
On Teaching the Basics of Complexity Theory(In Memory of Shimon Even [1935{2004])�Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Israel.Email: oded.goldreich@weizmann.ac.ilAugust 14, 2005AbstractWe outline a conceptual framework for teaching the basic notions and results of complexitytheory. Our focus is on using de�nitions and on organizing the presentation in a way thatre
ects the fundamental nature of the material. We do not attempt to provide a self-containedpresentation of the material itself, but rather outline our suggestions regarding how this materialshould be presented in class. In addition, we express our opinions on numerous related issues.We focus on the P-vs-NP Question, the general notion of a reduction, and the theory ofNP-completeness. In particular, we suggest presenting the P-vs-NP Question both in termsof search problems and in terms of decision problems (where NP is viewed as a class of proofsystems). As for the theory of NP-completeness, we suggest highlighting the mere existence ofNP-complete sets.

�This essay was written towards publication in a forthcoming book in memory of Shimon Even.0

Contents1 Introduction 21.1 Teaching and current student perception of Complexity Theory : : : : : : : : : : : : 21.2 The source of trouble and eliminating it : 21.3 Concrete suggestions : 21.4 A parenthetical comment on computability versus complexity : : : : : : : : : : : : : 41.5 Organization : 42 P versus NP 52.1 The search version: �nding versus checking : 52.2 The decision version: proving versus verifying : 62.3 Equivalence of the two formulations : 83 Reductions and Self-reducibility 83.1 The general notion of a reduction : 93.2 Self-reducibility of search problems : 104 NP-completeness 114.1 De�nitions : 114.2 The existence of NP-complete problems : 114.3 CSAT, SAT, and other NP-complete problems : 124.4 NP sets that are neither in P nor NP-complete : 145 Three additional topics 155.1 The class coNP and NP-completeness : 155.2 Optimal search algorithms for NP-relations : 165.3 Promise Problems : 176 A brief overview of Complexity Theory 18Historical Notes 23

1

1 IntroductionThis is a highly opinionated essay that advocates a concept-oriented approach towards teachingtechnical material such as the basics of complexity theory. In addition to making various sug-gestions, I express my opinion on a variety of related issues. I do hope that this essay will stirdiscussion and maybe even a�ect the way some courses are being taught.1.1 Teaching and current student perception of Complexity TheoryShimon Even had a passion for good teaching, and so writing this essay in his memory seems mostappropriate. In my opinion, good teaching is an art (and, needless to say, Shimon was one of itstop masters). It is hard (if at all possible) to cultivate artistic talents, but there are certain basicprinciples that underly each art form, and these can be discussed.One central aspect of good teaching is putting things in the right perspective; that is, a per-spective that clari�es the motivation for the various de�nitions and results. Nothing should beeasier when it comes to complexity theory: It is easy to provide a good perspective on the basicnotions and results of complexity theory, because these are of fundamental nature and of great in-tuitive appeal. Unfortunately, often this is not the way this material is taught. The annoying (andquite amazing) consequences are students that have only a vague understanding of the conceptualmeaning of these fundamental notions and results.1.2 The source of trouble and eliminating itIn my opinion, it all boils down to taking the time to explicitly discuss the conceptual meaningof de�nitions and results. After all, the most important aspects of a scienti�c discovery are theintuitive question that it addresses, the reason that it addresses this question, the way it phrases thequestion, the approach that underlies its answer, and the ideas that are embedded in the answer.All these have to be re
ected in the way the discovery is presented. In particular, one should usethe \right" de�nitions (i.e., those that re
ect better the fundamental nature of the notion beingde�ned), and proceed in the (conceptually) \right" order. Two concrete examples follow.Typically1, NP is de�ned as the class of languages recognized by nondeterministic polynomial-time machines. Even bright students may have a hard time �guring out (by themselves) why oneshould care about such a class. On the other hand, when de�ning NP as the class of assertionsthat have easily veri�able proofs, each student is likely to understand its fundamental nature.Furthermore, the message becomes even more clear when discussing the search version analogue.Similarly, one typically1 takes the students throughout the detailed proof of Cook's Theorembefore communicating to them the striking message (i.e., that \universal" problems exist at all,let alone that many natural problems like SAT are universal). Furthermore, in some cases, thismessage is not communicated explicitly at all.1.3 Concrete suggestionsThe rest of this essay provides concrete suggestions for teaching the basics of complexity theory,where by the basics I mean the P-vs-NP Question and the theory of NP-completeness. This materialis typically taught as part of an undergraduate course on computability and complexity theory, and1However, exceptions do exists: There are teachers and even textbooks that deviate from the standard practicebeing bashed here. 2

my suggestions are targeted primarily at computer scientists teaching such a course. However, Ibelieve that my suggestions are valid regardless of the context in which this material is being taught.I assume that the basic material itself is well-known to the reader. Thus, my focus is not onthe material itself, but rather on how it should be presented in class. The two most importantsuggestions were already mentioned above:1. The teacher should communicate the fundamental nature of the P-vs-NP Question whilereferring to de�nitions that (clearly) re
ect this nature. In particular, I suggest explicitlypresenting the implication of the P-vs-NP Question on the complexity of search problems, inaddition to presenting the implication to decision problems.2. The teacher should communicate the striking signi�cance of the mere existence of NP-complete problems (let alone natural ones), before exhausting the students with complicatedreductions.Additional suggestions include providing a general perspective on the concept of a reduction, es-tablishing tight relations between the complexity of search and decision problems, decoupling theproof of NP-hardness of SAT by using Circuit-SAT as an intermediate problem, and mentioningsome additional topics (e.g., NP-sets that are neither in P nor NP-complete) rather than a host ofNP-completeness results.I advocate a model-independent presentation of the questions and results of complexity theory.I claim that most questions and results in complexity theory (like all results of computability the-ory) hold for any reasonable model of computation and can be presented with minimal referenceto the speci�cs of the model.2 In fact, in most cases, the speci�c model of computation is irrele-vant. Typically, the presentation needs to refer to the speci�cs of the model of computation onlywhen encoding the relation between consecutive instantaneous con�gurations of computation (seeSection 4.3). However, such an encoding is possible for any reasonable model of computation, andthis fact should be stressed.It is also important to start a course (or series of lectures) by providing a wide perspective onits subject matter, which in this case is complexity theory. I would say that complexity theory is acentral �eld of (Theoretical) Computer Science, concerned with the study of the intrinsic complexityof computational tasks, where this study tend to aim at generality: The �eld focuses on naturalcomputational resources (most notably time), and the e�ect of limiting these resources on the classof problems that can be solved. Put in other words, complexity theory aims at understanding thenature of e�cient computation. I suggest re-iterating the wider goals of complexity theory at theend of the course (or series of lectures), and illustrating them at that point by sketching a few ofthe active research directions and the results obtained in them. My own suggestion for such a briefoverview is presented in Section 6.Finally, until we reach the day in which every student can be assumed to have understoodthe meaning of the P-vs-NP Question and of NP-completeness, I suggest not to assume such anunderstanding when teaching an advanced complexity theory course. Instead, I suggest startingsuch a course with a fast discussion of the P-vs-NP Question and NP-completeness, making sure2The speci�cs of the (reasonable) model are irrelevant for all questions and results mentioned in this essay, exceptfor Theorem 6 where the model is important only for the exact bound on the slow-down of the optimal algorithm.Similarly, the speci�cs of the model e�ect the exact quantitative form of hierarchy theorems, but not their mereexistence. Finally, in contrary to some beliefs, the speci�cs of the model are irrelevant also for most results regardingspace complexity, provided that reasonable accounting of work-space is applied.3

