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Abstract

We outline a conceptual framework for teaching the basic notions and results of complexity
theory. Our focus is on using definitions and on organizing the presentation in a way that
reflects the fundamental nature of the material. We do not attempt to provide a self-contained
presentation of the material itself, but rather outline our suggestions regarding how this material
should be presented in class. In addition, we express our opinions on numerous related issues.

We focus on the P-vs-NP Question, the general notion of a reduction, and the theory of
NP-completeness. In particular, we suggest presenting the P-vs-NP Question both in terms
of search problems and in terms of decision problems (where NP is viewed as a class of proof
systems). As for the theory of NP-completeness, we suggest highlighting the mere existence of
NP-complete sets.

“This essay was written towards publication in a forthcoming book in memory of Shimon Even.
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1 Introduction

This is a highly opinionated essay that advocates a concept-oriented approach towards teaching
technical material such as the basics of complexity theory. In addition to making various sug-
gestions, I express my opinion on a variety of related issues. I do hope that this essay will stir
discussion and maybe even affect the way some courses are being taught.

1.1 Teaching and current student perception of Complexity Theory

Shimon Even had a passion for good teaching, and so writing this essay in his memory seems most
appropriate. In my opinion, good teaching is an art (and, needless to say, Shimon was one of its
top masters). It is hard (if at all possible) to cultivate artistic talents, but there are certain basic
principles that underly each art form, and these can be discussed.

One central aspect of good teaching is putting things in the right perspective; that is, a per-
spective that clarifies the motivation for the various definitions and results. Nothing should be
easier when it comes to complexity theory: It is easy to provide a good perspective on the basic
notions and results of complexity theory, because these are of fundamental nature and of great in-
tuitive appeal. Unfortunately, often this is not the way this material is taught. The annoying (and
quite amazing) consequences are students that have only a vague understanding of the conceptual
meaning of these fundamental notions and results.

1.2 The source of trouble and eliminating it

In my opinion, it all boils down to taking the time to explicitly discuss the conceptual meaning
of definitions and results. After all, the most important aspects of a scientific discovery are the
intuitive question that it addresses, the reason that it addresses this question, the way it phrases the
question, the approach that underlies its answer, and the ideas that are embedded in the answer.
All these have to be reflected in the way the discovery is presented. In particular, one should use
the “right” definitions (i.e., those that reflect better the fundamental nature of the notion being
defined), and proceed in the (conceptually) “right” order. Two concrete examples follow.

Typically!, NP is defined as the class of languages recognized by nondeterministic polynomial-
time machines. Even bright students may have a hard time figuring out (by themselves) why one
should care about such a class. On the other hand, when defining NP as the class of assertions
that have easily verifiable proofs, each student is likely to understand its fundamental nature.
Furthermore, the message becomes even more clear when discussing the search version analogue.

Similarly, one typically! takes the students throughout the detailed proof of Cook’s Theorem
before communicating to them the striking message (i.e., that “universal” problems exist at all,
let alone that many natural problems like SAT are universal). Furthermore, in some cases, this
message is not communicated explicitly at all.

1.3 Concrete suggestions

The rest of this essay provides concrete suggestions for teaching the basics of complexity theory,
where by the basics I mean the P-vs-NP Question and the theory of NP-completeness. This material
is typically taught as part of an undergraduate course on computability and complexity theory, and

'However, exceptions do exists: There are teachers and even textbooks that deviate from the standard practice

being bashed here.



my suggestions are targeted primarily at computer scientists teaching such a course. However, I
believe that my suggestions are valid regardless of the context in which this material is being taught.

I assume that the basic material itself is well-known to the reader. Thus, my focus is not on
the material itself, but rather on how it should be presented in class. The two most important
suggestions were already mentioned above:

1. The teacher should communicate the fundamental nature of the P-vs-NP Question while
referring to definitions that (clearly) reflect this nature. In particular, I suggest explicitly
presenting the implication of the P-vs-NP Question on the complexity of search problems, in
addition to presenting the implication to decision problems.

2. The teacher should communicate the striking significance of the mere existence of NP-
complete problems (let alone natural ones), before exhausting the students with complicated
reductions.

Additional suggestions include providing a general perspective on the concept of a reduction, es-
tablishing tight relations between the complexity of search and decision problems, decoupling the
proof of NP-hardness of SAT by using Circuit-SAT as an intermediate problem, and mentioning
some additional topics (e.g., NP-sets that are neither in P nor NP-complete) rather than a host of
NP-completeness results.

I advocate a model-independent presentation of the questions and results of complexity theory.
I claim that most questions and results in complexity theory (like all results of computability the-
ory) hold for any reasonable model of computation and can be presented with minimal reference
to the specifics of the model.? In fact, in most cases, the specific model of computation is irrele-
vant. Typically, the presentation needs to refer to the specifics of the model of computation only
when encoding the relation between consecutive instantaneous configurations of computation (see
Section 4.3). However, such an encoding is possible for any reasonable model of computation, and
this fact should be stressed.

It is also important to start a course (or series of lectures) by providing a wide perspective on
its subject matter, which in this case is complexity theory. I would say that complexity theory is a
central field of (Theoretical) Computer Science, concerned with the study of the intrinsic complexity
of computational tasks, where this study tend to aim at gemerality: The field focuses on natural
computational resources (most notably time), and the effect of limiting these resources on the class
of problems that can be solved. Put in other words, complexity theory aims at understanding the
nature of efficient computation. 1 suggest re-iterating the wider goals of complexity theory at the
end of the course (or series of lectures), and illustrating them at that point by sketching a few of
the active research directions and the results obtained in them. My own suggestion for such a brief
overview is presented in Section 6.

Finally, until we reach the day in which every student can be assumed to have understood
the meaning of the P-vs-NP Question and of NP-completeness, I suggest not to assume such an
understanding when teaching an advanced complexity theory course. Instead, I suggest starting
such a course with a fast discussion of the P-vs-NP Question and NP-completeness, making sure

2The specifics of the (reasonable) model are irrelevant for all questions and results mentioned in this essay, except
for Theorem 6 where the model is important only for the exact bound on the slow-down of the optimal algorithm.
Similarly, the specifics of the model effect the exact quantitative form of hierarchy theorems, but not their mere
existence. Finally, in contrary to some beliefs, the specifics of the model are irrelevant also for most results regarding
space complexity, provided that reasonable accounting of work-space is applied.



that the students understand the conceptual meaning of these basics.? (Needless to say, the rest of
the course should also clarify the conceptual meaning of the material being taught.)

1.4 A parenthetical comment on computability versus complexity

This essay refers to the current situation in many schools, where the basics of complexity theory
are taught within a course in which material entitled “computability” plays at least an equal role.
The essay is confined to the “complexity” part of such a course, and takes the “computability” part
for granted.

Let me seize the opportunity and express my opinion on this combined course on computability
and complexity theory. In my opinion, complexity theory should play the main role in this course,
whereas the basic concepts and results of computability theory should be regarded as an important
preliminary material. That is, I view computability theory as setting the stage for the study of
the complexity of the computational tasks that can be automated at all. Thus, the computability
aspects of such a course should be confined to establishing that the intuitive notion of an algorithm
can be rigorously defined, and to emphasizing the uncomputability of most functions and of some
natural functions (e.g., the Halting predicate). This includes introducing the idea of a universal
algorithm, but does not included extensive programming with Turing machines or extensive study
of (complexity-free) Turing reductions. Needless to say, I oppose the teaching of finite automata
(let alone context-free grammars) within such a course.

Expanding upon the opinions expressed in the last paragraph is beyond the scope of the current
essay. On the other hand, the rest of this essay is independent of the foregoing remarks. That is,
it refers to the basic material of complexity theory, regardless of the question within which course
this material is taught and what role does it play in such a course.

