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1 IntroductionThe applications of zero-knowledge proof systems to cryptography are too numerous andtoo well known to be listed here. We con�ne ourselves to point out two facts to whichzero-knowledge proofs owe their wide applicability: �rstly, the generality of the notion ofzero-knowledge [11]; and, secondly, the ability to construct zero-knowledge proof systemsfor every NP statement (using a general intractability assumption) [10, Thm. 5]. However,to be of practical use, zero-knowledge proofs have to be also e�cient.A very important complexity measure for (cryptographic as well as arbitrary) protocolsis their round-complexity. Namely, the number of message exchanges taking place in thecourse of the execution. The above quoted result of Goldreich, Micali, and Wigderson [10],by which the existence of one-way functions implies the existence of zero-knowledge proofsystem for every language in NP, is obtained using proof systems with very high round-complexity. Alternative constructions have lower, yet non-constant, round-complexity.The purpose of this work is to present zero-knowledge proof systems, with constant round-complexity, for NP.1.1 Clari�cationsA few clari�cations are in place. First, we stress that by saying an interactive proof systemwe mean one with a negligible error probability. Sometimes, interactive proof systems arede�ned as having constant, say 13 , error probability. Such weak proof systems are of limitedpractical value on their own, and it is implicitly assumed that they are repeated su�cientlymany times so that the error probability is reduced as desired. However, sequential repeti-tions of a protocol yield a corresponding increase in the round-complexity. In fact, in somesense, the problem addressed in this paper is how to reduce the error probability of weakinteractive proofs, without increasing the round-complexity and while preserving their zero-knowledge property. Hence, for sake of simplicity, we address the problem of constructing(constant-round) zero-knowledge proof systems with negligible error probability.1We also stress that we consider interactive proof systems, as de�ned by Goldwasser,Micali and Racko� [11], rather than computationally sound proof systems (also known asarguments), as de�ned by Brassard, Chaum and Cr�epeau [3]. The di�erence between thetwo is sketched below. In (regular) interactive proof systems, the soundness conditionrequires that nobody, regardless of his/her computational abilities, can fool the veri�erinto accepting false statements (except with negligible probability). In computationallysound proof systems, the soundness condition refers only to computationally bounded1An alternative and more complex presentation is possible by considering the \knowledge tightness"of zero-knowledge proof systems with small (but non-negligible) error probability. Loosely speaking, theknowledge tightness of a zero-knowledge protocol is an upper bound on the ratio between the running timeof simulators for the protocol and the running time of the corresponding veri�ers [10, Remark 18]. Theaim is to construct constant-round proof systems with simultaneously small error probability and smallknowledge tightness. 1



cheating provers and, furthermore, it is typically proven to hold under some intractabilityassumption.Finally, we stress that our approach depends, in an essential manner, on the standardde�nition of zero-knowledge which allows the simulator to run in expected polynomial-time(cf., [11, 10]). We do not know whether our results can be obtained under a more strictde�nition of zero-knowledge which only allows the simulator to run in (strict) polynomial-time. We remark that many other popular results also depend on the same convention.For example, Graph Isomorphism (GI) is shown to have a perfect zero-knowledge proofusing a simulator that runs for expected polynomial-time [10, Thm. 2]. To the best ofour knowledge, using a simulator that runs for strict polynomial-time, one can only showthat GI has an interactive proof which is almost-perfect (statistical) zero-knowledge. Evenworse, the Graph Non-Isomorphism presented in [10] is not known to have an almost-perfect zero-knowledge proof (under strict polynomial-time simulators), whereas it has aperfect zero-knowledge proof system [10, Thm. 3] (with respect to expected polynomial-time simulators).21.2 Our Main ResultWe show how to construct constant-round zero-knowledge interactive proof systems forany language in NP. Our construction relies on the existence of collections of claw-freefunctions. Such functions exist if factoring Blum Integers is hard (cf. [12]), or alternativelyif the Discrete Logarithm Problem is intractable (cf. [5]).As usual in the area of zero-knowledge, the results are most simply stated using anon-uniform formalization. In this formalization the intractability assumptions are statedwith respect to non-uniform families of polynomial-size circuits. A formalization in termsof uniform complexity is possible. See [7].Remark: The work reported here has been cited in the literature already in 1988. How-ever, no version of this work has ever appeared before.1.3 Related WorkConstant-round zero-knowledge computationally sound proof (i.e., argument) systems forNP have been presented in [6] and [4]. As explained above, these protocols are weakerthan ours in the sense that they don't constitute proof systems (with \unrestricted" sound-ness condition). However, these works have also advantages over ours. The advantage ofthe work of Feige and Shamir is that it uses a much weaker intractability assumption [6];speci�cally, they only assume the existence of arbitrary one-way functions. The advantageof the work of Brassard, Cr�epeau and Yung is that their protocol is perfect zero-knowledge2 A sequential version of the Graph Non-Isomorphism presented in [10] can be shown to be almost-perfect (statistical) zero-knowledge by using a simulator that runs for strict polynomial-time.2



