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Abstract

Known results concerning the power of randomness
are qualitative, in the sense that they only show that
solutions exist or can be improved if randomness s
allowed. We initiate a quantitative investigation of
the power of randomness, in the context of commu-
nication complexity.

We prove general lower bounds on the length of
the random input of parties computing a function
f, depending on the number of bits communicated
and the deterministic communication complexity of
f. Four standard models for Communication Com-
plexity are considered: the random input of the par-
ties may be shared or local, and the communication
may be one-way or two-way.

The bounds are shown to be tight. Namely, we
demonstrate functions and protocols for these func-
tions which meet the above bounds up to a constant
factor. We do this for all the models, for all values
of the deterministic communication complexity, and
for all possible quantities of bits exchanged. Fur-
thermore, we use an idea of [BN] to show that it
1s possible to reduce the number of random bits re-
quired by any protocol, without increasing the num-
ber of bits exchanged (up to a limit depending on
the advantage achieved by the protocol).
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1 Introduction

The power of randomness in computation is a
major issue in all aspects of computer-science,
and is yet to be fully understood. There are
many cases in which there are tremendous gaps
between the complexities, or even possibili-
ties of deterministic and randomized computa-
tions (e.g. routing [BH,V], Byzantine agree-
ments [FLP,B,FL,FM], Communication Com-
plexity [Y2,PS,MS]).

A method of ‘smoothing’ these gaps is to
measure the ‘quantity of randomization’ of
an algorithm, thus substituting the qualitative
question “Is the algorithm deterministic or ran-
domized?” by the quantitative question “How
much randomization does the algorithm use?”.
A standard method for quantifying randomiza-
tion is measuring the size of the sample-space,
or in other words the length of the random in-
put. We initiate a quantitative study of ran-
domness in a computationally simple model:
Communication Complexity.

The communication complexity of a function
f, as defined by Yao [Y2], measures the mini-
mum number of bits that have to be transfered
between two parties in order to compute f(z,y),
when one party has = and the other has .

Although for most functions randomization
does not help [AFR], a tremendous gap be-
tween the two models of computation exists for
some functions. For instance, Yao [Y2] showed
that » bits of communication are needed in or-



der to deterministically compute the identity
function (ID(z,y) = 1 iff 2 = y), and Paturi
and Simon [PS] showed a randomized protocol
that uses only two bits of communication and
computes I.D (with probability greater than ).

In view of these gaps between the commu-
nication complexities of deterministic and ran-
domized protocols, this model seems to be a
convenient test-field for a quantitative investi-
gation of the power of randomness in computa-
tion.

We show a tradeoff between the amount of
randomness required by a protocol for com-
puting a function, and the number of bits ex-
changed by the parties while executing the pro-
tocol. This tradeoff may be interpreted in two
alternative ways. Omne interpretation is as a
lower bound on the number of bits exchanged
by parties using a specific number of coin-tosses
(namely as a lower bound on the communica-
tion complexity of a function, depending on the
length of the random input). The other inter-
pretation (which is used in this paper) is as a
lower bound on the number of coin-tosses used
by a protocol as a function of the number of
bits exchanged. It can be seen that the lower
bound on the number of coin-tosses used in the
protocol increases gradually from zero up to a
maximum value (which is at most n), as the
given number of bits exchanged decreases from
the deterministic communication complexity of
the function to the randomized one.

We consider the following variants of the
model: the communication may be one-way,
or two-way (with any number of rounds), and
the random input may be shared by both par-
ties, or split into two parts, each available to
one party only. Other parameters considered
are the deterministic communication complex-
ity of the function being computed, and the ad-
vantage over % achieved by the protocol. The
bounds hold for any protocol that computes a
function with probability greater than % and
does not depend heavily on the advantage over

L achieved by the protocol.

i The tradeoff is tight in all these models and
for all possible values of the deterministic com-
munication complexity. We construct a se-
quence of functions that cover the range of all
possible deterministic communication complex-
ities. For each function, computation model
and a given number of bits to be exchanged, we
show a protocol that meets the corresponding
lower bound up to a multiplicative constant.

