
On the Theory of Average Case Complexity �Shai Ben-DavidyBenny ChorOded GoldreichzDept. of Computer ScienceTechnion, Haifa, Israel Michael LubyxDept. of Computer ScienceUniversity of Toronto, CanadaandICSI, Berkeley, CA 94704Draft from 1989, minor corrections 1997AbstractThis paper takes the next step in developing the theory of average case complexity initiatedby Leonid A Levin. Previous works [Levin 84, Gurevich 87, Venkatesan and Levin 88] havefocused on the existence of complete problems. We widen the scope to other basic questions incomputational complexity. Our results include:� the equivalence of search and decision problems in the context of average case complexity;� an initial analysis of the structure of distributional-NP (i.e. NP problems coupled with\simple distributions") under reductions which preserve average polynomial-time;� a proof that if all of distributional-NP is in average polynomial-time then non-deterministicexponential-time equals deterministic exponential time (i.e., a collapse in the worst casehierarchy);� de�nitions and basic theorems regarding other complexity classes such as average log-space.An exposition of the basic de�nitions suggested by Levin and suggestions for some alternativede�nitions are provided as well.Remark: This version seems to be a pre-publication draft from 1989. A better version hasappeared in Journal of Computer and system Sciences, Vol. 44, No. 2, April 1992, pp. 193{219.I've corrected some errors which I found while scanning, but did not proofread this version. [O.G.,1997]�An extended abstract has appeared in the Proc. 21st ACM Symp. on Theory of Computing. An abstract hasappeared in the Proc. 4th Conf. on Structure in Complexity Theory.ySupported by Technion V.P.R. Fund - E.N.J. Bishop Research Fund.zPartially supported by grant No. 86-00301 from the United States - Israel Binational Science Foundation (BSF),Jerusalem, Israel.xPartially supported by a Natural Sciences and Engineering Research Council of Canada operating grant A8092and by a University of Toronto grant. 0

1 IntroductionThe average complexity of a problem is, in many cases, a more signi�cant measure than its worstcase complexity. This has motivated the development of a rich area in algorithms research { theprobabilistic analysis of algorithms [Johnson 84, Karp 86]. However, this line of research hasso far been applicable only to speci�c algorithms and with respect to speci�c, typically uniform,probability distributions.The general question of average case complexity was addressed for the �rst time by [Levin84]. Levin's work can be viewed as the basis for a theory of average NP-completeness, much thesame way as [Cook 71] (and [Levin 73]) works are the basis for the theory of NP-completeness.Subsequently [Gurevich 87] has presented several additional complete problems and pointed outlimitations of deterministic reductions in proving completeness results. [Venkatesan and Levin88] showed the completeness, with respect to randomized reductions, of a graph coloring problemwith uniform distribution. In this paper we widen the scope of investigation and consider basiccomputational questions in the context of average case complexity.(A reader not familiar with the basic de�nitions of average-case complexity, may �nd it usefulto read some exposition of these de�nitions before proceeding to the rest of this introduction. Suchan exposition is provided in Section 2 (and the appendices).)An average case complexity class consists of pairs, called distributional problems. Each suchpair consists of a decision (search) problem and a probability distribution on problem instances.Most of our work deals with the class DistNPdef= hNP, P-computablei, de�ned by [Levin 84], whichis a distributional analogue of NP. P-computable is the class of distribution functions that canbe computed in polynomial-time (i.e., there exists a polynomial time algorithm that on input xcomputes the accumulative probability of all strings y � x). The easy distributional problems arethose solvable in average polynomial-time. We denote this class by Average-P. Reductions betweendistributional problems are de�ned in a way guaranteeing that if �1 is reducible to �2 and �2 isin Average-P, then so is �1.A basic question regarding the theory of computational complexity is the relation between searchand decision problems. Unfortunately, the standard polynomial-time Turing reduction of searchproblems to decision problems is not applicable in the distributional context. Instead, we presenta randomized reduction of DistNP search problems to DistNP decision problems. Interestingly,this reduction can be carried out in RNC, yielding a reduction of P search problems to P decisionproblems (cf. [Karp Upfal and Wigderson 85]). Without such a result the study of decision problemsdoes not re
ect the structure of search problems.If DistNP is not a subset of Average-P, then the complete problems in DistNP are not inAverage-P. A natural question is whether every DistNP problem is either in Average-P or com-plete for DistNP. We resolve this question by showing that problems which are neither easy norcomplete do exist. In fact, we show that the structural results of classical complexity theory (e.g.,of [Ladner 75]) can be translated to the distributional context. Furthermore, we de�ne a notion ofone distribution being \harder" than another, and demonstrate a rich structure of distributions.It is not clear whether DistNP � Average-P (even if P 6= NP). We give strong indication thatDistNP is not a subset of Average-P by relating this question to a classical one in (worst case)complexity. Speci�cally, we prove that if DistNP � Average-P then NTime(2O(n)) = DTime(2O(n)).Of all the de�nitions made in [Levin 84] the most controversial one is the association of the classof \simple" distributions with P-computable, which may seem too restricting. We present a widerfamily of natural distributions, P-samplable, which consists of distributions that can be sampledby probabilistic algorithms working in time polynomial in the length of the sample generated. We1

de�ne the class of distribution problems hNP, P-samplablei and present complete problems forthis class. We show that if one-way functions exist, then there are P-samplable distributions thatare \very far" from any P-computable distribution. However, it seems that the distributions inP-samplable are too complicated.Can the theory of average case complexity be meaningfully applied to structures other thanNP with polynomial-time reductions? We believe that the answer is in the a�rmative and suggestde�nitions of distributional-P and average log-space reductions. We exhibit complete distributionalproblems for the class hP, logspace-computablei, relate the distributional question \is hP, logspace-computablei � Average-logspace?" to the worst-case question \is Dspace(n) = DTime(2O(n))?".1.1 OrganizationSection 2 presents the basic de�nitions of the theory of average case complexity. Further discussionof the de�nition of \easy on the average" can be found in Appendix A. Section 3 deals withthe question of search versus decision; Section 4 investigates the structure of DistNP; Section 5relates questions regarding average case complexity to traditional questions of worst-case; Section6 introduces and studies P-samplable distributions; and Section 7 presents de�nitions and resultsfor average logSpace.2 De�nitions and NotationsIn this section we present de�nitions of various concepts that are used throughout the paper. Mostde�nitions originate from [Levin 84], but the reader is advised to look for further explanations andmotivating discussions elsewhere (e.g., [Johnson 84, Gurevich and McCauley 87, Goldreich 88]).For sake of simplicity, we consider the standard lexicographic ordering of binary strings. Any�xed e�cient enumeration will do. (An e�cient enumeration is a 1-1 and onto mapping of stringsto integers which can be computed and inverted in polynomial-time.) By writing x < y we meanthat the string x precedes y in lexicographic order, and y� 1 denotes the immediate predecessor ofy. Also, we associate pairs, triples etc. of binary strings with single binary strings in some standardmanner (i.e. encoding).De�nition: (Probability Distribution Function:) A distribution function � : f0; 1g� ! [0; 1] is anon-decreasing function from strings to the unit interval [0,1] which converges to one (i.e., �(0) � 0,�(x) � �(y) for each x < y, and limx!1 �(x) = 1). The density function associated with thedistribution function � is denoted �0 and de�ned by �0(0) = �(0) and �0(x) = �(x)� �(x � 1) forevery x > 0. Clearly, �(x) =Py�x �0(y).For notational convenience, we often describe distribution functions converging to some c6=1. Inall the cases where we use this convention it is easy to normalize the distribution, so that it convergesto one. An important example is the uniform distribution function �0 de�ned as �00(x) = 1jxj2 2�jxj.De�nition: (A Distributional Problem): A distributional decision problem (resp. distributionalsearch problem) is a pair (D; �) (resp. (S; �)), where D : f0; 1g� ! f0; 1g (resp. S � f0; 1g� �f0; 1g�) and � : f0; 1g�! [0; 1] is a distribution function.In the sequel we consider mainly decision problems. Similar formulations for search problemscan be easily derived. 2