1.5 Organization

Section 2 contains a presentation of the P-vs-NP Question both in terms of search problems and
in terms of decision problems. Section 3 contains a general treatment of reductions as well as a
subsection on “self-reducibility” (of search problems). Section 4 contains a presentation of the basic
definitions and results of the theory of NP-completeness (as well as a mention of the existence of
NP-sets that are neither in P nor NP-complete). Section 5 mentions three additional topics that
are typically not taught in a basic course on computability and complexity theory. These topics
include the conjectured non-existence of coNP-sets that are NP-complete, the existence of optimal
search algorithms for NP-relations, and the notion of promise problems.

As a general rule, the more standard the material is, the less detail we provide about is actual
technical contents. Our focus is on the conceptual contents of the material, and technical details
are given merely for illustration. We stress again that this essay is not supposed to serve as a
textbook, but rather as a conceptual framework.

The essay is augmented by a brief overview of complexity theory. Unlike the rest of this essay,
which assumes familiarity with the material, this overview (Section 6) is supposed to be accessible
to the novice (or an “outsider”), and may be used accordingly. One possible use is as a base
for introductory comments on complexity theory to be made either at the beginning of a graduate
course on the topic or at the end of the (currently prevailing) undergraduate course on computability
and complexity theory.

3In fact, this essay is based on my notes for three lectures (covering the basic material), which were given in a
graduate course on complexity theory (see [4]).



2 P versus NP

Most students have heard of P and NP before, but we suspect that many have not obtained a good
explanation of what the P-vs-NP Question actually represents. This unfortunate situation is due to
using the standard technical definition of NP (which refers to nondeterministic polynomial-time)
rather than using (somehat more cumbersome) definitions that clearly capture the fundamental
nature of NP. Below, we take the alternative approach. In fact, we present two fundamental
formulations of the P-vs-NP Question, one in terms of search problems and the other in terms of
decision problems.

Efficient computation. The teacher should discuss the association of efficient computation with
polynomial-time algorithms, stressing that this association merely provides a convenient way of
addressing fundamental issues.* In particular, polynomials are merely a “closed” set of moderately
growing functions, where “closure” means closure under addition, multiplication and functional
composition. These closure properties guarantee the closure of the class of efficient algorithms under
natural algorithmic composition operations such as sequential execution and subroutine calls. (The
specifics of the model of computation are also immaterial, as long as the model is “reasonable”;
this strengthening of the Church-Turing Thesis is called the Cobham-Edmonds Thesis.)

2.1 The search version: finding versus checking

In the eyes of non-experts, search problems are more natural than decision problems: typically,
people seeks solutions more than they stop to wonder whether or not solutions exist. Thus, we
recommend starting with a formulation of the P-vs-NP Question in terms of search problems.
Admittingly, the cost is more cumbersome formulations (presented in Figure 1), but it is more
than worthwhile. Furthermore, the equivalence to the decision problem formulation gives rise to
conceptually appealing exercises.

We focus on polynomially-bounded relations, where a relation R C {0,1}* x{0,1}* is polynomially-
bounded if there exists a polynomial p such that for every (z,y) € R it holds that |y| < p(|z|). For
such a relation it makes sense to ask whether, given an “instance” x, one can efficiently find a
“solution” y such that (z,y) € R. The polynomial bound on the length of the solution (i.e., y)
guarantees that the intrinsic complexity of outputting a solution may not be due to the length (or
mere typing) of the required solution.

The class P as a natural class of search problems. With each polynomially-bounded relation
R, we associate the following search problem: given x find y such that (x,y) € R or state that
no such y ewists. The class P corresponds® to the class of search problems that are solvable
in polynomial-time; that is, a relation R (or rather the search problem of R) is polynomial-time
solvable if there exists a polynomial-time algorithm that given x find y such that (x,y) € R or state
that no such y exists.

‘Indeed, we claim that these fundamental issues are actually independent of the aforementioned association.
For example, the question of whether finding a solution is harder than verifying its validity makes sense under any
reasonable notion of “hardness”. Similarly, the claim that factoring (or any other “NP problem”) is “easily reducible”
to SAT holds for many reasonable notions of “easy to compute” mappings.

SWe leave it to the teacher whether to actually define P (resp., N'P) as a class of search problems or to reserve
this notion for the relevant class of decision problems (and merely talk about a “correspondence” between the search
and decision problem classes). Our own preference is to introduce different notations for the search problem classes
(see Figure 1).



The class NP as another natural class of search problems. A polynomially-bounded rela-
tion R is called an NP-relation if, given an alleged instance-solution pair, one can efficiently check
whether or not the pair is valid; that is, there exists a polynomial-time algorithm that given « and
y determines whether or not (z,y) € R. The class NP corresponds® to the class of search problems
for NP-relations (and contains a host of natural search problems). It is reasonable to focus on
search problems for NP-relations, because the ability to efficiently recognize a valid solution seems
to be a natural prerequisite for a discussion regarding the complexity of finding such solutions.
(Indeed, one can introduce (unnatural) non-NP-relations for which the search problem is solvable
in polynomial-time; still the restriction to NP-relations is very natural.)

The P versus NP question in terms of search problems: Is it the case that the search
problem of any NP-relation can be solved in polynomial-time? In other words, if it is easy to check
whether or not a given solution for a given instance is correct, then is it also easy to find a solution
to a given instance?

If P = NP (in terms of search problems) then this would mean that whenever solutions to
given instances can be efficiently verified for correctness it is also the case that these solutions can
be efficiently found (when given only the instance). This would mean that all reasonable search
problems (i.e., all NP-relations) are easy to solve. Needless to say, such a situation would contradict
the intuitive feeling (and daily experience) that some reasonable search problems are hard to solve.
On the other hand, if P # AP then there exist reasonable search problems (i.e., some NP-relations)
that are hard to solve. This conforms with our daily experience by which some reasonable problems
are easy to solve whereas others are hard to solve.

Recall that search problems refer to binary relations. For such a relation R, the corresponding search
problem is given z to find y such that (z,y) € R (or assert that no such y exists). We suggest defining
two classes of search problems.

e PF (standing for “Poly-Find”) denotes the class of search problems that are solvable in
polynomial-time. That is, R € PJF if there exists a polynomial time algorithm that given
z finds y such that (z,y) € R (or assert that no such y exists).

e PC (standing for “Poly-Check”) denotes the class of search problems that correspond to
polynomially-bounded binary relations that are “checkable” in polynomial-time. That is,
R € PC if the following two conditions hold

1. For some polynomial p, if (x,y) € R then |y| < p(|z]).
2. There exists a polynomial-time algorithm that given (z,y) determines whether or not
(z,y) € R.

In terms of search problems the P-vs-NP Question consists of asking whether or not PC is contained
in PF. The conjectured inequality P # NP implies that PC \ PF # 0.

Figure 1: P-vs-NP in terms of search problems: notational suggestions.

2.2 The decision version: proving versus verifying

We suggest starting by asserting the natural stature of decision problems (beyond their role in the
study of search problems). After all, some people do care about the truth, and so determining



whether a given object has some claimed property is an appealing problem. The P-vs-NP Question
refers to the complexity of answering such questions for a wide and natural class of properties
associated with the class N'P. The latter class refers to properties that have efficient proof systems
allowing for the verification of the claim that a given object has a predetermined property (i.e., is
a member of a predetermined set).

For an NP-relation R, we denote the set of instances having a solution by Lg; that is, Lr = {z :
Jy (x,y) € R}. Such a set is called an NP-set, and /P denotes the class of all NP-sets. Intuitively,
an NP-set is a set of valid statements (i.e., statements of membership of a given = in Lg) that
can be efficiently verified when given adequate proofs (i.e., a corresponding NP-witness y such that
(z,y) € R). This leads to viewing NP-sets as proof systems.

