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1 IntroductionThe Theory of Computation excels in identifying fundamental questions and formulating themat the right level of abstraction. Unfortunately, the �eld's preoccupation with innovation comessometimes at the expense of paying relatively modest attention to the proper presentation of thesefundamental questions and the corresponding notions and results. One striking example is the waythe basics are being taught.For example, in typical Theory of Computation classes, the focus is on \language recognition"devices, and fundamental questions like \P versus NP" are presented in these terms (e.g., do deter-ministic polynomial-time machines accept the same languages as non-deterministic polynomial-timemachines). In my opinion, such a formulation diminishes the importance of the problem in the eyesof non-bright students, and hides the fundamental nature of the question (which is evident whenformulated in terms of \solving problems versus checking the correctness of solutions"). Similarly,one typically takes the students through the proof of Cook's Theorem before communicating tothem the striking message that \universal" problems exist at all (let alone that many naturalproblems like SAT are universal). Furthermore, in some cases, this message is not communicatedexplicitly at all.This article focuses on a less dramatic case of a bad perspective, but still one that deservesconsiderable attention: I refer to the notion of promise problems, and to its presentation in theoryof computation classes. Let me start by posing the following rhetorical question:How many readers have learned about promise problems in an undergraduate \theoryof computation" course or even in a graduate course on complexity theory?Scant few? And yet I contend that almost all readers refer to this notion when thinking aboutcomputational problems, although they may be often unaware of this fact.1.1 What are promise problemsMy view is that any decision problem is a promise problem, although in some cases the promiseis trivial or tractable (and is thus possible to overlook or ignore). Formally, a promise problem is apartition of the set of all strings into three subsets:1. The set of strings representing yes-instances.2. The set of strings representing no-instances.3. The set of disallowed strings (which represent neither yes-instances nor no-instances).The algorithm (or process) that is supposed to solve the promise problem is required to distinguishyes-instances from no-instances, and is allowed arbitrary behavior on inputs that are neither yes-instances nor no-instances. Intuitively, this algorithm (or rather its designer) is \promised" thatthe input is either a yes-instance or a no-instance, and is only required to distinguish these twocases. Thus, the union of the �rst two sets (i.e., the set of all yes-instances and no-instances) iscalled the promise.In contrary to the common perception, in my opinion, promise problems are no o�shoot forabnormal situations, but are rather the norm: Indeed, the standard and natural presentation ofnatural decision problems is actually in terms of promise problems, although the the presentationrarely refers explicitly to the terminology of promise problems. Consider a standard entry in [17](or any similar compendium) reading something like \given a planar graph, determine whether2



or not ..." A more formal statement will refer to strings that represent planar graphs. Eitherway, one may wonder what should the decision procedure do when the input is not a (stringrepresenting a) planar graph. One common formalistic answer is that all strings are interpreted asrepresentations of planar graphs (typically, by using a decoding convention by which every \non-canonical" representation is interpreted as a representation of some �xed planar graph). Another(even more) formalistic \solution" is to discuss the problem of distinguishing yes-instances fromanything else (i.e., e�ectively viewing strings that violate the promise as no-instances). Bothconventions miss the true nature of the original computational problem, which is concerned withdistinguishing planar graphs of one type from planar graphs of another type (i.e., the complementarytype). That is, the conceptually correct perspective is that the aforementioned problem is a promiseproblem in which the promise itself is an easily recognizable set.But, as observed by Even, Selman and Yacobi [13], the promise need not be an easily recog-nizable set, and in such a case the issue cannot be pushed under the carpet. Indeed, considera computational problem that, analogously to the one above, reads \given a Hamiltonian graph,determine whether or not ..." In this case, the two formalistic conventions mentioned above fail:The �rst one cannot be implemented, whereas the second one may drastically a�ect the complexityof the problem.Jumping ahead, we mention that the formulation of promise problems is avoided not withoutreason. Firstly, it is slightly more cumbersome than the formulation of ordinary decision problems(having a trivial promise that consists of the set of all strings). More importantly, as observedby Even, Selman and Yacobi [13], in some cases \well-known" structural relations (which refer tostandard decision problems) need not hold for promise problems (in which the promise itself is hardto test for membership). For example, the existence of a promise problem in NP \ coNP that isNP-hard (under Cook-reduction) does not seem to imply that NP = coNP . Still, the bene�tsof formulating computational problems in terms of promise problems is often more than worth theaforementioned costs.1.2 Some de�nitionsIn accordance with the above discussion, promise problems are de�ned as follows.De�nition 1.1 (promise problems): A promise problem � is a pair of non-intersecting sets, de-noted (�yes;�no); that is, �yes;�no � f0; 1g� and �yes \ �no = ;. The set �yes [ �no iscalled the promise.An alternative formulation, used in the original paper [13], is that a promise problem is a pair(P;Q), where P is the promise and Q is a super-set of the yes-instances. Indeed, in some cases, itis more natural to use the original formulation (e.g., let P be the set of Hamiltonian graphs and Q bethe set of 3-colorable graphs), but De�nition 1.1 refers more explicitly to the actual computationalproblem at hand (i.e., distinguishes inputs in �yes = P \Q from inputs in �no = P nQ).Standard \language recognition" problems are cast as the special case in which the promise isthe set of all strings (i.e., �yes[�no = f0; 1g�). In this case we say that the promise is trivial. Thestandard de�nitions of complexity classes (i.e., classes of languages) extend naturally to promiseproblems. In formulating such an extension, rather than thinking on the standard de�nition asreferring to the set of yes-instances and its complement, one better think of it as referring totwo (non-intersecting) sets: the set of yes-instances and the set of no-instances. We thus havede�nitions of the following form. 3



De�nition 1.2 (three classes of promise problems):1P is the class of promise problems that are solvable in (deterministic) polynomial-time. That is,the promise problem � = (�yes;�no) is in P if there exists a polynomial-time algorithm Asuch that:� For every x 2 �yes it holds that A(x) = 1.� For every x 2 �no it holds that A(x) = 0.NP is the class of promise problems that have polynomially long proofs of membership that areveri�able in (deterministic) polynomial-time. That is, the promise problem � = (�yes;�no)is in NP if there exists a polynomially bounded binary relation R that is recognized by apolynomial-time algorithm such that:� For every x 2 �yes there exists y such that (x; y) 2 R.� For every x 2 �no and every y it holds that (x; y) 62 R.We say that R � f0; 1g� � f0; 1g� is polynomially bounded if there exists a polynomial p suchthat for every (x; y) 2 R it holds that jyj � p(jxj), and R is recognized by algorithm A ifA(x; y) = 1 if and only if (x; y) 2 R.BPP is the class of promise problems that are solvable in probabilistic polynomial-time. That is,the promise problem � = (�yes;�no) is in BPP if there exists a probabilistic polynomial-time algorithm A such that:� For every x 2 �yes it holds that Pr[A(x) = 1] � 2=3.� For every x 2 �no it holds that Pr[A(x) = 0] � 2=3.That is, in each case, the conditions used in the standard de�nition (of language recognition) areapplied to the partition of the promise (i.e., �yes [�no), and nothing is required with respect toinputs that violate the promise.The notion of a reduction among computational problems also extends naturally to promiseproblems. The next de�nition extends the most basic type of reductions (i.e., Karp and Cookreductions).De�nition 1.3 (reductions among promise problems): The promise problem � = (�yes;�no)is Karp-reducible to the promise problem �0 = (�0yes;�0no) if there exists a polynomial-time com-putable function f such that:� For every x 2 �yes it holds that f(x) 2 �0yes.� For every x 2 �no it holds that f(x) 2 �0no.The promise problem � = (�yes;�no) is Cook-reducible to the promise problem �0 = (�0yes;�0no)if there exists a polynomial-time oracle machine M such that:� For every x 2 �yes it holds that M�0(x) = 1.� For every x 2 �no it holds that M�0(x) = 0.1Indeed, the following classes \absorb" the standard language classes. When we wish to refer to the latter, wewill use Roman font. 4



where query q to �0 is answered by 1 if q 2 �0yes, by 0 if q 2 �0no, and arbitrarily otherwise.Alternatively, we may consider the computation of M when given access to any total function� : f0; 1g� ! f0; 1;?g that satis�es �(x) = 1 if x 2 �0yes and �(x) = 0 if x 2 �0no, where forx 62 �0yes [ �0no the value of �(x) may be anything (in f0; 1;?g). Such a function � is said toconform with �0. We then require that there exists a polynomial-time oracle machine M such thatfor every total function � : f0; 1g� ! f0; 1;?g that conforms with �0 the following holds:� For every x 2 �yes it holds that M�(x) = 1.� For every x 2 �no it holds that M�(x) = 0.Randomized reductions are de�ned analogously.We stress that the convention by which queries that do not satisfy the promise may be answeredarbitrarily is consistent with the notion of solving a promise problem. Recall that solving thelatter means providing correct answers to instances that satisfy the promise, whereas nothing isrequired of the \solver" in case it is given an instance that violates the promise. In particular, sucha potential \solver" (represented by � in the alternative formulation) may either provide wronganswers to instances that violate the promise or provide no answer at all (as captured by the case�(x) = ?). On the other hand, reductions are supposed to capture what can be done when givenaccess to a device (represented by �) that solves the problem at the target of the reduction. Thus,a reduction to a promise problem should yield the correct answer regardless of how one answersqueries that violate the promise. We stress that the standard meaning of a reduction is preserved:if � is Cook-reducible to a promise problem in P (or in BPP) then � is in P (resp., in BPP).The foregoing natural convention (regarding oracle calls to a promise problem) is the source oftechnical problems. In particular, unlike in the case of languages, a Cook-reduction to a promiseproblem in NP \ coNP does not guarantee that the reduced problem is in NP . (For furtherdiscussion, see Section 5.1. We stress, again, that a Cook-reduction to a promise problem in P doesguarantee that the reduced problem is in P.)1.3 Some indispensable uses of promise problemsAs argued in Section 1.1, promise problems are actually more natural than language recognitionproblems, and the latter are preferred mainly for sake of technical convenience (i.e., using less cum-bersome formulations). However, in many cases, promise problems are indispensable for capturingimportant computational relations. For example, the notion of one computational problem being aspecial case (or a restriction) of another problem is best captured this way: The promise problem� = (�yes;�no) is a special case of �0 = (�0yes;�0no) if both �yes � �0yes and �no � �0no.The above paragraph refers to the importance of promise problems in providing the nicestpresentation of simple ideas, where by a nice presentation we mean one in which conceptual issuesare explicitly represented (rather than hidden by technical conventions). We note that when simpleideas are concerned one may survive ugly presentations, but this becomes more di�cult when theissues at hand are less simple. Furthermore, in some cases the notion of a promise problem isessential to the main results themselves. Most of this article will be devoted to surveying some ofthese cases, and a brief overview of some of them follows.1. The study of the complexity of problems with unique solution must be formally cast interms of promise problems. For example, unique-SAT is the promise problem having asyes-instances Boolean formulas that have a unique satisfying assignment and having as no-instances unsatis�able Boolean formulas. (See Section 2 for further discussion.)5



