its choice cannot distinguish G′ from a random d-regular

35The girth upper-bound (i.e., g ≤ 2 + 2 logd−1 N) follows by considering the (vertex disjoint)
paths of length (g− 2)/2 starting at any fixed vertex. The existence of d-regular N-vertex graphs of
girth logd−1 N was shown (nonconstructively) in [13].
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N -vertex (simple) graph, except with negligible in logN probability. The claim also
holds in the case that d = 2 and g(N) = (logN)ω(1).

For d > 2 the girth can be at most logarithmic, and explicit constructions with
logarithmic girth are known for all d ≥ 3 and a dense set of N ’s (which is typically
related to the set of prime numbers; see, e.g., [35, 27, 33]). For d = 2, we may just
take the N -cycle or any N -vertex graph consisting of a collection of sufficiently large
cycles.

Proof of Lemma 8.1. We bound the distinguishing gap of an oracle machine (which
queries either a random d-regular N -vertex graph or the random graph G′) as a
function of the number of queries it makes. Recall that G′ is a random isomorphic
copy of G, whereas a random d-regular N -vertex graph may be viewed as a random
isomorphic copy of another random d-regular N -vertex graph. Thus, intuitively, the
specific labels of queried vertices and the specific labels of the corresponding answers
are totally irrelevant: the only thing that matters is whether or not two labels are
equal.36 Equality (between labels) can occur in two cases. The uninteresting case is
when the machine queries a vertex u that is a neighbor of a previously queried vertex
v and the answer contains (of course) the label of vertex v. (This is uninteresting
because the machine, having queried v before, already knows that v is a neighbor of
u.) The interesting case is that the machine queries a vertex and the answer contains
the label of a vertex v that was not queried before but has already appeared in the
answer to a different query. An important observation is that, as long as no interesting
event occurs, the machine cannot distinguish the two distributions (because in both
cases it knows the same subgraph, which is a forest). Thus, the analysis amounts to
bounding the probability that an interesting event occurs when we make q queries.

Let us consider first what happens when we query a random d-regular N -vertex
(simple) graph. We may think of an imaginary process that constructs the graph on
the fly such that the neighbors of vertex v are selected only in response to the query v
(cf., e.g., the proof of [22, Theorem 7.1]). This selection is done at random according
to the conditional distribution that is consistent with the partial graph determined so
far. It is easy to see that the probability that an interesting event occurs in the ith
query is at most (i − 1)d/(dN − (i − 1)d), and so the probability for such an event
occurring in q queries is at most q2/N .

The more challenging part is to analyze what happens when we query the graph
G. (Recall that we have already reduced the analysis to a model in which we ignore
the specific labels, but rather only compare them, and analogously we cannot query
a specific new vertex but rather only query either a random new vertex or a vertex
that has appeared in some answer.)37 To illustrate the issues at hand, consider first
the case that d = 2 (where G consists of a set of cycles, each of length at least g).
In this case, we have the option of either proceeding along a path that is part of a
cycle (i.e., query for the neighbors of an endpoint of a currently known path) or to
query for a random new vertex. Assuming that we make less than g − 1 queries, we
can never cause an interesting event by going along a path (because an interesting

36Essentially, the machine cannot determine which vertex it queries; all that it actually decides is
whether to query a specific vertex that has appeared in previous answers or to query a new vertex
(which may be viewed as randomly selected). (Formally, a specific new label indicated by the querying
machine is mapped by the random permutation to a new random vertex.) Similarly, the labels of
the vertices given as the answer do not matter, all that matters is whether or not these vertices
have appeared in the answers to previous queries (or as previous queries). (Again, formally, the new
vertices supplied in the answer are assigned, by the random permutation, new random labels.)

37Thus, we may consider querying G itself (rather than querying G′).
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event may occur in this case only if we go around the entire cycle, which requires at
least g− 1 queries). The only other possibility to encounter an interesting event is by
having two paths (possibly each of length 1) collide. But the probability for such an
event is bounded by q2/N , where q is the number of queries that we make.38

We now turn to the more interesting case of d > 2. As in case d = 2, taking
a walk of length g − 2 from any vertex will not yield anything useful. However, in
this case, we may afford to take longer walks (because q may be much larger than g).
Still, we will prove that, in this case, with probability at least 1− q2 · (d− 1)−(g−3)/2,
the uncovered subgraph is a forest. The proof relies on both the girth lower-bound
of G and on a sufficiently good rapid-mixing property (which follows from the girth
lower-bound). We bound the probability that a cycle is closed in the current forest
by the probability that two vertices in the forest are connected by a nontree edge,
where the probability is taken over the possible random vertices returned in response
to a new-vertex request and over the random order in which neighbors of a query-
vertex are provided. Indeed, a key observation is that when we query a vertex that
has appeared in some answer, we may think that this vertex is selected at random
among the unqueried vertices appearing in that answer.39 Taking a union bound on
all possible

(
q
2

)
vertex pairs (i.e., those in the forest), we bound the probability that

either two ends of a discovered path (in one tree) or two vertices in different current
trees are connected by an edge. (In both cases, these vertices are actually leaves.)

We consider each of these two cases separately: In the latter case (i.e., leaves in
different trees), the two vertices (which are not connected in the currently uncovered
subgraph) are uniformly distributed in G, and thus the probability that they are
connected is essentially d/N . The situation here is essentially as analyzed in the case
d = 2: we have two paths, each initiated at a random (new at the time) vertex, leading
to the leaves in question, and thus the latter are almost uniformly and independently
distributed.

Turning to the former case (i.e., endpoints of a path in a tree), we use the girth
hypothesis to infer that this path must have length at least g−1 (or else its endpoints
are definitely not connected). However, the machine that discovered this path actually
took a random walk (possibly into two directions) starting from one vertex, because
we may assume that this is the first time in which two vertices in the current forest are
connected by a current nontree edge. We also use the hypothesis that our exploration
of the path (i.e., queries regarding vertices that appeared in previous answers) is
actually random (i.e., we effectively extend the current endpoint of the path by a
uniformly selected neighbor of that endpoint). Now, the endpoint of such a path

cannot hit any specific vertex with probability greater than ν
def
= (d − 1)−(g−1)/2,

because after (g − 1)/2 steps the endpoint must be uniformly distributed over the
(d − 1)(g−1)/2 leaves of the tree rooted at the start vertex (and the max-norm of

38Using a union bound over all query pairs, we bound the probability that the ith query collides
with the jth query. Each of these two queries is obtained by a path of fixed length starting from a
uniformly and distributed vertex (which was new at the time). Thus, these two queries are almost
uniformly and independently distributed (in [N ]), and the probability that they are neighbors is at
most 1/(N − q).

39That is, the correspondence between the new place-holders in the answer and the new real
neighbors of the queried vertex is random. Formally, we may define the interaction with the graph
such that at each point only the internal nodes of the currently revealed forest are assigned a serial
number. Possible queries may be either for a new random vertex (assigned the next serial number
and typically initiating a new tree in the forest) or for a random leaf of a specific internal vertex
(which typically extends the corresponding tree and turns one of these leaves into an internal vertex
with d− 1 new leaves).
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a distribution cannot increase by additional random steps). Fixing the closest (to
the start vertex) endpoint, it follows that the probability that the other endpoint
hits the neighbor-set of the first endpoint is at most d · ν = O((d − 1)−(g−1)/2). To
summarize, the probability that an interesting event occurs while making q queries is
O(q2 · (d− 1)−(g−1)/2). The lemma then follows.

Implementing random bounded-degree simple graphs. We now turn back
to the initial problem of implementing random bounded-degree (resp., regular) simple
graphs.

Proposition 8.3. For every constant d > 2, there exist truthful close-implementa-
tions of the following two specifications:

1. A random graph of maximum degree d: For size parameter N , the specifi-
cation selects uniformly a graph G among the set of N -vertex simple graphs
having maximum degree d. On query v ∈ [N ], the machine answers with the
list of neighbors of vertex v in G.