NP-proof systems. Proof systems are defined in terms of their verification procedures. Here
we focus on the natural class of efficient verification procedures, where efficiency is represented by
polynomial-time computations. (We should either require that the time is polynomial in terms of
the statement or confine ourselves to “short proofs” — that is, proofs of length that is bounded by a
polynomial in the length of the statement.) NP-relations correspond to proof systems with efficient
verification procedures. Specifically, the NP-relation R corresponds to the (proof system with a)
verification procedure that checks whether or not the alleged statement-proof pair is in R. This
proof system satisfies the natural completeness and soundness conditions: every true statement (i.e.,
x € Lg) has a valid proof (i.e., an NP-witness y such that (z,y) € R), whereas false statements
(i.e., z € Lg) have no valid proofs (i.e., (z,y) € R for all y’s).

Recall that decision problems refer to membership in sets. We suggest defining two classes of decision
problems, which indeed coincide with the standard definitions of P and A/P.

e P denotes the class of decision problems that are solvable in polynomial-time. That is, S € P
if there exists a polynomial time algorithm that given z determines whether or not z € S.

e AP denotes the class of decision problems that have NP-proof systems. The latter are defined
in terms of a (deterministic) polynomial-time verification algorithm. That is, S € NP if there
exists a polynomial p and a polynomial-time algorithm V' that satisfy the following completeness
and soundness conditions:

1. Completeness: if z € S then there exists y of length at most p(|z|) such that V(z,y) = 1.
(Such a string y is called an NP-witness for z € S.)
2. Soundness: if z € S then for every y it holds that V' (z,y) = 0.

Indeed, the point is defining AP as a class of sets of assertions having efficient verification
procedures.

In terms of decision problems the P-vs-NP Question consists of asking whether or not AP is contained
in P. Since P C NP, the question is phrased as whether or not NP equals P.

Figure 2: P-vs-NP in terms of decision problems: notational suggestions.

The P versus NP question in terms of decision problems: Is it the case that NP-proofs
are useless? That is, is it the case that for every efficiently verifiable proof system one can easily
determine the validity of assertions (without being given suitable proofs)? If that were the case,
then proofs would be meaningless, because they would have no fundamental advantage over directly



determining the validity of the assertion. Denoting by P the class of sets that can be decided
efficiently (i.e., by a polynomial-time algorithm), the conjecture P # NP asserts that proofs are
useful: there exists NP-sets that cannot be decided by a polynomial-time algorithm, and so for these
sets obtaining a proof of membership (for some instances) is useful (because we cannot efficiently
determine membership by ourselves).

2.3 Equivalence of the two formulations

We strongly recommend proving that the two formulations of the P-vs-NP Questions are equivalent.
That is, the search problem of every NP-relation is solvable in polynomial time if and only if
membership in any NP-set can be decided in polynomial time (see Figure 3). This justifies the
focus on the latter (simpler) formulation.

Referring the notations of Figures 1 and 2, we prove that PC C PF if and only if NP = P.

e Suppose that the inclusion holds for the search version (i.e., PC C PF). Let L be an arbitrary
NP-set and Ry, be the corresponding witness relation. Then Ry is a NP-relation, and by the
hypothesis its search problem is solvable in polynomial time (i.e., R, € PC C PF). This yields
a polynomial-time decision procedure for L; i.e., given z try to find y such that (z,y) € Ry
(and output “yes” iff such a y was found). Thus, NP = P follows.

e Suppose that NP = P (as classes of sets), and let R be an arbitrary NP-relation. Then the set
Sp &t {(z,vy") : Jy" s.t. (z,y'y") € R} (where y'y" denotes the concatenation of y' and y") is in
NP and hence in P. This yields a polynomial-time algorithm for solving the search problem of
R, by extending a prefix of a potential solution bit by bit (while using the decision procedure
to determine whether or not the current prefix is valid). Thus, PC C PF follows.

Figure 3: A proof that PC C PF if and only if NP = P.

We also suggest mentioning that NP is sometimes defined as the class of sets that can be
decided by a fictitious device called a nondeterministic polynomial-time machine (and that this
is the source of the notation NP). The reason that this class of fictitious devices is important is
because it captures (indirectly) the definition of NP-proof systems. We suggest proving that indeed
the definition of NP in terms of nondeterministic polynomial-time machine equals our definition
of NP (in terms of the class of sets having NP-proof systems).

3 Reductions and Self-reducibility

We assume that many students have heard of reductions, but again we fear that most of them
have obtained a conceptually poor view of their nature. We believe that this is due to expositions
that start with a technical definition of many-to-one (polynomial-time) reductions (i.e., Karp-
reductions), rather than with a motivational discussion. Below, we take an the alternative approach,
presenting first the general notion of (polynomial-time) reductions among computational problems,
and viewing the notion of a Karp-reduction as an important special case that suffices (and is more
convenient) in many cases.



3.1 The general notion of a reduction

Reductions are procedures that use “functionally specified” subroutines. That is, the functionality
of the subroutine is specified, but its operation remains unspecified and its running-time is counted
at unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions can be
modeled as oracle (Turing) machines. A reduction solves one computational problem (which may be
either a search or decision problem) by using oracle (or subroutine) calls to another computational
problem (which again may be either a search or decision problem). We focus on efficient (i.e.,
polynomial-time) reductions, which are often called Cook reductions.

The key property of reductions is that they translate efficient procedures for the subroutine into
efficient procedures for the invoking machine. That is, if one problem is Cook-reducible to another
problem and the latter is polynomial-time solvable then so is the former.

The most popular case is of reducing decision problems to decision problems, but we will also
consider reducing search problems to search problems or reducing search problems to decision
problems. Indeed, a good exercise is showing that the search problem of any NP-relation can be
reduced to deciding membership in some NP-set (which is the actual contents of the second item
of Figure 3).

A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).
Specifically, for decision problems L and L', we say that L is Karp-reducible to L’ if there is a
reduction of L to L' that operates as follows: On input z (an instance for L), the reduction computes
', makes query z’ to the oracle L' (i.e., invokes the subroutine for L' on input '), and answers
whatever the latter returns. This Karp-reduction is often represented by the polynomial-time
computable mapping of x to z'; that is, a polynomial-time computable f is called a Karp-reduction
of L to L' if for every x it holds that = € L iff f(z) € L'.

Indeed, a Karp-reduction is a syntactically restricted notion of a reduction. This restricted case
suffices for many cases (e.g., most importantly for the theory of NP-completeness (when developed
for decision problems)), but not in case we want to reduce a search problem to a decision problem.
Furthermore, whereas each decision problem is reducible to its complement, some decision problems
are not Karp-reducible to their complement (e.g., the trivial decision problem).® Likewise, each
decision problem in P is reducible to any computational problem by a reduction that does not use
the subroutine at all, whereas such a trivial reduction is disallowed by the syntax of Karp-reductions.
(Nevertheless, a popular exercise of dubious nature is to show that any decision problem in P is
Karp-reducible to any non-trivial decision problem.)

We comment that Karp-reductions may (and should) be augmented in order to handle re-
ductions of search problems to search problems. Such an augmented Karp-reduction of the search
problem of R to the search problem of R’ operates as follows: On input z (an instance for R), the
reduction computes z’, makes query x’ to the oracle R’ (i.e., invokes the subroutine for searching
R’ on input ') obtaining ¢y’ such that (2/,y’) € R', and uses y' to compute a solution y to z
(i.e., (x,y) € R). Thus, such a reduction can be represented by two polynomial-time computable
mappings, f and g, such that (z,¢(x,y’)) € R for any y' that solves f(z) (i.e., 3y’ that satisfies
(f(x),y") € R"). (Indeed, in general, unlike in the case of decision problems, the reduction cannot
just return ¢ as an answer to x.)

