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1 Introduction

The average complexity of a problem is, in many cases, a more significant measure than its worst
case complexity. This has motivated the development of a rich area in algorithms research — the
probabilistic analysis of algorithms [Johnson 84, Karp 86]. However, this line of research has
so far been applicable only to specific algorithms and with respect to specific, typically uniform,
probability distributions.

The general question of average case complexity was addressed for the first time by [Levin
84]. Levin’s work can be viewed as the basis for a theory of average NP-completeness, much the
same way as [Cook 71] (and [Levin 73]) works are the basis for the theory of NP-completeness.
Subsequently [Gurevich 87] has presented several additional complete problems and pointed out
limitations of deterministic reductions in proving completeness results. [Venkatesan and Levin
88] showed the completeness, with respect to randomized reductions, of a graph coloring problem
with uniform distribution. In this paper we widen the scope of investigation and consider basic
computational questions in the context of average case complexity.

(A reader not familiar with the basic definitions of average-case complexity, may find it useful
to read some exposition of these definitions before proceeding to the rest of this introduction. Such
an exposition is provided in Section 2 (and the appendices).)

An average case complexity class consists of pairs, called distributional problems. Each such

pair consists of a decision (search) problem and a probability distribution on problem instances.
def

Most of our work deals with the class DistNP'= (NP, P-computable), defined by [Levin 84], which
is a distributional analogue of NP. P-computable is the class of distribution functions that can
be computed in polynomial-time (i.e., there exists a polynomial time algorithm that on input z
computes the accumulative probability of all strings y < ). The easy distributional problems are
those solvable in average polynomial-time. We denote this class by Average-P. Reductions between
distributional problems are defined in a way guaranteeing that if II; is reducible to I, and II; is
in Average-P, then so is II;.

A basic question regarding the theory of computational complexity is the relation between search
and decision problems. Unfortunately, the standard polynomial-time Turing reduction of search
problems to decision problems is not applicable in the distributional context. Instead, we present
a randomized reduction of DistNP search problems to DistNP decision problems. Interestingly,
this reduction can be carried out in RNC, yielding a reduction of P search problems to P decision
problems (cf. [Karp Upfal and Wigderson 85]). Without such a result the study of decision problems
does not reflect the structure of search problems.

If DistNP is not a subset of Average-P, then the complete problems in DistNP are not in
Average-P. A natural question is whether every DistNP problem is either in Average-P or com-
plete for DistNP. We resolve this question by showing that problems which are neither easy nor
complete do exist. In fact, we show that the structural results of classical complexity theory (e.g.,
of [Ladner 75]) can be translated to the distributional context. Furthermore, we define a notion of
one distribution being “harder” than another, and demonstrate a rich structure of distributions.

It is not clear whether DistNP C Average-P (even if P # NP). We give strong indication that
DistNP is not a subset of Average-P by relating this question to a classical one in (worst case)
complexity. Specifically, we prove that if DistNP C Average-P then NTime(2°) = DTime(2°®™).

Of all the definitions made in [Levin 84] the most controversial one is the association of the class
of “simple” distributions with P-computable, which may seem too restricting. We present a wider
family of natural distributions, P-samplable, which consists of distributions that can be sampled
by probabilistic algorithms working in time polynomial in the length of the sample generated. We



define the class of distribution problems (NP, P-samplable) and present complete problems for
this class. We show that if one-way functions exist, then there are P-samplable distributions that
are “very far” from any P-computable distribution. However, it seems that the distributions in
P-samplable are too complicated.

Can the theory of average case complexity be meaningfully applied to structures other than
NP with polynomial-time reductions? We believe that the answer is in the affirmative and suggest
definitions of distributional-P and average log-space reductions. We exhibit complete distributional
problems for the class (P, logspace-computable), relate the distributional question “is (P, logspace-
computable) C Average-logspace?” to the worst-case question “is Dspace(n) = DTime(2°M™)?7”,

1.1 Organization

Section 2 presents the basic definitions of the theory of average case complexity. Further discussion
of the definition of “easy on the average” can be found in Appendix A. Section 3 deals with
the question of search versus decision; Section 4 investigates the structure of DistNP; Section 5
relates questions regarding average case complexity to traditional questions of worst-case; Section
6 introduces and studies P-samplable distributions; and Section 7 presents definitions and results
for average logSpace.

2 Definitions and Notations

In this section we present definitions of various concepts that are used throughout the paper. Most
definitions originate from [Levin 84], but the reader is advised to look for further explanations and
motivating discussions elsewhere (e.g., [Johnson 84, Gurevich and McCauley 87, Goldreich 88]).

For sake of simplicity, we consider the standard lexicographic ordering of binary strings. Any
fixed efficient enumeration will do. (An efficient enumeration is a 1-1 and onto mapping of strings
to integers which can be computed and inverted in polynomial-time.) By writing z < y we mean
that the string = precedes y in lexicographic order, and y — 1 denotes the immediate predecessor of
y. Also, we associate pairs, triples etc. of binary strings with single binary strings in some standard
manner (i.e. encoding).

Definition: (Probability Distribution Function:) A distribution function p : {0,1}* — [0,1] is a
non-decreasing function from strings to the unit interval [0,1] which converges to one (i.e., u(0) > 0,
w(z) < p(y) for each < y, and lim,_., p(z) = 1). The density function associated with the
distribution function p is denoted g’ and defined by p/(0) = p(0) and p'(2) = p(z) — p(z — 1) for
every > 0. Clearly, u(z) = > ., 1'(y).

For notational convenience, we often describe distribution functions converging to some c#1. In
all the cases where we use this convention it is easy to normalize the distribution, so that it converges
to one. An important example is the uniform distribution function po defined as py(z) = 1|22_|x|.

e
Definition: (A Distributional Problem): A distributional decision problem (resp. distributional
search problem) is a pair (D, u) (resp. (S,u)), where D : {0,1}* — {0,1} (resp. S C {0,1}* x
{0,1}*) and g : {0,1}* — [0, 1] is a distribution function.
In the sequel we consider mainly decision problems. Similar formulations for search problems
can be easily derived.



2.1 Average-P and Distributional-NP

Simple distributions are identified with the P-computable ones. The importance of restricting
attention to simple distributions is demonstrated in Sections 5 and 6.

Definition: (P-computable): A distribution g is in the class P-computable if there is a determin-
istic polynomial time Turing machine that on input z outputs the binary expansion of u(z) (the
running time is polynomial in |z|).

It follows that the binary expansion of p(z) has length polynomial in |z|.

If the distribution function p is in P-computable then the density function, y’, is computable
in time polynomial in |z|. The converse, however, is false, unless P = NP (see [Gurevich and
McCauley 87]). In spite of this remark we usually present the density function and leave to the
reader the verification that the corresponding distribution function is in P-computable.

We now present the class of distributional problems which corresponds to (the traditional) NP.
Most of the results in the paper refer to this class.

Definition: (The class DistNP): A distributional problem (D, i) belongs to the class DistNP if D
is an NP-predicate and p is in P-computable. DistNP is also denoted (NP, P-computable).

The following definitions, regarding average polynomial-time, may seem obscure at first glance.
It is important to point out that the naive formalizations of these definitions suffer from seri-
ous problems such as not being closed under functional composition of algorithms, being model
dependent, encoding dependent etc. For a more detailed discussion, see Appendix A.

Definition: (Polynomial on the Average): A function f: {0,1}* — N is polynomial on the average
with respect to a distribution p if there exists a constant € > 0 such that

Z ,u’(x) X f(x)E < 00

ze{0,1}*

The function {(z) = f(z)° is linear on the average w.r.t. p.