that the students understand the conceptual meaning of these basics.3 (Needless to say, the rest ofthe course should also clarify the conceptual meaning of the material being taught.)1.4 A parenthetical comment on computability versus complexityThis essay refers to the current situation in many schools, where the basics of complexity theoryare taught within a course in which material entitled \computability" plays at least an equal role.The essay is con�ned to the \complexity" part of such a course, and takes the \computability" partfor granted.Let me seize the opportunity and express my opinion on this combined course on computabilityand complexity theory. In my opinion, complexity theory should play the main role in this course,whereas the basic concepts and results of computability theory should be regarded as an importantpreliminary material. That is, I view computability theory as setting the stage for the study ofthe complexity of the computational tasks that can be automated at all. Thus, the computabilityaspects of such a course should be con�ned to establishing that the intuitive notion of an algorithmcan be rigorously de�ned, and to emphasizing the uncomputability of most functions and of somenatural functions (e.g., the Halting predicate). This includes introducing the idea of a universalalgorithm, but does not included extensive programming with Turing machines or extensive studyof (complexity-free) Turing reductions. Needless to say, I oppose the teaching of �nite automata(let alone context-free grammars) within such a course.Expanding upon the opinions expressed in the last paragraph is beyond the scope of the currentessay. On the other hand, the rest of this essay is independent of the foregoing remarks. That is,it refers to the basic material of complexity theory, regardless of the question within which coursethis material is taught and what role does it play in such a course.1.5 OrganizationSection 2 contains a presentation of the P-vs-NP Question both in terms of search problems andin terms of decision problems. Section 3 contains a general treatment of reductions as well as asubsection on \self-reducibility" (of search problems). Section 4 contains a presentation of the basicde�nitions and results of the theory of NP-completeness (as well as a mention of the existence ofNP-sets that are neither in P nor NP-complete). Section 5 mentions three additional topics thatare typically not taught in a basic course on computability and complexity theory. These topicsinclude the conjectured non-existence of coNP-sets that are NP-complete, the existence of optimalsearch algorithms for NP-relations, and the notion of promise problems.As a general rule, the more standard the material is, the less detail we provide about is actualtechnical contents. Our focus is on the conceptual contents of the material, and technical detailsare given merely for illustration. We stress again that this essay is not supposed to serve as atextbook, but rather as a conceptual framework.The essay is augmented by a brief overview of complexity theory. Unlike the rest of this essay,which assumes familiarity with the material, this overview (Section 6) is supposed to be accessibleto the novice (or an \outsider"), and may be used accordingly. One possible use is as a basefor introductory comments on complexity theory to be made either at the beginning of a graduatecourse on the topic or at the end of the (currently prevailing) undergraduate course on computabilityand complexity theory.3In fact, this essay is based on my notes for three lectures (covering the basic material), which were given in agraduate course on complexity theory (see [4]). 4

2 P versus NPMost students have heard of P and NP before, but we suspect that many have not obtained a goodexplanation of what the P-vs-NP Question actually represents. This unfortunate situation is due tousing the standard technical de�nition of NP (which refers to nondeterministic polynomial-time)rather than using (somehat more cumbersome) de�nitions that clearly capture the fundamentalnature of NP. Below, we take the alternative approach. In fact, we present two fundamentalformulations of the P-vs-NP Question, one in terms of search problems and the other in terms ofdecision problems.E�cient computation. The teacher should discuss the association of e�cient computation withpolynomial-time algorithms, stressing that this association merely provides a convenient way ofaddressing fundamental issues.4 In particular, polynomials are merely a \closed" set of moderatelygrowing functions, where \closure" means closure under addition, multiplication and functionalcomposition. These closure properties guarantee the closure of the class of e�cient algorithms undernatural algorithmic composition operations such as sequential execution and subroutine calls. (Thespeci�cs of the model of computation are also immaterial, as long as the model is \reasonable";this strengthening of the Church{Turing Thesis is called the Cobham{Edmonds Thesis.)2.1 The search version: �nding versus checkingIn the eyes of non-experts, search problems are more natural than decision problems: typically,people seeks solutions more than they stop to wonder whether or not solutions exist. Thus, werecommend starting with a formulation of the P-vs-NP Question in terms of search problems.Admittingly, the cost is more cumbersome formulations (presented in Figure 1), but it is morethan worthwhile. Furthermore, the equivalence to the decision problem formulation gives rise toconceptually appealing exercises.We focus on polynomially-bounded relations, where a relation R � f0; 1g��f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every (x; y) 2 R it holds that jyj � p(jxj). Forsuch a relation it makes sense to ask whether, given an \instance" x, one can e�ciently �nd a\solution" y such that (x; y) 2 R. The polynomial bound on the length of the solution (i.e., y)guarantees that the intrinsic complexity of outputting a solution may not be due to the length (ormere typing) of the required solution.The class P as a natural class of search problems. With each polynomially-bounded relationR, we associate the following search problem: given x �nd y such that (x; y) 2 R or state thatno such y exists. The class P corresponds5 to the class of search problems that are solvablein polynomial-time; that is, a relation R (or rather the search problem of R) is polynomial-timesolvable if there exists a polynomial-time algorithm that given x �nd y such that (x; y) 2 R or statethat no such y exists.4Indeed, we claim that these fundamental issues are actually independent of the aforementioned association.For example, the question of whether �nding a solution is harder than verifying its validity makes sense under anyreasonable notion of \hardness". Similarly, the claim that factoring (or any other \NP problem") is \easily reducible"to SAT holds for many reasonable notions of \easy to compute" mappings.5We leave it to the teacher whether to actually de�ne P (resp., NP) as a class of search problems or to reservethis notion for the relevant class of decision problems (and merely talk about a \correspondence" between the searchand decision problem classes). Our own preference is to introduce di�erent notations for the search problem classes(see Figure 1). 5

The class NP as another natural class of search problems. A polynomially-bounded rela-tion R is called an NP-relation if, given an alleged instance-solution pair, one can e�ciently checkwhether or not the pair is valid; that is, there exists a polynomial-time algorithm that given x andy determines whether or not (x; y) 2 R. The class NP corresponds5 to the class of search problemsfor NP-relations (and contains a host of natural search problems). It is reasonable to focus onsearch problems for NP-relations, because the ability to e�ciently recognize a valid solution seemsto be a natural prerequisite for a discussion regarding the complexity of �nding such solutions.(Indeed, one can introduce (unnatural) non-NP-relations for which the search problem is solvablein polynomial-time; still the restriction to NP-relations is very natural.)The P versus NP question in terms of search problems: Is it the case that the searchproblem of any NP-relation can be solved in polynomial-time? In other words, if it is easy to checkwhether or not a given solution for a given instance is correct, then is it also easy to �nd a solutionto a given instance?If P = NP (in terms of search problems) then this would mean that whenever solutions togiven instances can be e�ciently veri�ed for correctness it is also the case that these solutions canbe e�ciently found (when given only the instance). This would mean that all reasonable searchproblems (i.e., all NP-relations) are easy to solve. Needless to say, such a situation would contradictthe intuitive feeling (and daily experience) that some reasonable search problems are hard to solve.On the other hand, if P 6= NP then there exist reasonable search problems (i.e., some NP-relations)that are hard to solve. This conforms with our daily experience by which some reasonable problemsare easy to solve whereas others are hard to solve.Recall that search problems refer to binary relations. For such a relation R, the corresponding searchproblem is given x to �nd y such that (x; y) 2 R (or assert that no such y exists). We suggest de�ningtwo classes of search problems.� PF (standing for \Poly-Find") denotes the class of search problems that are solvable inpolynomial-time. That is, R 2 PF if there exists a polynomial time algorithm that givenx �nds y such that (x; y) 2 R (or assert that no such y exists).� PC (standing for \Poly-Check") denotes the class of search problems that correspond topolynomially-bounded binary relations that are \checkable" in polynomial-time. That is,R 2 PC if the following two conditions hold1. For some polynomial p, if (x; y) 2 R then jyj � p(jxj).2. There exists a polynomial-time algorithm that given (x; y) determines whether or not(x; y) 2 R.In terms of search problems the P-vs-NP Question consists of asking whether or not PC is containedin PF . The conjectured inequality P 6= NP implies that PC n PF 6= ;.Figure 1: P-vs-NP in terms of search problems: notational suggestions.2.2 The decision version: proving versus verifyingWe suggest starting by asserting the natural stature of decision problems (beyond their role in thestudy of search problems). After all, some people do care about the truth, and so determining6