We say that two problems are computationally equivalent if they are reducible to one another.
This means that the two problems are essentially equally hard (or equally easy).

SWe call a decision problem trivial if it refers to either the empty set or the set of all strings.



3.2 Self-reducibility of search problems

We suggest introducing the notion of self-reducibility” for several reasons. Most importantly, it
further justifies the focus on decision problems (see discussion following Proposition 1). In addition,
it illustrates the general notion of a reduction, and asserts its relevance beyond the theory of NP-
completeness.

The search problem of R is called self-reducible if it can be reduced to the decision problem
of Lg = {x : Jy (z,y) € R} (rather than to the set Sk as in Figure 3). Note that the decision
problem of Lg is always reducible to the search problem for R (e.g., invoke the search subroutine
and answer “yes” if and only if it returns some string (rather than the “no solution” symbol)).

We will see that all NP-relations that correspond to NP-complete sets are self-reducible, mostly
via “natural reductions”. We start with SAT, the set of satisfiable Boolean formulae (in CNF).
Let Rgar be the set of pairs (¢, 7) such that 7 is a satisfying assignment to the formulae ¢. Note
that Rgar is an NP-relation (i.e., it is polynomially-bounded and easy to decide (by evaluating a
Boolean expression)).

Proposition 1 (Rgar is self-reducible): The search problem of Rgar is reducible to SAT.

Thus, the search problem of Rga7 is computationally equivalent to deciding membership in SAT.
Hence, in studying the complexity of SAT, we also address the complexity of the search problem of
Rg ar. This justifies the relevance of decision problems to search problems in a stronger sense than
established in Section 2.3: The study of decision problems determines not only the complexity of
the class of “NP-search” problems but rather determines the complexity of each individual search
problem that is self-reducible.

Proof: Given a formula ¢, we use a subroutine for SAT in order to find a satisfying assignment
to ¢ (in case such an assignment exists). First, we query SAT on ¢ itself, and return “no solution”
if the answer we get is ‘false’. Otherwise, we let 7, initiated to the empty string, denote a prefix
of a satisfying assignment of ¢. We proceed in iterations, where in each iteration we extend 7 by
one bit. This is done as follows: First we derive a formula, denoted ¢, by setting the first |7| + 1
variables of ¢ according to the values 70. Next we query SAT on ¢’ (which means that we ask
whether or not 70 is a prefix of a satisfying assignment of ¢). If the answer is positive then we set
7« 70 else we set 7 «— 71 (because if 7 is a prefix of a satisfying assignment of ¢ and 70 is not a
prefix of a satisfying assignment of ¢ then 71 must be a prefix of a satisfying assignment of ¢).

A key point is that each formula ¢’ (which contains Boolean variables as well as constants) can
be simplified to contain no constants (in order to fit the canonical definition of SAT, which disallows
Boolean constants). That is, after replacing some variables by constants, we should simplify clauses
according to the straightforward boolean rules (e.g., a false literal can be omitted from a clause
and a true literal appearing in a clause allows omitting the entire clause). [l

Advanced comment: A reduction analogous to the one used in the proof of Proposition 1 can be
presented also for other NP-search problems (and not only for NP-complete ones).® Consider, for

"Our usage of this term differs from the traditional one. Traditionally, a decision problem is called self-reducible
if it is Cook-reducible to itself via a reduction that on input = only makes queries that are smaller than = (according
to some appropriate measure on the size of strings). Under some natural restrictions (i.e., the reduction takes the
disjunction of the oracle answers) such reductions yield reductions of search to decision (as discussed in the main
text).

8We assume that the students have heard of NP-completeness. If this assumption does not hold for your class,
then the presentation of the following material should be postponed (to Section 4.1 or to an even later stage).
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example, the problem Graph 3-Colorability and prefixes of a 3-coloring of the input graph. Note,
however, that in this case the process of getting rid of constants (representing partial solutions)
is more involved.” In general, if you don’t see a “natural” self-reducibility process for some NP-
complete relation, you should know that a self-reduction process does exist (alas it maybe not be
a natural one).

Theorem 2 The search problem of the NP-relation of any NP-complete set is self-reducible.

Proof: Let R be an NP-relation of the NP-complete set Lg. In order to reduce the search problem
of R to deciding Lp, we compose the three reductions mentioned next:

1. The search problem of R is reducible to the search problem of Rg a7 (by the NP-completeness
of the latter).

2. The search problem of Rg 7 is reducible to SAT (by Proposition 1).

3. The decision problem SAT is reducible to the decision problem L (by the NP-completeness
of the latter).

The theorem follows. |

4 NP-completeness

Some (or most) students have heard of NP-completeness before, but we suspect that many have
missed important conceptual points. Specifically, we stress that the mere existence of NP-complete
sets (regardless of whether this is SAT or some other set) is amazing.

4.1 Definitions

The standard definition is that a set is NP-complete if it is in AP and every set in NP is reducible
to it via a Karp-reduction. Indeed, there is no reason to insist on Karp-reductions (rather than
using arbitrary reductions), except that the restricted notion suffices for all positive results and is
easier to work with.

We will also refer to the search version of NP-completeness. We say that a binary relation is
NP-complete if it is an NP-relation and every NP-relation is reducible to it.

We stress that the mere fact that we have defined something (i.e., NP-completeness) does not
mean that this thing exists (i.e., that there exist objects that satisfy the definition). It is indeed
remarkable that NP-complete problems do exist. Such problems are “universal” in the sense that
solving them allows solving any other (reasonable) problem.

4.2 The existence of NP-complete problems

We suggest not to confuse the mere existence of NP-complete problems, which is remarkable by
itself, with the even more remarkable existence of “natural” NP-complete problems. We believe
that the following proof facilitates the delivery of this message as well as focusing on the essence
of NP-completeness, rather than on more complicated technical details.

9Details can left as an exercise to the student. You may hint that a partial 3-coloring can be hard-wired into the
graph by augmenting the graph with adequate gadgets that force equality (or inequality) between the colors of two
vertices (of our choice).
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Theorem 3 There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proof) is based on the observation that
some NP-relations (resp., NP-sets) are “rich enough” to encode all NP-relations (resp., NP-sets).
This is most obvious for the “generic” NP-relation, denoted Ry (and defined below), which is used
to derive the simplest proof of the current theorem.

The relation Ry consists of pairs ((M,x, 1), y) such that M is a description of a (deterministic)
Turing machine that accepts the pair (z,y) within ¢ steps, where |y| < ¢. (Instead of requiring
that |y| < ¢, one may require that M is canonical in the sense that it reads its entire input before

halting.) It is easy to see that Ry is an NP-relation, and thus Ly o {ZT:3y (Z,y) € Ry} is an
NP-set. Indeed, Ry is recognizable by a universal Turing machine, which on input ((M,z,1%),y)
emulates (¢ steps of) the computation of M on (z,y), and U indeed stands for universal (machine).
(Thus, the proof extends to any reasonable model of computation, which has adequate universal
machines.)

We now turn to showing that any NP-relation is reducible to Ryy. As a warm-up, let us first show
that any NP-set is Karp-reducible to Ly. Let R be an NP-relation, and Lr = {z : Jy (z,y) € R}
be the corresponding NP-set. Let pr be a polynomial bounding the length of solutions in R (i.e.,
ly| < pr(|z|) for every (z,y) € R), let Mp be a polynomial-time machine deciding membership
(of alleged (x,y) pairs) in R, and let ¢z be a polynomial bounding its running-time. Then, the
Karp-reduction maps an instance x (for L) to the instance (Mg, z, 1'r(2l+Pr(¥]))),

Note that this mapping can be computed in polynomial-time, and that x € L if and ouly if
(Mp, z, 1'RUzl+rr(vD)Yy € I

To reduce the search problem of R to the search problem of Ry, we use essentially the same
reduction. On input an instance x (for R), we make the query (Mpg,x, 1t2(=+Pa(vD)) to the
search problem of Ry and return whatever the latter returns. Note that if x € Ly then the
answer will be “no solution”, whereas for every x and y it holds that (z,y) € R if and only if
(Mg, z, 1trU=+Pr(WD)Y )y e Ry, W

Advanced comment. Note that the role of 1! in the definition of Ry is to make Ry an NP-

relation. In contrast, consider the relation Ry o {((M,z),y) : M(xy) = 1} (which corresponds

to the halting problem). Indeed, the search problem of any relation (an in particular of any NP-
relation) is Karp-reducible to the search problem of Ry, but the latter is not solvable at all (i.e.,
there exists no algorithm that halts on every input and on input Z = (M, x) outputs y such that
(Z,y) € Ry iff such a y exists).

