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1 IntroductionZero-Knowledge proofs, introduced by Goldwasser, Micali and Racko� [GMR89], are fascinatingand extremely useful constructs. Their fascinating nature is due to their seemingly contradictorynature; they are both convincing and yet yield nothing beyond the validity of the assertion beingproven. Their applicability in the domain of cryptography is vast; they are typically used toforce malicious parties to behave according to a predetermined protocol (which requires parties toprovide proofs of the correctness of their secret-based actions without revealing these secrets). Zero-knowledge proofs come in many avors, and in this paper we focus on two parameters: The �rstparameter is the underlying communication model, and the second is the type of the zero-knowledgeguarantee.The communication model. When Goldwasser, Micali, and Racko� proposed the de�nition ofzero-knowledge proofs, it seemed that interaction was crucial to achieving zero knowledge { that thepossibility of zero knowledge arose through the power of interaction. Indeed, it was not unexpectedwhen [GO94] showed zero knowledge to be trivial (i.e., only exists for proofs of BPP statements)in the most straightforward non-interactive models. Surprisingly, however, Blum, Feldman, andMicali [BFM88], showed that by changing the model slightly, it is possible to achieve zero knowledgein a non-interactive setting (i.e. where only unidirectional communication can occur). Speci�cally,they assume that both Prover and Veri�er have access to a shared truly random string, calledthe reference string. Aside from this assumption, all communication consists of one message, the\proof," which is generated by the Prover (based on the assertion being proved and the referencestring) and sent from the Prover to the Veri�er.Non-interactive zero-knowledge proofs, on top of being more communication-e�cient by de�-nition, have several applications not o�ered by ordinary interactive zero-knowledge proofs. Theyhave been used, among other things, to build digital signature schemes secure against adaptivechosen message attack [BG89], public-key cryptosystems secure against chosen-ciphertext attack[NY90, DDN91], and non-malleable cryptosystems [DDN91].The zero-knowledge guarantee. For ordinary interactive zero-knowledge proofs, the zero-knoweldege requirement is formulated by saying that the transcript of the Veri�er's interactionwith the Prover can be simulated by the Veri�er itself. Similarly, for the non-interactive settingdescribed above, the zero-knowledge condition is formulated by requiring that one can produce,knowing only the statement of the assertion, a random reference string along with a \proof" thatworks for the reference string. More precisely, we require that there exists an e�cient procedurethat on input a valid assertion produces a distribution which is \similar" to the joint distribu-tion of random reference strings and proofs generated by the Prover. The key parameter is theinterpretation of \similarity." Two notions have been commonly considered in the literature (cf.,[GMR89, GMW91, For89, BDMP91, BR90]). Statistical zero knowledge requires that these distribu-tions be statistically close (i.e., the statistical di�erence between them is negligible). Computationalzero knowledge instead requires that these distributions are computationally indistinguishable (cf.,[GM84, Yao82]). In this work, we focus on the stronger security requirement of statistical zeroknowledge.Since its introduction in [BFM88], most work on non-interactive zero knowledge has focusedon the computational type (cf., [BFM88, DMP87, DMP88, BDMP91, FLS90, KP98]). With non-interactive statistical zero knowledge, the main objects of investigation have been the speci�c proof1



system for Quadratic Nonresiduosity and variants [BDMP91, DDP94, DDP97].1 Recently, DeSantis et. al. [DDPY98] opened the door to a general study of non-interactive statistical zero-knowledge by showing that it contains a complete (promise2) problem.Notation. Throughout the paper, SZK denotes the class of promise problems having statisticalzero-knowledge interactive proof systems (de�ned in Appendix A), and NISZK denotes the classof promise problems having non-interactive statistical zero-knowledge proof systems (de�ned inSection 1.1).Our Contribution.In this work, we seek to understand what, if any, additional power interaction gives in the con-text of statistical zero knowledge. Thus, we continue the investigation of NISZK, focusing onits relationship with SZK. Our �rst result is that the non-triviality of SZK implies non-trivialityof NISZK, where by non-trivial we mean that a class includes problems which are not solv-able in probabilistic polynomial-time. The hypothesis holds under various assumptions, such asthe intractability of Discrete Logarithm Problem [GK93] (or Quadratic Residuosity [GMR89] orGraph Isomorphism [GMW91]), but variants of these last two problems are already known to bein NISZK [BDMP91, BR90]).Furthermore, we show that if NISZK is closed under complement, then in fact SZK =NISZK | i.e., all statistical zero-knowledge proofs can be made non-interactive. We note that[DDPY98] have claimed that NISZK is closed under complement (and OR), but these claims havebeen retracted [DDPY99].We also show the equivalence of NISZK with a variant in which the statistical zero knowledgerequirement is weakened somewhat.Complete Problems. Central to our methodology is the use of simple and natural completeproblems to understand classes, such as SZK and NISZK, whose de�nitions are rather compli-cated. In particular, we exhibit two natural promise problems and prove that they are complete forNISZK. The two problems refer to the \distance" (in two di�erent senses) of a given distributionfrom the uniform one. These two problems are natural restrictions of two promise problems showncomplete for SZK, in [SV97] and [GV99], respectively. Indeed, our results about the relationshipbetween SZK and NISZK come from relating the corresponding complete problems. This generaltheme of using completeness to simplify the study of a class, rather than as evidence for computa-tional intractability (as is the traditional use of NP-completeness), has been evidenced in a numberof recent works (cf., [GMW91, LFKN90, Sha90, ALM+92, AS92]) and has been particularly usefulin understanding statistical zero knowledge (cf., [SV97, SV99, DDPY98, GV99]).1.1 The non-interactive modelLet us recall the de�nition of a non-interactive statistical zero-knowledge proof system from [BDMP91].3We will adapt the de�nition to promise problems. Note that our de�nition will capture what1The only exception is an unpublished manuscript of Bellare and Rogaway [BR90] who proved some basic resultsabout non-interactive perfect zero-knowledge and showed a non-interactive perfect zero-knowledge proof for thelanguage of graphs with trivial automorphism group.2A promise problem � is a pair � = (�yes;�no) of disjoint sets of strings, corresponding to yes and no instancesof a decision problem.3Actually, only non-interactive perfect and computational zero-knowledge proofs were de�ned in [BDMP91]. Thede�nition we are using, previously given in [BR90, DDPY98], is the natural non-interactive analogue of (interactive)2