whether a given object has some claimed property is an appealing problem. The P-vs-NP Questionrefers to the complexity of answering such questions for a wide and natural class of propertiesassociated with the class NP. The latter class refers to properties that have e�cient proof systemsallowing for the veri�cation of the claim that a given object has a predetermined property (i.e., isa member of a predetermined set).For an NP-relation R, we denote the set of instances having a solution by LR; that is, LR = fx :9y (x; y) 2 Rg. Such a set is called an NP-set, and NP denotes the class of all NP-sets. Intuitively,an NP-set is a set of valid statements (i.e., statements of membership of a given x in LR) thatcan be e�ciently veri�ed when given adequate proofs (i.e., a corresponding NP-witness y such that(x; y) 2 R). This leads to viewing NP-sets as proof systems.NP-proof systems. Proof systems are de�ned in terms of their veri�cation procedures. Herewe focus on the natural class of e�cient veri�cation procedures, where e�ciency is represented bypolynomial-time computations. (We should either require that the time is polynomial in terms ofthe statement or con�ne ourselves to \short proofs" { that is, proofs of length that is bounded by apolynomial in the length of the statement.) NP-relations correspond to proof systems with e�cientveri�cation procedures. Speci�cally, the NP-relation R corresponds to the (proof system with a)veri�cation procedure that checks whether or not the alleged statement-proof pair is in R. Thisproof system satis�es the natural completeness and soundness conditions: every true statement (i.e.,x 2 LR) has a valid proof (i.e., an NP-witness y such that (x; y) 2 R), whereas false statements(i.e., x 62 LR) have no valid proofs (i.e., (x; y) 62 R for all y's).Recall that decision problems refer to membership in sets. We suggest de�ning two classes of decisionproblems, which indeed coincide with the standard de�nitions of P and NP .� P denotes the class of decision problems that are solvable in polynomial-time. That is, S 2 Pif there exists a polynomial time algorithm that given x determines whether or not x 2 S.� NP denotes the class of decision problems that have NP-proof systems. The latter are de�nedin terms of a (deterministic) polynomial-time veri�cation algorithm. That is, S 2 NP if thereexists a polynomial p and a polynomial-time algorithm V that satisfy the following completenessand soundness conditions:1. Completeness: if x 2 S then there exists y of length at most p(jxj) such that V (x; y) = 1.(Such a string y is called an NP-witness for x 2 S.)2. Soundness: if x 62 S then for every y it holds that V (x; y) = 0.Indeed, the point is de�ning NP as a class of sets of assertions having e�cient veri�cationprocedures.In terms of decision problems the P-vs-NP Question consists of asking whether or notNP is containedin P . Since P � NP , the question is phrased as whether or not NP equals P .Figure 2: P-vs-NP in terms of decision problems: notational suggestions.The P versus NP question in terms of decision problems: Is it the case that NP-proofsare useless? That is, is it the case that for every e�ciently veri�able proof system one can easilydetermine the validity of assertions (without being given suitable proofs)? If that were the case,then proofs would be meaningless, because they would have no fundamental advantage over directly7

determining the validity of the assertion. Denoting by P the class of sets that can be decidede�ciently (i.e., by a polynomial-time algorithm), the conjecture P 6= NP asserts that proofs areuseful: there exists NP-sets that cannot be decided by a polynomial-time algorithm, and so for thesesets obtaining a proof of membership (for some instances) is useful (because we cannot e�cientlydetermine membership by ourselves).2.3 Equivalence of the two formulationsWe strongly recommend proving that the two formulations of the P-vs-NP Questions are equivalent.That is, the search problem of every NP-relation is solvable in polynomial time if and only ifmembership in any NP-set can be decided in polynomial time (see Figure 3). This justi�es thefocus on the latter (simpler) formulation.Referring the notations of Figures 1 and 2, we prove that PC � PF if and only if NP = P .� Suppose that the inclusion holds for the search version (i.e., PC � PF). Let L be an arbitraryNP-set and RL be the corresponding witness relation. Then RL is a NP-relation, and by thehypothesis its search problem is solvable in polynomial time (i.e., RL 2 PC � PF). This yieldsa polynomial-time decision procedure for L; i.e., given x try to �nd y such that (x; y) 2 RL(and output \yes" i� such a y was found). Thus, NP = P follows.� Suppose that NP = P (as classes of sets), and let R be an arbitrary NP-relation. Then the setSR def= f(x; y0) : 9y00 s.t. (x; y0y00)2Rg (where y0y00 denotes the concatenation of y0 and y00) is inNP and hence in P . This yields a polynomial-time algorithm for solving the search problem ofR, by extending a pre�x of a potential solution bit by bit (while using the decision procedureto determine whether or not the current pre�x is valid). Thus, PC � PF follows.Figure 3: A proof that PC � PF if and only if NP = P.We also suggest mentioning that NP is sometimes de�ned as the class of sets that can bedecided by a �ctitious device called a nondeterministic polynomial-time machine (and that thisis the source of the notation NP). The reason that this class of �ctitious devices is important isbecause it captures (indirectly) the de�nition of NP-proof systems. We suggest proving that indeedthe de�nition of NP in terms of nondeterministic polynomial-time machine equals our de�nitionof NP (in terms of the class of sets having NP-proof systems).3 Reductions and Self-reducibilityWe assume that many students have heard of reductions, but again we fear that most of themhave obtained a conceptually poor view of their nature. We believe that this is due to expositionsthat start with a technical de�nition of many-to-one (polynomial-time) reductions (i.e., Karp-reductions), rather than with a motivational discussion. Below, we take an the alternative approach,presenting �rst the general notion of (polynomial-time) reductions among computational problems,and viewing the notion of a Karp-reduction as an important special case that su�ces (and is moreconvenient) in many cases.
8

3.1 The general notion of a reductionReductions are procedures that use \functionally speci�ed" subroutines. That is, the functionalityof the subroutine is speci�ed, but its operation remains unspeci�ed and its running-time is countedat unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions can bemodeled as oracle (Turing) machines. A reduction solves one computational problem (which may beeither a search or decision problem) by using oracle (or subroutine) calls to another computationalproblem (which again may be either a search or decision problem). We focus on e�cient (i.e.,polynomial-time) reductions, which are often called Cook reductions.The key property of reductions is that they translate e�cient procedures for the subroutine intoe�cient procedures for the invoking machine. That is, if one problem is Cook-reducible to anotherproblem and the latter is polynomial-time solvable then so is the former.The most popular case is of reducing decision problems to decision problems, but we will alsoconsider reducing search problems to search problems or reducing search problems to decisionproblems. Indeed, a good exercise is showing that the search problem of any NP-relation can bereduced to deciding membership in some NP-set (which is the actual contents of the second itemof Figure 3).A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).Speci�cally, for decision problems L and L0, we say that L is Karp-reducible to L0 if there is areduction of L to L0 that operates as follows: On input x (an instance for L), the reduction computesx0, makes query x0 to the oracle L0 (i.e., invokes the subroutine for L0 on input x0), and answerswhatever the latter returns. This Karp-reduction is often represented by the polynomial-timecomputable mapping of x to x0; that is, a polynomial-time computable f is called a Karp-reductionof L to L0 if for every x it holds that x 2 L i� f(x) 2 L0.Indeed, a Karp-reduction is a syntactically restricted notion of a reduction. This restricted casesu�ces for many cases (e.g., most importantly for the theory of NP-completeness (when developedfor decision problems)), but not in case we want to reduce a search problem to a decision problem.Furthermore, whereas each decision problem is reducible to its complement, some decision problemsare not Karp-reducible to their complement (e.g., the trivial decision problem).6 Likewise, eachdecision problem in P is reducible to any computational problem by a reduction that does not usethe subroutine at all, whereas such a trivial reduction is disallowed by the syntax of Karp-reductions.(Nevertheless, a popular exercise of dubious nature is to show that any decision problem in P isKarp-reducible to any non-trivial decision problem.)We comment that Karp-reductions may (and should) be augmented in order to handle re-ductions of search problems to search problems. Such an augmented Karp-reduction of the searchproblem of R to the search problem of R0 operates as follows: On input x (an instance for R), thereduction computes x0, makes query x0 to the oracle R0 (i.e., invokes the subroutine for searchingR0 on input x0) obtaining y0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x(i.e., (x; y) 2 R). Thus, such a reduction can be represented by two polynomial-time computablemappings, f and g, such that (x; g(x; y0)) 2 R for any y0 that solves f(x) (i.e., y0 that satis�es(f(x); y0) 2 R0). (Indeed, in general, unlike in the case of decision problems, the reduction cannotjust return y0 as an answer to x.)We say that two problems are computationally equivalent if they are reducible to one another.This means that the two problems are essentially equally hard (or equally easy).6We call a decision problem trivial if it refers to either the empty set or the set of all strings.
9

