DEFINITIONS AND PROPERTIES OF
ZERO-KNOWLEDGE PROOF SYSTEMS

Oded Goldreich
Yair Oren

Department Of Computer Science
Technion, Haifa, Israel

Abstract

In this paper we investigate some properties of zero-knowledge proofs, a notion
introduced by Goldwasser, Micali and Rackoff. We introduce and classify two defini-
tions of zero-knowledge: auziliary — input zero-knowledge and blackbox — simulation
zero-knowledge. We explain why auxiliary-input zero-knowledge is a definition more
suitable for cryptographic applications than the original [GMR1] definition. In partic-
ular, we show that any protocol solely composed of subprotocols which are auxiliary-
input zero-knowledge is itself auxiliary-input zero-knowledge. We show that blackbox-
simulation zero-knowledge implies auxiliary-input zero-knowledge (which in turn implies
the [GMRI] definition). We argue that all known zero-knowledge proofs are in fact
blackbox-simulation zero-knowledge (i.e., were proved zero-knowledge using blackbox-
simulation of the verifier). As a result, all known zero-knowledge proof systems are
shown to be auxiliary-input zero-knowledge and can be used for cryptographic appli-
cations such as those in [GMW2]. We demonstrate the triviality of certain classes of
zero-knowledge proof systems, in the sense that only languages in BPP have zero-
knowledge proofs of these classes. In particular, we show that any language having
a Las Vegas zero-knowledge proof system necessarily belongs to RP. We show that
randomness of both the verifier and the prover, and non-triviality of the interaction are
essential properties of (non-trivial) auxiliary-input zero-knowledge proofs.

Preliminary versions of this work have appeared in [O1, O2].

WARNING: The current text was automatiocally translated from old troff files. Such
translations may introduce errors. Furthermore, I'm not sure whether the source troff files
I’ve found are actually the onesw corresponding to the final version. Errors may be due to
this fact too. The final version has appeared in Journal of Cryptology, Vol. 7, No. 1 (1994),
pp. 1-32.

1. INTRODUCTION The fundamental notion of zero-knowledge was introduced by
Goldwasser, Micali and Rackoff in [GMR1]. They considered a setting where a powerful
prover is proving a theorem to a probabilistic polynomial time ver: fier. Intuitively, a proof
system is considered zero-knowledge if whatever the verifier can compute while interacting
with the prover it can compute by itself without going through the protocol. The intriguing
nature of this notion has raised considerable interest and many questions to be answered.
Zero-knowledge proofs are of wide applicability in the field of cryptographic protocols, as
demonstrated by Goldreich, Micali and Wigderson in [GMW1, GMW2|. In this paper
we investigate some aspects of these proof systems. We present new definitions of zero
knowledge, discuss their importance, and investigate their relative power. In the second
part of the paper we demonstrate that certain properties are essential to zero knowledge
interactive proofs.

1.1 Definitional issues: The original definition of zero-knowledge was presented in
[GMR1]. This definition does not seem to fully capture the intuitive meaning of the concept
of zero-knowledge. For one thing, one would expect that the sequential application (”com-
position”) of protocols each of which is zero-knowledge would yield a protocol which is itself
zero-knowledge (in the same manner that summing any finite number of zeros would leave
the total at zero). However, as claimed by [F'S] and recently shown in [GK], such a ”com-
position theorem” cannot be proved for the [GMRI1] definition. Another problem with this
definition concerns its applicability to cryptographic protocols. Typically, zero-knowledge
proof systems will be used as subprotocols within larger cryptographic protocols. In such
a scenario it is natural that a dishonest party (a ”cheating” verifier in the zero-knowledge
terminology) will compute its messages based on information acquired before the proof pro-
tocol began, possibly from earlier stages of the protocol in which the zero-knowledge proof
is a subprotocol. We would like to require that even this additional information will not
enable the verifier to obtain any knowledge from its interaction with the prover. (This is
not guaranteed by the original definition). In an effort to overcome these problems, we
formulate the definition referred to as auxiliary — input zero-knowledge. Intuitively, the
definition requires that whatever a verifier that has access to any information can compute
when interacting with the prover, it can also compute by itself when having access to the
same information. Apart from dealing with verifiers that ”cheat” by means of using outside
information, the proposed definition also enables us to prove a composition theorem. The
fact that auxiliary-input zero-knowledge is closed under composition is crucial for the use of
zero-knowledge proofs in modular design of cryptographic protocols. In [GMW2] a compiler
is presented that transforms any protocol correct in a weak adversarial model to a protocol
correct in the strongest adversarial model. The existence of such a compiler relies heavily
on the existence of auziliary-input zero-knowledge proofs for every language in NP. On
the other hand, the ability to derive such a strong result indicates that the auxiliary-input
zero-knowledge definition is suitable for cryptographic purposes. The requirements of the
auxiliary-input definition may seem very restrictive. However, all known zero-knowledge
proof systems (e.g. [GMR1, GMW1]) satisfy even a seemingly much stricter definition.

All these protocols were proved zero-knowledge by presenting one algorithm that uses any
verifier as a black-box to simulate the interaction of that verifier with the prover. In fact
it is hard to conceive an alternative way to prove a protocol zero-knowledge. We therefore
present the definition of blackbox — simulation zero-knowledge, which formalizes this re-
quirement. We show that blackbox-simulation zero-knowledge implies auxiliary-input zero-
knowledge. As a result, all known zero-knowledge proofs are auxiliary-input zero-knowledge
and can be used for cryptographic purposes such as those in [GMW2].

Remark 1.1: The fact that the [GMR1] definition is not closed under composition, and that
”non-uniform” verifiers could be used to overcome this problem, was observed independently
by Goldwasser, Micali and Rackoff [GMR2], Tompa and Woll [TW] and Feige and Shamir
[FS].

1.2 Essential Properties of Zero-Knowledge: Other results in this paper concern the
triviality of certain classes of zero-knowledge proof systems. We will consider a class of
proof systems trivial in this context if only languages in BPP can have zero knowledge
proof systems of this type. The reason being that any BPP language has a trivial zero-
knowledge proof: one in which the verifier checks by himself whether = € L or not. Proving
the triviality of some class of proof systems can be thought of as demonstrating that some
property (which this class lacks) is essential to zero-knowledge. In particular, we show that
any language L possessing a Las Vegas zero-knowledge proof system (i.e. a proof system
that never causes the verifier to accept on z ¢ L) is in Random Polynomial Time. It follows
that the error probability on "no” instances, existing in all known zero-knowledge proofs, is
inevitable and essential to the non-triviality of these proof systems. It is interesting to note
that Las Vegas interactive proofs can exist only for languages in NP (see [GMS]). It is easy to
see that the class of languages for which membership can be proved by a deterministic prover
equals that for which membership can be proved by a probabilistic prover. (We can consider
an optimal prover, i.e. one which always maximizes the acceptance probability. This prover
computes in each case the ”best possible” messages and can clearly be deterministic). Thus,
randomness of the prover is not essential to the power of interactive proof systems as far
as language recognition is concerned. On the other hand, in all proof systems shown to
be zero-knowledge the prover is probabilistic, and this property seems essential to the
"zero-knowledge-ness” of these proof systems. We show that this is no coincidence: only
languages in BPP can have auxiliary-input zero-knowledge interactive proofs in which
the prover is deterministic, and therefore randomness of the prover is essential to the non-
triviality of the proof system. We thus demonstrate a meaningful difference between general
interactive proofs and zero-knowledge interactive proofs. Just as an error probability on
”no” instances and randomness both of the prover and the verifier are essential to zero-
knowledge proof systems, so is the non-triviality of the interaction. It can be easily shown
that only languages in BPP can have 1-step interactive proofs which are zero-knowledge.
We show that the same holds for 2-step zero-knowledge proof systems under the auxiliary-
input definition. Aiello and Hastad [AH2| proved that, relative to some oracle A, 2 —

StepZero — Knowledge® ¢ BPP#. Their proof hold for the original [GMR1] definition
(actually for a stronger definition, see [AH2]). The proof presents a 2-step protocol which is a
zero-knowledge interactive proof system for some language L 4, but such that L4 ¢ BPPA.
Since the prover in the protocol is deterministic, the result can also be interpreted as
Deterministic — Prover Zero — Knowledge® ¢ BPP4. Our proofs for the 2-step and
deterministic prover cases, both holding for auxiliary-input zero-knowledge, relativize, and
we can therefore conclude that neither will extend to the [GMRI1] definition. Note that
2-step protocols and deterministic-prover protocols can be zero-knowledge with respect
to the prespecified verifier V' (e.g. the 2-step protocols for Quadratic Non-Residuosity
[GMR1] and Graph Non-Isomorphism [GMW1]). Therefore, unlike Fortnow [F] and Aiello
and Hastad [AH1], who actually rely only on the fact that the prespecified verifier V' has
a simulator, we must in this case make use of the full power of the definition of zero-
knowledge: specifically, the requirement that there exist simulators for all verifiers, including
the ”cheaters”. Our results extend to zero-knowledge arguments, introduced in [BCC]. Zero-
knowledge arguments differ from zero-knowledge interactive proofs, which are the main topic
of our investigations, in that the former have a relaxed soundness condition (rather than
requiring that it is smpossible to fool the verifier into believing false statements it is only
required that cheating the verifier is computationally infeasible).

Remark 1.2: We stress that if one-way functions exist, then every language in [P =
PSPACE has a zero-knwoledge proof system [GMW1,IY,S|. These proof systems have all
the essential properties discussed above. Hence there seems to be a big differnce between
proof systems possesing these properties and those lacking them.

Organization of the Paper Section 2 contains some basic definitions and also an ex-
tension of the notion of polynomial indistinguishability which is required for the definitions
presented in section 3. In section 3 we present our new definitions of zero-knowledge and
investigate their relative power. We also prove the composition property of auxiliary-input
zero-knowledge in that section. Section 4 contains our triviality results.

2. NOTATION AND BASIC DEFINITIONS Let S be a set. By e €z S we mean
that an element e is chosen at random from the set S with uniform probability distribution.
When describing a protocol between two parties, A and B, we will write

action

to mean party A performs some internal action (computation), and
A—B:m

to mean that A sends message m to B. We recall the definition of interactive proof systems
[GMRI1 ; An alternative definition due to Babai [B] was shown equivalent by Goldwasser
and Sipser [GS] |: An interactive proof system for a language L is a protocol (i.e. a pair

of local programs) for two probabilistic interactive machines called the prover and the
verifier. Initially both machines have access to a common input tape. The two machines
send messages to one another through two communication tapes. Each machine only sees its
own tapes, the common input tape and the communication tapes. The verifier is bounded
to a number of steps which is polynomial in the length of the common input, after which
it stops in an accept state or in a reject state. We impose no restrictions on the local
computation conducted by the prover. We require that, whenever the verifier is following
its predetermined program, V, the following two conditions hold:

1) Completeness of the interactive proof system: If the prover runs its predetermined
program, P, then, for every constant c0 and large enough = € L, the verifier accepts
the common input x with probability at least 1 — |z| €. In other words, the prover
can convince the verifier of x € L.