2. A random d-regular graph: For size parameter N , the specification selects
uniformly a graph G among the set of N -vertex d-regular simple graphs, and
answers queries as in part 1.

Proof. We start with part 2. This part should follow by Corollary 8.2, provided
that we can implement a random isomorphic copy of a d-regular N -vertex graph of
sufficiently large girth. This requires an explicit construction of the latter graph as
well as a close-implementation of a random permutation and its inverse (as provided
by Theorem 2.13). Specifically, let GN be the fixed graph, and let π be the random
relabeling of its vertices. We answer query v by first determining the preimage of v in
GN (i.e., π−1(v)), then we find its neighbors (using the explicitness of the construction
of GN ), and finally we return their images under π. Indeed, this process depends on
the ability to provide explicit constructions of adequate d-regular N -vertex graphs
(i.e., GN ’s). This is trivial in the case d = 2 (e.g., by the N -cycle). For other values
of d ≥ 3, adequate constructions can be obtained from [35, 27, 33, 30] (possibly
by dropping several (easily identified) perfect matchings from the graph). These
constructions apply for a dense set of N ’s (which are typically of the form p(p− 1)2

for any prime p), but we can obtain other sizes by combining many such graphs (note
that we are not required even to give a connected graph, let alone a good expander).

We now turn to part 1. We first note that most graphs of maximum degree d have
(1 − o(1)) · dN/2 edges. Furthermore, for T = Θ(

√
dN) and D = O(

√
dN), all but a

negligible (in N) fraction of the graphs have (dN/2)− T ±D edges. Thus, a random
N -vertex graph of degree bound d is statistically indistinguishable from a random
d-regular graph with N vertices, because the former may be viewed as resulting from
omitting a small number (i.e., T + D = O(

√
N)) of edges from a random d-regular

graph with N vertices.

A general result. The proof of Proposition 8.3 actually yields a truthful close-
implementation of several other specifications. Consider, for example, the generation
of random connected d-regular graphs for d ≥ 3. Since the explicit constructions of d-
regular graphs are connected (and their modifications can easily be made connected),
applying Corollary 8.2 will do. (Indeed, we also use the fact that, with overwhelmingly
high probability, a random d-regular graph is connected.) More generally, we have
the following theorem.

Theorem 8.4. Let d ≥ 2 be fixed, and let Π be a graph property that satisfies the
following two conditions:
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1. The probability that property Π is not satisfied by a uniformly chosen d-regular
N -vertex graph is negligible in logN .

2. Property Π is satisfied by a family of strongly constructible d-regular N -vertex
graphs having girth ω(log logN) if d > 2 and girth (logN)ω(1) if d = 2.

Then, there exists a truthful close-implementation (by an oracle machine) of a uni-
formly distributed d-regular N -vertex graph that satisfies property Π.

We note that condition 1 may be relaxed. It suffices to require that a random
d-regular graph and a random d-regular graph having property Π are statistically
indistinguishable (by a machine that makes polylogarithmically many queries). In
particular, a random 2-regular graph and a uniformly distributed connected 2-regular
graph are statistically indistinguishable, and thus we can provide a truthful close-
implementation of the latter specification. We mention that Theorem 8.4 yields
truthful close-implementations to random d-regular graphs that are required to be
Hamiltonian, Bipartite, have logarithmic girth, etc.

9. Complex queries regarding length-preserving functions. In this sec-
tion we consider specifications that refer to a generic random function, but support
complex queries regarding such functions. That is, we consider answering various
queries regarding a random function f : {0, 1}n → {0, 1}n, in addition to the stan-
dard evaluation queries. The first type of complex queries that we handle is iterated-
evaluation queries, where the number of iterations may be superpolynomial in the
length of the input (and thus cannot be implemented in a straightforward manner).

Theorem 9.1 (iterated-evaluation queries to a random mapping). For every
positive polynomial p, there exists a truthful close-implementation of the following
specification. The specifying machine uniformly selects a function f : {0, 1}n →
{0, 1}n, and answers queries of the form (x,m), where x ∈ {0, 1}n and m ∈ [2p(n)],
with the value fm(x) (i.e., f iterated m times on x).

Proof. It will be convenient to associate {0, 1}n with {0, 1, . . . , N − 1}, where
N = 2n. As a warm-up, consider an implementation by a random N -cycle; that is,
using a random 1-1 mapping π : {0, . . . , N − 1} → {0, 1}n, define f(x) = π(π−1(x) +
1 mod N), and answer the query (x,m) by fm(x) = π(π−1(x) +m mod N). (Indeed,
this construction is reminiscent of the “fast-forward” construction of [38] (stated in
Theorem 2.14).) The only thing that goes wrong with this construction is that we
know the cycle length of f (i.e., it is always N), and thus can distinguish f from a
random function by any query of the form (·, N). Thus, we modify the construction
so to obtain a function f with unknown cycle lengths. A simple way of doing this
is to use two cycles, while randomly selecting the length of the first cycle. That is,
select M uniformly in [N ], and let

f(x)
def
=

⎧⎨
⎩

π(π−1(x) + 1 mod M) if π−1(x) ∈ {0, . . . ,M − 1},
π(π−1(x) + 1) if π−1(x) ∈ {M, . . . , N − 2},
π(M) otherwise (i.e., π−1(x) = N − 1).

We could have tried to select f such that its cycle-structure is distributed as in the
case of a random function, but we did not bother to do so. Nevertheless, we prove
that any machine that makes q queries cannot distinguish f from a random function
with probability better than poly(n) · q2/2Ω(n). Actually, in order to facilitate the
analysis, we select M uniformly in {(N/3), . . . , (2N/3)}.

We turn to proving that the foregoing (truthful) implementation is statistically
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indistinguishable from the specification. As in the proof of Lemma 8.1, we may
disregard the actual values of queries and answers (in the querying process), and
merely refer to whether these values are equal or not. We also assume, w.l.o.g., that
the querying machine makes no redundant queries (e.g., if the machine “knows” that
y = fk(x) and z = f �(y), then it refrains from making the query (x, k + �), which
would have been answered by z = fk+�(x)). Thus, at any point in time, the querying
machine knows of a few chains, each having the form (x, fk1(x), fk2 (x), . . . , fkt(x)),
for some known x ∈ {0, 1}n and k1 < k2 < · · · < kt. Typically, the elements in each
chain are distinct, and no element appears in two chains. In fact, as long as this
typical case holds, there is no difference between querying the specification versus
querying the implementation. Thus, we have to upper-bound the probability that an
atypical event occurs (i.e., a query is answered by an element that already appears
on one of the chains, although the query was not redundant).

Let us first consider the case that f is constructed as in the implementation. For
the ith nonredundant query, denoted (x, k), we consider three cases:

Case 1: x does not reside on any chain. The probability that fk(x) hits a known el-
ement is at most (i − 1)/(N − (i − 1)), because x is uniformly distributed
among the N − (i − 1) unknown elements. (Since f is 1-1, it follows that
fk(x) is uniformly distributed over a set of N − (i − 1) elements.)

Case 2: x resides on one chain and fk(x) hits another chain. We show that the prob-
ability of hitting an element of another chain (which must belong to the same
cycle) is (i − 1)/(N ′ − (i − 1)2), where N ′ ≥ N/3 is the number of vertices
on the cycle (on which x reside). The reason is that chains residing on the
same cycle may be thought of as having a random relative shift (which must
be such that it avoids any collisions of the up-to i − 1 known vertices). For
i <

√
N/2, we obtain a probability bound of i/Ω(N).

