
On the (Im)possibility of Obfuscating Programs∗

Boaz Barak† Oded Goldreich‡ Russell Impagliazzo§ Steven Rudich¶

Amit Sahai‖ Salil Vadhan∗∗ Ke Yang††

July 29, 2010

Abstract

Informally, an obfuscator O is an (efficient, probabilistic) “compiler” that takes as input a
program (or circuit) P and produces a new program O(P) that has the same functionality as
P yet is “unintelligible” in some sense. Obfuscators, if they exist, would have a wide variety
of cryptographic and complexity-theoretic applications, ranging from software protection to
homomorphic encryption to complexity-theoretic analogues of Rice’s theorem. Most of these
applications are based on an interpretation of the “unintelligibility” condition in obfuscation
as meaning that O(P) is a “virtual black box,” in the sense that anything one can efficiently
compute given O(P), one could also efficiently compute given oracle access to P .

In this work, we initiate a theoretical investigation of obfuscation. Our main result is that,
even under very weak formalizations of the above intuition, obfuscation is impossible. We prove
this by constructing a family of efficient programs P that are unobfuscatable in the sense that
(a) given any efficient program P ′ that computes the same function as a program P ∈ P , the
“source code” P can be efficiently reconstructed, yet (b) given oracle access to a (randomly
selected) program P ∈ P , no efficient algorithm can reconstruct P (or even distinguish a certain
bit in the code from random) except with negligible probability.

We extend our impossibility result in a number of ways, including even obfuscators that
(a) are not necessarily computable in polynomial time, (b) only approximately preserve the
functionality, and (c) only need to work for very restricted models of computation (TC0). We
also rule out several potential applications of obfuscators, by constructing “unobfuscatable”
signature schemes, encryption schemes, and pseudorandom function families.

Keywords: cryptography, complexity theory, software protection, homomorphic encryption, Rice’s The-

orem, software watermarking, pseudorandom functions, statistical zero knowledge

∗A preliminary version of this paper appeared in CRYPTO’01 [BGI+].
†Department of Computer Science, Princeton University, NJ 08540. E-mail: boaz@cs.princeton.edu
‡Department of Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. E-mail:

oded.goldreich@weizmann.ac.il
§Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0114.

E-mail: russell@cs.ucsd.edu
¶Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213. E-mail:

rudich@cs.cmu.edu
‖Department of Computer Science, UCLA, Los Angeles, CA 90095. Email: sahai@cs.ucla.edu

∗∗School of Engineering and Applied Sciences and Center for Research on Computation and Society, Harvard
University, 33 Oxford Street, Cambridge, MA 02138. E-mail: salil@seas.harvard.edu

††Google Inc., Moutain View, CA 94043. E-mail: yangke@gmail.com

1

Contents

1 Introduction 2
1.1 Some Applications of Obfuscators . 2
1.2 Our Main Results . 4
1.3 Discussion . 6
1.4 Related Work . 6
1.5 Organization of the Paper . 6

2 Definitions 7
2.1 Preliminaries . 7
2.2 Obfuscators . 8

3 The Main Impossibility Result 11
3.1 Obfuscating two TMs/circuits . 12
3.2 Obfuscating one TM/circuit . 14

4 Extensions 21
4.1 Approximate Obfuscators . 21
4.2 Impossibility of the Applications . 25
4.3 Obfuscating Restricted Circuit Classes . 30
4.4 Relativization . 30

5 On a Complexity Analogue of Rice’s Theorem 33

6 Obfuscating Sampling Algorithms 34

7 Weaker Notions of Obfuscation 37

8 Watermarking and Obfuscation 39

9 Research Directions and Subsequent Work 42

A Generalizing Rice’s Theorem to Promise Problems 47

B Pseudorandom Oracles 49

C Obfuscation and the Fiat–Shamir transformation 51

1

1 Introduction

Past theoretical research in cryptography had amazing success in putting most of the classical
cryptographic problems — encryption, authentication, protocols — on complexity-theoretic foun-
dations. However, there still remain several important problems in cryptography about which
theory has had little or nothing to say. One such problem is that of program obfuscation. Roughly
speaking, the goal of (program) obfuscation is to make a program “unintelligible” while preserving
its functionality. Ideally, an obfuscated program should be a “virtual black box,” in the sense that
anything one can compute from it one could also compute from the input-output behavior of the
program.

The hope that some form of obfuscation is possible arises from the fact that analyzing programs
expressed in rich enough formalisms is hard. Indeed, any programmer knows that total unintel-
ligibility is the natural state of computer programs (and one must work hard in order to keep a
program from deteriorating into this state). Theoretically, results such as Rice’s Theorem and the
hardness of the Halting Problem and Satisfiability all seem to imply that the only useful
thing that one can do with a program or circuit is to run it (on inputs of one’s choice). However,
this informal statement is, of course, highly speculative, and the existence of obfuscators requires
its own investigation.

To be a bit more clear (though still informal), an obfuscator O is an (efficient, probabilistic)
“compiler” that takes as input a program (or circuit) P and produces a new programO(P) satisfying
the following two conditions:

• (functionality) O(P) computes the same function as P .

• (“virtual black box” property) “Anything that can be efficiently computed from O(P) can be
efficiently computed given oracle access to P .”

While there are heuristic approaches to obfuscation in practice (cf., Figure 1 and [CT]), there
has been little theoretical work on this problem. This is unfortunate, since obfuscation, if it were
possible, would have a wide variety of cryptographic and complexity-theoretic applications.

In this work, we initiate a theoretical investigation of obfuscation. We examine various formal-
izations of the notion, in an attempt to understand what we can and cannot hope to achieve. Our
main result is a negative one, showing that obfuscation (as it is typically understood) is impossible.
Before describing this result and others in more detail, we outline some of the potential applications
of obfuscators, both for motivation and to clarify the notion.

1.1 Some Applications of Obfuscators

Software Protection. The most direct applications of obfuscators are for various forms of soft-
ware protection. By definition, obfuscating a program protects it against reverse engineering. For
example, if one party, Alice, discovers a more efficient algorithm for factoring integers, she may wish
to sell another party, Bob, a program for apparently weaker tasks (such as breaking the RSA cryp-
tosystem) that use the factoring algorithm as a subroutine without actually giving Bob a factoring
algorithm. Alice could hope to achieve this by obfuscating the program she gives to Bob.

Intuitively, obfuscators would also be useful in watermarking software (cf., [CT, NSS]). A
software vendor could modify a program’s behavior in a way that uniquely identifies the person to
whom it is sold, and then obfuscate the program to guarantee that this “watermark” is difficult to
remove.

2

#include<stdio.h> #include<string.h>

main(){char*O,l[999]="’‘acgo\177~|xp .

-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";

while(O=fgets(l+45,954,stdin)){*l=O[

strlen(O)[O-1]=0,strspn(O,l+11)];

while(*O)switch((*l&&isalnum(*O))-!*l)

{case-1:{char*I=(O+=strspn(O,l+12)

+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+

*I---’-’)<80);putchar(O&93?*I

&8||!(I=memchr(l , O , 44)) ?’?’:

I-l+47:32); break; case 1: ;}*l=

(*O&31)[l-15+(*O>61)*32];while(putchar

(45+*l%2),(*l=*l+32>>1)>35); case 0:

putchar((++O ,32));}putchar(10);}}

Figure 1: The winning entry of the 1998 International Obfuscated C Code Contest, an ASCII/Morse
code translator by Frans van Dorsselaer [vD] (adapted for this paper).

Removing Random Oracles. The Random Oracle Model [BR] is an idealized cryptographic
setting in which all parties have access to a truly random function. It is (heuristically) hoped that
protocols designed in this model will remain secure when implemented using an efficient, publicly
computable cryptographic hash function in place of the random function. While it is known that
this is not true in general [CGH], it is unknown whether there exist efficiently computable functions
with strong enough properties to be securely used in place of the random function in various specific
protocols1. One might hope to obtain such functions by obfuscating a family of pseudorandom
functions [GGM], whose input-output behavior is by definition indistinguishable from that of a
truly random function.

Transforming Private-Key Encryption into Public-Key Encryption. Obfuscation can
also be used to create new public-key encryption schemes by obfuscating a private-key encryption
scheme. Given a secret key K of a private-key encryption scheme, one can publish an obfuscation
of the encryption algorithm EncK . This allows everyone to encrypt, yet only one possessing the
secret key K should be able to decrypt.

Interestingly, in the original paper of Diffie and Hellman [DH], the above was the reason given to
believe that public-key cryptosystems might exist even though there were no candidates known yet.

1We note that the results of [CGH] can also be seen as ruling out a very strong “virtual black box” definition
of obfuscators. This is because their result implies that no obfuscator applied to any pseudorandom function family
could work for all protocols, while a very strong virtual black box definition would guarantee this. We note, however,
that our main results rule out a seemingly much weaker definition of obfuscation. Also, we note that ruling out
strong virtual black box definitions is almost immediate: For example, one thing that can be efficiently computed
from O(P) is the program O(P) itself. However, for any program P corresponding to a function that is hard to learn
from queries, it would be infeasible to produce any program equivalent to P in functionality given only oracle access
to P .

3

That is, they suggested that it might be possible to obfuscate a private-key encryption scheme.2

Homomorphic Encryption. A long-standing open problem in cryptography is whether homo-
morphic encryption schemes exist (cf., [RAD, FM, DDN, BL, SYY]). That is, we seek a secure
public-key cryptosystem for which, given encryptions of two bits (and the public key), one can
compute an encryption of any binary Boolean operation of those bits. Obfuscators would allow
one to convert any public-key cryptosystem into a homomorphic one, by using ideas as in the
previous paragraph. Specifically, use the secret key to construct an algorithm that performs the
required computations (by decrypting, applying the Boolean operation, and encrypting the result),
and publish an obfuscation of this algorithm along with the public key.

1.2 Our Main Results

The Basic Impossibility Result. Most of the above applications rely on the intuition that an
obfuscated program is a “virtual black box.” That is, anything one can efficiently compute from
the obfuscated program, one should be able to efficiently compute given just oracle access to the
program. Our main result shows that it is impossible to achieve this notion of obfuscation. We
prove this by constructing (from any one-way function) a family P of efficient programs (in the
form of Boolean circuits) that is unobfuscatable in the sense that

• Given any efficient program P ′ that computes the same function as a program P ∈ P, the
“source code” P can be reconstructed very efficiently (in time roughly quadratic in the running
time of P ′).

• Yet, given oracle access to a (randomly selected) program P ∈ P, no efficient algorithm
can reconstruct P (or even distinguish a certain bit in the code from random) except with
negligible probability.

Thus, there is no way of obfuscating the programs that compute these functions, even if (a) the
obfuscator itself has unbounded computation time, and (b) the obfuscation is meant to hide only
one bit of information about the function. We also note that the family P is a family of circuits,
which means they take inputs of a specific bounded size and produce outputs of a specific bounded
size, which could be known to a potential obfuscator, making the job of obfuscation seemingly
easier.

We believe that the existence of such functions shows that the “virtual black box” paradigm for
general-purpose obfuscators is inherently flawed. Any hope for positive results about obfuscator-
like objects must abandon this viewpoint, or at least be reconciled with the existence of functions
as above.

2From [DH]: “A more practical approach to finding a pair of easily computed inverse algorithms E and D; such
that D is hard to infer from E, makes use of the difficulty of analyzing programs in low level languages. Anyone who
has tried to determine what operation is accomplished by someone else’s machine language program knows that E

itself (i.e., what E does) can be hard to infer from an algorithm for E. If the program were to be made purposefully
confusing through the addition of unneeded variables and statements, then determining an inverse algorithm could be
made very difficult. Of course, E must be complicated enough to prevent its identification from input-output pairs.

Essentially what is required is a one-way compiler: one that takes an easily understood program written in a
high level language and translates it into an incomprehensible program in some machine language. The compiler is
one-way because it must be feasible to do the compilation, but infeasible to reverse the process. Since efficiency in
size of program and run time are not crucial in this application, such compilers may be possible if the structure of
the machine language can be optimized to assist in the confusion.”

4

Approximate Obfuscators. The basic impossibility result as described above applies to ob-
fuscators O for which we require that the obfuscated program O(P) computes exactly the same
function as the original program P . However, for some applications it may suffice that, for every
input x, the programs O(P) and P agree on x with high probability (over the coin tosses of O).
Using some additional ideas, our impossibility result extends to such approximate obfuscators.

Impossibility of Applications. To give further evidence that our impossibility result is not
an artifact of definitional choices, but rather is inherent in the “virtual black box” idea, we also
demonstrate that several of the applications of obfuscators are impossible. We do this by construct-
ing unobfuscatable signature schemes, encryption schemes, and pseudorandom functions. These are
objects satisfying the standard definitions of security, but for which one can efficiently compute the
secret key K from any program that signs (or encrypts or evaluates the pseudorandom function,
resp.) relative to K. Hence handing out “obfuscated forms” of these keyed-algorithms is highly
insecure.

In particular, we complement Canetti et. al.’s critique of the Random Oracle Methodology [CGH].
They show that there exist (contrived) protocols that are secure in the idealized Random Oracle
Model (of [BR]), but are insecure when the random oracle is replaced with any (efficiently com-
putable) function. Our results imply that for even for natural protocols that are secure in the
random oracle model, (e.g., Fiat-Shamir type schemes [FS]), there exist (contrived) pseudoran-
dom functions, such that these protocols are insecure when the random oracle is replaced with
any program that computes the (contrived) pseudorandom function. We mention that, subsequent
to our work, Barak [Bar1] constructed arguably natural protocols that are secure in the random
oracle model (e.g. those obtained by applying the Fiat–Shamir heuristic [FS] to his public-coin
zero-knowledge arguments) but are insecure when the random oracle is replaced by any efficiently
computable function.

Obfuscating restricted complexity classes. Even though obfuscation of general programs/circuits
is impossible, one may hope that it is possible to obfuscate more restricted classes of computations.
However, using the pseudorandom functions of [NR] in our construction, we can show that the
impossibility result holds even when the input program P is a constant-depth threshold circuit
(i.e., is in TC0), under widely believed complexity assumptions (e.g., the hardness of factoring).

Obfuscating Sampling Algorithms. Another way in which the notion of obfuscators can be
weakened is by changing the functionality requirement. Up to now, we have considered programs
in terms of the functions they compute, but sometimes one is interested in other kinds of behavior.
For example, one sometimes considers sampling algorithms — probabilistic programs that, when
fed a uniformly random string (of some length) as input, produce an output according to some
desired distribution. We consider two natural definitions of obfuscators for sampling algorithms,
and prove that the stronger definition is impossible to meet. We also observe that the weaker
definition implies the nontriviality of statistical zero knowledge.

Software Watermarking. As mentioned earlier, there appears to be some connection between
the problems of software watermarking and code obfuscation. We consider a couple of formalizations
of the watermarking problem and explore their relationship to our results on obfuscation.

5

1.3 Discussion

Our work rules out the standard, “virtual black box” notion of obfuscators as impossible, along
with several of its applications. However, it does not mean that there is no method of making
programs “unintelligible” in some meaningful and precise sense. Such a method could still prove
useful for software protection.

Thus, we consider it to be both important and interesting to understand whether there are
alternative senses (or models) in which some form of obfuscation is possible. Toward this end, we
suggest two weaker definitions of obfuscators that avoid the “virtual black box” paradigm (and
hence are not ruled out by our impossibility results). These definitions could be the subject of
future investigations, but we hope that other alternatives will also be proposed and examined.

As is usually the case with impossibility results and lower bounds, we show that obfuscators
(in the “virtual black box” sense) do not exist by presenting a somewhat contrived counterexample
of a function ensemble that cannot be obfuscated. It is interesting whether obfuscation is possible
for a restricted class of algorithms, which nonetheless contains some “useful” algorithms. This
restriction should not be confined to the computational complexity of the algorithms: If we try to
restrict the algorithms by their computational complexity, then there’s not much hope for obfusca-
tion. Indeed, as mentioned above, we show that (under widely believed complexity assumptions)
our counterexample can be placed in TC0. In general, the complexity of our counterexample is
essentially the same as the complexity of pseudorandom functions, and so a complexity class that
does not contain our example will also not contain many cryptographically useful algorithms.

For further (nontechnical) discussion and interpretation of our results, the interested reader is
referred to [Bar2].

1.4 Related Work

A fair number of heuristic approaches to obfuscation and software watermarking have been proposed
in the past, as described in the survey of Collberg and Thomborson [CT]. A theoretical study of
software protection, based on some tamper-proof hardware, was previously conducted by Goldreich
and Ostrovsky [GO].

Hada [Had] gave some definitions for code obfuscators that are stronger than the definitions we
consider in this paper, and showed some implications of the existence of such obfuscators. (Our
result rules out also the existence of obfuscators according to the definitions of [Had].)

Canetti, Goldreich and Halevi [CGH] showed another setting in cryptography where getting a
function’s description is provably more powerful than black-box access. As mentioned above, they
showed that there exist protocols that are secure when executed with black-box access to a random
function, but insecure when instead the parties are given a description of any explicit function.

Related work that was done subsequent to the original publication [BGI+] of our results is
reviewed in Section 9.

1.5 Organization of the Paper

In Section 2, we give some basic definitions along with (very weak) definitions of obfuscators (within
the virtual black box paradigm). In Section 3, we prove the impossibility of obfuscators by con-
structing an unobfuscatable family of programs. In Section 4, we give a number of extensions of
our impossibility result, including impossibility results for obfuscators that only need to approxi-
mately preserve functionality, for obfuscators computable in low circuit classes, and for some of the

6

applications of obfuscators. (We also show that our main impossibility result does not relativize.)
This completes the main part of our paper.

Various ramifications are pursued in the rest of the paper. In Section 5, we discuss some con-
jectural complexity-theoretic analogues of Rice’s Theorem, and use our techniques to show that
one of these is false. In Section 6, we examine notions of obfuscators for sampling algorithms. In
Section 7, we propose weaker notions of obfuscation that are not ruled out by our impossibility
results. In Section 8, we discuss the problem of software watermarking and its relation to obfus-
cation. Finally, in Section 9, we mention some directions for further work in this area, as well as
progress subsequent to the original versions of our paper [BGI+].

2 Definitions

2.1 Preliminaries

In addition to the notation mentioned below, we refer to numerous standard concepts from cryp-
tography and complexity theory. These can be found in [Gol1, Gol2] and [Sip], respectively.

Standard computational notation. We use the shorthand TM for Turing machine, and the
shorthand PPT for probabilistic polynomial-time Turing machine. By circuit we refer to a standard
Boolean circuit with AND,OR and NOT gates. If C is a circuit with n inputs and m outputs, and
x ∈ {0, 1}n, then by C(x) we denote the result of applying C on input x. We say that C computes
a function f : {0, 1}n → {0, 1}m if for any x ∈ {0, 1}n, it holds that C(x) = f(x). If A is a
probabilistic Turing machine, then by A(x; r) we refer to the result of running A on input x and
random tape r, and by A(x) we refer to the distribution induced by choosing r uniformly and
running A(x; r). By a randomized circuit, we mean a circuit that may additionally make use of
special gates called randomness gates. Each randomness gate in a randomized circuit takes no
input, and outputs a uniformly and independently chosen bit. If C is a randomized circuit, then
C(x) will refer to the distribution obtained by evaluating the randomized circuit C on input x. We
will sometimes abuse notation and also use C(x) to refer to a value y sampled from the distribution
C(x). We will identify Turing machines and circuits with their canonical representations as strings
in {0, 1}∗.

For a circuit C, we denote by [C] the function computed by C. Similarly if M is a TM, then
we denote by [M] the (possibly partial) function computed by M .