2) Soundness of the interactive proof system: For every program P*, run by the prover,
for every constant ¢0 and large enough = ¢ L, the verifier rejects x with probability
at least 1 — |z| €. In other words, the prover cannot fool the verifier.

An interactive proof system having P,V as programs will be denoted P, V.

Definition: A t— step interactive proof system is one in which a total of ¢ messages is sent
by the two parties. Without loss of generality, we assume that the last message sent during
an interactive proof is sent by the prover. (A last message sent by the verifier can have no
role in convincing the verifier and therefore has absolutely no effect.) Thus, the prover sends
the last (and only) message in a 1-step interactive proof while in a 2-step protocol the verifier
sends a message first, followed by a response from the prover. The notion of polynomial
indistinguishability of probability distributions is used in the definitions of zero-knowledge
discussed in the next section. We extend the original [GM, Y] definition for the case of
probability distributions indexed by two parameters, which are treated differently. This
extension is required for the formal definition of auziliary-input zero-knowledge, presented
in a later section. In that case, x will be the common input to the protocol while y will be
the auxiliary input to the verifier.

Definition (polynomial indistinguishability): For every algorithm A, let pg(x’y) denote the
probability that A outputs 1 on input (z,y), an element chosen according to the probability
distribution D(x,y). Denote by Dom the domain from which the pairs z,y are chosen. The
distribution ensembles {D(z,y)}s.yeDom and {D/(z,y)}z.yeDom are polynomially indistin-
guishable if for every probabilistic algorithm A which runs time polynomial in the length
of its input, for every constant c0 there exists Ny such that for every z, |x| > Ny, and for
every y such that (z,y) € Dom,
|p§(w,y) _pg'(w,y)| < ||

Note that we do not put any restrictions on the length of ¢, and in particular we don’t require
|y|No. The original definition is obtained from the above definition by omitting all mention

of y. We will occasionally avoid specifying the domain, and write {D(z,y)},., instead of
{D(x,vy)}s;ye Dom- Two distribution ensembles {D(z, y) }o;ye Dom and {DI(z,y) }aye Dom are
NOT polynomially indistinguishable if there exist a probabilistic polynomial time algorithm
A, a constant 0, and an infinite sequence Seq of x’s such that for every x € Seq there
exist some y such that (x,y) € Dom and

D(z, Di(z, _
pA(w Y) _pA'(w y) > ||

Definition: Let c0 be a constant and let D(x,y) and D/(x,y) be probability distributions
over strings of length nl. We say that an algorithm A c-distinguishes between D(z,y) and
Dr(z,y) if

D(xy) _, Di(zy) L
Y —Pa ;

7

Remark 2.1: Throughout this paper we use the phrases ”with very high probability”,
"with (non-) negligible probability”, and so on, to describe the behavior of algorithms. The
formal interpretation of the statement ”the algorithm behaves this way with very high prob-
ability” should be taken to be ”the probability that the algorithm behaves this way on input

of length n is greater than 1 — %(n) for any (positive) polynomial @ and sufficiently large

n”. Accordingly ”"negligible probability” is ”less than %(n) for any (positive) polynomial

Q@ and sufficiently large n” and ”non-negligible probability” means ”greater than %(n) for
some polynomial () and sufficiently large n”. For convenience, we will say that a function
p(n) is c-non-negligible, where c0, if p(n)-L for infinitely many n’s.

3. A TAXONOMY OF ZERO-KNOWLEDGE DEFINITIONS In this section
we present two alternative definitions of the notion of zero-knowledge, and investigate the
relationship between them. We start by defining history descriptions and recalling the
original zero-knowledge definition of [GMR1].

Definition: A history description of a conversation between a machine V* and the prover
P consists of the contents of all of V*’s read-only tapes (common input, random input, and
in the case of auxiliary-input zero-knowledge, also the auxiliary input) and of the sequence
of messages sent by the prover during the interaction. We use [z, r, m] ([x,y,r, m]) to denote
history descriptions, where x is the common input, (y the auxiliary input), r the random
input to the verifier and m the sequence of messages sent by the prover. We denote by
P(x),V*(x) (P(x),V*(x,y)) the probability distribution of history descriptions generated
by the interaction of V* with P on z € L.

Definition: [GMR1]: An interactive proof system for a language L is zero-knowledge if
for all probabilistic polynomial-time machines V*, there exists a probabilistic polynomial-

time algorithm My« that on input x produces a probability distribution My «(x) such that
My« (x),¢, and P(x), V*(x),c;, are polynomially indistinguishable.

Remark 3.1: If we require that the above two probability distributions be equal, we obtain
the definition referred to as perfect zero-knowledge. If we require them to be statisticly close,
we obtain almost-perfect zero-knowledge. (The definitions originate from [GMR1], and were
named as above in [F].)

Remark 3.2: In the definition above we required My~ to simulate the history of V*’s
interaction with P. An alternative definition is to require My~ to generate the output of
V* when interacting with P. Clearly, the output of V* is determined given the history,
and therefore simulating the history is at least as hard as simulating the output. The
converse may not be true for a specific verifier (in particular for V', the "honest” verifier).
However, since for every verifier V* there exists a verifier V7 whose output is the history
of the interaction of V* with P, it follows that, when quantifying over all verifiers, the two
formalizations are equivalent. We will be using the history-based notion of zero-knowledge
throughout this paper.

3.1 New Definitions The first definition to be considered is motivated by cryptographic
applications and will be referred to as the Auxziliary Input Zero-Knowledge definition. Let
us elaborate on this motivation: Zero-knowledge interactive proofs are a powerful tool in
the design of cryptographic protocols. Typically, they will be used by a party to prove
that it is computing its messages according to the protocol. It is crucial that these proofs
are carried out without yielding the prover’s secrets. In such a scenario it seems natural to
assume that an adversarial party playing the role of the ”verifier” will try to gain knowledge
of interest to it. In order to do so the adversary may deviate from the specified program and
compute its messages in a manner suited to its goals. Most probably it will want to base
the computation of its messages on previously acquired information, possibly from earlier
stages of the protocol in which the zero-knowledge proof is a subprotocol. Intuitively, we
will require that the proof system be such that even having this additional information
cannot enable any V* to extract from its conversations with P anything that it could not
compute by itself having that same information. To allow this possibility the interactive
proof and zero-knowledge definitions introduced in [GMR1] should be modified so that the
verifier can have an auxiliary input tape, through which the information that enables the
"verifier” to compute the desired messages will be entered.

Definition (Auxiliary-input Zero-Knowledge): An interactive proof system for a language
L is auziliary-input zero-knowledge if for every probabilistic polynomial time machine V*
there exists a probabilistic polynomial time machine My~ such that the distribution en-
sembles {P(x), V*(z,y)}ayep, and {My«(,y)}eyep, are polynomially indistinguishable,
where D) = {(z,y)|r € L,y € {0,1}*}. Note that by saying that V* is polynomial-time
we mean that its running time is bounded by a polynomial in the length of the common
input. Machine V* has an additional input tape containing the auxiliary input y. During

an interaction of V* on common input x, machine V* reads at most a poly(x)-long prefix
of its auxiliary input. A similar convention holds for the simulator My« (i.e. its running
time is polynomial in the length of its first input, and consequently it may only read a
prefix of the second input. The second definition we consider will be referred to as Blackboz
Simulation Zero-Knowledge. This definition requires the existence of a single polynomial
time machine M, which simulates the interaction of any polynomial time machine V* with
the prover P on any x € L, using V* as a blackbox. What do we mean by "use V* as a
blackbox”? A probabilistic algorithm in general can be viewed either as an algorithm which
internally tosses coins or as a deterministic algorithm that has two inputs: a regular input
and a random input. Two corresponding interpretations of ”using a probabilistic algorithm
as a blackbox” follow. In the first case, it means choosing an input and running the algo-
rithm, while the algorithm internally flips its coins. In the second case, it means choosing
both inputs, and running the algorithm (the second input serves as the outcome of random
coin tosses). Both these approaches extend naturally to probabilistic algorithms which also
interact with other machines, as in our case. We choose to adopt the second approach,
that is, when using V* as a blackbox, the simulator M, will choose both inputs to V*. All
known zero-knowledge protocols were proved zero-knowledge using this approach. It is not
clear if they could also be proved zero-knowledge when adopting the first approach.

Definition (Black-box Simulation Zero-Knowledge): Denote by Time}, (z) the running

time of machine V* when interacting with P on input . An interactive proof system for a
language L is black-box simulation zero-knowledge if there exists a probabilistic polynomial-

time machine M, such that for every polynomial) the distribution ensembles { P(z), V*(2)}¢.v+eD,
and {M," (2)}s:v+ep, are polynomially indistinguishable even when the distinguishers are
allowed blackbox access to V*, where Dy = {(z,V*)|z € L and Time} (z) < Q(z)}.

All known zero-knowledge protocols are in fact blackbox-simulation zero-knowledge. It
seemns likely that in order to prove an interactive proof system zero-knowledge with respect
to any ”verifier” V*, one would have to present such a universal simulator. Thus this
definition is reasonable and not too restrictive.

Remark 3.3: In remark 3.2 of this section we claimed that the ”history-based” and the
"output-based” versions of the [GMR1] zero-knowledge definitions are equivalent. This
claim was established by pointing out that the distinguisher, given a history description,
can generate V*’s output by using a built-in version of V*. The same reasoning holds for
the auxiliary-input definition. However the distinguishers in the case of blackbox-simulation
cannot have a built-in version of what may be an infinite number of V*’s. Therefore one
must allow the distinguishers running on a history description of an interaction by some
machine V* blackbox access to V*. This will clearly allow the distinguisher to reconstruct
V*’s output given the history of the interaction.

Remark 3.4: We stress that saying that (P, V') is an auxiliary input zero-knowledge proof

system does not mean that the honest verifier V may use auxiliary input as a legitimate
stage in its operation (it may not). Rather, we mean that the prover does not reveal
knowledge even to cheating verifiers which do use an auxiliary input.