Thus, a function is polynomial on the average if it is bounded by a polynomial in a function which
is linear on the average. In fact, the basic definition is that of a function which is linear on the
average; see also Definitions 2 and 5 (in Sections 5.2 and 7, respectively).

Definition: (The class Average-P ): A distributional problem (D, p) is in the class Average-P if
there exists an algorithm A solving D, so that the running time of A is polynomial on the average
with respect to the distribution p.

We view the classes Average-P and DistNP as the average-case analogue of P and NP (respec-
tively). Another candidate for an analogue to NP (denoted Average-NP) is the class of distribu-
tional problems which can be solved by a non-deterministic machine running in average polynomial
time with respect to a P-computable distribution. However, we feel that DistNP better addresses
the original motivation of investigating the average case complexity of NP. All known results (e.g.

[Levin 84, Gurevich 87, Venkatesan and Levin 88]), as well as the ones shown in this paper, for the
class DistNP hold also for Average-NP.

2.2 Reducibility between Distributional Problems

We now present definitions of (average polynomial time) reductions of one distributional problem
to another. Intuitively, such a reduction should be efficiently computable, yield a valid result and



“preserve” the probability distribution. The purpose of the last requirement is to ensure that
the reduction does not map very likely instances of the first problem to rare instances of the
second problem. Otherwise, having a polynomial time on the average algorithm for the second
distributional problem does not necessarily yield such an algorithm for the first distributional
problem. Following is a definition of randomized Turing reductions. Definitions of deterministic
and many-to-one reductions can be easily derived as special cases.

Definition: (Randomized Turing Reductions): We say that the probabilistic oracle Turing machine
M randomly reduces the distributional problem (Dy, ;) to the distributional problem (Ds, ps) if
the following three conditions hold.

1) Efficiency: Machine M is polynomial time on the average taken over & with distribution u; and
the internal coin tosses of M with uniform probability distribution (i.e., let #3;(x, ) be the
running time of M on input z and internal coin tosses r, then there exists ¢ > 0 such that

Yo M (@) po(r) - % < 00, where fig is the uniform distribution).

2) Validity: For every = € {0,1}*,

Prob(MP?(z) = Dy(z)) >

[N )

where MP2(z) is the random variable (determined by M’s internal coin tosses) which denotes
the output of the oracle machine M on input = and access to oracle for D,.

3) Domination: There exists a constant ¢ > 0 such that for every y € {0,1}%,

1
ly

1o(y) >

= > Asku(z,y) - pi(2)

ze{0,1}*

where Asky(x,y) is the probability (taken over M’s internal coin tosses) that “machine M
asks query y on input z”.

In the definition of deterministic Turing reductions MP2(z) is determined by x (rather than being
a random variable) and Asky(x,y) is either 0 or 1 (rather than being any arbitrary rational in

[0,1]).

In the rest of the paper whenever we use the term reduction we mean a reduction of distributional
problems, as defined above. We use x* (x}) to denote deterministic (resp. randomized) Turing
reduction, and « and xy to denote many-to-one reductions.

It can be proven that if (Dy, p;) is deterministically (resp. randomly) reducible to (Ds, pi5) and if
(D3, pi2) is solvable by a deterministic (resp. randomized) algorithm with running time polynomial
on the average then so is (Dy, jt1).

Reductions are transitive in the special case in which on input z they ask queries of length at
least |z|°, for some constant ¢ > 0. All reductions we present have this property.

2.3 A Generic DistNP Complete Problem

The following distributional version of Bounded Halting, denoted llgy = (BH, upy), is known to
be DistNP-complete. The proof, presented in Appendix B, is due to [Gurevich 87] (an alternative
proof is implied by [Levin 84]).



BH(M,z,1%) = 1 iff there exists a computation of the non-deterministic machine M on input
2 which halts within k steps. The distribution pggy is defined in terms of its density function

/ 1 -
Wy (M, z,1%) = (W 27 My (=

1

Note that plzy is very different from the uniform distribution on binary strings (e.g., consider
relatively large k).

3 Search versus Decision Problems

In this section we show that search and decision distributional problems are equivalent with respect
to randomized reductions.

Before presenting our reduction of distributional search problems to distributional decision
problems we remark that the standard Turing reduction of a search problems to the corresponding
decision problem does not have the domination property. On input z, the oracle machine tries
to find a “solution” y by asking an oracle queries of the form “is p a prefix of a solution to z”.
Before adapting this reduction to our setting, we need to fix a distribution u, on the (z, p) pairs. A
natural choice is pb (2, p) = pj(2)- ﬁQ"m, where i, is the input distribution to the search problem.
However, with this choice of p5, the above reduction violates the domination condition, since when
(for example) |p| = |y|/2 the reduction maps an instance of the search problem to a much more
rare instance of the decision problem (the ratio of probabilities of these instances is < 271¢1/2). Tt’s
not clear how to construct polynomial time computable distributions for the above decision problem
so that the reduction will satisfy the domination condition.

Instead, we reduce every distributional search problem to an appropriate (distributional) de-
cision problem in two steps. First, we randomly reduce the (distributional) search problem to
a related (distributional) problem with a unique solution. This reduction follows the underlying
principles of the proof of [Valiant and Vazirani 85] (see also [Sipser 83] and [Stockmeyer 83]). Next,
we reduce such a search problem to a related decision. The reader may easily verify that these
reductions can be performed in fast parallel time (RNC).

3.1 Reducing a Search Problem to a Search of Unique Solution

Definition 1 : Let S C {0,1}* x {0,1}*. The unique solution search problem of S is to find, on
input z, the unique y satisfying («,y) € S. If no such y exists or it is not unique then nothing is
required.

Theorem 1 : Let II; = (5y,p1) € DistNP. Then there exists a unique solution search problem
Iy = (S, o) € DistNP such that IT;oc IT,.

Proof : For sake of simplicity, assume (z,y) € Sy implies |z| = |y|. Let n = |z| and H, j be a set
of universal hash functions (e.g., n X k Boolean matrices) as in [Carter and Wegman 79].

Define S, C {0,1}* x {0,1}* as follows: (2',y) € 55 for 2’ = (2, k, h,a),if (z,y) € S1, h € H,
and h(y) = a. The density function u} assigns (z,k, h, o) probability p;(z) - n=' - |H, ;|~'27% if
ke{l,2,...,n}, h € H,; and o € {0,1}*, and 0 otherwise.

The reduction, effected by a probabilistic oracle machine M proceeds as follows. On input
x € {0,1}", machine M tries the following for every value of £ € {1,2,...,n}. It selects at



random with uniform probability distribution an hin H, ; and a € {0,1}*, makes the oracle query
(z,k,h,a) and tests the reply. This is repeated O(1) times.

Clearly, M is efficient. To see that M is a valid reduction consider m = [{y : (2,y) € 51}| and
suppose m > 2 (the case m < 1is easy). Let k = [log, m] if m < .20 and k = [log, m|
otherwise. Then |m-27% — 1] < L. For a randomly selected h € H, ; and « € {0,1}*, the expected
number of y’s satisfying (z,y) € 51 and h(y) = « is between % and %. By the properties of universal
hashing (i.e., pairwise independence of the images of pairs of points) it follows that the probability
that there is a unique y satisfying the above conditions is > % (use Chebyshev’s inequality). In
such a case the oracle returns the correct answer (i.e. this y).