this work Fiege and Shamir [6] Brassard et. al. [4]soundness + (unbounded) � (computational) � (computational)zero-knowledge � (computational) � (computational) + (perfect)assumptions � (claw-free) + (one-way) � (speci�c)Figure 1: Comparing our work to [6] and [4][4], rather than just being computationally zero-knowledge.3 (The intractability assump-tion in [4] is incomparable to ours, and seems stronger than the mere existence of one-wayfunctions.) Hence, the three works (i.e., our, and those of [6] and [4]) are incomparable:each has some advantage over the other two.Non-interactive zero-knowledge proof systems, as de�ned by Blum, Feldman and Micali[2], seem related to constant-round zero-knowledge proof systems. One has to be careful,though, and recall that in the setting of non-interactive proof systems both prover andveri�er have access to a uniformly chosen string, called the reference string. We stressthat the reference string is not selected by either parties, but is rather postulated to beuniformly chosen by some trusted third party. Clearly, combining a secure coin-ippingprotocol (cf. Blum [1]) with a non-interactive zero-knowledge proof system, one can derivea zero-knowledge proof system. Note, however, that the round-complexity of the resultinginteractive proof system depends on the round-complexity of the coin-ipping protocol andon whether it can be securely performed in parallel many times. In fact, one can view ourwork as suggesting a coin-ipping protocol that remains secure even if executed in parallelpolynomially many times.Other e�ciency measures related to zero-knowledge proofs and arguments have beeninvestigated in many works; see for example, [15, 16].1.4 OrganizationWe start with an overview of our approach and present an abstraction of a technical dif-�culty encountered and resolved. We then present the building blocks of our interactiveproof system which are two \complementary" types of commitment schemes. A detaileddescription of our interactive proof system follows and we conclude by presenting a simu-lator which demonstrates that this interactive proof system is indeed zero-knowledge.2 OverviewWe start by reviewing the standard zero-knowledge proof system for Graph 3-Colorability.This interactive proof system, presented by Goldreich, Micali and Wigderson [10], proceeds3The Feige-Shamir argument system, mentioned above, also has a perfect zero-knowledge version [6],but this version relies on seemingly stronger complexity theoretic assumptions than required for the com-putational zero-knowledge version. 3



by (a polynomial number of) sequential repetitions of the following basic protocol.� Common Input: A simple (3-colorable) graph G=(V;E).� Prover's �rst step (P1): Let  be a 3-coloring of G. The prover selects a randompermutation, �, over f1; 2; 3g, and sets �(v) def= �( (v)), for each v 2 V . (Hence,the prover forms a random relabelling of the 3-coloring  .) The prover sends to theveri�er a sequence of commitments so that the ith commitment is to the value �(i);� Veri�er's �rst step (V1): The veri�er uniformly selects an edge (i; j) 2 E, and sendsit to the prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices i and j;� Prover's second step (P2): The prover reveals the values corresponding to the ith andjth commitments;� Veri�er's second step (V2): The veri�er accepts if and only if the revealed values aredi�erent elements of f1; 2; 3g and if they indeed �t the corresponding commitmentsreceived in step P1;It is shown in [10] that the basic protocol is zero-knowledge and that this propertyis preserved under sequential repetitions. Repetitions are required in order to reduce theerror probability of the basic protocol, which might be as large as 1 � 1jEj , to a negligiblefunction of jGj. But sequential repetitions are out of the question if one seeks round-e�cient protocols. Hence, the key to round-e�cient error reduction is parallel executionof the above basic protocol4. However, as demonstrated by Goldreich and Krawcyzk, theprotocol which results from parallel execution of the basic protocol, su�ciently many times,can not be proven zero-knowledge using a universal simulator which uses the veri�er asa black-box [8]. We note that all known zero-knowledge protocols are proven to be zero-knowledge using such a universal simulator, and, furthermore, that it is hard to conceivean alternative way of proving that a protocol is zero-knowledge. Hence, slightly di�erentapproaches are required.Two di�erent approaches for resolving the above di�culties have been suggested in[10]. These two approaches share an underlying idea which is to let the veri�er committo its queries (i.e., a sequence of edges each corresponding to a di�erent commitment to acoloring of the graph) before the prover commits to a sequence of colorings of the graph.The two approaches vary by the manner in which the veri�er commits to its queries.4Namely, the prover independently generates many random relabelling of the coloring  and commits toeach of them. The veri�er then selects a query edge for each committed coloring, and checks the revealedcolors supplied by the prover. If all �ts the corresponding commitments and each pair of colors is di�erentthen the veri�er accepts. 4