2.1 Average-P and Distributional-NPSimple distributions are identi�ed with the P-computable ones. The importance of restrictingattention to simple distributions is demonstrated in Sections 5 and 6.De�nition: (P-computable): A distribution � is in the class P-computable if there is a determin-istic polynomial time Turing machine that on input x outputs the binary expansion of �(x) (therunning time is polynomial in jxj).It follows that the binary expansion of �(x) has length polynomial in jxj.If the distribution function � is in P-computable then the density function, �0, is computablein time polynomial in jxj. The converse, however, is false, unless P = NP (see [Gurevich andMcCauley 87]). In spite of this remark we usually present the density function and leave to thereader the veri�cation that the corresponding distribution function is in P-computable.We now present the class of distributional problems which corresponds to (the traditional) NP.Most of the results in the paper refer to this class.De�nition: (The class DistNP): A distributional problem (D; �) belongs to the class DistNP if Dis an NP-predicate and � is in P-computable. DistNP is also denoted hNP, P-computablei.The following de�nitions, regarding average polynomial-time, may seem obscure at �rst glance.It is important to point out that the naive formalizations of these de�nitions su�er from seri-ous problems such as not being closed under functional composition of algorithms, being modeldependent, encoding dependent etc. For a more detailed discussion, see Appendix A.De�nition: (Polynomial on the Average): A function f : f0; 1g�! N is polynomial on the averagewith respect to a distribution � if there exists a constant � > 0 such thatXx2f0;1g� �0(x) � f(x)�jxj <1The function l(x) = f(x)� is linear on the average w.r.t. �.Thus, a function is polynomial on the average if it is bounded by a polynomial in a function whichis linear on the average. In fact, the basic de�nition is that of a function which is linear on theaverage; see also De�nitions 2 and 5 (in Sections 5.2 and 7, respectively).De�nition: (The class Average-P): A distributional problem (D; �) is in the class Average-P ifthere exists an algorithm A solving D, so that the running time of A is polynomial on the averagewith respect to the distribution �.We view the classes Average-P and DistNP as the average-case analogue of P and NP (respec-tively). Another candidate for an analogue to NP (denoted Average-NP) is the class of distribu-tional problems which can be solved by a non-deterministic machine running in average polynomialtime with respect to a P-computable distribution. However, we feel that DistNP better addressesthe original motivation of investigating the average case complexity of NP. All known results (e.g.[Levin 84, Gurevich 87, Venkatesan and Levin 88]), as well as the ones shown in this paper, for theclass DistNP hold also for Average-NP.2.2 Reducibility between Distributional ProblemsWe now present de�nitions of (average polynomial time) reductions of one distributional problemto another. Intuitively, such a reduction should be e�ciently computable, yield a valid result and3

\preserve" the probability distribution. The purpose of the last requirement is to ensure thatthe reduction does not map very likely instances of the �rst problem to rare instances of thesecond problem. Otherwise, having a polynomial time on the average algorithm for the seconddistributional problem does not necessarily yield such an algorithm for the �rst distributionalproblem. Following is a de�nition of randomized Turing reductions. De�nitions of deterministicand many-to-one reductions can be easily derived as special cases.De�nition: (Randomized Turing Reductions): We say that the probabilistic oracle Turing machineM randomly reduces the distributional problem (D1; �1) to the distributional problem (D2; �2) ifthe following three conditions hold.1) E�ciency: Machine M is polynomial time on the average taken over x with distribution �1 andthe internal coin tosses of M with uniform probability distribution (i.e., let tM (x; r) be therunning time of M on input x and internal coin tosses r, then there exists � > 0 such thatPx;r �01(x)�00(r) � tM (x;r)�jxj <1, where �0 is the uniform distribution).2) Validity: For every x 2 f0; 1g�, Prob(MD2(x) = D1(x)) � 23where MD2(x) is the random variable (determined by M 's internal coin tosses) which denotesthe output of the oracle machine M on input x and access to oracle for D2.3) Domination: There exists a constant c > 0 such that for every y 2 f0; 1g�,�02(y) � 1jyjc � Xx2f0;1g�AskM(x; y) � �01(x)where AskM(x; y) is the probability (taken over M 's internal coin tosses) that \machine Masks query y on input x".In the de�nition of deterministic Turing reductions MD2(x) is determined by x (rather than beinga random variable) and AskM(x; y) is either 0 or 1 (rather than being any arbitrary rational in[0; 1]).In the rest of the paper whenever we use the term reduction we mean a reduction of distributionalproblems, as de�ned above. We use /T (/TR) to denote deterministic (resp. randomized) Turingreduction, and / and /R to denote many-to-one reductions.It can be proven that if (D1; �1) is deterministically (resp. randomly) reducible to (D2; �2) and if(D2; �2) is solvable by a deterministic (resp. randomized) algorithm with running time polynomialon the average then so is (D1; �1).Reductions are transitive in the special case in which on input x they ask queries of length atleast jxjc, for some constant c > 0. All reductions we present have this property.2.3 A Generic DistNP Complete ProblemThe following distributional version of Bounded Halting, denoted �BH = (BH; �BH), is known tobe DistNP-complete. The proof, presented in Appendix B, is due to [Gurevich 87] (an alternativeproof is implied by [Levin 84]). 4

BH(M;x; 1k) = 1 i� there exists a computation of the non-deterministic machine M on inputx which halts within k steps. The distribution �BH is de�ned in terms of its density function�0BH(M;x; 1k) = (1jM j2 � 2�jMj) � (1jxj2 � 2�jxj) � 1k2Note that �0BH is very di�erent from the uniform distribution on binary strings (e.g., considerrelatively large k).3 Search versus Decision ProblemsIn this section we show that search and decision distributional problems are equivalent with respectto randomized reductions.Before presenting our reduction of distributional search problems to distributional decisionproblems we remark that the standard Turing reduction of a search problems to the correspondingdecision problem does not have the domination property. On input x, the oracle machine triesto �nd a \solution" y by asking an oracle queries of the form \is p a pre�x of a solution to x".Before adapting this reduction to our setting, we need to �x a distribution �2 on the (x; p) pairs. Anatural choice is �02(x; p) = �01(x) � 1jpj2 2�jpj, where �1 is the input distribution to the search problem.However, with this choice of �2, the above reduction violates the domination condition, since when(for example) jpj = jyj=2 the reduction maps an instance of the search problem to a much morerare instance of the decision problem (the ratio of probabilities of these instances is < 2�jyj=2). It'snot clear how to construct polynomial time computable distributions for the above decision problemso that the reduction will satisfy the domination condition.Instead, we reduce every distributional search problem to an appropriate (distributional) de-cision problem in two steps. First, we randomly reduce the (distributional) search problem toa related (distributional) problem with a unique solution. This reduction follows the underlyingprinciples of the proof of [Valiant and Vazirani 85] (see also [Sipser 83] and [Stockmeyer 83]). Next,we reduce such a search problem to a related decision. The reader may easily verify that thesereductions can be performed in fast parallel time (RNC).3.1 Reducing a Search Problem to a Search of Unique SolutionDe�nition 1 : Let S � f0; 1g� � f0; 1g�. The unique solution search problem of S is to �nd, oninput x, the unique y satisfying (x; y) 2 S. If no such y exists or it is not unique then nothing isrequired.Theorem 1 : Let �1 = (S1; �1) 2 DistNP. Then there exists a unique solution search problem�2 = (S2; �2) 2 DistNP such that �1/TR�2.Proof : For sake of simplicity, assume (x; y) 2 S1 implies jxj = jyj. Let n = jxj and Hn;k be a setof universal hash functions (e.g., n� k Boolean matrices) as in [Carter and Wegman 79].De�ne S2 � f0; 1g�� f0; 1g� as follows: (x0; y) 2 S2 for x0 = (x; k; h; �), if (x; y) 2 S1, h 2 Hn;kand h(y) = �. The density function �02 assigns (x; k; h; �) probability �01(x) � n�1 � jHn;kj�12�k ifk 2 f1; 2; : : : ; ng, h 2 Hn;k and � 2 f0; 1gk, and 0 otherwise.The reduction, e�ected by a probabilistic oracle machine M proceeds as follows. On inputx 2 f0; 1gn, machine M tries the following for every value of k 2 f1; 2; : : : ; ng. It selects at5