3.2 Self-reducibility of search problemsWe suggest introducing the notion of self-reducibility7 for several reasons. Most importantly, itfurther justi�es the focus on decision problems (see discussion following Proposition 1). In addition,it illustrates the general notion of a reduction, and asserts its relevance beyond the theory of NP-completeness.The search problem of R is called self-reducible if it can be reduced to the decision problemof LR = fx : 9y (x; y) 2 Rg (rather than to the set SR as in Figure 3). Note that the decisionproblem of LR is always reducible to the search problem for R (e.g., invoke the search subroutineand answer \yes" if and only if it returns some string (rather than the \no solution" symbol)).We will see that all NP-relations that correspond to NP-complete sets are self-reducible, mostlyvia \natural reductions". We start with SAT, the set of satis�able Boolean formulae (in CNF).Let RSAT be the set of pairs (�; �) such that � is a satisfying assignment to the formulae �. Notethat RSAT is an NP-relation (i.e., it is polynomially-bounded and easy to decide (by evaluating aBoolean expression)).Proposition 1 (RSAT is self-reducible): The search problem of RSAT is reducible to SAT .Thus, the search problem of RSAT is computationally equivalent to deciding membership in SAT .Hence, in studying the complexity of SAT , we also address the complexity of the search problem ofRSAT . This justi�es the relevance of decision problems to search problems in a stronger sense thanestablished in Section 2.3: The study of decision problems determines not only the complexity ofthe class of \NP-search" problems but rather determines the complexity of each individual searchproblem that is self-reducible.Proof: Given a formula �, we use a subroutine for SAT in order to �nd a satisfying assignmentto � (in case such an assignment exists). First, we query SAT on � itself, and return \no solution"if the answer we get is `false'. Otherwise, we let � , initiated to the empty string, denote a pre�xof a satisfying assignment of �. We proceed in iterations, where in each iteration we extend � byone bit. This is done as follows: First we derive a formula, denoted �0, by setting the �rst j� j + 1variables of � according to the values �0. Next we query SAT on �0 (which means that we askwhether or not �0 is a pre�x of a satisfying assignment of �). If the answer is positive then we set� �0 else we set � �1 (because if � is a pre�x of a satisfying assignment of � and �0 is not apre�x of a satisfying assignment of � then �1 must be a pre�x of a satisfying assignment of �).A key point is that each formula �0 (which contains Boolean variables as well as constants) canbe simpli�ed to contain no constants (in order to �t the canonical de�nition of SAT, which disallowsBoolean constants). That is, after replacing some variables by constants, we should simplify clausesaccording to the straightforward boolean rules (e.g., a false literal can be omitted from a clauseand a true literal appearing in a clause allows omitting the entire clause).Advanced comment: A reduction analogous to the one used in the proof of Proposition 1 can bepresented also for other NP-search problems (and not only for NP-complete ones).8 Consider, for7Our usage of this term di�ers from the traditional one. Traditionally, a decision problem is called self-reducibleif it is Cook-reducible to itself via a reduction that on input x only makes queries that are smaller than x (accordingto some appropriate measure on the size of strings). Under some natural restrictions (i.e., the reduction takes thedisjunction of the oracle answers) such reductions yield reductions of search to decision (as discussed in the maintext).8We assume that the students have heard of NP-completeness. If this assumption does not hold for your class,then the presentation of the following material should be postponed (to Section 4.1 or to an even later stage).10

example, the problem Graph 3-Colorability and pre�xes of a 3-coloring of the input graph. Note,however, that in this case the process of getting rid of constants (representing partial solutions)is more involved.9 In general, if you don't see a \natural" self-reducibility process for some NP-complete relation, you should know that a self-reduction process does exist (alas it maybe not bea natural one).Theorem 2 The search problem of the NP-relation of any NP-complete set is self-reducible.Proof: Let R be an NP-relation of the NP-complete set LR. In order to reduce the search problemof R to deciding LR, we compose the three reductions mentioned next:1. The search problem of R is reducible to the search problem of RSAT (by the NP-completenessof the latter).2. The search problem of RSAT is reducible to SAT (by Proposition 1).3. The decision problem SAT is reducible to the decision problem LR (by the NP-completenessof the latter).The theorem follows.4 NP-completenessSome (or most) students have heard of NP-completeness before, but we suspect that many havemissed important conceptual points. Speci�cally, we stress that the mere existence of NP-completesets (regardless of whether this is SAT or some other set) is amazing.4.1 De�nitionsThe standard de�nition is that a set is NP-complete if it is in NP and every set in NP is reducibleto it via a Karp-reduction. Indeed, there is no reason to insist on Karp-reductions (rather thanusing arbitrary reductions), except that the restricted notion su�ces for all positive results and iseasier to work with.We will also refer to the search version of NP-completeness. We say that a binary relation isNP-complete if it is an NP-relation and every NP-relation is reducible to it.We stress that the mere fact that we have de�ned something (i.e., NP-completeness) does notmean that this thing exists (i.e., that there exist objects that satisfy the de�nition). It is indeedremarkable that NP-complete problems do exist. Such problems are \universal" in the sense thatsolving them allows solving any other (reasonable) problem.4.2 The existence of NP-complete problemsWe suggest not to confuse the mere existence of NP-complete problems, which is remarkable byitself, with the even more remarkable existence of \natural" NP-complete problems. We believethat the following proof facilitates the delivery of this message as well as focusing on the essenceof NP-completeness, rather than on more complicated technical details.9Details can left as an exercise to the student. You may hint that a partial 3-coloring can be hard-wired into thegraph by augmenting the graph with adequate gadgets that force equality (or inequality) between the colors of twovertices (of our choice). 11

Theorem 3 There exist NP-complete relations and sets.Proof: The proof (as well as any other NP-completeness proof) is based on the observation thatsome NP-relations (resp., NP-sets) are \rich enough" to encode all NP-relations (resp., NP-sets).This is most obvious for the \generic" NP-relation, denoted RU (and de�ned below), which is usedto derive the simplest proof of the current theorem.The relation RU consists of pairs (hM;x; 1ti; y) such that M is a description of a (deterministic)Turing machine that accepts the pair (x; y) within t steps, where jyj � t. (Instead of requiringthat jyj � t, one may require that M is canonical in the sense that it reads its entire input beforehalting.) It is easy to see that RU is an NP-relation, and thus LU def= fx : 9y (x; y) 2 RUg is anNP-set. Indeed, RU is recognizable by a universal Turing machine, which on input (hM;x; 1ti; y)emulates (t steps of) the computation of M on (x; y), and U indeed stands for universal (machine).(Thus, the proof extends to any reasonable model of computation, which has adequate universalmachines.)We now turn to showing that any NP-relation is reducible to RU . As a warm-up, let us �rst showthat any NP-set is Karp-reducible to LU . Let R be an NP-relation, and LR = fx : 9y (x; y) 2 Rgbe the corresponding NP-set. Let pR be a polynomial bounding the length of solutions in R (i.e.,jyj � pR(jxj) for every (x; y) 2 R), let MR be a polynomial-time machine deciding membership(of alleged (x; y) pairs) in R, and let tR be a polynomial bounding its running-time. Then, theKarp-reduction maps an instance x (for L) to the instance hMR; x; 1tR(jxj+pR(jyj))i.Note that this mapping can be computed in polynomial-time, and that x 2 L if and only ifhMR; x; 1tR(jxj+pR(jyj))i 2 LU .To reduce the search problem of R to the search problem of RU , we use essentially the samereduction. On input an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jyj))i to thesearch problem of RU and return whatever the latter returns. Note that if x 62 LR then theanswer will be \no solution", whereas for every x and y it holds that (x; y) 2 R if and only if(hMR; x; 1tR(jxj+pR(jyj))i; y) 2 RU .Advanced comment. Note that the role of 1t in the de�nition of RU is to make RU an NP-relation. In contrast, consider the relation RH def= f(hM;xi; y) : M(xy) = 1g (which correspondsto the halting problem). Indeed, the search problem of any relation (an in particular of any NP-relation) is Karp-reducible to the search problem of RH , but the latter is not solvable at all (i.e.,there exists no algorithm that halts on every input and on input x = hM;xi outputs y such that(x; y) 2 RH i� such a y exists).4.3 CSAT, SAT, and other NP-complete problemsOnce the mere existence of NP-complete problems has been established, we suggest informing thestudents of the fact that many natural problems are NP-complete, and demonstrating this fact witha few examples. Indeed, SAT is a good �rst example, both because the reduction to it is instructiveand because it is a convenient starting point to further reductions. As a second example, we suggestvarious variants of the Set Cover problem. Additional reductions may be deferred to homeworkassignments, and presenting them in class seems inadequate in the context of a course on complexitytheory.We suggest establishing the NP-completeness of SAT by a reduction from the circuit satisfactionproblem (CSAT), after establishing the NP-completeness of the latter. Doing so allows decouplingtwo important issues in the proof of the NP-completeness of SAT: (1) the emulation of Turing12