2. The study of the hardness of approximation problems may be formally cast in terms of promiseproblems. This is especially appealing when one wants to establish the hardness of obtainingan approximation of the optimal value. Speci�cally, one often refers to \gap problems" whichare promise problems having as yes-instances objects that have a relatively high (resp., low)optimum value and no-instances that are objects with relatively low (resp., high) optimumvalue. (See Section 3 for further discussion.)3. Promise problem allow to introduce complete problems for classes that are not known to havecomplete languages. A notable example is the class BPP , and another important one is SZK(i.e., the class of problems having statistical zero-knowledge proof systems). Indeed, promiseproblems have played a key role in the study of the latter class. (See Section 4 for furtherdiscussion.)4. Promise problem were used to indicate separations between certain computational deviceswith certain resource bounds. Examples appeared in the study of circuit complexity, deran-domization, PCPs, and zero-knowledge. (See Section 5.2 for further discussion.)Finally, we wish to call attention also to the expositionary bene�ts of promise problems, furtherdiscussed in Sections 6 and 7. In particular, Section 6.1 discusses their application for provingvarious complexity lower-bounds, while in Section 6.2 they are used to distill the essence of aknown result (i.e., BPP � PH). In Section 7 we present a suggestion for casting various \modi�ed"complexity classes (i.e., \computations that take advice" and \in�nitely often" classes) in terms ofthe classes themselves where the latter are understood as classes of promise problems.1.4 Relation to Shimon Even (a personal comment)As hinted above, promise problems were explicitly introduced by Even, Selman and Yacobi [13],and their study was initiated in [13]. In my opinion, the powerful combination of the natural notionthat promise problems capture, their simple de�nition, and their wide applicability is one of ShimonEven's trade-marks. I vividly recall him telling me in one of our �rst meetings:The very simple facts and the basic approaches are the ones that have most impact;they are the ones that get disseminated across the disciplines and even inuence otherdisciplines. A work's most inuential contribution may be introducing a good notation.Needless to say, science progresses by coping with di�cult problems. Most scienti�c works are toocomplicated to have a far-reaching impact by themselves, but at times they lead to paradigm shiftsthat do have far-reaching impact, as argued by Kuhn [41]. These paradigm shifts, which are themost important contributions of science, are typically simple from a technical point of view. Thus,both Even and Kuhn viewed simplicity (at the frontier of science) as positively correlated withimpact and importance.In view of the above, I believe that in surveying the notion of promise problems and its wideapplicability, I am surveying a central theme in Shimon's research, a theme that is prominentlypresent also in other works of his.1.5 OrganizationWe survey various research directions in which the notion of promise problems plays a majorrole. Speci�cally, Section 2 refers to �nding \unique solutions" and to approximately counting thenumber of solutions, Section 3 refers to the role of \gap problems" in the study of approximation,6



and Section 4 refers to identifying complete problems (especially for the class SZK). In Section 5 wediscuss the use of promise problems as indicators of complexity, and in Sections 6 and 7 we discusssome of their expositionary advantages. Concluding comments, which refer to the implications onlanguage recognition problems and to the applicability to search problems, appear in Section 8.The three appendices provide further details regarding some of the results that we mention,but they may be ignored with no loss to the conceptual message of this survey. Among the threeappendices, Appendices B and C are most relevant to the main message, because they o�er a closerlook at the role of promise problems in the surveyed results. In contrast, Appendix A demonstratesthat reductions to promise problems may cleverly utilize queries that violate the promise (an issuefurther addressed in Section 5.1).2 Unique Solutions and Approximate Counting of SolutionsIn this section, we review the use of promise problems in stating central results regarding thecomplexity of �nding unique solutions and the complexity of approximating the number of solutionsto NP-problems. We call the reader's attention to the indispensable role of promise problems inthe de�nition of \problems with unique solutions" and their role in formulating a decision versionof the problem of \approximate counting". The latter theme will reappear in Section 3.2.1 The complexity of �nding unique solutionsThe widely believed intractability of SAT cannot be due to instances that have a \noticeable fraction"of satisfying assignments. For example, given an n-variable formula that has at least 2n=n satisfyingassignments, it is easy to �nd a satisfying assignment (by trying O(n) assignments at random).Going to the other extreme, one may ask whether or not it is easy to �nd satisfying assignments toSAT instances that have very few satisfying assignments (e.g., a unique satisfying assignment). Asshown by Valiant and Vazirani [58], the answer is negative: the ability to �nd satisfying assignmentsto such instances yields the ability to �nd satisfying assignments to arbitrary instances. Actually,they showed that distinguishing uniquely satis�able formulae from unsatis�ed ones is not easierthan distinguishing satis�able formulae from unsatis�ed ones.In order to formulate the above discussion, we refer to the notion of promise problems. Specif-ically, we refer to the promise problem of distinguishing instances with a unique solution frominstances with no solution. For example, unique-SAT (or uSAT) is the promise problem with yes-instances being formulae having a unique satisfying assignment and no-instances being formulaehaving no satisfying assignment.Theorem 2.1 [58]: SAT is randomly reducible to uSAT. That is, there exists a randomized Cook-reduction of SAT to uSAT.A proof sketch is presented in Appendix A. The same result holds for any known NP-completeproblem; in some cases this can be proven directly and in other cases by using suitable parsimoniousreductions.22A parsimonious reduction (between NP-sets) is a Karp-reduction that preserves the number of solutions (i.e.,NP-witnesses). That is, for NP-sets LR = fx : (9y) (x; y)2Rg and LR0 = fx : (9y) (x; y)2R0g, the mapping f is aparsimonious reduction from LR to LR0 if for every x it holds that jR0(f(x))j = jR(x)j, where R(x) def= fy : (x; y)2Rgand R0(x0) def= fy0 : (x0; y0)2R0g. 7



2.2 The complexity of approximately counting the number of solutionsA natural computational problem associated with an NP-relation R is to determine the number ofsolutions for a given instance; that is, given x, determine the cardinality of R(x) def= fy : (x; y) 2 Rg.Certainly, the aforementioned counting problem associated with R is not easier than the problemof deciding membership in LR = fx : 9y s.t. (x; y) 2 Rg, which can be cast as determining, for agiven x, whether jR(x)j is positive or zero.We focus on the problem of approximating jR(x)j, when given x, up to a factor of f(jxj), forsome function f : N ! fr 2 R : r > 1g (which is bounded away from 1). Formulating thisproblem in terms of decision problems has several advantages (see analogous discussion at the endof Section 3.1), and can be done via promise problems. Speci�cally, the problem of approximatingjR(x)j can be cast as a promise problem, denoted #Rf , such that the yes-instances are pairs (x;N)satisfying jR(x)j � N whereas the no-instances are pairs (x;N) satisfying jR(x)j < N=f(jxj).Indeed, for every f : N! R such that f(n) > 1 + (1=poly(n)), approximating jR(x)j up to a factorof f(jxj) is Cook-reducible to deciding #Rf .3Clearly, for every f : N ! fr 2 R : r � 1g, deciding #Rf is at least as hard as deciding LR.Interestingly, for any f that is bounded away from 1 and for any known NP-relation R, deciding#Rf is not harder than deciding LR. We state this fact for the witness relation of SAT, denotedRSAT.Theorem 2.2 [53]: For every f : N ! R such that f(n) > 1 + (1=poly(n)), the counting problem#RfSAT is randomly Karp-reducible to SAT.A proof sketch is presented in Appendix A. The same result holds for any known NP-completeproblem; in some cases this can be proven directly and in others by using suitable parsimoniousreductions.3 Gap Problems { Representing Notions of ApproximationGap problems are special type of promise problems in which instances are partitioned accordingto some metric leaving a \gap" between yes-instances and no-instances. We consider two suchmetrics: in the �rst metric instances are positioned according to the value of the best corresponding\solution" (with respect to some predetermined objective function), whereas in the second met-ric instances are positioned according to their distance from the set of objects that satisfy somepredetermined property.3.1 Approximating the value of an optimal solutionWhen constructing e�cient approximation algorithms, one typically presents algorithms that givenan instance �nd an almost-optimal solution, with respect to some desired objective function, ratherthan merely the value of such a solution. After all, in many settings, one seeks a solution ratherthan merely its value, and typically the value is easy to determine from the solution itself, thusmaking the positive result stronger. However, when proving negative results (i.e., hardness ofapproximation results), it is natural to consider the possibly easier task of approximating the value3On input x, the Cook-reduction issues the queries (x; f(jxj)i), for i = 0; 1; :::; `, where ` = poly(jxj)= log2(f(jxj)).The oracle machine returns 0 if the �rst query was answered by 0, and f(jxj)i if i is the largest integer such that(x; f(jxj)i) was answered by 1. 8