random with uniform probability distribution an h in Hn;k and � 2 f0; 1gk, makes the oracle query(x; k; h; �) and tests the reply. This is repeated O(1) times.Clearly, M is e�cient. To see that M is a valid reduction consider m = jfy : (x; y) 2 S1gj andsuppose m � 2 (the case m � 1 is easy). Let k = dlog2me if m � 43 � 2dlog2me and k = blog2mcotherwise. Then jm � 2�k� 1j � 13 . For a randomly selected h 2 Hn;k and � 2 f0; 1gk, the expectednumber of y's satisfying (x; y) 2 S1 and h(y) = � is between 23 and 43 . By the properties of universalhashing (i.e., pairwise independence of the images of pairs of points) it follows that the probabilitythat there is a unique y satisfying the above conditions is � 12 (use Chebyshev's inequality). Insuch a case the oracle returns the correct answer (i.e. this y).It is left to verify that the reduction satis�es the domination condition. The quadruple (x; k; h; �)appears as a query of M with probability O(1) � �01(x) � jHn;kj�1 � 2�k while �02(x; k; h; �) = �01(x) �n�1 � jHn;kj�12�k. 2Remarks:� For some problems, like �BH , the proof can be easily modi�ed so that the (search) problem�BH can be reducible to the unique solution (search) problem of �BH . In the case of �BHthis is done by incorporating k; h and � into the input to a slightly modi�ed machine andincreasing the step count. Namely, the problem of �nding a m-step long computation of Mwhich accepts x is randomly reduced to the problem of �nding the unique (m+(mk)O(1))-stepcomputation of M 0 which accepts x0 = (x; k; h; �), where M 0 on input x0 �rst lets M run onx and then checks whether applying h, to an encoding of the non-deterministic moves takenby M , yields �.� Almost the same construction will reduce any DistNP decision problem to an DistNP decisionproblem with unique witnesses.3.2 Reducing Search of Unique Solution to Decision problemTheorem 2 : Let (S1; �1) 2 DistNP be a distributional unique-search problem. Then there existsa distributional decision problem (D2; �2) 2 DistNP such that (S1; �1)/T(D2; �2).Proof : Once again, assume that (x; y) 2 S1 implies jxj = jyj, and let n = jxj. De�ne D2 �f0; 1g� � f0; 1g as follows: For all x, D2(x; i) = � if 1 � i � n and there exists y such that(x; y) 2 S1 and the ith bit of y equals �. For each (x; i), we set �02(x; i) = �01(x) � 1jxj if 1 � i � n,and 0 otherwise.The reduction maps x to the queries (x; 1); (x; 2); : : : ; (x; jxj). Clearly, the reduction is e�cientand valid (i.e. if there exists a unique y such that (x; y) 2 S1 then the bits of y are reconstructed bythe answers to the above queries). Query (x; i) appears with probability �01(x) while �02(x; i) = �01(x)jxj ,hence domination property is satis�ed as well. 2For some problems, like �BH , the proof can be easily modi�ed so that the (search) problem �BHcan be reducible to the decision problem �BH . In the case of �BH this is done by incorporatingi into the input to a slightly modi�ed machine and increasing the step count. On input (x; i) themodi�ed machine uses the �rst choice in its i-th step (instead of performing a non-deterministicchoice).Combining the constructions of Theorems 1 and 2, we have found for every distributional searchproblem �s a related distributional decision problem �d such that �s is randomly reducible to �d.6

Open Problem 1 : Can every distributional search problem (in DistNP) be deterministicallyreduced to some distributional decision problem (in DistNP)?4 On the Structure of DistNP[Ladner 75] has demonstrated the richness of the structure of NP under polynomial reductions.The average case complexity counterpart, DistNP, is not less complex. There are several di�erentways to de�ne a (average-polynomial) \reducibility order" on this class and they all enjoy structuretheorems analogous to those of [Ladner 75]. We present here only some characteristic examples.4.1 Structure of DecisionsThe natural way to de�ne a complexity ordering on the class DistNP is through the reducibilityof distributional problems. Namely, �1 � �2 if �1/�2 (and �1 < �2 if �1 � �2 but not viceversa). Another possibility is to �x a P-computable distribution � and consider the relation ��de�ned on NP by D1 �� D2 i� (D1; �) � (D2; �). Intuitively, D1 �� D2 means that D1 is notharder than D2 with respect to the instance distribution �. Theorem 3 implies that for every � 2P-computable having a NP problem which is not easy on the average with respect to �, there is anin�nite hierarchy on NP with respect to ��. It should be noted that in general the order �� doesnot coincide with the order (�P) induced on NP by the usual polynomial-time reductions; that is,D1; D2 2 NP and D1 �P D2 does not imply D1 �� D2 for a speci�c or for any � 2 P-computable.Theorem 3 : For every computable distribution � and every computable language D1 such that(D1; �) is not in Average-P, there exists a problem (D2; �) such that (D2; �) is also not in Average-P, (D1; �) is not (Turing) reducible to (D2; �), and (D2; �) is (many-to-one) reducible to (D1; �)(i.e., D <� D2 <� D1, for every D 2 P). Furthermore, D2 is logSpace-reducible (i.e., worst casereducible) to D1 (hence, if D1 2 NP then so is D2).Proof : Similar to the proof of Theorem 4 (below), except that we use �� to modify D instead of�. 2Corollary 1 : If DistNP is not contained in Average-P then there exists a problem (D; �) inDistNP which is neither complete for DistNP nor easy on the average.Proof : Apply Theorem 3 to any DistNP-complete problem. 24.2 Structure of DistributionsThere is yet another natural order which emerges in the context of distributional problems: anordering of distributions. We de�ne �1 �D �2 if (D; �1) � (D; �2). Intuitively, �1 �D �2 meansthat the problem D is not harder on input distribution �1 than on distribution �2.Theorem 4 : For every computable distribution �1 and every computable language D such that(D; �1) is not in Average-P, there exists a distribution �2 which is log-space reducible to �1 suchthat (D; �2) is not in Average-P, (D; �1) is not (Turing) reducible to (D; �2), and (D; �2) is (many-to-one) reducible to (D; �1) (i.e. �fin <D �2 <D �1, for each distribution �fin giving 0 weight toall but �nitely many strings). (We say that �2 is log-space reducible to �1 if �2 can be computedby a log-space oracle machine with access to an oracle for �1.) Furthermore, for every computablelanguage D0, (D; �1) 6 /T(D0; �2). 7

Proof : The basic idea behind the proof is adapted from [Ladner 75] (which, in turn, is modeledafter similar results in recursion theory). One constructs the desired in�nite object (a language or,in our case, a distribution) in stages. In each stage a �nite segment is added, the �nal object is the(in�nite) union of the segments de�ned along the construction. The construction is governed by asequence < Si : i 2 N > of demands that have to be met. The demands should be such that:� Given any �nite initial segment � of the construction and any demand Si, there exists a �niteextension of � that meets the demand.� Every construction, along which all the demands are met, gives rise to an object of the desiredtype (e.g., a �2 as required for the theorem).Here we construct an in�nite sequence �� of 0's and 1's. We shall de�ne �2 by letting �02(x) be0 if ��(jxj) = 0 and �02(x) = �01(x) otherwise. Hence,�2(x) = �(jxj) � (�1(x)� �1(1(jxj�1))) + Xi<jxj�(i) � (�1(1i)� �1(0i))yielding a log-space reduction of the computation of �2 to the computations of �1 and �. Let usdescribe our sequence < Si : i 2 N > of demands.The demands: Essentially we have two types of demands. Demands for 'sparseness' of �2 whichmake sure that for every D0 the original pair (D; �1) is not reducible to (D0; �2), and 'denseness'demands to guarantee that (D; �2) is not easy on the average. (We get the reducibility of (D; �2)to (D; �1) for free, as any �2 de�ned as above is dominated by �1).For the 'denseness' demands we enumerate all Average-P machines and make sure that nonesolves (D; �2). Namely, we list all triples < Ai; ci; �i > such that Ai is a Turing machine, ci isan integer and �i is a rational in the unit interval. Formally, a �nite string � satis�es the triple< Ai; ci; �i > if either Ai errs on some input x of length � j�j (i.e., Ai(x) 6= D(x)) or Ai runs tooslow on the average (i.e., Pjxj�j�j �02(x) � ti(x)�ijxj > ci, where ti(x) is the running time of Ai on inputx). For the 'sparseness' demands we enumerate all Average-P oracle machines and make sure thatnone can reduce (D; �1) to (D; �2) (or to (D0; �2) for any D0). Namely, we list all quadruples< Di;Mi; ci; �i > such that Di is a (code of a Turing machine for a) recursive language, Mi is anoracle machine, and ci; �i are as above. The demands < D0;M 0; Ci; �i > should make sure thatM 0 cannot be used to reduce (D; �1) to (D0; �2). Consequently, we let a �nite string � meet sucha demand if either, for some x (with jxj < j�j), the reduction fails (i.e., MDii (x) 6= D(x)) or thereduction runs for too much time (i.e., Pjxj�j�j �01(x) � ti(x)�ijxj > ci, where ti(x) is the running timeof MDii on input x) or Mi violates the domination condition by making (on input x s.t. jxj < j�jand �01(x) 6= 0) a query y such that jyj < j�j and �02(y) = 0.Our sequence < Si : i 2 N > of demands will be any recursive enumeration of all the demandsdescribed above, in which odd i's carry 'sparseness' demands and even i's constitute 'denseness'demands.Lemma 1 : Given any �nite initial segment � of the construction and any demand Si, there existsa �nite extension of � that meets the demand.Proof : To handle a 'denseness' demand Si =< Ai; ci; �i > we make �2 dense enough by extending� by a tail of 1's. If no such �nite extension meets Si, then Ai computes D correctly in timepolynomial on the average with respect to a distribution �2 which di�ers from �1 (possibly) only8