A tradeoff between randomness and commu-
nication complexity was independently investi-
gated by [FJM]. They consider the expected
communication complexity of ‘Las Vegas’ pro-
tocols (i.e., no error allowed, as opposed to
our ‘Monte Carlo’ model), in the two-way, lo-
cal coins model. In their setting, they show a
tight tradeoff similar to the one presented in
this paper!.

Note that a quantitative study of randomness
was carried out in the context of oblivious rout-
ing [KR,KPU], and for cashing algorithms [RS].

Organization.
models and the parameters to be discussed.
Section 3 contains the lower bounds for the four
models. In section 4 we present functions and
protocols for these functions that demonstrate
the tightness of the bounds. Finally, we use
an observation of Babai and Newman [BN] to
show that the number of coin-tosses used in any
protocol can be reduced up to a value depend-
ing only on the advantage over % achieved by
the protocol.

In section 2 we define the

2 Preliminaries

Let f:{0,1}"x{0,1}* — {0,1} and let P, and
P, be two parties having inputs z,y € {0,1}"
respectively, and communicating according to

'In fact, the lower bounds of [FJM] can be derived,
up to an additive constant, from the bound presented in
part (b) of Theorem 2 below. (They consider the range
of more than /n bits exchanged, where n is the input
length.)



a randomized protocol 7 in order to compute
f(z,y). Denote the output of the protocol on
input z,y as 7(z,y). (Namely, 7(z,y)is a ran-
dom variable determined by the coin tosses of

T.)

Consider the following two parameters.

e The communication may be one-way or
two-way. In the one-way model, party P,
sends a message to P, and party P, decides
on the output. In the two-way model, the
parties take turns on sending messages, un-
til a party sends a special symbol ‘halt’ and
outputs the protocol answer. (We assume
that the messages transfered between the
parties are prefix-free.)

e The coins tosses used in the protocol may
be local or shared. The outcome of a lo-
cal coin is known only to the party toss-
ing it, while the outcome of a shared coin
is known to both parties without need of
communication.

Clearly, local coins can be emulated by shared
coins (and a one-way protocol is a special case
of a two-way protocol).

In the shared coins models, let 7, denote the
number of coin-tosses used during the execution
of 7 on the worst input pair:

def

r. = max

, max, (T, 9Y),

where r.(z,y) is the number of coin tosses in
on input (2,y). In the local coins models let 71
(r2) denote the number of coin-tosses used by
Py (P;) during the execution of © on the worst
input pair.

A protocol 7 computes a function f with ad-
vantage €, if €, > 0, where

N | —

min
z,y€{0,1}™

Prob(w(z,y) = f(z,y)) —

€r =

(The probability is taken over the coin tosses of

T.)

Let

def
My =

0 o gy T )
where m,(x,y,r) is the number of bits trans-
fered in protocol 7 on input z, y and coin-tosses
T

In order to measure the tightness of the
bounds we use the following notation. Let
R, (f) (RL, (f), for i € {1,2}) denote the
minimum of r, (rl) over all protocols 7 that
compute f with advantage at least ¢, using up
to m communication-bits (namely m, < m, and
€x > €).

Define the one-way (two-way) determinis-
tic communication complexity of a function f,
denoted as CL~%(f) (Cp5=2(f)), as the mini-
mum of m, over all deterministic one-way (two-
way) protocols m that compute f. (Note that
CH7%(f) is the logarithm of the number of dis-
tinct rows in the matrix representation of f.?)

A function is non-degenerate if all the rows
(columns) in the matrix representation of f are
distinct. For simplicity of presentation we con-
sider only non-degenerate functions. However,
the following discussion can be easily extended
to all f.

In the sequel & will denote the integer that
the binary representation of which is z, and
e €p D will denote that element e is chosen
at random from domain D, with uniform prob-
ability distribution.

3 Lower bounds

We show lower bounds on R, .(f), in the dif-
ferent models of computation. The proofs of
the bounds use either combinatorial arguments
(counting the number of vectors of a particular
type), or simulations (of a randomized protocol
by a deterministic one).

Table 1 contains the bounds for the four mod-
els.

2All the logarithms in this paper are of base 2.