It is left to verify that the reduction satisfies the domination condition. The quadruple (z,k, h, a)
appears as a query of M with probability O(1) - g} (¢) - |H, x|7' - 27% while ph(a, k, b, o) = pi(x) -
n~t|H, i 7127F O

Remarks:

e Lor some problems, like Ilzy, the proof can be easily modified so that the (search) problem
gy can be reducible to the unique solution (search) problem of Ilgy. In the case of llgy
this is done by incorporating k,h and « into the input to a slightly modified machine and
increasing the step count. Namely, the problem of finding a m-step long computation of M
which accepts z is randomly reduced to the problem of finding the unique (m+(mk)°™"))-step
computation of M’ which accepts 2’ = (2, k, h, ), where M’ on input 2’ first lets M run on

x and then checks whether applying h, to an encoding of the non-deterministic moves taken
by M, yields a.

e Almost the same construction will reduce any DistNP decision problem to an DistNP decision
problem with unique witnesses.

3.2 Reducing Search of Unique Solution to Decision problem

Theorem 2 : Let (5, p;) € DistNP be a distributional unique-search problem. Then there exists
a distributional decision problem (Ds, us) € DistNP such that (S, gy )x(Da, pa).

Proof : Once again, assume that (z,y) € S, implies |z| = |y|, and let n = |z|. Define Dy C
{0,1}* x {0,1} as follows: For all z, Dy(z,i) = ¢ if 1 < i < n and there exists y such that
(z,y) € S; and the ¢'" bit of y equals o. For each (z,1), we set uy(z,7) = p)(z) - ﬁ if 1 <i<mn,
and 0 otherwise.

The reduction maps z to the queries (x,1),(z,2),...,(z,|z|). Clearly, the reduction is efficient
and valid (i.e. if there exists a unique y such that (x,y) € S, then the bits of y are reconstructed by
the answers to the above queries). Query (z,¢) appears with probability /(2 ) while p4(z,7) = 2=
hence domination property is satisfied as well. O

For some problems, like Il g, the proof can be easily modified so that the (search) problem gy
can be reducible to the decision problem Ilgg. In the case of llgy this is done by incorporating
i into the input to a slightly modified machine and increasing the step count. On input (z,7) the
modified machine uses the first choice in its i-th step (instead of performing a non-deterministic
choice).

Combining the constructions of Theorems 1 and 2, we have found for every distributional search
problem 1I, a related distributional decision problem II; such that II, is randomly reducible to II,.



Open Problem 1 : Can every distributional search problem (in DistNP) be deterministically
reduced to some distributional decision problem (in DistNP)?

4 On the Structure of DistNP

[Ladner 75] has demonstrated the richness of the structure of NP under polynomial reductions.
The average case complexity counterpart, DistNP, is not less complex. There are several different
ways to define a (average-polynomial) “reducibility order” on this class and they all enjoy structure
theorems analogous to those of [Ladner 75]. We present here only some characteristic examples.

4.1 Structure of Decisions

The natural way to define a complexity ordering on the class DistNP is through the reducibility
of distributional problems. Namely, II; < II, if I, xIl; (and II; < Il if 1I; < II; but not vice
versa). Another possibility is to fix a P-computable distribution g and consider the relation <,
defined on NP by D; <, D, iff (Dy,p) < (Dg,p). Intuitively, D; <, D, means that D, is not
harder than D, with respect to the instance distribution g. Theorem 3 implies that for every u €
P-computable having a NP problem which is not easy on the average with respect to p, there is an
infinite hierarchy on NP with respect to <,. It should be noted that in general the order <, does
not coincide with the order (<p) induced on NP by the usual polynomial-time reductions; that is,
Dy,Dy € NP and D, <p D, does not imply D, <, D, for a specific or for any u € P-computable.

Theorem 3 : For every computable distribution g and every computable language D, such that
(Dy, ) is not in Average-P, there exists a problem (Dj, pt) such that (Ds, pt) is also not in Average-
P, (Dy, p) is not (Turing) reducible to (D, pt), and (D, 1) is (many-to-one) reducible to (D, u)
(i.e., D <, Dy <, Dy, for every D € P). Furthermore, D, is logSpace-reducible (i.e., worst case
reducible) to Dy (hence, if D; € NP then so is D).

Proof : Similar to the proof of Theorem 4 (below), except that we use ¢ to modify D instead of
. O

Corollary 1 : If DistNP is not contained in Average-P then there exists a problem (D, u) in
DistNP which is neither complete for DistNP nor easy on the average.

Proof : Apply Theorem 3 to any DistNP-complete problem. O

4.2 Structure of Distributions

There is yet another natural order which emerges in the context of distributional problems: an
ordering of distributions. We define p; <p o if (D, p1) < (D, ps). Intuitively, py <p po means
that the problem D is not harder on input distribution gy than on distribution .

Theorem 4 : For every computable distribution p; and every computable language D such that
(D, ) is not in Average-P, there exists a distribution p, which is log-space reducible to p, such
that (D, ps) is not in Average-P, (D, y1) is not (Turing) reducible to (D, ps), and (D, po) is (many-
to-one) reducible to (D, ;) (i.e. prin <p pa <p p1, for each distribution py,, giving 0 weight to
all but finitely many strings). (We say that p is log-space reducible to p, if po can be computed
by a log-space oracle machine with access to an oracle for p;.) Furthermore, for every computable

language Dlv (Dvlul) /S(T(D/MMZ)‘



Proof : The basic idea behind the proof is adapted from [Ladner 75] (which, in turn, is modeled
after similar results in recursion theory). One constructs the desired infinite object (a language or,
in our case, a distribution) in stages. In each stage a finite segment is added, the final object is the
(infinite) union of the segments defined along the construction. The construction is governed by a
sequence < 5; : ¢ € N > of demands that have to be met. The demands should be such that:

e Given any finite initial segment o of the construction and any demand 5;, there exists a finite
extension of o that meets the demand.

¢ Every construction, along which all the demands are met, gives rise to an object of the desired
type (e.g., a yo as required for the theorem).

Here we construct an infinite sequence & of 0’s and 1’s. We shall define ps by letting p4() be
0if a(|z|) = 0 and ph(2) = pj(z) otherwise. Hence,

po(e) = o(l2]) - (@) = QD)) + 3 7 o) - ((17) = wa(07))

<]z

yielding a log-space reduction of the computation of u, to the computations of p; and o. Let us
describe our sequence < 5; : ¢ € N > of demands.

The demands: Essentially we have two types of demands. Demands for ’sparseness’ of py which
make sure that for every D’ the original pair (D, ;) is not reducible to (D', us), and ’denseness’
demands to guarantee that (D, i) is not easy on the average. (We get the reducibility of (D, ps)
to (D, py) for free, as any s defined as above is dominated by p,).

For the ’denseness’ demands we enumerate all Average-P machines and make sure that none
solves (D, us). Namely, we list all triples < A;,¢;, ¢, > such that A; is a Turing machine, ¢; is
an integer and ¢; is a rational in the unit interval. Formally, a finite string o satisfies the triple
< A;y e, € > if either A; errs on some input 2 of length < |o| (i.e., A;(2) # D(z)) or A; runs too
slow on the average (i.e., 37|, <[, Ha(2) - t(lzl) > ¢;, where ¢;(2) is the running time of A; on input

For the ’sparseness’ demands we enumerate all Average-P oracle machines and make sure that
none can reduce (D, py) to (D,pus) (or to (D', us) for any D). Namely, we list all quadruples
< D, M;,¢; €, > such that D; is a (code of a Turing machine for a) recursive language, M; is an
oracle machine, and ¢;,¢; are as above. The demands < D', M’ C;,¢; > should make sure that
M’ cannot be used to reduce (D, uy) to (D', us). Consequently, we let a finite string ¢ meet such
a demand if either, for some z (with |z| < |o]|), the reduction fails (i.e., M”'(z) # D(z)) or the

reduction runs for too much time (i.e., 37, 1<\, #1(7) - t(lzl) > ¢;, where ¢;(2) is the running time

of M on input x) or M; violates the domination condition by making (on input z s.t. |z| < |o]
and p)(x) # 0) a query y such that |y| < |o| and uh(y) = 0.