machines by circuits, and (2) the encoding of circuits by formulae with auxiliary variables. Followingis a rough outline, which focuses on the decision version.CSAT. De�ne Boolean circuits as directed acyclic graphs with internal vertices, called gates,labeled by Boolean operations (of arity either 2 or 1), and external vertices called terminals thatare associated with either inputs or outputs. When setting the inputs of such a circuit, all internalnodes are assigned values in the natural way, and this yields a value to the output(s), called anevaluation of the circuit on the given input. De�ne the satis�ability problem of such circuits asdetermining, for a given circuit, whether there exists a setting to its inputs that makes its (�rst)output evaluate to 1. Prove the NP-completeness of the circuit satisfaction problem (CSAT),by reducing any NP-set to it (where the set is represented by the machine that recognizes thecorresponding NP-relation). The reduction boils down to encoding possible computations of aTuring machine by a corresponding layered circuit, where each layer represents an instantaneouscon�guration of the machine, and the relation between consecutive con�gurations is captured by(\uniform") local gadgets in the circuit. For further details, see Figure 4. (The proof extends toany other \reasonable" model of e�cient computation.)Following are some additional comments on the proof of the NP-completeness of CSAT. These com-ments refer to the high-level structure of the reduction, and do not provide a full (low-level) descriptionof it.For a machine MR (as in the proof of Theorem 3), we will represent the computation of MR on input(x; y), where x is the input to the reduction and y is undetermined, by a circuit Cx that takes sucha string y as input. Thus, Cx(y) = 1 if and only if MR accepts (x; y), and so Cx is satis�able if andonly if x 2 LR. The reduction maps x to a circuit Cx as follows.The circuit Cx consists of layers such that the ith layers of wires (connecting the i � 1st and ithlayers of vertices) represents the instantaneous con�guration of MR(x; y) just before the ith step. Inparticular, the gates of the i+1st layer are designed to guaranteed that the instantaneous con�gurationof MR(x; y) just before the ith step is transformed to the instantaneous con�guration of MR(x; y)just before the i+1st step. Only the �rst layer of Cx depends on x itself (which is \hard-wired" intothe circuit). The rest of the construction depends only on jxj and MR.Figure 4: Encoding computations of a Turing machine in a Boolean circuit.The above reduction is called \generic" because it (explicitly) refers to any (generic) NP-set.However, the common practice is to establish NP-completeness by a reduction from some NP-complete set (i.e., a set already shown to be NP-complete). This practice is based on the fact thatif an NP-complete problem � is reducible to some problem �0 in NP then �0 is NP-complete. Theproof of this fact boils down to asserting the transitivity of reductions.SAT. De�ne Boolean formulae, which may be viewed as Boolean circuits with a tree structure.Prove the NP-completeness of the formula satisfaction problem (SAT), even when the formula isgiven in a nice form (i.e., CNF). The proof is by a reduction from CSAT, which in turn boilsdown to introducing auxiliary variables in order to cut the computation of a deep circuit into aconjunction of related computations of shallow (i.e., depth-2) circuits (which may be presented asCNF formulae). The aforementioned auxiliary variables hold the possible values of the internalwires of the circuit. 13

3SAT. Note that the formulae resulting from the latter reduction are in conjunctive normal form(CNF) with each clause referring to three variables (i.e., two corresponding to the input wires ofa node/gate and one to its output wire). Thus, the above reduction actually establishes the NP-completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three variables per clause).Alternatively, reduce SAT (for CNF formula) to 3SAT (i.e., satis�ability of 3CNF formula) byreplacing long clauses with conjunctions of three-variable clauses using auxiliary variables.In order to establish the NP-completeness of the search version of the aforementioned problemswe need to present a polynomial-time mapping of solutions for the target problem (e.g., SAT) tosolutions for the origin problem (e.g., CSAT). Note that such a mapping is typically explicit in theargument establishing the validity of the Karp-reduction.Set Cover and other problems. If time permits, one may want to present another class ofNP-complete problems, and our choice is of Set Cover. There is a simple reduction from SAT to SetCover (with the sets corresponding to the sets of clauses that are satis�ed when assigning a speci�cBoolean variable a speci�c Boolean value). When applied to a restricted version of SAT in whicheach variable appears in at most three clauses, the same reduction implies the NP-completeness ofa version of Set Cover in which each set contains at most three elements. (Indeed, one should �rstestablish the NP-completeness of the aforementioned restricted version of SAT.) Using the restrictedversion of Set Cover one may establish the NP-completeness of Exact Cover (even when restrictedto 3-element sets). The latter problem is a convenient starting point for further reductions.4.4 NP sets that are neither in P nor NP-completeMany (to say the least) other NP-sets have been shown to be NP-complete. A very partial list in-cludes Graph 3-Colorability, Subset Sum, (Exact) Set Cover, and the Traveling Salesman Problem.(Hundreds of other natural problems can be found in [3].) Things reach a situation in which somecomputer scientists seem to expect any NP-set to be either NP-complete or in P. This naive viewis wrong:Theorem 4 Assuming NP 6= P, there exist NP-sets that are neither NP-complete nor in P.We mention that some natural problems (e.g., factoring) are conjectured to be neither solvable inpolynomial-time nor NP-hard, where a problem � is NP-hard if any NP-set is reducible to solving�. See discussion following Theorem 5. We recommend to either state Theorem 4 without a proofor merely provide the proof idea (which is sketched next).Proof idea. The proof is by modifying a set in NPnP such that to fail all possible reductions (tothis set) and all possible polynomial-time decision procedures (for this set). Speci�cally, we startwith some L 2 NP nP and derive L0 � L (which is also in NP nP) by making each reduction (sayof L) to L0 fail by dropping �nitely many elements from L (until the reduction fails), whereas allpossible polynomial-time fail to decide L0 (which di�er from L only on a �nite number of inputs).We use the fact that any reduction (of some set in NP nP) to a �nite set (i.e., a �nite subset of L)must fail (and this failure is due to a �nite set of queries), whereas any e�cient decision procedurefor L (or L modi�ed on �nitely many inputs) must fail on some �nite portion of all possible inputs(of L). The process of modifying L into L0 proceeds in iterations, alternatively failing a potentialreduction (by dropping su�ciently many strings from the rest of L) and failing a potential decisionprocedure (by including su�ciently many strings from the rest of L). This can be done e�cientlybecause it is inessential to determine the optimal points of alternation (where su�ciently many14