Table 1: A summary of the bounds

one-way

‘ two-way ‘

local coins

R, (f)> -1
Ry, () 2 log (=25

R, (f)>3&—-1,i=1,2
CLt)
R, (f)+ R, (f)>log ({"_721)

shared coins

R (1) > log (£52)

g,
Ry o(f) > log | —i5—
Ry () > l0g (7:2)

3.1 The one-way, local coins model

Theorem 1 Let f:{0,1}" x {0,1}" — {0,1}
be a non-degenerate function, and let © be a
one-way, local coins protocol that computes f
with advantage €. Then,

Y
£oTr42mr —1)

1
o

> o, (1)

~~

Approximating (1), we derive the following
two inequalities, which hold simultaneously:

(a)
(b)

The first inequality is stronger for 0 < m, <
logn — loglogn, and the second for logn <
My < 1.

Proof. Consider an enumeration of all possible
(up to 27~ ) messages. Let p? denote the proba-
bility that party P, sends the i-th message (de-
noted as msg;) on input z, and ¢/ the probabil-
ity that Py, on input y and having received msg;

-1

2mw

rl >
e 2 log(g—mmo)-

from P, outputs 1. Let p* = (pt---pt..) and

@ (¢V--¢Yn.). Then, Prob(r(z,y) = 1) =

ame
Yo P4

Consider two different inputs z, 2’ € {0,1}".
Since f is non-degenerate, there exists y such

that f(z,y) # f(2/,y). Since ™ computes f,
we have that

|Prob(w(z,y) = 1)—Prob(w(a’,y) = 1) |> 2e.
Since 0 < p¥, ¢/ < 1, we have
1 def mr x 2!
prop” = 2?21 | pi —pi | 2

2m7\' 2m7\' 7
> Yoy PP d =i P | > 26

Thus, the protocol implies the existence of 2"
distinct vectors p° such that for every z,2’, we
have % o 5 > 2e.

However, since party P; tosses only 7l coins,
each probability pf may be assigned only 2r 41
different values: {i-27"+|0 < i < 2"~}. More-
over,we have Zf:f p? = 1. Thus, the number
of distinct such vectors is at most the number

of possibilities to partition 27~ elements among
2T¥+2’1"f—1)

27w

We estimate the maximum size of a set §
of probability vectors satisfying for each pair
pop > 2¢, in the following way. For every such
vector p, the number of vectors p’ such that
pop < €is at least the number of possibili-
ties to partition £2"~ elements among 2™~ cells,

27 cells, namely (

1
gamrpomr 1
2 ). Thus, for every proba-

namely ( cort
bility vector (out of the (ZTW-";ZW_l) possible)
appearing in set 5, there exist (%ZT?;TT_l) dis-
tinct vectors that may not appear in 5. The
Theorem follows. O

Note that there is no bound on 72, as will
become clear in section 4.1.1.



3.2 The two-way, local coins model

Theorem 2 Let f:{0,1}" x {0,1}" — {0,1}
be a non-degenerate function, and let © be a
two-way, local coins protocol that computes f
with advantage €. Then the following inequali-
ties hold simultaneously:

(a) 1 2 &

2mm

-1 forie{l,2}

cp o)
(b) rio4+7r% > log (7’;126 1)

Proof. Part (a). Consider a conversation,
€COn = Uy 0V O...U; O Vg, between the parties
where u; is the message sent by P, in round j
of the conversation, v; is the subsequent mes-
sage of Py, and k is the number of rounds.
(The parsing is unique since the messages are
prefix-free.) Let pj(con) denote the probability
that P, sends u; on input z, if the conversa-
tion was the corresponding prefix of con, and let
p"(con) & Hlepf(con). Consider an enumer-
ation of all the (up to 2™~) conversations, and
let 7 % (p™(cony) . ..p"(consm.)). Let ¢¥(con)
and ¢V be similarly defined, with respect to P..
Let C7¥ be the set containing all the conver-
sations after which the output of the protocol,
on input z,y, is 1. Thus, Prob(n(z,y) =1) =
Yconecew p(con) - g¥(con).

Following the lines of the proof of Theorem
1, we conclude that there exist 2" distinct such
vectors. However, since each element in the vec-
tor 7° (¢¥) may be assigned only 2741 (2" +1)
different values, there exist at most (27~ +1)2""
distinct such vectors p, and at most (277 4+1)2""
distinct vectors ¢¥. Part (a) follows.