3.2 Relationship Between the Definitions Let Cl(def) denote the class of all interactive
proof systems satisfying the requirements of definition def. The following relationships seem
rather obvious:

Theorem 3.1:
(1) Cl(auziliary — input) C CI([GMRI1])
(2) Cl(blackbox — simulation) C CI([GMR1])

Proof: In both case (1) and case (2) the [GMR1] definition is less restrictive than the other
definitions in terms of its requirements from the simulation. In case (1) the simulation is
required by the [GMRI1] definition to be valid only when the auxiliary-input is empty. In
case (2) the blackbox definition requires that all verifiers be simulated by one machine M,
whereas the [GMR1] definition allows each such verifier to have its own, specially tailored
simulator. O

Next, we establish the relationship between the two new definitions:

Theorem 3.2: Cl(blackbox — simulation) C Cl(auxiliary — input).

Proof: Let P,V be an interactive proof system and assume P,V € Cl(blackbox—simulation).
That is, there exists a polynomial machine M, such that for every € L and V! machine M,
simulates the interaction of V7 with P on input . We show P,V € Cl(auxilary — input),
by demonstrating how to construct a simulator My~ for every probabilistic polynomial-
time V* having auxiliary input. For every V* we construct My~ as follows: Let) be a
polynomial such that VoTime}, (v) < Q(x). The simulator My- will be a multiple-tape
Turing machine. It will have the code of V* built-in. My~ will also have access to M., the
universal simulator guaranteed by the blackbox definition. Given x and auxiliary-input y,
machine My~ ”incorporates” a prefix of y of length < Q(z) into the code of V*, forming a
machine V7. On input z, machine V,/ behaves as follows: it copies y to its input tape and
runs V*(z,y). Also, upon receiving a message "SEND AUXILIARY INPUT”, V,f sends a
message containing y (this feature is not required by the simulation, but will later be used
by the distinguishers). Having constructed V,, machine My« now simulates the computa-
tion of M, while having the "blackbox” V,*. It then outputs the output of M,. Observe
that the output of M, will be of the form [z, r,m] while the output of My« must be of the
form [x,y,r,m]|. Therefore My~ adds y to the output of M,,.

Claim 3.2.1: My~(z,y) runs time polynomial in |z|, as required by the definition of
auxiliary-input zero-knowledge.

Proof: The time required to simulate one step of V,*(z,y) is O(|[V*| + [y|). The value of
|V*| is constant as far as My~ is concerned, and therefore one step requires O(|y|). Since y
was truncated to length Q(|z]), it follows that |y| € O(Q(|z])). We know that V,f(x), which
is essentially the same as V*(x,y), runs at most Q(|z|) steps. All in all, simulating the
computation of V;*(z) can be achieved in time bounded by some polynomial Qv (|z]). My~
simulates the computation of M, having a blackbox V. The number of steps required by
M, is guaranteed to be polynomial in |z|, when counting the activations of the blackbox Vf
at unit cost. Let Qas(]z|) be the running time of M,. The running time of My« is bounded
by Qu(|x|) - Qv (|x|) and is clearly polynomial in |z|. O

Claim 3.2.2: The distribution ensemble {P(z), V*(2,y)}syep, is polynomially indistin-
guishable from {My«(x,y)}z:yep,, where Dy = {(z,y)|z € L}.

Proof: Assume there exist a constant ¢, an algorithm A and an infinite sequence S of pairs
(z,y) € Dy such that

z),V*(x x (@ 1
V(l‘,y) c Spi()7V (7y) _p%V (7y)|x|c

We show that in such a case there exist a polynomial (), an algorithm A/ and an infinite
sequence S/ of pairs (z, V) such that

% . Vy % P(z),Vy (= Xy* z) 1
S1.C A Vi) | € L, Timeyd () < QUal)and¥ (,V7) € S, ™ = gl

contrary to the assumption that M, is a valid blackbox simulator. Let St = {(z, V)| (z,y) €
S}, where V" is as described above. Clearly

¥ (2, V") € STimey (x) = Q(|]),

We construct A/, the ?blackbox-simulation” distinguisher, as follows: On input [z, r,m] and
a blackbox V, (recall that blackbox distinguishers have blackbox access to the verifiers),
Ar first sends a message "SEND AUXILIARY INPUT” to V7, to obtain y. It then runs
A([x,y,r,m]) and outputs the outcome of this computation. It is easy to see that As will
distinguish for any pair (z, V) for which A distinguishes the corresponding pair (z,y). The
claim follows. O This completes the proof of Theorem 3.2. O

This is the most important result of this section, due to its effect: all known zero-
knowledge protocols, having been proved zero-knowledge under the blackbox simulation
definition, are shown to be auxiliary-input zero-knowledge, and as such can be used for all
cryptographic applications such as [GMW2].

Remark 3.5: The relationships derived in the above theorems hold also for perfect zero-
knowledge and almost-perfect zero-knowledge.

Remark 3.6: It follows from [GK, Thm. 4.1] that Cl(auxiliary — input) C CI([GMRI1]).
We don’t know whether Cl(auziliary — input) equals Cl(blackbox — simulation). The
following states clearly what is known:

Cl(blackboxr — simulation) C Cl(auzxiliary — input) C CI([GMR1]).

3.3 Proof of the Sequential Composition Theorem for Auxiliary-Input Zero-
Knowledge We first define the notion of a sequential composition of interactive proof
systems:

Definition: Let Py, Vi, ... , Pg, Vi be interactive proof systems for languages Li, Lo,
...,Lg, respectively. A sequential composition of the k protocols, denoted P,V is defined as
follows: The common input to P,V x, will be a string of the form z1%x2%... %%, where
"%’ is a delimiter. The execution of P,V consists, at stage i, of P and V activating P; and
Vi, respectively, as subroutines on z;. V accepts if all V;’s have accepted.

In a similar manner we can define concurrent compositions:

Definition: Let P, Vi, ... , P, Vi be interactive proof systems for languages Ly, Lo, ...,Ly,
respectively. Without loss of generality, assume that all protocols are m-step protocols. A
concurrent composition of the k protocols, P,V is defined as follows: P,V will also be an
m-step protocol. The common input to P, V', x, will be a string of the form 1 %x2%...%x1%,
where %’ is a delimiter. The 7’th message in P,V will consist of the i’th message of Py, V7,
wo , Py, Vi, V accepts if all V;’s have accepted.

Remark 3.7: Clearly, the case in which a single protocol P,V is iterated k times, possi-
bly on the same input Z, is merely a restricted version of the above definitions, in which
ViP5, Vi = 15, V and Viz; = 2. It is easy to see that both compositions (sequential and con-
current) constitute interactive proofs for L. We now prove that a sequential composition of
auxiliary-input zero-knowledge protocols yields a auxiliary-input zero-knowledge protocol.
Recently it was shown in [GK] that the same is not true for concurrent compositions.

Remark 3.8: In the following proofs k, the number of protocols, is assumed to be constant.
We will later demonstrate how a slightly altered version of the proof can be applied in the
meaningful cases for which k is not a constant.

ion Theorem): Let P,Vi, P, V,, ... Py, Vi be auxiliary-input zero-knowledge proof systems for

languages Lj, Lo, ... , Ly, respectively. Let L = {z1%x2%... %z %|Vi(z; € L;)}.
Define P,V to be the composition of P, Vi, Py, Vo, ... , Pi,Vi. Then P,V is an
auxiliary-input zero-knowledge proof system for L.

Proof: It is easy to see that P,V is an interactive proof system for L. We therefore
concentrate on showing that P,V is auxiliary-input zero-knowledge. Recall that we are
using the history-based notion of zero-knowledge. A history description in the case of
auxiliary-input is of the form [z, y,r,m], where y is the verifier’s auxiliary input, r is the
verifier’s random string and m is the sequence of prover messages.

The objective of the indented small-print paragraphs throughout the proof is to provide
insight and intuition to the otherwise rather formal proof.

In order to prove that P,V is auxiliary-input zero-knowledge we must show how to construct
a simulator My~ for each polynomial-time probabilistic V*. We will assume without loss of
generality that V* initially copies the contents of all its input tapes (common input, random
input, auxiliary input) to its work tape and never attempts to access these tapes again.

V*’s interaction with P can be conceptually divided into V*’s interaction with P, V*’s
interaction with P, and so on. Since the k individual protocols are auxiliary-input zero-
knowledge, there must exist machines M‘l/*, M‘%*, ...,M"}*, which simulate the interaction
of V* with Py, Py, ..., P, respectively. Basicly, My« will activate these simulators in
sequence. However, in order for the overall simulation to be valid, the initial state of V'*
when being simulated by M‘i,tl should be its final state in the simulation by M¢.. This
can be achieved by giving V* as its auxiliary input to the ¢ + 1-th stage information
which will enable it to reconstruct the final state of the i-th stage. Obviously, we cannot
guarantee that any V* will in fact behave as described above (i.e. reconstruct its state
when having past history as its auxiliary input). Therefore, and instead of making any
technical assumptions on V*, we consider for every V* a modified verifier V7 which will
exhibit the required behavior.

As a first step we will consider a verifier V7 that has a built-in version of V* and the following
additional property: On auxiliary input h, where h = [z, y,r,m] is a history description of
V*’s interaction with the prover, V/ brings its built-in version of V* to the configuration
(state, work-tape contents and head position) corresponding to this description, and pro-
ceeds from that point. In particular, if m = € (the empty string) and y is not itself a history
description then V7 only copies z, y, r to the work tape of its built-in version of V* and
then ”behaves” like V*. Machine V' actually always ignores its ”real” random string. In all
other senses V7 is exactly like V*. In particular, for every x, y, the probability distribution
of prover messages sequences generated by running P(z), V*(z,y) is exactly that generated
by randomly choosing a string r and running P(z), V/(z, [z,y, T, €]).

Construction of the simulator for V*: Since the individual protocols are assumed to be
auxiliary-input zero-knowledge, there exists machines M‘l/, , M‘Z,,7 v M"}, which simulate

the history of V/’s interaction with P, , P», ...,Px , respectively. The output produced by
M, on input pair (z, k) will be of the form [z, h, 7, m], where r is V/’s random string (which
is actually ignored) in this simulation and m is the sequence of messages sent ”on behalf” of
the prover. Let s159 denote the concatenation of strings s; and ss. We now describe My «.
On input = x1%x2% - - - ©1,% and y, machine My« runs

choose random string r
ho — [z,y,T, €]

hl — M‘l/,(l’l, h[])

h2 — M‘2/,($2, hl)

k
hy — My (g, hi 1)
m — mimsg...myg

OUTPUT([z,y,r,m]).
(The m;’s are obtained from the h;’s.) We will now show that My« is indeed a ”good” simulator
for P, V*.
Lemma 3.3.1: The distribution ensembles {My«(x,y)}sy, where My« is as described above,
and {P(z),V*(z,y)}sy are polynomially indistinguishable.