Our sequence < 5; : ¢ € N > of demands will be any recursive enumeration of all the demands
described above, in which odd ¢’s carry ’sparseness’ demands and even i’s constitute ’denseness’
demands.

Lemma 1 : Given any finite initial segment o of the construction and any demand 5;, there exists
a finite extension of & that meets the demand.

Proof : To handle a ’denseness’ demand 5; =< 4;, ¢;, ¢; > we make u, dense enough by extending
o by a tail of 1’s. If no such finite extension meets 5;, then A; computes D correctly in time
polynomial on the average with respect to a distribution p, which differs from p; (possibly) only



on strings of length < |o|. It follows that (D, p;) is in Average-P contradicting the hypothesis of
the theorem.

Given an ’sparseness’ demand S; =< D;, M;, ¢;,¢; >, we make ps sparse enough by extending
o by a tail of 0’s. If no such extension meets .9;, then (as p4(y) = 0 whenever &(|y|) = 0) the
domination constraint guarantees that M; does not ask its oracle queries of length > |o|. It follows
that M; computes D in average polynomial time (with respect to ;) with the help of a finite oracle
(i.e., the first 2171%1 bits of D;) therefore (D, ) is in Average-P, a contradiction.&

Clearly, the infinite sequence & (constructed as above) satisfies all the demands. To complete
the proof of the theorem, we need to provide an efficient procedure for constructing . It suffices
to show that o(k) can be computed in k°!) steps by an oracle machine given oracle y;. To this
end, we employ an observation of [Ladner 75]: meeting a ’denseness’ (respectively, ’sparseness’)
demand requires extending the current o by sufficiently many 1’s (respectively, 0's), yet adding too
many 1’s (0’s) will not cause any harm. Consequently, when faced with such a demand, we can
keep defining o(k) = 1 (or 0) until k is big enough to allow sufficient computing time for realizing
that the demand has been met.

Lemma 2 : Let f be any unbounded, non-decreasing and time-constructible function. A sequence
¢ as in Lemma 1 can be constructed by an oracle machine which, given access to p;, computes

o(k)in < f(k) steps.

Proof : On input k, we compute o(k) by conducting the following procedure with time bound
f(k). Starting with ¢ = 1 and j = 1, the procedure tries to see if demand S5; is satisfied by the
J-bit long prefix of & (in which case ¢ is incremented). Let P, ; denote the procedure’s computation
regarding the pair (7, 7). The computation of P; ; starts by setting o(j) to 0 if ¢ is odd and o(j) = 1
otherwise. These stored values may be used in computations of the procedure on larger j’s. If (P, ;
terminates and) it is found that 5; is indeed satisfied by the j-long prefix then both ¢ and j are
incremented. If (F;; terminates and) it is found that .9; is not satisfied by the j-long prefix then
only j is incremented. Eventually, the procedure (either terminates or) is stopped by the time-out
mechanism (i.e. after f(k) steps) and o(k) is set to 0 if the current ¢ is odd and to 1 otherwise.

In its computation, the above procedure uses oracle calls to p; as well as previously computed
values of o. (The values of ¢ are used to compute p5.) The procedure also computes the values of
D and D; (for some 7’s) on various strings, and runs various regular and oracle machines on various
input strings while counting of the number of steps these machine make.

A detailed description of P; ; follows. If ¢ is even then the procedure tries to satisfy the denseness
demand 5; =< A;,¢;,¢; >. It runs A; on all strings of length j, computes D on all these strings,
compares the values obtained, computes the sum 3, <, ph(x) - MI%IL and compares it to ¢; (to this
end the procedure uses calls to p; and the stored values of o(1),...,0(j5—1)). Thus, the procedure
easily determines if 5; was satisfied by the strings of length < j. If ¢ is odd then the procedure
tries to satisfy the sparseness demand S5; =< D,;, M;, ¢;,¢; >. It runs the oracle machine M; on
all strings of length less than j answering the oracle calls of length less than j by computing the
value of D;, computes the density of p; on these inputs and compares it to the density of s on the
queries (to this end the procedure uses calls to p; and the stored values of o(1),...,0(j —1)). We
stress that in case oracle calls were made to strings of length > j the demand 5; is not satisfied by
the strings of length < j. The procedure also computes D on all strings of length < j, compares
the values to those obtained from the oracle machine, computes the sum 37\ po(2) - MI%IL and
compares it to ¢;.

Clearly, o is constructed in the number of steps claimed. The reader may verify that o defined
by the above procedure satisfies all demands. <



The theorem follows by noting that having access to an oracle for py we can, on an input z,

compute fi5(2) in log-space (hint: po(2) = 30 0(8)-(pa(1) = p1(07))+ o (] (pa () = (1I171))).
a

Corollary 2 : For every distribution (D, ;) €DistNP—Average-P there exists a distribution p
such that (D, us) €DistNP—Average-P and (D, ps) < (D, ). Furthermore, for every D’ € NP,

(D) AT(D'piz).

5 Relations to Worst-Case Complexity

In this section we present theorems which relate questions about average-case complexity classes
to questions about worst-case complexity classes.

5.1 On Average-P vs. DistNP

The first question we address is how likely is it that every NP problem has an easy on the average
solution with respect to every P-computable distribution.

Theorem 5 : If NTime(2°") # DTime(2°()) then DistNP is not a subset of Average-P.
The theorem follows easily from the following

Proposition 1 : NTime(2°™) # DTime(2°")) if and only if there exists a unary language I, € NP
such that (L, u;) ¢Average-P, where p/(1") = n=2

Proof : Book [B] proved that NTime(2°) £ DTime(2°™)) iff there exists a unary language
which is in NP but not in P. Membership in a unary language is decidable in polynomial time iff
there is an algorithm which decides membership in L and has running time polynomial on average
with respect to the distribution on unary strings p/(1") = n=2. (Hint: e > 0s.t. 32, &5 -1(n)° < o0
implies ¢(n) < n?/¢ for all but finitely many n’s.) O

5.2 On Average-P vs. NP with Arbitrary Distributions

In this subsection we show that if no restrictions are placed on the distributions then average-case
complexity classes take the form of the traditional worst-case complexity classes. For example.

Theorem 6 : If P # NP then there exist D € NP and an exponential-time computable y such
that (D, u) ¢Average-P.

Theorem 6 is derived as a special case of Proposition 2 (below), by using the fact that P # NP
implies the existence of a problem D € (NP — P) N DTime(2") (hint: padding).

Definition 2 : Let f: N — N. AverDTime(f(n)) denotes the class of distributional problems
(D, ) solvable by a deterministic algorithm A with running time function ¢4(z) < f({(z)), where
1:{0,1}* — N is linear on the average with respect to u (i.e., ¥, p'(2)"2 < o0).

||

Clearly, AverDTime(n°!)) equals Average-P.

A special case of Definition 2 is when the function [ : {0,1}* — N is linear everywhere (i.e.
[(z) = O(|z])). We would like to have such D be in DTime(f(n)). To this end, we redefine
DTime(f(n)) to be the class of problems D solvable by a deterministic algorithm A with running
time function £4(2) < f(O(|z])) (instead of t4(2) < f(|z|) as is standard practice).