of an optimal solution (rather than �nding the solution itself). This makes the negative resultstronger, and typically makes the proof more clear.Promise problems are the natural vehicle for casting computational problems that refer toapproximating the value of an optimal solution. Speci�cally, one often refers to \gap problems"that are promise problem having as yes-instances objects that have a relatively high (resp., low)optimum value and no-instances that are objects with relatively low (resp., high) optimum value.Indeed, this has been the standard practice since [7].Let us demonstrate this approach by considering the known results regarding several famousapproximation problems. For example, the complexity of Max-Clique is captured by the gapproblem gapCliqueb;s, where b and s are functions of the number of vertices in the instance graph.The problem gapCliqueb;s is a promise problem consisting of yes-instances that are N -vertexgraphs containing a clique of size b(N) and no-instances that are N -vertex graphs containingno clique of size s(N). Hastad's celebrated result asserts that, for every � 2 (0; 1=2), the promiseproblem gapCliqueb�;s� is NP-hard (under probabilistic Karp-reductions) [35], where b�(N) = N1��and s�(N) = N �.Another famous approximation problem is Max3SAT. For any constant s 2 (0; 1), consider thegap problem gap3SATs that consists of yes-instances that are satis�able 3CNF formulae and no-instances that are 3CNF formulae in which every truth assignment satis�es less than an s fractionof the clauses.4 Note that the gap problem gap3SAT7=8 is trivial, because every 3CNF formulahas a truth assignment that satis�es at least a 7=8 fraction of its clauses. On the other hand,Hastad showed that, for every � 2 (0; 1=8), the promise problem gap3SAT(7=8)+� is NP-hard (underKarp-reductions) [36].On the bene�ts of the framework of gap problems. The reader may wonder how essentialis the use of gap problems in stating results of the aforementioned type. Indeed, one often statesthe Max-Clique result by saying that, for every � > 0, it is NP-hard to approximate the size of themaximum-clique in an N -vertex graph to within a factor of N1��. Firstly, we comment that thelatter is merely a corollary of Hastad's result [35], which is actually a (randomized) Karp-reductionof NP to gapCliqueN1��;N� . The same holds with respect to all hardness of approximation resultsthat are obtained through PCPs: They are obtained by Karp-reductions of PCPs with certainparameters to gap problems, where the former PCPs are shown to exist for NP . In our opinion, itis nicer to present these results as hardness of certain gap problems (which reects what is actuallyproved), and their meaning is at least as clear when stated in this way. More importantly, in somecases information is lost when using the \approximation factor" formulation. Consider for examplethe assertion that, for every � 2 (0; 1=8), it is NP-hard to approximate Max3SAT to within a factorof (7=8) + �. The latter assertion does not rule out the possibility that, given a satis�able 3CNFformula, one can �nd an assignment that satis�es 90% of the clauses. This possibility is ruled outby the fact that gap3SAT9=10 is NP-hard, and we comment that proving the latter result seemsto require more work than proving the former [36].5 Lastly, the formulation of promise problemsseems essential to \reversing the PCP to approximation" connection [7, Sec. 8] (i.e., showing thatcertain NP-hardness results regarding approximation yield PCP systems with certain parameters).4By a 3CNF formula we mean a conjunction of clauses, each consisting of exactly three di�erent literals.5Speci�cally, proving that gap3SAT(7=8)+� is NP-hard seems to require using a PCP with \perfect completeness" (asconstructed in [36, Thm. 3.4]), whereas Hastad's initial construction [36, Thm. 2.3] does not have perfect completeness(and establishes the NP-hardness of distinguishing 3CNF formulae having a truth assignment that satis�es at least1 � � fraction of the clauses from 3CNF formulae in which every truth assignment satis�es less than a (7=8) + �fraction of the clauses [36, Thm. 3.1]). 9



3.2 Property Testing { the distance between yes and no-instancesIn some sense, all research regarding property testing (cf. [50, 23]) can be cast in terms of promiseproblems, although this is typically not done { for reasons discussed below.Property testing is a relaxation of decision problems, where the (typically sub-linear time)algorithm is required to accept (with high probability) any instance having the property (i.e., anyinstance in some predetermined set) and reject (with high probability) any instance that is \far fromhaving the property" (i.e., being at large distance from any instance in the set). The algorithm,called a tester, may run in sub-linear time because it is given oracle access to the tested object,and thus need not read it entirely. We comment that, in all interesting cases, this algorithm needsto be probabilistic.Typically, the distance parameter is given as input to the tester (rather than being �xed as inSection 3.1)6, which makes the positive results stronger and more appealing (especially in light of aseparation recently shown in [5]). In contrast, negative results typically refer to a �xed value of thedistance parameter. Thus, for any distance function (e.g., Hamming distance between bit strings)and any property P, two natural types of promise problems emerge:1. Testing w.r.t variable distance: Here instances are pairs (x; �), where x is a description ofan object and � is a distance parameter. The yes-instances are pairs (x; �) such that x hasproperty P, whereas (x; �) is a no-instance if x is �-far from any x0 that has property P.2. Testing w.r.t a �xed distance: Here we �x the distance parameter �, and so the instances aremerely descriptions of objects, and the partition to yes and no instances is as above.For example, for some �xed integer d, consider the following promise problem, denoted BPGd,regarding bipartiteness of bounded-degree graphs. The yes-instance are pairs (G; �) such that G isa bipartite graph of maximum degree d, whereas (G; �) is a no-instance if G is an N -vertex graphof maximum degree d such that more than � � dN=2 edges must be omitted from G in order toobtain a bipartite graph. Similarly, for �xed integer d and � > 0, the promise problem BPGd;� hasyes-instances that are bipartite graphs of maximum degree d and no-instances that are N -vertexgraphs of maximum degree d such that more than � � dN=2 edges must be omitted from the graphin order to obtain a bipartite graph. In [26] it was shown that any tester for BPG3; 0:01 must make
(pN) queries (to the description of the graph, given as an oracle). In contrast, for every d and �,the tester presented in [27] decides BPGd;� in time eO(pN=poly(�)). In fact, this algorithm decidesBPGd in time eO(pN=poly(�)), where N and � are explicitly given parameters.The formulation typically used in the literature. Indeed, all research on property testingrefers to the two aforementioned types of promise problems, where typically positive results referto the �rst type and negative results refer to the second type. However, most works do not providea strictly formal statement of their results (see further discussion below), because the formulationis rather cumbersome and straightforward. Furthermore, in light of the greater focus on positiveresults (and in accordance with the traditions of algorithmic research), such a formal statement isbelieved to be unnecessary.7 Let us consider what is required for a formal statement of property6In fact, an analogous treatment applies to approximation problems as briey surveyed in Section 3.1. Indeed aformulation of approximation problems in which the approximation factor is part of the input corresponds to thenotion of an approximation scheme (which is not surveyed here).7Needless to say, a higher level of rigor is typically required in negative statements. Indeed, property testing ispositioned between algorithmic research and complexity theory, and seems to be more inuenced by the mind-frameof algorithmic research. (We comment that the positioning of a discipline is determined both by its contents and bysociology-of-science factors.) 10



testing results. The starting point is a speci�cation of a property and a distance function, thecombination of which yields a promise problem (of the �rst type), although the latter fact isnever stated. The �rst step is to postulate that the potential \solvers" (i.e., property testers) areprobabilistic oracle machines that are given oracle access to the \primary" input (i.e., the objectin the aforementioned problem types). Indeed, this step need to be taken and is taken in all worksin the area. Secondly, for a formal asymptotic complexity statement, one needs to specify the\secondary" (explicit) inputs, which consist of various problem-dependent parameters (e.g., N inthe above examples) and the distance parameter � (in case of BPGd and any other problem of the�rst aforementioned type). This step is rarely done explicitly in the literature. Finally, one shouldstate the complexity of the tester in terms of these explicit inputs.4 Promise problems provide complete problemsMost of this section is devote to the key role that promise problems have played in the study ofStatistical Zero-Knowledge proof systems. However, we start by reviewing the situation in theseemingly lower complexity class BPP .4.1 A complete problem for BPPIn terms of language recognition, �nding a complete problem for BPP is a long-standing challenge.The same hold for establishing hierarchy theorems for BPtime (cf. [6, 16]). However, in terms ofpromise problems, both challenges are rather easy (as is the case for analogous questions regardingP). Indeed, the following promise problem is complete (under deterministic Karp-reductions) forthe (promise problem) class BPP : The yes-instances are Boolean circuits that evaluate to 1 onat least a 2=3 fraction of their inputs, whereas the no-instances are Boolean circuits that evaluateto 0 on at least a 2=3 fraction of their inputs. (Thus, the promise \rules out" circuits that evaluateto 1 on a p fraction of their input, where p 2 (1=3; 2=3).) A reduction from � 2 BPP to theaforementioned promise problemmerely maps x to Cx, where Cx is a circuit that on input r emulatesthe computation of M on input x and random-tape r, where M is a probabilistic polynomial-timemachine deciding �.Needless to say, the above also holds with respect to other complexity classes that are aimed tocapture e�cient randomized computation (e.g., RP and ZPP).4.2 Complete problems for Statistical Zero-KnowledgeStatistical zero-knowledge (SZK) is a subclass of standard zero-knowledge (ZK, aka computationalzero-knowledge), where the simulation requirement is more strict (i.e., requiring simulation that isstatistically close to the true interaction rather than only computationally indistinguishable fromit). For background see either [19, Chap. 4] or [20]. Typically (as is the case in all results reviewedbelow), the study of SZK is carried out without referring to any intractability assumptions (incontrast to the study of standard ZK, which is usually based on one-way functions; cf. [25] butsee [56] for a recent exception).Promise problem have played a key role in the comprehensive study of statistical zero-knowledge.(This study was carried out in the late 1990's and is nicely summarized in Vadhan's PhD The-sis [55].) This study of statistical zero-knowledge (SZK) was conducted by presenting and exten-sively studying two complete (promise) problems for the (promise problem) class SZK. Speci�cally,these promise problems facilitate the establishment of various important properties of the class11



SZK, because the de�nition of these promise problems is very simple in comparison to the actualde�nition of the class SZK. Furthermore, the fact that the class has natural complete problems isof independent interest.The two aforementioned complete problems are gapSD and gapENT, introduced and showncomplete for SZK in [51] and [31], respectively. Both problems refer to pairs of distributions, whereeach distribution is represented by a \sampling circuit" (i.e., a circuit C represents the distributionseen at its output wires when feeding the input wires with uniformly distributed values). The yes-instances of gapSD are distributions that are at (statistical) distance at most 1=3 apart, and theno-instances are distributions that are at distance at least 2=3 apart. The yes-instances of gapENTare pairs of distributions in which the �rst distribution has entropy greater by one unit than theentropy of the second distribution, and in the no-instances the �rst distribution has entropy thatis smaller by one unit from the entropy of the second distribution.To demonstrate the power of the complete problem approach to the study of SZK, note thatthe fact that gapENT is complete (under Karp-reductions) for SZK immediately implies thatSZK is closed under complementation, which is a highly non-trivial result. For a more detailedpresentation, which highlights the role of promise problems in the study of SZK, the interestedreader is referred to Appendix B.5 Promise problems as indicators of complexity: Pros and ConsGiven the common desire to appeal to traditional notions, one typically tries to avoid promiseproblems and formulate the assertions in terms of language recognition problems. As we have seenin previous sections, in some cases this desire can not be satis�ed due to inherent (or seeminglyinherent) reasons. In other cases, one turns to promise problems after failing to prove an analogousresult for language recognition problems, although there seems to be no inherent reason to justifythe failure (see examples in Section 5.2). The question, however, is whether we lose somethingimportant when working with promise problems (rather than with language recognition problems).Since we have already seen some of the bene�t of promise problems, we start by considering thedark side (i.e., the latter question).5.1 Con: the failure of some structural consequencesThe problem with results regarding promise problems is that sometimes they do not have thesame structural consequences as analogous results regarding language recognition. The most no-torious example is that the existence of an NP-hard (under Cook reductions) promise problem inNP \ coNP does not seem to have any structural consequences, whereas an analogous result fora language recognition problem implies that NP = coNP (see Theorem 5.2 below). This fact wasobserved by Even, Selman and Yacobi [13], who presented the following NP-complete problem,denoted xSAT: The yes-instances are pairs (�1; �2) such that �1 2 SAT and �2 =2 SAT, whereas theno-instances are pairs (�1; �2) such that �1 =2 SAT and �2 2 SAT.Theorem 5.1 [13, Thm. 4]: NP is Cook-reducible to xSAT, which in turn is in NP \ coNP.Proof sketch: To see that xSAT is in NP , consider the witness relation R1 = f((�1; �2); �) :(�1; �) 2 RSATg, whereas xSAT is in coNP by virtue of the witness relation R2 = f((�1; �2); �) :(�2; �) 2 RSATg. A Cook-reduction of SAT to xSAT may consist of the following oracle machinethat, on input a formula �, tries to �nd a satisfying assignment to �, and accepts if and only ifit succeeds. On input � and oracle access to xSAT, the machine proceeds as follows, starting with12