Proof: Suppose they are not. That is, there exists a constant c0 and a test A that for infinitely
many pairs (x,y) will e-distinguish between My «(z,y) and P(z), V*(x,y)

We will show that in such a case there exists another constant ¢/ and another test A® that
for some i and for infinitely many pairs (z;,y;) ¢/-distinguishes between M}, (z;,v;) and
P;(x;),VI(z;,vy;), contrary to the assumption that M‘i,, correctly simulates the history
of Vrs interaction with P;.

We consider the following hybrids of the probability distributions My« (z,y) and P(z), V*(z,y).
The i-th hybrid, denoted H;(x,y), is defined by the following process:

choose a random string r
ho — [z,y, T, €]

h1 — P1 (1‘1), V/(Q}l, ho)
hy — Pg(afz), V/(IQ, hl)

hi — Pi(z;), V(i hi—1)
hiyr — My (wig, hi)

hi, — M (g, hi—1),
m — mimsg...myg
OUTPUT([x,y,r,m]).

As before, each h; is of the form [z, h;_1,7;,m;]. The extreme hybrids , Hy and Hy, correspond

to My«(z,y) and P(x),V*(x,y), respectively. Clearly if we can c-distinguish between the
extreme hybrids, then there must exist a constant ¢/ and two adjacent hybrids which can
be c/-distinguished, say H;_1 and H;. It is not hard to see that for sufficiently large n, ¢/
is approximately equal to c¢. Let pref;(z,y) be the probability distribution defined by the
process

choose a random string r
ho — [z,y,T, €]

hi — P, (131), V/(Il, h[])
ho — Pg(l‘z), V/(Q}g, hl)

hi—1 — Piq1(xi—1), VI(zi—1, hi—2)
OUTPUT (hi).

Let h be a string which may occur with non-zero probability in either of the distributions
M‘i/,(a;i, hi—1), and P;(x;),VI(x;, hi—1), where h;_q is a string assigned non-zero probability
by prefi(x,y). Any such string h will contain my, mg, ..., m; and x, y and r. For strings h
of this type we define suf f;(h) to be the probability distribution generated by running

hit1 — M @iy, 1)

2
hive — My (g2, hit1)

k
hi — My, (xk, hi—1)
m — mimsg...myg

OUTPUT([z,y,r,m]).

The distribution pref;(x,y) is actually a distribution on all the possible auxiliary inputs
to the ¢-th stage, given that the initial input is # and the initial auxiliary input is the
string y. The distribution suf f; can be regarded as an operator which on input a stage
¢ history applies the remaining k¥ — ¢ simulation stages. If the input to suff; comes
from M‘i/,(a;i,hi_l) then the effect of suff; will correspond to a string coming from
H; y(z,y). If the input comes from P;(xz;),V/(z;, h;—1), then the effect of suff; will
correspond to a string coming from H;(x,y). Our aim is to show that if (x,y) are such
that A c-distinguishes between Hy(z,y) and Hy(x,y) then there exists some 7 and some
h* such that the A(®) we construct will c/-distinguish between between M, (z;, h*) and
Pi(z3), Vi(xi, h*). AW will actually activate the suf f; operator on its input text, h, to
obtain a text in a format suitable for A, and then ”let A do the distinguishing”.

We use the following notational shorthands:
PR;[h] = Prob{prefi(xz,y) = h}

suf fi(M[h]) = suf fi(M{,,(zs,h))
suf fi(P[h]) = suf fi(Pi(z;), VI(xi h))

Recall that p& denotes the probability that algorithm A outputs 1 on input of an element

chosen according to the probability distribution D. The following relationship holds:

Ion Hi—1(zy) _ ZPR h] psuff M{[h])

The probability pgi’l(w’y) is written above as a weighted average over all the possible h’s,
of the probability that A outputs 1 on input an element chosen according to suf f;(M[h]).
The weight is assigned by the probability of A to be an 7z — 1 stage history.

Similarly:

(zy) _ ZPR . suffi(P[hD

It was assumed that the values pgi_l(w’y) and pgi(w’y) differ ¢/-non-negligibly. Since both are
weighted averages over the same probability space, there must be some element h* for

suffi(MIB]) 4 suf Fi(PIR]).

which there will be a c/-non-negligible difference between p’, and p,

H;_(z, H;(z,
(y)_pA(xy

Since p, >/ < W there exists some A* for which

suff; * suff; * 1

P FraMp=]) _ P [P DW
We conclude that for every (z,y) for which Hy(z,y) and Hg(z,y) can be c-distinguished
there exists (7;,1;) such that P;(x;), V/(z;,y;) and MY, (zi,9;) can be cr-distinguished.
The auxiliary input y; will be the string A* corresponding to x and y. On input a text
T = [x4,yi, i, m;] chosen either according to P;(x;), V/(xi,y;) or to M, (xi,v;), the test A®
extracts my, ma, ...,m;—1, ¢ , y and r (which are contained in 7" since they were contains
in y; = h*) and m; from T'. It then runs

hiyy — MU (i1, T)
hiva — My (wiga, hit)

hie — MY (zk, hy—1)
m — mimsg...myg
OUTPUT([x,y,r,m])

to obtain a text 77 = [z,y,r,m]. The test A® then runs A on 77 and outputs the output of
A. By our construction it is clear that A®(z) will ¢/-distinguish between Pi(z;), V23, y;)
and M, (z;,v;). This contradicts the fact the M}, is a "good” simulator for P;, Vr. O We
conclude that { My« (z,y)}s.y is polynomially indistinguishable from {P(x), V*(z,y) }4,y and
the theorem follows. O

Remark 3.9: The assumption that k, the number of protocols, is constant was required in
order to argue that if Hy and Hj, can be distinguished for infinitely many pairs (x,y) then

there exists some 7 such that H; ; and H; can also be distinguished infinitely many times,
thus contradicting the assumption that M‘i,, is a good simulator. Observe, however, that in
the case where a single protocol P,V is iterated, it is no longer essential to assume that k
is a constant. Clearly we could no longer claim that for some ¢ the distributions H; ; and
H; can be distinguished infinitely many times. However, distinguishing any two adjacent
hybrids H; ; and H; means in every case distinguishing M,; from]3, V1, contrary to the
assumption that My, is a good simulator for P, Vi. Therefore the Sequential Composition
Theorem holds also in this case. More generally, the Sequential Composition Theorem holds
for non-constant k whenever in each of the k stages one of a finite set of protocol is run.

Remark 3.10: An analogous Sequential Composition Theorem can be proved for the blackbox-
simulation zero-knowledge definition.

4. ESSENTIAL PROPERTIES OF ZERO-KNOWLEDGE PROOFS In this section
we show that certain properties are essential to zero-knowledge proof systems. We do so
by demonstrating the triviality of zero-knowledge proof systems lacking these properties.
By a class of interactive proof systems we mean, for example, all proof systems in which
the verifier is deterministic, all proof systems in which only one message is sent, and so on.
Let us first discuss the meaning of triviality in this context. The complexity class BPP
encompasses our notion of efficient computation. Recall that a language L is in BPP if
there exists a probabilistic polynomial time machine M such that for every constant c0 and
large enough z,

if v € L Prob(M(z) =ACC) > 1 — |z|~¢ (Completeness condition)
ifx ¢ L Prob(M(x)=REJ)>1—|z| ¢ (Soundness condition)

Since V' can recognize by itself any language in BPP, it follows that any language in BPP
has a trivial zero-knowledge proof system: one in which the verifier checks by itself if x € L
or not. Accordingly, we consider any class of zero-knowledge interactive proofs trivial if
proof systems of this class can be zero-knowledge only for languages in BPP.

4.1 General Framework of Triviality Proofs Basicly, our proof method will be the fol-
lowing: to prove the triviality of some class C', we will assume that some language L has a
zero-knowledge proof system of class C. By the definition of zero-knowledge there exists a
simulator My which generates history descriptions of the interaction of V' with the prover P
(in some cases we will consider the simulator with respect to some cheating verifier V*, that
is My+). We will build a BPP machine for L, that uses My (My~). Let H = [z,r,m] be a
history description (H = [z,y,r, m] in the case of auxiliary-input), where z is the common

input, (y is the auxiliary input), r is the random input and m is the sequence of messages
sent in the protocol. The string m is of the form (v, 31, -, @) where the o’s are the prover
messages and the (3’s are the verifier messages (m will be of the form (51, aq,- - -,) if in
the protocol V' ”speaks” first). We will denote by V*(z,r, ag, - -,a;—1) the deterministic
polynomial-time computation that a verifier V* uses to determine f; (in the case of auxiliary
input 3; = V*(z,y,r, a9, -, ;—1)). Similarly, P(x, 1, - -, 3;) will denote the probabilistic
computation used by P to determine ;. The computation used by the honest verifier, V,
to determine whether to accept or to reject will be denoted p(x,r, oy, - -, ag).

Definition: A history description (or ”conversation”) H = [z,r,m] (H = [z,y,r,m] in the
case of auxiliary-input), is legal with respect to a verifier V* if the messages contained in m
satisfy the following requirement:

Vil <i<kB; =V*(z,ryaq, -+, ;1)

(In the case of auxiliary-input: 3; = V*(z,y,r, ag,- -, a;—1)). For convenience, we will simply
say 7 H is legal” when the identity of V* is clear from the context. H is accepting if it is
legal with respect to V' and if

plx,r ag,...,ap) = ACC

Accepting conversations are only defined with respect to V. Recall that the texts produced
by My on input € L must be polynomially indistinguishable from the texts of real
interaction between V and P. Therefore, and since a real conversation between P and V
on z € L will be with very high probability legal and accepting, it follows that My must
also produce legal and accepting conversations with very high probability for z € L, and do
so within polynomial time. Otherwise a distinguisher which simply outputs 1 if the given
conversation is accepting will clearly distinguish between real interactions and simulation
texts. The definition(s) of zero-knowledge require nothing of My in the case x ¢ L. The
result of running My on x ¢ L may be one of the following:

1) My may run for too long.
2) My may produce a non-accepting (though perhaps legal) conversation.

3) My may produce an accepting conversation.