10



Proposition 2 : Let f,g : N — N be any two monotone and time-constructible functions such
that for every ¢ > 1 and all sufficiently large n’s: g(n) > f(¢-n). Let D € DTime(g(n)). Then
there exists an p, computable in time 2" - ¢(O(n)), so that D € DTime(f(n)) if and only if
(D, p) € AverDTime( f(n)).

Proof : Clearly, D € DTime(f(n)) implies (D, ) € AverDTime( f(n)) for every pu. For the other
direction assume that D € (DTime(g(n)) — DTime( f(n))). Consider an enumeration M;, M, ...
of deterministic machines.

For every such machine, M;, define a distribution p; as follows. If M; errs on some input, then
let x; denote such an input. Else, let z;,z,,... be an infinite sequence such that z; is the first
input for which both f(j%z;]) < ¢(|z;|) and machine M; makes more than f(j3|z;|) steps on z;.
(Such an infinite sequence must exist since f(¢*n) < g(n) for every ¢ and all sufficiently large n,
and since machine M; cannot answer correctly on all sufficiently long ’s in f(c?|z|) steps for some
constant ¢.) Let pi(y) be ]% it y = 2; and 0 otherwise. It follows that M; does not solve D in
average time f(n) with respect to the distribution g;. (Otherwise, we get ¢;(2;) < f(li(z;)) where
li(x;) < j%|a;| for all but finitely many j’s; and it follows that ¢;(2;) < f(j*z;]) in contradiction
to the definition of the z;’s.)

Let u(z) = > Ziq)s = - fi(2). The distribution function g is computed, on input «, by running
each M; (i <i < |z|) on all strings y < x, counting the number of steps and comparing the output
of M;(y) with the value of D(y). Each M; is run with time bound ¢(|z|), and D is computed in
g(O(|z])) steps. One can easily verify that (D, u) € AverDTime( f(n)) and that p(z) is computable
in time O(2*!- g(O(]z]))). O

6 Polynomially Samplable Distributions

In this section we consider a natural extension of the class of P-computable distributions — the
class of P-samplable distributions. Distributions in this class arise in probabilistic polynomial time
computations. We show that under “modest” cryptographic assumptions, there are P-samplable
distributions that are “very far” from any P-computable distribution. We proceed to present a
complete distributional problem in (NP, P-samplable). The proof of completeness here is very
different than for the (NP, P-computable) case.

Definition 3 (The class P-samplable) : A distribution p is in the class P-samplable if there exists
a polynomial P and a probabilistic algorithm A that outputs the string « with probability p'(z)
within P(|z]) steps.

Elements in a P-samplable distribution are generated in time polynomial in their length.

Theorem 7 : Every P-computable distribution is also P-samplable.

Proof : The sampling algorithm A picks at random with uniform distribution a truncated real p
in [0, 1] (the length of expansion depends on the following search). It then finds, via binary search,
and queries to p, the unique string @ € {0, 1}* satisfying p(z — 1) < p < p(z). O

The above proof associates every P-computable distribution with a standard sampling algo-
rithm. With respect to this standard algorithm the coin tosses used in the generation of an instance
can be reconstructed from the instance itself (i.e., given x one can efficiently generate a random
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p such that A on coin tosses p outputs z). It follows that solving a problem on instances gener-
ated by a P-computable distribution does not become easier if we are given the coin tosses used
in the construction of the instance to the problem. Hence instances of distributional problems in
DistNP—Average-P are hard also for the person generating them.

The converse of Theorem 7 (above) is unlikely. Namely,

Theorem 8 : If one-way functions exists, then there is a P-samplable distribution g which is
not dominated by any distribution 7 with a polynomial-time computable 7. (Loosely speaking,
a one-way function is a polynomial-time computable function which is “hard to invert” on most
instances. See, for example, [Hastad 90].)

In particular, p itself is not P-computable and no P-computable distribution dominates it. An
alternative proof of this corollary (under the same condition) is now available using [Levin 88] and
[Hastad 89]. Using a weaker condition, namely P # NP, one can prove that P — samplable #
P — computable (hint: use the construction of [Gurevich and McCauley 87] of a distribution with
polynomial-time computable density function which is not P-computable itself).

Proof Sketch: Assume first that there exists a length preserving one-way 1-1 function f (i.e.,
|f(2)| = |z| and f(z) = f(y) implies x = y). Define the distribution g on {0,1}" by

ns.on

0 otherwise

, L if |y| =n, Iz s.t. y = f(2), and z is a prefix of z
M(%Z):{ |yl y=f(z) p

It is easy to see that i is P-samplable: first select n with probability nl—Q, next choose x uniformly

in {0,1}", and output (y, z), where y — f(z) and z is a prefix of  with randomly selected length.

Suppose 1 is a P-computable distribution dominating u (i.e., IeVa: n'(z) > |x1|3
y’s of length n, there could be only polynomially many w’s such that »'(y,w) > m (otherwise
7 would sum up to more than 1). We call such a w heavy for y, and we say that y is typical if it
has only polynomially many heavy w’s. Hence, most y’s are typical. Given a typical y, an oracle
for i’ can be used to find f~!(y) in polynomial time, by searching the “prefixes-tree” proned at

non-heavy nodes. Following is a program for the oracle machine.

1/ (z)). For most

On input y, the machine initiates z < 0 and proceeds in stages. In every stage the machine
computes n'(z, z). If n'(y,z) > W then the machine sets z < z0. Else letting z = 2/01* (with
k > 0), the machine sets z — z’1. If f(z) = y the machine outputs z and stops, else the machine
proceeds to the next stage.

The reader can easily verify that on input a typical y the machine runs for polynomial-time, and
that for every z prefix of f~'(y) domination implies that 7'(y,z) > W It follows that the
machine inverts f on most inputs in polynomial-time, a contradiction to the one-way hypothesis.

We now outline the ideas required to extend the above argument to the case in which “only”
an arbitrary one-way function is guaranteed to exist. First, we note that the above argument can
be easily extended to the case where the function is length preserving, and one-way 1-1 on i of
the instances of length n. This condition is hereafter reffered as condition (*). Next, we transform
any one-way function into one satisfying condition (*). The transformation is carried out in two
stages. Given an arbitrary one-way function fy, we can easily construct a length preserving one-
way function f, (e.g., let fi(a'z") = fo(2')01* = =Wol='*l \where n = |2/2”| and |¢/| = n¢ where
¢ is chosen so that fy(2) is computed in < |z|'/¢ steps). In the second stage, we use ideas of
[Impagliazzo, Levin and Luby 89] to construct a function f, which satisfies condition (*). Define

fala, kb)) = fi(z),k, h,(h(2) |)), where n = |z|, h € H,, , is a universal hashing function and « |,
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denotes the first & bits of a. Certainly, f; is one-way and 1-1 on most triples (z,k, h) satisfying
k = [log, | f~'(f(x))]], and hence satisfies condition (*). The theorem follows. O

The above theorem motivates the definition of the following class of distribution problems.

Definition 4 (The class (NP, P-samplable)): A problem (D,u) belongs to the class (NP, P-
samplable) if D is an NP-predicate and g is in P-samplable.

Intuitively, the question of whether there exists a problem in (NP, P-samplable) which is not in
Average-P can be interpreted as asking whether one party can efficiently find instances of an NP
problem which will be hard to solve for another party. This should be contrasted with the question
of whether there exists a problem in (NP, P-computable) which is not in Average-P, a question
which can be interpreted (see discussion proceeding Theorem 7 above) as asking whether one can
efficiently find instances of an NP problem which will be hard to solve, even for the person who
has constructed them!