on strings of length � j�j. It follows that (D; �1) is in Average-P contradicting the hypothesis ofthe theorem.Given an 'sparseness' demand Si =< Di;Mi; ci; �i >, we make �2 sparse enough by extending� by a tail of 0's. If no such extension meets Si, then (as �02(y) = 0 whenever ��(jyj) = 0) thedomination constraint guarantees that Mi does not ask its oracle queries of length > j�j. It followsthatMi computes D in average polynomial time (with respect to �1) with the help of a �nite oracle(i.e., the �rst 2j�j+1 bits of Di) therefore (D; �1) is in Average-P, a contradiction.3Clearly, the in�nite sequence �� (constructed as above) satis�es all the demands. To completethe proof of the theorem, we need to provide an e�cient procedure for constructing ��. It su�cesto show that �(k) can be computed in kO(1) steps by an oracle machine given oracle �1. To thisend, we employ an observation of [Ladner 75]: meeting a 'denseness' (respectively, 'sparseness')demand requires extending the current � by su�ciently many 10s (respectively, 00s), yet adding toomany 10s (00s) will not cause any harm. Consequently, when faced with such a demand, we cankeep de�ning ��(k) = 1 (or 0) until k is big enough to allow su�cient computing time for realizingthat the demand has been met.Lemma 2 : Let f be any unbounded, non-decreasing and time-constructible function. A sequence�� as in Lemma 1 can be constructed by an oracle machine which, given access to �1, computes�(k) in � f(k) steps.Proof : On input k, we compute �(k) by conducting the following procedure with time boundf(k). Starting with i = 1 and j = 1, the procedure tries to see if demand Si is satis�ed by thej-bit long pre�x of �� (in which case i is incremented). Let Pi;j denote the procedure's computationregarding the pair (i; j). The computation of Pi;j starts by setting �(j) to 0 if i is odd and �(j) = 1otherwise. These stored values may be used in computations of the procedure on larger j's. If (Pi;jterminates and) it is found that Si is indeed satis�ed by the j-long pre�x then both i and j areincremented. If (Pi;j terminates and) it is found that Si is not satis�ed by the j-long pre�x thenonly j is incremented. Eventually, the procedure (either terminates or) is stopped by the time-outmechanism (i.e. after f(k) steps) and �(k) is set to 0 if the current i is odd and to 1 otherwise.In its computation, the above procedure uses oracle calls to �1 as well as previously computedvalues of �. (The values of � are used to compute �2.) The procedure also computes the values ofD and Di (for some i's) on various strings, and runs various regular and oracle machines on variousinput strings while counting of the number of steps these machine make.A detailed description of Pi;j follows. If i is even then the procedure tries to satisfy the densenessdemand Si =< Ai; ci; �i >. It runs Ai on all strings of length j, computes D on all these strings,compares the values obtained, computes the sum Pjxj�j �02(x) � ti(x)�ijxj and compares it to ci (to thisend the procedure uses calls to �1 and the stored values of �(1); :::; �(j� 1)). Thus, the procedureeasily determines if Si was satis�ed by the strings of length � j. If i is odd then the proceduretries to satisfy the sparseness demand Si =< Di;Mi; ci; �i >. It runs the oracle machine Mi onall strings of length less than j answering the oracle calls of length less than j by computing thevalue of Di, computes the density of �1 on these inputs and compares it to the density of �2 on thequeries (to this end the procedure uses calls to �1 and the stored values of �(1); :::; �(j� 1)). Westress that in case oracle calls were made to strings of length � j the demand Si is not satis�ed bythe strings of length < j. The procedure also computes D on all strings of length < j, comparesthe values to those obtained from the oracle machine, computes the sum Pjxj<j �02(x) � ti(x)�ijxj andcompares it to ci.Clearly, � is constructed in the number of steps claimed. The reader may verify that � de�nedby the above procedure satis�es all demands. 3 9

The theorem follows by noting that having access to an oracle for �1 we can, on an input x,compute �2(x) in log-space (hint: �2(x) =Pi<jxj �(i)�(�1(1i)��1(0i))+�(jxj)�(�1(x)��1(1(jxj�1)))).2Corollary 2 : For every distribution (D; �1) 2DistNP�Average-P there exists a distribution �2such that (D; �2) 2DistNP�Average-P and (D; �2) < (D; �1). Furthermore, for every D0 2 NP,(D; �1) 6 /T(D0; �2).5 Relations to Worst-Case ComplexityIn this section we present theorems which relate questions about average-case complexity classesto questions about worst-case complexity classes.5.1 On Average-P vs. DistNPThe �rst question we address is how likely is it that every NP problem has an easy on the averagesolution with respect to every P-computable distribution.Theorem 5 : If NTime(2O(n)) 6= DTime(2O(n)) then DistNP is not a subset of Average-P.The theorem follows easily from the followingProposition 1 : NTime(2O(n)) 6= DTime(2O(n)) if and only if there exists a unary language L 2 NPsuch that (L; �1) 62Average-P, where �01(1n) = n�2.Proof : Book [B] proved that NTime(2O(n)) 6= DTime(2O(n)) i� there exists a unary languagewhich is in NP but not in P. Membership in a unary language is decidable in polynomial time i�there is an algorithm which decides membership in L and has running time polynomial on averagewith respect to the distribution on unary strings �0(1n) = n�2. (Hint: 9� > 0 s.t. Pn 1n2 � t(n)� <1implies t(n) < n2=� for all but �nitely many n's.) 25.2 On Average-P vs. NP with Arbitrary DistributionsIn this subsection we show that if no restrictions are placed on the distributions then average-casecomplexity classes take the form of the traditional worst-case complexity classes. For example.Theorem 6 : If P 6= NP then there exist D 2 NP and an exponential-time computable � suchthat (D; �) 62Average-P.Theorem 6 is derived as a special case of Proposition 2 (below), by using the fact that P 6= NPimplies the existence of a problem D 2 (NP� P) \DTime(2n) (hint: padding).De�nition 2 : Let f : N 7! N. AverDTime(f(n)) denotes the class of distributional problems(D; �) solvable by a deterministic algorithm A with running time function tA(x) � f(l(x)), wherel : f0; 1g� 7! N is linear on the average with respect to � (i.e., Px �0(x) l(x)jxj <1).Clearly, AverDTime(nO(1)) equals Average-P.A special case of De�nition 2 is when the function l : f0; 1g� 7! N is linear everywhere (i.e.l(x) = O(jxj)). We would like to have such D be in DTime(f(n)). To this end, we rede�neDTime(f(n)) to be the class of problems D solvable by a deterministic algorithm A with runningtime function tA(x) � f(O(jxj)) (instead of tA(x) � f(jxj) as is standard practice).10