4.3 CSAT, SAT, and other NP-complete problems

Once the mere existence of NP-complete problems has been established, we suggest informing the
students of the fact that many natural problems are NP-complete, and demonstrating this fact with
a few examples. Indeed, SAT is a good first example, both because the reduction to it is instructive
and because it is a convenient starting point to further reductions. As a second example, we suggest
various variants of the Set Cover problem. Additional reductions may be deferred to homework
assignments, and presenting them in class seems inadequate in the context of a course on complexity
theory.

We suggest establishing the NP-completeness of SAT by a reduction from the circuit satisfaction
problem (CSAT), after establishing the NP-completeness of the latter. Doing so allows decoupling
two important issues in the proof of the NP-completeness of SAT: (1) the emulation of Turing
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machines by circuits, and (2) the encoding of circuits by formulae with auxiliary variables. Following
is a rough outline, which focuses on the decision version.

CSAT. Define Boolean circuits as directed acyclic graphs with internal vertices, called gates,
labeled by Boolean operations (of arity either 2 or 1), and external vertices called terminals that
are associated with either inputs or outputs. When setting the inputs of such a circuit, all internal
nodes are assigned values in the natural way, and this yields a value to the output(s), called an
evaluation of the circuit on the given input. Define the satisfiability problem of such circuits as
determining, for a given circuit, whether there exists a setting to its inputs that makes its (first)
output evaluate to 1. Prove the NP-completeness of the circuit satisfaction problem (CSAT),
by reducing any NP-set to it (where the set is represented by the machine that recognizes the
corresponding NP-relation). The reduction boils down to encoding possible computations of a
Turing machine by a corresponding layered circuit, where each layer represents an instantaneous
configuration of the machine, and the relation between consecutive configurations is captured by
(“uniform”) local gadgets in the circuit. For further details, see Figure 4. (The proof extends to
any other “reasonable” model of efficient computation.)

Following are some additional comments on the proof of the NP-completeness of CSAT. These com-
ments refer to the high-level structure of the reduction, and do not provide a full (low-level) description
of it.

For a machine Mg (as in the proof of Theorem 3), we will represent the computation of Mg on input
(z,y), where x is the input to the reduction and y is undetermined, by a circuit C, that takes such
a string y as input. Thus, C,(y) = 1 if and only if My accepts (z,y), and so C, is satisfiable if and
only if x € Lg. The reduction maps z to a circuit C, as follows.

The circuit C, consists of layers such that the i*" layers of wires (connecting the i — 1°* and ‘"
layers of vertices) represents the instantaneous configuration of Mz(x,y) just before the i*" step. In
particular, the gates of the i+1°! layer are designed to guaranteed that the instantaneous configuration
of Mg(x,y) just before the i*} step is transformed to the instantaneous configuration of Mg(z,y)
just before the 7 + 1%¢ step. Only the first layer of C, depends on z itself (which is “hard-wired” into
the circuit). The rest of the construction depends only on |z| and Mg.

Figure 4: Encoding computations of a Turing machine in a Boolean circuit.

The above reduction is called “generic” because it (explicitly) refers to any (generic) NP-set.
However, the common practice is to establish NP-completeness by a reduction from some NP-
complete set (i.e., a set already shown to be NP-complete). This practice is based on the fact that
if an NP-complete problem II is reducible to some problem IT' in NP then IT' is NP-complete. The
proof of this fact boils down to asserting the transitivity of reductions.

SAT. Define Boolean formulae, which may be viewed as Boolean circuits with a tree structure.
Prove the NP-completeness of the formula satisfaction problem (SAT), even when the formula is
given in a nice form (i.e., CNF). The proof is by a reduction from CSAT, which in turn boils
down to introducing auxiliary variables in order to cut the computation of a deep circuit into a
conjunction of related computations of shallow (i.e., depth-2) circuits (which may be presented as
CNF formulae). The aforementioned auxiliary variables hold the possible values of the internal
wires of the circuit.
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3SAT. Note that the formulae resulting from the latter reduction are in conjunctive normal form
(CNF) with each clause referring to three variables (i.e., two corresponding to the input wires of
a node/gate and one to its output wire). Thus, the above reduction actually establishes the NP-
completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three variables per clause).
Alternatively, reduce SAT (for CNF formula) to 3SAT (i.e., satisfiability of 3CNF formula) by
replacing long clauses with conjunctions of three-variable clauses using auxiliary variables.

In order to establish the NP-completeness of the search version of the aforementioned problems
we need to present a polynomial-time mapping of solutions for the target problem (e.g., SAT) to
solutions for the origin problem (e.g., CSAT). Note that such a mapping is typically explicit in the
argument establishing the validity of the Karp-reduction.

Set Cover and other problems. If time permits, one may want to present another class of
NP-complete problems, and our choice is of Set Cover. There is a simple reduction from SAT to Set
Cover (with the sets corresponding to the sets of clauses that are satisfied when assigning a specific
Boolean variable a specific Boolean value). When applied to a restricted version of SAT in which
each variable appears in at most three clauses, the same reduction implies the NP-completeness of
a version of Set Cover in which each set contains at most three elements. (Indeed, one should first
establish the NP-completeness of the aforementioned restricted version of SAT.) Using the restricted
version of Set Cover one may establish the NP-completeness of Exact Cover (even when restricted
to 3-element sets). The latter problem is a convenient starting point for further reductions.

4.4 NP sets that are neither in P nor NP-complete

Many (to say the least) other NP-sets have been shown to be NP-complete. A very partial list in-
cludes Graph 3-Colorability, Subset Sum, (Exact) Set Cover, and the Traveling Salesman Problem.
(Hundreds of other natural problems can be found in [3].) Things reach a situation in which some
computer scientists seem to expect any NP-set to be either NP-complete or in P. This naive view
is wrong:

Theorem 4 Assuming NP # P, there exist NP-sets that are neither NP-complete nor in P.

We mention that some natural problems (e.g., factoring) are conjectured to be neither solvable in
polynomial-time nor NP-hard, where a problem II is NP-hard if any NP-set is reducible to solving
IT. See discussion following Theorem 5. We recommend to either state Theorem 4 without a proof
or merely provide the proof idea (which is sketched next).

Proof idea. The proofis by modifying a set in NP\ P such that to fail all possible reductions (to
this set) and all possible polynomial-time decision procedures (for this set). Specifically, we start
with some L € NP\ P and derive L' C L (which is also in NP\ P) by making each reduction (say
of L) to L' fail by dropping finitely many elements from L (until the reduction fails), whereas all
possible polynomial-time fail to decide L’ (which differ from L only on a finite number of inputs).
We use the fact that any reduction (of some set in NP\ P) to a finite set (i.e., a finite subset of L)
must fail (and this failure is due to a finite set of queries), whereas any efficient decision procedure
for L (or L modified on finitely many inputs) must fail on some finite portion of all possible inputs
(of L). The process of modifying L into L' proceeds in iterations, alternatively failing a potential
reduction (by dropping sufficiently many strings from the rest of L) and failing a potential decision
procedure (by including sufficiently many strings from the rest of L). This can be done efficiently
because it is inessential to determine the optimal points of alternation (where sufficiently many
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strings were dropped (resp., included) to fail a potential reduction (resp., decision procedure)).
Thus, L' is the intersection of L and some set in P, which implies that L' € NP\ P.