A complexity class related to (NP, P-samplable) has been defined and investigated (indepen-
dently of our work) by [Hemachandra, Allender, Feigenbaum, Abadi and Broder 90]. They consider
probabilistic polynomial-time algorithms which generate yes-instances of an NP problem together
with a corresponding solution. The instance (without the corresponding solution, of course) is fed
to an arbitrary polynomial-time algorithm (hereafter referred to as a solver) which is required to
find a solution. The pair (i.e., NP together with an yes-instance generator) is called invulnerable if
for every (polynomial-time) solver there exists a constant o and infinite set of integers S such that
for every n € S the probability that the solver succeeds on length n is < 1 — a (the probability is
taken over the internal coin tosses of both algorithms). The pair is called almost-everywhere invul-
nerable if the above holds for a set S containing all but a finite number of the integers. Reductions
among pairs are defined so that the invulnerability of the original pair implies the invulnerability
of the reduced pair. Strong reductions are defined so that the above holds with respect to “almost-
everywhere invulnerability”. Using techniques similar to those of the following proof, Hemachandra
et. al. demonstrated the existence of a complete problem (with respect to regular reductions). The
result has been augmented to strong reductions by [Feigenbaum, Lipton and Mahaney 89].

Theorem 9 : There exist problems which are complete in (NP, P-samplable).

Proof (following ideas implicit in [Levin 85]): The proof is based on the observation that it is
possible to effectively “enumerate” all sampling algorithms which work in quadratic time (in length
of their output). Two remarks are in place. Firstly, the reader may find the term “enumeration”
misleading. We don’t really enumerate all machines running in quadratic time (such an enumeration
is not possible as indicated by [Gurevich, Shelah 89]). Instead, we enumerate all Turing machines
and modify each of them to stop in time quadratic in the length of the output. This is obtained
by augmenting the machine so that it pads its output once entering the original halting state.
The padding is long enough to make the modified machine run in time quadratic in its output.
It is important to note that the output of machines, which originally run in time quadratic in
their output, remains unchanged. Secondly, the reader may wonder why it suffices to consider
only distributions with quadratic running time (instead of arbitrary polynomial). The reason is
that every problem (D, u) in (NP, P-samplable) can be reduced (by padding) to a problem (D’,n)
(in (NP, P-samplable)) where 7 is a distribution which can be sampled by an algorithm running
quadratic time (in the length of its input). In particular suppose that there exists a polynomial,
P, and a sampling algorithm for p such that every z is output within P(|z|) steps. Then a
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sampling algorithm for  pads each output @ by P(|z|) — |z| zeros, and D’ ignores this padding (i.e.
D'(y) = D(y'), where y = y'y" and P(|y'| - 1) < |y| < P(ly'])).

Let 11,72, ... be an enumeration of the distributions generated by (modified) sampling machines
running in time quadratic in their output. Define a universal distribution

def = 771(2)
np(z) =3 -
=1

Clearly, ny is P-samplable (e.g., first select ¢ with probability Z% and next sample ;). We now show
that the distributional problem (BH,ny) is complete in (NP, P-samplable). First, we remind the
reader that any problem in (NP, P-samplable) can be reduced to a distribution with a quadratic
time sampling algorithm. Hence it suffices to deal with these distibutions. Let (D, p) be an
arbitrary problem in (NP, P-samplable), where p is computable in quadratic time, and let S be the
corresponding sampling algorithm. Let f be the standard Karp reduction of D to BH (i.e., the
reduction which maps an instance @ of D to a triple (M, z, 1*), where M is an NP machine for D and
k is a bound on the running time of M on strings of length |z]). Note that |f(«)| > 2|z| and that f
is computable in quadratic time. Thus, applying f to the output of 5 yields a sampling algorithm,
S, which runs in quadratic time and hence samples one of the distributions in the enumeration
M1, 7z - ... Namely, for some j, we have ni( f(2)) = p'(z). Clearly, (D, u) oc (BH,n;) o< (BH,ny). O

Remarks:

e All natural NP-complete problems have a distribution so that they are complete in (NP, P-
samplable) with that distribution. A sufficient condition is that the Karp reduction of BH
to the NP-complete problem, D, does not decrease the length by too much. Namely, let g
be a Karp reduction of BH to D so that 3¢ > 0 such that Va: |f(z)| > |z|°. Let n, be the
distribution induced by sampling 7y and applying ¢ on its output. Then, 5, is P-samplable
and (BH,ny) < (D, n,).

e The construction can be modified so that, provided one-way functions exist, the resulting
problem is complete in (NP, P-samplable) but is not a member of (NP, P-computable).

e The proof of Theorem 9 depends heavily on the enumeration of P-samplable distributions.
Such effective enumeration is not known for P-computable distributions.

7 Average logspace

The “natural” adaptation of the definition of Average-P fails for Average-logspace. We present an
alternative definition of Average-logspace, which satisfies some desired properties, such as Average-
logspace C Average-P. We define the class (P, logspace-computable), and give an appropriate
version of the bounded halting problem, together with a distribution in logspace-computable, which
are shown to be complete in (P, logspace-computable) with respect to logspace reductions.

The first attempt at the definition is the following: An algorithm A is logspace on the average
with respect to distribution p if

Y ey 2 o

e t® log ||

where s, (2 ) denotes the work space used by algorithm A on input z. Unfortunately, this definition
has some serious handicaps, the most upsetting of which is that for every 0 < a < 1, algorithms
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that use work space n® on every input of length n, will be in average logspace with respect to
the uniform distribution. (As a consequence, average logspace will not necessarily be contained in
average-P.) Instead, we propose the following definitions, suggested independently by [Levin 88].

Definition 5 (Logarithmic on the Average) : A function f : {0,1}* — N is logarithmic on the
average with respect to a distribution p if there exists a constant € > 0 such that

(212))¢

]

< 0

Thus, a function is logarithmic on the average if it is bounded by a logarithm in a function which
is linear on the average.

Definition 6 (The class Average-logspace): A distributional problem (D, i) is in the class Average-
logspace if there exists an algorithm A solving D using work space s4, which is logarithmic on the
average with respect to the distribution p.

This revised definition overcomes the above mentioned difficulties. In addition, the notion of
domination of probability distributions will still be applicable, and Average-logspace is closed under
average logspace (many-to-one) reductions.

This approach can be generalized to the definition of the class Average-Uniform-NC. To do
this, we use the characterization of Uniform-NC by alternating logspace and poly-log time Turing
machines [Ruzzo 81]. We now require that both the exponent of the work space (i.e. 2°4(®)) and
the exponent of the time to some power § > 0 (i.e. 2“‘“)6) be polynomial on the average.

The class (P, logspace-computable) is defined analogously to the definition of (NP, P-computable).
Namely, (P, logspace-computable) consists of distributional problems, (D, p), with D € P and the
distribution function p is logspace computable. It should be noticed that many natural distribu-
tions, including the uniform distribution and the distribution pgy (of subsection 2.3), are logspace
computable.

Deterministic Bounded Halting (DBH) is defined over triples (M, xz,1%), where M is a deter-
ministic machine, & is a binary string and k is an integer (given in unary). The problem is to
determine whether M accepts x within k steps. Clearly, DBH € P, and it is not hard to see that
it is P-complete with respect to logSpace reductions.

Theorem 10 : The distributional problem (DBH, gy ) is complete in (P, logspace-computable).
(tpm is as defined in subsection 2.3.)