Case 3: x resides on some chain and fk(x) hits the same chain. Without loss of gen-
erality, suppose that fk(x) = x. For this to happen, the length N ′ of the cycle
(on which x resides) must divide k. We upper-bound the probability that all
prime factors of N ′ are prime factors of k.
Recall that N ′ is uniformly selected in [(N/3), (2N/3)], and let P = Pk denote
the set of prime factors of k. Note that for some constant c, it holds that
|P | < nc−1, because by the hypothesis k ∈ [2poly(n)]. We upper-bound the
number of integers in [N ] that have all prime factors in P by upper-bounding,
for every t ∈ [n], the product of the number of integers in [2t] with all prime

factors in P ′ def= {p ∈ P : p < nc} and the number of (n− t)-bit integers with

all prime factors in P ′′ def
= P \ P ′. For t > n/ logn, the size of the first set

can be upper-bounded by the number of nc-smooth numbers in [2t], which
in turn is upper-bounded by 2t−(t/c)+o(t) = 2(1−(1/c))·t+o(t).40 The size of the
second set is upper-bounded by |P ′′|(n−t)/(c log n) < 2(1−(1/c))·(n−t),
where the inequality uses |P ′′| < nc−1. Thus, we upper-bound the probability
that a uniformly chosen integer in [(N/3), (2N/3)] has all prime factors in P

40An integer is called y-smooth if all its prime factors are smaller than y. The fraction of y-smooth
integers in [x] is upper-bounded by u−u+o(u), where u = (log x)/(log y); see [10]. Thus, in case t >
n/ logn, the fraction of nc-smooth integers in [2t] is upper-bounded by 2−(1−o(1))·(t/(c log2 n))·log2 t =
2−(1−o(1))t/c.
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by

n/ logn∑
t=1

1 · 2−(1/c)·(n−t) +
n∑

t=(n/ logn)+1

2−(1/c)·t+o(t) · 2−(1/c)·(n−t)

=

n/ logn∑
t=1

2−(1/c)·(n−t) +
n∑

t=(n/ logn)+1

2−(1/c)·n+o(t)

= 2−(n/c)+o(n).

Hence, the probability of a collision in the current case is upper-bounded by
N−1/(c+1).

We conclude the probability that a collision is formed in q queries (to the implemen-
tation) is at most O(q2/N) + q ·N−1/(c+1) < q2 ·N−Ω(1).

We now turn to the case that f is a random function (as in the specification).
Suppose that we make the nonredundant query (x, k). We wish to upper-bound the
probability that fk(x) = y for some fixed y (which is on one of the chains). It is well
known that the expected number of ancestors of y under a random f is Θ(

√
N); see,

e.g., Theorem 33 in [8, Chap. XIV]. Thus, Prf [| ∪i≥1 f−i(y)| > N3/4] = O(N−1/4),
and it follows that Prf [f

k(x) = y] < N−1/4 + O(N−1/4) for any fixed (x, k) and y.
(Indeed, it seems that this is a gross overestimate, but it suffices for our purposes.) It
follows that the probability that we form a collision in q queries to the specification
is at most O(q2/N1/4).

Comment. The proof of Theorem 9.1 can be easily adapted so to provide a
truthful close-implementation of a random permutation with iterated-evaluation and
iterated-inverse queries. That is, we refer to a specifying machine that uniformly
selects a permutation f : {0, 1}n → {0, 1}n, and answers queries of the form (x,m),
where x ∈ {0, 1}n and m ∈ [±2poly(n)], with the value fm(x). The implementation is
exactly the same one used in the foregoing proof of Theorem 9.1, and thus we should
analyze only the probability of collision when making (nonredundant) queries to a
random permutation π. For any fixed (x, k) and y, the probability that πk(x) = y
equals the probability that x and y reside on the same cycle of the permutation π and
that their distance on this cycle equals k mod �, where � is the length of this cycle.
In the case that x �= y, the said event occurs with probability at most (N − 1)−1,
because we may think of first selecting a cycle-structure (and later embedding x
and y in it). In the other case (i.e., x = y), we note that the probability that
πk(x) = x equals the probability that � divides k, whereas � is distributed uniformly
over [N ] (i.e., for every i ∈ [N ], the probability that � = i equals 1/N). We mention
that an alternative implementation of a random permutation supporting iterated-
evaluation (and iterated-inverse) queries was suggested independently by Tsaban [39].
Interestingly, his implementation works by selecting a cycle-structure with distribution
that is statistically close to that in a random permutation (and using a set of cycles
of corresponding lengths, rather than always using two cycles as we do).

Preimage queries to a random mapping. We turn back to random length-
preserving functions, while such a random function f : {0, 1}n → {0, 1}n is highly
unlikely to be 1-1, still, the set of preimages of an element under the function is
well defined (i.e., f−1(y) = {x : f(x) = y}). Indeed, this set may be empty, be a
singleton, or contain more than one preimage. Furthermore, with overwhelmingly
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high probability, all of these sets are of size at most n. The corresponding “inverse”
queries are thus natural to consider.

Theorem 9.2. There exists a truthful close-implementation of the following
specification. The specifying machine, uniformly selects a function f : {0, 1}n →
{0, 1}n, and, in addition to the standard evaluation queries, answers the inverse-query
y ∈ {0, 1}n with the value f−1(y).

Proof. We start this proof with a truthful implementation that is not statistically
indistinguishable from the specification, but is “close to being so” and does present
our main idea. For � = O(log n) (to be determined), we consider an implementation
that uses the oracle in order to define two permutations π1 and π2 over {0, 1}n (along
with their inverses) as well as a random function g : {0, 1}n → {0, 1}�. It is instructive
to note that g induces a collection of random independent functions gα : {0, 1}� →
{0, 1}� such that gα(β) = g(αβ), and that each gα induces a random function on the

corresponding set Sα
def
= {αβ : β ∈ {0, 1}�} (i.e., mapping αβ to αgα(β)). Letting

prefi(z) (resp., suffi(z)) denote the i-bit long prefix of z (resp., suffix of z), we define

f(x) = π2

(
prefn−�(π1(x))gprefn−�(π1(x))(suff�(π1(x)))

)
(9.1)

= π2

(
prefn−�(π1(x))g(π1(x))

)
.

That is, the value of f(x) is obtained by first routing x to a random value v ← π1(x),
which is viewed as a pair (α, β) = (prefn−�(v), suff�(v)), next computing the value
w ≡ (α, gα(β)), and finally routing w to a random π2(w). Indeed, the functions gα
induce collisions within the structured sets Sα, and so the resulting function f is
unlikely to be 1-1.

The evaluation queries are answered in a straightforward way (i.e., by evaluating
π1, g, and π2). The inverse-query y is answered by first computing αβ = π−12 (y),

where |α| = n− �, then computing Rα(β)
def
= {β′ : g(αβ′) = β} via exhaustive search,

and finally setting f−1(y) = {π−11 (αβ′) : β′ ∈Rα(β)}. Indeed, the key point is that,
since � = O(log n), we can afford to determine the set Rα(β) by going over all possible
β′ ∈ {0, 1}� and including β′ if and only if g(αβ′) = β. The random permutation π1

(resp., π2) guarantees that it is unlikely to make two evaluation queries (resp., inverse-
queries) that are served via the same set Sα (i.e., have the same (n− �)-bit long prefix
under the relevant permutation). It is also unlikely to have a nonobvious “interaction”
between these two types of queries (where an obvious interaction is obtained by asking
for a preimage of an answer to an evaluation query or vice versa). Thus, the answers
to the evaluation queries look random, and the answers to the inverse-queries are
almost independent random subsets with sizes that correspond to the statistics of the
collision of 2� elements (i.e., 2� balls thrown at random to 2� cells).

The only thing that is wrong with the foregoing implementation is that the sizes
of the preimage-sets correspond to the collision pattern of 2� balls thrown at random
to 2� cells, rather than to that of the collision pattern of 2n balls thrown at random
to 2n cells. Let pi(m) denote the expected fraction of cells that contain i balls when
we throw at random m balls into m cells. Then, p0(m) ≈ 1/e for all sufficiently large
m, whereas

(9.2) pi(m) ≈ e−1

i!
·

i∏
j=1

(
1− j − 2

m− 1

)
.