Proposition 2 : Let f; g : N 7! N be any two monotone and time-constructible functions suchthat for every c > 1 and all su�ciently large n's: g(n) > f(c � n). Let D 2 DTime(g(n)). Thenthere exists an �, computable in time 2n � g(O(n)), so that D 2 DTime(f(n)) if and only if(D; �) 2 AverDTime(f(n)).Proof : Clearly, D 2 DTime(f(n)) implies (D; �) 2 AverDTime(f(n)) for every �. For the otherdirection assume that D 2 (DTime(g(n))� DTime(f(n))). Consider an enumeration M1;M2; : : :of deterministic machines.For every such machine, Mi, de�ne a distribution �i as follows. If Mi errs on some input, thenlet x1 denote such an input. Else, let x1; x2; : : : be an in�nite sequence such that xj is the �rstinput for which both f(j3jxjj) < g(jxjj) and machine Mi makes more than f(j3jxjj) steps on xj.(Such an in�nite sequence must exist since f(c3n) < g(n) for every c and all su�ciently large n,and since machine Mi cannot answer correctly on all su�ciently long x's in f(c3jxj) steps for someconstant c.) Let �0i(y) be 1j2 if y = xj and 0 otherwise. It follows that Mi does not solve D inaverage time f(n) with respect to the distribution �i. (Otherwise, we get ti(xj) � f(li(xj)) whereli(xj) � j2jxjj for all but �nitely many j's; and it follows that ti(xj) � f(j2jxj j) in contradictionto the de�nition of the xj's.)Let �(x) = Pi�jxj 1i2 � �i(x). The distribution function � is computed, on input x, by runningeach Mi (i � i � jxj) on all strings y � x, counting the number of steps and comparing the outputof Mi(y) with the value of D(y). Each Mi is run with time bound g(jxj), and D is computed ing(O(jxj)) steps. One can easily verify that (D; �) 62 AverDTime(f(n)) and that �(x) is computablein time O(2jxj � g(O(jxj))). 26 Polynomially Samplable DistributionsIn this section we consider a natural extension of the class of P-computable distributions { theclass of P-samplable distributions. Distributions in this class arise in probabilistic polynomial timecomputations. We show that under \modest" cryptographic assumptions, there are P-samplabledistributions that are \very far" from any P-computable distribution. We proceed to present acomplete distributional problem in hNP, P-samplablei. The proof of completeness here is verydi�erent than for the hNP, P-computablei case.De�nition 3 (The class P-samplable) : A distribution � is in the class P-samplable if there existsa polynomial P and a probabilistic algorithm A that outputs the string x with probability �0(x)within P (jxj) steps.Elements in a P-samplable distribution are generated in time polynomial in their length.Theorem 7 : Every P-computable distribution is also P-samplable.Proof : The sampling algorithm A picks at random with uniform distribution a truncated real �in [0; 1] (the length of expansion depends on the following search). It then �nds, via binary search,and queries to �, the unique string x 2 f0; 1g� satisfying �(x� 1) < � � �(x). 2The above proof associates every P-computable distribution with a standard sampling algo-rithm. With respect to this standard algorithm the coin tosses used in the generation of an instancecan be reconstructed from the instance itself (i.e., given x one can e�ciently generate a random11

� such that A on coin tosses � outputs x). It follows that solving a problem on instances gener-ated by a P-computable distribution does not become easier if we are given the coin tosses usedin the construction of the instance to the problem. Hence instances of distributional problems inDistNP�Average-P are hard also for the person generating them.The converse of Theorem 7 (above) is unlikely. Namely,Theorem 8 : If one-way functions exists, then there is a P-samplable distribution � which isnot dominated by any distribution � with a polynomial-time computable �0. (Loosely speaking,a one-way function is a polynomial-time computable function which is \hard to invert" on mostinstances. See, for example, [Hastad 90].)In particular, � itself is not P-computable and no P-computable distribution dominates it. Analternative proof of this corollary (under the same condition) is now available using [Levin 88] and[Hastad 89]. Using a weaker condition, namely P 6= NP, one can prove that P� samplable 6=P� computable (hint: use the construction of [Gurevich and McCauley 87] of a distribution withpolynomial-time computable density function which is not P-computable itself).Proof Sketch: Assume �rst that there exists a length preserving one-way 1-1 function f (i.e.,jf(x)j = jxj and f(x) = f(y) implies x = y). De�ne the distribution � on f0; 1g� by�0(y; z) = (1n3�2n if jyj = n, 9x s.t. y = f(x), and z is a pre�x of x0 otherwiseIt is easy to see that � is P-samplable: �rst select n with probability 1n2 , next choose x uniformlyin f0; 1gn, and output (y; z), where y f(x) and z is a pre�x of x with randomly selected length.Suppose � is a P-computable distribution dominating � (i.e., 9c8x: �0(x) > 1jxjc ��0(x)). For mosty's of length n, there could be only polynomially many w's such that �0(y; w) � 1nc+3�2n (otherwise� would sum up to more than 1). We call such a w heavy for y, and we say that y is typical if ithas only polynomially many heavy w's. Hence, most y's are typical. Given a typical y, an oraclefor �0 can be used to �nd f�1(y) in polynomial time, by searching the \pre�xes-tree" proned atnon-heavy nodes. Following is a program for the oracle machine.On input y, the machine initiates z 0 and proceeds in stages. In every stage the machinecomputes �0(x; z). If �0(y; z) � 1jyjc+32�jyj then the machine sets z z0. Else letting z = z001k (withk � 0), the machine sets z z01. If f(z) = y the machine outputs z and stops, else the machineproceeds to the next stage.The reader can easily verify that on input a typical y the machine runs for polynomial-time, andthat for every z pre�x of f�1(y) domination implies that �0(y; z) � 1jyjc+32�jyj . It follows that themachine inverts f on most inputs in polynomial-time, a contradiction to the one-way hypothesis.We now outline the ideas required to extend the above argument to the case in which \only"an arbitrary one-way function is guaranteed to exist. First, we note that the above argument canbe easily extended to the case where the function is length preserving, and one-way 1-1 on 12n ofthe instances of length n. This condition is hereafter re�ered as condition (*). Next, we transformany one-way function into one satisfying condition (*). The transformation is carried out in twostages. Given an arbitrary one-way function f0, we can easily construct a length preserving one-way function f1 (e.g., let f1(x0x00) = f0(x0)01n�1�jf0(x0x00)j, where n = jx0x00j and jx0j = n� where� is chosen so that f0(z) is computed in < jzj1=� steps). In the second stage, we use ideas of[Impagliazzo, Levin and Luby 89] to construct a function f2 which satis�es condition (*). De�nef2(x; k; h) = f1(x); k; h; (h(x) #k), where n = jxj, h 2 Hn;n is a universal hashing function and � #k12

denotes the �rst k bits of �. Certainly, f2 is one-way and 1-1 on most triples (x; k; h) satisfyingk = dlog2 jf�1(f(x))je, and hence satis�es condition (*). The theorem follows. 2The above theorem motivates the de�nition of the following class of distribution problems.De�nition 4 (The class hNP, P-samplablei): A problem (D; �) belongs to the class hNP, P-samplablei if D is an NP-predicate and � is in P-samplable.Intuitively, the question of whether there exists a problem in hNP, P-samplablei which is not inAverage-P can be interpreted as asking whether one party can e�ciently �nd instances of an NPproblem which will be hard to solve for another party. This should be contrasted with the questionof whether there exists a problem in hNP, P-computablei which is not in Average-P, a questionwhich can be interpreted (see discussion proceeding Theorem 7 above) as asking whether one cane�ciently �nd instances of an NP problem which will be hard to solve, even for the person whohas constructed them!A complexity class related to hNP, P-samplablei has been de�ned and investigated (indepen-dently of our work) by [Hemachandra, Allender, Feigenbaum, Abadi and Broder 90]. They considerprobabilistic polynomial-time algorithms which generate yes-instances of an NP problem togetherwith a corresponding solution. The instance (without the corresponding solution, of course) is fedto an arbitrary polynomial-time algorithm (hereafter referred to as a solver) which is required to�nd a solution. The pair (i.e., NP together with an yes-instance generator) is called invulnerable iffor every (polynomial-time) solver there exists a constant � and in�nite set of integers S such thatfor every n 2 S the probability that the solver succeeds on length n is < 1� � (the probability istaken over the internal coin tosses of both algorithms). The pair is called almost-everywhere invul-nerable if the above holds for a set S containing all but a �nite number of the integers. Reductionsamong pairs are de�ned so that the invulnerability of the original pair implies the invulnerabilityof the reduced pair. Strong reductions are de�ned so that the above holds with respect to \almost-everywhere invulnerability". Using techniques similar to those of the following proof, Hemachandraet. al. demonstrated the existence of a complete problem (with respect to regular reductions). Theresult has been augmented to strong reductions by [Feigenbaum, Lipton and Mahaney 89].Theorem 9 : There exist problems which are complete in hNP, P-samplablei.Proof (following ideas implicit in [Levin 85]): The proof is based on the observation that it ispossible to e�ectively \enumerate" all sampling algorithms which work in quadratic time (in lengthof their output). Two remarks are in place. Firstly, the reader may �nd the term \enumeration"misleading. We don't really enumerate all machines running in quadratic time (such an enumerationis not possible as indicated by [Gurevich, Shelah 89]). Instead, we enumerate all Turing machinesand modify each of them to stop in time quadratic in the length of the output. This is obtainedby augmenting the machine so that it pads its output once entering the original halting state.The padding is long enough to make the modi�ed machine run in time quadratic in its output.It is important to note that the output of machines, which originally run in time quadratic intheir output, remains unchanged. Secondly, the reader may wonder why it su�ces to consideronly distributions with quadratic running time (instead of arbitrary polynomial). The reason isthat every problem (D; �) in hNP, P-samplablei can be reduced (by padding) to a problem (D0; �)(in hNP, P-samplablei) where � is a distribution which can be sampled by an algorithm runningquadratic time (in the length of its input). In particular suppose that there exists a polynomial,P , and a sampling algorithm for � such that every x is output within P (jxj) steps. Then a13