The third case is indeed possible: in all protocols demonstrated to be zero-knowledge (e.g.
[GMR1, GMWT1]) the simulator presented in the proof generates accepting conversations
regardless of whether x is in the language or not. In fact, if this case were not possible, then
for any language which has a zero-knowledge proof system we could easily build a BPP ma-
chine: the machine would run My on x and accept if and only if My produces an accepting
conversation. We conclude that a B PP machine which runs My can "safely” reject if either

case 1 or case 2 occurs, because they are guaranteed to occur with negligible probability
for £ € L. The hard case to handle is the third case. In the proofs throughout this section
we will for each instance use the special structure of the specific class of interactive proofs
under consideration to handle this case. While using My (My+) in the proofs that follow
we will usually claim that some property, existing in the texts of real interaction on x € L,
must also exist with very high probability in the texts produced by the simulator on input
x € L (For example, a property such as ”the text constitutes an accepting conversation”).
If the protocol is perfect or almost-perfect zero-knowledge, this claim follows immediately.
However, if the two probability distributions are ”only” polynomially-indistinguishable (fol-
lowing [AH1|, we will refer to this case as computational zero-knowledge), the proof may
become more involved. In each case we will first present a proof for perfect zero-knowledge,
and then adapt it to computational zero-knowledge. Each formal proof will be preceded by
an intuitive discussion of the main ideas underlying it.

Remark 4.1: In the proofs that follow the BPP machines built are actually shown to
satisfy the requirements of BPP for all but perhaps a finite set of x’s. Clearly any such
machine can be transformed into a ”true” BPP machine.

4.2 Zero-Knowledge Proofs Which Never Err and Zero-Knowledge Proofs with
Deterministic Verifiers M. Blum proposed the concept of ”Las Vegas” interactive proofs.
Informally, these are interactive proof systems that never err, that is never cause V' to accept
when = ¢ L. In [GMS] these protocols are referred to as ”interactive proofs with perfect
soundness”. In this section we show that no protocol of this type can be zero-knowledge,
even with respect to the [GMR1] definition. A formal definition of ”Las-Vegas Interactive
Proofs” can be obtained from the definition of general interactive proofs simply by replacing
the soundness condition with: ”whenever z ¢ L, and for every program P* run by the
prover, either V' rejects or the protocol does not terminate”.

Theorem 4.1: Let L be a language for which there exists a zero-knowledge Las Vegas interactive
proof system. Then L € RP.

Proof: The idea is to show that in this case accepting conversations simply do not exist for
x ¢ L, while (as always) for € L the simulator My will produce accepting conversations
with very high probability. Let us first recall the definition of Random Polynomial Time: A
language L is in RP if there exists a probabilistic polynomial time algorithm M such that

on input € L machine M accepts with probability > 1/2 (completeness)
on input = ¢ L machine M always rejects (soundness)

Construction of the RP machine:

Since L has a Las Vegas zero-knowledge proof system, there exists a probabilistic polynomaial
time machine My that simulates the membership proofs of P and V. Let Q(|z|) denote an
upper bound for the running time of My on input x € L (where Q is some polynomial).
The Random Polynomial Time machine we build, M, will use My . On input x, machine
M runs My on x, maintaining a step count. If My runs more than Q(|x|) steps, or does
not produce an accepting conversation, M rejects. Otherwise (if the conversation produced
by My is accepting) M accepts.

Soundness of M:
Claim 4.1.1: On input « ¢ L, machine My cannot possibly generate an accepting conversation.

Proof: Assume it could, that is there exists a random string r and a set of prover messages
such that V running with random string r and receiving the appropriate messages accepts
on z. Then the conversation could occur in a real interaction with non-zero probability,
violating the conditions of Las Vegas protocols. O Note that this claim follows only from
the fact that accepting conversations cannot exist for ¢ L, and not from the fact that the
conversation was generated by My . Therefore it is valid regardless of the ”quality” of the
texts produced by My . It is clear that M will never accept on = ¢ L, and therefore the
soundness condition is established.

Completeness of M: The completeness property of interactive proofs requires that conver-
sations on € L be accepting with very high probability. The same is clearly true of the
conversations produced by My in the case of perfect zero-knowledge. Adapting the argu-
ment to computational zero-knowledge is simple in this case: note that p, the predicate
used by V to decide whether to accept or reject, must be computable in polynomial time.
Consequently, if My does not produce accepting conversations on x € L with very high
probability, then p will distinguish the texts of the simulator from those of real interaction.
O

We conclude that the error probability on = ¢ L instances, existing in all known zero-
knowledge proofs, is inevitable and essential to the non-triviality of these proof systems.
Another essential property of non-trivial zero-knowledge proofs is the randomness of the
verifier. We prove this by demonstrating that any language which has a zero-knowledge
interactive proof in which the verifier is deterministic, has a zero-knowledge Las Vegas
interactive proof.

Lemma 4.1.1: Let P,V be a (zero-knowledge) interactive proof system for a language L, in
which the verifier is deterministic. Then L has a (zero-knowledge) Las Vegas interactive
proof.

Proof: We will show that if P,V is not itself Las Vegas, then either it can be slightly modified
to become Las Vegas, or it cannot constitute an interactive proof system for L. Suppose

the protocol is not Las Vegas. Then there exists a prover P* and a set of z ¢ L such that
V, when interacting with P* on such an x accepts with non-zero probability. If this set
is finite, then the protocol can be modified in the following way to become Las Vegas: on
input x, the verifier first checks if « belongs to the ”problematic” set, and if it does, V'
rejects immediately. Otherwise the original protocol is carried out. Clearly the modified
protocol is Las Vegas. If the original protocol was zero-knowledge, so will be the modified
protocol, since with respect to z € L both protocols are the same (recall that the definitions
of zero-knowledge require nothing if ¢ L). We will now show that the ”problematic” set
must be finite: assume it is not, and there exists an infinite sequence Seq of € L such
that V, when interacting with P* on x € Seq accepts with non-zero probability. Since V' is
deterministic, it follows that for every z € Seq there exists a sequence of prover messages
that cause V' to accept (that is V' will accept with probability 1 when receiving this sequence
of messages). Clearly there exists some P that for every & € Seq can find this sequence
and always cause V to accept. One such P is a machine that given x simply tries out every
possible set of messages to see on which of them, if any, V' accepts. P can check this easily as
the computation of V' is completely determined by x and by the prover messages, and does
not depend on some hidden random string. Therefore the protocol cannot be an interactive
proof system for L. O The following theorem is an immediate corollary of Theorem 4.1 and
Lemma 4.1.1:

Theorem 4.2: Let L be any language and assume that L has a zero-knowledge interactive proof in
which the verifier is deterministic. Then L € RP.

4.3 One-Step Zero-Knowledge Proofs One-step interactive proof systems do exist and
contain NP proof systems as a special case. However, N P-like proof systems give out a
large amount of knowledge much of which is not essential for the proof. It was pointed out in
[GMW1] that a one-step protocol cannot be zero- knowledge if it constitutes an interactive
proof system for a language not in BPP. Here we present a formal proof of this statement.
The proof holds even under the original [GMR1] definition of zero-knowledge.

Theorem 4.3: Let L be a language for which there exists a one-step zero-knowledge interactive proof
system. Then L € BPP.

Proof: As before, we will be using My, the simulator for the honest verifier V. The idea
is to simulate the process of the interactive proof by ensuring that the message a generated
by the simulator "on behalf” of the prover is not based on prior knowledge of the verifier’s
random string. V’s decision on whether to accept or reject is obtained by evaluating a
deterministic polynomial time predicate p(x, «,r), where z is the (common) input to P,V

« is the prover’s message to V and r is V’s random string. If x € L then there exists some
a such that for most r’s the predicate must evaluate to ACC. In cases where = ¢ L, for
every « there may be a only few random strings r that cause p to evaluate to ACC, but the
simulator may be such that on « ¢ L it always generates conversations in which p evaluates
to ACC, using these few existing strings. (Recall that the definition of zero-knowledge
requires nothing of the simulator in case x ¢ L, and therefore this kind of behavior is
possible). For that purpose we substitute the random string r produced by the simulator
with a truly randomly chosen 7/. In this way we simulate not the text but the process of
the interactive proof, retaining its desired soundness property.

Construction of the BPP machine:
Following is a description of M, the BPP machine for L:

Oun input «, machine M runs My on x, maintaining a step count. If My runs too long
or does not produce an accepting conversation, M rejects. Otherwise, if [z,7,a] is an
accepting conversation, where r is V’s random string and « is the prover’s message, M
discards r, chooses a new, random string r/, and outputs p(x, 7/,).

Soundness of M: We claim that if z ¢ L and r/ is randomly chosen, then p(z,r/, o) will
almost certainly evaluate to REJ, regardless of the value of a. Otherwise, if it evaluates to
ACC with non-negligible probability for an infinite number of « ¢ L, then the soundness
condition of interactive proofs is violated.

Completeness of M: In the case of perfect zero-knowledge, the completeness of M follows
directly from the completeness condition of interactive proofs. If x € L then the prover is
guaranteed to produce (with high probability) an « that will cause V' to accept for nearly
all random strings r. The «’s produced by the simulator will have the same property. The
following lemma will adapt the proof to computational zero-knowledge.

Let [, (n) be the length of the random string used by V' when interacting on input of length
n.

Lemma 4.3.1: Let {P(x),V(x)}, and {My(z)}, be polynomially indistinguishable and let
a(z) be the string output by My as the ”prover message” when running on input z. Then
for all but perhaps a finite set of x € L with very high probability p(z,r,a) = ACC when
x€L,ifrep {01},

Proof: In a manner similar to the proof of Theorem 4, we will use p to distinguish the text of
simulation from those of real interaction. More formally: Assume there exists a constant c0
and an infinite sequence Seq of x € L for which the o produced by running My (x), causes
p(z,7,) to evaluate to REJ with c-non-negligible probability, where r €x {0,1} (2D,
Consider the following distinguisher, A: on input H = [z, 7, @], the algorithm chooses 77 €
{0,1}(#D) and computes p(x, 7/,). It then outputs 1 if the result is ACC and 0 otherwise.