[BDMP91] call a bounded proof system, in that each shared reference string can only be used once.In contrast to non-interactive computational zero knowledge (cf., [BDMP91, FLS90]), it is unknownwhether every problem that has such a (bounded) non-interactive statistical zero-knowledge proofsystem also has one in which the shared reference string can be used an unbounded (polynomial)number of times.A non-interactive statistical zero-knowledge proof system for a promise problem � is de�nedby a triple of probabilistic machines P , V , and S, where V and S are polynomial-time and P iscomputationally unbounded, and a polynomial r(n) (which will give the size of the random referencestring �), such that:1. (Completeness:) For all x 2 �yes, the probability that V (x; �; P (x; �)) accepts is at least2=3.2. (Soundness:) For all x 2 �no, the probability that V (x; �; P (x; �)) accepts is at most 1=3.3. (Zero Knowledge:) For all x 2 �yes, the statistical deviation between the following twodistributions is at most �(jxj):(A) Choose � uniformly from f0; 1gr(jxj), sample p from P (x; �), and output (p; �).(B) S(x) (where the coins for S are chosen uniformly at random.)where �(n) is a negligible function,4 termed the simulator deviation, and the probabilities in Con-ditions 1 and 2 are taken over the random coins of V and P , and the choice of � uniformly fromf0; 1gr(n). Note that non-interactive statistical zero knowledge is closed under parallel repetition,so the completeness and soundness errors (i.e. the probability of rejection (resp., acceptance) foryes (resp., no) instances) can be made exponentially small in jxj.We also de�ne a weaker notion of zero knowledge, known as a weak non-interactive statisticalzero-knowledge proof system, where we ask only that for every polynomial g(n), there exists aprobabilistic polynomial-time simulator Sg (whose running time may depend on g), such that thesimulator deviation as de�ned above is at most 1=g(jxj). This is the natural analogue of a notionde�ned in the interactive setting for statistical zero knowledge [DOY97] as well as concurrent zeroknowledge [DNS98].The class of promise problems that possess non-interactive statistical zero-knowledge proofsystems is denoted NISZK, and we denote by weak-NISZK the class of promise problems thatpossess weak non-interactive statistical zero-knowledge proof systems. Note that by de�nition,NISZK � weak-NISZK. De Santis et. al. [DDPY98] recently began a general investigation ofthe class NISZK. They introduced a promise problem, called Image Density, and claimed thatis complete for NISZK and that the latter class is closed under OR and complement. We wereable to verify that some variants of Image Density are NISZK-complete, and indeed the ideasused towards this goal are important to our work. However, they have retracted their claims thatNISZK is closed under OR and complement [DDPY99].In this paper, in addition to examining NISZK on its own, we also consider the relationshipnon-interactive statistical zero-knowledge proofs have with interactive statistical zero-knowledgeproofs. In the context of interactive zero-knowledge proofs, another issue that arises in the zero-knowledge condition is the behavior of the veri�er. The general de�nition of zero knowledge re-quires that the zero-knowledge requirement hold for any probabilistic polynomial-time veri�er. Astatistical zero knowledge [GMR89].4Recall that a function is negligible if it is eventually less than 1=g(n) for any polynomial g.3



weaker requirement, called honest-veri�er zero knowledge, requires the zero-knowledge conditionto hold only if the veri�er behaves honestly. However, it is known that these two conditions areequivalent for statistical zero knowledge, in the sense that every statistical zero-knowledge proofagainst the honest veri�er can be transformed into one that is statistical zero knowledge againstany veri�er [GSV98]. Thus, we write SZK for the class of promise problems possessing statisticalzero-knowledge proofs (against any polynomial-time veri�er or, equivalently, against just the honestveri�er).Note that in the case of non-interactive zero knowledge, the issue of honest veri�ers does notarise since the veri�er does not interact with the prover. Also, note that we can always transforma non-interactive zero-knowledge proof into an honest veri�er zero-knowledge proof, since we couldhave the honest veri�er supply a random string which can replace the common reference stringrequired for non-interactive zero knowledge. That is, NISZK � SZK (recalling the equivalenceof SZK with honest-veri�er SZK).1.2 Our ResultsThe primary tools we use in our investigation are promise problems that are complete for SZKor NISZK. In [SV97], a promise problem called Statistical Di�erence (SD) was introduced andproved complete for SZK, providing the �rst completeness result for SZK. Recently, it was shownin [GV99] that another natural problem, called Entropy Di�erence (ED), is complete for SZK aswell. In this work, we show that \one-sided" versions of these problems, which we call StatisticalDi�erence from Uniform (SDU) and Entropy Approximation (EA), are complete for NISZK. To de�nethese problems more precisely, we �rst recall that that statistical di�erence between two randomvariables X and Y on a �nite set D, denoted �(X ; Y ), is de�ned to be�(X ; Y ) def= maxS�D jPr [X 2 S]� Pr [Y 2 S]j = 12 �X� jPr [X = �]� Pr [Y = �] j:All the promise problems we consider involve distributions which are encoded by circuits whichsample from them. That is, if X is a circuit mapping f0; 1gm to f0; 1gn, we identify X withthe probability distribution induced on f0; 1gn by feeding X the uniform distribution on f0; 1gm.Since circuits can be evaluated in time polynomial in their size, yet are rich enough to encodegeneral (e.g., Turing machine) computations, they e�ectively capture the notion of an \e�cientlysampleable distribution."De�nition 1.1 (Problems involving statistical di�erence): The promise problem Statistical Di�er-ence, denoted SD = (SDyes; SDno), consists ofSDyes def= f(X;Y ) : �(X ; Y ) < 1=3gSDno def= f(X;Y ) : �(X ; Y ) > 2=3gwhere X and Y are distributions encoded as circuits which sample from them. The promise problemStatistical Di�erence from Uniform, denoted SDU = (SDUyes; SDUno), consists ofSDUyes def= fX : �(X ; U) < 1=ngSDUno def= fX : �(X ; U) > 1� 1=ngwhere X is a distribution encoded as a circuit outputting n bits, and U is the uniform distributionon n bits. 4