�� def= � and � = � (the empty pre�x of a potential satisfying assignment), and continuing as longas �� has free variables.1. Let ��� be the formula obtained from �� by setting the j� j+ 1st variable to �.2. Invoke the oracle on query (��1; ��0). If the answer is 1 then let �  �1, otherwise �  �0.Note that if �� is satis�able and the query (��1; ��0) is answered with � then ��� is satis�able,because the claim holds trivially if both ��1 and ��0 are satis�able, and the oracle answer isde�nitely correct if exactly one of these formulae is satis�able (since the promise is satis�ed in thiscase). Thus, the above process �nds a satisfying assignment to � if and only if one exists.What happened? We stress that a Cook-reduction to a promise problem does maintain thestandard meaning of the concept; that is, if the target (promise) problem is tractable (i.e., is in P orBPP) then so is the reduced problem. The issue is that if the target problem is in NP\coNP then(unlike in the case of trivial promises (i.e., language recognition problems)) it does not necessarilyfollow that the reduced problem is in NP \ coNP. This fact will be clari�ed by looking at theproof of Theorem 5.2, which refers to \smart reductions" to promise problems.Note that the reduction used in the proof of Theorem 5.1 may make queries that violate thepromise. Still, we have shown that the reduction remains valid regardless of the answers givento these queries (i.e., to queries that violate the promise). However, these queries fail the afore-mentioned structural consequences. One may eliminate the problems arising from such queriesby requiring that the reduction does not make them (i.e., does not make queries that violate thepromise). Such a reduction is called smart [34] (probably because it is smart to avoid makingqueries that violate the promise, although one may argue that it is even more clever to be able touse answers to such queries). Note that any Karp-reduction is smart. Smart reductions maintainthe structural consequences established in the case of language recognition problems.Theorem 5.2 [34, Thm. 2]: Suppose that the promise problem �0 is reducible to the promiseproblem � = (�yes;�no) via a smart reduction, and that � 2 NP \ coNP. Then �0 2 NP \coNP.Proof sketch: We prove that �0 2 NP and the proof that �0 2 coNP is similar. Let M bethe polynomial-time oracle machine guaranteed by the hypothesis. The transcript of the executionof M�(x) contains the sequence of queries and answers to the oracle as well as the �nal decisionof M , but the transcript itself (as a string) does not guarantee the correctness of the answersand thus the authenticity of the execution. The key observation is that the said answers can beaugmented by corresponding NP-witnesses that guarantee the correctness of the answers, and thusthe authenticity of the execution.Speci�cally, on any input x (which satis�es the promise of �0), machine M makes queries thatare either in �yes or in �no, and in each of these cases there is an NP-witness guaranteeing thecorrectness of the answer (because � 2 NP and � 2 coNP). Thus, an NP-witness for x mayconsist of the sequence of (answers and) corresponding NP-witnesses, each proving either that thequery is in �yes or that the query is in �no, thus certifying the correctness of the answers. Indeed,these NP-witnesses are all correct, because it is guaranteed that each query satis�es the promise(since the reduction is smart). Note that this sequence of NP-witnesses uniquely determines theexecution of M , on input x and oracle access to �, and thus vouches for the correctness of theoutcome of this computation. 13



In contrast to the proof of Theorem 5.2, note that a query that violates the promise does notnecessarily have an NP-witness (e.g., asserting that it violates the promise, or anything else). Thus,we cannot insist on having NP-witnesses for all queries, and once we allow \uncerti�ed answers"(i.e., answers not backed by NP-witnesses) all bets are o�.Another look. Indeed, smart reduction salvage the structural consequences of reductions tolanguage recognition problems, but this comes at the cost of restricting the consequences to smartreductions. That is, for � 2 NP \ coNP , rather than saying \if � is NP-hard then NP = coNP"one may only say \if � is NP-hard under smart reductions then NP = coNP". However, thereis another way out, provided we know more about the promise problem � = (�yes;�no). Forexample, suppose that in addition to knowing that � 2 NP \ coNP, we know that the set �nois in coNP (i.e., (f0; 1g� n�no;�no) 2 NP). Then, we can ask for NP-witnesses asserting eithermembership in f0; 1g� n�no or membership in �no.Theorem 5.3 (implicit in [11], see [21]):8 Suppose that the promise problem �0 is reducible tothe promise problem � = (�yes;�no) 2 coNP and that (f0; 1g� n �no;�no) 2 NP. Then�0 2 NP \ coNP.Note that (f0; 1g� n �no;�no) 2 NP implies that � = (�yes;�no) 2 NP, and thus the latterwas not stated as a hypothesis in Theorem 5.3. To demonstrate the applicability of Theorem 5.3,we mention that it was recently shown (cf. [2] improving upon [22]) that certain promise problems(i.e., gap problems) regarding lattices are in NP \ coNP . It is actually obvious that the set ofthe corresponding no-instances is in coNP. Applying Theorem 5.3, it follows that these (gap)problems are unlikely to be NP-hard (rather than restricting the claim to smart reductions).Proof sketch: Following the proof of Theorem 5.2, an NP-witness for x may consist of thesequence of (answers and) corresponding NP-witnesses, each \proving" either that the query isin f0; 1g� n �no or that the query is in �no. Note that these witnesses exist for every query,but indeed, in case the query violates the promise, witnesses may exist to both claims. Still, thewitnesses do guarantee the correctness of all answers to queries that satisfy the promise (althoughthey do not indicate which queries satisfy the promise). However, guaranteeing the correctnessof all queries that satisfy the promise su�ces for guaranteeing the correctness of the outcome ofthe computation. Thus, although the sequence of witnesses does not determine (uniquely) theexecution of M on input x and oracle access to �, it does vouch for the correctness of the outcomeof the computation.Generalization of Theorem 5.3. The following elegant generalization of Theorem 5.3 wassuggested to us by Salil Vadhan. It considers two sets, Sy and Sn, such that Sy (resp., Sn) containsall yes-instances (resp., no-instances) of � but none of the no-instances (resp., yes-instances).Theorem 5.4 (Vadhan [priv. comm.]): Let � = (�yes;�no) be a promise problem, and Sy andSn be sets such that Sy[Sn = f0; 1g�, �yes � Sy � f0; 1g�n�no and �no � Sn � f0; 1g�n�yes.8This theorem is implicit in [11], which observes an oversight of [22]. In [22] certain gap problems regardinglattices were shown to be in NP \ coAM, and it was inferred that these (gap) problems are unlikely to be NP-hardunder smart reductions (because such a reduction will imply that AM = coAM, which in turn will cause collapseof the Polynomial-time Hierarchy). In [11] it was observed that these problems are unlikely to be NP-hard (underany Cook-reduction). Speci�cally, they showed that, for these gap problems, the argument of Theorem 5.2 can beextended using NP-witnesses that exist for the corresponding set f0; 1g� n�no. This argument was abstracted in [21],where a theorem analogous to Theorem 5.3 is presented (referring to AM rather than to NP).14



Suppose that the promise problems (Sy;�no) and (Sn;�yes) are both in NP. Then, every promiseproblem that is Cook-reducible to �, is in NP \ coNP.We stress that Sy and Sn cover the set of all strings but are not necessarily a partition of it (i.e.,Sy [ Sn = f0; 1g� but Sy \ Sn may be non-empty). Theorem 5.3 is obtained as a special case byconsidering Sy = f0; 1g� n �no and Sn = �no. The proof of Theorem 5.4 generalizes the proofof Theorem 5.3: the answer to each query is augmented by a corresponding NP-witness (assertingeither membership in Sy or membership in Sn). Again, \witnesses" exist for each query, and theyare guaranteed to be correct in case the query satis�es the promise.5.2 Pro: shedding light on questions concerning complexity classesRecall that working with promise problems (rather than with language recognition problems) mayresult in the loss of some structural consequence. We stress, however, that the most fundamentalfeature of general reductions is maintained: if a problem is reducible to a tractable problem, thenthe former is also tractable. Here we address the issue of tractability, and discuss promise problemsthat are not about \gaps" or \unique solutions" nor complete for any natural class, at least notobviously. Still, they are important for the study of some natural complexity classes. Speci�cally,they indicate (or provide evidence to) separations between complexity classes that represent thecomputing power of certain computational devices with certain resource bounds.Separating monotone and non-monotone circuit complexities. Several researchers haveobserved that Razborov's celebrated super-polynomial lower-bound on the monotone circuit com-plexity of Max-Clique [47, Thm. 2] actually establishes a lower-bound on a promise problem that isin P.9 Thus, this result actually establishes a super-polynomial separation between the monotoneand non-monotone circuit complexities (of a monotone problem). Actually, a less-known result inthe same paper [47, Thm. 3] asserted a similar lower-bound for Perfect Matching (cf. [48]), andso the said separation could have been established by a language recognition problem (but not bythe more famous result of [47]). Interestingly, the clique lower-bound was improved to exponentialin [4], but a similar result was not known for Perfect Matching. Thus, at that time, an exponentialseparation of the monotone and non-monotone circuit complexities required referring to a promiseproblem (i.e., the one mentioned in Footnote 9). Subsequently, an exponential separation for lan-guages was shown by providing an exponential lower-bound on the monotone complexity of someother polynomial-time computable (monotone) function [54].The derandomization of BPP versus the derandomization of MA. One obvious fact,rarely noted, is that results about derandomization of BPP imply results on the derandomizationof MA, where MA is the class of problems having a \randomized veri�cation procedure" (i.e.,the analogue of NP in which the validity of witnesses is determined by a probabilistic polynomial-time algorithm rather than by a deterministic polynomial-time algorithm). This observation holdsprovided that the former derandomization results relate to BPP as a class of promise problems(as in De�nition 1.2) rather than to the corresponding class of language recognition problems. Wenote that all known derandomization results have this property. In any case, in terms of promise9For k � N2=3, this promise problem has yes-instances that are N -vertex graphs having a clique of size k, andno-instances that are complete (k � 1)-partite N -vertex graphs. This problem can be easily solved by a greedyattempt to construct a (k� 1)-partition of the input graph. Needless to say, this greedy approach takes advantage ofthe promise. 15