Non-standard notation regarding computation with oracles. We need to deviate from the
standard conventions regarding using subroutines (or oracles), because a user having access to a
code can run the code on a selected input for a number of steps of her choice.3 Thus, black-box
access to a program should mean access to the function that returns the result of running the
program on a given input for a given number of steps. Thus, for a TM M , we denote by 〈M〉 the
function defined as

〈M〉(1t, x)
def
=

{
y if M(x) halts with output y after at most t steps
⊥ otherwise.

3The point is that the actual running-time of a TM on a particular input may be smaller than the TM’s a

priori known time-bound. In this case, it is conceivable that a user having access to the code can learn the actual
running-time of the TM on inputs of its choice, and we need to reflect this ability in the oracle-aided computation.

7

This convention is unnecessary when dealing with circuits, since the “running time” of a circuit on
each adequate input equals the predetermined size of the circuit. For simplicity, in both cases, we
denote by AP (x) the output of algorithm A when executed on input x and oracle access to P . If P
is a TM, then AP (x) is actually a shorthand for the standard notation A〈P 〉(x), which represents
the output of algorithm A when executed on input x and oracle access to the function 〈P 〉. If P is
a circuit, then AP (x) is a shorthand for the standard notation A[P](x), which represents the output
of algorithm A when executed on input x and oracle access to the function [P] (i.e., the function
computed by P).

Probabilistic notation. If D is a distribution, then by x
R← D we mean that x is a random

variable distributed according to D. If S is a set, then by x
R← S we mean that x is a random

variable that is distributed uniformly over the elements of S. The support of distribution D, i.e.,
the set of points that have nonzero probability under D, is denoted Supp(D). (Thus, x

R←D and

x
R← Supp(D) are the same only if D is distributed uniformly over its support.)
A function µ : N→ N is called negligible if it grows slower than the inverse of any polynomial.

That is, for any positive polynomial p(·) there exists N ∈ N such that µ(n) < 1/p(n) for any n > N .
We will sometimes use neg(·) to denote an unspecified negligible function.

2.2 Obfuscators

In this section, we aim to formalize the notion of obfuscators based on the “virtual black box”
property as described in the introduction. Recall that this property requires that “anything that
an adversary can compute from an obfuscation O(P) of a program P , it could also compute given
just oracle access to P .” We shall define what it means for the adversary to successfully compute
something in this setting, and there are several choices for this (in decreasing order of generality):

• (computational indistinguishability) The most general choice is not to restrict the nature of
what the adversary is trying to compute, and merely require that it is possible, given just
oracle access to P , to produce an output distribution that is computationally indistinguishable
from what the adversary computes when given O(P).

• (satisfying a relation) A weaker alternative is to consider the adversary as trying to produce
an output that satisfies a predetermined (possibly polynomial-time) relation with the original
program P , and require that it is possible, given just oracle access to P , to succeed with
roughly the same probability as the adversary does when given O(P).

• (computing a function) An even weaker requirement is to restrict the previous requirement to
relations that are functions; that is, the adversary is trying to compute some predetermined
function of the original program.

• (computing a predicate) The weakest alternative is obtained by restricting the previous re-
quirement to {0, 1}-valued functions; that is, the adversary is trying to decide some prede-
termined property of the original program.

An equivalent4 formulation is obtained by following the first alternative, with the crucial
difference of allowing only one-bit outputs. That is, we require that it is possible, given just

4See Footnote 6.

8

oracle access to P , to produce an output distribution that is statistically close to the single-bit
distribution that the adversary produces when given O(P).

The first two requirements are easily seen to be impossible to meet, in general. Consider a relation
(or a distinguisher) R such that R(P,P ′) accepts if programs P ′ and P agree on many randomly
chosen inputs (say from {0, 1}k , where k is the security parameter). An adversary given an obfus-
cation O(P) can easily satisfy this relation by outputting P ′ = O(P). But it is infeasible to satisfy
the relation given oracle access to P , if P is a program that is hard to learn from queries (even
approximately, with respect to the uniform distribution on {0, 1}k); for example, if P comes from
a family of pseudorandom functions.

Since we will be proving impossibility results, our results are strongest when we adopt the
weakest requirement (i.e., the last one). This yields two definitions for obfuscators, one for programs
defined by Turing machines and one for programs defined by circuits.

Definition 2.1 (TM obfuscator) A probabilistic algorithm O is a TM obfuscator for the collec-
tion F of Turing machines if the following three conditions hold:

• (functionality) For every TM M ∈ F, the string O(M) describes a TM that computes the
same function as M .

• (polynomial slowdown) The description length and running time of O(M) are at most polyno-
mially larger than that of M . That is, there is a polynomial p such that for every TM M ∈ F,
|O(M)| ≤ p(|M |), and if M halts in t steps on some input x, then O(M) halts within p(t)
steps on x.

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible function α
such that for all TMs M ∈ F, it holds that

∣∣∣Pr [A(O(M)) = 1]− Pr
[
S〈M〉(1|M |) = 1

]∣∣∣ ≤ α(|M |).

We say that O is efficient if it runs in polynomial time. If we omit specifying the collection F, then
it is assumed to be the collection of all Turing machines.

We stress that Turing machines merely provide a formalization of “programs” (and that we could
have alternatively considered programs defined by some generalized C-like programming language).
In our context, the size of the program is the size of the Turing machine. Thus, unlike many other
contexts in cryptography or complexity theory, for us the sizes of the Turing machines to be
obfuscated are not meant to be thought of as “constants” (which would have made the notion of
obfuscation trivial).5

Definition 2.2 (circuit obfuscator) A probabilistic algorithm O is a (circuit) obfuscator for the
collection F of circuits if the following three conditions hold:

5This is similar to the way in which Turing machine sizes are treated when studying forms of the Bounded Halting
problem (e.g. given a Turing machine M and a time bound t, does M accept the empty string within t steps?),
which are often trivialized if the Turing machine is restricted to be of constant size. In general, one should not view
program sizes as constant when the programs themselves are inputs (as in obfuscation and in the Bounded Halting
problem).

9

• (functionality) For every circuit C ∈ F, the string O(C) describes a circuit that computes the
same function as C.

• (polynomial slowdown) There is a polynomial p such that for every circuit C ∈ F, we have
that |O(C)| ≤ p(|C|).

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible function α
such that for all circuits C ∈ F, it holds that

∣∣∣Pr [A(O(C)) = 1]− Pr
[
SC(1|C|) = 1

]∣∣∣ ≤ α(|C|).

We say that O is efficient if it runs in polynomial time. If we omit specifying the collection F, then
it is assumed to be the collection of all circuits.

We call the first two requirements (functionality and polynomial slowdown) the syntactic re-
quirements of obfuscation, as they do not address the issue of security at all.

There are a couple of other natural formulations of the “virtual black box” property. The first,
which was mentioned in the foregoing informal discussion, requires that, for every predicate π, the
probability that A(O(C)) = π(C) is at most the probability that SC(1|C|) = π(C) plus a negligible
term. Clearly, the simulation of any single-bit output distribution implies the ability to match the
probability of guessing the value of any predicate, and the converse holds by considering a predicate
that is undetermined on every set of functionally equivalent programs.6

Another formulation refers to the distinguishability between obfuscations of two TMs/circuits:
Specifically, for every C1 and C2, it holds that |Pr [A(O(C1)) = 1]−Pr [A(O(C2)) = 1] | is approx-
imately equal to |Pr

[
SC1(1|C1|, 1|C2|) = 1

]
− Pr

[
SC2(1|C1|, 1|C2) = 1

]
|. This definition appears to

be slightly weaker than the ones above, but our impossibility proof also rules it out.
Note that in both definitions, we have chosen to simplify the definition by using the size of

the TM/circuit to be obfuscated as a security parameter. One can always increase this length by
padding to obtain higher security.

The main difference between the circuit and TM obfuscators is that a circuit computes a function
with finite domain (all the inputs of a particular length) while a TM computes a function with
infinite domain. Note that if we had not restricted the size of the obfuscated circuit O(C), then the
(exponential size) list of all the values of the circuit would be a valid obfuscation (provided we allow
S running time poly(|O(C)|) rather than poly(|C|)). For Turing machines, it is not clear how to

6Needless to say, a rigorous proof requires a rigorous definition of the alternative condition, which we avoided in
the main text. Loosely speaking, such a formulation may require that for every predicate π and every PPT A, there
is a PPT S and a negligible function α such that for any distribution on programs C, it holds that

Pr [A(O(C)) = π(C)] ≤ Pr
h
S

C(1|C|) = π(C)
i

+ α(|C|).

Note that it suffices to consider all (“degenerate”) distributions C that have support size 1. Now, it is clear that the
simulation of the distribution A(O(C)) allows to match, for every predicate π, the probability that A(O(C)) = π(C).
On the other hand, consider a predicate π such that for every program C there exist functionally equivalent programs
C0, C1 such that |C0| = |C1| = |C| and π(Cσ) = σ. Then, the ability to simulate A(O(C)) follows from the
hypothesis that there exists an S such that for every C and every σ ∈ {0, 1} it holds that Pr [A(O(Cσ)) = π(Cσ)] is

upper-bounded by Pr
h
SCσ (1|Cσ |) = π(Cσ)

i
+ α(|Cσ|), since SC(1|C|) = SCσ (1|Cσ |) for both σ.

10

construct such an obfuscation, even if we are allowed an exponential slowdown. Hence obfuscating
TMs is intuitively harder. Indeed, it is quite easy to prove:7

Proposition 2.3 If a TM obfuscator exists, then a circuit obfuscator exists.

Thus, when we prove our impossibility result for circuit obfuscators, the impossibility of TM ob-
fuscators will follow. However, considering TM obfuscators will be useful as motivation for the
proof.

We note that, from the perspective of applications, Definitions 2.1 and 2.2 are already too weak
to have the wide applicability discussed in the introduction, cf. [HMS, HRSV]. The point is that
they are nevertheless impossible to satisfy (as we will prove).8

We also note that the definitions are restricted to obfuscating deterministic algorithms; this re-
striction only makes our negative results stronger (since any obfuscator for probabilistic algorithms
should also work for deterministic algorithms). Nevertheless, in Section 6 we discuss possible defi-
nitions of obfuscation for a special type of probabilistic algorithms (i.e., sampling algorithms, which
get no “real” input).

3 The Main Impossibility Result

To state our main result we introduce the notion of an unobfuscatable circuit ensemble.9

Definition 3.1 An unobfuscatable circuit ensemble is an ensemble {Hk}k∈N of distributions Hk

on circuits (from, say, {0, 1}lin(k) to {0, 1}lout(k)) satisfying:

• (efficient computability) Every circuit C ∈ Supp(Hk) is of size poly(k). Moreover, C
R←Hk

can be sampled uniformly in poly(k)-time.

• (unlearnability)10

There exists a polynomial-time computable function π :
⋃

k∈N
Supp(Hk) → {0, 1}∗ such that

π(C) is pseudorandom given black-box access to C
R←Hk. That is, for every PPT S

∣∣∣∣∣ Pr
C

R
←Hk

[SC(π(C)) = 1]− Pr
C

R
←Hk ,z

R
←{0,1}|π(C)|

[SC(z) = 1]

∣∣∣∣∣ ≤ neg(k)

• (reverse-engineerability)11 C is easy to reconstruct given any equivalent circuit: There exists
a polynomial-time algorithm A such that for every C ∈ ⋃

k Supp(Hk) and every circuit C ′

that computes the same function as C it holds that A(C ′) = C.

7Given a circuit (on n-bit inputs) to be obfuscated, construct a Turing machine that emulates it, apply the
TM-obfuscator to this TM, and output a circuit that emulates the latter (on inputs of length n).

8These definitions or even weaker ones, may still be useful when considering obfuscation as an end in itself, with
the goal of protecting software against reverse-engineering, cf. [GR].

9In the preliminary version of our paper [BGI+], this is referred to as a totally unobfuscatable function ensemble.
10The term “learnable” is used here in an intuitive sense that is somewhat different from its meaning in computa-

tional learning theory (see [KV]). On the one hand, we only require the learner to distinguish π(C) from random.
On the other hand, the definition allows π(C) to be a function of the source code C rather than its functionality.
However, in our construction π(C) will in fact depend only on the functionality of C, making the task more akin to
learning.

11We assume that any circuit has size that is greater than the number of its inputs. Thus, the length of the
description of C′ is at least lin(k), which in our construction will be polynomially related to the length of the
description of C (so A has at least enough time to write C).

11

The reverse-engineerability condition says that the source code C can be completely reverse-
engineered given any program computing the same function. On the other hand the unlearnability
condition implies that it is infeasible to reverse-engineer the source code given only black-box access
to C. We note that for the purpose of the main impossibility result, it would have sufficed for the
function π to have a single bit output. (We will make use of the longer pseudorandom output
of π in later results.) Putting the two items together, it follows that, when given only black-box
access to C, it is hard to find any circuit computing the same function as C. In the language of
learning theory (see [KV]), this says that an unobfuscatable circuit ensemble constitutes a concept
class that is hard to exactly learn with queries. On the other hand, any concept class that can be
exactly learned with queries is trivially obfuscatable (according even to the strongest definitions of
obfuscation), because we can use the output of the learning algorithm when given oracle access to
a function C in the class as an obfuscation of C.

We prove in Theorem 3.10 that, assuming one-way functions exist, there exists an unobfus-
catable circuit ensemble. This implies that, under the same assumption, there is no obfuscator
that satisfies Definition 2.2 (actually we prove the latter fact directly in Theorem 3.7). Since the
existence of an efficient obfuscator implies the existence of one-way functions (Lemma 3.8), we
conclude that efficient obfuscators do not exist (unconditionally).

However, the existence of unobfuscatable circuit ensemble has even stronger implications. As
mentioned in the introduction, these programs cannot be obfuscated even if we allow the following
relaxations to the obfuscator:

1. The obfuscator does not have to run in polynomial time — it can be any random process.

2. The obfuscator only has to work for programs in Supp(Hk) and only for a nonnegligible
fraction of these programs under the distributions Hk.

3. The obfuscator only has to hide an a priori fixed property (e.g. the first bit of π(C)) from
an a priori fixed adversary A.

Structure of the proof of the main impossibility result. We shall prove our result by
first defining obfuscators that are secure also when applied to several (e.g., two) algorithms, and
proving that such obfuscators do not exist. Next, we shall modify the construction in this proof to
prove that TM obfuscators in the sense of Definition 2.1 do not exist. Then, using an additional
construction (which requires one-way functions), we will prove that a circuit obfuscator as defined
in Definition 2.2 does not exist if one-way functions exist. We will then observe that our proof
actually yields an unobfuscatable circuit ensemble (Theorem 3.10).

3.1 Obfuscating two TMs/circuits

Obfuscators as defined in the previous section provide a “virtual black box” property when a
single program is obfuscated, but the definitions do not say anything about what happens when
the adversary can inspect more than one obfuscated program. In this section, we will consider
extensions of those definitions to obfuscating two programs, and prove that they are impossible to
meet. The proofs will provide useful motivation for the impossibility of the original one-program
definitions.

Definition 3.2 (2-TM obfuscator) A 2-TM obfuscator is defined in the same way as a TM
obfuscator, except that the “virtual black box” property is strengthened as follows:

12

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible function α
such that for all TMs M and N , it holds that

∣∣∣Pr [A(O(M),O(N)) = 1]− Pr
[
S〈M〉,〈N〉(1|M |+|N |) = 1

]∣∣∣ ≤ α(min{|M |, |N |})

Definition 3.3 (2-circuit obfuscator) A 2-circuit obfuscator is defined in the same way as a
circuit obfuscator, except that the “virtual black box” property is replaced with the following:

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible function α
such that for all circuits C and D, it holds that

∣∣∣Pr [A(O(C),O(D)) = 1]− Pr
[
SC,D(1|C|+|D|) = 1

]∣∣∣ ≤ α(min{|C|, |D|})

Proposition 3.4 Neither 2-TM nor 2-circuit obfuscators exist.

Proof: We begin by showing that 2-TM obfuscators do not exist. Suppose, for sake of con-
tradiction, that there exists a 2-TM obfuscator O. The essence of this proof, and in fact of all
the impossibility proofs in this paper, is that there is a fundamental difference between getting
black-box access to a function and getting a program that computes it, no matter how obfuscated:
A program is a succinct description of the function, on which one can perform computations (or
run other programs). Of course, if the function is (exactly) learnable via oracle queries (i.e., one
can acquire a program that computes the function by querying it at a few locations), then this
difference disappears. Hence, to get our counterexample, we will use a function that cannot be
exactly learned with oracle queries. A very simple example of such an unlearnable function follows.
For strings α, β ∈ {0, 1}k, define the Turing machine

Cα,β(x)
def
=

{
β if x = α
0k otherwise.

We assume that on input x, machine Cα,β runs in 10 · |x| steps (the constant 10 is arbitrary). Now
we will define a TM Dα,β that, given the code of a TM C, can distinguish between the case that
C computes the same function as Cα,β from the case that C computes the same function as Cα′,β′

for any (α′, β′) 6= (α, β).

Dα,β(C)
def
=

{
1 f C(α) = β
0 otherwise.

Actually, this function is uncomputable. However, as we shall see below, we can use a modified
version of Dα,β that only considers the execution of C(α) for poly(k) steps, and outputs 0 if C does
not halt within that many steps, for some fixed polynomial poly(·). We will ignore this issue for
now, and elaborate on it later.

Note that Cα,β and Dα,β have description size Θ(k). Consider an adversary A, that, given two
(obfuscated) TMs as input, simply runs the second TM on the first one. That is, A(C,D) = D(C).
(Actually, like we modified Dα,β above, we also will modify A to only run D on C for poly(|C|, |D|)
steps, and output 0 if D does not halt in that time.) Thus, for every α, β ∈ {0, 1}k , it holds that

Pr [A(O(Cα,β),O(Dα,β))=1] = 1. (1)

Observe that any poly(k)-time algorithm S that has oracle access to Cα,β and Dα,β has only
exponentially small probability (for a random α and β) of querying either oracle at a point where

13

its value is nonzero. Hence, if we let Zk be a Turing machine that always outputs 0k, then for every
PPT S, it holds that

∣∣∣Pr
[
SCα,β ,Dα,β(1k) = 1

]
− Pr

[
SZk,Dα,β(1k) = 1

]∣∣∣ ≤ 2−Ω(k), (2)

where the probabilities are taken over α and β selected uniformly in {0, 1}k and the coin tosses of
S. On the other hand, by the definition of A we have:

Pr [A(O(Zk),O(Dα,β)) = 1] = 2−k, (3)

since Dα,β(Zk) = 1 if and only if β = 0k. The combination of Equations (1), (2), and (3) contradict
the hypothesis that O is a 2-TM obfuscator.

In the foregoing proof, we ignored the fact that we had to truncate the running times of A and
Dα,β. When doing so, we must make sure that Equations (1) and (3) still hold. Equation (1) involves
executing (a) A(O(Dα,β),O(Cα,β)), which in turn amounts to executing (b) O(Dα,β)(O(Cα,β)). By
the functionality requirement of the obfuscator, (b) has the same functionality as Dα,β(O(Cα,β)),
which in turn involves executing (c) O(Cα,β)(α). Yet the functionality requirement assures us that
(c) has the same functionality as Cα,β(α). By the polynomial slowdown property of obfuscators,
execution (c) only takes poly(10 · k) = poly(k) steps, which means that Dα,β(O(Cα,β)) need only
run for poly(k) steps. Thus, again applying the polynomial slowdown property, execution (b) takes
poly(k) steps, which finally implies that A need only run for poly(k) steps. The same reasoning
holds for Equation (3), using Zk instead of Cα,β.12 Note that all the polynomials involved are fixed
once we fix the polynomial p(·) of the polynomial slowdown property.