Part (b). This inequality is derived from the
possibility to simulate a randomized protocol
m by a deterministic one, going over the coin-
tosses of . Note that it is sufficient to go over
more than a (1 — 2¢)-fraction of the coin-tosses
of . O

3.3 The shared coins models

Theorem 3 Let f:4{0,1}" x {0,1}" — {0,1}
be a non-degenerate function, and let © be a
one-way, shared coins protocol that computes f
with advantage €. Then,

21
= >1 Lir
=08 ( 1- 26)
Proof. The proof uses the same simulation

technique as in part (b) of Theorem 2. How-
ever, here the resulting deterministic protocol

is one-way, and C57%(f) = n. O
(A similar result is achieved using a combinato-
rial argument.)

Theorem 4 Let f:4{0,1}" x {0,1}" — {0,1}
be a non-degenerate function, and let © be a
two-way, shared coins protocol that computes f
with advantage €. Then the following inequali-

ties hold simultaneously.
°p W,
TZZE

> 2",

Part (b) yields (after approximation),

n
1
Mr — Ex My

Note that the first bound is stronger for smaller
values of r,., and the second for larger values of
r.. The crossing point of the bounds is deter-
mined by C5=2(f).
Proof. Part (a) is identical to part (b) in the
proof of Theorem 2.

Part (b). Consider a conversation con =
Uy 0 vy O...U OV, between the parties. Let
pf(con) denote if P, ‘is willing to go along’
con, on input x and coin-tosses r. Namely,
pE(con) = 1if on input x and coin-tosses r and
for every j, party P, sends u; if the conversation
is the corresponding prefix of con. Otherwise,
pi(con) = 0. Consider an enumeration of all



the possible conversations and coin-tosses and
let M?® be the 2"~ x 2™~ boolean matrix where
M{; = pj (con;). Clearly, for every two distinct
rows z,x’ in the function table, the correspond-
ing matrices M®, M*" differ by at least 2¢2'~
TOWS.

22772 (Jistinct such

However, there are only
matrices M. Moreover, the number of distinct
matrices that differ from a given matrix by at
most €2'~ rows is at least 27=2"7 (2" ). Part (b)

follows. O

4 Protocols

We demonstrate the tightness of our lower
bounds (summarized in Table 1) by showing
protocols for non-degenerate functions. We do
this separately for the one-way and the two-way
cases.

4.1 Tightness of the bounds for one-

way communication

The tightness of the bounds for the one-way
cases is demonstrated by showing two families
of one-way protocols for the identity function
(i.e. ID(z,y) = 1iff z = y), one in the local
coins model and the other in the shared coins
Both families consist of protocols pa-
rameterized by the maximum number of bits
exchanged by the parties (denoted as mg). The
protocols meet the corresponding bounds, up to
a multiplicative factor, for all possible values of
mg.

Thus, the tightness of the bounds of Theo-
rems 1 and 3 (the one-way cases) is established.

model.

4.1.1 Local coins

The protocol uses as building blocks two known
protocols for ID:

e The following protocol is due to [RY],
and will be denoted as wry. On input
x,y € {0,1}", party P, chooses at random

a prime p in [n,4n], and sends (p, & mod p)
to P5. Party P, outputs 1 iff (& mod p) =

(g mod p).
It is easy to verify that if « # y then
Prob(m(z,y) = 0) > 2 — o(1). (There

are (3 = o(1))5s [n 4n] and if

then z = y.) If 2 = gy then m(x,y) = 1.
Clearly, m.,, = 2logn — log logn + 4,

rr. =logn —loglogn+2,and 72 =0.

TRY

e The following protocol is a slight modifica-
tion of a protocol presented in [PS], and
will be denoted wps. The parties use 3 dif-
ferent messages. Let py denote the prob-
ability that P; sends the ith message on
input x, and ¢/ the probability that P,, on
input 2 and having received the ith mes-
sage, outputs 1. On inputs z,y € {0,1}",

let
e Tm . Tm 1
P = € | COS W , SIT ot )

where ¢, is a normalization constant, and

b+ cos (H57) 1 s (50)

1 —cos (555) )-
It is easy to verify that if x = y then % +
2726 < Prob(w(z,y) = 1) < 1 + 27274,
and if z # y then Prob(w(z,y) = 0) >
$+272"7% (Note that £ < ¢, < £ forall 2,
andthat—<cosa< f0r0<a<—)
Note that we may approx1mate the prob-

q:

abilities by multiples of 272"=8 and let
yoe =T2_=2n+48.