problem classes, we have that BPP � DT IME(t) implies MA � NT IME(poly(t)), providedthat the function t is \nice". Speci�cally, BPP = P implies MA = NP . For details see [32,Sec. 5.4] (or Appendix C).Disjoint NP-pairs and proof complexity. Disjoint NP-pairs are promise problems such thatboth the set of yes-instances and the set of no-instances are NP-sets. Such pairs are related topropositional proof systems in the sense that each such proof system gives rise to a (\canonical")disjoint NP-pair, and every disjoint NP-pair is computationally equivalent to a canonical pair as-sociated with some propositional proof system. The existence of \optimal" propositional proofsystems is thus equivalent to the existence of complete NP-pairs.10 Hence, the study of a nat-ural question regarding propositional proof systems is equivalent to the study of the reducibilityproperties of a class of promise problem. For details see [18].Relations among PCP classes. Some of the appealing transformations among PCP classesare only known when these classes are de�ned in terms of promise problems (see, e.g., [7, Sec. 11]and [30, Sec. 4]). For example, the intuitive meaning of [7, Prop. 11.2] is that the randomness in aPCP can be reduced to be logarithmic in the length of the proof oracle, but the actual result is arandomized Karp reduction of any problem having a PCP to a promise problem having a PCP withthe same query (and/or free-bit) complexity and proof-length but with logarithmic randomness.Similarly, the main PCP result of [30, Sec. 4] is a almost-linear length PCP not for SAT but ratherfor a promise problem to which SAT can be randomly Karp-reduced (by an almost length preservingreduction). We mention that the latter random reduction was eliminated by the subsequent workof [9].Supporting the conjectured non-triviality of statistical zero-knowledge. Seeking to pro-vide further evidence to the conjectured non-triviality of statistical zero-knowledge (i.e., the con-jecture that SZK extends beyond BPP), researchers tried to show statistical zero-knowledge proofsystems for \hard" (language recognition) problems. At the time (i.e., late 1980's), it was knownthat Quadratic Residuosity and Graph Isomorphism are in SZK (cf., [33] and [25], respectively),but the belief that these problems are hard seems weaker than the belief that factoring integers orthe Discrete Logarithm Problem are hard. So the goal was to present a statistical zero-knowledgeproof system for a language recognition problem that is computationally equivalent to any of thesesearch problems. This was almost done in [24], who showed an analogous result for a promiseproblem. Speci�cally, they presented a statistical zero-knowledge proof for a promise problem thatis computationally equivalent to the Discrete Logarithm Problem. Needless to say, the \gap" be-tween yes and no instances in this promise problem plays a key role in showing that this problemis in SZK. Thus, based on this promise problem, the non-triviality of SZK is supported by theconjectured intractability of the Discrete Logarithm Problem.Following a great tradition. The last example follows a central tradition in the closely re-lated �eld of Cryptography, where one often considers promise problems. These problems are oftensearch problems that refer to inputs of a special form (although computationally equivalent deci-sion (promise) problems are sometimes stated too). Typical examples include \cryptanalyzing" a10See [18] for de�nitions of the \canonical pair" associated with a propositional proof system, the \optimality" ofpropositional proof systems, and \complete NP-pairs" (which are merely promise problems that are complete for theclass of Disjoint NP-pairs). 16



sequence of ciphertexts that are \promised" to have been produced using the same encryption-key,and factoring an integer that in the product of two primes of approximately the same size. In-deed, these examples were among the concrete motivations to the de�nition of promise problemsintroduced by Even, Selman and Yacobi [13], following prior work of Even and Yacobi [14]. Thelatter paper (combined with [43]) has also demonstrated that NP-hardness (i.e., worst-case hard-ness) of the \cryptanalysis" task is a poor evidence for cryptographic security. Indeed, subsequentworks in cryptography typically relate to the average-case complexity of \cryptanalysis", and the\promise problem nature" of the task is incorporated (implicitly) in the formulation by assigningzero (probability) weight to instances that violate the promise.And something completely di�erent. Finally, we mention the role of promise problems inthe study of Quantum Computation and Communication. I am referring to two elegant mathe-matical models of controversial relevance to the theory of computation, and admit that I do notunderstand the real meaning of these models. Still, I am told that the very de�nition of \Quan-tum NP-completeness" refers to promise problems, and that the known complete problems are allpromise problems (see, e.g., [39, 40] where the names QBNP and QMA are used). As for QuantumCommunication, the only super-polynomial separations known between the power of classical andquantum communication complexities are for promise problems (see, e.g., Raz's paper [46]).6 Promise problems as facilitators of nicer presentationIn previous sections, we have discussed the role of promise problems in providing a framework forseveral natural studies and in enabling several appealing results (e.g., complete problems for SZK).In the current section we focus on their role as facilitators of nicer presentation of various results.We believe than an explicit use of promise problems in such cases clari�es the argument as well asreveals its real essence. We start with a rather generic discussion, and later turn to one concreteexample (i.e., the well-known result BPP � PH).6.1 Presenting lower-bound argumentsNumerous lower-bound arguments proceed by focusing on special cases of the original decisionproblem. As stated in Section 1.3, these special cases are promise problems. To be concrete, werefer to an example mentioned in Section 5.2: Razborov's lower-bound on the monotone circuitcomplexity of Max-Clique [47, Thm. 2] is commonly presented as a lower-bound on a promiseproblem that, for k � N2=3, has yes-instances that are N -vertex graphs having a clique of size k,and no-instances that are complete (k � 1)-partite N -vertex graphs.A similar strategy is adopted in numerous works (which are too numerous to be cited here). Thebene�t of this strategy is that it introduces additional structure that facilitates the argument. Insome cases the act of restricting attention to special cases is even repeated several times. Needlessto say, a proper formulation of this process involves the introduction of promise problems (whichcorrespond to these special cases). It also relies on the trivial fact that any \solver" of a problemalso solves its special cases (i.e., if some device solves the promise problem (�yes;�no) then italso solves any (�0yes;�0no) that satis�es both �0yes � �yes and �0no � �no).The use of promise problems becomes almost essential when one proves a lower-bound by areduction from a known lower-bound for a promise problem, and the reduction uses the promisein an essential way. Consider, for example, the separation between rank and communication com-plexity proven by Nisan and Wigderson [44]. Their communication complexity lower bound is by17



a reduction of \unique disjointness" to their communication problem, while noting that the lin-ear lower-bound on disjointness established by Razborov [49] holds also for the promise problem\unique disjointness" (where the sets are either disjoint or have an single element in their intersec-tion). We stress that their reduction of unique disjointness uses the promise in an essential way(and may fail for instances that violate the promise).6.2 BPP is in the Polynomial-time Hierarchy, revisitedIt is well-known that BPP is in the Polynomial-time Hierarchy (see proofs by Lautemann [42] andSipser [52]). However, the known proofs actually establish stronger results. In my opinion, boththe strength and the essence of the proof comes out best via the terminology of promise problem.Speci�cally, we consider the extension of the language classes RP and BPP to promise problems,and show that BPP = RPRP .Following De�nition 1.2, we de�ne RP and coRP as classes of promise problems that aresolvable by one-sided error (rather than two-sided error) probabilistic polynomial-time algorithms.Speci�cally, � 2 RP (resp., � 2 coRP) if there exists a probabilistic polynomial-time algorithm Asuch that:� For every x 2 �yes it holds that Pr[A(x) = 1] � 1=2 (resp., Pr[A(x) = 1] = 1).� For every x 2 �no it holds that Pr[A(x) = 0] = 1 (resp., Pr[A(x) = 0] � 1=2).It is evident that RPRP � BPPBPP = BPP (where the last equality utilizes standard \errorreduction"). Thus, we focus on the other direction (i.e., BPP � RPRP), following the proof ideasof Lautemann [42].Theorem 6.1 ([10], following [42]): Any problem in BPP is reducible by a one-sided error ran-domized Karp-reduction to coRP.Proof: Consider any BPP-problem with a characteristic function � (which, in case of a promiseproblem, is a partial function, de�ned only over the promise). That is, for some probabilisticpolynomial-time algorithm A and for every x on which � is de�ned it holds that Pr[A(x) 6=�(x)] � 1=3. Thus, for some polynomial p0 and some polynomial-time recognizable relationR0 � [n2N(f0; 1gn � f0; 1gp0(n)) and for every x on which � is de�ned it holds thatPrr2f0;1gp0(jxj) [R0(x; r) 6=�(x)] � 13 (1)where R0(x; y) = 1 if (x; y) 2 R0 and R0(x; y) = 0 otherwise. By straightforward \error reduction"we have that, for some other polynomial p and polynomial-time recognizable relation R,jfr 2 f0; 1gp(jxj) : R(x; r) 6=�(x)gj < 2p(jxj)2p(jxj) (2)We show a randomized one-sided error (Karp) reduction of � to coRP . We start by stating thesimple reduction, and next de�ne the target promise problem.The reduction: On input x 2 f0; 1gn, the randomized polynomial-time mapping uniformlyselects s1; :::; sm 2 f0; 1gm, and outputs the pair (x; s), where m = p(jxj) and s = (s1; :::; sm).The promise problem: We de�ne the following coRP promise problem, denoted � = (�yes;�no).18