If H is a description of a real conversation, then it follows from the completeness property
of interactive proofs that A will output 1 with very high probability. We assumed that if H
is a simulation text then A will output 0 with c-non-negligible probability. Therefore A will
c-distinguish between {P(x),V (z)}, and {My(z)},, and the two distribution ensembles
cannot be polynomially indistinguishable. O The Theorem follows. O

4.4 Two-Step Auxiliary-Input Zero-Knowledge Proofs

We proceed to show that no two-step protocol can be auxiliary-input zero-knowledge in
a non-trivial manner. Note that while one-step protocols cannot be (non-trivially) zero-
knowledge even with respect to the prespecified verifier V', two-step protocols may be zero-
knowledge (in a non-trivial manner) with respect to the prespecified verifier. In fact, such
protocols (i.e., which are zero-knowledge with respect to V') are known for languages believed
not to be in BPP (e.g., Quadratic Non-Residuosity [GMR1] and Graph Non-Isomorphism
[GMW1]). Consequently, in order to prove our result we will have to make use of the full
power of the definition of zero-knowledge, specifically the requirement that for all V*’s there
exists a simulator My~. To prove an adapting lemma for this case we will need to assume
a stronger definition of polynomial-indistinguishability, one in which the distinguishers are
non-uniform (polynomial time machines). Let us present this definition:

Definition (non-uniform polynomial indistinguishability): For every algorithm A which has
an auxiliary input tape, let pg((:)’y) denote the probability that A outputs 1 on input an
element chosen according to the probability distribution D(z,y) while having the string z as
its auxiliary input. Denote by Dom the domain from which the pairs z,y are chosen. The
distribution ensembles {D(z,y)}z:yepom and {D/(x,y)}ayeDom are non-uniformly polyno-
mially indistinguishable if for every probabilistic algorithm (with auxiliary-input) A which
runs in time polynomial in the length of its input, and for every constant c0, there exists
Ny such that for every z, |x| > Ny, for every y such that (z,y) € Dom, and every z,

D(z, Di(z, —c
Pas” = pa) < fal e

We will refer to the definition of computational auxiliary-input zero-knowledge obtained when
using the above definition of polynomial-indistinguishability as ”"non-uniform computational
auxiliary-input zero-knowledge”.

Remark 4.2: If we apply this definition of polynomial indistinguishability to blackbox-
simulation zero-knowledge, the relationship demonstrated in section 3 still holds. Also,
the proof of the Composition Theorem for the auxiliary-input definition (presented in sec-
tion 3) can be carried out almost unaltered when using the above definition of polynomial
indistinguishability.

We begin by an informal discussion: Two-step protocols can in general be viewed as ones
in which the verifier generates questions which the prover can answer with non-negligible
probability if and only if z € L. When V follows the protocol, it "knows” the answer to
its questions (and will therefore gain no knowledge from the answers), but this is no longer
guaranteed for arbitrary V*’s. The proof presented in this sub-section makes use of this
observation to demonstrate the triviality of 2-step auxiliary-input protocols. It seems that
the same reasoning should apply to the original [GMR1] definition. However, in view of the
result of [AH2] discussed in the introduction (relativized 2-step [GMRI1] zero-knowledge is
not contained in relativized BPP), it is clear that the argument presented in this subsection
will not extend to the [GMR1] definition, as it relativizes. In spite of that, it can be shown
[O1] that the 2-step protocols mentioned above (for Quadratic Non-Residuosity and Graph
Non-Isomorphism) cannot be [GMR1]-zero-knowledge unless these languages are in BPP.
Both known two-step protocols mentioned above were modified by letting the verifier first
"prove” to the prover that it "knows” the answers to its queries, resulting in protocols
with more rounds which are zero-knowledge (with respect to any verifier)[GMR1, GMW1].
Returning to auxiliary-input zero-knowledge, we intend to prove:

Theorem 4.4: Let L be a language for which there exists a two-step perfect or non-uniformly com-
putational auxiliary input zero-knowledge proof system. Then L € BPP.

Proof: Let P,V be the 2-step proof system for L. Without loss of generality, we can
describe P,V in the following way:

computes 3 = V(z,r)

where 7 is V’s random string

VP f

computes o = P(z,[3)
P—-V:«

computes p(z,r,a) € {ACC,REJ} and stops.
The construction of the BPP machine in this case will run along the same general lines as
in the one-step case, i.e. M will simulate the process of the interactive proof rather than
merely its text. In a real interaction P must answer the ”"question” 3 without having access

to the random string r used to compute 3. The prover’s ability to provide, under these
conditions, an answer « for which p(x,r,a) = ACC is considered sufficient evidence that

x € L. The completeness property of interactive proofs guarantees that the prover will
be able to come up with such an « for almost any § = V(z,r), if x € L. The soundness
condition of interactive proofs ensures that no prover could generate from 3 = V(z,7) an «
such that p(z,r,) = ACC for any but a negligible fraction of the r’s. Note that the prover
is expected to generate such an « given only 3 = V(x,r), wheras this « is tested againts
r itself. As in our proof we intend to substitute the simulator for the prover as a means
of generating «, it is essential that the random string r remain hidden from the simulator.
Otherwise we could not rely on the soundness of the underlying interactive proof. Asking
the simulator to ”answer” our ”question” [without giving away out secret r is achieved
using the auxiliary input to the verifier.

Construction of the BPP machine: Consider a verifier V*, that given a string 5*
as its auziliary input sets 3 = [* (and sends [to P) instead of choosing a random r
and computing f = V(z,r). Provided that the length of §* is polynomial in the length
of x, a verifier V* as described above is clearly a polynomial time machine, for which a
simulator My« is guaranteed. Machine My «, given as input ¢ € L and any auxiliary input
B* simulates the interaction between P and V*. Using My~ we now build M, the BPP
machine for L. The idea is to generate a message 3 which is based on a truly random string
r, and then to use My~ to obtain the prover message « corresponding to this 3, without
giving My~ access to r. The machine M will operate as follows:

On input x, machine M performs the following actions:

(1) Choose a random string r and compute 3* = V(z,r).

(2) Run My« (z,3*). If My~ produces a legal conversation [z,[*,r/, (5%, a)] (r! is the
random string generated by the simulator to emulate V*’s random input in a real
interaction), discard r/ and goto (3). Otherwise reject.

(3) Output p(z,r, a).

Soundness of M: Note that as far as V' (or its simulated version) is concerned, we are
exactly imitating the process of the interactive proof: a random string = is chosen and
a message § = V(z,r) computed. This message is sent to some other machine, which
returns a message «. Then p(x,r,«) is used to determine whether to accept or reject.
All we have done is substitute the simulator for the prover as a means of generating the
message «. Therefore the soundness of M follows directly from the soundness condition of
Interactive Proofs: if # ¢ L and My« could generate an « for which p(z,r, o) = ACC with
non-negligible probability, then a prover P* using My« could do the same, violating the
soundness of the underlying interactive proof. It is clear therefore that M will reject any
x ¢ L with very high probability.

Completeness of M: If z € L then P, when interacting with the prespecified V, is

guaranteed to be able to generate an "answer” « such that p(z,r,a) = ACC for almost
any random string r. Suppose now that P interacts with V* and that V* has as auxiliary
input a string § such that § = V(z,r) for some randomly chosen r. Since r is randomly
chosen and g is computed according to the protocol, a prover P has no way of knowing
that it is interacting with a machine other than V', and will therefore behave exactly as
when interacting with V', that is will attempt to generate an « such that p(x,r,a) = ACC.
The simulator in the case of perfect auxiliary-input zero-knowledge generates the same
distribution as P, and will therefore also generate a suitable c«. The completeness condition
of interactive proofs can therefore be used here to establish the completeness of M. The
following adapting lemma will show that this is true even for non-uniform computational
zero-knowledge. Let [,.(n) be the length of the random string used by V' when interacting
on input of length n.

Lemma 4.4.1: If {P(x),V*(2,y)}s;y and {My«(2,y)}s;,y are non-uniformly polynomially
indistinguishable then for all but perhaps a finite set of x € L, if f* = V(z,r) for r €g
{0,1}(21) and « is obtained from the output of My« (x, 8*), then with very high probability
plx,r,a) = ACC.

Proof: A history description H, originating either from { P(z), V*(z,y)}4:y or from { My« (z, y) } 2.y,
will be of the form H = [z, 3*,r/, (%, «)], where §* is the auxiliary input to V* (used as
the verifier’s first message) and 7/ is V*’s random string. Observe that 7/ almost certainly
is not the random string r used to compute 5%, and is actually ignored by V*. As stated
earlier, the « generated by the prover is guaranteed by the completeness condition of In-
teractive Proofs to have the following property: « will cause p(z,r, a) to evaluate to ACC
with very high probability, provided that r is the random string used to generate the g3*.
If this property does not hold for the a’s obtained from the output of My« (z, 3*), then a
distinguisher testing for this property should be able to distinguish {P(z), V*(z, y)}4;y from
{My~(x,y)}s:y. However, given only H, the distinguisher has no idea which random string
r was used to create S* and therefore has no way to perform the required test. We will use
the auxiliary input to the distinguisher, z, as a means to supply the distinguisher with the
“true” random string corresponding to the conversation on its main input. Assume there
exists a constant c0 and an infinite sequence Seq of © € L for which the o produced by run-
ning My~ (z, 3*), where 3* = V(x,r) and r € {0,1}(2D, causes p(x,r,a) to evaluate to
REJ with c-non-negligible probability. Denote by p) (z,r) the probability that p(z,r,)
evaluates to ACC where §* = V(x,r) and « is obtained by running My« (z, 3*). Similarly
pr (z,7) will denote the probability that p(z,r,) evaluates to ACC where 8* = V(x,7)
and « is obtained by running P(z), V*(xz, 3*). Let p2 () be defined by

1
M M
pacc('x) - Z W ’ pacc('xa’r)

r

and pg..(z) by X
pfcc(x) = Z W ’ pzlz:)cc(x7 T)

r

By our assumption there exists some c0 such that for every x € Seq

1
pfcc('x) _pfl.\gc('x) Z |JI|C

It follows that for every « € Seq there exists some r such that
P M
pacc('x’ ’r) - pacc(xa ’r) > —=

Consider the following distinguisher A: on input a conversation [z, 3%, 7/, (8", «)] and aux-
iliary input r, A computes p(x,r,«) and outputs 1 if the computation results in ACC.
Clearly, for every = € Seq there exists some r and * = V(z,r) such that A (running
with auxiliary input r) will c-distinguish between My« (x,5*) and P(zx),V*(x,*). We
conclude that {My«(x,y)}ey and {P(x),V*(x,y)}sy are not non-uniformly polynomially
indistinguishable. O

The Theorem follows. O

4.5 Auxiliary-Input Zero-Knowledge Proof Systems With Deterministic Provers
In this subsection we show that any language which has an auxiliary-input zero-knowledge
proof system in which the prover is deterministic belongs to BPP. The proof generalizes
the proof method (but not the results) of the one-step and two-step cases. As in those cases,
we intend to simulate the process of the interactive proof. Our proof relativizes, and thus
in view of [AH2| will not extend to [GMR1] zero-knowledge.