For the two problems related to entropy, we recall that the (Shannon) entropy of a randomvariable X, denoted H(X), is de�ned asH(X) def= X� Pr [X = �] � log2(1=Pr [X = �])De�nition 1.2 (Problems involving entropy): The promise problem Entropy Di�erence, denotedED = (EDyes; EDno), consists ofEDyes def= f(X;Y ) : H(X) > H(Y ) + 1gEDno def= f(X;Y ) : H(Y ) > H(X) + 1gThe promise problem Entropy Approximation, denoted EA = (EAyes; EAno), consists ofEAyes def= f(X; k) : H(X) > k + 1gEAno def= f(X; k) : H(X) < k � 1gIn these problems, k is a positive integer and X and Y are distributions encoded as circuits whichsample from them.Our �rst theorem, which is the starting point for our other results, is:Theorem 1.3 (EA and SDU are NISZK-complete) The promise problems EA and SDU are completefor NISZK. That is, EA; SDU 2 NISZK and for every promise problem � 2 NISZK, there is apolynomial-time Karp (many-one) reduction from � to EA and another from � to SDU.From the proof of this theorem, we also obtain a method for transforming weak non-interactivestatistical zero knowledge proofs into standard ones.Theorem 1.4 weak-NISZK = NISZK.Armed with our complete problems, we then begin the work of comparing SZK and NISZK.First we show that the non-triviality of NISZK is equivalant to the non-triviality of SZK. Thisis shown by giving a Cook reduction from ED to EA.Theorem 1.5 (non-triviality of NISZK) SZK 6= BPP () NISZK 6= BPP.In this theorem (and throughout the paper), BPP denotes the class of promise problems solvablein probabilistic polynomial time.In fact, it turns out that the type of Cook reduction we use is a special one, and by examiningit further, we are able to shed more light on the SZK vs. NISZK question. Speci�cally, weobserve that the reduction we give from ED to EA is an AC0 truth-table reduction. That is, it isa nonadaptive Cook reduction in which the postprocessing is done in AC0. (Formal de�nitionsare given in Section 5.2.) Further, we can prove that if NISZK is closed under complement,then NISZK is closed under AC0 truth-table reductions. Thus we deduce that NISZK beingclosed under complement implies that NISZK = SZK. In fact, we can show that closure undercomplement and a number of other natural conditions are equivalent to SZK = NISZK:Theorem 1.6 (conditions for SZK = NISZK) The following are equivalent:5



1. SZK = NISZK.2. NISZK is closed under complement.3. NISZK is closed under NC1 truth-table reductions.4. ED (resp., SD) Karp-reduces to EA (resp., SDU). (\general versions reduce to one-sided ones")5. EA (resp., SDU) Karp-reduces to its complement. (\one-sided versions reduce to their com-plements")Theorem 1.6 can be interpreted as saying that if NISZK has a relatively weak closure property(closure under complement), then the class is surprisingly rich (equals SZK) and has a muchstronger closure property (closure under NC1 truth-table reductions.) At �rst, it might seemimplausible that a class like NISZK with such an assymetric de�nition would be closed undercomplement. But SZK, which has a similarly assymetric de�nition, is known to be closed undercomplement [Oka96]. In light of this, the closure of NISZK under complement would not be quiteas unexpected, and Theorem 1.6 illustrates that proving it would have wider consequences.The last two conditions in Theorem 1.6 show that these questions about non-interactive versusinteractive statistical zero-knowledge proofs are actually equivalent to basic questions about rela-tionships between natural computational problems whose de�nitions have no a priori relationshipto zero-knowledge proofs.The equality of SZK and NISZK has interesting consequences not just for NISZK, but alsofor SZK. Currently, the best known generic protocol for SZK (against cheating veri�ers, makingno computational assumptions) requires a polynomial number of rounds [Oka96, GSV98].5 ForNISZK, however, by [DGW94], it is known that every problem in NISZK has a constant roundstatistical zero-knowledge proof system (against general, cheating veri�ers) with inverse polynomialsoundness error. Whether every problem in SZK has such a proof system is still an open question,which would be resolved in the positive if SZK = NISZK.1.3 A wider perspectiveThe study of non-interactive statistical (rather than computational) zero-knowledge proofs maybe of interest for two reasons. Firstly, statistical zero-knowledge proofs provide an almost abso-lute level of security, whereas computational zero-knowledge proofs only provide security relativeto computational abilities (and typically under complexity theoretic assumptions). Secondly, byanalogy from the study of zero-knowledge interactive proofs, we believe that techniques developedfor the \cleaner" statistical model can be applied or augmented to yield results for computationalzero-knowledge: The proof that one-way functions are necessary for SZK to be non-trivial [Ost91]was later generalized to CZK [OW93]. More recently, the transformations of honest-veri�er zeroknowledge to general zero knowledge, presented in [Dam94, DGW94, DGOW95, GSV98], applyboth to statistical and computational zero knowledge (whereas the original motivation was thestudy of statistical zero knowledge). It is our hope that the current study of NISZK will even-tually lead to a better understanding of NICZK, where there are still important open questionssuch as the minimal conditions under which NP has NICZK proofs.5Under the assumption that the Discrete Logarithm is hard, however, there is a constant round, cheating veri�erSZK proof system with inverse polynomial soundness error for all of SZK [Oka96, BMO90].6