The proof for the 2-circuit case is very similar to the 2-TM case, with a related, but slightly
different subtlety. Suppose, for sake of contradiction, that O is a 2-circuit obfuscator. For k ∈ N

and α, β ∈ {0, 1}k , define Zk, Cα,β and Dα,β in the same way as above but as circuits rather
than TMs, and define (as before) an adversary A by A(C,D) = D(C). (Note that the issues of A
and Dα,β ’s running times disappears in this setting, since circuits can always be evaluated in time
polynomial in their size.) The new subtlety here is that the definition of A as A(C,D) = D(C)
only makes sense when the input length of D is at least as large as the size of C (note that one can
always pad the description of C to a longer length). Thus, for the analogues of Equations (1) and
(3) to hold, the input length of Dα,β must be at least as large as the sizes of the obfuscations of
Cα,β and Zk. However, by the polynomial slowdown property of obfuscators, it suffices to let Dα,β

have input length poly(k) and the proof works as before.

3.2 Obfuscating one TM/circuit

Our approach to extending the two-program obfuscation impossibility results to the one-program
definitions is to combine the two programs constructed above into one. This will work in a quite
straightforward manner for TM obfuscators, but will require new ideas for circuit obfuscators.

12Another, even more minor subtlety that we ignored is that, strictly speaking, A only has running time polynomial
in the description of the obfuscations of Cα,β, Dα,β, and Zk, which could conceivably be shorter than the original
TM descriptions. But a counting argument shows that for all but an exponentially small fraction of pairs (α, β) ∈
{0, 1}k × {0, 1}k, O(Cα,β) and O(Dα,β) must have description size Ω(k).

14

Combining functions and programs. For functions, TMs, or circuits f0, f1 : X → Y , define

their combination f0#f1 : {0, 1} ×X → Y by (f0#f1)(b, x)
def
= fb(x). Conversely, if we are given

a TM (resp., circuit) C : {0, 1} ×X → Y , we can efficiently decompose C into C0#C1 by setting

Cb(x)
def
= C(b, x); note that C0 and C1 have size and running time essentially the same as that of

C. Observe that having oracle access to a combined function f0#f1 is equivalent to having oracle
access to f0 and f1 individually.

Theorem 3.5 TM obfuscators do not exist.

Proof Sketch: Suppose, for sake of contradiction, that there exists a TM obfuscator O. For
α, β ∈ {0, 1}k , let Cα,β, Dα,β , and Zk be the TMs defined in the proof of Proposition 3.4. Combining
these, we get the TMs Fα,β = Cα,β#Dα,β and Gα,β = Zk#Dα,β.

We consider an adversary A analogous to the one in the proof of Proposition 3.4, augmented
to first decompose the program it is fed. That is, on input a TM F , algorithm A first decomposes
F into F0#F1 and then outputs F1(F0). (As in the proof of Proposition 3.4, A actually should be
modified to run in poly(|F |)-time.) Let S be the PPT simulator for A guaranteed by Definition 2.1.
Just as in the proof of Proposition 3.4, we have:

Pr [A(O(Fα,β)) = 1]− Pr [A(O(Gα,β)) = 1] = 1− 2−k

∣∣∣Pr
[
SFα,β(1k) = 1

]
− Pr

[
SGα,β (1k) = 1

]∣∣∣ ≤ 2−Ω(k),

where the probabilities are taken over uniformly selected α, β ∈ {0, 1}k , and the coin tosses of A,
S, and O. This contradicts Definition 2.1. 2

The difficulty in the circuit setting. There is a difficulty in trying to carry out the above
argument in the circuit setting. (This difficulty is related to (but more serious than) the same
subtlety regarding the circuit setting discussed at the end of the proof of Proposition 3.4.) In
the proof of Theorem 3.5, the adversary A, on input O(Fα,β), attempts to evaluate F1(F0), where
F0#F1 = O(Fα,β) = O(Cα,β#Dα,β). In order for this to make sense in the circuit setting, the size
of the circuit F0 must be at most the input length of F1 (which is the same as the input length of
Dα,β). But, since the output F0#F1 of the obfuscator can be polynomially larger than its input
Cα,β#Dα,β, we have no such guarantee. Furthermore, note that if we compute F0 and F1 in the

way we described above (i.e., Fb(x)
def
= O(Fα,β)(b, x)), then we shall have |F0| = |F1|, and so F0 will

necessarily be larger than F1’s input length.
To get around this, we modify Dα,β in a way that will allow A, when given Dα,β and a circuit

C, to test whether C(α) = β even when C is larger than the input length of Dα,β. Of course, oracle
access to the modified Dα,β should not reveal α and β, because we do not want the simulator S to
be able to test whether C(α) = β when given just oracle access to C and Dα,β. We will construct
such functions Dα,β based on pseudorandom functions [GGM]. The construction, captured in the
following lemma, is the technical core of our main results.

Lemma 3.6 If one-way functions exist, then for every k ∈ N and α, β ∈ {0, 1}k, there exists a
distribution Dα,β on circuits such that the following conditions hold.

1. Every D ∈ Supp(Dα,β) is a circuit of size poly(k). Furthermore, there exists a probabilis-
tic polynomial-time algorithm that, for every k ∈ N, on input α, β ∈ {0, 1}k, samples the
distribution Dα,β.

15

2. There is a polynomial-time algorithm A such that for every k ∈ N, α, β ∈ {0, 1}k and D ∈
Supp(Dα,β), and for every circuit C, if C(α) = β, then AD(C, 1k) = α.

3. For any PPT S, it holds that Pr
[
SD(1k) = α

]
= neg(k), where the probability is taken over

α, β
R←{0, 1}k, D

R←Dα,β, and the coin tosses of S.

The crucial aspect about this lemma is that Item 2 refers also to circuits C that are larger than the
length of the input to D. Note that Item 2 is seemingly stronger than required for our applications.
For starters, the algorithms considered in our applications will get the code of D, whereas the
algorithm A asserted in Item 2 only uses D as a black-box (i.e., A is given oracle access to D).
Second, the algorithm A in Item 2 is able to obtain α whenever C(α) = β, whereas for proving
the impossibility of circuit obfuscators (as per Definition 2.2) it suffices to be able to distinguish
Cα,β from Zk (which is easy to do, provided that β 6= 0k, by invoking C on A’s output).13 We
note that the stronger version of Item 2 will be used to construct unobfuscatable circuits (as per
Definition 3.1).

Proof: Basically, the construction implements a private-key “homomorphic encryption” scheme.
More precisely, the functions in Dα,β will consist of three parts. The first part gives out an encryp-
tion of the bits of α (under some private-key encryption scheme). The second part provides the
ability to perform binary Boolean operations on encrypted bits, and the third part tests whether a
sequence of encryptions consists of encryptions of the bits of β (and gives out α if this is the case).
These operations will enable efficiently testing whether a given circuit C satisfies C(α) = β, while
keeping α and β hidden from parties that are only provided with oracle access to C and Dα,β.

We shall use an arbitrary (probabilistic) private-key encryption scheme (Enc,Dec) that encrypts
a single bit in a way that is secure under chosen plaintext and nonadaptive chosen ciphertext attacks.
Informally, this means that an encryption of 0 should be indistinguishable from an encryption of
1 even for adversaries that have access to encryption and decryption oracles prior to receiving the
challenge ciphertext, and access to just an encryption oracle after receiving the challenge ciphertext.
We call such schemes CCA1-secure, and refer the reader to formal definition provided in [KY, Gol2].
We note that CCA1-secure private-key encryptions schemes exist if (and only if) one-way functions
exist; indeed, the “standard” (PRF-based) encryption scheme EncK(b) = (r, fK(r) ⊕ b), where

r
R←{0, 1}|K| and fK : {0, 1}|K| → {0, 1} is a pseudorandom function, is CCA1-secure.
Now we consider a “homomorphic encryption” oracle HomK , which depends on a private-key

K, and note that such an oracle can be implemented by a polynomial-size circuit (which depends
on K). When queried on two ciphertexts c and d (w.r.t this key K) and a binary Boolean operation
⊙ (specified by its 2× 2 truth table), the oracle returns an encryption of DecK(c)⊙DecK(d) under
the key K. That is, we define

HomK(c, d,⊙)
def
= EncK(DecK(c)⊙DecK(d)). (4)

It can be shown that any CCA1-secure encryption scheme is secure in a setting in which the
adversary is given access to the corresponding Hom oracle.14 This is formalized in the following
claim:

13Indeed, if C(α) = β (e.g., if C = Cα,β), then C(AD(C, 1k)) = C(α) = β, whereas Zk(AD(Zk, 1k)) = 0k.
14Note that the Hom oracle can be used to implement an encryption oracle (by feeding it with a constant operation),

but for sake of clarity we use a redundant phrasing in the following claim.

16

Claim 3.6.1 Let (Enc,Dec) be a CCA1-secure private-key encryption scheme and let HomK be as
in Equation (4). Then, for every PPT A, it holds that

∣∣Pr
[
AHomK ,EncK (EncK(0)) = 1

]
− Pr

[
AHomK ,EncK (EncK(1)) = 1

]∣∣ ≤ neg(k),

where K
R←{0, 1}k.

Proof of claim: Suppose there were a PPT A violating the claim. First, we argue
that we can replace the responses to all of A’s HomK-oracle queries with encryptions
of 0 with only a negligible effect on A’s distinguishing gap. This follows by a hybrid
argument, which relies on the CCA1-security of (Enc,Dec). For each σ ∈ {0, 1}, consider
a computation of A on input EncK(σ), when given oracle access to both HomK and
EncK . Consider hybrids such that, in the ith hybrid, the first i oracle queries are
answered according to HomK , and the rest are answered with encryptions of 0. Then,
any gap between the output distributions in the ith and i + 1st hybrids must be due
to the way the i + 1st query is answered, where in the ith hybrid the answer is always
an encryption of 0 and in the i + 1st hybrid (by the existence of a gap) the answer
is an encryption of 1. Thus, we derive a contradiction to CCA1-security as follows.
Prior to even receiving the challenge ciphertext, we invoke A on input EncK(σ), and
answer the first i queries to HomK by emulating its operation via DecK and EncK

queries (which are made before we get the challenge ciphertext). Next, we obtain the
challenge ciphertext (which is either EncK(0) or EncK(1)) and use it as our answer to
the i+1st query of A (to HomK), and finally we answer all subsequent queries to HomK

by querying EncK for encryptions of 0. Thus, a gap between the ith and i + 1st hybrids
translates to a gap that violates the CCA1-security of Enc.

Once we have replaced the HomK-oracle responses with encryptions of 0, we have an
adversary that can distinguish an encryption of 0 from an encryption of 1 when given
access to just an encryption oracle. This contradicts indistinguishability under chosen
plaintext attack, which in particular contradicts the CCA1-security of Enc. 2

We now return to the construction of our circuit family Dα,β. For a key K, let EK,α be an
algorithm that, on input i outputs EncK(αi), where αi is the i’th bit of α. Let BK,α,β be an
algorithm that when fed a k-tuple of ciphertexts (c1, . . . , ck) outputs α if for every i it holds that
DecK(ci) = βi, where β1, . . . , βk are the bits of β. A random circuit from Dα,β will essentially be
the algorithm

DK,α,β
def
= EK,α#HomK#BK,α,β (5)

(for a uniformly selected key K). One minor complication is that DK,α,β is actually a probabilistic
algorithm, since EK,α and HomK employ probabilistic encryption, whereas the lemma requires
deterministic functions. This can be solved in a standard way, by using pseudorandom functions.
Let q = q(k) be the input length of DK,α,β and m = m(k) the maximum number of random bits
used by DK,α,β on any input. We can select a pseudorandom function fK ′ : {0, 1}q → {0, 1}m, and
let D′K,α,β,K ′ be the (deterministic) algorithm that on input x ∈ {0, 1}q evaluates DK,α,β(x) using
randomness fK ′(x).

Define the distribution Dα,β to be D′K,α,β,K ′, over uniformly selected keys K and K ′. We argue
that this distribution has the properties stated in the lemma. By construction, each D′K,α,β,K ′ is
computable by a circuit of size poly(k), and sampling Dα,β is easy, so Property 1 is satisfied.

17

For Property 2, consider an algorithm A that on input a circuit C and oracle access to D′K,α,β,K ′

(which provides access to (deterministic versions of) the three separate oracles EK,α, HomK , and
BK,α,β), proceeds as follows: First, with k oracle queries to the EK,α oracle, A obtains encryptions
of each of the bits of α. Next, A uses the HomK oracle to do a gate-by-gate emulation of the
computation of C(α), in which A obtains encryptions of the values at each gate of C. In particular,
A obtains encryptions of the values at each output gate of C (when C is evaluated on input α).
Finally, A feeds these output encryptions to BK,α,β, and outputs the response to this oracle query.
By construction, A outputs α if C(α) = β, since in this case A feeds BK,α,β with a sequence that
decrypts to β.

Last, we verify Property 3. Let S be any PPT algorithm. We must show that S has only
a negligible probability of outputting α when given oracle access to D′K,α,β,K ′ (over the choice of
K, α, β, K ′, and the coin tosses of S). By the pseudorandomness of fK ′, we can replace oracle
access to the function D′K,α,β,K ′ with oracle access to the probabilistic algorithm DK,α,β with only
a negligible effect on S’s success probability. Oracle access to DK,α,β is equivalent to oracle access
to EK,α, HomK , and BK,α,β. Since β is independent of α and K (whereas only BK,α,β depends on
β), the probability that S queries BK,α,β at a point where its value is nonzero (i.e., at a sequence
of encryptions of the bits of β) is exponentially small, so we can remove S’s queries to BK,α,β with
only a negligible effect on the success probability. Oracle access to EK,α is equivalent to giving
S polynomially many encryptions of each of the bits of α. Thus, we must argue that S cannot
compute α with nonnegligible probability from these encryptions and oracle access to HomK . This
follows from the fact that the encryption scheme remains secure in the presence of a HomK oracle
(Claim 3.6.1), by a hybrid argument: Specifically, using Claim 3.6.1, a hybrid argument shows that
access to the oracles EK,α and HomK can be replaced with access to the oracles EK,0k and HomK ,
while causing only a negligible difference in the success probability of S. (The hybrids range over
each bit of α and each of the polynomially many queries S can make to the EK,α oracle.) Once
this replacement is done, S has no information regarding α, which was chosen uniformly at random
from {0, 1}k . Thus, the probability that S outputs α is negligible.

On the impossibility of circuit obfuscators. Using Lemma 3.6, we obtain our main impos-
sibility result.

Theorem 3.7 If one-way functions exist, then circuit obfuscators do not exist.

Proof: Suppose, for sake of contradiction, that there exists a circuit obfuscator O. For k ∈ N

and α, β ∈ {0, 1}k , let Zk and Cα,β be the circuits defined in the proof of Proposition 3.4, and let
Dα,β be the distribution on circuits given by Lemma 3.6. For each k ∈ N, consider the following
two distributions on circuits of size poly(k):

Fk: Choose α and β uniformly in {0, 1}k , D
R←Dα,β. Output Cα,β#D.

Gk: Choose α and β uniformly in {0, 1}k , D
R←Dα,β . Output Zk#D.

Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.6, and consider a PPT A′

that, on input a circuit F , decomposes F = F0#F1 and outputs 1 if F0(A
F1(F0, 1

k)) 6= 0k, where
k is the input length of F0. Thus, when fed a circuit from O(Fk) (resp., O(Gk)), A′ is evaluating
C(AD(C, 1k)) where D computes the same function as some circuit from Dα,β and C computes the

18

same function as Cα,β (resp., Zk). Therefore, by Property 2 in Lemma 3.6, and accounting for the
probability that β = 0k, we have that:

Pr
[
A′(O(Fk)) = 1

]
= 1− 2−k, and

Pr
[
A′(O(Gk)) = 1

]
= 0.

We now argue that for any PPT algorithm S, it holds that
∣∣∣Pr

[
SFk(1k) = 1

]
− Pr

[
SGk(1k) = 1

]∣∣∣ = neg(k),

which will contradict the definition of circuit obfuscators. This claim holds since having oracle
access to a circuit from Fk (respectively, Gk) is equivalent to having oracle access to Cα,β (resp.,

Zk) and D
R←Dα,β, where α, β are selected uniformly in {0, 1}k . Now, Property 3 of Lemma 3.6

implies that the probability that S queries the first oracle at α is negligible, and hence S cannot
distinguish the case that this oracle is Cα,β from it being Zk.

Avoiding the assumption. When wishing to prove the impossibility of efficient circuit obfusca-
tors, we can avoid the assumption that one-way functions exist. This is the case, since the existence
of the former implies the existence of the latter.

Lemma 3.8 If efficient circuit obfuscators exist, then one-way functions exist.

Proof Sketch: Suppose that O is an efficient obfuscator as per Definition 2.2. For α ∈ {0, 1}k
and b ∈ {0, 1}, let Cα,b : {0, 1}k → {0, 1} be the circuit defined by

Cα,b(x)
def
=

{
b if x = α
0 otherwise.

Now define fk(α, b, r)
def
= O(Cα,b; r), i.e., the obfuscation of Cα,b using coin tosses r. We will show

that f =
⋃

k∈N
fk is a one-way function. Since O is efficient, it follows that fk can be evaluated in

poly(k)-time. Next note that the functionality property of O implies that the bit b is (information-
theoretically) determined by fk(α, b, r), which in turn implies that if b is a hardcore bit of fk,
then fk must be (strongly) hard to invert (since any fk-preimage of fk(α, b, r) must have the form
(·, b, ·)). To prove that b is a hardcore bit, we first observe that for any PPT S, it holds that

Pr
α,b

[
SCα,b(1k) = b

]
≤ 1

2
+ neg(k).

By the virtual black box property of O, it follows that for any PPT A, it holds that

Pr
α,b,r

[A(f(α, b, r)) = b] = Pr
α,b

[A(O(Cα,b)) = b] ≤ 1

2
+ neg(k).

The lemma follows. 2

Corollary 3.9 Efficient circuit obfuscators do not exist (unconditionally).

Proof: Assuming, towards the contradiction, that such obfuscators exist, we infer (by Lemma 3.8)
that one-way functions exist, reaching a contradiction to Theorem 3.7.

19

On the existence of unobfuscatable circuit ensembles. We now strengthen our result to
not only rule out circuit obfuscators, but actually yield unobfuscatable programs.

Theorem 3.10 (unobfuscatable programs) If one-way functions exist, then there exists an un-
obfuscatable circuit ensemble.

Proof: Again, for k ∈ N and α, β ∈ {0, 1}k , let Cα,β be the circuits defined in the proof of Propo-
sition 3.4, and let Dα,β be the distribution on circuits given by Lemma 3.6. Our unobfuscatable
circuit ensemble Hk is defined as follows.

Hk: Choose α, β, γ uniformly in {0, 1}k , and let D
R←Dα,β. Output Cα,β#D#Cα,(D,γ).

(Indeed, Cα,(D,γ) is the circuit that on input α outputs (D, γ), and on all other inputs outputs

0|(D,γ)|.)15

Efficiency is clearly satisfied. For unlearnability, we define π(Cα,β#D#Cα,(D,γ)) = γ. Let’s
verify that γ is pseudorandom when given oracle access to Cα,β#D#Cα,(D,γ). That is, for every
PPT S, we prove that

∣∣∣∣∣ Pr
C

R
←Hk

[SC(π(C)) = 1]− Pr
C

R
←Hk,z

R
←{0,1}k

[SC(z) = 1]

∣∣∣∣∣ ≤ neg(k).