We focus on i ≤ n (because for i > n, both pi(2
�) and pi(2

n) are smaller than
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2−2n). We may ignore the (negligible in n) dependence of pi(2
n) on 2n, but not the

(noticeable) dependence of pi(2
�) on 2� = poly(n). Specifically, we have the following:

i pi(2
n) pi(n

c + 1) ≈ (
∏i

j=1(1 − (j − 2)n−c)) · pi(2n)
≈ e−1/(i!) ≈ (

∏i
j=1(1− (j − 2)n−c)) · (e−1/(i!))

1 e−1 (1 + n−c) · e−1
2 e−1/2 (1 + n−c) · e−1/2
3 e−1/6 ≈ (1− n−2c) · e−1/6
4 e−1/24 ≈ (1− 1.5n−c) · e−1/24
i ≥ 4 e−1/(i!) (1 −Θ(i2n−c)) · e−1/(i!)

Thus, the singleton and two-element sets are slightly overrepresented in our imple-
mentation (when compared to the specification), whereas the larger sets are under-
represented. In all cases, the deviation is by a factor related to 1± (1/poly(n)), which
cannot be tolerated in a close-implementation. Thus, all that is required is to modify
the function g such that it is slightly more probable to form larger collisions (inside
the sets of Sα’s). We stress that we can easily compute all the relevant quantities (i.e.,
all pi(2

n)’s and pi(2
�)’s for i = 1, . . . , n), and so obtaining a close-implementation is

merely a question of details, which are outlined next.

Let us sketch just one possible approach. For N
def
= 2n and t

def
= 2�, we have

N/t sets of Sα’s that are each partitioned at random by the gα’s to subsets (which
correspond to the sets of αβ’s that are mapped to the same image under gα). Now,

for a random collection of gα’s, the number of i-subsets divided by N is pi
def
= pi(t)

rather than qi
def
= pi(N) as desired. Recall that |pi− qi| ≤ pi/(t− 1) for all i ≥ 1, and

note that
∑

i pii = 1 =
∑

i qii. Indeed, it is instructive to consider the fractional mass
of elements that resides in i-subsets; that is, let p′i = pii and q′i = qii. We need to
move a fractional mass of about 1/(t−1)e elements from singleton subsets (resp., two-
element subsets) to the larger subsets. With overwhelmingly high probability, each
Sα contains more than n singleton subsets (resp., n/2 two-element subsets). We are
going to use only these subsets towards the correction of the distribution of mass; this
is more than enough, because we need to relocate only a fractional mass of 1/(t− 1)e
from each type of subset (i.e., less than one element per a set Sα, which in turn has
cardinality t). In particular, we move a fractional mass of p′1 − q′1 = p′2 − q′2 from
singleton (resp., two-element) subsets into larger subsets. Specifically, for each i ≥ 3,
we move a fractional mass of (q′i−p′i)/2 elements residing in singletons and (q′i−p′i)/2
elements residing in two-element subsets into i-subsets.41 This (equal contribution
condition) will automatically guarantee that the mass in the remaining singleton and
two-element subsets is as desired. We stress that there is no need to make the “mass
distribution correction process” be “nicely distributed” among the various sets of Sα’s,
because its effect is hidden by the application of the random permutation π2. The
only thing we need is to perform this correction procedure efficiently (i.e., for every
α we should efficiently decide how to modify gα), and this is indeed doable.

41For example, we move mass into 3-subsets by either merging three singletons or merging a
singleton and a 2-subset into a corresponding 3-subset, where we do three merges of the latter type
per each merge of the former type. Similarly, for each i ≥ 4, we move mass into i-subsets by merging
either i singletons or i/2 two-subsets, while doing an equal number of merges of each type. Finally,
for every j ≥ 1, we move mass into (2j + 3)-subsets by merging additionally created 2j-subsets
and 3-subsets (where an additional 2-subset is created by either using a 2-subset or merging two
singletons in equal proportions).
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10. Conclusions and open problems. The questions that underlie our work
refer to the existence of good implementations of various specifications of random
objects. At the very least, we require the implementations to be computationally
indistinguishable from the corresponding specifications.42 That is, we are interested
in pseudoimplementations. Our ultimate goal is to obtain such implementations via
ordinary (probabilistic polynomial-time) machines, and so we ask the following ques-
tions:

Q1: Which specifications have truthful pseudoimplementations (by ordinarymachines)?
Q2: Which specifications have almost-truthful pseudoimplementations (by ordinary

machines)?
Q3: Which specifications have pseudoimplementations at all (again, by ordinary ma-

chines)?

In view of Theorem 2.9, as far as questions Q1 and Q3 are concerned, we may as
well consider implementations by oracle machines (having access to a random oracle).
Indeed, the key observation that started us going was that the following questions are
the “right” ones to ask:

Q1r (Q1 revised): Which specifications have truthful close-implementations by oracle
machines (having access to a random oracle)?

Q3r (Q3 revised): Which specifications have close-implementations by such oracle
machines?

We remark that even in the case of question Q2, it may make sense to study first
the existence of implementations by oracle machines, bearing in mind that the latter
cannot provide a conclusive positive answer (as shown in Theorem 2.11).

In this work, we have initiated a comprehensive study of the above questions. In
particular, we provided a fair number of nontrivial implementations of various spec-
ifications relating to the domains of random functions, random graphs, and random
codes. The challenge of characterizing the class of specifications that have good im-
plementations (e.g., questions Q1r and Q3r) remains wide open. A good start may be
to answer such questions when restricted to interesting classes of specifications (e.g.,
the class of specifications of random graphs having certain types of properties).

Limited-independence implementations. Our definition of pseudoimplemen-
tation is based on the notion of computational indistinguishability (cf. [24, 40, 20])
as a definition of similarity among objects. A different notion of similarity under-
lies the construction of sample spaces having limited-independence properties (see,
e.g., [2, 11]). For example, we say that an implementation is k-wise close to a given
specification if the distribution of the answers to any k fixed queries to the implemen-
tation is statistically close to the distribution of these answers in the specification.
The study of question Q1r is also relevant to the construction of truthful k-wise close
implementations, for any k = poly(n). In particular, one can show that any specifi-
cation that has a truthful close-implementation by an oracle machine has a truthful
k-wise close implementation by an ordinary probabilistic polynomial-time machine.43

A concrete example appears at the end of section 5. Further study in this direction
is reported in section 11.

42Without such a qualification, the question of implementation is either meaningless (i.e., every
specification has a “bad” implementation) or misses the point of generating random objects.

43The claim follows by combining an implementation (by an oracle machine) that makes at most
t queries to its random oracle with a sample space of k · t-wise independent functions.
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11. Subsequent work. In this section, we briefly review some subsequent work
that is closely related to the study initiated here.

Limited-independence implementations of random graphs. Continuing
the last paragraph of section 10, we first mention that Alon and Nussboim [3] proved
that a host of graph properties that are satisfied by truly random graphs are also
satisfied by poly(n)-independent random graphs (i.e., the amount of independence is
polylogarithmic in the size of the graph). These graph properties include all properties
considered in our work and actually extend beyond them (e.g., optimal connectivity
and jumbledness,44 which is the traditional graph theoretic notion of resemblance
to a random graph). The results of [3] imply almost-truthful poly(n)-close imple-
mentations (by ordinary machines) of a specification that answers adjacency queries
according to a uniformly distributed graph that satisfies the corresponding graph
properties. Furthermore, assuming the existence of one-way functions, they obtain
almost-truthful pseudoimplementations (by ordinary machines) of random graphs sat-
isfying these properties by XORing the foregoing poly(n)-close implementation with
a pseudoimplementation (which may not be truthful even in a weak sense).

We mention that the work of Alon and Nussboim [3] actually focuses on the gen-
eral random graph model G(N, p), where each edge in an N -vertex graph is taken
with probability p = p(N) independently of all other choices (cf. the model of Erdös–
Rényi as in, e.g., [8]). For any value of p (such that p(N) = Ω((logN)/N)), they
show that poly(n)-wise independent distributions preserve the most studied graph
properties of the random graph model G(N, p). This can be viewed as an almost-
truthful “implementation of the random graph model G(N, p)” for any p, where the
specification refers to answering adjacency queries. Indeed, for small values of p (i.e.,
p(N) � 1/poly(logN)), a close-implementation may return zero on all queries, but
such an implementation will not satisfy the various graph properties studied in [3].
Thus, the notion of an almost-truthful implementation distinguishes the implemen-
tations provided in [3] from trivial implementations, whereas the standard notion of
indistinguishability (as in Definition 2.7) fails to do so.