2 PreliminariesRecall that a promise problem � is a pair � = (�yes;�no) of disjoint sets of strings, correspondingto the following decision problem: Given a string x 2 �yes [ �no, decide whether it is in �yes(i.e. is a yes instance) or in �no (i.e. is a no instance). A string in �yes [�no is said to satisfythe promise, and all other strings are said to violate the promise. A function f is said to be a Karp(or polynomial-time many-one) reduction from a promise problem � to a promise problem � if fis polynomial-time computable, x 2 �yes ) f(x) 2 �yes, and x 2 �no ) f(x) 2 �no. If such areduction exists, we write ��Karp�.Recall that all the promise problems we are considering involve distributions which are encodedby circuits which sample from them. That is, ifX is a circuit mapping f0; 1gm to f0; 1gn, we identifyX with the probability distribution induced on f0; 1gn by feeding X the uniform distribution onf0; 1gm. The support of X is the set of strings in f0; 1gn which have nonzero probability under X,i.e. fy 2 f0; 1gn : 9r 2 f0; 1gm s.t. X(r) = yg. For any distribution X on a set D, we write 
kXto denote the distribution on Dk consisting of k independent copies of X.3 EA is in NISZKIn this section, we show that EA has a non-interactive statistical zero-knowledge proof system. Theproof is given in Subsection 3.1, assuming a certain lemma (Lemma 3.2). Subsections 3.2 to 3.4 aredevoted to the proof Lemma 3.2, which is technically somehwat involved. Therefore, the reader isencouraged to read only Subsection 3.1 from this section on �rst reading.3.1 The proof systemOur aim in this section is the prove the following:Lemma 3.1 EA 2 NISZK. Moreover, there is a non-interactive statistical zero-knowledge proofsystem for EA in which the completeness error, soundness error, and simulator deviation are allexponentially vanishing (speci�cally 2�s, where s is the length of the input).The transformation given by the following lemma (proved in Subsection 3.4) will be applied atthe start of the proof system:Lemma 3.2 There is a polynomial-time computable function that takes an instance (X; k) of EAand a parameter s (in unary) and produces a distribution Z on f0; 1g` (encoded by a circuit whichsamples from it) such that1. If H(X) > k + 1, then Z has statistical di�erence at most 2�s from the uniform distributionon f0; 1g`, and2. If H(X) < k � 1, then the support of Z is at most a 2�s fraction of f0; 1g`.Lemma 3.2 essentially transforms an instance of Entropy Approximation into an instance ofImage Density, the complete problem of [DDPY98]. Given this transformation, it is straightfor-ward to give a noninteractive statistical zero-knowledge proof system for EA:
7



Non-interactive proof system for EA, on input (X; k)1. Let Z be the distribution on f0; 1g` obtained from (X; k) as in Lemma 3.2 taking s to be thetotal description length of (X; k) in bits. Let � 2 f0; 1g` be the reference string.2. P selects r uniformly among fr0:Z(r0) = �g and sends r to V .3. V accept if Z(r) = � and rejects otherwise.It is immediate from Lemma 3.2 that the completeness error and soundness error of this proofsystem are 2�s. For zero-knowledgeness, we consider the following probabilistic polynomial-timesimulator:Simulator for EA proof system, on input (X; k)1. Let Z be obtained from (X; k) as in the proof system.2. Select an input r to Z uniformly at random and let � = Z(r).3. Output (�; r).It follows from Part 1 of Lemma 3.2 that this simulator has statistical di�erence at most 2�sfrom the distribution of transcripts of (P; V ). Thus, assuming Lemma 3.2, we have establishedLemma 3.1. In fact, we need not require that s be the length of (X; k). Instead, s can be taken tobe an arbitrary security parameter, and the completeness, soundness, and simulation error will beexponentially small in s, while the running time of the protocol only depends polynomially on s.We can use this to prove the following, which will be useful to us later.Proposition 3.3 If any promise problem � reduces to EA by a Karp (i.e. many-one) reduction(even if it is length-reducing), then � 2 NISZK.Proof: A noninteractive statistical zero-knowledge proof system for � can be given as follows: Onan instance x of �, both parties compute the image (X; k) of x under the reduction ��KarpEA andexecute the proof system for EA on (X; k), except that we take s to be the length of x. Hence, thecompleteness and soundness errors and simulator deviation of this proof system are exponentiallysmall in jxj (rather than j(X; k)j which could be shorter than x).3.2 Flat distributions and the Leftover Hash LemmaHere we discuss some standard notions and techniques that will be useful in the proof of Lemma 3.2.We use the clean formulations of these tools given in [GV99]. A distribution X is called at if allstrings in the support of X have the same probability. Notice that if X is at, then by thede�nition of entropy, Pr [X = x] = 2�H(X) for every x in the support of X. We quantify deviationfrom atness as follows:De�nition 3.4 (heavy, light and typical elements): Let X be a distribution, x an element pos-sibly in its support, and � a positive real number. We say that x is �-heavy (resp., �-light) ifPr [X = x] � 2� � 2�H(X) (resp., Pr [X = x] � 2�� � 2�H(X)). Otherwise, we say that x is �-typical.A natural relaxed de�nition of atness follows. The de�nition links the amount of slackness allowedin \typical" elements with the probability mass assigned to non-typical elements.8



De�nition 3.5 (at distributions): A distribution X is called �-at if for every t > 0, the proba-bility that an element chosen from X is t ��-typical is at least 1� 2�t2+1.By straightforward application of Hoefding Inequality (cf., Appendix C), we haveLemma 3.6 (attening lemma): Let X be a distribution, k a positive integer, and 
kX denotethe distribution composed of k independent copies of X. Suppose that for all x in the support of Xit holds that Pr [X = x] � 2�m. Then 
kX is pk �m-at.The key point is that the entropy of 
kX grows linearly with k, whereas its deviation from atnessgrows signi�cantly slower (i.e., linear in pk) as a function of k. Note that if X is a distributionde�ned by a circuit with ` input gates, then Pr [X = x] � 2�` for all x in the support of X, so theconclusion of Lemma 3.6 holds with m = `. The other main tool we will use is:Lemma 3.7 (Leftover Hash Lemma [ILL89]) Let H be a 2-universal family of hash functionsmapping a domain D to a range R. Suppose X is a distribution on D such that with probability atleast 1� � over x selected from X, Pr [X = x] � "=jRj. Then the statistical di�erence between thefollowing two distributions is at most O(� + "1=3):(A) Choose h uniformly from H and x according to X. Output (h; h(x)).(B) Choose h uniformly from H and y uniformly from R. Output (h; y).In particular, notice that if X is a �-at distribution, then for any parameters s; t > 0, Xsatis�es the hypothesis of the Leftover Hash Lemma with jRj = 2H(X)�t��s, � = 2�t2+1, and" = 2�s. As we will be applying Lemma 3.7 to sets of strings, we de�ne, for any pair of positiveintegers a and b, Ha;b to be one of the standard 2-universal families of hash functions mappingf0; 1ga to f0; 1gb (e.g., a�ne GF(2)-linear transformations).3.3 Overview of Lemma 3.2The transformation proceeds in four stages, which are roughly described below:1. Let X 0 consist of many copies of X so that the entropy gap between yes and no instancesincreases, and the distribution becomes quite at relative to its entropy.2. Hash X 0 so that yes instances become close to the uniform distribution while no instanceshave much smaller entropy than the uniform distribution. That is, let Y be of the form(h; h(X 0)), where h is uniformly distributed in a 2-universal family with appropriate param-eters.3. Let Y 0 consist of many copies of Y so that for no instances, the entropy de�ciency (ascompared to the uniform distribution) becomes large and yet Y 0 becomes quite at relativeto its entropy; while yes instances remain close to uniform.4. Hash the inputs to Y 0 so that no instances have small support (rather than just small entropy),while keeping yes instances close to uniform. That is, let Z be of the form (Y 0(r); h; h(r))where h is uniformly distributed in a 2-universal family with appropriate parameters.9