Having oracle access to a circuit from Hk is equivalent to having oracle access to Cα,β , D, and

Cα,(D,γ), where D
R←Dα,β and α, β, and γ are selected uniformly in {0, 1}k. Property 3 of Lemma 3.6

implies that the probability that any PPT S queries either of the two Cα,·-oracles at α and thus
gets a nonzero response is negligible. Note that this holds even if the PPT S is given γ as input,
because the probabilities in Lemma 3.6 are taken over only α, β, and D

R←Dα,β, so we can view S
as choosing γ on its own. Thus,

Pr
f

R
←Hk

[Sf (π(f)) = 1] = Pr
α,β,γ

R
←{0,1}k ,D

R
←Dα,β

[SCα,β#D#Cα,(D,γ)(γ) = 1]

= Pr
α,β,γ,γ′ R

←{0,1}k ,D
R
←Dα,β

[SCα,β#D#Cα,(D,γ′)(γ) = 1]± neg(k)

= Pr
f

R
←Hk,z

R
←{0,1}k

[Sf (z) = 1]± neg(k).

Finally, let’s show that given any circuit C ′ computing the same function as Cα,β#D#Cα,(D,γ),
we can reconstruct the latter circuit. First, we can decompose C ′ = C1#D′#C2. Since D′ computes
the same function as D and C1(α) = β, we have AD′

(C1) = α, where A is the algorithm from
Property 2 of Lemma 3.6. Given α, we can obtain β = C1(α) and (D, γ) = C2(α), which allows us
to reconstruct Cα,β#D#Cα,(D,γ).

15Indeed, we could have used Cα,(β,D,γ)#D instead of the two C-oracles, but the chosen alternative is more
convenient in the rest of the proof.

20

4 Extensions

4.1 Approximate Obfuscators

One of the most reasonable ways to weaken the definition of obfuscators, is to relax the condition
that the obfuscated circuit must compute exactly the same function as the original circuit. Rather,
we can allow the obfuscated circuit to only approximate the original circuit.

We must be careful in defining “approximation”. We do not want to lose the notion of an
obfuscator as a general purpose scrambling algorithm and therefore we want a definition of approx-
imation that will be strong enough to guarantee that the obfuscated circuit can still be used in
the place of the original circuit in any application. Consider the case of a signature verification
algorithm VK . A polynomial-time algorithm cannot find an input on which VK does not output
0 (without knowing the signature key). However, we clearly do not want this to mean that the
constant zero function is an approximation of VK .

4.1.1 Definition and Impossibility Result

In order to avoid the above pitfalls we choose a definition of approximation that allows the obfus-
cated circuit to deviate on a particular input from the original circuit only with negligible probability
and allows this event to depend only on the coin tosses of the obfuscating algorithm (rather than
over the choice of a randomly chosen input).

Definition 4.1 For any function f : {0, 1}n → {0, 1}k, ǫ > 0, the random variable D is called an
ǫ-approximate implementation of f if the following holds:

1. D ranges over circuits from {0, 1}n to {0, 1}k

2. For any x ∈ {0, 1}n, it holds that PrD[D(x) = f(x)] ≥ 1− ǫ

We then define a strongly unobfuscatable circuit ensemble to be an unobfuscatable circuit
ensemble where the original circuit C can be reconstructed not only from any circuit that computes
the same function as C but also from any approximate implementation of C.

Definition 4.2 A strongly unobfuscatable circuit ensemble {Hk}k∈N is defined in the same way
as an unobfuscatable condition ensemble, except that the “reverse-engineerability” condition is
strengthened as follows:

• (strong reverse-engineerability) C is easy to reconstruct given an approximate implementation:
There exists a PPT A and a polynomial p(·) such that for every C ∈ ⋃

k∈N
Supp(Hk) and for

every random variable C ′ that is an ǫ-approximate implementation of the function computed
by C, we have

Pr[A(C ′) = C] ≥ 1− ǫ · p(k)

Our main theorem in this section is the following:

Theorem 4.3 If one-way functions exist, then there exists a strongly unobfuscatable circuit en-
semble.

21

Similarly to the way that Theorem 3.10 implies Theorem 3.7, Theorem 4.3 implies that, assum-
ing the existence of one-way functions, an even weaker definition of circuit obfuscators (one that
allows the obfuscated circuit to only approximate the original circuit) is impossible to meet. We
note that in some (but not all) applications of obfuscators, a weaker notion of approximation might
suffice. Specifically, in some cases it suffices for the obfuscator to only approximately preserve
functionality with respect to a particular distribution on inputs, such as the uniform distribution.
(This is implied by, but apparently weaker than, the requirement of Definition 4.1 — if C is an
ε-approximate implementation of f , then for any fixed distribution D on inputs, C and f agree on
a 1 − √ε fraction of D with probability at least 1 − √ε.) We do not know whether approximate
obfuscators with respect to this weaker notion exist, and leave it as an open problem.

The natural strategy towards proving Theorem 3.10 is to generalize the proof of Theorem 3.10.
We shall first see why the proof of Theorem 3.10 does not apply directly to the case of approximate
implementations. Then, we shall define a construct called invoker-randomizable pseudorandom
functions, which will help us modify the original proof to hold in this case.

4.1.2 Generalizing the Proof of Theorem 3.10 to the Approximate Case

The first question is whether the proof of Theorem 3.10 already shows that the ensemble {Hk}k∈N

defined there is actually a strongly unobfuscatable circuit ensemble. As we explain below, the
answer is no.

To see why, let us recall the definition of the ensemble {Hk}k∈N given in the proof of Theo-

rem 3.10. The distribution Hk was defined by choosing α, β, γ
R←{0, 1}k and a function D

R←Dα,β,
and outputting Cα,β#D#Cα,(D,γ). The proof gave an algorithm, denoted A′, that reconstructs
C ∈ H given any circuit that computes exactly the same function as C. Let us see why A′ might
fail when given only an approximate implementation of C. On input a circuit F , algorithm A′

works as follows: It decomposes F into three circuits F = F1#F2#F3. Then F2 and F3 are used
only in a black-box manner, but the queries A′ makes to F2 depend on the gate structure of the
circuit F1.

The problem is that a vicious approximate implementation for a function Cα,β#D#Cα,(D,γ) ∈
Supp(Hk) may work in the following way: Choose a random circuit F1 out of some set C of
exponentially many circuits that compute Cα,β, take F2 that computes D, and F3 that computes
Cα,(D,γ). Then see at which points A′ queries F2 when given F1#F2#F3 as input.16 Since these
places depend on F1, it is possible that for each F1 ∈ C, there exists a string x(F1) such that A′ will
query F2 at x(F1), but x(F1) 6= x(F ′1) for any F ′1 ∈ C \ {F1}. If the approximate implementation
changes the value of F2 at x(F1), then A′’s computation on F1#F2#F3 is corrupted.

One way to solve this problem would be to make the queries that A′ makes to F2 independent of
the structure of F1. (This already holds for F3, which is only queried at α in a correct computation.)
If A′ had this property, then given an ǫ-approximate implementation of Cα,β#D#Cα,(D,γ), each
query of A′ would have only an ǫ chance to get an incorrect answer and overall A′ would succeed
with probability 1−ǫ ·p(k) for some polynomial p(·). (Note that the probability that F1(α) changes
is at most ǫ.)

We will not be able to achieve this, but something slightly weaker that still suffices. Let’s look
more closely at the structure of Dα,β that is defined in the proof of Lemma 3.6. We defined there

16Recall that A′ is not an arbitrary algorithm (which we must treat as a black-box), but rather a very specific
algorithm (postulated in Theorem 3.10, and presented in its proof).

22

the algorithm

DK,α,β
def
= EK,α#HomK#BK,α,β

and turned it into a deterministic function by using a pseudorandom function f ′K and defining
D′K,α,β,K ′ to be the deterministic algorithm that on input x ∈ {0, 1}q evaluates DK,α,β(x) us-

ing randomness fK ′(x). We then defined Dα,β to be D′K,α,β,K ′ = E′K,α,K ′#Hom′K,K ′#BK,α,β for
uniformly selected private key K and seed K ′.

Now our algorithm A′ (that uses the algorithm A defined in Lemma 3.6) treats F2 as three
oracles, denoted E, H, and B, such that if F2 computes D = E′K,α,K ′#Hom′K,K ′#BK,α,β, then E

is the oracle to E′K,α,K ′, H is the oracle to Hom′K,K ′ and B is the oracle to BK,α,β. The queries
to E are at the places 1, . . . , k and so are independent of the structure of F1. The queries that A
makes to the H oracle, however, do depend on the structure of F1.

Recall that any query that A′ makes to the H oracle is of the form (c, d,⊙) where c and d
are ciphertexts of some bits, and ⊙ is a 4-bit description of a binary Boolean function. Just for
motivation, suppose that A′ has the following ability: Given an encryption c, algorithm A′ can
generate a random encryption of the same bit (i.e., distributed according to EncK(DecK(c), r) for
uniformly selected r). For instance, this would be true if the encryption scheme were rerandomizable
(or in other words, “random self-reducible”). Suppose now that, before querying the H oracle with
(c, d,⊙), A′ generates c′, d′ that are random encryptions of the same bits as c, d and query the oracle
with (c′, d′,⊙) instead. We claim that if F2 is an ǫ-approximate implementation of D, then for any
such query, there is at most a 64ǫ probability for the answer to be wrong even if (c, d,⊙) depends
on the circuit F . The reason is that the distribution of the modified query (c′, d′,⊙) depends only
on (DecK(c),DecK(d),⊙) ∈ {0, 1} × {0, 1} × {0, 1}2·2, and there are only 64 possibilities for the
latter. For each of the 64 possibilities, the probability of an incorrect answer (over the choice of F)
is at most ǫ. Choosing (DecK(c),DecK(d),⊙) after F to maximize the probability of an incorrect
answer multiplies this probability by at most 64.

We shall now use this motivation to fix the function D such that A′ will essentially have this
desired ability of rerandomizing any encryption to a random encryption of the same bit. Recall that
Hom′K,K ′(c, d,⊙) = EncK(DecK(c)⊙DecK(d); fK ′(c, d,⊙)). Now, a naive approach to ensure that
any query returns a random encryption of DecK(c) ⊙ DecK(d) would be to change the definition
of Hom′ to the following: Hom′K,K ′(c, d,⊙, r) = EncK(DecK(c) ⊙DecK(d); r). Then we change A′

to an algorithm A′′ that chooses a uniform r ∈ {0, 1}n and thereby ensures that the result is a
random encryption of DecK(c) ⊙DecK(d). The problem is that this construction would no longer
satisfy Property 3 of Lemma 3.6 (security against a simulator with oracle access). This is because
the simulator could now control the random coins of the encryption scheme and use this to break
it. Our solution will be to redefine Hom′ in the following way:

Hom′K,K ′(c, d,⊙, r) = EncK(DecK(c)⊙DecK(d); fK ′(c, d,⊙, r)) (6)

but require an additional special property from the pseudorandom function fK ′ .

4.1.3 Invoker-Randomizable Pseudorandom Functions

The property we would like the pseudorandom function fK ′ to possess is one that makes fK ′(x, r)
random when only r is random.

23

Definition 4.4 A function ensemble {fK ′}K ′∈{0,1}∗ such that fK ′ : {0, 1}q+n → {0, 1}n, where n
and q are polynomially related to |K ′|, is called an invoker-randomizable pseudorandom function
ensemble if the following holds:

1. {fK ′}K ′∈{0,1}∗ is a pseudorandom function ensemble

2. For every K ′ and x ∈ {0, 1}q , the mapping r 7→ fK ′(x, r) is a permutation over {0, 1}n.

Property 2 implies that, for every fixed K ′ and x ∈ {0, 1}q , if r is chosen uniformly in {0, 1}n, then
the value fK ′(x, r) is distributed uniformly in {0, 1}n (and in particular is independent of x).

Lemma 4.5 If pseudorandom functions exist, then there exist invoker-randomizable pseudorandom
functions.

Proof Sketch: Let {gK ′ : {0, 1}q → {0, 1}|K ′|}K ′∈{0,1}∗ be a pseudorandom function ensemble
and {pS : {0, 1}n → {0, 1}n}S∈{0,1}∗ be a pseudorandom function ensemble such that, for any

S ∈ {0, 1}|K ′|, the function pS is a permutation over {0, 1}n. (The existence of the latter ensembles
is implied by the existence of ordinary pseudorandom function ensembles [LR].) We define the
function ensemble {fK ′ : {0, 1}q+n → {0, 1}n}K ′∈{0,1}∗ in the following way:

fK ′(x, r)
def
= pgK′ (x)(r).

It is clear that this ensemble satisfies Property 2 of Definition 4.4. What needs to be shown is that
it is a pseudorandom function ensemble. This is done by using a hybrid argument, in which we
consider the following intermediate hybrids.

1. The function ensemble {f ′G : {0, 1}q+n → {0, 1}n}G such that f ′G(x, r)
def
= pG(x)(r), where

G : {0, 1}q → {0, 1}|K ′| is a random function.

2. The function ensemble {f ′′
G,F

: {0, 1}q+n → {0, 1}n}G,F such that f ′′
G,F

(x, r)
def
= FG(x)(r), where

F = (F0|K
′| , ..., F1|K

′ |) such that the FS ’s are random functions from {0, 1}n to {0, 1}n.

The indistinguishability of our main function ensemble (i.e., {fK ′}) and {f ′G} follows from the
pseudorandomness of the ensemble {gK ′}. The indistinguishability of {f ′G} and {f ′′

G,F
} follows

from the pseudorandomness of the ensemble {pS}. Finally, note that {f ′′
G,F
} is identical to a

random function from {0, 1}q+n to {0, 1}n. 2

4.1.4 Finishing the Proof of Theorem 4.3

Now, suppose we use a pseudorandom function fK ′ that is invoker-randomizable, and modify the
algorithm A′ so that all its queries (c, d,⊙) to the H oracle are augmented to be of the form
(c, d,⊙, r), where r is chosen uniformly and independently for each query. Recall that H is an
ǫ-approximate implementation of Hom′K,K ′ as defined in Equation (6), whereas Hom′K,K ′ answers
such a (randomized) query with a random encryption of DecK(c) ⊙ DecK(d). Therefore, with
probability at least 1− p(k) · ǫ (for some polynomial p(·)), algorithm A′ gets correct answers for all
its queries to F2 = E#H#B. This holds because of the following considerations.

24

1. The queries made to E are fixed, and therefore independent of the gate structure of F1. Thus,
each such query is answered correctly with probability at least 1− ǫ.

2. Assuming all answers received so far are correct, we consider each query made to the H
oracle. Such a query is of the form (c, d,⊙, r), where c and d are uniformly distributed and
independent encryptions of some bits a and b, and r is uniformly distributed. Only (a, b,⊙)
depend on the gate structure of F1, and there are only 64 possibilities for them. Therefore,
with probability at least 1− 64ǫ, this query will be answered correctly by an ǫ-approximator
of Hom′K,K ′, even if it knows (a, b,⊙).

3. Assuming A′ never gets an incorrect answer from the E and H oracles, its last query (i.e.,
its query to the B oracle) will be a uniformly distributed encryption of β1, . . . , βk, which is
independent of the structure of F1, and so has only an ǫ probability to be incorrect.

The claim follows, and this completes the proof of Theorem 4.3.
One point to note is that we have converted our deterministic algorithm A′ of Theorem 3.10

into a probabilistic algorithm.

4.2 Impossibility of the Applications

So far, we have proved impossibility of some natural and arguably minimalistic definitions for
obfuscation. Yet it might seem that there’s still hope for a different definition of obfuscation, one
that will not be impossible to meet but would still be useful for some intended applications. We
will show now that this is not the case for some of the applications we described in the introduction.
Rather, any definition of obfuscator that would be strong enough to provide them will be impossible
to meet.

Note that we do not prove that the applications themselves are impossible to meet, but rather
that there does not exist an obfuscator (i.e., an algorithm satisfying the syntactic requirements of
Definition 2.2) that can be used to achieve them in the ways that are described in Section 1.1. Our
results in this section also extend to approximate obfuscators.

Consider, for example, the application to transforming private-key encryption schemes into
public-key ones. Recall that the transformation consists of obfuscating the private-key encryption
algorithm EK , and releasing its obfuscation ẼK as a public key. This approach will fail for a
private-key encryption scheme (G,E,D) that is unobfuscatable in the sense that there exists a

polynomial-time algorithm A such that for every key K ∈ Supp(G(1k)) and every circuit ẼK that

computes the encryption function EK it holds that A(ẼK) = K.
The foregoing text refers implicitly to deterministic encryption algorithms, whereas such schemes

cannot offer a robust notion of security (i.e., semantic security under chosen-plaintext attack). In-
deed, as noted in [GM], a robust notion of security requires the encryption algorithm to be prob-
abilistic. Thus, our definition of unobfuscatable encryption schemes should apply to probabilistic
encryption, and refer to the distribution17 generated by the original encryption process EK and

17An alternative approach could consider EK as a deterministic function of its message m and coin tosses r,
and require gEK to compute the same deterministic function. But then unobfuscatable encryption schemes would
exist for trivial and uninteresting reasons: Observe that if E′

K is a secure private-key encryption scheme, then so
is EK(m; r1, r2) = (E′

K(m; r1), r2 ⊕ K), but we can recover K from any circuit (or even oracle) that computes the
function (m, r1, r2) 7→ EK(m; r1, r2). Indeed, this case provides a good demonstration of the difference between
obfuscating a distribution and obfuscating the function underlying the distribution’s generation process. This topic
is further pursued in Section 6.

25

ditto its potential obfuscation, denoted ẼK .

Definition 4.6 A probabilistic private-key encryption scheme (G,E,D) is called unobfuscatable if
there exists a polynomial-time algorithm A such that, for every key K ∈ Supp(G(1k)) and for every

randomized circuit ẼK such that ẼK(m) and EK(m) are identically distributed for each message

m, it holds that A(ẼK) = K.

The requirement that ẼK(m) and EK(m) be identically distributed can be relaxed to only require
that they are statistically close (and our result can be extended to these cases).18 We mention that
related definitions of obfuscators for probabilistic circuits are discussed in Section 6.

In Theorem 4.10 below, we prove that if secure private-key encryption schemes exist, then so
do unobfuscatable encryption schemes that satisfy the same security requirements. This means
that any definition of an obfuscator that will be strong enough to allow the conversion of an
arbitrary secure private-key encryption scheme into a secure public-key encryption scheme will be
impossible to meet (because there exist unobfuscatable encryption schemes). Of course, this does
not mean that public-key encryption schemes do not exist, nor that there do not exist private-
key encryption schemes where one can give the adversary a circuit that computes the encryption
algorithm without loss of security (indeed, any public-key encryption scheme is in particular such
a private-key encryption). What this means is that there exists no generic way to transform a
private-key encryption scheme into a public-key encryption scheme by obfuscating the encryption
algorithm.

We present analogous definitions for unobfuscatable signature schemes, MACs, and pseudoran-
dom functions. (For these, the restriction to deterministic schemes is insignificant, since any prob-
abilistic signature/MAC scheme can be converted into a deterministic one; see [Gol2, Sec. 6.1.5.2].)

Definition 4.7 A deterministic signature scheme (G,S, V) is called unobfuscatable if there exists
a polynomial-time algorithm A such that for every key (SK ,VK) ∈ Supp(G(1k)) and every circuit

S̃SK that computes the signature function with signing key SK , it holds that A(S̃SK) = SK.