strings were dropped (resp., included) to fail a potential reduction (resp., decision procedure)).Thus, L0 is the intersection of L and some set in P, which implies that L0 2 NP n P.5 Three additional topicsThe following topics are typically not mentioned in a basic course on complexity. Still, pending ontime constraints, we suggest covering them at some minimal level.5.1 The class coNP and NP-completenessBy prepending the name of a complexity class (of decision problems) with the pre�x \co" we meanthe class of complement sets; that is,coC def= ff0; 1g� n L : L 2 CgSpeci�cally, coNP = ff0; 1g� n L : L 2 NPg is the class of sets that are complements of NP-sets. That is, if R is an NP-relation and LR = fx : 9y (x; y) 2 Rg is the associated NP-set thenf0; 1g� n LR = fx : 8y (x; y) 62 Rg is the corresponding coNP-set.It is widely believed that NP is not closed under complementation (i.e., NP 6= coNP). Indeed,this conjecture implies P 6= NP (because P is closed under complementation). The conjectureNP 6= coNP means that some coNP-sets (e.g., the complements of NP-complete sets) do not haveNP-proof systems; that is, there is no NP-proof system for proving that a given formula is notsatis�able.If indeed NP 6= coNP then some NP-sets cannot be Karp-reducible to any coNP-set.10 How-ever, each NP-set is reducible to some coNP-set (by a straightforward Cook-reduction that just
ipsthe answer), and so the non-existence of such Karp-reduction does not seem to represent anythingreally fundamental. In contrast, we mention that NP 6= coNP implies that some NP-sets cannotbe reduced to sets in the intersection NP \ coNP (even under general (i.e., Cook) reductions).Speci�cally,Theorem 5 If NP \ coNP contains an NP-hard set then NP = coNP.Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a general reduction).Since NP \ coNP is conjectured to be a proper superset of P, it follows (using the conjectureNP 6= coNP) that there are NP-sets that are neither in P nor NP-hard (speci�cally, the sets in(NP\coNP)nP are neither in P nor NP-hard). Notable candidates are sets related to the integerfactorization problem (e.g., the set of pairs (N; s) such that s has a square root modulo N that isa quadratic residue modulo N and the least signi�cant bit of s equals 1).Proof: Suppose that L 2 NP \ coNP is NP-hard. Given any L0 2 coNP , we will show thatL0 2 NP . We will merely use the fact that L0 reduces to L (which is in NP \ coNP). Such areduction exists because L0 is reducible L0 def= f0; 1g�nL0 (via a general reduction), whereas L0 2 NPand thus is reducible to L (which is NP-hard).10Speci�cally, we claim that sets in NP n coNP cannot be Karp-reducible to sets in coNP. In fact, we provethat only sets in coNP are Karp-reducible to sets in coNP. Equivalently, let us prove that only sets in NP areKarp-reducible to sets in NP, where the equivalence follows by noting that a reduction of L to L0 is also a reductionof f0; 1g� n L to f0; 1g� n L0. Indeed, suppose that L Karp-reduces to L0 2 NP. Then L 2 NP by virtue of theNP-relation f(x; y) : (f(x); y) 2 R0g, where R0 is the witness relation of L0.15

To show that L0 2 NP, we will present an NP-relation, R0, that characterizes L0 (i.e., L0 =fx : 9y (x; y) 2 R0g). The relation R0 consists of pairs of the form (x; ((z1; �1; w1); :::; (zt ; �t; wt))),where on input x the reduction of L0 to L accepts after making the queries z1; :::; zt, obtaining thecorresponding answers �1; :::; �t, and for every i it holds that if �i = 1 then wi is an NP-witness forzi 2 L, whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n L.We stress that we use the fact that both L and L def= f0; 1g� n L are NP-sets, and refer to thecorresponding NP-witnesses. Note that R0 is indeed an NP-relation: The length of solutions isbounded by the running-time of the reduction (and the corresponding NP-witnesses). Membershipin R0 is decided by checking that the sequence of (zi; �i)'s matches a possible query-answer sequencein an accepting execution of the reduction11 (ignoring the correctness of the answers), and that allanswers (i.e., �i's) are correct. The latter condition is easily veri�ed by use of the correspondingNP-witnesses.5.2 Optimal search algorithms for NP-relationsThe title of this section sounds very promising, but our guess is that the students will be less excitedonce they see the proof. We claim the existence of an optimal search algorithm for any NP-relation.Furthermore, we will explicitly present such an algorithm, and prove that it is optimal (withoutknowing its running time).Theorem 6 For every NP-relation R there exists an algorithm A that satis�es the following:1. A correctly solves the search problem of R.2. There exists a polynomial p such that for every algorithm A0 that correctly solves the searchproblem of R and for every x 2 LR = fz : 9y (z; y) 2 Rg it holds that tA(x) = O(tA0(x) +p(jxj)), where tA (resp., tA0) denotes the number of steps taken by A (resp., A0) on input x.We stress that the hidden constant in the O-notation depends only on A0, but in the followingproof the dependence is exponential in the length of the description of algorithm A0 (and it is notknown whether a better dependence can be achieved). Optimality holds in a \point-wise" manner(i.e., for every input), and the additive polynomial term (i.e., p(jxj)) is insigni�cant in case theNP-problem is not solvable in polynomial-time. On the other hand, the optimality of algorithm Arefers only to inputs that have a solution (i.e., x 2 LR). Interestingly, we establish the optimalityof A without knowing what its (optimal) running-time is. Furthermore, the P-sv-NP Question boilsdown to determining the running time of a single explicitly presented algorithm (i.e., the optimalalgorithm A). Finally, we note that the theorem as stated refers only to models of computationthat have machines that can emulate a given number of steps of other machines with a constantoverhead. We mention that in most natural models the overhead of such emulation is at mostpoly-logarithmic in the number of steps, in which case it holds that tA(x) = eO(tA0(x) + p(jxj)).Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership inR, and let p be a polynomial bounding the running-time of M . We present the following algorithmA that merely runs all possible search algorithms \in parallel" and checks the results provided byeach of them (using M), halting whenever it obtains a correct solution.Since there are in�nitely many possible algorithms, we should clarify what we mean by \runningthem all in parallel". What we mean is to run them at di�erent rates such that the in�nite11That is, we need to verify that on input x, after obtaining the answers �1; :::; �i�1 to the �rst i � 1 queries, theith query made by the reduction equals zi. 16

sum of rates converges to 1 (or any other constant). Speci�cally, we will run the ith possiblealgorithm at rate 1=(i + 1)2. Note that a straightforward implementation of this idea may createa signi�cant overhead, involved in switching frequently from the computation of one machine toanother. Instead we present an alternative implementation that proceeds in iterations. In the jthiteration, for i = 1; :::; 2j=2, we emulate 2j=(i+1)2 steps of the ith machine. Each of these emulationsis conducted in one chunk, and thus the overhead of switching between the various emulations isinsigni�cant (in comparison to the total number of steps being emulated). We stress that in casesome of these emulations halts with output y, algorithm A invokes M on input (x; y) and outputy if and only if M(x; y) = 1. Furthermore, the veri�cation of a solution provided by a candidatealgorithm is also emulated at the expense of its step-count. (Put in other words, we augment eachalgorithm with a canonical procedure (i.e., M) that checks the validity of the solution o�ered bythe algorithm.)In order to guarantee that A also halts on x 62 LR, we let it run an exhaustive search for asolution, in parallel to all searches, and halt with output ? in case this exhaustive search fails.Clearly, whenever A(x) outputs y (i.e., y 6= ?) it must hold that (x; y) 2 R. To show theoptimality of A, we consider an arbitrary algorithm A0 that solves the search problem of R. Ouraim is to show that A is not much slower than A0. Intuitively, this is the case because the overheadof A results from emulating other algorithms (in addition to A0), but the total number of emulationsteps wasted (due to these algorithms) is inversely proportional to the rate of algorithm A0, whichin turn is exponentially related to the length of the description of A0. The punch-line is that sinceA0 is �xed, the length of its description is a constant.5.3 Promise ProblemsPromise problems are a natural generalization of decision problems (and search problems canbe generalized in a similar manner). In fact, in many cases, promise problems provide the morenatural formulation of a decision problem. Formally, promise problems refer to a three-way partitionof the set of all strings into yes-instances, no-instances, and instances that violate the promise. Apotential decider is only required to distinguish yes-instances from no-instances, and is allowedarbitrary behavior on inputs that violate the promise. Standard decision problems are obtained asa special case by postulating that all inputs are allowed (i.e., the promise is trivial).In contrary to the common perception, promise problems are no o�shoot for abnormal situa-tions, but are rather the norm: Indeed, the standard and natural presentation of natural decisionproblems is actually in terms of promise problems, although the presentation rarely refers explic-itly to the terminology of promise problems. Consider a standard entry in [3] (or any similarcompendium) reading something like \given a planar graph, determine whether or not ...". A moreformal statement will refer to strings that represent planar graphs. Either way, the natural formu-lation actually refers to a promise problem (where the promise in this case is that the input is aplanar graph).We comment that the discrepancy between the intuitive promise problem formulation and thestandard formulation in terms of decision problems can be easily bridged in the case that thereexists an e�cient algorithm for determining membership in the \promise set" (i.e., the set of in-stances that satisfy the promise). In this case, the promise problem is computationally equivalent todeciding membership in the set of yes-instances. However, in case the promise set is not tractable,the terminology of promise problems is unavoidable. Examples include the notion of \unique solu-tions", the formulation of \gap problems" that capture various approximation tasks, and completeproblems for various probabilistic complexity classes. For a recent survey on promise problems and17