The combined protocol with parameter mg,
operates as follows on inputs x,y € {0, 1}".

o For my > 2logn — loglogn 4+ 4. We par-
tition the input to blocks of length £ (to
be computed)® and execute mpy on each

% Assume that k& divides n. Otherwise the last block
will be shorter.



block, using the same prime for all the
blocks. Namely:

Letz =;...2x,and y = y; ...yx, where
each z;, y; is of length k.

Party P;: Choose a prime p €g [k,4k].
compute ¥¥ = (Z; mod p)o...o(Zx mod p).
Send (p,2") to Ps.

Party P»: Compute y? = (y; mod p)o...o
(yz mod p). Output 1 iff y* = 2.

It can be verified that for these values of
mo,

€ >%
my, = (3 + 1)log4k —loglog k
rl = log (ljgkk) .

Setting k to be the largest integer such that
m. < mg, and using Theorem 1 (part (b)),
we get 7 — R}, (ID) < 3.

For my < logn — loglogn 4+ 4. For these
values of mgy, the parties execute wps on
(zF,y?) instead of having party P, send a?
to P». Namely:

Party P;: Choose a prime p €g [k,4k].
Compute 2¥ = (#; mod p)o...o (22 mod
p). Send p to P, and execute mpg on a?.
Party P»: compute y* = (g, mod p)o...o
(9= mod p). Execute mps on y”.

Using the lower and upper bounds on ¢,,.,
it can be verified that for these values of
To,

v

p 2—527"logk
r (32 4+ 1) log 4k — loglog k + 8
my, = logk —loglogk + 4

a
1
a

Setting k to be the smallest integer such
that m, < myg, and using Theorem 1 (part
(a)), we get that ri /R __(ID) < 32 +
o(1), for all k.

For logn — loglogn + 4 < my < 2logn —
loglogn + 4. For these values of mg, use
the previous case with & = n (namely one

block). According to Theorem 1 (part (b))
we have 7 /R) _ (ID) <3+ o(1).

4.1.2 Shared coins

First we note that n + 1 shared coins are suf-
ficient for computing any function with advan-
tage 27", exchanging one bit. (If the first n
coin-tosses are equal to the input of P, it sends
‘1’ and P, computes the function value. Oth-
erwise P, sends ‘0’ and P, outputs the value
of the remaining coin.) However, this method
cannot be modified to use smaller amounts of
coin-tosses.

We show a one-way, shared coins protocol for
ID. Given a limit of mg bits to be exchanged,
the parties use log(:"~) + 2 coin-tosses, and in-
terpret the first log(;-) coins as an integer
i€r(l...;=). Let the inputs be partitioned
to - blocks z = Ty T oa and y = Yooy,
such that |y;| = |z;| = me.

Party P;: Send z; to Ps.
Party P»: If z; # y; output 0. Otherwise, if
¢ = 1 output 1 with probability %, and if ¢ # 1,

output 1 with probability 1. These random

choices are implemented usiﬁg the two remain-
ing shared coins.

It can be verified that ¢, > 72. According
to Theorem 3, we have that in this model r, —

R, ..(ID) < 2.

4.2 Tightness of the bounds for two-
way communication

The bounds for the two-way models behave dif-
ferently for m, < logn and logn < m, < n.

In the first case, the bounds depend only on
the input length » and on m,. The bound of
Theorem 2 (local coins) is similar to that of
Theorem 1 (the corresponding one-way model),
thus its tightness is already established. In or-
der to establish the tightness of the bound of
Theorem 4 (shared coins), we define and show
a family of protocols for the PO function (see
section 4.2.1).



In the second case (logn < m, < n), the
bounds depend also on the deterministic com-
munication complexity, C5=*(f), of the func-
tion being computed. Therefore, the tightness
of the bounds is demonstrated by showing a
family of functions, one for each possible value
of C=*(f); for each function and a given num-
ber of bits to be exchanged (denoted as myg), we
show a protocol for this function using a num-
ber of coin-tosses that meets the corresponding
lower bound (see section 4.2.2).