sampling algorithm for � pads each output x by P (jxj)�jxj zeros, and D0 ignores this padding (i.e.D0(y) = D(y0), where y = y0y00 and P (jy0j � 1) < jyj � P (jy0j)).Let �1; �2; : : : be an enumeration of the distributions generated by (modi�ed) sampling machinesrunning in time quadratic in their output. De�ne a universal distribution�0U(x) def= 1Xi=1 �0i(x)i2 :Clearly, �U is P-samplable (e.g., �rst select i with probability 1i2 and next sample �i). We now showthat the distributional problem (BH; �U) is complete in hNP, P-samplablei. First, we remind thereader that any problem in hNP, P-samplablei can be reduced to a distribution with a quadratictime sampling algorithm. Hence it su�ces to deal with these distibutions. Let (D; �) be anarbitrary problem in hNP, P-samplablei, where � is computable in quadratic time, and let S be thecorresponding sampling algorithm. Let f be the standard Karp reduction of D to BH (i.e., thereduction which maps an instance x ofD to a triple (M;x; 1k), whereM is an NP machine forD andk is a bound on the running time of M on strings of length jxj). Note that jf(x)j > 2jxj and that fis computable in quadratic time. Thus, applying f to the output of S yields a sampling algorithm,Sj, which runs in quadratic time and hence samples one of the distributions in the enumeration�1; �2 : : :. Namely, for some j, we have �0j(f(x)) = �0(x). Clearly, (D; �) / (BH; �j) / (BH; �U). 2Remarks:� All natural NP-complete problems have a distribution so that they are complete in hNP, P-samplablei with that distribution. A su�cient condition is that the Karp reduction of BHto the NP-complete problem, D, does not decrease the length by too much. Namely, let gbe a Karp reduction of BH to D so that 9� > 0 such that 8x: jf(x)j � jxj�. Let �g be thedistribution induced by sampling �U and applying g on its output. Then, �g is P-samplableand (BH; �U) / (D; �g).� The construction can be modi�ed so that, provided one-way functions exist, the resultingproblem is complete in hNP, P-samplablei but is not a member of hNP, P-computablei.� The proof of Theorem 9 depends heavily on the enumeration of P-samplable distributions.Such e�ective enumeration is not known for P-computable distributions.7 Average logspaceThe \natural" adaptation of the de�nition of Average-P fails for Average-logspace. We present analternative de�nition of Average-logspace, which satis�es some desired properties, such as Average-logspace � Average-P. We de�ne the class hP, logspace-computablei, and give an appropriateversion of the bounded halting problem, together with a distribution in logspace-computable, whichare shown to be complete in hP, logspace-computablei with respect to logspace reductions.The �rst attempt at the de�nition is the following: An algorithm A is logspace on the averagewith respect to distribution � if Xx2f0;1g� �0(x) � sA(x)log jxj <1where sA(x) denotes the work space used by algorithm A on input x. Unfortunately, this de�nitionhas some serious handicaps, the most upsetting of which is that for every 0 < � < 1, algorithms14

that use work space n� on every input of length n, will be in average logspace with respect tothe uniform distribution. (As a consequence, average logspace will not necessarily be contained inaverage-P.) Instead, we propose the following de�nitions, suggested independently by [Levin 88].De�nition 5 (Logarithmic on the Average) : A function f : f0; 1g� ! N is logarithmic on theaverage with respect to a distribution � if there exists a constant � > 0 such thatXx2f0;1g� �0(x) � (2f(x))�jxj <1Thus, a function is logarithmic on the average if it is bounded by a logarithm in a function whichis linear on the average.De�nition 6 (The classAverage-logspace) : A distributional problem (D; �) is in the class Average-logspace if there exists an algorithm A solving D using work space sA, which is logarithmic on theaverage with respect to the distribution �.This revised de�nition overcomes the above mentioned di�culties. In addition, the notion ofdomination of probability distributions will still be applicable, and Average-logspace is closed underaverage logspace (many-to-one) reductions.This approach can be generalized to the de�nition of the class Average-Uniform-NC. To dothis, we use the characterization of Uniform-NC by alternating logspace and poly-log time Turingmachines [Ruzzo 81]. We now require that both the exponent of the work space (i.e. 2sA(x)) andthe exponent of the time to some power � > 0 (i.e. 2tA(x)�) be polynomial on the average.The class hP, logspace-computablei is de�ned analogously to the de�nition of hNP, P-computablei.Namely, hP, logspace-computablei consists of distributional problems, (D; �), with D 2 P and thedistribution function � is logspace computable. It should be noticed that many natural distribu-tions, including the uniform distribution and the distribution �BH (of subsection 2.3), are logspacecomputable.Deterministic Bounded Halting (DBH) is de�ned over triples (M;x; 1k), where M is a deter-ministic machine, x is a binary string and k is an integer (given in unary). The problem is todetermine whether M accepts x within k steps. Clearly, DBH 2 P, and it is not hard to see thatit is P-complete with respect to logSpace reductions.Theorem 10 : The distributional problem (DBH, �BH) is complete in hP, logspace-computablei.(�BH is as de�ned in subsection 2.3.)Proof Sketch: The proof uses ideas of the hNP, P-computablei-completeness proof of Distribu-tional Bounded Halting. This proof is presented in Appendix B. The heart of the proof is anencoding C� which is 1-1 and satis�es jC�(x)j � O(1)� log2 �0(x). If �0(x) � 2�jxj then C�(x) = 0xelse C�(x) = 1z where z is a shortest binary expansion of a real in the interval (�(x � 1)� �(x)].Clearly, the computation of C� essentially reduces to computing � on two values. Thus, when � isP-computable the encoding C� is polynomial-time computable. As here � is logspace computable,so is the encoding function C� used in the reduction. The decoding algorithm C�1� is not logspacecomputable. However, decoding can be done in deterministic polynomial time (by binary search),which is su�cient for our purpose. 2We remark that it is possible to de�ne a version of the tiling problem that with a naturaldistribution constitute a complete distributional problem in hNP, P-computablei. The input to a15

tiling problem is an alphabet �, a family of tiles F � �4, an initial tiling � 2 F �, and an integerk presented in unary. The question in the standard version is whether the initial tiling � can beextended to a tiling of the k � k square. Our version of tiling is restricted to \forcing families". Afamily of tiles is called forcing if, for every row of tiles, the row of tiles which can be placed on topof it is unique except for the end tiles. Note that it su�ces to consider rows of length 3, and thusfamilies can be tested for the \forcing property" in logSpace.We derive results analogous to those appearing in Section 5 (using essentially the same prooftechniques). For exampleTheorem 11 : If DTime(2O(n)) 6= DSpace(n) then there exists a problem in hP, logspace-computableiwhich is not in Average-logspace.All the results in Section 4, dealing with the structure of hNP, P-computablei, can be modi�edto the context of hP, logspace-computablei.8 Concluding RemarksIn general, a theory of average case complexity should provide� a speci�cation of a broad class of interesting distributional problems;� a de�nition capturing the subclass of (distributional) problems which are easy on the average;� notions of reducibility which allow to infer the easiness of one (distributional) problem fromthe easiness of another;� and, of course, results...It seems that the theory of average case complexity, initiated by Levin and further developed in[Gurevich 87,Venkatesan and Levin 88] and here, satis�es these expectations to some extent. Thisshould not discourage the reader from trying to suggest alternative de�nitions, or get convincedthat we should stick to the ones presented above. In particular,� generalize or provide a better alternative for the class DistNP (especially with respect to thecondition imposed on the distribution function);� try to provide a more natural (but yet as robust) de�nition of problems which are \polynomial-time on the average";� and, naturally, try to �nd a real natural distributional problem which is complete in DistNP(e.g., subset sum with uniform distribution).In addition to their central role in the theory of average-case complexity, reductions whichpreserve uniform (or very simple) instance distribution are of general interest. Such reductions,unlike most known reductions used in the theory of NP-completeness, have a range which is a non-negligible part of the set of all possible instances of the target problem (i.e. a part which cannotbe claim to be only a \pathological subcase"). It is interesting to further study the correspondingreducibility relation. 16