their applications, the interested reader is referred to [5].6 A brief overview of Complexity Theory(The following text was originally written as a brief overview of complexity theory, intended forthe novice. It can also be used as a basis for communicating the essence of complexity theory tothe outside (i.e., to scientists in other disciplines and even to the general interested public). Thus,unlike the rest of this essay, which is intended for the teacher, this section is intended for the student(or for other \outsiders" that the teacher may wish to address). The text starts with an overviewof the P-vs-NP Question and the theory of NP-completeness, repeating themes that were expressedin the previous sections. Still, in light of the di�erent potential uses of this text, I preferred not toeliminate this part of the overview.)Complexity Theory is concerned with the study of the intrinsic complexity of computationaltasks. Its \�nal" goals include the determination of the complexity of any well-de�ned task. Addi-tional \�nal" goals include obtaining an understanding of the relations between various computa-tional phenomena (e.g., relating one fact regarding computational complexity to another). Indeed,we may say that the former type of goals is concerned with absolute answers regarding speci�c com-putational phenomena, whereas the latter type is concerned with questions regarding the relationbetween computational phenomena.Interestingly, the current success of Complexity Theory in coping with the latter type of goalshas been more signi�cant. In fact, the failure to resolve questions of the \absolute" type, led to the
ourishing of methods for coping with questions of the \relative" type. Putting aside for a momentthe frustration caused by the failure, we must admit that there is something fascinating in thesuccess: in some sense, establishing relations between phenomena is more revealing than makingstatements about each phenomenon. Indeed, the �rst example that comes to mind is the theoryof NP-completeness. Let us consider this theory, for a moment, from the perspective of these twotypes of goals.Complexity Theory has failed to determine the intrinsic complexity of tasks such as �ndinga satisfying assignment to a given (satis�able) propositional formula or �nding a 3-coloring of agiven (3-colorable) graph. But it has established that these two seemingly di�erent computationaltasks are in some sense the same (or, more precisely, are computationally equivalent). We �ndthis success amazing and exciting, and hope that the reader shares our feeling. The same feelingof wonder and excitement is generated by many of the other discoveries of Complexity Theory.Indeed, the reader is invited to join a fast tour of some of the other questions and answers thatmake up the �eld of Complexity Theory.We will indeed start with the \P versus NP Question". Our daily experience is that it is harderto solve a problem than it is to check the correctness of a solution (e.g., think of either a puzzleor a research problem). Is this experience merely a coincidence or does it represent a fundamentalfact of life (or a property of the world)? Could you imagine a world in which solving any problemis not signi�cantly harder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world? The denial of theplausibility of such a hypothetical world (in which \solving" is not harder than \checking") is what\P di�erent than NP" actually means, where P represents tasks that are e�ciently solvable andNP represents tasks for which solutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider the task of provingtheorems versus the task of verifying the validity of proofs. Indeed, �nding proofs is a special18

type of the aforementioned task of \solving a problem" (and verifying the validity of proofs isa corresponding case of checking correctness). Again, \P di�erent than NP" means that thereare theorems that are harder to prove than to be convinced of correctness when presented with aproof. This means that the notion of a proof is meaningful (i.e., that proofs do help when tryingto be convinced of the correctness of assertions). Here NP represents sets of assertions that can bee�ciently veri�ed with the help of adequate proofs, and P represents sets of assertions that can bee�ciently veri�ed from scratch (i.e., without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question is a fundamentalscienti�c question of far-reaching consequences. The fact that this question seems beyond our cur-rent reach led to the development of the theory of NP-completeness. Loosely speaking, this theoryidenti�es a set of computational problems that are as hard as NP. That is, the fate of the P-versus-NP Question lies with each of these problems: if any of these problems is easy to solve then soare all problems in NP. Thus, showing that a problem is NP-complete provides evidence to its in-tractability (assuming, of course, \P di�erent than NP"). Indeed, demonstrating NP-completenessof computational tasks is a central tool in indicating hardness of natural computational problems,and it has been used extensively both in computer science and in other disciplines. NP-completenessindicates not only the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. The use of the term\encoding" is justi�ed by the exact meaning of NP-completeness, which in turn is based on estab-lishing relations between di�erent computational problems (without referring to their \absolute"complexity).The foregoing discussion of the P-versus-NP Question also hints to the importance of repre-sentation, a phenomenon that is central to complexity theory. In general, complexity theory isconcerned with problems the solutions of which are implicit in the problem's statement. That is,the problem contains all necessary information, and one merely needs to process this informationin order to supply the answer.12 Thus, complexity theory is concerned with manipulation of in-formation, and its transformation from one representation (in which the information is given) toanother representation (which is the one desired). Indeed, a solution to a computational problemis merely a di�erent representation of the information given; that is, a representation in which theanswer is explicit rather than implicit. For example, the answer to the question of whether or nota given Boolean formula is satis�able is implicit in the formula itself (but the task is to make theanswer explicit). Thus, complexity theory clari�es a central issue regarding representation; that is,the distinction between what is explicit and what is implicit in a representation. Furthermore, iteven suggests a quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomena that were consid-ered also by past thinkers. Examples include the aforementioned concepts of proofs and represen-tation as well as concepts like randomness, knowledge, interaction, secrecy and learning. We nextdiscuss some of these concepts and the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspective can be describedas ontological: they asked \what is randomness" and wondered whether it exist at all (or is theworld deterministic). The perspective of complexity theory is behavioristic: it is based on de�ningobjects as equivalent if they cannot be told apart by any e�cient procedure. That is, a coin toss is(de�ned to be) \random" (even if one believes that the universe is deterministic) if it is infeasibleto predict the coin's outcome. Likewise, a string (or a distribution of strings) is \random" if it12In contrast, in other disciplines, solving a problem may require gathering information that is not available inthe problem's statement. This information may either be available from auxiliary (past) records or be obtained byconducting new experiments. 19