Note that for functions f such that
C5=2(f) = n (e.g. ID), the one-way and the
two-way bounds are similar up to a multiplica-
tive constant for every value of m,, both in the
local coins and the shared coins models. We
therefore get that the one-way protocols for I D
meet also the corresponding two-way bounds,
for all values of m,.

4.2.1 The Pointer function

Consider the following function.

the g-th bitin 2z ifg<n
and £ > n
PO(z,y) =< the &-thbitiny if 2 <n
and g > n
0 otherwise.
It can be seen that* Cp=*(PO) = 2 + logn.

A lower bound is due to the minimum number
of generalized rectangles in a decomposition of
PO (see [Y2] for details), and an upper bound
is due to the deterministic special case of the
following protocol.

We show a shared coins, two-way protocol for
PO. This Protocol demonstrates the tightness
of the bound of Theorem 4 for 3 < my < logn,
and will be used in the next section to show
tightness for logn < m, < n.

*A result by [PS] can be extended to show that even
the unbounded error communication complexity of PO,
in the local coins models, is at least log n.

Let 2,y € {0,1}" be the inputs, and let
k = [5m5=s|. The parties use logk + 1 coin-
tosses, in the following way. As the function is
divided into three regions, the parties first ex-
change two bits in order to learn the region their
inputs are in. Without loss of generality, as-
sume that § < n and & > n. Then, party P, lets
T =21...2, |2;| = 7. Let the parties interpret
the first log k shared coins as i €g (0...k —1).
Party Ps: If % <g< w (namely if the g-th
bit in 2 is in the i-th block) then send '1"o(§—")
to P;. Otherwise send 0.
Party Pi: If received 0’ output the value of the
remaining shared coin. Otherwise, output the
(§ — 2)-th bit in 2; (i.e. the j-th bit in x).
Clearly, my communication-bits are sufficient,
and it can be verified that ¢, = i Ac-
cording to part (b) in Theorem 4, we have

rr— Ry o (PO) < 4.

Note that a similar local coins protocol (P
sends 7 as well) is also tight with the correspond-
ing bound.

4.2.2 The hybrid functions

In order to show the tightness of the bounds
for all values of C=*(f), we define a series of
hybrid functions, for logn <7 < n:

_J ID(z,y) if <2 and §< 2
hil,y) = { PO(z,y) otherwise
It can be easily seen that® ¢ < Cp=*(h;) < i+
2. The main contributor to the communication
complexity of each hybrid is the I D block, while
the PO block is used to keep the function non-
degenerate.

Protocols for h;, parameterized by mg, (the
number of bits to be exchanged), either in the
local coins or the shared coins models, are an
immediate combination of the corresponding

®The bound rr > 7w — 1 implies CE2(f) > logn

for all non-degenerate functions f, thus this is the entire
range of possible communication complexities.



protocols for I'D and PO. Namely, the par-
ties first learn, using two bits of communica-
tion, which region their inputs are in. Then the
parties execute the appropriate protocol. It can
be easily verified that for each h; and for both
the local and shared coins models, these com-
bined protocols achieve the corresponding lower
bounds up to a multiplicative constant, in the
same manner as the protocols they consist of

do.

5 Reducing the number of

coin-tosses

Throughout the paper, we discussed the num-
ber of coin-tosses used by the parties as a func-
tion of the number of bits exchanged. (Namely,
we showed lower bounds on 7, as a function of
m, and specific protocols meeting that bound.)
The following theorem shows that the number
of coin-tosses in any protocol can be reduced up
to a value that depends only on the advantage
achieved by the protocol, without increasing the
number of communication-bits used.

Theorem 5 Let f:{0,1}" x {0,1}" — {0,1}
and let © be a protocol that computes [ with
advantage ¢. Then, there exists a protocol w
(of the same model) such that m, = m, and

(a) rm <logn +2loge;* +4 and e =
(for the shared coins models)

(b) rr <logn 4 2loge;' +5 and e =
(for the local coins models)

Remark. This upper bound on r, as a function
of €,, combined with the lower bounds on r, as a
function of m, (in all the computation models),
yields upper bounds on ¢, as a function of m,.
The resulting bound for the local coins models
is®

€ < 32/n - 27T,

SA similar bound can be achieved using known sim-
ulation techniques.

In the shared coins models, the resulting upper
bound on ¢, is trivial.