Proof Sketch: The proof uses ideas of the (NP, P-computable)-completeness proof of Distribu-
tional Bounded Halting. This proof is presented in Appendix B. The heart of the proof is an
encoding C, which is 1-1 and satisfies |C,(z)| < O(1) —log, p/(x). If p'(x) < 2711 then C,(z) = 0
else Cy(2) = 1z where z is a shortest binary expansion of a real in the interval (p(z — 1) — p(z)].
Clearly, the computation of (', essentially reduces to computing y on two values. Thus, when p is
P-computable the encoding €', is polynomial-time computable. As here yu is logspace computable,
so is the encoding function €, used in the reduction. The decoding algorithm C;! is not logspace
computable. However, decoding can be done in deterministic polynomial time (by binary search),
which is sufficient for our purpose. O

We remark that it is possible to define a version of the tiling problem that with a natural
distribution constitute a complete distributional problem in (NP, P-computable). The input to a
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tiling problem is an alphabet X, a family of tiles /7 C ¥, an initial tiling @ € F*, and an integer
k presented in unary. The question in the standard version is whether the initial tiling a can be
extended to a tiling of the k X k square. Qur version of tiling is restricted to “forcing families”. A
family of tiles is called forcing if, for every row of tiles, the row of tiles which can be placed on top
of it is unique except for the end tiles. Note that it suffices to consider rows of length 3, and thus
families can be tested for the “forcing property” in logSpace.

We derive results analogous to those appearing in Section 5 (using essentially the same proof
techniques). For example

Theorem 11 : If DTime(2°™)) # DSpace(n) then there exists a problem in (P, logspace-computable)
which is not in Average-logspace.

All the results in Section 4, dealing with the structure of (NP, P-computable), can be modified
to the context of (P, logspace-computable).

8 Concluding Remarks

In general, a theory of average case complexity should provide
e a specification of a broad class of interesting distributional problems;
e a definition capturing the subclass of (distributional) problems which are easy on the average;

¢ notions of reducibility which allow to infer the easiness of one (distributional) problem from
the easiness of another;

e and, of course, results...

It seems that the theory of average case complexity, initiated by Levin and further developed in
[Gurevich 87,Venkatesan and Levin 88] and here, satisfies these expectations to some extent. This
should not discourage the reader from trying to suggest alternative definitions, or get convinced
that we should stick to the ones presented above. In particular,

e generalize or provide a better alternative for the class DistNP (especially with respect to the
condition imposed on the distribution function);

e try to provide a more natural (but yet as robust) definition of problems which are “polynomial-
time on the average”;

e and, naturally, try to find a real natural distributional problem which is complete in DistNP
(e.g., subset sum with uniform distribution).

In addition to their central role in the theory of average-case complexity, reductions which
preserve uniform (or very simple) instance distribution are of general interest. Such reductions,
unlike most known reductions used in the theory of NP-completeness, have a range which is a non-
negligible part of the set of all possible instances of the target problem (i.e. a part which cannot
be claim to be only a “pathological subcase”). It is interesting to further study the corresponding
reducibility relation.
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Note added in proofs

Following the presentation of this work in conferences, [Impagliazzo, Levin 90] proved that
every language which is (NP, P-computable)-complete is also (NP, P-samplable)-complete. This
important result makes the theory of average case very robust. In particular, we believe that it
eliminates the motivation for providing an alternative to Dist NP=(NP, P-computable) (a suggestion
made above). For further discussion the reader is referred to [Impagliazzo, Levin 90].

A distributional version of a natural problem from computational algebra has been recently
shown to be DistNP-complete by [Gurevich 90]. Thus, DistNP-complete problems are known for
the following areas: computability (e.g. Bounded-Halting), combinatorics (e.g. tiling and graph
colouring), formal languages and algebra (e.g. of matrix groups).
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APPENDICES

Appendix A: Failure of a naive formulation of average polynomial-time

When asked to motivate his definition of average polynomial-time, Leonid Levin replies, non-
deterministically, in one of the following three ways:

o “This is the natural definition”.

e “This definition is not important for the results in my paper; only the definitions of reduc-
tion and completeness matter (and also they can be modified in many ways preserving the
results)”.

o “Any definition which makes sense is either equivalent or weaker”.

For further elaboration on the first argument the reader is referred to Leonid Levin. The second
argument is, off course, technically correct but unsatisfactory. We will need a definition of “easy
on the average” when motivating the notion of a reduction and developing useful relaxations of it.
The third argument is a thesis which should be interpreted along Wittgenstein’s suggestion to the
teacher: “say nothing and restrict yourself to pointing out errors in the students’ attempts to say
something”. We will follow this line here by arguing that the definition which seems natural to an
average computer scientist suffers from serious problems and should be rejected.

Definition X (naive formulation of the notion of easy on the average): A distributional problem
(D, p) is polynomial-time on the average if there exists an algorithm A solving D (i.e. on input
outputs D(z)) such that the running time of algorithm A, denoted ¢4, satisfies ¢ > 0Vn:

Yo (@) talz) <nf

z€{0,1}™

where pu! (z) is the conditional probability that & occurs given that an n-bit string occurs (i.e.,
_ ! xr
:u;z(x) - Zye{i,1}n N'(y))'

The problem which we consider to be most upsetting is that Definition X is not robust under
functional composition of algorithms. Namely, if the distributional problem A can be solved in
average polynomial-time given access to an oracle for B, and problem B can be solved in polynomial-
time then it does not follow that the distributional problem A can be solved in average polynomial-
time. For example, consider uniform probability distribution on inputs of each length and an oracle
Turing machine M which given access to oracle B solves A. Suppose that M runs 2% steps on
2% of the inputs of length n, and n? steps on all other inputs of length n; and furthermore that
M when making ¢ steps asks a single query of length /7. (Note that machine M, given access to
oracle for B, is polynomial-time on the average.) Finally, suppose that the algorithm for B has
cubic running-time. The reader can now verify that although M given access to the oracle B is
polynomial-time on the average, combining M with the cubic running-time algorithm for B does
not yield an algorithm which is polynomial-time on the average according to Definition X. It is easy
to see that this problem does not arise when using the definition presented in Section 2.

The source of the above problem with Definition X is the fact that the underlying definition of
polynomial-on-the-average is not closed under application of polynomials. Namely, if ¢ : {0,1}" —
N is polynomial on the average, with respect to some distribution, it does not follow that also *(-)
is polynomial on the average (with respect to the same distribution). This technical problem is
also the source of the following problem, that Levin considers most upsetting: Definition X is not
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machine independent. This is the case since some of the simulations of one computational model on
another square the running time (e.g., the simulation of two-tape Turing machines on a one-tape
Turing machine or the simulation of a RAM (Random Access Machine) on a Turing machine).

Another two problems with Definition X have to do with the fact that it deals separately with
inputs of different length. The first problem is that Definition X is very dependent on the particular
encoding of the problem instance. Consider, for example, a problem on simple undirected graphs
for which there exist an algorithm A with running time t4(G) = f(n, m), where n is the number of
vertices in G and m is the number of edges (in G'). Suppose that if m < n? then f(n,m) = 2" and
else f(n,m) = n?. Consider the distributional problem which consists of the above graph problem
with the uniform probability distribution on all graphs with the same number of vertices. Now, if
the graph is given by its (incident) matrix representation then Definition X implies that A solves
the problem in average polynomial-time (the average is taken on all graphs with n nodes). On
the other hand, if the graphs are represented by their adjacency lists then the modified algorithm
A (which transforms the graphs to matrix representation and applies algorithm A) is judged by
Definition X to be non-polynomial on the average (here the average is taken over all graphs of m
edges). This of course will not happen when working with the definition presented in Section 2.
The second problem with dealing separately with different input lengths is that it does not allow
one to disregard inputs of a particular length. Consider for example a problem for which we are
only interested in the running-time on inputs of odd length.