3.4 Proof of Lemma 3.2Let (X; k) be an instance of EA, let m (resp., n) denote the number of input and output gates toX, and let s be the extra parameter in the transformation. By increasing s if necessary, we mayassume that s is greater than the total description length of (X; k). Thus, all the intermediatecircuits we build will be of size poly(s). Also note that it su�ces for the transformation to achieveerror parameters just 2�
(s) rather than 2�s, as this can be compensated for by �rst increasing sby a linear factor.Many copies I. The �rst step is to take many copies of each distribution; this has the e�ect ofincreasing the entropy gap between yes and no instances relative to X's deviation from atness.Namely, let q = 4sm2 and let X 0 = 
qX (i.e., X 0 consists of q independent copies of X). ThenH(X 0) = q � H(X) and, by Lemma 3.6, X 0 is �-at for � = p4sm2 �m = 2ps �m2. In particular,we have establishedClaim 3.81. If H(X) > k + 1, then H(X 0) > qk + q � qk +ps�+ s.2. If H(X) < k � 1, then H(X 0) < qk � q < qk.Hashing I. Now consider the distribution Y on pairs (h; h(x)) induced by choosing h uniformlyfrom Hqn;qk+1 and x according to X 0. Say that elements of Hqn;qk+1 take u � poly(qn; qk) �poly(s) bits to represent. Then Y is represented by a circuit with inputs (resp., outputs) of lengthm0 = u+ qm (resp., n0 = u+ qk + 1). Y has the following properties:Claim 3.91. If H(X) > k+1, then Y has statistical di�erence at most 2�
(s) from the uniform distributionon f0; 1gn0 .2. If H(X) < k � 1, then the entropy of Y is less than n0 � 1.Proof: Part 1 follows from the �-atness of X and the Leftover Hash Lemma. Part 2 followsfrom the fact that the entropy of Y is at most the entropy of X 0 (which is less than qk) plus theentropy of the uniform distribution on Hqn;qk+1 (which is u).Many copies II. We now take many copies of Y , so that the entropy de�ciency of no instancesbecomes large relative to the atness while yes instances remain close to uniform. Speci�cally, letq0 = 4s � (m0)2 and let Y 0 = 
q0Y , so that Y 0 has M = m0q0 input gates, N = n0q0 output gates,and Y 0 is �0-at for �0 =p4s(m0)2 �m0 = 2ps � (m0)2. Then we immediately have:Claim 3.101. If H(X) > k+1, then Y 0 has statistical di�erence at most q0 �2�
(s) = 2�
(s) from the uniformdistribution on f0; 1gN .2. If H(X) < k � 1, then H(Y 0) < N � q0 � N �p3s ��0 � s.
10



Hashing II. The �nal step is to make a distribution which, for no instances, has small support(rather than just low entropy) in the case of no instances, while yes instances remain close touniform. Consider a circuit Z which takes as input r 2 f0; 1gM and a hash function h 2 HM;M�N�sand outputs (Y 0(r); h; h(r)). Then,Claim 3.11 Z satis�es the requirements of Lemma 3.2 (with error parameters 2�
(s) rather than2�s). That is,1. If H(X) > k+1, then Z has statistical di�erence at most 2�
(s) from the uniform distributionon f0; 1gN �HM;M�N�s � f0; 1gM�N�s, and2. If H(X) < k�1, then the support of Z is at most a 2�
(s) fraction of f0; 1gN �HM;M�N�s�f0; 1gM�N�s.The intuition for this is the following: In the case of yes instances, Y 0 is close to the uniformdistribution on f0; 1gN , so for almost all y 2 f0; 1gN , there will be about 2M�N values of r suchthat Y 0(r) = y. Thus, hashing r down to M � N � s bits will still result in a nearly uniformdistribution.In the case of a no instance, Y 0 has large entropy de�ciency and is nearly at. From this,we can deduce that Y 0 lands in some small subset T of f0; 1gN with very high probability. Thus,points y =2 T must have very low probability under Y 0, i.e. there are very few inputs r such thatY 0(r) = y. So, for each y =2 T , the pairs (h; h(r)) will only hit a small subset of the possible values.Therefore, (Y 0(r); h; h(r)) has small support, because either the �rst component lands in a smallset (namely T ) or the last two components land in a small set.Proof: Suppose H(X) > k + 1. From the fact that Y 0 has statistical di�erence at most 2�
(s)from uniform it follows that with probability at least 1� 2�
(s) over y selected according to Y 0,Pr �Y 0 = y� � 12 � 12N : (1)Fix any y satisfying Inequality 1. Conditioned on Y 0(r) = y, r is selected uniformly from fr:Y 0(r) =yg, which by Equation 1 is a set of size at least 2M�N�1. Thus, by the Leftover Hash Lemma,conditioned on Y 0(r) = y, the distribution of (h; h(r)) has statistical di�erence at most 2�
(s) fromuniform. Therefore the total statistical di�erence of Z from uniform is 2�
(s).Now suppose H(X) < k � 1. We want to show that the support S of Z is a small fraction ofD = f0; 1gN � HM;M�N�s � f0; 1gM�N�s. To do this, we divide S into three parts, dependingon the probability mass given to the y component by Y 0. Recall that a \typical" y for Y 0 hasprobability mass � 2�H(Y 0) � 2�N+p3s��0+s.S1 = f(y; h; z) 2 S: Pr [Y 0 = y] � 2�N�2sg (\much too light")S2 = f(y; h; z) 2 S: 2�N�2s < Pr [Y 0 = y] � 2�N+sg (\too light, but not much too light")S3 = f(y; h; z) 2 S: 2�N+s < Pr [Y 0 = y]g (\not too light")Clearly, S = S1[S2[S3. We will show that jSij=jDj � 2�s for i = 1; 2; 3, and so jSj=jDj � 3 �2�s =2�
(s).First we bound jS1j. For any y such that Pr [Y 0 = y] � 2�N�2s, there are at most 2M�N�2svalues of r such that Y 0(r) = y. Thus, for any such y and any h, the set of z such that (y; h; z) 2 S1is of size at most 2M�N�2s (because each such z must be of the form h(r) for some r such thatY 0(r) = y). This implies that S1 is at most a 2M�N�2s=2M�N�s = 2�s fraction of D.11