Note added in proofsFollowing the presentation of this work in conferences, [Impagliazzo, Levin 90] proved thatevery language which is hNP, P-computablei-complete is also hNP, P-samplablei-complete. Thisimportant result makes the theory of average case very robust. In particular, we believe that iteliminates the motivation for providing an alternative to DistNP=hNP, P-computablei (a suggestionmade above). For further discussion the reader is referred to [Impagliazzo, Levin 90].A distributional version of a natural problem from computational algebra has been recentlyshown to be DistNP-complete by [Gurevich 90]. Thus, DistNP-complete problems are known forthe following areas: computability (e.g. Bounded-Halting), combinatorics (e.g. tiling and graphcolouring), formal languages and algebra (e.g. of matrix groups).AcknowledgementsWe would like to thank Shimon Even, Mauricio Karchmer, Hugo Krawczyk, Ronny Roth,and Avi Wigderson for helpful discussions. We are grateful to Leonid Levin for very interestingdiscussions. Finaly, we wish to thank Yuri Gurevich for pointing out a misleading statement in anearly version of the proof of Theorem 9.References[1] Carter, J., and M. Wegman, \Universal Classes of Hash Functions", JCSS, 1979, Vol. 18, pp.143{154.[2] Cook, S.A., \The Complexity of Theorem Proving Procedures", Proc. 3rd ACM Symp. onTheory of Computing, pp. 151{158, 1971.[3] Feigenbaum, J., R.J. Lipton, and S.R. Mahaney, \A Completeness Theorem for Almost-Everywhere Invulnerable Generators", AT&T Bell Labs. Technical Memo., Feb. 1989.[4] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory ofNP-Completeness, W.H. Freeman and Company, New York, 1979.[5] Goldreich, O., \Towards a Theory of Average Case Complexity (a survey)", TR-531, ComputerScience Department, Technion, Haifa, Israel, March 1988.[6] Gurevich, Y., \Complete and Incomplete Randomized NP Problems", Proc. of the 28th IEEESymp. on Foundation of Computer Science, 1987, pp. 111{117.[7] Gurevich, Y., \Matrix Decomposition Problem is Complete for the Average Case", Proc. ofthe 31st IEEE Symp. on Foundation of Computer Science, 1990, pp. 802-811.[8] Gurevich, Y., and D. McCauley, \Average Case Complete Problems", preprint, 1987.[9] Gurevich, Y., and S. Shelah, \Time polynomial in Input or Output", Jour. of Symbolic Logic,Vol. 54, No. 3, 1989, pp. 1083{1088.[10] Hastad, J., \Pseudo-Random Generators with Uniform Assumptions", Proc. 22nd ACM Symp.on Theory of Computing, pp. 395{404, 1990.17

[11] Hemachandra, L., E. Allender, J. Feigenbaum, M. Abadi and A. Broder, \On GeneratingSolved Instances of Computational Problems", Advances in Cryptograghy - CRYPTO'88, Lec-ture Notes in CS 403, S. Goldwasser (ed.), pp 297{310, Springer Verlag, 1990.[12] Impagliazzo, R., and L.A. Levin, \No Better Ways to Generate Hard NP Instances thanPicking Uniformly at Random", Proc. of the 31st IEEE Symp. on Foundation of ComputerScience, 1990, pp. 812{821.[13] Impagliazzo, R., L.A. Levin and M. Luby, \Pseudorandom Number Generation from any One-Way Function", Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 12{24.[14] Johnson, D.S., \The NP-Complete Column|an ongoing guide", Jour. of Algorithms, 1984,Vol. 4, pp. 284{299.[15] Karp, R.M., \Reducibility among Combinatorial Problems", Complexity of Computer Com-putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp. 85{103, 1972.[16] Karp, R.M., \Probabilistic Analysis of Algorithms", manuscript, 1986.[17] Karp, R.M., E. Upfal, and A. Wigderson, \Are Search and Decision Problems ComputationallyEquivalent?", Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 464{475.[18] Ladner, R.E., \On the Structure of Polynomial Time Reducibility", Jour. of the ACM, 22,1975, pp. 155{171.[19] Levin, L.A., \Universal Search Problems", Problemy Peredaci Informacii 9, pp. 115{116, 1973.Translated in problems of Information Transmission 9, pp. 265{266.[20] Levin, L.A., \Average Case Complete Problems", SIAM Jour. of Computing, 1986, Vol. 15,pp. 285{286. Extended abstract appeared in Proc. 16th ACM Symp. on Theory of Computing,1984, p. 465.[21] Levin, L.A., \One-Way Function and Pseudorandom Generators", Proc. 17th ACM Symp. onTheory of Computing, 1985, pp. 363{365.[22] Levin, L.A., \Homogeneous Measures and Polynomial Time Invariants", Proc. 29th IEEESymp. on Foundations of Computer Science, 1988, pp. 36{41.[23] Ruzzo, W.L., \On Uniform Circuit Complexity", JCSS, 22, 1981, pp. 365{385.[24] Sipser, M., \A Complexity Theoretic Approach to Randomness", Proc. 15th ACM Symp. onTheory of Computing, 1983, pp. 330{335.[25] Stockmeyer, L.J., \The Complexity of Approximate Counting", Proc. 15th ACM Symp. onTheory of Computing, 1983, pp. 118{126.[26] Valiant, L.G., and V.V. Vazirani, \NP is as Easy as Detecting Unique Solutions", Proc. 17thACM Symp. on Theory of Computing, 1985, pp. 458{463.[27] Venkatesan, R., and L.A. Levin, \Random Instances of a Graph Coloring Problem are Hard",Proc. 20th ACM Symp. on Theory of Computing, 1988, pp. 217{222.18

APPENDICESAppendix A: Failure of a naive formulation of average polynomial-timeWhen asked to motivate his de�nition of average polynomial-time, Leonid Levin replies, non-deterministically, in one of the following three ways:� \This is the natural de�nition".� \This de�nition is not important for the results in my paper; only the de�nitions of reduc-tion and completeness matter (and also they can be modi�ed in many ways preserving theresults)".� \Any de�nition which makes sense is either equivalent or weaker".For further elaboration on the �rst argument the reader is referred to Leonid Levin. The secondargument is, o� course, technically correct but unsatisfactory. We will need a de�nition of \easyon the average" when motivating the notion of a reduction and developing useful relaxations of it.The third argument is a thesis which should be interpreted along Wittgenstein's suggestion to theteacher: \say nothing and restrict yourself to pointing out errors in the students' attempts to saysomething". We will follow this line here by arguing that the de�nition which seems natural to anaverage computer scientist su�ers from serious problems and should be rejected.De�nition X (naive formulation of the notion of easy on the average): A distributional problem(D; �) is polynomial-time on the average if there exists an algorithm A solving D (i.e. on input xoutputs D(x)) such that the running time of algorithm A, denoted tA, satis�es 9c > 08n:Xx2f0;1gn �0n(x) � tA(x) < ncwhere �0n(x) is the conditional probability that x occurs given that an n-bit string occurs (i.e.,�0n(x) = �0(x)Py2f0;1gn �0(y)).The problem which we consider to be most upsetting is that De�nition X is not robust underfunctional composition of algorithms. Namely, if the distributional problem A can be solved inaverage polynomial-time given access to an oracle forB, and problem B can be solved in polynomial-time then it does not follow that the distributional problem A can be solved in average polynomial-time. For example, consider uniform probability distribution on inputs of each length and an oracleTuring machine M which given access to oracle B solves A. Suppose that MB runs 2n2 steps on2n2 of the inputs of length n, and n2 steps on all other inputs of length n; and furthermore thatM when making t steps asks a single query of length pt. (Note that machine M , given access tooracle for B, is polynomial-time on the average.) Finally, suppose that the algorithm for B hascubic running-time. The reader can now verify that although M given access to the oracle B ispolynomial-time on the average, combining M with the cubic running-time algorithm for B doesnot yield an algorithm which is polynomial-time on the average according to De�nition X. It is easyto see that this problem does not arise when using the de�nition presented in Section 2.The source of the above problem with De�nition X is the fact that the underlying de�nition ofpolynomial-on-the-average is not closed under application of polynomials. Namely, if t : f0; 1g� !N is polynomial on the average, with respect to some distribution, it does not follow that also t2(�)is polynomial on the average (with respect to the same distribution). This technical problem isalso the source of the following problem, that Levin considers most upsetting: De�nition X is not19