� The yes-instances are pairs (x; s) such that for every r 2 f0; 1gm there exists an i satisfyingR(x; r � si) = 1, where s = (s1; :::; sm) and m = p(jxj).� The no-instances are pairs (x; s) such that for at least half of the possible r 2 f0; 1gm, itholds that R(x; r � si) = 0 for every i, where again s = (s1; :::; sm) and m = p(jxj).To see that � is indeed a coRP promise problem, we consider the following randomized algorithm.On input (x; (s1; :::; sm)), where m = p(jxj) = js1j = � � � = jsmj, the algorithm uniformly selectsr 2 f0; 1gm, and accepts if and only if R(x; r�si) = 1 for some i 2 f1; :::;mg. Indeed, yes-instancesof � are accepted with probability 1, whereas no-instances are rejected with probability at least1=2.Analyzing the reduction: We claim that the above randomized mapping, denoted by M ,reduces � to �. Speci�cally, we will prove:Claim 1: If x is a yes-instance (i.e., �(x) = 1) then Pr[M(x) 2 �yes] > 1=2.Claim 2: If x is a no-instance (i.e., �(x) = 0) then Pr[M(x) 2 �no] = 1.We start with Claim 2, which refers to �(x) = 0 (and is easier to establish). Recall that M(x) =(x; (s1; :::; sm)), where s1; :::; sm are uniformly and independently distributed in f0; 1gm. Observethat (by Eq. (2)), for every possible choice of s1; :::; sm 2 f0; 1gm and every i 2 f1; :::;mg, thefraction of r's that satisfy R(x; r � si) = 1 is at most 12m . Thus, for every possible choice ofs1; :::; sm 2 f0; 1gm, the fraction of r's for which there exists an i such that R(x; r � si) = 1 holdsis at most m � 12m = 12 . Hence, the reduction always maps such an x to a no-instance of � (i.e., anelement of �no).Turning to Claim 1 (which refers to �(x) = 1), we will show shortly that in this case, with veryhigh probability, the reduction maps x to a yes-instance of �. We upper-bound the probabilitythat the reduction fails (in case �(x) = 1):Pr[M(x) 62 �yes] = Prs1;:::;sm[9r 2 f0; 1gm s.t. (8i) R(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm[(8i) R(x; r � si) = 0]� 2m � � 12m�m � 12Thus, the randomized mappingM reduces � to �, with one-sided error on yes-instances. Recallingthat � 2 coRP , the theorem follows.Comment: The traditional presentation uses the above reduction to show that BPP is in thePolynomial-Time Hierarchy. One de�nes the polynomial-time computable predicate '(x; s; r) def=Wmi=1(R(x; si � r) = 1), and observes that�(x) = 1 ) 9s8r '(x; s; r) (3)�(x) = 0 ) 8s9r :'(x; s; r) (4)Note that Claim 1 establishes that most sequences s satisfy 8r '(x; s; r), whereas Eq. (3) onlyrequires the existence of at least one such s. Similarly, Claim 2 establishes that for every s mostchoices of r violate '(x; s; r), whereas Eq. (4) only requires that for every s there exists at least onesuch r. 19



7 Using promise problems to de�ne modi�ed complexity classesIn continuation to Section 6, we survey a recent suggestion of Vadhan for de�ning \modi�ed"complexity classes in terms of promise problems [57]. We refer to language classes such as BPP= logand io-BPP (i.e., \computations that take advice" and \in�nitely often" classes). We commentthat such classes are typically de�ned by modi�cation to the operation of the computing device(or the conditions applied to its computations). Vadhan's suggestion is to de�ne such classes bymodi�cation to the class itself, provided that the (resulting) class is understood as a class of promiseproblems. Indeed, this approach is sometimes taken with respect to language classes like P=poly butthe extension to BPP and other probabilistic classes seems to require the use of promise problems.(Indeed, in view of the fact that BPP=poly = P=poly (cf. [1]), we demonstrate the approach withrespect to BPP= log (which is the focus of some recent studies [6, 16]).)7.1 Probabilistic machines that take adviceNonuniform \advice" versions of standard complexity classes are typi�ed by the following twoequivalent de�nitions of the language class P= log. The �rst states that L 2 P= log if there existsa deterministic polynomial-time machine M and sequence a1; a2; ::: such that janj = log n andM(x; ajxj) = �L(x) for every x, where �L(x) = 1 if and only if x 2 L. The second states thatL 2 P= log if there exists a language L0 2 P and a sequence a1; a2; ::: such that janj = log n andx 2 L if and only if (x; ajxj) 2 L0. Indeed, L0 can be de�ned as the language accepted by theaforementioned machine M .For BPP in place of P, however, the analogous �rst formulation does not seem to imply thesecond one: Consider a probabilistic polynomial-time machine M and sequence a1; a2; ::: such thatjanj = log n and Pr[M(x; ajxj) = �L(x)] � 2=3 for every x. Then, it is unclear which pair language(extending L 2 BPP= log) is in BPP; for example, f(x; a) : Pr[M(x; a) = 1] � 2=3g is not necessarilya BPP-set.However, as suggested by Vadhan [57], we can de�ne an adequate promise problem that is inthe (promise problem) class BPP . Speci�cally, for L and an's as above, consider �0 = (�0yes;�0no)such that �0yes = f(x; ajxj) : x 2 Lg and �0no = f(x; ajxj) : x 62 Lg. Thus, we obtain a de�nitionof BPP= log in terms of promise problems in BPP that extend the original languages. Similarly,for a promise problem � = (�yes;�no) 2 BPP= log (under the �rst de�nition), we consider �0 =(�0yes;�0no) such that �0yes = f(x; ajxj) : x 2 �yesg and �0no = f(x; ajxj) : x 2 �nog, where thean's are as in the �rst de�nition. Thus, we may say that a promise problem � = (�yes;�no) isin the (promise problem) class BPP= log if there exists a promise problem �0 = (�0yes;�0no) inBPP and a sequence a1; a2; ::: such that janj = log n and x 2 �yes implies (x; ajxj) 2 �0yes whilex 2 �no implies (x; ajxj) 2 �0no.Needless to say, the same approach can be applied to other probabilistic classes (e.g., RP andAM) and to any bound on the advice length. We note that the need for promise problems arisesonly in case of probabilistic classes (and not in case of deterministic or non-deterministic classes).The issue at hand is related to the di�culties regarding complete problems and hierarchy theorems(cf. Section 4.1); that is, not every advice (or machine) induces a bounded-error probabilisticcomputation, and focusing on the advice (or machines) that do induce such a computation is doneby introducing a promise.
20



7.2 In�nitely often probabilistic classesAnother modi�cation with similar issues is the case of \in�nitely often" classes. The standardde�nition of io-BPP is that a problem is in this class if there exists a probabilistic polynomial-timealgorithm that solves it correctly for in�nitely many input lengths. The alternative formulationwould say that a promise problem � = (�yes;�no) is in the class io-BPP if there exists apromise problem �0 = (�0yes;�0no) in BPP such that for in�nitely many values of n it holds that�0yes \ f0; 1gn = �yes \ f0; 1gn and �0no \ f0; 1gn = �no \ f0; 1gn.8 Concluding CommentsWe conclude with a couple of comments of \opposite nature": The �rst comment highlights therelevance of promise problems to the restricted study of (\traditional") complexity classes that referto language recognition problems. The second comment asserts the applicability of the concept ofpromise problems to a wider scope of complexity questions, including the study of search (ratherthan decision) problems.8.1 Implications on the study of classes of languagesWe have argued that promise problems are at least as natural as traditional language recognitionproblems, and that the former o�er many advantages. Still tradition and simplicity (o�ered bylanguage classes) have their appeal. We thus mention that in some cases, the study of promiseproblems yields results about language classes. The best example is the study of Statistical Zero-Knowledge (SZK), which is surveyed in Section 4: Using promise problems it is possible to presentclear proofs of certain properties of the promise problem class SZK (e.g., that SZK is closed undercomplementation [51] and that any problem in SZK has a public-coin statistical zero-knowledgeproof system [31]). But, then, it follows that the same properties hold for the class of languageshaving Statistical Zero-Knowledge proofs.8.2 Applicability to search problemsAs surveyed above, promise problems are a generalization of language recognition problems, andthus constitute a general form of decision problems. However, one may apply the concept ofpromise problems also in the context of search problems, and indeed such an application is at leastas natural. For example, it is most natural to state search problems in terms of \promise problems"(rather than requiring their solver also to handle instances that have no solution (and hence alsosolve the corresponding decision problem)). That is, for a polynomially bounded relation R, thesearch (promise) problem is given x that has a solution to �nd such a solution (i.e., �nd a y suchthat (x; y) 2 R). Hence, the promise is that x has a solution (i.e., y such that (x; y) 2 R), andnothing is required in case x has no solution. (Note that the promise is important in case R is notan NP-relation.)As in case of decision problems, search (promise) problems o�er a formalism for the intuitivenotion of special cases (i.e., problem restriction). In addition to the natural appeal of the promiseproblem formulation of search problems, such promise search problems o�er a few fundamentaladvantages over traditional search problems. The best example is the connection between (boundedfan-in) circuit depth and communication complexity, established by Karchmer and Wigderson [38].Speci�cally, the (bounded fan-in) circuit depth of a function f : f0; 1gn ! f0; 1g is shown toequal the communication complexity of the search promise-problem in which one party is given21