Theorem 4.5: Let L be any language. If L has an auxiliary-input zero-knowledge proof system in
which the prover is deterministic, then L € BPP.

Proof: If P is deterministic, then the following holds: the entire conversation between P
and V is fully determined by x and by r, the verifier’s random string. Furthermore, P’s
1-th message «; depends only on = and on fi,- - -, 5;. We will exploit this property in our
proof. As in the one-step and two-step cases, we will imitate V’s view of the interactive
proof, using the simulator to generate the prover messages. We will begin by choosing a
random string r, and construct the unique conversation corresponding to r and = round-
by-round. At first, we will use the simulator to generate o (and ignore the rest of the text).
Once we have ap, we can compute 51 as V would, using the random string r. We will now
run the simulator again, this time ”forcing” the verifier to use the computed J; as its first
message. This is achieved by placing 31 on the verifier’s auxiliary-input. Since the prover is
deterministic (and the simulator must also be ”deterministic in some sense” as we shall see)
we can be sure that the same «y will be computed for the new conversation, and therefore

the 81 we computed will be a legal verifier message in the new conversation (that is, there
exists a string 7 such that 31 = V(z,7,¢ap)). From the new conversation we will obtain
a1, and so on. We thus reconstruct the entire conversation, while not revealing r to the
simulator throughout the process. Once we have all the prover messages, we will use p to
decide whether to accept or reject. It is easy to see that this method would not work if the
prover were not deterministic. Consider for example a three-step protocol: we could first
run the simulator to obtain (some) ag. We could then compute a suitable 51 and ”force”
the verifier to use it as its message. However, in the new conversation we would probably
have a completely different o (because P is not deterministic and may have more than one
possible) and the computed ; would no longer be a legal message in that conversation.
As a result, we could not use the new conversation to obtain a meaningful «;.

Construction of the BPP machine: consider a 7verifier” V* in the auxiliary input
model, which when having a string 0], 35, ..., 7] on its auxiliary input uses 3}, 35, ..., 37 as
its ¢ first messages to the prover, and then computes the rest of its messages in an arbitrary
manner. Since the protocol is auxiliary-input zero-knowledge, there exists a probabilistic
polynomial time machine My« which simulates the interaction of V* and P. We use My«
to build a BPP machine denoted M for the language L:

On input x, machine M proceeds as follows:
Choose random 7.

Run My~(z) with empty auxiliary input (or simply My (z), the simulator with respect to
the prespecified verifier V') to obtain « (discard the rest of the text).

For¢:=1to k do
Compute 5; — V(z,7, g, ..., @i—1).

Run My« with auxiliary input [51, 32, ..., 5i] to obtain «; (which is our "guess” for
P(x,0,...,0;)) . Discard the rest of the text.

enddo

output p(x,r, ag, ..., ak)

Soundness of M: As was the case for the 1-step and 2-step proofs, in this case we exactly
imitate the process of the interactive proof as far as V' is concerned, only substituting the
simulator for the prover as a means of generating «yg,- - -, ax. The simulator computes «;
at stage ¢ while having no knowledge of the random string used to compute S, - -, 5;,
precisely the conditions under which P must compute «; in a real interaction. It follows
that My+’s ability to generate, under these conditions, a set of messages «p, ---, ai for which
plx,r ap,- - -,) evaluates to ACC with non-negligible probability implies the ability of
some prover P* to do the same in a real interaction. The soundness of M therefore follows
from the soundness of the underlying interactive proof. Note that the soundness condition
does not depend in any way on the ”zero-knowledge-ness” of the protocol.

Completeness of M: Counsider an interaction on input x. Let (1, - -, 3; be the first ¢ verifier
messages of the unique conversation corresponding to x and to some random string r. The
prover P, when interacting on x with a verifier that uses (1, - -, 3; as its first ¢ messages,
will output the messages «y, - - -, ; corresponding to and r. This is true in particular for
the previously described verifier V*. Not until it receives the message ;11 can P (perhaps)
realize it is interacting with a cheater V* and not with the well behaved V. Therefore all
its messages up to that point will be as specified by the protocol. In the case of perfect
zero-knowledge, the texts of My~ will have the same property. In particular, at round
i the message a; obtained from the simulation text will be the unique P(z, (1, - -, 5;)
corresponding to = and the random string r chosen. In all; the set «y,- - -, o of prover
messages generated by M will be the unique set corresponding to x and r, and therefore
the completeness of M follows from the completeness of P,V. We now proceed to adapt
the argument to computational zero-knowledge. We need to prove that at round i, the

messages ap, - - -, ; generated by My« on input z and auxiliary input [f1,- - -, §;] are with
very high probability P(z), P(z, 1), -, P(z, (1, -, (;). We will first address the following
question:

Single Element Question:

Let {n{}4ep be a distribution ensemble having the following property: for every large
enough x the probability distribution 7{ assigns high probability to one element, denoted
o, (in our case, the distribution created by the prover is totally deterministic, that is
assigns probability 1 to some text o). Let {n]}.cp be a distribution ensemble which
is polynomially indistinguishable from {7n{},ep. Must {75}, have essentially the same
property (i.e. for every large enough x the distribution 7§ assigns high probability to
oz) 7

Before attempting to answer this question, let us examine more closely the notion of polyno-
mial indistinguishability. In the definition of polynomial indistinguishability used through-
out the paper, two distribution ensembles {77}, and {7§}, claimed to be polynomially
indistinguishable, must satisfy the following condition: any polynomial time probabilistic
algorithm, on input a single string sampled from {#{},, must behave approximately the
same as when given a string sampled from {7} },. Another, possibly stricter, definition is the
following: any polynomial time algorithm, on input a sequence (of constant or polynomial
size) of strings sampled from {#{}, must behave approximately the same as when given a
sequence of strings sampled from {75 },. We will refer to the first version of the definition as
single-sample polynomial indistinguishability, and to the second as multiple-sample polyno-
mial indistinguishability. Multiple-sample polynomial indistinguishability bears relevance
to our discussion due to the following fact: when using the multiple-sample definition one
can easily prove a positive answer to the Single Element Question posed earlier, provided
that {73}, can be sampled in polynomial time. The following two claims will demonstrate

this.

Claim 4.5.1: Let {n{}, assign high probability (say > 3/4) to o, for every large enough x
and let {n{}, and {73}, be multiple-sample polynomially indistinguishable. Then {7§},
must for every large enough x assign very high probability (say 3/5) to exactly one string,
denoted o,/.

Proof: Assume to the contrary that no string appears in 7§ with high probability (i.e. higher
than 3/5). Consider the following two-sample distinguisher A: on input two strings, s; and
sg, algorithm A outputs 1 if s; = s9 and 0 otherwise. I f s, s9 were sampled from {7n{},
then s; = sy with very high probability (namely, > (3/4)%). On the other hand, if s1, 59
were sampled from {75}, then s; = s2 with too low probability (namely, 13/25 9/16).
Therefore A will distinguish {7{}, from {75 },. O The above claim guarantees that {75},
assigns very high probability to a single string. We now show that this string must be o,
(single-sample polynomial indistinguishability suffices to prove the following claim).

Claim 4.5.2: Let {n{},ep be a distribution ensemble such that Yz € D the distribution 7
assigns probability at least % + € to one string, denoted o,. Let {7} }.cp be a distribution
ensemble such that Vo € D the distribution 7§ assigns probability at least % + € to one
string, denoted o,/. If {n{}, and {7n]}, are polynomially indistinguishable and {#§}, can
be sampled in polynomial time, then for all but finitely many « € D the string o, equals
the string o,/.

Proof: If otherwise, consider the following distinguisher A: on input a string s, algorithm
A samples 73 to obtain, with overwhelmingly high probability, the string o,/ (which by
hypothesis is different from o,). (The number of sample points is polynomial in 1/e.) The
algorithm outputs 1 if s = o0,/ and 0 otherwise. If s comes from 7§, then with probability

> % + ¢ we have s = o,/. If, on the other hand, s comes from #{ then with probability
> % + ¢ we have s = o0, and hence (assuming o,/ # 0,) s # o0,/ (with probability
> % +¢€). Therefore A will distinguish {7{}, from {r§},. O All that remains in order to

answer the Single Element Question for single-sample polynomial indistinguishability is to
show, if we can, that single-sample polynomial indistinguishability is equivalent to multiple-
sample polynomial indistinguishability. But can we? Polynomial indistinguishability was
originally discussed in the context of probabilistic encryption [GM] and pseudorandom
generators [Y]. In these cases the distributions of both the ensembles which are assumed
to be polynomially indistinguishable can be sampled in polynomial time. This fact can be
used to prove that in these contexts single-sample polynomial indistinguishability (the usual
definition) and multiple-sample polynomial indistinguishability are equivalent (intuitively,
because the distinguisher can generate additional samples by itself).” The same proof cannot
be applied, however, in general and in particular in the context of zero-knowledge, because in
this case one of the distribution ensembles, mainly P,V is not polynomial time samplable.
L We return to our original question. Since we cannot demonstrate the equivalence single-

I In [GGM] Goldreich, Goldwasser and Micali define multiple-sample polynomial indistinguishability
and prove its equivalence to single-sample polynomial indistinguishability in the context of pseudorandom
generators.

sample polynomial indistinguishability to multiple-sample polynomial indistinguishability,
we must adopt a different approach. We now demonstrate that even under single-sample
polynomial-indistinguishability, {75}, must assign very high probability to o, (the string
assigned high probability by 7n{). For any distribution 7 and string s, we denote by m(s)
the probability assigned by 7 to s.

Single Element Lemma: Let ¢ < 1/5. Let {n{};ep and {n§}scp be polynomially indis-
tinguishable distribution ensembles such that n{ and 75 are probability distributions over
strings of length polynomial in |x|. Assume that for every large enough « there exists some
string, denoted o, such that 7{ assigns to o, probability > 1 — e. Assume further that
{75 }zep is polynomial-time samplable (though {7{},cp may not be). Then 7§ (0,)1 — 2e,
for all but finitely many x.

Proof: Assume there exist an infinite sequence Seq of x’s such that 7§ assigns o, probability
at most 1 — 2e. For any x € Seq there must be one or more strings s such that 75(s) 0 (o,
may or may not be one of them). These strings can be arranged in lexicographical order.
For any two strings s1, sz, we will write s; sy to mean that s; precedes sy in lexicographical
order. s; < sy will mean s; sy or s; = sy. Let P be defined by

and Pf by

Example: Let 0, = 100 and 7§ assign probability 1/5 to each of the following strings:
00, 01, 000, 100, 1001. Then P, = 3/5 and P}t = 4/5. If (6, = 100 and) 7% assigns
probability 1/4 to each of the strings 00, 01, 000, 1001, then P, = P} = 3/4.