Now we bound jS2j. We show that the set A of y such that 2�N�2s < Pr [Y 0 = y] � 2�N+s is atmost a 2�s fraction of f0; 1gN . From this, it follows that S2 is at most a 2�s fraction of D. Everyy 2 A is p3s ��0-light (since Y 0 has entropy at most N � s�p3s ��0). By the �0-atness of Y 0,Pr [Y 0 2 A] is at most 2�3s+1. Since every y in A has probability mass at least 2�N�2s under Y 0,jAj is at most 2�3s+1=2�N�2s < 2N�s, as desired.Finally, we bound jS3j. Clearly, there can be at most 2N�s values of y such that Pr [Y 0 = y] �2�N+s. From this it follows that jS3j=jDj � 2N�s=2N = 2�s.4 EA and SDU are NISZK-completeIn this section, we complete the proof of Theorem 1.3. First, we establish that SDU 2 NISZK byshowing:Lemma 4.1 SDU�KarpEA. In particular, SDU 2 NISZK.Proof: Let X be an instance of SDU. We assume that log(n) > 5, where n is the output lengthof the circuit X (otherwise, once can decide in probabilistic polynomial time whether X is a yesor no instance of SDU by random sampling). Let U denote the uniform distribution on n bits. Weclaim the map X 7! (X;n� 3) is the reduction required by the lemma.If X 2 SDUyes, then � = �(X ; U) < 1=n. Now we use the fact (cf., Appendix B) that for anytwo random variables, Y and Z, ranging over domain D it holds thatjH(Y )�H(Z)j � (log jDj) ��(Y ; Z) + H2 (�(Y ; Z)) ;where H2(�) denotes the entropy of a 0{1 random variable with mean �. Applying this with Y = Uand Z = X, we have n�H(X) < n � 1=n+H2(1=n) < 2:Hence (X;n� 3) 2 EAyes.If X 2 SDUno, then �(X ; U) � 1� 1=n. By the de�niton of statistical di�erence, this impliesthe existence of a set S � f0; 1gn such that Pr [X 2 S]� Pr [U 2 S] > 1� 1=n: This implies thatPr [X 2 S] > 1� 1=n and Pr [U 2 S] < 1=n:Thus, H(X) � Pr [X 2 S] � log(jSj) + Pr [X =2 S] � n < 1 � (n � logn) + (1=n) � n < n � 4, and wehave that (X;n� 3) 2 EAno.The \in particular" part of Lemma 4.1 follows immediately from Proposition 3.3.Now, we establish both Theorem 1.3 and Theorem 1.4 by showing that all promise problems inweak-NISZK (and hence all promise problems in NISZK) are reducible to SDU (and hence bythe previous lemma to EA).Lemma 4.2 Every promise problem in weak-NISZK Karp-reduces to SDU.Proof: Let � be any promise problem in weak-NISZK. As weak-NISZK is preserved underparallel repetition, we may assume that � has a weak-NISZK proof system (P; V ) with complete-ness and soundness errors at most 2�n on inputs of length n. Let r(n) = poly(n) be the lengthof the random reference string in (P; V ), and let S be a randomized polynomial-time simulator Ssuch that the statistical di�erence between the output distribution of S and the distribution of true12



transcripts of P is at most 1=(3r(n)). (Such an S is guaranteed by the weak-NISZK property.)Let U denote the uniform distribution on r(n) bits.Let x be an instance of �. De�ne Mx to be a circuit which does the following on input s:Mx(s): Simulate S(x) with randomness s to obtain a transcript (�; p). If V (x; �; p) accepts, thenoutput �, else output 0r(n).We claim that the map x 7!Mx is the reduction required by the lemma. Suppose x 2 �yes. Inthis case, we know that the random reference string � in the output of S has statistical di�erenceless than 1=3r(n) from U . In addition, since the completeness error of protocol P is at most 2�n,S(x) can output rejecting transcripts with probability at most 1=(3r(n))+2�n � 2=(3r(n)). Hence,�(Mx ; U) < 2=(3r(n)) + 1=(3r(n)) � 1=r(n), and Mx 2 SDUyes.Suppose x 2 �no. Since the soundness error of protocol P is bounded by 2�n, for at most a 2�nfraction of reference strings � does there exist an accepting transcript (�; p). SinceMx only outputsreference strings corresponding to accepting transcripts or 0r(n), �(Mx ; U) � 1� (2�n+2�r(n)) >1� 1=r(n). Thus, Mx 2 SDUno.Clearly, Lemmas 3.1, 4.1, and 4.2 combine to prove Theorem 1.3. Lemmas 4.2 and 4.1 showthat any promise problem � in weak-NISZK reduces to EA; by Proposition 3.3, this implies that� 2 NISZK and establishes Theorem 1.4.5 Comparing NISZK and SZKArmed with NISZK-complete promise problems so closely related to problems known to be com-plete for SZK, we can quickly begin relating the two classes.5.1 Nontriviality of NISZKFirst, we establish Theorem 1.5 by giving a Cook reduction from Entropy Difference (ED), com-plete for SZK, to Entropy Approximation (EA), complete for NISZK.Lemma 5.1 Suppose (X;Y ) is an instance of ED. Let X 0 = 
4X (resp., Y 0 = 
4Y ) consist of 4independent copies of X (resp., Y ), and let n denote the maximum of the output sizes of X 0 andY 0. Then, (X;Y ) 2 EDyes =) n_k=1 ��(X 0; k) 2 EAyes� ^ �(Y 0; k) 2 EAno��(X;Y ) 2 EDno =) n̂k=1 ��(X 0; k) 2 EAno� _ �(Y 0; k) 2 EAyes��Proof: Suppose (X;Y ) 2 EDyes, so that H(X 0) > H(Y 0) + 4. Let k = bH(X 0)c � 2. ThenH(X 0) > k + 1. On the other hand, k + 3 > H(X 0) > H(Y 0) + 4, and hence H(Y 0) < k � 1.Suppose instead (X;Y ) 2 EDno, so that H(Y 0) > H(X 0) + 4. Then for all k > dH(X 0)e + 1, wehave H(X 0) < k � 1. So, for all k � dH(X 0)e+ 1, we have k + 1 < H(X 0) + 3 < H(Y 0).From this reduction, we conclude that SZK 6= BPP () NISZK 6= BPP , which is Theo-rem 1.5. Again, by BPP we mean the class of promise problems solvable in probabilistic polynomialtime. 13