Implementations of the random graph model were also studied by Naor, Nuss-
boim, and Tromer [37], who classify graph properties according to the quantifier
depth of the formulas that specify each property. Preserving high-depth properties
of random graphs is introduced as an alternative measure of the quality of the im-
plementation. Naor, Nussboim, and Tromer [37] provide tight positive and negative
results regarding the maximal D such that for every depth-D property Π it is possible
to closely implement a uniformly distributed graph having property Π. These results
are not comparable with ours, since they deal with different graph properties.

Implementations of sparse random graphs. Our study of the implementa-
tion of random bounded-degree graphs was extended by Naor and Nussboim [36]
who considered random graphs of polylogarithmic degree that support neighbor-
hood queries. Clearly, efficiently answering neighborhood queries (which are an-
swered by the list of all neighbors of the given vertex) mandates a degree bound
of poly(n) = poly(logN). Actually, the study in [36] refers to the aforementioned
Erdös–Rényi model of random graphs G(N, p) for sufficiently low p = p(N); that is,
p(N) ≤ poly(logN)/N .

44Loosely speaking, jumbledness means that all vertex-sets U contain 1
2
·(|U|

2

)±Θ(
√
N |U |) edges.
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Stateful implementations. Addressing Open Problem 5.4, Bogdanov and Wee
[7] introduced the notion of stateful implementation, which (in contrast to Defini-
tion 2.6)45 allows the implementing machine to maintain a state. That is, such a
relaxed notion of an implementation may construct the object on the fly in response
to the queries posed (and while keeping track of all previous queries and answers).
Bogdanov and Wee presented a stateful implementation of the “subcube specification”
described in Open Problem 5.4, but the problem of providing a stateless implemen-
tation remains open.

Appendix A. Implementing various probability distributions. Our proof
of Theorem 5.2 relies on efficient procedures for generating elements from a finite
set according to two probability distributions. In both cases, we need procedures
that work in time that is polylogarithmic (rather than polynomial) in the size of
the set (and the reciprocal of the desired approximation parameter). In both cases,
we have close expressions (which can be evaluated in polylogarithmic time) for the
probability mass that is to be assigned to each element. Thus, in both cases, it is easy
to generate the desired distribution in time that is almost-linear in the size of the set.
Our focus is on generating good approximations of these distributions in time that is
polylogarithmic in the size of the set.

Indeed, the problem considered in this appendix is a special case of our general
framework. We are given a specification of a distribution (i.e., each query should be
answered by a sample drawn independently from that distribution), and we wish to
closely implement it (i.e., answer each query by a sample drawn independently from
approximately that distribution).

A.1. Sampling the binomial distribution. We first consider the generation
of elements according to the binomial distribution. For any N , we need to output
any value v ∈ {0, 1, . . . , N} with probability

(
N
v

) ·2−N . An efficient procedure for this
purpose is described in Knuth [29, sec. 3.4.1]. In fact, Knuth describes a more general
procedure that, for every p, outputs the value v ∈ {0, 1, . . . , N} with probability

bN,p(v)
def
=

(
N
v

) · pv(1− p)N−v. However, his description is in terms of operations with
reals, and so we need to adapt it to the standard (bit-operation) model. Knuth’s
description proceeds in two steps:

1. In section 3.4.1.F, it is shown how to reduce the generation of the binomial
distribution bN,p to the generation of some beta distributions, which are con-
tinuous distributions over [0, 1] that depend on two parameters a and b.46

The reduction involves taking log2N samples from certain beta distributions,
where the parameters of these distributions are easily determined as a func-
tion of N . The samples of the beta distributions are processed in a simple
manner involving only comparisons and basic arithmetic operations (subtrac-
tion and division).

2. In section 3.4.1.E, it is shown how to generate any beta distribution. The
generator takes a constant number of samples from the continuous uniform

45Recall that Definition 2.6 requires that each instance of the implementation be fully determined
by the machine M and the random-tape r. Similarly, Definition 2.5 requires that each instance of
the implementation be fully determined by the machine M and the random oracle f .

46A beta distribution with (natural) parameters a and b is defined in terms of the accumulative

distribution function Fa,b(r)
def
= a · (a+b−1

a

) · ∫ r
0
xa−1(1 − x)b−1 dx, and the uniform continuous

distribution is a special case (i.e., a = b = 1). In general, Fa,b(r) equals the probability that the bth
largest of a+ b− 1 independent uniformly chosen samples in [0, 1] has value at most r.



IMPLEMENTATION OF HUGE RANDOM OBJECTS 2813

distribution over [0, 1], and produces the desired sample with constant prob-
ability (otherwise, the process is repeated). The samples of the uniform dis-
tributions are processed in a simple manner involving only comparisons and
various arithmetic and trigonometric operations (including computing func-
tions as log and tan).

The above is described in terms of real arithmetic and sampling uniformly in [0, 1], and
provides a perfect implementation. The question is, what happens when we replace
the samples with ones taken from the set {ε, 2ε, . . . , �1/ε� · ε}, and replace the real
arithmetics with approximations up to a factor of 1± ε?

Let us first consider the effect of replacing the uniform continuous distribution

U(r) = r by the continuous step-distribution Sε(r)
def
= �r/ε� · ε, where we may assume

that 1/ε is an integer. Since the variation distance between U and Sε is O(ε), the
same holds for any function applied to a constant number of samples taken from
these distribution. Thus, the implementation of the beta distributions via the step-
distribution Sε will deviate by only O(ε), and using the latter to generate the binomial
distribution bN,p yields only a deviation of O(ε logN). Finally, using the average
numerical stability of all functions employed47 we conclude that an implementation
by O(log(1/ε)) bits of precision will introduce only a deviation of ε.

A.2. Sampling from the two-set total-sum distribution. We now turn to
the generation of pairs (l, r) such that l + r = T and 0 ≤ l, r ≤ S, where T ≤ 2S.
Specifically, we need to produce such a pair with probability proportional to

(
S
l

) · (Sr)
(i.e., the number of ways to select l elements from one set of size S and r elements
from another such set). (In the proof of Theorem 5.2, S = M/2.) Without loss
of generality, we may assume that T ≤ S (or else we select the “complementary”
elements). Thus, we need to sample r ∈ {0, . . . , T } with probability

(A.1) pr =

(
S

T−r
) · (Sr)(
2S
T

) .

We wish to produce a sample with deviation at most ε from the correct distribu-

tion and are allowed time poly(k), where k
def
= log(S/ε). In the case T ≤ k, we perform

this task in the straightforward manner; that is, compute all the T + 1 probabilities
pr, and select r accordingly. Otherwise (i.e., T > k), we rely on the fact that pr is
upper-bounded by twice the binomial distribution of T tries (i.e., qr =

(
T
r

)
/2T ). This

leads to the following sampling process:
1. Select r according to the binomial distribution of T tries.
2. Compute pr and qr. Output r with probability pr/2qr, and go to step 1

otherwise.
We will show (see Fact A.1 below) that pr ≤ 2qr always holds. Thus, in each iteration,
we output r with probability that is proportional to pr; that is, we output r with
probability qr · (pr/2qr) = pr/2. It follows that each iteration of the above procedure

47Each of these functions (i.e., rational expressions, log, and tan) has a few points of instability,
but we apply these functions on arguments taken from either the uniform distribution or the result
of prior functions on that distribution. In particular, except for what happens in an ε-neighborhood
of some problematic points, all functions can be well approximated when their argument is given
with O(log(1/ε)) bits of precision. Furthermore, the functions log and tan are evaluated only at the
uniform distribution (or simple functions there), and the rational expressions are evaluated on some
intermediate beta distributions. Thus, in all cases, the problematic neighborhoods are assigned only
small probability mass (e.g., ε in the former case and O(

√
ε) in the latter).
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produces an output with probability 1/2, and by truncating the procedure after k
iterations (and producing arbitrary output in such a case) the output distribution is
statistically close to the one desired.