Proof outline. The proof is based on an idea
of Babai and Newman [BN]. We outline the
proof for the shared coins case only. Consider
the 22" x 27~ table where a row corresponds to
an input pair, a column to a sequence of coin-
tosses, and an entry is 1 iff the output of proto-
col m on the corresponding input and coin-tosses
is f(z,y). Fix a row, and choose k columns at
random. Clearly, there are at least (3 4 €)2
entries of value 1 in this row. Therefore, the

probability of having chosen less than (1 4 £)k

entries of value 1 is, according to the Hoefding
inequality [ES], less than e Summing this
probability over all the 2** rows, and requiring
that the total probability is less than one, we
get that & = 182 is possible. We conclude that
there exists a choice of k coin-toss sequences
that yields an advantage £. Setting r, = log k,

the theorem follows. O

£
5

Acknowledgments

This work was initiated and inspired by a
course on Communication Complexity given
by Benny Chor, for whom we are greatly in-
debted. We also wish to thank Guy Even, Hugo
Krawczyk, Eyal Kushilevitz, Benny Pinkas and
Avi Wigderson for helpful discussions.

References

[AFR] Alon, N., P.Frankl and V. Rédl, “Geo-
metrical Realization of Set Systems and
Probabilistic Communication Complex-
ity”, Proc. of 26th FOCS, pp. 277-280,
1985.

Ben-or M., “Another Advantage of Free
Choice: Complete Asynchronous Agree-
ment Protocols”, Proc. of 2nd PODC,
pp. 27-30, 1982.



[BN]

[ES]

[FLP]

[FIM]

Borodin, A., and J. E. Hopcroft, “Rout-
ing, Merging, and Sorting on Parallel
Models of Computing”, Journal of Com-
puter and System Science 30, pp. 130-
145, 1985.

Babai, L., and I. Newman, private com-
munication via A. Wigderson, 1989.

Erdés P., and J. Spencer, Probabilistic
Methods in Combinatorics, Academic
Press, New York, 1974.

Feldman P., and S. Micali, “Optimal
Algorithms for Byzantine Agreement”,
Proc. of 20th STOC, pp. 148-161, 1988.

Fischer, M. J., and N. A. Lynch, “A
Lower Bound on the Time to Assure In-
teractive Consistency” Information Pro-
cessing Letters, Vol. 14, No. 4, pp. 183-
186, 1982.

Fischer, M. J., N. A. Lynch, and N.
Paterson, “Impossibility of Distributed
Consensus with One Faulty Proces-
sor”, 2nd Symposium on Principles of
Database Systems, 1983.

Fleischer, R., H. Jung, and K. Mel-
horn, “A Time-Randomness Tradeoff for
Communication Complexity”, Jth Inter-

national Workshop on Distributed Algo-
rithms, 1990.

Karloff, H. J., and P. Raghavan, “Ran-
domized Algorithms and Pseudorandom
Generators”, Proc. of 20th STOC, 1988.

Krizanc, D., D. Peleg, and E. Upfal, “A
Time-Randomness Tradeoff for Oblivi-
ous Routing”, Proc. of 20th STOC, pp.
93-102, 1988.

Mehlhorn, K., and E. Schmidt, “Las-
Vegas is better than Determinism in
VLSI and Distributed Computing”,
Proc. of 14th STOC, pp. 330-337, 1982.

[Y1]

[RS]

[Y2]

Paturi, R., and J. Simon, “ Probabilistic
Communication Complexity 7, Journal

of Computer and System Science, Vol.
33, 106-123, 1986.

Rabin, M., and A. C. Yao, private com-
munication via M. Rabin, 1990.

Valiant, L. G., “A Scheme for Fast Par-
allel Communication”, SIAM Journal of
Computing, Vol.11, No. 2, pp. 350-361,
1982.

Yao, A. C., “Probabilistic Complexity:
Towards a Unified Measure of Complex-
ity”, Proc. of 18th STOC, 1977, pp. 222-
227.

Raghavan, P., and M. Snir, “Memory
Versus Randomization in On-line Algo-
rithms”, ICALP 1989, pp. 687-703.

Yao, A. C., “Some Complexity Ques-
tions Related to Distributive Comput-
ing”, Proc. of 11th STOC, 1979, pp. 209-
213.