Definition 4.8 A deterministic message authentication scheme (G,S, V) is called unobfuscatable
if there exists a polynomial-time algorithm A such that for every key K ∈ Supp(G(1k)) and every

circuit S̃K that computes the tagging function with tagging key K, it holds that A(S̃K) = K.

Definition 4.9 A pseudorandom function ensemble {hK}K∈{0,1}∗ is called unobfuscatable if there

exists a polynomial-time algorithm A such that for every key K ∈ {0, 1}∗ and every circuit h̃K that

computes hK , it holds that A(h̃K) = K.

Theorem 4.10 (impossibility of some basic applications)

1. If there exist secure probabilistic private-key encryption schemes, then there exist ones that
are unobfuscatable.

2. If there exist secure deterministic signature schemes, then there exist ones that are unobfus-
catable.

18Furthermore, our results would also extend if the requirement were relaxed to only require that (m,K, gEK(m))
and (m, K, EK(m)) be computationally indistinguishable.

26

3. If there exist secure deterministic message authentication schemes, then there exist ones that
are unobfuscatable.

4. If there exist secure pseudorandom function ensembles, then there exist ones that are unob-
fuscatable.

Proof Sketch: First note that the existence of any one of these primitives implies the existence of
one-way functions [IL]. Therefore, Theorem 3.10 gives us a totally unobfuscatable circuit ensemble
H = {Hk}.

Now, we begin with the construction of the unobfuscatable signature schemes. Take an existing
signature scheme (G,S, V), where G is the key generation algorithm, S the signing algorithm, and
V the verification algorithm. Define the new scheme (G′, S′, V ′) as follows:

The generator G′ on input 1k uses the generator G to generate signing and verifying keys
(SK ,VK)

R←G(1k). It then samples a circuit C
R←Hℓ, where ℓ = |SK |. The new signing key SK ′

is (SK , C) while the verification key VK ′ is the same as VK .
We can now define

S′SK ,C(m)
def
= (SSK (m), C(m),SK ⊕ π(C)),

where π is the function from the unlearnability condition in Definition 3.1.

V ′VK (m, (τ, x, y))
def
= VVK (m, τ)

We claim that (G′, S′, V ′) is an unobfuscatable, yet secure, signature scheme. To see that (G′, S′, V ′)
is unobfuscatable, observe that given any circuit that computes S′

SK ,f , one can obtain the string
SK ⊕ π(C) as well as a circuit that computes the same function as C. By the reverse-engineering
condition of Hℓ, possession of the latter enables the reconstruction of the original circuit C itself,
from which π(C) and then SK can be computed.

To see that scheme (G′, S′, V ′) retains the security of the scheme (G,S, V), observe that given
oracle access to S′

SK ,C is equivalent to being given oracle access to SSK and C along with the string
π(C) ⊕ SK itself. Using the facts that π(C) is indistinguishable from random, when given oracle
access to C, and that C is chosen independently of SK , it can be shown that the presence of C
and π(C)⊕ SK does not help an adversary break the signature scheme.

We now turn to construct unobfuscatable pseudorandom functions and MACs. The key obser-
vation here is that the proof of Theorem 3.10 can be modified to give an unobfuscatable circuit
ensemble that is also a family of pseudorandom functions (and hence also a secure message authen-

tication code). Recall that Hk = Cα,β#D#Cα,(D,γ), where α, β, γ
R← {0, 1}k and D

R←Dα,β, and

that D is a deterministic version of EK,α#HomK#BK,α,β, where K
R←{0, 1}k (and the derandom-

ization is obtained by using an auxiliary pseudorandom function). We first observe that we may
assume that the encryption scheme in use (i.e., in EK,α and HomK) has pseudorandom cipher-
texts. Indeed, this is the case in the scheme (cited for demonstration) in the proof of Lemma 3.6.
Thus, the outputs of EK,α and HomK are pseudorandom. As for the outputs of the other parts
of the circuit, in the original proof they were set to produce zero on almost all inputs, and it was
shown that a PPT machine having oracle access to them can hit an exceptional input (which was
assigned a non-zero value) only with negligible probability. Thus, our modification will consist of
using another pseudorandom function, and defining the value of most inputs (i.e., those set to zero
before) to equal the value of that pseudorandom function (on the corresponding input). Clearly,

27

the argument used in the proof of Theorem 3.10 remain valid, and so it follows that the modified
ensemble is both unobfuscatable and pseudorandom.

Last, we turn to construct an unobfuscatable private-key encryption scheme. To this end, we
will modify (a simplified version of) the construction from the proof of Theorem 3.10. Recall that
in that construction (or actually in the proof of Lemma 3.6), the algorithm DK,α,β was converted
from a probabilistic algorithm into a deterministic one because the goal there was to rule out
obfuscation for ordinary (deterministic) circuits. Since we are now considering randomized circuits,
we consider a simplified version where DK,α,β is implemented by a randomized circuit where the
randomness required for the encryptions are provided by randomness gates in the circuit, instead of
using pseudorandom functions applied to the input.19 Let Tα,β,γ,K denote the randomized circuit
Cα,β#DK,α,β#Cα,(DK,α,β ,γ) that is the final result of the construction.

Now let (G,E,D) be a semantically secure private-key encryption scheme, and define a new
scheme (G′, E′,D′) as follows: A key for the new scheme is generated (by G′) by obtaining a secret
key SK from G, and selecting uniformly α, β, γ,K ∈ {0, 1}k , where k = |SK|. Encryption, based
on the key (SK,α, β, γ,K), is defined by

E′SK,α,β,γ,K(m) = (ESK(m), Tα,β,γ,K(m), γ ⊕ SK).

The decryption procedure D′ simply runs D on the first component of the ciphertext.
The semantic security of (G′, E′,D′) follows from the semantic security of the private-key en-

cryption used in the construction, and from the fact that for almost all inputs, the output of the
randomized circuit Cα,β#DK,α,β#Cα,(DK,α,β ,γ) computationally hides all information about the in-
put. The only inputs for which this is not necessarily true are a negligibly small fraction of inputs
that depend on the values α, β, and K. Since these values are part of the secret key of the scheme,
this does not affect semantic security. 2

Implication for applying obfuscation as a means to implement the Random Oracle
Methodology. A natural application of obfuscation would be to “implement” a random oracle by
obfuscating a function chosen randomly from a pseudo-random function ensemble. Our construction
of unobfuscatable pseudorandom function ensembles can be used to show that this approach would
fail in the following sense: For many natural protocols that are secure in the random oracle model,
there exists a (contrived) pseudorandom function ensemble such that if the random oracle is replaced
with any public circuit that computes any function in that ensemble then the resulting protocol
is insecure. One such example is provided by the Fiat–Shamir signature scheme [FS], which is
obtained by removing interaction from a 3-round (public-coin) identification protocol, which in
turn is derived from a honest-verifier zero-knowledge (hvZK) proof of knowledge of some secret
that refers to a public record associated with the legitimate signer. Recall that the interaction
is removed (in the Random Oracle Model) by applying the random function to the first message
(and that the Random Oracle Methodology calls for replacing this random function by a public
function).

19A minor issue that arises refers to the reverse-engineering condition, which utilizes an algorithm that is given
the obfuscated circuit. This algorithm is supposed to emulate the computation of the circuit in order to recover the
string α; see description at the end of the proof of Theorem 3.10. The issue is that in the current case the circuit
has randomness gates, but we assert a deterministic recovering algorithm. This is possible because the recovering
algorithm has perfect correctness, so it can treat all of the random bits of the circuit as zero.

28

Proposition 4.11 (failure of a generic version of the Fiat–Shamir signature) Let (P, V)
be an arbitrary 3-round public-coin hvZK protocol, and consider the signature scheme in which
message m is signed by sending the transcript that corresponds to an interaction of (P, V)(ρ),
where ρ is the signer’s public record/key and the verifier message in the interaction is replaced by
the application of the Random Oracle to the pair (m,a) such that a is the first message sent by
P . Suppose that one-way functions exists.20 Then, there exists a pseudorandom function ensemble
{hK}K∈{0,1}∗ such that replacing the random oracle in the foregoing scheme by any public circuit
that computes any hK , yields an insecure scheme, in the strong sense that an attacker can forge a
valid signature given only the signer’s public record/key.

Proof Sketch: Starting with an arbitrary pseudorandom function ensemble, denoted {fs}, we
consider the function ensemble {f ′s,m0,r0

} defined (for polynomially related |s|, |m0|, and |r0|) by

f ′s,m0,r0
(x ◦ y, z)

def
=

{
S(y, r0)2 if x = m0 and S(y, r0)1 = z
fs(x ◦ y, z) otherwise

where S(y, r0)i is the ith element in the transcript produced by the (honest-verifier) simulator on
input y and using randomness r0. Note that the resulting ensemble preserves the pseudorandom-
ness of the original one, since the modified inputs are extremely rare (and the adversary lacks
any information regarding their identity). On the other hand, given the seed of a function (i.e.,
s,m0, r0), it is easy to forge a signature for the message m0 ◦ ρ in the resulting signature proof
(by letting (a, b, c) ← S(ρ, r0), where ρ is the prover/signer’s public record/key).21 Now we apply
the construction outlined in the proof of Theorem 4.10, while using the pseudorandom ensem-
ble {f ′s,m0,r0

} in order to assign pseudorandom values to the inputs that were set to zero in the
proof of Theorem 3.10. The resulting unobfuscatable pseudorandom ensemble {hK} still allows the
foregoing forging, since with high probability (over m0) hK will agree with f ′s,m0,r0

on the input
z = (m0 ◦ρ, S(ρ, r0)). Indeed, by choosing m0 a bit more carefully that this occurs with probability
1 (by making sure that all inputs with prefix m0 lead to appying Cα,β on an input different than
α). 2

We comment that the foregoing proof only relies on a very weak notion of simulation that only
requires that on input y the simulator always outputs an accepting transcript. Furthermore, the
proof extends to any public-coin protocol (with the foregoing weak simulation condition), implying
that, although it may be infeasible to generate accepting transcripts of the execution in the Random
Oracle model, it is feasible to generate accepting transcripts of an execution that refers to replacing
the random oracle by any public circuit computing any function in {hK}.22 In Appendix C, we
show that a similar, but weaker, attack applies when considering the Fiat–Shamir transformation
applied to arbitrary public-coin identification protocols (including ones that do not admit the weak
simulation property needed for the attack above).

20Recall that if no one-way functions exist, then there exist no signature schemes anyhow.
21Note that in this case b = f ′

s,m0,r0
(m0 ◦ ρ, a), since S(ρ, r0)1 = a. Thus, (a, f ′

s,m0 ,r0
(m0 ◦ ρ, a), c) is an accepting

transcript of (P, V)(ρ), which means that it constitutes a valid signature to m0 (relative to the signer’s record/key
ρ).

22In the proof of Proposition 4.11, we referred to a protocol in which the random oracle is applied to strings of
the form (m ◦ ρ, ·), where ρ was the input to the protocol and m was an auxiliary input (representing an external
message). In the general setting, we may refer to inputs of the form x ◦ y and to the task of generating an accepting
transcript of (P, V)(x ◦ y), where y is fixed and the choice of x is at the adversary’s discretion. We also mention
that the argument extends to any public-coin protocol that satisfies the weak simulation condition, regardless of the
number of rounds.

29

4.3 Obfuscating Restricted Circuit Classes

Given our impossibility results for obfuscating general circuits, one may ask whether it is easier to
obfuscate computationally restricted classes of circuits. Here we argue that this is unlikely for all
but very weak models of computation.

Theorem 4.12 If “factoring Blum integers is hard”,23 then there is a family Hk of unobfuscatable
circuits such that every C

R←Hk is a constant-depth threshold circuit of size poly(k).

Below, we shall say that a circuit ensemble {Hk} is in TC0 if there exists a constant c such that,
for every k, every C ∈ Supp(Hk) is a threshold circuit of size at most c · kc and depth at most c.

Proof Sketch: Naor and Reingold [NR] showed that under the stated assumption, there exists a
family of pseudorandom functions computable in TC0. Thus, we simply need to check that we can
build our unobfuscatable circuits from such a family without a substantial increase in depth. Recall
that the unobfuscatable circuit ensemble Hk constructed in the proof of Theorem 3.10 consists of
functions of the form Cα,β#D#Cα,(D,γ), where D is from the family Dα,β of Lemma 3.6. It is easy to
see that Cα,β and Cα,(D,γ) are in TC0, so we only need to check that Dα,β consists of circuits in TC0.
The computational complexity of circuits in the family Dα,β is dominated by performing encryptions
and decryptions in a private-key encryption scheme (Enc,Dec) and evaluating a pseudorandom
function fK ′ that is used to derandomize the probabilistic circuit DK,α,β. If we use the Naor–
Reingold pseudorandom functions both for fK ′ and to construct the encryption scheme (as detailed
in the proof of Lemma 3.6),24 then the resulting circuit is in TC0. 2

4.4 Relativization

In this section, we address the question of whether or not our results relativize. To do this, we must
clarify the definition of an obfuscator relative to an oracle F : {0, 1}∗ → {0, 1}∗. What we mean is
that all algorithms in the definition, including the programs being obfuscated and produced, and
including the adversary, have oracle access to F . For a circuit, this means that the circuit can have
gates for evaluating F . We fix an encoding of (oracle) circuits as binary strings such that a circuit
described by a string of length s can only make oracle queries of total length at most s.

By inspection, our initial impossibility results (i.e., Proposition 3.4 and Theorem 3.5) hold
relative to any oracle, since they involve only simulation and diagonalization-like arguments.

Proposition 4.13 Proposition 3.4 (impossibility of 2-circuit obfuscators) and Theorem 3.5 (im-
possibility of TM obfuscators) hold relative to any oracle.

Interestingly, our main impossibility results (i.e., Theorem 3.7, Theorem 3.10, and Corollary 3.9)
do not relativize.

Proposition 4.14 There is an oracle relative to which efficient circuit obfuscators do exist. Thus,
Theorems 3.7 and 3.10 and Corollary 3.9 do not relativize.

23We refer to the standard formulation of this assumption (see, e.g., [NR]). As shown in [NR], this assumption
allows to construct pseudorandom functions in TC

0. An alternative assumption that was shown in [NR] to suffice
refers to the Decisional Diffie–Hellman problem.

24Recall that the basic scheme is EncK(b) = (r, fK(r) ⊕ b), where r is uniformly chosen in {0, 1}|K|.

30

This proposition can be viewed both as evidence that the foregoing results are nontrivial, and as
(further) evidence that relativization is not a good indication of what we can prove.

Proof Sketch: The oracle F =
⋃

k Fk will consist of two parts Fk = Ok#Ek, where Ok :
{0, 1}k ×{0, 1}k → {0, 1}6k is a random (injective) function and Ek : {0, 1}6k × {0, 1}k → {0, 1}k is
defined as follows: If there exists a (C, r) such that Ok(C, r) = x, then Ek(x, y) = CF (y), where C
is viewed as the description of a circuit. Otherwise, Ek(x, y) = ⊥. Note that this definition of Fk is
not circular, because C can only make oracle queries of size at most |C| = k, and hence can only
query Fk′ for k′ ≤ k/2.

Now, we can view x = Ok(C, r) as an obfuscation of C using coin tosses r. This satisfies
the syntactic requirements of obfuscation, since |x| = O(|C|) and the function Ek offers efficient
evaluation of C on y, when given x and y. Formally, we should define the obfuscation of C to be
a circuit that has x = Ok(C, r) hardwired in it, and makes an oracle query to Ek; that is, on input
y, the circuit issues the query (x, y) to the Ek-part of F , and returns the answer received.

So it remains to prove the virtual black-box property. By a union bound over polynomial-time
adversaries A of description size smaller than k/2 and circuits C of size k, it suffices to prove the
following claim.25

Claim 4.14.1 For every PPT A there exists a PPT S such that for every circuit C of size k, the
following holds with probability at least 1− 2−2k, over the choice of F , it holds that

∣∣∣∣∣ Pr
r

R
←{0,1}k

[
AF (Ok(C, r)) = 1

]
− Pr

[
SF,CF

(1k) = 1
]∣∣∣∣∣ ≤ 2−Ω(k).

The rest of the proof is devoted to prove Claim 4.14.1. Fixing any PPT A, we define the simulator
S such that, on input 1k, it chooses x

R←{0, 1}6k and simulates AF (x). In this simulation, S uses its
own F -oracle to answer A’s oracle queries, except that A’s queries to Ek′, for k′ ≥ k, are answered
as follows. The query (x′, y′) to Ek′ , where k′ ≥ k, is answered with z such that:

1. If x′ = x, then z = CF (y′), where this value is computed using oracle access to CF .

2. Else, if x′ = Ok′(C ′, r′) for some previous query (C ′, r′) to the Ok′-oracle, then z = (C ′)F (y′),
where (C ′)F (y′) is computed recursively by emulating the computation of C ′ while using these
very rules.

3. Else, z = ⊥.

Note that the queries generated in the handling of Case 2 have a total length that is smaller than the
size of C ′. It follows that the recursive evaluation of (C ′)F (y′) only incurs a polynomial overhead
in running time.26 Also note that S never queries the Ek′ oracle for k′ ≥ k.

Let us denote the execution of the above simulation for a particular x by SF,C(x). Notice that
when x = Ok(C, r) for some r, then SF,C(x) and AF (x) have exactly the same behavior unless

25Note that we are only proving the virtual black-box property against adversaries of “bounded nonuniformity,”
which in particular includes all uniform PPT adversaries. Presumably it can also be proven against nonuniform
adversaries, but we stick to uniform adversaries for simplicity.

26The complexity of evaluating C′, which is charge to the query (C′, r′), is poly(|C′|) plus the complexity of
evaluating queries of total length smaller than |C′|. Thus, each level at the tree of recursion calls, which has depth
at most |C′|, incurs a cost that is upper bounded by poly(|C′|).

31

the above simulation produces some query (x′, y′) such that x′ ∈ Image(Ok′), x′ 6= x, and x′ was
not obtained by a previous query to Ok′ . Since O is a random length-tripling function, it follows
that the latter happens with probability at most poly(k) · 22k/26k, taken over the choice of F and
a random r (recall that x = Ok(C, r)).27 Thus, with probability at least 1 − 2−3k over the choice
of F , SF,C(Ok(C, r)) = AF (Ok(C, r)) for all but a 2−Ω(k) fraction of r’s.

Thus, proving Claim 4.14.1 reduces to showing that:
∣∣∣∣∣ Pr
r

R
←{0,1}k

[
SF,C(Ok(C, r)) = 1

]
− Pr

x
R
←{0,1}6k

[
SF,C(x) = 1

]
∣∣∣∣∣ ≤ 2−Ω(k)

with high probability (say, 1− 23k) over the choice of F .

In other words, we need to show that the function G(r)
def
=Ok(C, r) is a pseudorandom generator

against S. Since G is a random function from {0, 1}k → {0, 1}6k , this would be obvious were it not
for the fact that S has oracle access to F (which is correlated with G). Recall, however, that we
made sure that S does not query the Ek′-oracle for any k′ ≥ k. This enables us to use the following
claim, proven in Appendix B.

Claim 4.14.2 There is a constant δ > 0 such that the following holds for all sufficiently large K
and any L ≥ K2. Let D be an algorithm that makes at most Kδ oracle queries and let G be a
random injective function G : [K]→ [L]. Then with probability at least 1− 2−Kδ

over G,
∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr

y∈[L]

[
DG(y) = 1

]∣∣∣∣ ≤
1

Kδ
.