After pointing out several weaknesses of Definition X, let us also doubt its “clear intuitive
advantage” over the definition presented in Section 2. Definition X is derived from the formulation
of worst case polynomial-time algorithms which requires that 3¢ > 0¥n:

Vo € {0,1}" : ta(z) < n°

Definition X was derived by applying the expectation operator to the above inequality. But why
not make a very simple algebraic manipulation of the inequality before applying the expectation
operator? How about taking the ¢-th root of both sides and dividing by n; this yields J¢ > 0Vn:

o=

ta(z)

<1

Ve e {0,1}" :

Applying the expectation operator to the above inequality leads to the definition presented in
Section 2... We believe that this definition demonstrates a better understanding of the nature of
the expectation operator!

Robustness under functional composition as well as machine independence seems to be essential
for a coherent theory. Sois robustness under efficiently effected transformation of problem encoding.
These are one of the primary reasons for the acceptability of P as capturing problems which can
be solved efficiently. In going from worst case analysis to average case analysis we should not and
would not like to lose these properties.

Appendix B: DistNP-completeness of lipy

The proof, presented here, is due to [Gurevich 87] (an alternative proof is implied by [Levin 84]).

In the traditional theory of NP-completeness, the mere existence of complete problems is almost
immediate. For example, it is extremely simple to show that the Bounded Halting problem is NP-
complete.

Bounded Halting (BH ) is defined over triples (M, z, 1), where M is a non-deterministic machine,
z is a binary string and k is an integer (given in unary). The problem is to determine whether there
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exists a computation of M on input & which halts within & steps. Clearly, Bounded Halting is in
NP (here its crucial that k is given in unary). Let D be an arbitrary NP problem, and let Mp be
the non-deterministic machine solving it in time Pp(n) on inputs of length n, where Pp is a fixed
polynomial. Then the reduction of D to BH consists of the transformation z — (Mp,z, 172D},
In the case of distributional-NP an analogous theorem is much harder to prove. The difficulty
is that we have to reduce all DistNP problems (i.e. pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e. Bounded Halting with a single simple
distribution). Applying reductions as above we will end up with many distributional versions of
Bounded Halting, and furthermore the corresponding distribution functions will be very different
and will not necessarily dominate one another. Instead, one should reduce a distributional problem,
(D, ), with an arbitrary P-computable distribution to a distributional problem with a fixed (P-
computable) distribution (e.g. gy ). The difficulty in doing so is that the reduction should have
the domination property. Consider for example an attempt to reduce each problem in DistNP to
gy by using the standard transformation of D to BH, sketched above. This transformation fails
when applied to distributional problems in which the distribution of (infinitely many) strings is
much higher than the distribution assigned to them by the uniform distribution. In such cases,
the standard reduction maps an instance x having probability mass p/(z) > 271°l to a triple
(Mp,x, 172020} with much lighter probability mass (recall plyy(Mp,a, 170Dy < 2=l=ly " This
violates the domination condition, and thus an alternative reduction is required. The key to
the alternative reduction is an (efficiently computable) encoding of strings taken from an arbitrary
polynomial-time computable distribution by strings which have comparable probability mass under
a fixed distribution. This encoding will map z into a code of length bounded above by the logarithm
of 1/p/(2). Accordingly, the reduction will map & to a triple (Mpyu,w’,ﬂﬂo(l)), where |2'| <
O(1) + log, 1/4/(2), and Mp , is a non-deterministic Turing machine which first retrieves z from
2’ and then applies the standard non-deterministic machine (i.e., Mp) of the problem D. Such a
reduction will be shown to satisfy all three conditions (i.e. efficiency, validity, and domination).
Thus, instead of forcing the structure of the original distribution g on the target distribution pgg,
the reduction will incorporate the structure of u into the the reduced instance.
The following technical Lemma is the basis of the reduction.

Coding Lemma: Let p be a polynomial-time computable distribution function. Then there exist
a coding function €, satisfying the following three conditions.

1) Compression: Y

1
Cu(z)] <2+ min{|z|,log, ——
Cule) {Jal.loz, )

2) Efficient Encoding: The function €, is computable in polynomial-time.

3) Unique Decoding: The function C), is one-to-one (i.e. C,(z) = C,(2') implies = 2’).

Proof: The function C, is defined as follows. If y/(z) < 271#l then C,(2) = 0 (i.e. in this case x
serves as its own encoding). If p/(z) > 2717l then €, () = 1z, where 0.z is the binary expansion of
a fraction in the interval (u(z — 1), u(x)] which has binary expansion of minimum length. In other
words, z = 2’1 where 2’ is the longest common prefix of the binary expansions of p(z —1) and p(z)
(e.g. if #(1010) = 0.10000 and (1011) = 0.10101111 then C,(1011) = 1z with = = 101).

We now verify that C, so defined satisfies the conditions of the Lemma. If p'(2) < 2717l then
|Cu(z)] = 14 |2] < 2+ log, m If 4/'(2) > 2711 then the interval (u(z — 1), u(2)] must contain
a fraction with binary expansion of length < 10g2(ﬂ'2£2)—1 and hence |C,(z)] <1+ 1+ logzm.
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Clearly, €, can be computed in polynomial-time by computing pu(z — 1) and p(z). Finally, note
that C', is one-to-one by considering the two cases, C',(2z) = 02 and C,(z) = 12. O

Using the coding function presented in the above proof, we introduce a non-deterministic machine
Mp , so that the distributional problem (D, u) is reducible to gy = (BH, pipg) in a way that
all instances (of D) are mapped to triples with first element Mp ,. On input y = C,(2), machine
Mp , computes D(z), by first retrieving « from C,(z) (e.g., guess and verify) and next running the
non-deterministic polynomial-time machine (Mp) which solves D.

The reduction maps an instance @ (of D) to the triple (Mp ., C,(z), 170D} where P(n) o

Pp(n)+ Pc(n)+n, Pp(n) is a polynomial bounding the running time of Mp on acceptable inputs
of length n, and Pg(n) is a polynomial bounding the running time of an algorithm for encoding
inputs (of length n).

Proposition: The above mapping constitutes a reduction of (D, ) to (BH, iy ).
Proof:

o The transformation can be computed in polynomial-time. (Recall that ', is polynomial-time
computable.)

o By construction of Mp , it follows that D(z) = 1 if and only if there exists a computation of
machine Mp , that on input C, () halts outputting 1 within P(]z|) steps. (On input C,(z),
machine Mp , non-deterministically guesses z, verifies in Pc(|z|) steps that z is encoded by
Cy(z), and non-deterministically “computes” D(z).)

o Tosee that the distribution induced by the reduction is dominated by the distribution gy, we
first note that the transformation 2 — C',(z) is one-to-one. It suffices to consider instances of
BH which have a preimage under the reduction (since instances with no preimage satisfy the
condition trivially). All these instances are triples with first element Mp ,. By the definition

of g | |
/ P(|z])y _ =1Cu(=)
o (Mp i, Cu(x), 170V) = ¢ ( -2 )
PR P(lz])? CCu(x)]?
where ¢ = m is a constant depending only on (D, ).
By virtue of the coding Lemma
Iu/(x) S 4 . 2_|Cu(x)|
It thus follows that
1 L ()
LA Mn o O 120Dy > (. . .
oMo G- 502 B fO(oF 4

C

/
- 4| Mp ., Cpu(z), 170D p ()

The Proposition follows. O
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