5 Three additional topics

The following topics are typically not mentioned in a basic course on complexity. Still, pending on
time constraints, we suggest covering them at some minimal level.

5.1 The class coNP and NP-completeness

By prepending the name of a complexity class (of decision problems) with the prefix “co” we mean
the class of complement sets; that is,

coC ¥ {{0,1}*\L: L eC}

Specifically, coNP = {{0,1}* \ L : L € NP} is the class of sets that are complements of NP-
sets. That is, if R is an NP-relation and Ly = {z : Jy (z,y) € R} is the associated NP-set then
{0,1}*\ Lr = {z : Yy (z,y) & R} is the corresponding coNP-set.

It is widely believed that NP is not closed under complementation (i.e., NP # coNP). Indeed,
this conjecture implies P # NP (because P is closed under complementation). The conjecture
NP # coN'P means that some coNP-sets (e.g., the complements of NP-complete sets) do not have
NP-proof systems; that is, there is no NP-proof system for proving that a given formula is not
satisfiable.

If indeed NP # coNP then some NP-sets cannot be Karp-reducible to any coNP-set.!’ How-
ever, each NP-set is reducible to some coNP-set (by a straightforward Cook-reduction that just flips
the answer), and so the non-existence of such Karp-reduction does not seem to represent anything
really fundamental. In contrast, we mention that NP # coN P implies that some NP-sets cannot
be reduced to sets in the intersection NP N coNP (even under general (i.e., Cook) reductions).
Specifically,

Theorem 5 If NP NcoNP contains an NP-hard set then NP = coN'P.

Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a general reduction).
Since NP N coN'P is conjectured to be a proper superset of P, it follows (using the conjecture
NP # coNP) that there are NP-sets that are neither in P nor NP-hard (specifically, the sets in
(NPNcoNP)\ P are neither in P nor NP-hard). Notable candidates are sets related to the integer
factorization problem (e.g., the set of pairs (IV, s) such that s has a square root modulo N that is
a quadratic residue modulo N and the least significant bit of s equals 1).

Proof: Suppose that L € NP N coNP is NP-hard. Given any L' € coNP, we will show that
L' € NP. We will merely use the fact that L' reduces to L (which is in NP N coNP). Such a

reduction exists because L' is reducible L' &' {0,1}*\ L' (via a general reduction), whereas L' € N'P
and thus is reducible to L (which is NP-hard).

Y8pecifically, we claim that sets in NP \ coN'P cannot be Karp-reducible to sets in coNP. In fact, we prove
that only sets in coNP are Karp-reducible to sets in coNP. Equivalently, let us prove that only sets in NP are
Karp-reducible to sets in NP, where the equivalence follows by noting that a reduction of L to L' is also a reduction
of {0,1}*\ L to {0,1}* \ L'. Indeed, suppose that L Karp-reduces to L' € N'P. Then L € NP by virtue of the
NP-relation {(z,y) : (f(z),y) € R'}, where R’ is the witness relation of L.
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To show that L' € NP, we will present an NP-relation, R’, that characterizes L' (i.e., L' =
{z : Jy (x,y) € R'}). The relation R’ consists of pairs of the form (z, ((z21, 01, w1), ..., (2, ¢, we))),
where on input z the reduction of L’ to L accepts after making the queries z1, ..., z¢, obtaining the
corresponding answers oy, ..., 0y, and for every ¢ it holds that if o; = 1 then w; is an NP-witness for
z; € L, whereas if o; = 0 then w; is an NP-witness for z; € {0,1}* \ L.

We stress that we use the fact that both L and T % {0,1}* \ L are NP-sets, and refer to the
corresponding NP-witnesses. Note that R’ is indeed an NP-relation: The length of solutions is
bounded by the running-time of the reduction (and the corresponding NP-witnesses). Membership
in R’ is decided by checking that the sequence of (z;, 0;)’s matches a possible query-answer sequence
in an accepting execution of the reduction'! (ignoring the correctness of the answers), and that all
answers (i.e., 0;’s) are correct. The latter condition is easily verified by use of the corresponding
NP-witnesses. W

5.2 Optimal search algorithms for NP-relations

The title of this section sounds very promising, but our guess is that the students will be less excited
once they see the proof. We claim the existence of an optimal search algorithm for any NP-relation.
Furthermore, we will explicitly present such an algorithm, and prove that it is optimal (without
knowing its running time).

Theorem 6 For every NP-relation R there exists an algorithm A that satisfies the following:
1. A correctly solves the search problem of R.

2. There exists a polynomial p such that for every algorithm A’ that correctly solves the search
problem of R and for every x € Ly = {z : Jy (2,y) € R} it holds that ts(x) = O(ta(x) +
p(|z|)), where ty (resp., tar) denotes the number of steps taken by A (vesp., A’) on input x.

We stress that the hidden constant in the O-notation depends only on A’, but in the following
proof the dependence is exponential in the length of the description of algorithm A’ (and it is not
known whether a better dependence can be achieved). Optimality holds in a “point-wise” manner
(i.e., for every input), and the additive polynomial term (i.e., p(|z|)) is insignificant in case the
NP-problem is not solvable in polynomial-time. On the other hand, the optimality of algorithm A
refers only to inputs that have a solution (i.e., z € Lr). Interestingly, we establish the optimality
of A without knowing what its (optimal) running-time is. Furthermore, the P-sv-NP Question boils
down to determining the running time of a single explicitly presented algorithm (i.e., the optimal
algorithm A). Finally, we note that the theorem as stated refers only to models of computation
that have machines that can emulate a given number of steps of other machines with a constant
overhead. We mention that in most natural models the overhead of such emulation is at most
poly-logarithmic in the number of steps, in which case it holds that t4(z) = O(ta(2) + p(|z])).
Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership in
R, and let p be a polynomial bounding the running-time of M. We present the following algorithm
A that merely runs all possible search algorithms “in parallel” and checks the results provided by
each of them (using M), halting whenever it obtains a correct solution.

Since there are infinitely many possible algorithms, we should clarify what we mean by “running
them all in parallel”. What we mean is to run them at different rates such that the infinite

HThat is, we need to verify that on input z, after obtaining the answers o1, ...,0:_1 to the first i — 1 queries, the
i*® query made by the reduction equals z;.
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sum of rates converges to 1 (or any other constant). Specifically, we will run the " possible
algorithm at rate 1/(i + 1)2. Note that a straightforward implementation of this idea may create
a significant overhead, involved in switching frequently from the computation of one machine to
another. Instead we present an alternative implementation that proceeds in iterations. In the j*®
iteration, for i = 1,...,29/2, we emulate 27 /(i41)? steps of the i*h machine. Each of these emulations
is conducted in one chunk, and thus the overhead of switching between the various emulations is
insignificant (in comparison to the total number of steps being emulated). We stress that in case
some of these emulations halts with output y, algorithm A invokes M on input (z,y) and output
y if and only if M(z,y) = 1. Furthermore, the verification of a solution provided by a candidate
algorithm is also emulated at the expense of its step-count. (Put in other words, we augment each
algorithm with a canonical procedure (i.e., M) that checks the validity of the solution offered by
the algorithm.)

In order to guarantee that A also halts on « ¢ Lg, we let it run an exhaustive search for a
solution, in parallel to all searches, and halt with output L in case this exhaustive search fails.