Let us see how Claim 4.14.2 implies what we want. Let K = 2k and associate [K] with {0, 1}k .
We fix all values of Ok′ for all k′ 6= k and Ek′ for all k′ < k. We also fix the values of Ok(C

′, r) for

all C ′ 6= C, and view G(r)
def
= Ok(C, r) as a random injective function from [K] to the remaining

L = K6−(K−1)·K elements of {0, 1}6k . The only oracle queries of S that vary with the choice of G
are queries toOk at points of the form (C, r), which is equivalent to queries to G. Thus, Claim 4.14.2
implies that the output of G is indistinguishable from the uniform distribution on some subset of
{0, 1}6k of size L. Since the latter has statistical difference (K6−L)/K6 < 1/K4 from the uniform
distribution on {0, 1}6k , we conclude that G is ε-pseudorandom (for ε = 1/Kδ + 1/K4 = 2−Ω(k))

against S with probability at least 1− 2−Kδ
> 1− 2−3k, as desired. 2

Bounded relativization. While our main impossibility results do not relativize in the usual
sense (see Proposition 4.14), their proofs can be modified to work for a slightly different form of
relativization, which we refer to as bounded relativization.28 In bounded relativization, an oracle is
a finite function with fixed input length ℓ (which is polynomially related to the security parameter
k), and all algorithms/circuits in the context being discussed can have running time larger than ℓ
(but still polynomial in k). In particular, in the context of obfuscation, this means that the circuit
to be obfuscated can have size larger than ℓ (but still polynomial in in it).

Proposition 4.15 Theorems 3.10 and 3.7 (one-way functions imply unobfuscatable circuits and
impossibility of circuit obfuscators), and Corollary 3.9 (unconditional impossibility of efficient cir-
cuit obfuscators) hold under bounded relativization (for any oracle).

27Technically, this probability (and later ones in the proof) should also be taken over the coin tosses of A/S.
28Bounded relativization reflects the way that the Random Oracle Model is sometimes interpreted in cryptography.

32

Proof Sketch: The only modification needed in the construction is to deal with oracle gates
in the Hom algorithm in the proof of Lemma 3.6. Suppose that the oracle F has input length
ℓ and output length 1 (without loss of generality). We augment the HomK algorithm to also
take inputs of the form (c1, . . . , cℓ, oracle), where (c1, . . . , cℓ) are ciphertexts, on which it outputs
EncK(F (DecK(c1),DecK(c2), . . . ,DecK(cℓ))). The rest of the proof proceeds essentially unchanged.

2

5 On a Complexity Analogue of Rice’s Theorem

Rice’s Theorem asserts that the only properties of partial recursive functions that can be decided
from their representations as Turing machines are trivial. To state this precisely, we denote by [M]
the (possibly partial) function that the Turing Machine M computes. Similarly, [C] denotes the
function computed by a circuit C.

Rice’s Theorem Let L ⊆ {0, 1}∗ be any language such that, for every two functionally equivalent
machines M and M ′ (i.e., [M] ≡ [M ′]), it holds that M ∈ L if and only if M ′ ∈ L. Then, if L is
decidable, then it is trivial (i.e., either L = {0, 1}∗ or L = ∅).

The difficulty of problems such as SAT suggest that perhaps Rice’s theorem can be “scaled-
down” and that deciding properties of finite functions from their descriptions as circuits is in-
tractable. As Borchert and Stephan [BS] observe, simply replacing the word “Turing machine”
with “circuit” and “decidable” with “polynomial time” does not work. One counterexample is
the non-trivial language L = {C ∈ {0, 1}∗ : C(0) = 0} that can be decided in polynomial time,
although whenever [C] ≡ [C ′] holds it holds that C ∈ L iff C ′ ∈ L. Yet, there is a sense in which
L is “somewhat trivial” in the sense that deciding whether or not C ∈ L is feasible without using
C itself; having oracle access to C suffices. This motivates the following conjecture:

Conjecture 5.1 (Scaled-down Rice s Theorem) Let L ⊆ {0, 1}∗ be any language such that,
for every two functionally equivalent circuits C and C ′ (i.e., [C] ≡ [C ′]), it holds that C ∈ L if and
only if C ′ ∈ L. If L ∈ BPP, then there exists a PPT S such that

C ∈ L ⇒ Pr[S[C](1|C|) = 1] >
2

3

C 6∈ L ⇒ Pr[S[C](1|C|) = 0] >
2

3

Put differently, the conjecture states that any semantic property of circuits that is infeasible to
decide when only given oracle access to the circuit is also infeasible to decide when given the circuit.
We mention that Borchert and Stephan [BS] take a different approach to finding a complexity
analogue of Rice’s theorem: Instead of restricting the scope to properties that are infeasible to
decide given oracle access, they restrict it to properties that only depend on the number of satisfying
assignments of the circuit (and some variants of this idea). They show that any such property is
UP-hard, and thus is unlikely to be tractable. Improved lower bounds are given in [HR, HT].

Not being able to settle Conjecture 5.1, we consider a generalization of it to promise prob-
lems [ESY], i.e., decision problems restricted to some subset of strings. Formally, a promise prob-
lem Π is a pair Π = (ΠY ,ΠN) of disjoint sets of strings, corresponding to yes and no instances,
respectively. The generalization of Conjecture 5.1 that comes to mind is the following one, where
we extend the definition of BPP to promise problems in the natural way.

33

Conjecture 5.2 Let Π = (ΠY ,ΠN) be any promise problem such that, for every two functionally
equivalent circuits C and C ′ (i.e., [C] ≡ [C ′]), it holds that C ∈ ΠY if and only if C ′ ∈ ΠY , and
similarly C ∈ ΠN if and only if C ′ ∈ ΠN . If Π ∈ BPP, then there exists a PPT S such that

C ∈ ΠY ⇒ Pr[S[C](1|C|) = 1] >
2

3

C ∈ ΠN ⇒ Pr[S[C](1|C|) = 0] >
2

3

Our construction of unobfuscatable circuits implies that the last conjecture is false.

Theorem 5.3 If one-way functions exist, then Conjecture 5.2 is false.

Proof Sketch: Let H = {Hk}k∈N be the unobfuscatable circuit ensemble given by Theorem 3.10,
and let π′ :

⋃
k Supp(Hk)→ {0, 1} be the first bit of the function guaranteed by the unlearnability

condition. Consider the following promise problem Π = (ΠY ,ΠN):

ΠY =

{
C ′ : ∃C ∈

⋃

k

Supp(Hk) s.t. [C] ≡ [C ′] and π′(C) = 1

}

ΠN =

{
C ′ : ∃C ∈

⋃

k

Supp(Hk) s.t. [C] ≡ [C ′] and π′(C) = 0

}

By the reverse-engineering condition, C can be recovered from the code of any functionally equiv-
alent circuit C ′, and π is easy to evaluate. Thus, Π ∈ BPP. But since π(C) is pseudorandom with
black-box access to C, no S satisfying Conjecture 5.2 can exist. 2

Discussion. It is an interesting problem to weaken or even remove (from Theorem 5.3) the
hypothesis that one-way functions exist. Reasons to believe that this may be possible are: (1) The
fact that conjectures refers only to worst-case complexity (and not average case), and (2) the fact
that the conjectures imply some sort of computational difficulty. For instance, if NP ⊆ BPP,
then both conjectures are false, since Circuit Satisfiability is not decidable using black-box
access (e.g., using black-box access, one cannot distinguish a circuit that is satisfied on exactly one
randomly chosen input from an unsatisfiable circuit). Thus, if we could weaken the hypothesis of
Theorem 5.3 to NP 6⊆ BPP, then Conjecture 5.2 would be false unconditionally.

We have shown that in the context of complexity, the generalization of Scaled-down Rice’s
Theorem (Conjecture 5.1) to promise problems (i.e., Conjecture 5.2) fails. When trying to find out
what this implies about Conjecture 5.1 itself, one might try to get intuition from what happens in
the context of computability. This direction is pursued in Appendix A. It turns out that the results
in this context are somewhat inconclusive. We explore three ways to generalize Rice’s Theorem to
promise problems. The first, naive approach fails, and there are two non-naive generalizations, of
which one succeeds and one fails. We mention that the generalization that succeeds (i.e., is valid)
is closest in spirit to Conjecture 5.2, indicating that the failure of the latter is more surprising.

6 Obfuscating Sampling Algorithms

In our investigation of obfuscators thus far, we have interpreted the “functionality” of a program
as being the function it computes. However, sometimes one is interested in other aspects of a

34

program’s behavior, and in such cases a corresponding change should be made to the definition of
obfuscators. One such case is the case of sampling algorithms, considered in this section. That is,
we consider probabilistic algorithms that when fed a uniformly random string (of some length) as
input, produce an output according to some desired distribution. We stress that we are interested
in the distribution that is defined by such algorithms, and not in the strict effect of these algorithms
as functions (from random inputs to samples in the distribution). (At the end of the section, we
also discuss definitions of obfuscation for general probabilistic algorithms.)

For simplicity, we only work with sampling algorithms described by circuits: A circuit C with m
input gates and n output gates can be viewed as a sampling algorithm for the distribution 〈〈C〉〉 on
{0, 1}n obtained by evaluating C on m uniform and independent random bits. If A is an algorithm
and C is a circuit, we write A〈〈C〉〉 to indicate that A has sampling access to C. That is, A can
obtain, upon request, independent and uniform random samples from the distribution defined by
C. The natural analogue of the definition of circuit obfuscators to sampling algorithms follows.

Definition 6.1 (sampling obfuscator) A probabilistic algorithm O is a sampling obfuscator (for
a class of circuits) if the following three conditions hold:

• (functionality) For every circuit C, the string O(C) describes a circuit that samples the same
distribution as C.

• (polynomial slowdown) There is a polynomial p such that for every circuit C, it holds that
|O(C)| ≤ p(|C|).

• (“virtual black box” property) For any PPT A, there is a PPT S and a negligible function α
such that for all circuits C it holds that

∣∣∣Pr [A(O(C)) = 1]− Pr
[
S〈〈C〉〉(1|C|) = 1

]∣∣∣ ≤ α(|C|).

We say that O is efficient if it runs in polynomial time.

Note that Definition 6.1 differs from Definition 2.2 firstly in the functionality condition and secondly
in the type of oracle considered in the virtual black-box condition.

We do not know whether Definition 6.1 can be met, but we can rule out the following (seemingly)
stronger definition, which essentially allows the adversary to output arbitrarily long strings, instead
of just one bit as in the definition above.

Definition 6.2 (strong sampling obfuscator) A strong sampling obfuscator is defined in the
same way as a sampling obfuscator, expect that the “virtual black box” property is replaced with the
following.

• (“virtual black box” property) For any PPT A, there is a PPT S such that the ensembles
{A(O(C))}C and {S〈〈C〉〉(1|C|)}C are computationally indistinguishable. That is, for every
PPT D, there is a negligible function α such that

∣∣∣Pr [D(C,A(O(C))) = 1]− Pr
[
D(C,S〈〈C〉〉(1|C|)) = 1

]∣∣∣ ≤ α(|C|).

Note that this definition is analogous to the strongest definition considered at the beginning of
Section 2.2. However, at the current context, this type of definition seems harder to rule out.

35

Proposition 6.3 If one-way functions exist, then strong sampling obfuscators do not exist. In
particular, there exist no efficient strong sampling obfuscators, unconditionally.

Proof Sketch: If one-way functions exist, then there exist message authentication codes (MACs)
that are existentially unforgeable under chosen message attack. Let TagK denote the tagging
(i.e., signing) algorithm for such a MAC with key K, and define a circuit CK(x) = (x,TagK(x)).
That is, the distribution sampled by CK is simply a random message together with its tag. Now
suppose there exists a strong sampling obfuscator O, and consider the PPT adversary A defined by
A(C) = C. By the definition of a strong sampling obfuscator, there exists a PPT simulator S that,
when giving sampling access to 〈〈CK〉〉, produces an output computationally indistinguishable from
A(O(CK)) = O(CK). That is, after receiving the tags of polynomially many random messages, S
produces a circuit that is indistinguishable from one that generates random messages with their
tags. This will contradict the security of the MAC.

Let q = q(|K|) be a polynomial bound on the number of samples received from 〈〈CK〉〉 obtained
by S, and consider a distinguisher D that does the following on input (CK , C ′): Recover the key
K from CK . Obtain q + 1 random samples (x1, y1), . . . , (xq+1, yq+1) from C ′. Output 1 if the xi’s
are all distinct and yi = TagK(xi) for all i.

Clearly, D outputs 1 with high probability on input (CK , A(O(CK))). (The only reason it
might fail to output 1 is that the xi’s might not all be distinct, which happens with exponentially
small probability.) On the other hand, the security of the MAC implies that D outputs 1 with
negligible probability on input (CK , S〈〈CK 〉〉(1|K|)) (over the choice of K and the coin tosses of all
algorithms). The reason is that, whenever D outputs 1, the circuit output by S has generated a
valid message-tag pair not received from the 〈〈CK〉〉-oracle.

The claim regarding the nonexistence of efficient (strong sampling) obfuscators follows by show-
ing that their existence implies the existence of one-way functions. A stronger claim, which refers to
(efficient) non-strong sampling obfuscators, is proved in the following proof of Proposition 6.4. 2

Turning back to the sampling obfuscators in the sense of Definition 6.1, we can show that
they imply the nontriviality of SZK (i.e., the class of promise problems possessing statistical zero-
knowledge proofs).

Proposition 6.4 If efficient sampling obfuscators exist, then SZK is not contained in BPP.

Proof: It is known that the following promise problem Π = (ΠY ,ΠN) is in SZK [SV] (and in
fact has a noninteractive perfect zero-knowledge proof system [DDPY, GSV]):

ΠY = {C : 〈〈C〉〉 = Un}
ΠN = {C : |Supp(C)| ≤ 2n/2},

where n denotes the output length of the circuit C and Un is the uniform distribution on {0, 1}n.
Assuming, towards the contradiction, that efficient sampling obfuscators exist, we will show that
Π is not in BPP.

Suppose that an efficient sampling obfuscator O exists. Analogous to Lemma 3.8, such obfus-
cators imply the existence of one-way functions (we can obtain a one-way function f by defining
f(α, r) = O(Cα, r) where Cα is a circuit that outputs α with probability 1/2n and 0 otherwise).
Thus, there also exists a length-doubling pseudorandom generator G [HILL]. Let Gn : {0, 1}n/2 →
{0, 1}n denote the circuit that evaluates G on inputs of length n/2.

36

Now consider any PPT algorithm A. By the definition of a sampling obfuscator, there exists
a PPT machine S such that Pr[A(O(Gn)) = 1] is negligibly close to Pr[S〈〈Gn〉〉(1|Gn|) = 1], and
Pr[A(O(Un)) = 1] is negligibly close to Pr[S〈〈Un〉〉(1|Gn|) = 1], where here Un means the trivial
padded circuit that samples uniformly from Un but has the same size as Gn. But by the definition
of pseudorandom generators and a hybrid argument (over each sampling access), it follows that
Pr[S〈〈Gn〉〉(1|Gn|) = 1] and Pr[S〈〈Un〉〉(1|Gn|) = 1] are also negligibly close. Thus, for any PPT
algorithm A, it holds that |Pr[A(O(Gn)) = 1]−Pr[A(O(Un)) = 1]| is negligible (and, in particular,
smaller than 1/3).

However, by functionality, O(Un) is always a yes instance of Π and O(Gn) is always a no

instance. It follows that Π /∈ BPP.

Remark 6.5 Assuming the existence of one-way functions, we can extend the result of Proposi-
tion 6.4 to the natural notion of approximate sampling obfuscators, in which O(C) only needs to
sample a distribution of small statistical difference from that of C. This is done by using Statis-

tical Difference, the complete problem for SZK from [SV], in place of the promise problem
Π. (We assume the existence of one-way functions, because we do not know whether approximate
sampling obfuscators imply their existence.)

Definition of obfuscation for general probabilistic algorithms. We note that combining
Definitions 2.2 and 6.1 yields a natural definition of obfuscator for general probabilistic algorithms
in the form of randomized circuits C that take an input x, and produce an output according to
some desired distribution that depends on x. (Consider, for example, your favorite randomized
primality tester, or a probabilistic encryption scheme.) For the functionality requirement, we can
require that O(C) outputs a randomized circuit C ′ such that, for every input x, it holds that
C ′(x) is identically distributed (or statistically close) to C(x). For the virtual black-box property,
we can give the simulator S access to a probabilistic oracle, that on every query x, gives an
answer distributed according to C(x). Of course, any obfuscator meeting this definition also meets
Definition 2.2 (as a special case), and hence the negative result of Theorem 3.7 applies. The point
of the current section was to study restricted types of obfuscators (i.e., ones that are supposed to
be applied only to randomized algorithm that have no “real” inputs).

7 Weaker Notions of Obfuscation

Our impossibility results rule out the standard, “virtual black box” notion of obfuscators as impos-
sible, along with several of its applications. However, it does not mean that there is no method of
making programs “unintelligible” in some meaningful and precise sense. Such a method could still
prove useful for software protection. In this section, we suggest two weaker definitions of obfusca-
tors that avoid the “virtual black box” paradigm (and hence are not ruled out by our impossibility
results).

The weaker definition asks that if two circuits compute the same function, then their obfusca-
tions should be indistinguishable. For simplicity, we only consider the circuit version here.

Definition 7.1 (indistinguishability obfuscator) An indistinguishability obfuscator is defined
in the same way as a circuit obfuscator, except that the “virtual black box” property is replaced with
the following:

37

• (indistinguishability) For any PPT A, there is a negligible function α such that, for any two
circuits C1 and C2 that compute the same function and are of the same size k, it holds that

|Pr [A(O(C1))]− Pr [A(O(C2))]| ≤ α(k).

It is instructive to contrast the notion of unobfuscatable circuit ensemble (i.e., Definition 3.1) with
the notion of indistinguishability obfuscator. The unobfuscatability of the former (as well as the
non-existence of general circuit obfuscators) is not due to the method used for converting the
original circuit into a possibly obfuscated one, but is rather due to the fact that the code of any
functionally equivalent circuit allows for reverse-engineering of the original circuit! In contrast,
Definition 7.1 does not consider something that can be extracted from the code of any functionally
equivalent circuit (of a certain size) as breach of the obfuscation condition. Only distinguishing
between (the obfuscated forms of) functionally equivalent circuits (of a certain size) is considered
a breach of the obfuscation condition. This contrast is demonstrated in the following observation.

Proposition 7.2 (Inefficient) indistinguishability obfuscators exist.

Proof: Let O(C) be the lexicographically first circuit of size |C| that computes the same function
as C.

While it would be very interesting to construct even indistinguishability obfuscators, their
usefulness is limited by the fact that they provide no a priori guarantees about obfuscations of
circuits C1 and C2 that compute different functions. However, it turns out that, if O is efficient,
then it is “competitive” with respect to any pair of circuits. That is, we will show that no O′ (even
an inefficient one) makes C1 and C2 much more indistinguishable than O does. Intuitively, this will
say that an indistinguishability obfuscator is “as good” as any other obfuscator that exists. For
example, it will imply that if “differing-input obfuscators” (as we will define later) exist, then any
indistinguishability obfuscator is essentially also a differing-input obfuscator.

To state this precisely, for a circuit C of size at most k, we define Padk(C) to be a trivial padding
of C to size k. Feeding Padk(C) instead of C to an obfuscator can be thought of as increasing the
“security parameter” from |C| to k. (We chose not to explicitly introduce a security parameter into
the definition of obfuscators to avoid the extra notation.) For the proof, we also need to impose a
technical, but natural, constraint that the size of O′(C) only depends on the size of C.