is infeasible to distinguish it from the uniform distribution (regardless of whether or not one cangenerate the latter). Interestingly, randomness (or rather pseudorandomness) de�ned this way ise�ciently expandable; that is, under a reasonable complexity assumption (to be discussed next),short pseudorandom strings can be deterministically expanded into long pseudorandom strings.Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that thevery de�nition of pseudorandomness refers to intractability (i.e., the infeasibility of distinguishinga pseudorandomness object from a uniformly distributed object). Secondly, as hinted above, acomplexity assumption that refers to the existence of functions that are easy to evaluate buthard to invert (called one-way functions) imply the existence of deterministic programs (calledpseudorandom generators) that stretch short random seeds into long pseudorandom sequences. Infact, it turns out that the existence of pseudorandom generators is equivalent to the existence ofone-way functions.Complexity Theory o�ers its own perspective on the concept of knowledge (and distinguishesit from information). It views knowledge as the result of a hard computation. Thus, whatevercan be e�ciently done by anyone is not considered knowledge. In particular, the result of an easycomputation applied to publicly available information is not considered knowledge. In contrast,the value of a hard to compute function applied to publicly available information is knowledge,and if somebody provides you with such a value then it has provided you with knowledge. Thisdiscussion is related to the notion of zero-knowledge interactions, which are interactions in which noknowledge is gained. Such interactions may still be useful, because they may assert the correctnessof speci�c knowledge that was provided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointed one possiblemotivation for interaction: gaining knowledge. It turns out that interaction may help in a varietyof other contexts. For example, it may be easier to verify an assertion when allowed to interact witha prover rather than when reading a proof. Put di�erently, interaction with some teacher may bemore bene�cial than reading any book. We comment that the added power of such interactive proofsis rooted in their being randomized (i.e., the veri�cation procedure is randomized), because if theveri�er's questions can be determined beforehand then the prover may just provide the transcriptof the interaction as a traditional written proof.Another concept related to knowledge is that of secrecy: knowledge is something that one partyhas while another party does not have (and cannot feasibly obtain by itself) { thus, in some senseknowledge is a secret. In general, complexity theory is related to Cryptography, where the latteris broadly de�ned as the study of systems that are easy to use but hard to abuse. Typically, suchsystems involve secrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its prescribed behavior.Thus, much of Cryptography is based on complexity theoretic assumptions and its results aretypically transformations of relatively simple computational primitives (e.g., one-way functions)into more complex cryptographic applications (e.g., a secure encryption scheme).We have already mentioned the context of learning when referring to learning from a teacherversus learning from a book. Recall that complexity theory provides evidence to the advantage ofthe former. This is in the context of gaining knowledge about publicly available information. Incontrast, computational learning theory is concerned with learning objects that are only partiallyavailable to the learner (i.e., learning a function based on its value at a few random locations oreven at locations chosen by the learner). Complexity Theory sheds light on the intrinsic limitationsof learning (in this sense).Complexity Theory deals with a variety of computational tasks. We have already mentioned twofundamental types of tasks: searching for solutions (or \�nding solutions") and making decisions20

(e.g., regarding the validity of assertion). We have also hinted that in some cases these two typesof tasks can be related. Now we consider two additional types of tasks: counting the number ofsolutions and generating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that for some naturalproblems they are not signi�cantly harder. Speci�cally, under some natural conditions on theproblem, approximately counting the number of solutions and generating an approximately randomsolution is not signi�cantly harder than �nding an arbitrary solution.Having mentioned the notion of approximation, we mention that the study of the complexityof �nding approximate solutions has also received a lot of attention. One type of approximationproblems refers to an objective function de�ned on the set of potential solutions. Rather than�nding a solution that attains the optimal value, the approximation task consists of �nding asolution that obtains an \almost optimal" value, where the notion of \almost optimal" may beunderstood in di�erent ways giving rise to di�erent levels of approximation. Interestingly, in manycases even a very relaxed level of approximation is as di�cult to achieve as the original (exact)search problem (i.e., �nding an approximate solution is as hard as �nding an optimal solution).Surprisingly, these hardness of approximation results are related to the study of probabilisticallycheckable proofs, which are proofs that allow for ultra-fast probabilistic veri�cation. Amazingly,every proof can be e�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approximation problems,we note that in other cases a reasonable level of approximation is easier to achieve than solving theoriginal (exact) search problem.Approximation is a natural relaxation of various computational problems. Another naturalrelaxation is the study of average-case complexity, where the \average" is taken over some \simple"distributions (representing a model of the problem's instances that may occur in practice). Westress that, although it was not stated explicitly, the entire discussion so far has referred to \worst-case" analysis of algorithms. We mention that worst-case complexity is a more robust notion thanaverage-case complexity. For starters, one avoids the controversial question of what are the instancesthat are \important in practice" and correspondingly the selection of the class of distributions forwhich average-case analysis is to be conducted. Nevertheless, a relatively robust theory of average-case complexity has been suggested, albeit it is far less developed than the theory of worst-casecomplexity.In view of the central role of randomness in complexity theory (as evident, say, in the study ofpseudorandomness, probabilistic proof systems, and cryptography), one may wonder as to whetherthe randomness needed for the various applications can be obtained in real-life. One speci�c ques-tion, which received a lot of attention, is the possibility of \purifying" randomness (or \extractinggood randomness from bad sources"). That is, can we use \defected" sources of randomness in orderto implement almost perfect sources of randomness. The answer depends, of course, on the modelof such defected sources. This study turned out to be related to complexity theory, where the mosttight connection is between some type of randomness extractors and some type of pseudorandomgenerators.So far we have focused on the time complexity of computational tasks, while relying on thenatural association of e�ciency with time. However, time is not the only resource one shouldcare about. Another important resource is space: the amount of (temporary) memory consumedby the computation. The study of space complexity has uncovered several fascinating phenomena,which seem to indicate a fundamental di�erence between space complexity and time complexity. Forexample, in the context of space complexity, verifying proofs of validity of assertions (of any speci�ctype) has the same complexity as verifying proofs of invalidity for the same type of assertions.21

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of some mountaintops, and dizziness is to be expected. Needless to say, a good graduate course in complexity theoryshould consist of climbing some of these mountains by foot, step by step, and stopping to lookaround and re
ect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute results are not knownfor many of the \big questions" of complexity theory (most notably the P-versus-NP Question).However, several highly non-trivial absolute results have been proved. For example, it was shownthat using negation can speed-up the computation of monotone functions (which do not requirenegation for their mere computation). In addition, many promising techniques were introducedand employed with the aim of providing a \low-level" analysis of the progress of computation.However, the focus of this overview was on the connections among various computational problemsand notions, which may be viewed as a \high-level" study of computation.

22

Historical NotesMany sources provide historical accounts of the developments that led to the formulation of theP vs NP Problem and the development of the theory of NP-completeness (see, e.g., [3]). We thusrefrain from attempting to provide such an account.One technical point that we mention is that the three \founding papers" of the theory of NP-completeness (i.e., [1, 6, 8]) refer to the three di�erent terms of reductions used above. Speci�cally,Cook used the general notion of polynomial-time reduction [1], often referred to as Cook-reductions.The notion of Karp-reductions originates from Karp's paper [6], whereas its augmentation to searchproblems originates from Levin's paper [8]. It is worth noting that unlike Cook and Karp's works,which treat decision problems, Levin's work is stated in terms of search problems.The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 4) was proven byLadner [7], Theorem 5 was proven by Selman [9], and the existence of optimal search algorithms forNP-relations (i.e., Theorem 6) was proven by Levin [8]. (Interestingly, the latter result was provedin the same paper in which Levin presented the discovery of NP-completeness, independently ofCook and Karp.) Promise problems were explicitly introduced by Even, Selman and Yacobi [2].AcknowledgmentsI am grateful to Arny Rosenberg, Alan Selman, Salil Vadhan, and an anonymous referee for theiruseful comments and suggestions.References[1] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd STOC, pages 151{158,1971.[2] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Applicationsto Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173, 1984.[3] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[4] O. Goldreich. Introduction to Complexity Theory { notes for a one-semester course. Weiz-mann Institute of Science, Spring 2002. Available from http://www.wisdom.weizmann.ac.il/�oded/cc.html[5] O. Goldreich. On Promise Problems: In memory of Shimon Even (1935{2004). ECCC, TR05-018, January 2005.[6] R.M. Karp. Reducibility among Combinatorial Problems. In Complexity of Computer Com-putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages 85{103, 1972.[7] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Jour. of the ACM, 22, 1975,pages 155{171.[8] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115{116, 1973.Translated in problems of Information Transmission 9, pages 265{266.[9] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol 21 (6), page 310, 1974.23