Clearly, whenever A(x) outputs y (i.e., y # L) it must hold that (z,y) € R. To show the
optimality of A, we consider an arbitrary algorithm A’ that solves the search problem of R. Our
aim is to show that A is not much slower than A’. Intuitively, this is the case because the overhead
of A results from emulating other algorithms (in addition to A’), but the total number of emulation
steps wasted (due to these algorithms) is inversely proportional to the rate of algorithm A’, which
in turn is exponentially related to the length of the description of A’. The punch-line is that since
A’ is fixed, the length of its description is a constant. [l

5.3 Promise Problems

Promise problems are a natural generalization of decision problems (and search problems can
be generalized in a similar manner). In fact, in many cases, promise problems provide the more
natural formulation of a decision problem. Formally, promise problems refer to a three-way partition
of the set of all strings into yes-instances, no-instances, and instances that violate the promise. A
potential decider is only required to distinguish yes-instances from no-instances, and is allowed
arbitrary behavior on inputs that violate the promise. Standard decision problems are obtained as
a special case by postulating that all inputs are allowed (i.e., the promise is trivial).

In contrary to the common perception, promise problems are no offshoot for abnormal situa-
tions, but are rather the norm: Indeed, the standard and natural presentation of natural decision
problems is actually in terms of promise problems, although the presentation rarely refers explic-
itly to the terminology of promise problems. Consider a standard entry in [3] (or any similar
compendium) reading something like “given a planar graph, determine whether or not ...”. A more
formal statement will refer to strings that represent planar graphs. Either way, the natural formu-
lation actually refers to a promise problem (where the promise in this case is that the input is a
planar graph).

We comment that the discrepancy between the intuitive promise problem formulation and the
standard formulation in terms of decision problems can be easily bridged in the case that there
exists an efficient algorithm for determining membership in the “promise set” (i.e., the set of in-
stances that satisfy the promise). In this case, the promise problem is computationally equivalent to
deciding membership in the set of yes-instances. However, in case the promise set is not tractable,
the terminology of promise problems is unavoidable. Examples include the notion of “unique solu-
tions”, the formulation of “gap problems” that capture various approximation tasks, and complete
problems for various probabilistic complexity classes. For a recent survey on promise problems and
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their applications, the interested reader is referred to [5].

6 A brief overview of Complexity Theory

(The following text was originally written as a brief overview of complexity theory, intended for
the novice. It can also be used as a basis for communicating the essence of complexity theory to
the outside (i.e., to scientists in other disciplines and even to the general interested public). Thus,
unlike the rest of this essay, which is intended for the teacher, this section is intended for the student
(or for other “outsiders” that the teacher may wish to address). The text starts with an overview
of the P-vs-NP Question and the theory of NP-completeness, repeating themes that were expressed
in the previous sections. Still, in light of the different potential uses of this text, I preferred not to
eliminate this part of the overview.)

Complexity Theory is concerned with the study of the ntrinsic complexity of computational
tasks. Its “final” goals include the determination of the complexity of any well-defined task. Addi-
tional “final” goals include obtaining an understanding of the relations between various computa-
tional phenomena (e.g., relating one fact regarding computational complexity to another). Indeed,
we may say that the former type of goals is concerned with absolute answers regarding specific com-
putational phenomena, whereas the latter type is concerned with questions regarding the relation
between computational phenomena.

Interestingly, the current success of Complexity Theory in coping with the latter type of goals
has been more significant. In fact, the failure to resolve questions of the “absolute” type, led to the
flourishing of methods for coping with questions of the “relative” type. Putting aside for a moment
the frustration caused by the failure, we must admit that there is something fascinating in the
success: in some sense, establishing relations between phenomena is more revealing than making
statements about each phenomenon. Indeed, the first example that comes to mind is the theory
of NP-completeness. Let us consider this theory, for a moment, from the perspective of these two
types of goals.

Complexity Theory has failed to determine the intrinsic complexity of tasks such as finding
a satisfying assignment to a given (satisfiable) propositional formula or finding a 3-coloring of a
given (3-colorable) graph. But it has established that these two seemingly different computational
tasks are in some sense the same (or, more precisely, are computationally equivalent). We find
this success amazing and exciting, and hope that the reader shares our feeling. The same feeling
of wonder and excitement is generated by many of the other discoveries of Complexity Theory.
Indeed, the reader is invited to join a fast tour of some of the other questions and answers that
make up the field of Complexity Theory.

We will indeed start with the “P versus NP Question”. Our daily experience is that it is harder
to solve a problem than it is to check the correctness of a solution (e.g., think of either a puzzle
or a research problem). Is this experience merely a coincidence or does it represent a fundamental
fact of life (or a property of the world)? Could you imagine a world in which solving any problem
is not significantly harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world? The denial of the
plausibility of such a hypothetical world (in which “solving” is not harder than “checking”) is what
“P different than NP” actually means, where P represents tasks that are efficiently solvable and
NP represents tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the task of proving
theorems versus the task of verifying the validity of proofs. Indeed, finding proofs is a special
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type of the aforementioned task of “solving a problem” (and verifying the validity of proofs is
a corresponding case of checking correctness). Again, “P different than NP” means that there
are theorems that are harder to prove than to be convinced of correctness when presented with a
proof. This means that the notion of a proof is meaningful (i.e., that proofs do help when trying
to be convinced of the correctness of assertions). Here NP represents sets of assertions that can be
efficiently verified with the help of adequate proofs, and P represents sets of assertions that can be
efficiently verified from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is a fundamental
scientific question of far-reaching consequences. The fact that this question seems beyond our cur-
rent reach led to the development of the theory of NP-completeness. Loosely speaking, this theory
identifies a set of computational problems that are as hard as NP. That is, the fate of the P-versus-
NP Question lies with each of these problems: if any of these problems is easy to solve then so
are all problems in NP. Thus, showing that a problem is NP-complete provides evidence to its in-
tractability (assuming, of course, “P different than NP”). Indeed, demonstrating NP-completeness
of computational tasks is a central tool in indicating hardness of natural computational problems,
and it has been used extensively both in computer science and in other disciplines. NP-completeness
indicates not only the conjectured intractability of a problem but rather also its “richness” in the
sense that the problem is rich enough to “encode” any other problem in NP. The use of the term
“encoding” is justified by the exact meaning of NP-completeness, which in turn is based on estab-
lishing relations between different computational problems (without referring to their “absolute”
complexity).

The foregoing discussion of the P-versus-NP Question also hints to the importance of repre-
sentation, a phenomenon that is central to complexity theory. In general, complexity theory is
concerned with problems the solutions of which are implicit in the problem’s statement. That is,
the problem contains all necessary information, and one merely needs to process this information
in order to supply the answer.'? Thus, complexity theory is concerned with manipulation of in-
formation, and its transformation from one representation (in which the information is given) to
another representation (which is the one desired). Indeed, a solution to a computational problem
is merely a different representation of the information given; that is, a representation in which the
answer is explicit rather than implicit. For example, the answer to the question of whether or not
a given Boolean formula is satisfiable is implicit in the formula itself (but the task is to make the
answer explicit). Thus, complexity theory clarifies a central issue regarding representation; that is,
the distinction between what is explicit and what is implicit in a representation. Furthermore, it
even suggests a quantification of the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena that were consid-
ered also by past thinkers. Examples include the aforementioned concepts of proofs and represen-
tation as well as concepts like randomness, knowledge, interaction, secrecy and learning. We next
discuss some of these concepts and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective can be described
as ontological: they asked “what is randomness” and wondered whether it exist at all (or is the
world deterministic). The perspective of complexity theory is behavioristic: it is based on defining
objects as equivalent if they cannot be told apart by any efficient procedure. That is, a coin toss is
(defined to be) “random” (even if one believes that the universe is deterministic) if it is infeasible
to predict the coin’s outcome. Likewise, a string (or a distribution of strings) is “random” if it