Proposition 7.3 (“competitiveness”) Suppose O is an efficient indistinguishability obfuscator.
Let O′ be any (possibly inefficient) algorithm that satisfies the syntactic requirements of obfuscation
as well as the condition that |O′(C)| = q(|C|) for some fixed polynomial q. Then, for every PPT
A, there exists a PPT A′ and a negligible function α such that for all circuits C1, C2 of size k, it
holds that

∣∣Pr
[
A(O(Padq(k)(C1)) = 1

]
− Pr

[
A(O(Padq(k)(C2)) = 1

]∣∣
≤

∣∣Pr
[
A′(O′(C1)) = 1

]
− Pr

[
A′(O′(C2)) = 1

]∣∣ + α(k).

Proof: Define A′(C)
def
= A(O(C)). Then, for any circuit Ci of size k, we have

∣∣Pr
[
A(O(Padq(k)(Ci))) = 1

]
− Pr

[
A′(O′(Ci)) = 1

]∣∣
=

∣∣Pr
[
A(O(Padq(k)(Ci))) = 1

]
− Pr

[
A(O(O′(Ci))) = 1

]∣∣
≤ neg(q(k)) = neg(k),

38

where the inequality holds because Padq(k)(Ci) and O′(Ci) are two circuits of size q(k) that compute
the same function whereas O is an indistinguishability obfuscator. Thus,

∣∣Pr
[
A(O(Padq(k)(C1)) = 1

]
− Pr

[
A(O(Padq(k)(C2))) = 1

]∣∣
≤

∣∣Pr
[
A(O(Padq(k)(C1)) = 1

]
− Pr

[
A′(O′(C1)) = 1

]∣∣
+

∣∣Pr
[
A′(O′(C1)) = 1

]
− Pr

[
A′(O′(C2)) = 1

]∣∣
+

∣∣Pr
[
A′(O′(C2)) = 1

]
− Pr

[
A(O(Padq(k)(C2))) = 1

]∣∣
≤ neg(k) +

∣∣Pr
[
A′(O′(C1)) = 1

]
− Pr

[
A′(O′(C2)) = 1

]∣∣ + neg(k),

The proposition follows.

Even with this competitiveness property, it still seems important to have explicit guarantees on
the behavior of an obfuscator on circuits that compute different functions. We now give a definition
that provides such a guarantee, while still avoiding the “virtual black box” paradigm. Roughly
speaking, it says that if it is possible to distinguish the obfuscations of a pair of circuits, then
one can find inputs on which they differ given any pair of circuits that compute the corresponding
functions.

Definition 7.4 (differing-inputs obfuscator) A differing-inputs obfuscator is defined in the
same way as an indistinguishability obfuscator, except that the “indistinguishability” property is
replaced with the following:

• (differing-inputs property) For any PPT A, there is a probabilistic algorithm A′ and a negli-
gible function α such that the following holds. Suppose C1 and C2 are circuits of size k such
that

ε
def
= |Pr [A(O(C1)) = 1]− Pr [A(O(C2)) = 1]| > α(k).

Then, for any C ′1, C
′
2 of size k such that C ′i computes the same function as Ci for i = 1, 2,

A′(C ′1, C
′
2) outputs an input on which C1 and C2 differ in time poly(k, 1/(ε − α(k))).

Indeed, this definition implies that of indistinguishability obfuscators, because if C1 and C2 compute
the same function, then A′ can never find an input on which they differ and hence ε must be
negligible.

8 Watermarking and Obfuscation

Generally speaking, (fragile) watermarking is the problem of embedding a message in an object
such that the message is difficult to remove without “ruining” the object. Most of the work on
watermarking has focused on watermarking perceptual objects, e.g., images or audio files. (See
the surveys [MMS+, PAK].) Here we concentrate on watermarking programs, as in [CT, NSS].
A watermarking scheme should consist of a marking algorithm that embeds a message m into a
given program, and an extraction algorithm that extracts the message from a marked program.
Intuitively, the following properties should be satisfied:

• (functionality) The marked program computes the same function as the original program.

• (meaningfulness) Most programs are unmarked.

39

• (fragility) It is infeasible to remove the mark from the program without (substantially) chang-
ing its behavior.

There are various heuristic methods for software watermarking in the literature (cf., [CT]), but
as with obfuscation, there has been little theoretical work on this problem in general. Here we do not
attempt to provide a thorough definitional treatment of software watermarking, but rather consider
a couple of weak formalizations which we relate to our results on obfuscation. The difficulty in
formalizing watermarking arises, of course, from the need to properly capture the fragility property.
Note that it is easy to remove a watermark from programs for functions that are exactly learnable
with queries (by using the learning algorithm to generate a new program (for the function) that is
independent of the marking). A natural question is whether learnable functions are the only ones
that cause problems. That is, can the following definition be satisfied?

Definition 8.1 (software watermarking) A (software) watermarking scheme is a pair of (keyed)
probabilistic algorithms (Mark,Extract) satisfying the following properties:

• (functionality) For every circuit C, key K, and message m, the string MarkK(C,m) describes
a circuit that computes the same function as C.

• (polynomial slowdown) There is a polynomial p such that for every circuit C, it holds that
|MarkK(C,m)| ≤ p(|C|+ |m|+ |K|).

• (extraction) For every circuit C, key K, and message m, it holds that ExtractK(MarkK(C,m)) =
m.

• (meaningfulness) For every circuit C, it holds that PrK [ExtractK(C) 6= ⊥] = neg(|C|).
• (fragility) For every PPT A, there is a PPT S such that for every C and m, it holds that

Pr
K

[
A(MarkK(C,m)) = C ′ s.t. C ′ ≡ C and ExtractK(C ′) 6= m

]

≤ Pr
[
SC(1|C|) = C ′ s.t. C ′ ≡ C

]
+ neg(|C|),

where K is uniformly selected in {0, 1}max(|C|,|m|), and C ′ ≡ C means that C ′ and C compute
the same function.

We say that the scheme is efficient if Mark and Extract run in polynomial time.

Actually, a stronger fragility property than the foregoing one is probably desirable; the foregoing
definition does not exclude the possibility that the adversary can remove the watermark by changing
the value the function at a single location. However, as shown next, even the former minimal
definition is impossible to meet.

Theorem 8.2 If one-way functions exist, then no watermarking scheme in the sense of Defini-
tion 8.1 exists.

Proof Sketch: Consider the unobfuscatable circuit ensemble guaranteed by Theorem 3.10. No
matter how we try to produce a marked circuit from C

R← H, the algorithm guaranteed by the
reverse-engineerability condition in Definition 3.1 can reconstruct the source code C, which (by
the meaningfulness property) is unmarked with high probability. On the other hand, any potential
simulator, given just oracle access to C, will be unable to produce any circuit computing the same
function (since if it could, then it could compute π(C), which is pseudorandom). 2

40

Corollary 8.3 Efficient watermarking schemes in the sense of Definition 8.1 do not exist (uncon-
ditionally).

Proof Sketch: As usual, it suffices to show that the existence of an efficient watermarking scheme
implies the existence of one-way function. Consider, for example, the mapping of K,α ∈ {0, 1}n
to MarkK(Cα, 0n), where Cα(x) = 1 iff x = α. Observe that no simulator S, which is given
oracle access to Cα, can find a circuit that is computationally equivalent to Cα, but inverting
this map enables the recovery of α, which in turn allows to construct an unmarked circuit that is
computationally equivalent to Cα. 2

Given these impossibility results, we are led to seek the weakest possible formulation of the
fragility condition, requiring that any adversary occasionally fails to remove the mark (i.e., there
exists a circuit and a message such that the adversary fails to remove the corresponding marking
with noticeable probability).

Definition 8.4 (occasional watermarking) An occasional software watermarking scheme is de-
fined in the same way as Definition 8.1, except that the fragility condition is replaced with the
following:

• For every PPT A, there exists a circuit C and a message m such that

Pr
K

[
A(MarkK(C,m)) = C ′ s.t. C ′ ≡ C and ExtractK(C ′) 6= m

]
≤ 1− 1/poly(|C|),

where K is uniformly selected in {0, 1}max(|C|,|m|).

Interestingly, in contrast to the connection suggested by the proof of Theorem 8.2, this weak notion
of watermarking is inconsistent with obfuscation (even the weakest notion we proposed in Section 7).

Proposition 8.5 Occasional software watermarking schemes and efficient indistinguishability ob-
fuscators (as in Definition 7.1) cannot both exist. Actually, here we require the watermarking scheme
to satisfy the additional natural condition that |MarkK(C,m)| = q(|C|) for some fixed polynomial
q and all |C| = |m| = |K|.

Proof: We view the obfuscator O as a “watermark remover.” By functionality of watermarking
and obfuscation, for every circuit C and key K, it holds that O(MarkK(C, 1|C|)) is a circuit com-
puting the same function as C. Let C ′ be a padding of C to the same length as MarkK(C, 1|C|).
By fragility, ExtractK(O(MarkK(C, 1))) = 1 with nonnegligible probability. By meaningfulness,
ExtractK(O(C ′)) = 1 with negligible probability. Thus, ExtractK distinguishes between O(C ′) and
O(MarkK(C, 1|C|)), contradicting the indistinguishability property of O.

Note that this proposition fails if we allow MarkK(C,m) to instead be an approximate imple-
mentation of C in the sense of Definition 4.1. Indeed, in such a case it seems that obfuscators
would be useful in constructing watermarking schemes, because a watermark could be embedded
by changing the value of the function at a random input, after which an obfuscator is used to
“hide” this change. Note that approximation may also be relevant in (possible strengthening of)
the fragility condition, because it is desirable to prevent adversaries from producing unmarked
approximate implementations of the marked program.

As with obfuscation, positive theoretical results about watermarking would be very welcome.
One approach, taken by Naccache, Shamir, and Stern [NSS], is to find watermarking schemes for
specific useful families of functions.

41

9 Research Directions and Subsequent Work

We have shown that obfuscation, as it is typically understood (i.e., satisfying a virtual black-box
property), is impossible. However, we view it as an important research direction to explore whether
there are alternative senses in which programs can be made “unintelligible.” These include (but are
not limited to) the following notions of obfuscation, which are not ruled out by our impossibility
results:

• Indistinguishability (or differing-input) obfuscators, as in Definition 7.1 (or Definition 7.4,
respectively).

• Sampling obfuscators, as in Definition 6.1.

• Obfuscators that only have to approximately preserve functionality with respect to a specified
distribution on inputs, such as the uniform distribution. (In Section 4.1, we have ruled out a
obfuscators with approximately preserve functionality in a stronger sense; see discussion after
Theorem 4.3.)

• Obfuscators for a restricted, yet still nontrivial, class of functions. By Theorem 4.12, any such
class of functions should not contain TC0. That leaves only very weak complexity classes
(e.g., AC0, read-once branching programs), but the class of functions need not be restricted
only by “computational” power; syntactic or functional restrictions may offer a more fruitful
avenue. We mention that the constructions of [Can, CMR] can be viewed as some form of
obfuscators for “point functions” (i.e., functions f : {0, 1}n → {0, 1} that take on the value 1
at exactly one point in {0, 1}n.)

In addition to obfuscation, related problems such as homomorphic encryption and software water-
marking are also little understood. For software watermarking, even finding a reasonable formal-
ization of the problem (which, unlike Definition 8.1, is not ruled out by our constructions) seems
to be challenging, whereas for homomorphic encryption, the definitions are (more) straightforward,
but the question of existence seems very challenging.

Finally, our investigation of complexity-theoretic analogues of Rice’s theorem has left open
questions, such as whether Conjecture 5.1 holds.

Subsequent Work. Subsequent to the original version of this paper [BGI+], a number of other
works have continued to develop our theoretical understanding of the possibility and limitations of
obfuscation. The paper [GK] provides negative results for obfuscating natural and cryptographi-
cally useful functionalities (as opposed to our contrived functionalities), with respect to a stronger
definition of security. The papers [LPS, Wee, DS, NS1, NS2] explore the possibility of obfuscating
simple but useful functionalities such as “point functions” and generalizations, a line of work begun
in the work of [Can, CMR], which preceded our work. The papers [HMS, HRSV] propose defini-
tions of obfuscation that are suitable for cryptographic applications (strengthening Definition 2.2
in some respects and weakening it in others), and [HRSV] shows how to obfuscate a specific “re-
encryption” functionality with respect to one of these definitions. The paper [GR] proposes and
explores a definition of obfuscation that does not fall within the scope of our impossibility result
(and is closely related to our notion of indistinguishability obfuscators from Definition 7.1).

42

Acknowledgments

We are grateful to Luca Trevisan for collaboration at an early stage of this research. We also thank
Dan Boneh, Ran Canetti, Manoj Prabhakaran, Michael Rabin, Emanuele Viola, Yacov Yacobi, and
the anonymous reviewers of CRYPTO’01 and JACM for helpful discussions and comments.

Most of this work was done when Boaz Barak was a graduate student in Weizmann Institute
of Science, Amit Sahai was a graduate student at MIT (supported by an DOD/NDSEG Graduate
Fellowship), Salil Vadhan was a graduate student and a postdoctoral fellow at MIT (supported by
a DOD/NDSEG Graduate Fellowship and an NSF Mathematical Sciences Postdoctoral Research
Fellowship), and Ke Yang was a graduate student at CMU. Further support for this work was pro-
vided to Boaz Barak by NSF grants CNS-0627526 and CCF-0426582, US-Israel BSF grant 2004288
and Packard and Sloan fellowships, to Oded Goldreich by the Minerva Foundation (Germany) and
the Israel Science Foundation (grant No. 460/05), to Amit Sahai by a Sloan Research Fellowship,
an Okawa Research Award, and NSF grants CNS-0627781, CCR-0456717, CCR-0312809, CCR-
0205594, and CNS-0716389, and to Salil Vadhan by NSF grants CNS-0430336 and CNS-0831289,
a Guggenheim Fellowship, and the Miller Institute for Basic Research in Science.

References

[Bar1] B. Barak. How to go beyond the black-box simulation barrier. In 42nd IEEE Sympo-
sium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 106–115. IEEE
Computer Soc., Los Alamitos, CA, 2001.

[Bar2] B. Barak. Can We Obfuscate Programs? Essay, 2002. http://www.cs.princeton.edu/
∼boaz/Papers/obf informal.html.

[BGI+] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (Im)possibility of Obfuscating Programs. In J. Kilian, editor, Advances in
Cryptology—CRYPTO ‘01, volume 2139 of Lecture Notes in Computer Science, pages
1–18. Springer-Verlag, 19–23 August 2001. Preliminary full versions appeared in the
ECCC and eprint archives.

[BR] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the First Annual Conference on Computer and Com-
munications Security. ACM, November 1993.

[BL] D. Boneh and R. Lipton. Algorithms for Black-Box Fields and their Applications to
Cryptography. In M. Wiener, editor, Advances in Cryptology—CRYPTO ’96, volume
1109 of Lecture Notes in Computer Science, pages 283–297. Springer-Verlag, Aug. 1996.

[BS] B. Borchert and F. Stephan. Looking for an analogue of Rice’s theorem in circuit com-
plexity theory. Mathematical Logic Quarterly, 46(4):489–504, 2000.

[Can] R. Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All Partial
Information. In B. S. K. Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer
Science, pages 455–469. Springer, 1997.

43

[CGH] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages
209–218, Dallas, 23–26 May 1998.

[CMR] R. Canetti, D. Micciancio, and O. Reingold. Perfectly One-Way Probabilistic Hash Func-
tions. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
pages 131–140, Dallas, 23–26 May 1998.

[CT] C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation –
Tools for Software Protection. Technical Report TR00-03, The Department of Computer
Science, University of Arizona, Feb. 2000.

[DDPY] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. Image Density is Complete
for Non-interactive-SZK. In Automata, Languages and Programming, 25th International
Colloquium, Lecture Notes in Computer Science, pages 784–795, Aalborg, Denmark, 13–
17 July 1998. Springer-Verlag. See also preliminary draft of full version, May 1999.

[DH] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[DS] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In H. N.
Gabow and R. Fagin, editors, STOC, pages 654–663. ACM, 2005.

[DDN] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Com-
puting, 30(2):391–437 (electronic), 2000.

[DNRS] C. Dwork, M. Naor, O. Reingold, L. J. Stockmeyer. Magic Functions. J. ACM 50(6):
852-921 (2003)

[ESY] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, 61(2):159–173, 1984.

[FM] J. Feigenbaum and M. Merritt, editors. Distributed computing and cryptography, Provi-
dence, RI, 1991. American Mathematical Society.

[FS] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Advances in cryptology—CRYPTO ’86 (Santa Barbara, Calif.,
1986), pages 186–194. Springer, Berlin, 1987.

[GF] H. N. Gabow and R. Fagin, editors. Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. ACM, 2005.

[GT] R. Gennaro and L. Trevisan. Lower Bounds on the Efficiency of Generic Cryptographic
Constructions. In 41st Annual Symposium on Foundations of Computer Science, Redondo
Beach, CA, 17–19 Oct. 2000. IEEE.

[Gol1] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge, 2001.

[Gol2] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, Cambridge, 2004.

44

[GGM] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the Association for Computing Machinery, 33(4):792–807, 1986.

[GO] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996.

[GSV] O. Goldreich, A. Sahai, and S. Vadhan. Can Statistical Zero-Knowledge be Made Non-
Interactive?, or On the Relationship of SZK and NISZK. In Advances in Cryptology—
CRYPTO ’99, Lecture Notes in Computer Science. Springer-Verlag, 1999, 15–19 Aug.
1999. To appear.

[GK] S. Goldwasser and Y. T. Kalai. On the Impossibility of Obfuscation with Auxiliary Input.
In FOCS, pages 553–562. IEEE Computer Society, 2005.

[GM] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28(2):270–299, Apr. 1984.

[GR] S. Goldwasser and G. N. Rothblum. On Best-Possible Obfuscation. In TCC, pages 194–
213, 2007.

[Had] S. Hada. Zero-Knowledge and Code Obfuscation. In T. Okamoto, editor, Advances in
Cryptology – ASIACRYPT ’ 2000, Lecture Notes in Computer Science, pages 443–457,
Kyoto, Japan, 2000. International Association for Cryptologic Research, Springer-Verlag,
Berlin Germany.

[HILL] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28(4):1364–1396 (electronic), 1999.

[HR] L. A. Hemaspaandra and J. Rothe. A second step towards complexity-theoretic analogs
of Rice’s Theorem. Theoretical Compututer Science, 244(1–2):205–217, 2000.

[HT] L. A. Hemaspaandra and M. Thakur. Lower bounds and the hardness of counting prop-
erties. Theoretical Computer Science, 326(1-3):1–28, 2004.

[HMS] D. Hofheinz, J. Malone-Lee, and M. Stam. Obfuscation for Cryptographic Purposes. In
TCC, pages 214–232, 2007.

[HRSV] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely Obfuscating
Re-encryption. In TCC, pages 233–252, 2007.

[IL] R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity Based
Cryptography (Extended Abstract). In 30th Annual Symposium on Foundations of Com-
puter Science, pages 230–235, Research Triangle Park, North Carolina, 30 Oct.–1 Nov.
1989. IEEE.

[KY] J. Katz and M. Yung. Complete Characterization of Security Notions for Private-Key
Encryption. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pages 245–254, Portland, OR, May 2000. ACM.

[KV] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT
Press, Cambridge, MA, 1994.

45

[LR] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing, 17(2):373–386, 1988. Special issue on
cryptography.

[LPS] B. Lynn, M. Prabhakaran, and A. Sahai. Positive Results and Techniques for Obfuscation.
In C. Cachin and J. Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 20–39. Springer, 2004.