Proof of Theorem 1.5. By de�nition, NISZK � SZK (recall that SZK equals honest-veri�erSZK [GSV98]). Hence if SZK = BPP , then NISZK = BPP .Now supposeNISZK = BPP , so in particular there is a probabilistic polynomial-time machineM which decides EA (with exponentially small error probability). To show SZK = BPP , it su�cesto show that ED 2 BPP since ED is SZK-complete. We now describe how to decide instances of ED:Let (X;Y ) be an instance of ED. Letting X 0 and Y 0 be as stated in Lemma 5.1, we run M(X 0; k)and M(Y 0; k) for all k 2 [1; n]. If for some k, we see that M(X 0; k) = 1 and M(Y 0; k) = 0, weoutput 1. Otherwise, we output 0. By Lemma 5.1, this is a correct BPP algorithm for decidingED. .5.2 Conditions under which NISZK = SZKThe reduction given by Lemma 5.1 is a very special type of Cook reduction, which we call an AC0truth-table reduction. In this section, we use the special properties of this reduction to show thatif NISZK is closed under complement, then in fact NISZK = SZK. We now precisely de�nethe types of reductions we are using, taking care how they are de�ned for promise problems.De�nition 5.2 (truth-table reduction [LLS75]): We say a promise problem � truth-table reducesto a promise problem �, written ��tt�, if there exists a (deterministic) polynomial-time computablefunction f , which on input x produces a tuple (x1; x2; : : : ; xk) and a circuit C, such that1. If x 2 �yes then for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 1, and2. If x 2 �no then for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 0.where a setting for bi is considered valid when bi = 1 if xi 2 �yes and bi = 0 if xi 2 �no (and biis unrestricted when xi violates the promise).In other words, a truth-table reduction for promise problems is a non-adaptive Cook reductionwhich is allowed to make queries which violate the promise, but must be able to tolerate both yesand no answers in response to queries that violate the promise. We further consider the case wherewe restrict the complexity of computing the output of the reduction from the queries:De�nition 5.3 (AC0 and NC1 truth-table reductions): A truth-table reduction f between promiseproblems is an AC0 (resp., NC1) truth-table reduction if the circuit C produced by the reductionon input x has depth bounded by a constant cf independent of x (resp., has depth bounded bycf log jxj). If there is an AC0 (resp., NC1) truth-table reduction from � to �, we write ��AC0�tt�(resp., ��NC1�tt�).With this de�nition, we observe that Lemma 5.1 in fact gives an AC0 truth-table reduction,since the formula given in the lemma can be expressed as an AC0 circuit, and the statement of thelemma shows that the reduction has the robustness properties against promise violations that arerequired in De�nition 5.3. Thus, we have:Proposition 5.4 ED�AC0�ttEA.We say that a class C of promise problems is closed under a class of reductions �� if ���� and� 2 C implies that � 2 C. By the above, if NISZK is closed under AC0 truth-table reductions,then ED 2 NISZK and hence NISZK = SZK. Thus, we would like to capture the minimalconditions necessary for a promise class to be closed under AC0 truth-table reductions. Here, care14



must be taken to because of the possibility of promise violations. Keeping this in mind, we de�nethe following operator on promise problems to capture the notion of an unbounded fan-in ANDgate for promise problems:De�nition 5.5 (unbounded AND): For any promise problem �, we de�ne AND(�) to be the promiseproblem: ANDyes(�) def= f(x1; x2; : : : ; xk) : k � 0;8i 2 [1; k]xi 2 �yesgANDno(�) def= f(x1; x2; : : : ; xk) : k � 0;9i 2 [1; k]xi 2 �nogWe say a class of promise problems C is closed under unbounded AND if � 2 C implies thatAND(�) 2 C.We have de�ned AND so that it has the weakest promise condition possible to remain well-de�ned. In particular, we see that ANDno(�) is de�ned to include xi's that violate �'s promise, aslong as just one of them is in �no. � 2 C, AND(�) 2 C. We also need a way of combining twopromise problems:De�nition 5.6 (disjoint union): For any pair of promise problems � and �, we de�ne the disjointunion of � and � to be the promise problem DisjUn(�;�) de�ned as follows:DisjUnyes(�;�) def= f0g ��yes [ f1g � �yesDisjUnno(�;�) def= f0g ��no [ f1g � �noWe say a class of promise problems C is closed under disjoint union if �;� 2 C implies thatDisjUn(�;�) 2 C.With these de�nitions, we can give the following lemma which gives some conditions su�cientto give closure under AC0 truth-table reductions.Lemma 5.7 A promise class C is closed under AC0 truth-table reductions if the following conditionshold:1. C is closed under Karp (i.e., many-one) reductions.2. C is closed under unbounded AND.3. C is closed under disjoint union.4. C is closed under complementation.Proof: First note that any unbounded fan-in circuit can be e�ciently converted into a circuitwith only unbounded fan-in NAND gates (allowing also unary NAND gates), with only a constantfactor blowup in depth. So, as a �rst step, we observe that C is closed under unbounded NAND:for any promise problem �, NAND(�) def= AND(�) 2 C, by closure under unbounded AND andcomplementation. To generalize this to constant depth circuits with unbounded fan-in NANDgates, we �rst need a de�nition. 15