Fact A.1. Suppose that T ≤ S and T > k. For pr’s and qr’s as above, it holds
that pr < 2qr.

Proof. The cases r = T and r = 0 are readily verified (by noting that pr =(
S
T

)
/
(
2S
T

)
< 2−T and qr = 2−T ). For r ∈ {1, . . . , T−1}, letting α

def
= (S−r)/(2S−T ) ∈

(0, 1), we have

pr
qr

=

(
S
r

) · ( S
T−r

)
/
(
2S
T

)
(
T
r

)
/2T

= 2T ·
(
2S−T
S−r

)
(
2S
S

)
= 2T · (1 + o(1)) · (2πα(1 − α) · (2S − T ))−1/2 · 2H2(α)·(2S−T )

(2π(1/2)2 · 2S)−1/2 · 2H2(1/2)·2S

=
1 + o(1)√

2α(1− α) · β · 2
(H2(α)−1)·(2S−T ),

where β
def
= (2S − T )/S ≥ 1 and H2 is the binary entropy function. For α ∈

[(1/3), (2/3)], we can upper-bound pr/qr by (1 + o(1)) ·√9/4β < 2. Otherwise (i.e.,
w.l.o.g. α < 1/3), we get that H2(α) < 0.92 and α−1(1 − α)−1 ≤ 2S − T , where
for the latter inequality we use 1 ≤ r ≤ S − 1. Thus, pr/qr is upper-bounded by
O(
√
2S − T ) · 2−Ω(2S−T ) = O(2−Ω(S)+logS), which vanishes to zero with k (because

S ≥ T > k).48

A.3. A general tool for sampling strange distributions. Continuing from
Appendix A.2, we state a useful lemma (which was implicitly used above as well as
in prior works). The lemma suggests that poly(logN)-time sampling from a desired
probability distribution {pi}Ni=1 can be reduced to sampling from a related probability
distribution {qi}Ni=1, which is hopefully poly(logN)-time sampleable.

Lemma A.2. Let {pi}Ni=1 and {qi}Ni=1 be probability distributions satisfying the
following conditions:

1. There exists a polynomial-time algorithm that given i ∈ [N ] outputs approxi-
mations of pi and qi up to ±N−2.

2. Generating an index i according to the distribution {qi}Ni=1 is closely imple-
mentable (up to negligible in logN deviation and in poly(logN)-time).

3. There exist a poly(logN)-time recognizable set S ⊆ [N ] such that
(a) 1−∑

i∈S pi is negligible in logN .
(b) there exists a polynomial p such that for every i ∈ S it holds that pi ≤

p(logN) · qi.
Then generating an index i according to the distribution {pi}Ni=1 is closely imple-
mentable.

Proof. Without loss of generality, S may exclude all i’s such that pi < N−2. For
simplicity, we assume below that given i we can exactly compute pi and qi (rather than

only approximate them within ±N−2). Let t
def
= p(logN). The sampling procedure

proceeds in iterations, wherein each iteration i is selected according to the distribution
{qi}Ni=1, and is output with probability pi/tqi if i ∈ S. (Otherwise, we proceed to the
next iteration.) Observe that, conditioned on producing an output, the output of

48In fact, it holds that pr ≤ √
2 · qr for all r’s, with the extreme value obtained at r = T/2 (and

T = S), where we have α = 1/2 (and β = 1).
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each iteration is in S and equals i with probability qi · (pi/tqi) = pi/t. Thus, each
iteration produces output with probability

∑
i∈S pi/t > 1/2t, and so halting after

O(t log(1/ε)) iterations, we produce output with probability at least 1 − ε. For any

i ∈ S, the output is i with probability (1± ε) · pi/ρ, where ρ def
=

∑
j∈S pj . Setting ε to

be negligible in logN , the lemma follows.

A typical application of Lemma A.2 is to the case that for each i ∈ [N ] the value of pi
can be approximated by one out of m = poly(logN) predetermined pj’s. Specifically
we have the following corollary.

Corollary A.3. Let {pi}Ni=1 be a probability distribution, and let S ⊆ [N ] be
a set satisfying conditions (1) and (3a) of Lemma A.2. Suppose that, for m, t =
poly(logN), there exists an efficiently constructible sequence of integers 1 = i1 < i2 <
· · · < im = N such that for every j ∈ [m − 1] and i ∈ [ij, ij+1] ∩ S it holds that
pij/t < pi < t · pij . Then generating an index i according to the distribution {pi}Ni=1

is closely implementable.

Proof. For every j ∈ [m − 1] and i ∈ [ij, ij+1] ∩ S, define p′i = pij and note
that p′i/t < pi < t · p′i. Let p′ =

∑
i∈S p′i, and note that p′ < t. Now, define

qi = p′i/p
′ for every i ∈ S, and qi = 0 otherwise. Then, for every i ∈ S, it holds that

pi < t · p′i = t · p′ · qi < t2qi. Since these qi’s satisfy conditions (1), (2), and (3b) of
Lemma A.2, the corollary follows.

Appendix B. Implementing a random bipartite graph. Following the
description in section 6, we present a close-implementation of random bipartite graphs.
Two issues arise. First, we have to select the proportion of the sizes of the two
parts, while noticing that different proportions give rise to different number of graphs.
Second, we note that a bipartite graph uniquely defines a 2-partition (up to switching
the two parts) only if it is connected. However, since all but a negligible fraction of
the bipartite graphs are connected, we may ignore the second issue, and focus on the
first. (Indeed, the rest of the discussion is slightly imprecise because the second issue
is ignored.)

For i ∈ [±N ], the number of 2N -vertex bipartite graphs with N + i vertices on
the first part is

(
2N

N + i

)
· 2(N+i)·(N−i) ≤

(
2N

N

)
· 2N2−i2 ,

where equality holds for i = 0 and approximately holds (i.e., up to a constant factor)
for |i| = √N . Thus, all but a negligible fraction of the 2N -vertex bipartite graphs
have N ± log2N vertices on each part. That is, we may focus on O(logN) values of

i. Indeed, for each i ∈ [± log2N ], we compute Ti
def
=

(
2N
N+i

) · 2N2−i2 , and pi = Ti/T ,

where T
def
=

∑log2N
j=− log2N

Tj. Next, we select i with probability pi, and construct a
random 2N -vertex bipartite graph with N + i vertices on the first part as follows:

• As in section 6, we use the function f1 to implement a permutation π. We

let S
def
= {v : π(v) ∈ [N + i]} and χS(i)

def
= 1 if and only if i ∈ S.

• As in section 6, we answer the query (u, v) by 0 if χS(u) = χS(v) and accord-
ing to the value of f2 otherwise.

Appendix C. Various calculations. In this appendix we provide some tedious
calculations that were relied upon in section 6.
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Calculations for the proof of Lemma 6.3. The proof of Lemma 6.3 refers to
the following known fact.

Fact C.1. Let X be a random variable ranging over some domain D, and suppose
that H(X) ≥ log2 |D| − ε. Then X is at statistical distance at most O(

√
ε) from the

uniform distribution over D.
Proof. Suppose that X is at statistical distance δ from the uniform distribution

overD. Then, there exists a S ⊂ D such that |Pr[X ∈ S]−(|S|/|D|)| = δ, and assume
w.l.o.g. that |S| ≥ |D|/2. Note that either for each e ∈ S it holds that Pr[X = e] ≥
1/|D| or for each e ∈ S it holds that Pr[X = e] ≤ 1/|D|. By removing the |S|−(|D|/2)
elements of smallest absolute difference (i.e., smallest |Pr[X = e]−(1/|D|)|), we obtain
a set S′ of size |D|/2 such that |Pr[X ∈ S′]− (|S′|/|D|)| ≥ δ/2. The entropy of X is
maximized when it is uniform both on S′ and on D \ S′. Thus,

H(X) ≤ H2(Pr[X ∈ S′]) +Pr[X ∈ S′] ·H(X |X ∈ S′)
+ Pr[X ∈ D \ S′] ·H(X |X ∈ D \ S′)
= H2

(
1

2
+

δ

2

)
+ log2(|D|/2)

= 1− Ω(δ2) + log2(|D|/2).