x = x1 � � � xn 2 f�1(1), the other party is given y = y1 � � � yn 2 f�1(0), and the task is to determinean i 2 [n] such that xi 6= yi. Furthermore, the monotone depth of f equals the communicationcomplexity of a search problem with the same promise, where the task is to �nd an i 2 [n] such thatxi = 1 and yi = 0. We stress that removing the promise yields a trivial communication complexitylower bound of n (e.g., by reduction from the communication complexity of the identity function),which of course has no relevance to the circuit depth of the function f .8.3 The bottom-lineOur summary is that promise problems are a natural generalization of traditional language-recognitionproblems, and often convey both the original intent of the problem's framer and more informationabout its complexity. Despite a needed quali�cation for Turing reductions (Section 5.1), most re-sults for language classes carry over naturally and easily. In many cases, promise problems enableto represent natural concepts (e.g., problem restriction, unique solutions, and approximation) thatcannot be represented in terms of language-recognition problems. In other cases, the generalizationto promise problems allows to derive appealing results that are not known for the correspondinglanguage classes. Shimon Even, together with Selman and Yacobi, gave �rst voice to the technicalformulation of this natural outlook on the computational world.AcknowledgmentsI am grateful to Salil Vadhan for various insightful comments and suggestions. I also wish tothank Ran Raz and Avi Wigderson for answering my questions and making additional suggestions.Finally, many thanks to the anonymous referee for his/her numerous comments as well as for thecourageous attempt to improve my writing style.
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Appendix A: Proofs sketches for Theorems 2.2 and 2.1We prove Theorem 2.2 �rst, and establish Theorem 2.1 later while using similar techniques. Westart by observing that solving the counting problem #RSAT for very narrow margins of error isreducible to solving it for very large margins of error. That is, for f(n) = 1 + (1=poly(n)) andg(n) < exp(nc) for any c 2 (0; 1), it holds that #RfSAT is Karp-reducible to #RgSAT. The reductionis based on the observation that, for formulae �1; :::; �t over disjoint sets of variables, it holds thatRSAT(^ti=1�i) = fh�1; :::; �ti : (8i) �i 2 RSAT(�i)g. Thus, jRSAT(�t)j = jRSAT(�)jt, where �t is theformula obtained by concatenating t copies of the formula � (while using di�erent variables in eachcopy). It follows that, for any polynomially bounded t, the problem #RfSAT is Karp-reducible to#RgSAT, where g(t(n) � n) = f(n)t(n), by mapping (�;N) to (�t(j�j); N t(j�j)).Reducing #RgSAT to SAT, for su�ciently large g. In view of the foregoing, we may focus onrandomly reducing #RgSAT to SAT, for g(n) = n2. Given an instance (�;N), with 1 � N < g(j�j), wereduce � to itself, and notice that yes-instances are certainly satis�able (because N � 1), whereasno-instances are not satis�able (because they have less than N=g(j�j) < 1 satisfying assignments).11Thus, in this case the reduction is valid. However, the interesting case is when N � g(j�j), whichin particular implies N > j�j.Given an instance (�;N), with N > j�j, our goal is to create a random formula �0 such that theexpected cardinality of RSAT(�0) equals jRSAT(�)j=2k , where k def= log2N�log2 j�j � 0. Furthermore,with very high probability, if jRSAT(�)j � N then jRSAT(�0)j > N=2k+1 > 1 and if jRSAT(�)j <N=g(j�j) then RSAT(�0) = ; (because 2�k �N=g(j�j) � 1).We create the formula �0 as the conjunction of � and �h, where h : f0; 1gn ! f0; 1gk is a ran-domly chosen (Universal-2 [12]) hashing function and �h(x1; :::; xn) = 1 if and only if h(x1; :::; xn) =0k. We stress that � and �h use the same variables x1; :::; xn, and that �h can be obtained by aparsimonious reduction of the computation of h (i.e., verifying that h(x1; :::; xn) = 0k) to SAT. Thatis, we consider the randomized mapping(�;N)! �0 where �0(x) def= �(x) ^ (h(x) = 0log2(N=j�j)) (5)and h : f0; 1gjxj ! f0; 1glog2(N=j�j) is a random hash function.Using the \Leftover Hashing Lemma" [52, 8, 37] it follows that, with very high probability, ifjRSAT(�)j � N then jRSAT(�0)j > N=2k+1 > 1 and if jRSAT(�)j < N=g(j�j) then RSAT(�0) = ;. Thus,we randomly reduced the instance (�;N) of #RgSAT to deciding whether or not �0 is satis�able. Thatis, the randomized mapping (�;N) 7! �0 of Eq. (5) is a randomized Karp-reduction of #RgSAT toSAT. Combined with the reduction of #RfSAT to #RgSAT, this completes the proof of Theorem 2.2.Proof of Theorem 2.1: To prove Theorem 2.1 we combine the foregoing ideas with two addi-tional observations. The �rst observation is that if an n-variable formula � is unsatis�able then,for every i 2 f0; 1; :::; ng, the pair (�; 2i) is a no-instance of #RgSAT, whereas in case � is satis�ablethen, for i = blog2 jRSAT(�)jc, the pair (�; 2i) is a yes-instance of #RgSAT. Furthermore, in thelatter case, 2i � jRSAT(�)j < 2i+1. For sake of simplicity, we assume below that i � log j�j. Thesecond observation is that in case 2i � jRSAT(�)j < 2i+1, with very high probability, the formula�0i (randomly constructed as in Eq. (5) using N = 2i), has at least m def= 2i=2(i�log j�j)+1 = j�j=2satisfying assignments and at most 8m satisfying assignments. Our goal is to reduce the problem of11In case N < 1, we may map (�;N) to a �xed unsatis�able formula.26



counting the number of satisfying assignments of �0i to uSAT. We consider a Cook-reduction that,for every possible value j 2 fm; :::; 8mg, constructs a formula �00i;j that is satis�able if and only if�0i has at least j satisfying assignments; for example, we may use�00i;j(x(1)1 ; :::; x(1)n ; :::; x(j)1 ; :::; x(j)n )= 0@ ĵ`=1�0i(x(`)1 ; :::; x(`)n )1A^0@j�1̂`=1 �(x(`)1 ; :::; x(`)n ) < (x(`+1)1 ; :::; x(`+1)n )�1A (6)where (x(`)1 ; :::; x(`)n ) < (x(`+1)1 ; :::; x(`+1)n ) if and only if x(`)q < x(`+1)q for some q and x(`)q � x(`+1)q forevery q. Furthermore, note that if �0i has exactly j satisfying assignments then �00i;j has a uniquesatisfying assignment. This suggests the following randomized Cook-reduction from SAT to uSAT:1. On input an n-variable formula �, the oracle machine constructs the formulae �00i;j, for everyi 2 flog j�j; :::; j�jg and j 2 f1; :::; 8mg, where �0i is obtained by applying Eq. (5) to the pair(�; 2i), and �00i;j is obtained by applying Eq. (6) to �0i.(The case that � has less than j�j satisfying assignments is covered by i = log j�j, wheree�ectively no hashing takes place, and thus �0i = �. For this reason, we have let j range inf1; :::; 8mg rather than in fm; :::; 8mg, a change that causes no harm to larger values of i.)2. The oracle machine queries the oracle on each of the formulae �00i;j and accepts if and only ifat least one answer is positive.Note that if � is satis�able then, with very high probability, at least one of the formulae �00i;j has aunique satisfying assignment (and thus the corresponding query will be answered positively). Onthe other hand, if � is unsatis�able then all the formulae �00i;j are unsatis�able (and thus all querieswill be answered negatively). This completes the proof of Theorem 2.1.Appendix B: More details regarding the study of SZKIn this appendix, we provide a more detailed presentation of the material surveyed in Section 4.2,and describe some of the ideas underlying the proof of central results. We start by recalling a fewunderlying notions.The statistical di�erence (or variation distance) between the distributions (or the random vari-ables) X and Y is de�ned as�(X;Y ) def= 12 �Xe jPr[X=e]� Pr[Y =e]j = maxS fPr[X 2 S]� Pr[Y 2 S]g (7)We say that X and Y are �-close if �(X;Y ) � � and that they are �-far if �(X;Y ) � �. Note thatX and Y are identical if and only if they are 0-close, and are disjoint (or have disjoint support) ifand only if they are 1-far. The entropy of a distribution (or random variables) X is de�ned asH(X) def= Xe Pr[X=e] � log2(1=Pr[X=e]) : (8)The entropy of a distribution is always non-negative and is zero if and only if the distribution isconcentrated on a single element. In general, if a distribution that has support size N then itsentropy is at most log2N . 27



The distribution represented (or generated) by a circuit C : f0; 1gn ! f0; 1gm assigns eachstring � 2 f0; 1gm probability jfs : C(s) = �gj=2n. The corresponding random variable is C(Un),where Un denotes a random variable uniformly distributed over f0; 1gn. A function � : N ! [0; 1]is called negligible if it decreases faster than any polynomial fraction; that is, for every positivepolynomial p and all su�ciently large n it holds that �(n) < 1=p(n). A function � : N ! [0; 1] iscalled noticeable if �(n) > 1=p(n) for some positive polynomial p and all su�ciently large n.B.1 The class SZK and its complete problemsThe class SZK consists of promise problems that have an interactive proof system that is \statis-tically zero-knowledge" (with respect to the honest veri�er). Recall that interactive proof systemsare two-party protocols in which a computationally unbounded prover may convince a probabilis-tic polynomial-time veri�er to accept yes-instances, whereas no prover can fool the veri�er intoaccepting no-instances. Both assertions hold with high probability, which can be ampli�ed byrepetitions.De�nition B.1 ([15, 24], following [33]) The two-party protocol (P; V ) is called an interactive proofsystem for the promise problem � = (�yes;�no) if V is a probabilistic polynomial-time interactivemachine and the following two conditions hold1. Completeness: For any x 2 �yes, with probability at least 2=3, the veri�er V accepts afterinteracting with the prover P on common input x.2. Soundness: For any x 2 �no, with probability at least 2=3, the veri�er V rejects after inter-acting with any strategy on common input x.We denote by hP; V i(x) the local view of V when interacting with P on common input x, where thelocal view consists of x, the internal coin tosses of V , and the sequence of messages it has receivedfrom P . The proof system (P; V ) is said to be statistical zero-knowledge if there exists a probabilisticpolynomial-time machine S, called a simulator, such that for x 2 �yes the statistical di�erencebetween hP; V i(x) and S(x) is negligible as a function of jxj.We stress that the completeness and zero-knowledge conditions refer only to yes-instances, whereasthe soundness condition refers only to no-instances. We mention that De�nition B.1 refers onlyto honest-veri�ers, but it is known that any problem that has an interactive proof satisfying De�-nition B.1 also has one that is statistical zero-knowledge in general (i.e., with respect to arbitraryveri�ers); see [28, 31].De�nition B.2 The class SZK consists of all promise problems that have a statistical zero-knowledge interactive proof system.The class SZK contains some promise problems that are widely believed not to be in BPP (e.g., itcontains a promise problem that is computationally equivalent to the Discrete Logarithm Problem,cf. [24]). On the other hand, SZK � AM\ coAM (cf. [15, 3]), which in turn lies quite low in thePolynomial-Time Hierarchy.
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Approximating the distance between distributions. We consider promise problems thattake as input a pair of circuits and refer to the statistical di�erence between the two correspondingdistributions (generated by the two circuits). For (threshold) functions c; f : N ! [0; 1], wherec � f , the promise problem GapSDc;f = (Closec; Farf ) is de�ned such that (C1; C2) 2 Closecif �(C1; C2) � c(jC1j + jC2j) and (C1; C2) 2 Farf if �(C1; C2) > f(jC1j + jC2j). In particular,we focus on promise problem GapSD def= GapSD 13 ; 23 . Interestingly, the complexity of GapSD, whichcaptures quite a good approximation requirement, is computationally equivalent to a very crudeapproximation requirement (e.g., GapSD0:01;0:99). That is, the former problem is Karp-reducible tothe latter:Theorem B.3 [51]: For some � > 0, there exists a Karp-reduction of GapSD13 ; 23 to GapSD�;1��,where �(n) = 2�n�. More generally, for every polynomial-time computable c; f : N ! [0; 1] suchthat c(n) < f(n)2 � (1=poly(n)) it holds that GapSDc;f is Karp-reducible to GapSD�;1��.Using a trivial reduction in the other direction, we conclude that for every c; f : N ! [0; 1] suchthat c(n) � 2�n� , c(n) < f(n)2 � (1=poly(n)) and f(n) � 1 � 2�n�, the problems GapSDc;f andGapSD = GapSD13 ; 23 are computationally equivalent (under Karp reductions). This equivalence isuseful in determining the complexity of GapSD (as well as all these GapSDc;f 's). Speci�cally, inorder to show that SZK is Karp-reducible to GapSD, it is shown that SZK is Karp-reducible toGapSD 12p2 ; 1p , for some polynomial p. On the other hand, in order to show that GapSD is in SZK, itis shown that for �(n) = 2�n� the problem GapSD�;1�� is in SZK. Thus, one getsTheorem B.4 [51]: The promise problem GapSD is SZK-complete (under Karp-reductions).We stress that the promise problem nature of GapSD seems essential for showing that GapSD 2 SZK.On the other hand, the class SZK reduces naturally to a promise problem with a non-trivialpromise. For details, see Section B.2.Approximating the entropy of a distribution. We consider two types of computationalproblems related to approximating the entropy of a distribution. The �rst type consists of promiseproblems that take as input a circuit and a value and refers to the relation between the entropyof (the distribution generated by) the circuit and the given value. The second type of promiseproblems take as input a pair of circuits and refer to the relation between the entropies of thecorresponding distributions (generated by the two circuits). Note that the two types of problemsare computationally equivalent (i.e., each is Cook-reducible to the other). We focus on the secondtype of problems, because (unlike the �rst type) they are known to be complete for SZK underKarp-reductions. Speci�cally, for a positive (slackness) function s : N! R+, the promise problemGapENTs = (Smallers; Largers) is de�ned such that (C1; C2) 2 Smallers if H(C1) � H(C2) �s(jC1j + jC2j) and (C1; C2) 2 Largerf if H(C1) � H(C2) + s(jC1j + jC2j). We focus on promiseproblem GapENT def= GapENT1, and mention the following two simple facts:Fact 1: For every positive polynomial p and `�(n) = n1�� for any � > 0, it holds that the problemsGapENT1=p, GapENT and GapENT`� are computationally equivalent (under Karp reductions).Fact 2: The problem GapENT is Karp-reducible to its complement by the reduction that maps(C1; C2) to (C2; C1).It turns out that the computational problems regarding entropy are computationally equivalent tothe computational problems regarding statistical distance:29