De�nition 5.8 For any promise problem �, and for all natural numbers d � 0 we de�ne Depthd(�)to be the promise problem whose instances are tuples (C; (x1; x2; : : : ; xk)), where C is a circuit ofdepth at most d (using unbounded fan-in NAND gates only). The yes instances are those suchthat for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bm) = 1; whereas the no instances are thosetuples such that for all valid settings of b1; b2; : : : ; bk, C(b1; b2; : : : ; bk) = 0. Here, a setting for bi isconsidered valid when bi = 1 if xi 2 �yes and bi = 0 if xi 2 �no (and bi is unrestricted when xiviolates the promise).Using the fact that every AC0 circuit can be e�ciently transformed into one with only NANDgates, we see that ��AC0�tt� means that there exists some d such that ��KarpDepthd(�) under aKarp reduction. Hence if we can show that for all d � 0 and promise problems �, Depthd(�) 2 C,the lemma will be established. We will prove this by induction on d.First, observe that a depth 0 circuit is simply a variable (negations of variables are achievedwith one unary NAND gate, so count as depth 1). Hence, Depth0(�)�Karp� 2 C. Now assume thatDepthd(�) 2 C. Observe that a depth d+ 1 circuit is simply a NAND of some number of depth dcircuits. Using this observation, we will argue that thatDepthd+1(�)�KarpDisjUn(Depthd(�); NAND(Depthd(�))):By the hypothesized closure properties of C, this implies that Depthd+1(�) 2 C. The reductionworks as follows. The input to the reduction is a tuple (C; �x) where �x = (x1; x2; : : : xk). If C isactually a depth d circuit, then it simply outputs (0; (C; �x)). If not, then it extracts from C thecircuits C1; C2; : : : ; Cs that provide input to the topmost NAND gate. Then the reduction outputs(1; ((C1; �x); (C2; �x); : : : ; (Cs; �x))). It is clear that map gives a Karp reduction from Depthd+1(�) toDisjUn(Depthd(�); NAND(Depthd(�))), completing the induction step and the proof.Which of the conditions of Lemma 5.7 does NISZK satisfy? We argue that Conditions 1, 2,and 3 are satis�ed by NISZK:Lemma 5.9 NISZK is closed under Karp reductions.Proof: Suppose � 2 NISZK, and ��Karp�. Since EA is complete for NISZK, we have ��KarpEA.By composing reductions, we see that ��KarpEA. By Proposition 3.3, � 2 NISZK.Lemma 5.10 NISZK is closed under unbounded AND.Proof: First, we argue that AND(EA) 2 NISZK by describing a NISZK proof system for AND(EA):Let ((X1; k1); : : : ; (Xm; km)) be an instance of AND(EA), and say ` is the total length of the instance.Arti�cially pad each circuit Xi to be of description size ` (by adding unused gates) and let Yi bethe resulting circuit. Now execute the NISZK proof system for EA given by Lemma 3.1 on eachpair (Yi; ki) in parallel, and have the AND(EA)-veri�er accept if the EA-veri�er would have acceptedon each pair.If every pair (Xi; ki) is a yes instance of EA, the AND(EA) veri�er will accept with probabilityat least 1 � m � 2�` = 1 � 2�
(`), as the completeness error of the EA proof system is at most2�`. Similarly, running the simulator for the EA proof system m times independently will give asimulation for the AND(EA) proof system with simulator deviation at most m �2�` = 2�
(`). Finally,if just one pair (Xi; ki) is a no instance of EA (even if the others violate the promise), the veri�erwill accept with probability at most 2�` in the i'th execution of the EA protocol, and so the AND(EA)veri�er will accept with probability at most 2�`.16



This shows that AND(EA) 2 NISZK. Now let � be any promise problem in NISZK. Since EAis complete for NISZK, there is a Karp reduction f from � to EA. This induces a Karp reductionfrom AND(�) to AND(EA) in the obvious way (i.e. (x1; : : : ; xk) 7! (f(x1); : : : ; f(xk))). As AND(EA) isin NISZK and NISZK is closed under Karp reductions, AND(�) 2 NISZK.Lemma 5.11 NISZK is closed under disjoint union.Proof: For any two promise problem � and � in NISZK, the Karp reductions f0 from � to EAand f1 from � to EA induce a Karp reduction from DisjUn(�;�) to EA given by (�; x) 7! f�(x). ByProposition 3.3, DisjUn(�;�) 2 NISZK.Combining everything, we can give a condition under which SZK = NISZK.Proposition 5.12 If NISZK is closed under complementation, then SZK = NISZK.Proof: Suppose NISZK is closed under complementation. Combining this with Lemmas 5.7,5.9, 5.10, and 5.11, it follows that NISZK is closed under AC0 truth-table reductions. ApplyingProposition 5.4 (ED�AC0�ttEA) and Lemma 3.1 (EA 2 NISZK), we conclude that ED 2 NISZK.Since ED is complete for SZK [GV99] and NISZK is closed under Karp reductions (Lemma 5.9),we have SZK � NISZK. As NISZK � SZK is true from the de�nition of NISZK, we concludethat NISZK = SZK.Finally, we deduce Theorem 1.6, which gives a number of conditions equivalent to NISZK =SZK.Proof of Theorem 1.6:1) 3. This follows from the result of [SV99] that SZK is closed under NC1 truth-table reductions.3 ) 2 ) 1. The �rst is trivial and the second is Proposition 5.12.1 , 4. This follows from Theorem 1.3 (which asserts that that EA and SDU are complete forNISZK), the fact that ED and SD are complete for SZK [SV97, GV99], and Lemma 5.9 (thatNISZK is closed under Karp reductions).2, 5. This follows from Theorem 1.3 (that EA and SDU are complete for NISZK) and Lemma 5.9(that NISZK is closed under Karp reductions).AcknowledgmentsWe thank the CRYPTO `99 program committee and reviewers for helpful comments on the pre-sentation.References[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.Proof veri�cation and hardness of approximation problems. In Proceedings of the ThirtyThird Annual Symposium on Foundations of Computer Science, pages 14{23, 1992.17
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