For any x € Seq, we have three possible cases (not necessarily distinct):
(1) Pf 0.8
(2) P 0.2
(3) Pf > 0.8 and P, < 0.2

Denote by S;, 1 < i < 3, the subsequence of Seq such that x € S; if case ¢ holds for z.
Clearly, at least one of the subsequences must be infinite. We will now show how to handle
each of the corresponding cases.

Case (1): Assume S is infinite. Let us first prove the following claim:

Claim 4.5.3: Let 7 be any probability distribution on strings. A k —experiment on = will
consist of sampling k times the distribution 7. Denote by s;, ¢ < k, the result of the i-th
sampling in the k-experiment. Let P; denote the probability that the sample s; is larger or
equal to all of the samples (i.e. P; = Prob(Vjs; > s;)). Then P, > 1.

Proof: For reasons of symmetry, Vi,j7 < kP; = P;. Since in every k-experiment there must
be at least one maximal value, it follows that Zle P; > 1, and therefore Vi < k, P; > % O
Consider now the following distinguisher, A: on input a string s, the distinguisher A first
samples 7§ for k — 1 times (k is a constant to be determined latter). It then outputs 1 if s
is greater than or equal to each of the k¥ — 1 sampled strings. Suppose s was sampled from
5. We can view the whole process as a k-experiment on 73, in which s is the first sample.
By the above claim, the probability that A outputs 1 in this case is greater than or equal
to % On the other hand, if s was sampled from #{ (in which case s = o, with probability
> 1 — ¢€), then (for every z € S;) the probability of a single sample being smaller than
or equal to s is less than (1 — €)- 0.8 + €0.9 (the first term is for the case s = o,). The
probability that all £ — 1 samples will be smaller than or equal to s, is thus less than 0.9~
A suitable choice of k (say k = 50) yields 0.9¥=! 1/(2k). Clearly, for any = € Si, algorithm
A will distinguish between 7§ and 73, and therefore the distribution ensembles cannot be
polynomially indistinguishable.

Case (2): Assume S5 is infinite. This case is symmetric to the previous case, since if we
reverse the lexicographical order we obtain P,5 0.8. It can therefore be handled in the same
way.

Case (3): Assume S3 is infinite. In this case reversing the lexicographical order will still
leave us in the same case. Observe however, that if PF > 0.8 and P, < 0.2, it must be
that 75 (0,) > 0.6. In such a case we can find o, with sufficient confidence by sampling
m5 a polynomial number of times. Consider a distinguisher A which on input a string s
samples 7§ enough times to pick out with very high probability (say 1 — ¢/3) a string s/
for which 73(s/) > 0.6, and then outputs 1 if s = s/. We have Prob(s/ = o,) > 1 — €/3.
For any z, x € S3, if s was sampled from 7{ then Probz(s = sf) > 1 — ¢ — ¢/3. We
started out the proof by assuming that for any = € Seq (and therefore for any x € Ss)
75(0,) <1 — 2¢ and hence Prob:z(s = s/) <1 — 2¢+¢/3. Clearly, A will distinguish
between {7{},ep and {75 }.ep (with gap €/3). The lemma follows. O

The adapting lemma we need to prove is an easy consequence of the Single Element
Lemma.

Lemma 4.5.1: Let D be the set of all pairs (z,y) for which x € L and y = [f1,- - -, Gil,
such that for some random string r

fL=V(z,r [= P(x)])
62 = V(Q},T, [aU = P(Q}),Oq = P(xaﬁl)])

ﬁi = V(l’,?", [040 = P(x)7a1 = P(I7ﬁl)7' Q1 = P(I7ﬁl7ﬁ27' ' '7ﬁi71)])

If the distribution ensembles { My« (2,)} (s,y)ep and {P(x),V*(2,¥)} (2 y)ep are polynomi-
ally indistinguishable then in the texts produced by My~ on input and y with very high
probability

Vj <iaj = Pz, 0,82, Bi)

Proof: Let W%w’y) be the distribution of the first 7 + 1 prover messages in P’s interaction with
V* on input x and auxiliary input y = [, -+, ;] (note that this distribution depends solely
on z and y and not on V*’s random string). Let Wgw’y) be the distribution of the first 7 + 1
”prover messages” produced by My« on input x and y. Clearly, if {P(z), V*(2,9)}(2y)eD
and {My«(2,y)}(sy)ep are polynomially indistinguishable, then so are {Wgw’y)}(LyED and

{Wgz7y)}(x7y)ep. The ensemble {F%x7y)}

7r§w’y) assigns one string (namely [P(x), P(x, $1),---, P(x, B1,- -+, B;)]) probability 1 for any

(z,y) € D. We can thus apply the Determinicity Lemma. We conclude that at round i,
machine My~ will produce with very high probability the messages P(x),---, P(z, 81, 3;)
corresponding to x and the string r used to compute 5y, - -+, 8;. O The Theorem follows. O

(z,y)ep Clearly is polynomial-time samplable, and

Remark 4.3 The fact that single-sample and multiple sample polynomial indistinguishability
may not be equivalent in the context of zero-knowledge raises the following questions, which
deserve further investigation: can single-sample and multiple-sample polynomial indistin-
guishability be proved equivalent or strictly different in the context of zero-knowledge (i.e.
when one ensemble is not polynomial-time samplable) 7 And if they are different, which
should be used in a ”correct” cryptographic definition of zero-knowledge 7 Observe that
the two definitions are equivalent if the distinguisher is allowed to have auxiliary input, as
in the definition of ”non-uniform” polynomial indistinguishability presented in the previous
sub-section.

4.6 A Remark on Extension to Zero-Knowledge Arguments

The results of the previous subsections extend to the zero-knowledge arguments introduced
in [BCC]. In these protocols it is guaranteed that there exists no efficient way of fooling
the verifier to accept false statements. This is a relaxion of the soundness condition in
interactive proofs where it is required that there exists no way of fooling the verifier (to
accept false statements). In the extensions we use exactly the same constructions of BPP
machines, and the same reasoning for the completeness condition (i.e. that the machine
accepts, with high probability, inputs in the language). For the soundness of the BPP
machine (i.e. showing that it rejects, with high probability, inputs not in the language)

we use a slightly more careful reasoning. Recall that the soundness of the BPP machine
is proved by relying on the soundness of the protocol. In fact, in all cases we have shown
that a violation of the soundness of the BPP machine yields violation of the soundness
condition for interactive proofs. This, in turn, was done by incorporating the “cheating
BPP machine” inside of a “cheating prover”. Hence, the “cheating prover” constructed in
all cases is indeed efficient and thus contradicts the soundness condition of zero-knowledge
arguments as well.

ACKNOWLEDGEMENTS We would like to thank Shimon Even for making useful com-
ments on the paper. The concept of Las Vegas interactive proofs was raised by Manuel
Blum and communicated through Silvio Micali. The question of triviality of proof systems
with deterministic provers was raised by Shimon Even.

REFERENCES

[B]

[BCC]

[F]

[F'S]
[GGM]

[GK]

[GMS]

[GMW1]

[GMW?2]

[GMRI]

[GMR2]

[GM]

[GS]

Babai, L., “ITrading Group Theory for Randomness”, Proc. 17th STOC, 1985, pp.
421-429.

Brassard, G., D. Chaum, and C. Crepeau, “Minimum Disclosure Proofs of knowledge”,
JCSS, Vol. 37, No. 2, Oct. 1988, pp. 156-189.

Fortnow, L., “The Complexity of Perfect Zero-Knowledge”, Proc. of 19th STOC,
1987, pp. 204-209.

Feige, U., and A. Shamir, personal communication.

Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Functions”,
Jour. of ACM, Vol. 33, No. 4, 1986, pp. 792-807.

Goldreich, O., and H. Krawczyk, “On the Composition of Zero-Knowledge Proof
Systems”, to appear in the proceedings of 17th ICALP, 1990.

Goldreich, O., Y. Mansour, and M. Sipser, “Interactive Proof Systems: Provers that
Never Fail and Random Selection”, Proc 28th FOCS, 1987.

Goldreich, O., S. Micali, and A. Wigderson, “Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Design”, Proc. 27th FOCS,
1986, pp. 174-187.

Goldreich, O., S. Micali, and A. Wigderson, “How to Play Any Mental Game or A
Completeness Theorem for Protocols with Honest Majority”, Proc. of 19th STOC,
1987, pp. 218-229.

Goldwasser, S., S. Micali, and C. Rackoff, “Knowledge Complexity of Interactive
Proofs”, Proc. 17th STOC, 1985, pp. 291-304.

Goldwasser, S., S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proof Systems”, SIAM J. on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

Goldwasser, S., and S. Micali, “Probabilistic Encryption”, JCSS, Vol. 28, No. 2,
1984, pp. 270-299.

Goldwasser, S., and M. Sipser, “Arthur Merlin Games versus Interactive Proof Sys-
tems”, Proc. 18th STOC, 1986, pp. 59-68.

Oren,Y., “Properties of Zero-Knowledge Proofs”, M.Sc. Thesis, Computer Science
Dept., Technion, Israel, Nov. 1987 (in Hebrew).

[02]

[TW]

[Y]

[AH1]

[AH?2|

[IY]

[S]

Oren, Y., “On the Cunning Power of Cheating Verifiers: Some Observations About
Zero-Knowledge Proofs”, Proc. 28th FOCS, 1987, pp. 462-471.

Tompa, M., and H. Woll, “Random Self-Reducibility and Zero-Knowledge Interactive
Proofs of Possession of Information”, Proc. 28th FOCS, 1987, pp. 472-482.

Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. 23rd FOCS,
1982, pp. 80-91.

Aiello, W., and J. Hastad, “Perfect Zero-Knowledge Languages Can Be Recognized
in Two Rounds”, 28th FOCS, 1987, pp. 439-448.

Aiello, W., and J. Hastad, “Relativized Perfect Zero-Knowledge is not BPP”, Infor-
mation and Computation, Vol. 93, 1992, pp. 223-240.

Impagliazzo, R. and Yung, M., “Direct Minimum-Knowledge Computations”, Ad-
vances in Cryptology — Crypto87 (proceedings), Lecture Notes in Computer Science,
Vol. 293, Springer-Verlag, New-York, 1987, pp. 40-51.

A. Shamir, IP=PSPACE, 81st FOCS, 1990, pp. 11-15.