Theorem B.5 [31]: The promise problems GapENT and GapSD are computationally equivalent underKarp reductions.Combining Theorems B.4 and B.5, it follows that GapENT is SZK-complete (under Karp-reductions).Using Fact 2, it follows that SZK is closed under complementation.B.2 Comments regarding the proofs of Theorems B.3{B.5The proofs of Theorems B.3 and B.5 rely on sophisticated manipulations of distributions (or ratherthe corresponding sampling circuits). Although these proofs are quite interesting, we focus on theproof of Theorem B.4, which provides the bridge between the aforementioned speci�c computationalproblems and the class SZK. Indeed, the proof of Theorem B.4 highlights the role of promiseproblems (with non-trivial promises) in the study of SZK, whereas the proofs of Theorems B.3and B.5 merely translate one promise problem (with a non-trivial promise) to another.Theorem B.4 was proven by Sahai and Vadhan [51], and here we sketch the ideas underlying theirproof. Their proof consists of two parts: (1) showing that GapSD has a statistical zero-knowledgeproof system, and (2) showing that any problem in SZK is Karp-reducible to GapSD.The problem GapSD has a statistical zero-knowledge proof system: Using Theorem B.3,it su�ces to show such a proof system for GapSD�;1��, where � : N ! [0; 1] is a negligible function(e.g., �(n) = 2�n� for some � > 0). Actually, we present such a proof system for the complementproblem (i.e., (Far1��; Close�)), and rely on the (highly non-trivial) fact that GapSD is reducible toits complement.12 Following an idea that originates in [33, 25], the protocol proceeds as follows,with the aim of establishing that the two input distributions are far apart. The veri�er selectsone of the input distributions at random and presents the prover with a random sample generatedaccording to this distribution. The veri�er accepts if and only if the prover correctly identi�esthe distribution from which the sample was taken. Observe that if the input distributions are farapart then the prover can answer correctly with very high probability. On the other hand, if theinput distributions are very close then the prover cannot guess the correct answer with probabilitysigni�cantly larger than 1=2. This establishes that the protocol is an interactive proof (and thusthat GapSD is in coAM). It can be shown that this protocol is actually statistical zero-knowledge,intuitively because the veri�er learns nothing from the prover's correct answer which is a prioriknown to to the veri�er (in case the two distributions are far apart).Any problem in SZK is Karp-reducible to GapSD: We rely on Okamoto's Theorem bywhich any problem in SZK has a public-coin13 statistical zero-knowledge proof system [45]. (Wecomment that an alternative proof of that theorem has subsequently appeared in [31], who showedthat SZK is Karp-reducible to GapENT while the latter problem has a public-coin statistical zero-knowledge proof system.) We consider an arbitrary (public-coin) statistical zero-knowledge proofsystem. Following Fortnow [15], we observe a discrepancy between the behavior of the simulatoron yes-instances versus no-instances:12This fact follows by combining Theorem B.5 an Fact 2. An alternative proof of the fact that GapSD is reducibleto its complement was given in [51], before Theorem B.5 was stated (let alone proved). Another alternative is to relyon an even earlier result of Okamoto by which SZK is closed under complementation [45].13An interactive proof is said to be of the public-coin type if the veri�er is required to send the outcome of any coin ittosses as soon as it sees it. In other words, the veri�er's messages are uniformly distributed strings (of predeterminedlength), and the veri�er's decision depends only on the messages exchanged (rather than on some secret randomchoices made by the veri�er). 30



� In case the input is a yes-instance, the simulator outputs transcripts that are very similar tothose in the real interaction. In particular, these transcripts are accepting and the veri�er'sbehavior in them is as in a real interaction. Resorting to the public-coin condition, this meansthat the veri�er's messages in the simulation are (almost) uniformly distributed independentlyof prior messages.� In case the input is a no-instance, the simulator must output either rejecting transcripts ortranscripts in which the veri�er's behavior is signi�cantly di�erent from the veri�er's behaviorin a real interaction. In particular, the only way the simulator can produce accepting tran-scripts is by producing transcripts in which the veri�er's messages are not \random enough"(i.e., they depend, in a noticeable way, on previous messages).Thus assuming, without loss of generality, that the simulator only produces accepting transcripts,we consider two types of distributions. The �rst type of the distributions is obtained by truncatinga random simulator-produced transcript at a random \location" (after some veri�er message),whereas the second type is obtained by doing the same while replacing the last veri�er messageby a random one. Note that both distributions can be implemented by polynomial-size circuitsthat depend on the input to the proof system being analyzed (and that these two circuits can beconstructed in polynomial-time given the said input). The key observation is that if the input is ayes-instance then the two corresponding distributions will be very close, whereas if the input is ano-instance then there will be a noticeable distance between the two corresponding distributions.Thus, we reduced any problem having a (public-coin) statistical zero-knowledge proof system toGapSD�;� , where � is a negligible function and � is a noticeable function. The proof is completedby using Theorem B.3 (while noting that �(n) < �(n)2 � (1=poly(n))).Alternative proofs of Theorems B.4 and B.5: In sketching the proof of Theorem B.4, werelied on two theorems of Okamoto [45]: The closure of SZK under complementation and theexistence of public-coin statistical zero-knowledge proof systems for any problem in SZK. SinceOkamoto's arguments are hard to follow, it is worthwhile noting that an alternative route does ex-ist. In [31] it is proved that GapENT is SZK-complete (under Karp-reductions), without relying onOkamoto's results (but while using some of his ideas). Furthermore, the statistical zero-knowledgeproof system presented for GapENT is of the public-coin type. Thus, the two aforementioned theo-rems of Okamoto follow (using the fact that GapENT is easily reducible to its complement). Conse-quently, the proof of Theorem B.4 need not refer to Okamoto's paper [45]. (Theorem B.5 followsimmediately from the fact that both GapENT and GapSD are SZK-complete, but a direct proof ispossible by employing the ideas underlying [31, 51].)Appendix C: On the derandomization of BPP versus MAThe following presentation is adapted from [32, Sec. 5.4]. We denote byMA the class of promiseproblems of the form � = (�yes;�no), where there exists a polynomial p and a polynomial-time(veri�er) V such thatx 2 �yes =) 9w 2 f0; 1gp(jxj) Prr2f0;1gp(jxj) [V (x;w; r) = 1] = 1x 2 �no =) 8w 2 f0; 1gp(jxj) Prr2f0;1gp(jxj) [V (x;w; r) = 1] � 12(All other complexity classes used below also refer to promise problems.)31



Proposition (folklore): Suppose that RP � DT IME(t), for some monotonically non-decreasingand time-constructible function t : N! N. Then, MA � [i2NNT IME(ti), where ti(n) = t(ni).In particular, RP = P impliesMA = NP .Proof: Each promise problem � = (�yes;�no) in MA gives rise to a promise problem �0 =(�0yes;�0no), where �0yes def= f(x;w) : 8r 2 f0; 1gp(jxj) V (x;w; r) = 1g�0no def= f(x;w) : x 2 �nog :where p and V are as above. Note that, for every (x;w) 2 �0yes it holds that Prr2f0;1gp(jxj) [V (x;w; r) =1] = 1, whereas for every (x;w) 2 �no it holds that Prr2f0;1gp(jxj) [V (x;w; r) = 1] � 1=2. Thus,�0 2 coRP (i.e., (�0no;�0yes) 2 RP). Using the hypothesis (and the closure of DT IME undercomplementation), we have �0 2 DT IME(t). On the other hand, note that for every x 2 �yesthere exists w 2 f0; 1gp(jxj) such that (x;w) 2 �0yes, whereas for every x 2 �no and everyw 2 f0; 1gp(jxj) it holds that (x;w) 2 �0no. Thus, � is \non-deterministically reducible" to �0 (i.e.,by a \reduction" that maps x to (x;w), where w 2 f0; 1gp(jxj), such that x 2 �yes is mapped to(x;w) 2 �0yes), and � 2 NT IME(t0) follows, where t0(n) = t(n + p(n)) < t(ni) for some i 2 N.The proposition follows.
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