[MMS+] L. R. Matheson, S. G. Mitchell, T. G. Shamoon, R. E. Tarjan, and F. Zane. Robust-
ness and Security of Digital Watermarks. In H. Imai and Y. Zheng, editors, Financial
Cryptography—FC ’98, volume 1465 of Lecture Notes in Computer Science, pages 227–
240. Springer, Feb. 1998.

[NSS] D. Naccache, A. Shamir, and J. P. Stern. How to Copyright a Function? In H. Imai and
Y. Zheng, editors, Public Key Cryptography—PKC ’99, volume 1560 of Lecture Notes in
Computer Science, pages 188–196. Springer-Verlag, Mar. 1999.

[NR] M. Naor and O. Reingold. Number-theoretic Constructions of Efficient Pseudo-random
Functions. In 38th Annual Symposium on Foundations of Computer Science, pages 458–
467, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.

[NS1] A. Narayanan and V. Shmatikov. Obfuscated databases and group privacy. In V. Atluri,
C. Meadows, and A. Juels, editors, ACM Conference on Computer and Communications
Security, pages 102–111. ACM, 2005.

[NS2] A. Narayanan and V. Shmatikov. On the Limits of Point Function Obfuscation. Cryp-
tology ePrint Archive, Report 2006/182, 2006. http://eprint.iacr.org/.

[PAK] F. A. P. Petitcolas, R. J. Anderson, and M. J. Kuhn. Information Hiding — A Survey.
Proceedings of the IEEE, 87(7):1062–1078, 1999.

[RAD] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of secure computation (Workshop, Georgia Inst. Tech., Atlanta,
Ga., 1977), pages 169–179. Academic, New York, 1978.

[SV] A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge. Journal of
the ACM, 50(2):196–249, March 2003.

[SYY] T. Sander, A. Young, and M. Yung. Non-interactive Cryptocomputing for NC1. In 40th
Annual Symposium on Foundations of Computer Science, pages 554–566, New York, NY,
17–19 Oct. 1999. IEEE.

[Sip] M. Sipser. Introduction to the Theory of Computation. Course Technology, 2nd edition,
2005.

[vD] F. van Dorsselaer. Obsolescent Feature. Winning entry for the 1998 International Obfus-
cated C Code Contest, 1998. http://www.ioccc.org/.

[Wee] H. Wee. On obfuscating point functions. In H. N. Gabow and R. Fagin, editors, STOC,
pages 523–532. ACM, 2005.

46

A Generalizing Rice’s Theorem to Promise Problems

We say that an algorithm A decides the promise problem Π = (ΠY ,ΠN) if

x ∈ ΠY ⇒ A(x) = 1

x ∈ ΠN ⇒ A(x) = 0

In such a case, we say that Π is decidable. We say that Π is closed under [·] if, for all pairs (M,M ′)
such that [M] ≡ [M ′], it holds that M ∈ ΠY iff M ′ ∈ ΠY , and similarly M ∈ ΠN iff M ′ ∈ ΠN . The
straightforward way to generalize Rice’s Theorem to promise problems is the following:

Conjecture A.1 (Rice’s Theorem — naive generalization) Let Π = (ΠY ,ΠN) be any promise
problem closed under [·]. If Π is decidable, then Π is trivial in the sense that either ΠY = ∅ or
ΠN = ∅.

This generalization is really too naive. Consider the following promise problem (ΠY ,ΠN)

ΠY = {M : M always halts and M(0) = 1}
ΠN = {M : M always halts and M(0) = 0}

It is obviously decidable, non-trivial, and closed under [·].
Our next attempt at generalizing Rice’s Theorem to promise problems is based on the idea of

a simulator, which we use to formalize the interpretation of Rice’s Theorem as saying that “the
only useful thing you can do with a machine is run it.” Recall that for a Turing machine M , the
function 〈M〉(1t, x) is defined to be y if M(x) halts within t steps with output y, and ⊥ otherwise.

Theorem A.2 (Rice’s Theorem — second generalization) Let Π = (ΠY ,ΠN) be any promise
problem closed under [·]. If Π is decidable, then there exists a Turing machine S such that

M ∈ ΠY ⇒ S〈M〉(1|M |) = 1

M ∈ ΠN ⇒ S〈M〉(1|M |) = 0

Note the similarity to Conjecture 5.2.

Proof: Suppose that Π = (ΠY ,ΠN) is decided by the Turing machine T . We will build a machine
S that will satisfy the conclusion of the theorem.

We say that a machine N is n-compatible with a machine M if 〈N〉(1t, x) = 〈M〉(1t, x) for all
|x|, t ≤ n. Note that:

1. n-compatibility with M can be decided using oracle access to 〈M〉.

2. M is n-compatible with itself for all n.

3. If [M] 6≡ [N] then there exists a number n′ such that N is not n-compatible with M for all
n > n′.

4. It may be the case than [M] ≡ [N] but N is not n-compatible with M for some n.

47

With oracle 〈M〉 and input 1|M |, S does the following for n = 0, 1, 2, . . .:

1. Compute the set Sn that consists of all the machines of size |M | that are n-compatible with
M (this can be done in finite time as there are only finitely many machines of size |M |).

2. Run T on all the machines in Sn for n steps. If T halts on all these machines and returns the
same answer σ, then halt and return σ. Otherwise, continue.

It is clear that if S halts then it returns the same answer as T (M). This is because M is
n-compatible with itself for all n and so M ∈ Sn for all n.

We claim that S always halts. For any machine N of size |M | such that [N] 6≡ [M] , there’s a
number n′ such that N is not in Sn for all n > n′. Since there are only finitely many such machines,
there’s a number n′′ such that all the machines N ∈ Sn for n > n′′ satisfy [N] ≡ [M]. For any such
machine N with [N] ≡ [M] , T halts after a finite number of steps and outputs the same answer
as T (M). Again, since there are only finitely many of them , there’s a number n > n′′ such that T
halts on all the machines of Sn in n steps and returns the same answer as T (M).

Our previous proof relied heavily on the fact that the simulator was given an upper bound on
the size of the machine M . While in the context of complexity we gave this length to the simulator
to allow it enough running time, one may wonder whether it is justifiable to give this bound to the
simulator in the computability context. In other words, it is natural to consider also the following
way to generalize Rice’s Theorem:

Conjecture A.3 (Rice’s Theorem — third generalization) Let Π = (ΠY ,ΠN) be any promise
problem closed under [·]. If Π is decidable, then there exists a Turing machine S such that

M ∈ ΠY ⇒ S〈M〉() = 1

M ∈ ΠN ⇒ S〈M〉() = 0

It turns out that this small change makes a difference.

Theorem A.4 Conjecture A.3 is false.

Proof: Consider the following promise problem Π = (ΠY ,ΠN):

ΠY = {M : M always halts and ∃x < KC([M]) s.t. [M](x) = 1}
ΠN = {M : M always halts and ∀x M(x) = 0}

where KC(f) denotes the description length of the smallest Turing machine that computes the
partial recursive function f . It is obvious that Π is closed under [·].

We claim that Π is decidable. Indeed, consider the following Turing machine T : On input M ,
T invokes M(x) for all x < |M | and returns 1 iff it gets a non-zero answer. Since any machine in
ΠY ∪ ΠN always halts, T halts in finite time. If T returns 1 then certainly M is not in ΠN . If
M ∈ ΠY then M(x) = 1 for some x < KC([M]) ≤ |M | and so T returns 1.

We claim that Π is not trivial in the sense of Conjecture A.3. Indeed, suppose for contradiction
that there exists a simulator S such that

M ∈ ΠY ⇒ S〈M〉() = 1

48

M ∈ ΠN ⇒ S〈M〉() = 0

Consider the machine Z that reads its input and then returns 0. We have that

〈Z〉(1t, x) =
{⊥ t < |x|

0 otherwise

As Z ∈ ΠN , we know that S〈Z〉() will halt after a finite time and return 0. Let n be an upper
bound on |x| and t over all oracle queries (1t, x) of S〈Z〉().

Let r be a string of Kolmogorov complexity 2n. Consider the machine Nn,r that computes the
following function,

Nn,r(x) =





0 |x| ≤ n
1 |x| = n + 1
r |x| ≥ n + 2

and runs in time |x| on inputs x such that |x| ≤ n.
For any t, |x| ≤ n, 〈Z〉(1t, x) = 〈Nn,r〉(1t, x). Therefore S〈Nn,r〉() = S〈Z〉() = 0. But Nn,r ∈ ΠY

since Nn,r(n + 1) = 1 and KC([Nn,r]) > n + 1. This contradicts the assumption that S decides
Π.

B Pseudorandom Oracles

In this section, we sketch a proof of the following lemma, which states that a random function is a
pseudorandom generator relative to itself with high probability.

Lemma B.1 (Claim 4.14.2, restated) There is a constant δ > 0 such that the following holds
for all sufficiently large K and any L ≥ K2. Let D be an algorithm that makes at most Kδ oracle
queries and let G be a random injective function G : [K] → [L]. Then with probability at least

1− 2−Kδ
over G, ∣∣∣∣ Pr

x∈[K]

[
DG(G(x)) = 1

]
− Pr

y∈[L]

[
DG(y) = 1

]∣∣∣∣ ≤
1

Kδ
. (7)

We prove the lemma via a counting argument in the style of Gennaro and Trevisan’s proof that
a random permutation is one-way against nonuniform adversaries [GT]. Specifically, we will show
that “most” G for which Inequality (7) fails have a “short” description given D, and hence there
cannot be too many of them.

Let G be the collection of G’s for which Inequality (7) fails (for a sufficiently small δ, whose
value is implicit in the proof below). We begin by arguing that, for every G ∈ G, there is a large
set SG ⊂ [K] of inputs on which D’s behavior is “independent,” in the sense that for x ∈ SG,
none of the oracle queries made in the execution of DG(G(x)) are at points in SG, yet D still has
nonnegligible advantage in distinguishing G(x) from random. Actually, we will not be able to afford
specifying SG when we “describe” G, so we actually show that there is a fixed set S (independent of
G) such that for most G, the desired set SG can be obtained by just throwing out a small number
of elements from S.

Claim B.1.1 There is a set S ⊂ [K] with |S| = K1−5δ, and G′ ⊂ G with |G′| = |G|/2 such that for
all G ∈ G′, there is a set SG ⊂ S with the following properties:

1. |SG| = (1− γ)|S|, where γ = K−3δ.

49

2. If x ∈ SG, then DG(G(x)) never queries its oracle at an element of SG.

3. ∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]∣∣∣∣ >
1

2Kδ
,

where LG
def
= [L] \G([K] \SG). (Note that LG contains more than a 1−K/L fraction of L.)

Proof: First consider choosing both a random G
R← G and a random S (among subsets of [K]

of size K1−5δ). We will show that with probability at least 1/2, there is a good subset SG ⊂ S
satisfying Properties 1–3. By averaging, this implies that there is a fixed set S for which a good
subset exists for at least half the G ∈ G, as desired. Let’s begin with Property 2. For a random
G, S, and a random x ∈ S, note that DG(G(x)) initially has no information about S, which is a
random set of density K−5δ. Since D makes at most Kδ queries, the probability that it queries
its oracle at some element of S is at most Kδ ·K−5δ = K−4δ. Thus, with probability at least 3/4
over G and S, DG(G(x)) queries its oracle at an element of S for at most a 4/K−4δ < γ fraction of
x ∈ S. Throwing out this γ fraction of elements of S gives a set SG satisfying Properties 1 and 2.

Now let’s turn to Property 3. By a Chernoff-like bound, with probability at least 1−exp(Ω(K1−5δ ·
(K−δ)2)) > 3/4 over the choice of S,

∣∣∣∣ Pr
x∈S

[
DG(G(x)) = 1

]
− Pr

x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣ ≤
1

4Kδ
.

Then we have:
∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]∣∣∣∣

≥
∣∣∣∣ Pr
x∈[K]

[
DG(G(x)) = 1

]
− Pr

y∈[L]

[
DG(y) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

x∈[S]

[
DG(G(x)) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
x∈S

[
DG(G(x)) = 1

]
− Pr

x∈[K]

[
DG(G(x)) = 1

]∣∣∣∣

−
∣∣∣∣ Pr
y∈[L]

[
DG(y) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]∣∣∣∣

> 1/Kδ − γ − 1/4Kδ −K/L

> 1/2Kδ

Now we show how the above claim implies that every G ∈ G′ has a “small” description.

Claim B.1.2 Every G ∈ G′ can be uniquely described by (log B)− Ω(K1−7δ) bits given D, where
B is the number of injective functions from [K] to [L].

50

Proof: For starters, the description of G will contains the set SG and the values of G(x) for all
x /∈ SG. Now we’d like to argue that this information is enough to determine DG(y) for all y. This
won’t exactly be the case, but rather we’ll show how to compute MG(y) for some M that is “as
good” as D. From Property 3 in Claim B.1.1, we have

Pr
x∈SG

[
DG(G(x)) = 1

]
− Pr

y∈LG

[
DG(y) = 1

]
>

1

2Kδ
.

(We’ve dropped the absolute values. The other case is handled analogously, and the only cost is one
bit to describe which case holds.) We will describe an algorithm M for which the same inequality
holds, yet M will only use the information in our description of G instead of making oracle queries
to G. Specifically, on input y, M simulates D(y), except that it handles each oracle query z as
follows:

1. If z /∈ SG, then M responds with G(z) (This information is included in our description of G).

2. If z ∈ SG, then M halts and outputs 0. (By Property 2 of Claim B.1.1, this cannot happen
if y ∈ G(SG), hence outputting 0 only improves M ’s distinguishing gap.)

Thus, given SG and G|[K]\SG
, we have a function M satisfying

Pr
x∈SG

[M(G(x)) = 1]− Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(8)

To complete the description of G, we must specify G|SG
, which we can think of as first specifying

the image T = G(SG) ⊂ LG and then the bijection G : SG → T . However, we can save in our
description because T is constrained by Inequality (8), which can be rewritten as:

Pr
y∈T

[M(y) = 1]− Pr
y∈LG

[M(y) = 1] >
1

2Kδ
(9)

Chernoff Bounds say that most large subsets are good approximators of the average of a Boolean
function. Specifically, at most a exp(−Ω((1 − γ)K1−5δ · (K−δ)2)) = exp(−Ω(K1−7δ)) fraction of
sets T ⊂ LG of size (1− γ)K1−5δ satisfy Equation 9.

Thus, using M , we have “saved” Ω(K1−7δ) bits in describing G(SG) (over the standard “truth-
table” representation of a function G). However, we had to describe the set SG itself, which would
have been unnecessary in the truth-table representation. Fortunately, we only need to describe

SG as a subset of S, and this only costs log
(

K1−5δ

(1−γ)K1−5δ

)
= O(H2(γ)K1−5δ) < O(K1−8δ log K) bits

(where H2(γ) = O(γ log(1/γ)) denotes the binary entropy function). So we have a net savings of
Ω(K1−7δ)−O(K1−8δ log K) = Ω(K1−7δ) bits.

From Claim B.1.2, G′ can consist of at most an exp(−Ω(K1−7δ)) < K−δ/2 fraction of injective
functions [K]→ [L], and thus G has density smaller than K−δ, as desired.

C Obfuscation and the Fiat–Shamir transformation

In this section, we briefly revisit the question considered in Proposition 4.11: Namely, whether
the random oracle used for the Fiat–Shamir transformation can be “instantiated” by obfuscating

51

a function chosen randomly from a pseudo-random function ensemble. In Proposition 4.11, we
showed that for any (3-round) public-coin honest-verifier zero-knowledge identification protocol,
there exists a contrived pseudorandom function ensemble such that if the random oracle is replaced
with any public circuit that computes any function in that ensemble, then the signature scheme
obtained by applying the Fiat–Shamir transformation is insecure. In fact, we showed that the
resulting signature scheme is insecure in the strong sense that an adversary can forge a signature
given only the public record of the signer.

Here, we show that a similar but weaker attack applies when applying the Fiat–Shamir trans-
formation to any public-coin identification scheme. The attack is weaker in that the adversary
must first obtain a valid signature on a fixed message, and only then it is able to produce a forged
signature on another message.29 At a high level, the attack proceeds similarly to our previous
attack but instead of “implanting” a hidden simulation into the pseudorandom function ensemble,
it implants a known collision into the pseudorandom function ensemble.

Proposition C.1 Let (P, V) be an arbitrary 3-round public-coin identification protocol, and con-
sider the signature scheme in which message m is signed by sending the transcript that corresponds
to an interaction of (P, V)(ρ), where ρ is the signer’s public record/key and the verifier message
in the interaction is replaced by the application of the Random Oracle to the pair (m,a) such that
a is the first message sent by P . Suppose that one-way functions exists.Then, there exists a pseu-
dorandom function ensemble {hK}K∈{0,1}∗ such that replacing the random oracle in the foregoing
scheme by any public circuit that computes any hK , yields an insecure scheme, in the sense that an
attacker can forge a valid signature given only the signer’s public record/key and a single signature
on a fixed message.

Proof Sketch: Starting with an arbitrary pseudorandom function ensemble, denoted {fs}, we
consider the function ensemble {f ′s,m0

} defined (for polynomially related |s| and |m0|) by

f ′s,m0
(x ◦ y, z)

def
=

{
fs(0

|m0| ◦ y, z) if x = m0

fs(x ◦ y, z) otherwise

Note that the resulting ensemble preserves the pseudorandomness of the original one, since the
modified inputs are extremely rare (and the adversary lacks any information regarding their iden-
tity). On the other hand, given the seed of a function (i.e., s,m0), note that any valid sig-
nature (a, b, c) on the message 0|m0| is itself a forged signature for the message m0 ◦ ρ since
b = f ′s,m0

(0|m0| ◦ ρ, a) = f ′s,m0
(m0 ◦ ρ, a) by construction. The remainder of the proof is identi-

cal to the proof of Proposition 4.11. 2

Remark C.2 We first note that the foregoing argument extends to any multi-round public-coin
identification protocols. Secondly we note that, while (in contrast to Proposition 4.11) the foregoing
attack applies to any public-coin identification scheme, this wider applicability comes with some
inherent limitations. To see this, let (G,S, V) be a secure signature scheme and consider the
following simple public-coin identification protocol. The signer uses G to generate a signing key
SK and a verification key V K. The public record of the identification record is ρ = V K. The
identification protocol starts by having the signer send V K to the verifier. The verifier responds
with a long random string r. The final message of the protocol is a signature on r using the signing
key SK. Clearly, this protocol is a secure identification protocol. We make two observations:

29While this attack is weaker than the one obtained in Proposition 4.11, we note that nevertheless the current
attack shows that the resulting signature scheme is not even a one-time signature scheme.

52

1. The foregoing identification protocol is not zero-knowledge in a strong sense: Given only the
public record V K, it is not possible to generate an accepting transcript of the protocol (as
this would contradict the security of the signature scheme). This shows that if one applied the
Fiat–Shamir transformation to this protocol with any function replacing the random oracle,
the resulting signature scheme would not allow for forgeries given only the public record.
This is in strong contrast to the situation in Proposition 4.11, where we show that forgery is
possible given only the public record.

2. On the other hand, the foregoing identification protocol (unsurprisingly) yields a completely
secure signature scheme when the Fiat–Shamir transformation is applied with the random
oracle replaced with a randomly chosen hash function from any collision-resistant hash func-
tion ensemble. As such, the foregoing attack can also be seen as ruling out the generic use
of obfuscation to transform a pseudorandom function ensemble into a collision-resistant hash
function ensemble. Again, however, this is in contrast to the case of applying Fiat–Shamir to
general public-coin honest-verifier zero-knowledge protocols, where no general secure method
of instantiating the random oracle is known (see [DNRS] for further discussion).

53