machine independent. This is the case since some of the simulations of one computational model onanother square the running time (e.g., the simulation of two-tape Turing machines on a one-tapeTuring machine or the simulation of a RAM (Random Access Machine) on a Turing machine).Another two problems with De�nition X have to do with the fact that it deals separately withinputs of di�erent length. The �rst problem is that De�nition X is very dependent on the particularencoding of the problem instance. Consider, for example, a problem on simple undirected graphsfor which there exist an algorithm A with running time tA(G) = f(n;m), where n is the number ofvertices in G and m is the number of edges (in G). Suppose that if m < n 32 then f(n;m) = 2n andelse f(n;m) = n2. Consider the distributional problem which consists of the above graph problemwith the uniform probability distribution on all graphs with the same number of vertices. Now, ifthe graph is given by its (incident) matrix representation then De�nition X implies that A solvesthe problem in average polynomial-time (the average is taken on all graphs with n nodes). Onthe other hand, if the graphs are represented by their adjacency lists then the modi�ed algorithmA (which transforms the graphs to matrix representation and applies algorithm A) is judged byDe�nition X to be non-polynomial on the average (here the average is taken over all graphs of medges). This of course will not happen when working with the de�nition presented in Section 2.The second problem with dealing separately with di�erent input lengths is that it does not allowone to disregard inputs of a particular length. Consider for example a problem for which we areonly interested in the running-time on inputs of odd length.After pointing out several weaknesses of De�nition X, let us also doubt its \clear intuitiveadvantage" over the de�nition presented in Section 2. De�nition X is derived from the formulationof worst case polynomial-time algorithms which requires that 9c > 08n:8x 2 f0; 1gn : tA(x) < ncDe�nition X was derived by applying the expectation operator to the above inequality. But whynot make a very simple algebraic manipulation of the inequality before applying the expectationoperator? How about taking the c-th root of both sides and dividing by n; this yields 9c > 08n:8x 2 f0; 1gn : tA(x) 1cn < 1Applying the expectation operator to the above inequality leads to the de�nition presented inSection 2... We believe that this de�nition demonstrates a better understanding of the nature ofthe expectation operator!Robustness under functional composition as well as machine independence seems to be essentialfor a coherent theory. So is robustness under e�ciently e�ected transformation of problem encoding.These are one of the primary reasons for the acceptability of P as capturing problems which canbe solved e�ciently. In going from worst case analysis to average case analysis we should not andwould not like to lose these properties.Appendix B: DistNP-completeness of �BHThe proof, presented here, is due to [Gurevich 87] (an alternative proof is implied by [Levin 84]).In the traditional theory of NP-completeness, the mere existence of complete problems is almostimmediate. For example, it is extremely simple to show that the Bounded Halting problem is NP-complete.Bounded Halting (BH) is de�ned over triples (M;x; 1k), where M is a non-deterministic machine,x is a binary string and k is an integer (given in unary). The problem is to determine whether there20

exists a computation of M on input x which halts within k steps. Clearly, Bounded Halting is inNP (here its crucial that k is given in unary). Let D be an arbitrary NP problem, and let MD bethe non-deterministic machine solving it in time PD(n) on inputs of length n, where PD is a �xedpolynomial. Then the reduction of D to BH consists of the transformation x! (MD; x; 1PD(jxj)).In the case of distributional-NP an analogous theorem is much harder to prove. The di�cultyis that we have to reduce all DistNP problems (i.e. pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e. Bounded Halting with a single simpledistribution). Applying reductions as above we will end up with many distributional versions ofBounded Halting, and furthermore the corresponding distribution functions will be very di�erentand will not necessarily dominate one another. Instead, one should reduce a distributional problem,(D; �), with an arbitrary P-computable distribution to a distributional problem with a �xed (P-computable) distribution (e.g. �BH). The di�culty in doing so is that the reduction should havethe domination property. Consider for example an attempt to reduce each problem in DistNP to�BH by using the standard transformation of D to BH , sketched above. This transformation failswhen applied to distributional problems in which the distribution of (in�nitely many) strings ismuch higher than the distribution assigned to them by the uniform distribution. In such cases,the standard reduction maps an instance x having probability mass �0(x) � 2�jxj to a triple(MD; x; 1PD(jxj)) with much lighter probability mass (recall �0BH(MD; x; 1PD(jxj)) < 2�jxj). Thisviolates the domination condition, and thus an alternative reduction is required. The key tothe alternative reduction is an (e�ciently computable) encoding of strings taken from an arbitrarypolynomial-time computable distribution by strings which have comparable probability mass undera �xed distribution. This encoding will map x into a code of length bounded above by the logarithmof 1=�0(x). Accordingly, the reduction will map x to a triple (MD;�; x0; 1jxjO(1)), where jx0j <O(1) + log2 1=�0(x), and MD;� is a non-deterministic Turing machine which �rst retrieves x fromx0 and then applies the standard non-deterministic machine (i.e., MD) of the problem D. Such areduction will be shown to satisfy all three conditions (i.e. e�ciency, validity, and domination).Thus, instead of forcing the structure of the original distribution � on the target distribution �BH ,the reduction will incorporate the structure of � into the the reduced instance.The following technical Lemma is the basis of the reduction.Coding Lemma: Let � be a polynomial-time computable distribution function. Then there exista coding function C� satisfying the following three conditions.1) Compression: 8x jC�(x)j � 2 +minfjxj; log2 1�0(x)g2) E�cient Encoding: The function C� is computable in polynomial-time.3) Unique Decoding: The function C� is one-to-one (i.e. C�(x) = C�(x0) implies x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x (i.e. in this case xserves as its own encoding). If �0(x) > 2�jxj then C�(x) = 1z, where 0:z is the binary expansion ofa fraction in the interval (�(x� 1); �(x)] which has binary expansion of minimum length. In otherwords, z = z01 where z0 is the longest common pre�x of the binary expansions of �(x� 1) and �(x)(e.g. if �(1010) = 0:10000 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 101).We now verify that C� so de�ned satis�es the conditions of the Lemma. If �0(x) � 2�jxj thenjC�(x)j = 1 + jxj < 2 + log2 1�0(x) . If �0(x) > 2�jxj then the interval (�(x � 1); �(x)] must containa fraction with binary expansion of length � log2(�0(x)2)�1 and hence jC�(x)j � 1 + 1 + log2 1�0(x) .21

Clearly, C� can be computed in polynomial-time by computing �(x � 1) and �(x). Finally, notethat C� is one-to-one by considering the two cases, C�(x) = 0x and C�(x) = 1z. 2Using the coding function presented in the above proof, we introduce a non-deterministic machineMD;� so that the distributional problem (D; �) is reducible to �BH = (BH; �BH) in a way thatall instances (of D) are mapped to triples with �rst element MD;�. On input y = C�(x), machineMD;� computes D(x), by �rst retrieving x from C�(x) (e.g., guess and verify) and next running thenon-deterministic polynomial-time machine (MD) which solves D.The reduction maps an instance x (of D) to the triple (MD;�; C�(x); 1P (jxj)), where P (n) def=PD(n) +PC(n) + n, PD(n) is a polynomial bounding the running time of MD on acceptable inputsof length n, and PC(n) is a polynomial bounding the running time of an algorithm for encodinginputs (of length n).Proposition: The above mapping constitutes a reduction of (D; �) to (BH; �BH).Proof:� The transformation can be computed in polynomial-time. (Recall that C� is polynomial-timecomputable.)� By construction of MD;� it follows that D(x) = 1 if and only if there exists a computation ofmachine MD;� that on input C�(x) halts outputting 1 within P (jxj) steps. (On input C�(x),machine MD;� non-deterministically guesses x, veri�es in PC(jxj) steps that x is encoded byC�(x), and non-deterministically \computes" D(x).)� To see that the distribution induced by the reduction is dominated by the distribution �BH , we�rst note that the transformation x! C�(x) is one-to-one. It su�ces to consider instances ofBH which have a preimage under the reduction (since instances with no preimage satisfy thecondition trivially). All these instances are triples with �rst element MD;�. By the de�nitionof �BH �0BH(MD;�; C�(x); 1P (jxj)) = c � 1P (jxj)2 � (1jC�(x)j2 � 2�jC�(x)j)where c = 1jMD;�j2�2jMD;�j is a constant depending only on (D; �).By virtue of the coding Lemma �0(x) � 4 � 2�jC�(x)jIt thus follows that�0BH (MD;�; C�(x); 1P (jxj)) � c � 1P (jxj)2 � 1jC�(x)j2 � �0(x)4> c4 � jMD;�; C�(x); 1P (jxj)j2 � �0(x)The Proposition follows. 2 22