2In contrast, in other disciplines, solving a problem may require gathering information that is not available in
the problem’s statement. This information may either be available from auxiliary (past) records or be obtained by
conducting new experiments.
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is infeasible to distinguish it from the uniform distribution (regardless of whether or not one can
generate the latter). Interestingly, randomness (or rather pseudorandomness) defined this way is
efficiently expandable; that is, under a reasonable complexity assumption (to be discussed next),
short pseudorandom strings can be deterministically expanded into long pseudorandom strings.
Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that the
very definition of pseudorandomness refers to intractability (i.e., the infeasibility of distinguishing
a pseudorandomness object from a uniformly distributed object). Secondly, as hinted above, a
complexity assumption that refers to the existence of functions that are easy to evaluate but
hard to invert (called one-way functions) imply the existence of deterministic programs (called
pseudorandom generators) that stretch short random seeds into long pseudorandom sequences. In
fact, it turns out that the existence of pseudorandom generators is equivalent to the existence of
one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge (and distinguishes
it from information). It views knowledge as the result of a hard computation. Thus, whatever
can be efficiently done by anyone is not considered knowledge. In particular, the result of an easy
computation applied to publicly available information is not considered knowledge. In contrast,
the value of a hard to compute function applied to publicly available information is knowledge,
and if somebody provides you with such a value then it has provided you with knowledge. This
discussion is related to the notion of zero-knowledge interactions, which are interactions in which no
knowledge is gained. Such interactions may still be useful, because they may assert the correctness
of specific knowledge that was provided beforehand.

The foregoing paragraph has explicitly referred to interaction. It has pointed one possible
motivation for interaction: gaining knowledge. It turns out that interaction may help in a variety
of other contexts. For example, it may be easier to verify an assertion when allowed to interact with
a prover rather than when reading a proof. Put differently, interaction with some teacher may be
more beneficial than reading any book. We comment that the added power of such interactive proofs
is rooted in their being randomized (i.e., the verification procedure is randomized), because if the
verifier’s questions can be determined beforehand then the prover may just provide the transcript
of the interaction as a traditional written proof.

Another concept related to knowledge is that of secrecy: knowledge is something that one party
has while another party does not have (and cannot feasibly obtain by itself) — thus, in some sense
knowledge is a secret. In general, complexity theory is related to Cryptography, where the latter
is broadly defined as the study of systems that are easy to use but hard to abuse. Typically, such
systems involve secrets, randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its prescribed behavior.
Thus, much of Cryptography is based on complexity theoretic assumptions and its results are
typically transformations of relatively simple computational primitives (e.g., one-way functions)
into more complex cryptographic applications (e.g., a secure encryption scheme).

We have already mentioned the context of learning when referring to learning from a teacher
versus learning from a book. Recall that complexity theory provides evidence to the advantage of
the former. This is in the context of gaining knowledge about publicly available information. In
contrast, computational learning theory is concerned with learning objects that are only partially
available to the learner (i.e., learning a function based on its value at a few random locations or
even at locations chosen by the learner). Complexity Theory sheds light on the intrinsic limitations
of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have already mentioned two
fundamental types of tasks: searching for solutions (or “finding solutions”) and making decisions
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(e.g., regarding the validity of assertion). We have also hinted that in some cases these two types
of tasks can be related. Now we consider two additional types of tasks: counting the number of
solutions and generating random solutions. Clearly, both the latter tasks are at least as hard as
finding arbitrary solutions to the corresponding problem, but it turns out that for some natural
problems they are not significantly harder. Specifically, under some natural conditions on the
problem, approximately counting the number of solutions and generating an approximately random
solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approzimation, we mention that the study of the complexity
of finding approximate solutions has also received a lot of attention. One type of approximation
problems refers to an objective function defined on the set of potential solutions. Rather than
finding a solution that attains the optimal value, the approximation task consists of finding a
solution that obtains an “almost optimal” value, where the notion of “almost optimal” may be
understood in different ways giving rise to different levels of approximation. Interestingly, in many
cases even a very relaxed level of approximation is as difficult to achieve as the original (exact)
search problem (i.e., finding an approximate solution is as hard as finding an optimal solution).
Surprisingly, these hardness of approximation results are related to the study of probabilistically
checkable proofs, which are proofs that allow for ultra-fast probabilistic verification. Amazingly,
every proof can be efficiently transformed into one that allows for probabilistic verification based on
probing a constant number of bits (in the alleged proof). Turning back to approximation problems,
we note that in other cases a reasonable level of approximation is easier to achieve than solving the
original (exact) search problem.

Approximation is a natural relaxation of various computational problems. Another natural
relaxation is the study of average-case complexity, where the “average” is taken over some “simple”
distributions (representing a model of the problem’s instances that may occur in practice). We
stress that, although it was not stated explicitly, the entire discussion so far has referred to “worst-
case” analysis of algorithms. We mention that worst-case complexity is a more robust notion than
average-case complexity. For starters, one avoids the controversial question of what are the instances
that are “important in practice” and correspondingly the selection of the class of distributions for
which average-case analysis is to be conducted. Nevertheless, a relatively robust theory of average-
case complexity has been suggested, albeit it is far less developed than the theory of worst-case
complexity.

In view of the central role of randomness in complexity theory (as evident, say, in the study of
pseudorandomness, probabilistic proof systems, and cryptography), one may wonder as to whether
the randomness needed for the various applications can be obtained in real-life. One specific ques-
tion, which received a lot of attention, is the possibility of “purifying” randomness (or “extracting
good randomness from bad sources”). That is, can we use “defected” sources of randomness in order
to implement almost perfect sources of randomness. The answer depends, of course, on the model
of such defected sources. This study turned out to be related to complexity theory, where the most
tight connection is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while relying on the
natural association of efficiency with time. However, time is not the only resource one should
care about. Another important resource is space: the amount of (temporary) memory consumed
by the computation. The study of space complexity has uncovered several fascinating phenomena,
which seem to indicate a fundamental difference between space complexity and time complexity. For
example, in the context of space complexity, verifying proofs of validity of assertions (of any specific
type) has the same complexity as verifying proofs of invalidity for the same type of assertions.
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In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of some mountain
tops, and dizziness is to be expected. Needless to say, a good graduate course in complexity theory
should comnsist of climbing some of these mountains by foot, step by step, and stopping to look
around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute results are not known
for many of the “big questions” of complexity theory (most notably the P-versus-NP Question).
However, several highly non-trivial absolute results have been proved. For example, it was shown
that using negation can speed-up the computation of monotone functions (which do not require
negation for their mere computation). In addition, many promising techniques were introduced
and employed with the aim of providing a “low-level” analysis of the progress of computation.
However, the focus of this overview was on the connections among various computational problems
and notions, which may be viewed as a “high-level” study of computation.
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Historical Notes

Many sources provide historical accounts of the developments that led to the formulation of the
P vs NP Problem and the development of the theory of NP-completeness (see, e.g., [3]). We thus
refrain from attempting to provide such an account.

One technical point that we mention is that the three “founding papers” of the theory of NP-
completeness (i.e., [1, 6, 8]) refer to the three different terms of reductions used above. Specifically,
Cook used the general notion of polynomial-time reduction [1], often referred to as Cook-reductions.
The notion of Karp-reductions originates from Karp’s paper [6], whereas its augmentation to search
problems originates from Levin’s paper [8]. It is worth noting that unlike Cook and Karp’s works,
which treat decision problems, Levin’s work is stated in terms of search problems.

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 4) was proven by
Ladner [7], Theorem 5 was proven by Selman [9], and the existence of optimal search algorithms for
NP-relations (i.e., Theorem 6) was proven by Levin [8]. (Interestingly, the latter result was proved
in the same paper in which Levin presented the discovery of NP-completeness, independently of
Cook and Karp.) Promise problems were explicitly introduced by Even, Selman and Yacobi [2].
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