We get that H(X) ≤ log2 |D| − c · δ2 for some universal c > 0. Combining this
with the hypothesis that H(X) ≥ log2 |D| − ε, we get that ε ≥ c · δ2, and δ ≤ √

ε/c
follows.

Calculations for the proof of Theorem 6.6. In order to complete the proof
of part 2 of Theorem 6.6, we prove the following claim.

Claim C.2. Let c(N) = (2 − o(1)) log2N be as in Theorem 6.6, and let T
def
=


N/c(N)�. Consider any fixed partition (S(1), . . . , S(T )) of [N ] such that |S(i)| = c(N)
for every i < T , and |S(T )| ≤ c(N). Consider a graph selected as follows:

• Each S(i) is an independent set.
• For k = 2( c(N)+2

2 ), the edges between vertices residing in different S(i)’s are
determined by a k-wise independent sequence of unbiased bits.

Then, with probability at least 1− (N−Θ(1)), the graph has no independent set of size
c(N) + 2.

Applying Claim C.2 to any partition (S
(1)
r , . . . , S

(T )
r ) fixed at the end of the proof

of Theorem 6.6, it follows that the graph gcolor contains no independent set of size
c(N) + 2. Part 2 of Theorem 6.6 follows.

Proof. We will show that the expected number E of independent sets of size

c(N)+ 2 is N−Ω(1), and the claim will follow. Denoting c
def
= c(N) and c′ def= c+2, we

consider an arbitrary vertex-set V of size c′ (so V is a potential independent set). The
analysis bounds the contribution of various vertex-sets V (to the entire expectation
E) according to the sizes of the intersections V

⋂
S(j).

We shall use the following notation. For any V as above, we let n(V ) denote
the number of nonempty intersections V

⋂
S(j), and let s(V ) denote the size of the

largest intersection. Next, let As denote the collection of all vertex-sets V for which
s(V ) = s, and let Bn denote the collection of those vertex-sets V for which n(V ) = n.
Finally, let pV denote the probability that V induces an independent set, and let

Ps
def
= maxV ∈As{pV } and Qn

def
= maxV ∈Bn{pV }. The following facts summarize a few

useful upper-bounds.
Fact C.2.1. For any 1 ≤ s ≤ c and any 1 ≤ n ≤ c′ it holds that
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1. |As| ≤ 
Nc �
(
c
s

)(
N

c′−s
)
= N (2 log2N)−s+o(logN).

2. |Bn| ≤
(�Nc 


n

)(
c+1
n−1

)
cc

′
= Nn+o(logN).

Fact C.2.2. For any 1 ≤ s ≤ c and any 3 ≤ n ≤ c′ we have

1. Ps ≤ 2−(c
′−s)·s.

2. Ps ≤ N−(c
′−s)+o(logN).

3. Qn ≤ 2−(
c+2
2 )+(c−n+3

2 ).

4. Qn ≤ N−n(2−
n

2 log2N )+o(logN).

(Proving Facts C.2.1 and C.2.2 is deferred to the end of this subsection.) The
desired upper-bound on the expected number E of independent sets is established via
a case analysis where we separately handle the contribution of various vertex-sets V
to the expectation E, according to the values of s(V ) and n(V ). For the rest of the
analysis, we fix an arbitrary constant Δ ∈ (0, 1/6).

Case 1 – Large maximal intersection: s ≥ (32 +Δ) log2N . By the first items in Facts

C.2.1 and C.2.2, we take Es
def
= [
Nc �

(
c
s

)(
N

c′−s
)
]2−s[c

′−s] as an upper-bound
on the expected number of independent sets that are induced by sets V with
s(V ) = s. We claim that for large values of s, Es is maximized when s is
maximal, namely, when s = c. Indeed,

Es+1

Es
=

[
(c− s)

(s+ 1)
· (c′ − s)

(N − c+ s− 1)

]
· 22s2−(c+1)

≥
[
No(1)

No(1)
· No(1)

N1−o(1)

]
· 22( 3

2+Δ) log2N2(−2+o(1)) log2N

=
[
N−1−o(1)

]
N3+2ΔN−2+o(1) = N2Δ−o(1) � 1,

where the first inequality uses the fact that s is large. Thus for sufficiently
largeN the maximal term isEc = [
Nc �·

(
N

c′−c
)
]2−c[c

′−c] < [N ·N2]2−2([2−o(1)] log2N)

= N−1+o(1). Consequently, as there are only Θ(logN) possible values of s,
the expected number of independent sets with large s is bounded by N−Θ(1).

Case 2 – Large number of intersections: n ≥ (1 + Δ) log2N . Analogously to case 1,
we combine the second item in Fact C.2.1 with the third item in Fact C.2.2
to deduce that Ēn

def
= [

(�Nc 

n

)(
c+1
n−1

)
cc

′
] ·2−(c+2

2 )+(c−n+3
2 ) upper-bounds the ex-

pected number of independent sets that are induced by sets V with n(V ) =
n ≥ 3. We show that for large values of n, Ēn is maximized when n is
maximal, namely, when n = c′. Indeed,

Ēn+1

Ēn
=

[

Nc � − n

n+ 1
· c− n+ 2

n

]
· 2n2−(c+2)

≥
[
N1−o(1)

No(1)
· N

o(1)

No(1)

]
· 2(1+Δ) log2N2[−2+o(1)] log2N

=
[
N1−o(1)

]
·N (1+Δ)N−2+o(1) = NΔ−o(1) � 1.

Thus for sufficiently large N the maximal term is Ēc′ . To bound Ēc′ we use
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the notation Ψ
def
=

(
N
c′
)
2−(

c+2
2 ) and note that

Ēc′ =

(
Nc �
c′

)
cc

′
2−(

c+2
2 )

=

[(
N

c′

)−1(
Nc �
c′

)]
cc

′ ·
(
N

c′

)
2−(

c+2
2 )

=

⎡
⎣c′−1∏

i=0


Nc � − i

N − i

⎤
⎦ cc

′ ·Ψ

=

[
[1± o(1)]

cc′

]
cc

′ ·Ψ

≤ [1 + o(1)] ·N−1+o(1) = N−Θ(1),

where the last inequality uses the fact that Ψ ≤ N−1+o(1) (taken again
from [9]). Thus, as there are only Θ(logN) possible values of n, the expected
number of independent sets with large n is bounded by N−Θ(1).

Case 3 – Medium number of intersections: Δ log2N ≤ n ≤ (1 + Δ) log2N . We shall
actually establish the claim for Δ log2N ≤ n ≤ (2−Δ) log2N . By the second
item in Fact C.2.1 and the last item in Fact C.2.2 the expected number of
independent sets that are induced by sets V with n(V ) = n ≥ 3 is bounded
by

Nn+o(logN)N−n(2−
n

2 log2N )+o(logN)

≤ Nn(−1+ (2−Δ) log2N
2 log2N )+o(logN)

= N−
Δn
2 +o(logN) = N−Θ(logN),

where the first inequality employs the fact that n is medium and the final
equality uses n = Θ(logN). Therefore, as there are only Θ(logN) possible val-
ues of n, the expected number of independent sets with medium n is bounded
by N−Θ(logN).

Case 4 – Small intersections and a small number of intersections: n ≤ Δ log2N and
s ≤ (32 + Δ) log2N . We shall actually establish the claim for n ≤ (12 −
2Δ) log2N (and s ≤ (32 + Δ) log2N). Fix any n and s as above and let
Es,n denote the expected number of independent sets that are induced by
vertex-sets V ∈ As

⋂
Bn. By the second items in Facts C.2.1 and C.2.2 we

get

Es,n ≤ Nn+o(logN)N−[c
′−s]+o(logN)

≤ N ( 1
2−2Δ) log2N+o(logN)N−[2−(

3
2+Δ)] log2N+o(logN)

= N−[Δ+o(1)] log2N = N−Θ(logN),

where the second inequality uses the fact that s and n are both small. Thus,
as there are only Θ(log2N) possible pairs (s, n), the expected number of
independent sets with small s and small n is bounded by N−Θ(logN).

These four cases handle all possible pairs (s, n), so a N−Ω(1) bound on the expected
number of independent sets is achieved, and the current claim (i.e., Claim C.2) follows
once Facts C.2.1 and C.2.2 are proved.
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Proving Fact C.2.1. To derive the upper bounds on |As| we choose a vertex-set
V ∈ As as follows. There are 
Nc � possible choices for the forced independent set S(j)

that achieves the maximal intersection with V . Then, there are at most
(
c
s

)
choices

for the vertices of V
⋂
S(j). Finally, there are less than

(
N

c′−s
)
possible choices for the

vertices of V \S(j). Thus |As| ≤ 
Nc �
(
c
s

)(
N

c′−s
)
. The |As| ≤ N [2 log2N−s]+o(logN) bound

follows from the above by observing that
(
c
s

)
< 2c = 2[2−o(1)] log2N = No(logN), and

that
(

N
c′−s

)
< N c′−s = N [2−o(1)] log2N−s.

To prove the upper bounds on |Bn| we choose a vertex-set V ∈ Bn as fol-

lows. There are precisely
(�Nc 


n

)
possible choices for the forced independent sets

S(i1), . . . , S(in) that intersect V . Once these sets S(ij) are fixed, there are exactly(
c+1
n−1

)
possible choices for the cardinalities r1

def
= |V ⋂

S(i1)|, . . . , rn def
= |V ⋂

S(in)|.
Finally, given these cardinalities, there are no more than

∏n
i=1

(
c
r

)
i
<

∏n
i=1 c

ri =

cc
′
choices for the vertices themselves. This implies that |Bn| ≤

(�Nc 

n

)(
c+1
n−1

)
cc

′
.

The |Bn| ≤ Nn+o(logN) bound is derived by observing that
(�Nc 


n

)
< Nn, and that(

c+1
n−1

)
cc

′
< (c+ 1)n−1+c′ = Θ(logN)Θ(logN) = NΘ(log logN).

Proving Fact C.2.2. Fix an arbitrary vertex-set V ∈ As

⋂
Bn and consider the set

I(V ) of internal random edges of V ; that is, I(V )
def
= {{v, w} : ∃i �= j such that v ∈

V ∩ S(i) ∧ w ∈ V ∩ S(j)}. By the k-wise independence of our graph, the probability
that V induces an independent set equals 2−|I(V )|. Note that even by considering
only the edges that connect the largest intersection, V

⋂
S(j), to V \ S(j) we get

|I(V )| ≥ s · (c′ − s), and item 1 follows. For item 2, note that since s(V ) = s, then
each of the c′ vertices v ∈ V contribute at least (c′ − s) edges to I(V ). As each edge

is counted twice, we get |I(V )| ≥ 1
2 · (c′ − s)c′, so Ps ≤ 2−

1
2 ·(c′−s)·(2−o(1)) log2N . Item

2 follows.
For Items 3–4 we will demonstrate that for any fixed n ≥ 3, the maximal proba-

bility Qn is achieved by a vertex-set V where all nonempty intersections V
⋂
S(j) are

of size 1, except the largest intersection. Indeed, assume w.l.o.g. that V has decreas-
ing intersections of sizes r1 ≥ · · · ≥ rn > 0. Now assume that r2 ≥ 2. Since n ≥ 3
and

∑n
i=1 ri = c + 2, then r1 + 1 ≤ c. Thus there exists another vertex-set V ′ with

intersections of sizes r1 + 1, r2 − 1, r3, . . . , rn. It is readily verified that the probabil-
ity that V ′ induces an independent set is at least twice the probability that V does.
Therefore the maximal probability Qn is achieved when r2 < 2 so r2 = · · · = rn = 1
and r1 = c+3− n. Then |I(V )| = (

c+2
2

)− (r12 ) = (
c+2
2

)− (c−n+3
2

)
and item 3 follows.

Item 4 is derived from item 3 since(
c+ 2

2

)
−
(
c− n+ 3

2

)
= n

(
c− n

2

)
+

1

2
(5n− 2c− 4)

= n log2N

(
[2− o(1)]− n

2 log2N

)
+

1

2
(5n− 2c− 4)

= n log2N

(
2− n

2 log2N

)
± o(log2N).

This establishes Fact C.2.2.
Having established Facts C.2.1 and C.2.2, the entire claim (i.e., Claim C.2)

follows.

Appendix D. A strengthening of Proposition 2.15. The hypothesis of
part 2 of Proposition 2.15 requires the existence of one-way functions, or equivalently,
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the ability to generate hard-instances (to NP-problems) along with corresponding so-
lutions (cf. [18, section 2.1]). A seemingly weaker condition, which is in the spirit of
Levin’s theory of average-case complexity [31] (see also [5]), is the ability to generate
hard-instances to NP-problems. Specifically we have the following definition.

Definition D.1 (generating hard instances). A probabilistic polynomial-time
algorithm G is called a generator of hard instances for a set S if for every probabilistic
polynomial-time algorithm A the probability that A correctly decides whether or not
G(1n) is in S is bounded away from 1. That is, there exists a polynomial p such that
for all sufficiently large n’s it holds that

Prx←G(1n)[A(x) = χS(x)] < 1− 1

p(n)
,

where χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise.
Definition D.1 requires only that hard instances be generated with “noticeable”

probability. Note that the existence of one-way functions (even weak ones) implies
the ability to generate hard instances to NP-problems. The converse is not known to
hold. Thus, the following result strengthens part 2 of Proposition 2.15.

Proposition D.2. Assuming the existence of generators of hard instances for
NP-problems, there exist specifications that cannot be pseudoimplemented.

Proof. Let L be an NP-set that has a generator G of hard instances, let R be
the corresponding witness relation (i.e., L = {x : ∃y such that (x, y) ∈ R}), and

R(x)
def
= {y : (x, y) ∈ R}. Consider the specification that answers query x with a

uniformly distributed y ∈ R(x) if R(x) �= ∅ and with a special symbol otherwise. We
will show that this specification cannot be pseudoimplemented.

Let I be an arbitrary implementation of the above specification, and consider a
distinguisher that, for parameter n, makes the query x← G(1n), obtains the answer
y, and outputs 1 if and only if (x, y) ∈ R (which is polynomial-time decidable). When
this distinguisher queries the specification, it outputs 1 with probability that equals

ρ
def
= Pr[G(1n) ∈ L]. Assume, towards the contradiction, that when the distinguisher

queries I it outputs 1 with probability that at least ρ− μ(n), where μ is a negligible
function. In such a case we obtain a probabilistic polynomial-time algorithm that
violates the hypothesis that G generates hard instances: Specifically, consider an
algorithm A such that A(x) answers 1 if and only if (x, I(x)) ∈ R, and note that A is
always correct when it outputs 1. Thus,

Prx←G(1n)[A(x) = χL(x)] = Pr[x∈L ∧ A(x)=1] +Pr[x /∈L] ·Pr[A(x)=0|x /∈L]
= Pr[x∈L ∧ (x, I(x))∈R] + (1− ρ) ·Pr[(x, I(x)) /∈R|x /∈L]
≥ (ρ− μ(n)) + (1 − ρ) · 1 = 1− μ(n)

(which violates the hypothesis). We conclude that the implementation I cannot
be computationally indistinguishable from the specification, and the proposition fol-
lows
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