1. One possibility is to use an \ordinary" commitment scheme (like the one used bythe prover)5. This will enable a computationally unbounded prover to �nd out thequeries before committing to the colorings, and thus cheat the veri�er causing itto accept also graphs that are not 3-colorable. Yet, a computationally boundedcheating prover cannot break these commitments and hence the proposed protocolmay be computationally sound.2. The other possibility is to use a commitment scheme with perfect secrecy6. Thedisadvantage in this approach is that commitment schemes with perfect secrecy seemharder to construct that \regular" ones.Implementing the two (above mentioned) approaches turned out to be more di�cultthan anticipated. Nevertheless, the �rst approach has been implemented in [6] yieldingzero-knowledge arguments for every language inNP provided that one-way functions exist.The current paper presents an implementation of the second approach.The main di�culty in implementing the second approach is in the construction ofthe simulator demonstrating the zero-knowledge of the (\parallelized") interactive proofsystem sketched above. In the rest of this section we try to provide an abstract accountof the di�culty and our approach to resolving it.A technical problem resolvedPreliminaries: We call a function f :N 7!R negligible if for every polynomial P (�) and allsu�ciently large n's f(n) < 1=P (n). A function f :N 7!R s called non-negligible if thereexists a polynomial P (�) so that for all su�ciently large n's f(n) > 1=P (n). Note thata function may be neither negligible nor non-negligible. Both notions extend naturallyto functions from strings to reals; for example, F : f0; 1g� 7! R is said to be negligible iff(n) def= maxx2f0;1gnfF (x)g is negligible.While constructing the zero-knowledge simulator for the \parallelized" interactive proof,a problem of the following nature arises. Suppose that we are given access to two prob-abilistic black-boxes denoted A and B. On input x 2 f0; 1gn, the �rst black-box, A,outputs a \key" K with probability denoted a(x) and halts without output otherwise (i.e.,a(x) def= Prob(A(x) = K)). On input x 2 f0; 1gn and key K, the second black-box, B,produces an output (in f0; 1gn) with probability denoted b(x) and otherwise halts withno output (or outputs the empty string �). The absolute di�erence between a(x) andb(x) is negligible. We denote by D(x) the output distribution B(x;K) conditioned onB(x;K) 6= � (i.e., for every �, we have Prob(D(x)=�) = Prob(B(x;K)=�jB(x;K) 6=�)).On input x, our goal is to output strings according to distribution D(x) with probabilityat least a(x) and otherwise indicate failure (say by outputting �). Actually, we are al-lowed to output the strings according to D(x) with probability which is at most negligibly5See Section 3 for a more formal discussion of various types of commitment schemes.6Again, see Section 3. 5



smaller than a(x). We are allowed to run in expected polynomial-time and invoke bothblack-boxes, where each invocation is charged at unit cost.A natural attempt to solve the problem follows. On input x, we �rst invoke A(x).If the output is not K then we halt indicating failure, otherwise we repeatedly invokeB(x;K) until a non-empty output is obtained. Clearly, the expected number of timesthat B is invoked is a(x)=b(x). In case a(x) � b(x) holds for all x's, this is OK. Anothergood case is when the function a : f0; 1g� 7! R is nonnegligible (as in this case a(x)=b(x)is very close to 1). We remark that in case the function a : f0; 1g� 7! R is negligiblewe may always halt without output. The problem, however, is what to do in case thefunction a : f0; 1g� 7!R is neither nonnegligible nor negligible and the ration a(x)=b(x) isnot bounded by a polynomial (e.g., occasionally, a(x) = 2�jxj and b(x) = 2�2jxj).Our solution is slightly more complex. On input x, we �rst invokeA(x) and proceed onlyif the output is K (otherwise we halt indicating failure as before). Next, we approximatea(x) by invoking A(x) until we get output K for, say, jxj2 times. This yields, with veryhigh probability, an approximation of a(x) up to a constant factor (i.e., the estimate isthe ratio of jxj2 over the number of invocations of A(x)). Denote this estimate by ~a(x)and assume that ~a(x) � 2�jxj (otherwise set ~a(x) = 2�jxj). We now invoke B(x;K), forat most (say) jxj2=~a(x) times, until a non-empty string is obtained. If such a string isobtained we output it, otherwise we halt with no output. Note that in case the �rstinvocation of A(x) outputs K we end-up invoking the two black-boxes for poly(jxj)=a(x)times. Although poly(jxj)=a(x) may be more than a polynomial in jxj, its contribution tothe expected running time is scaled down by a factor of a(x), and so we obtain expectedpolynomial-time running time.3 Commitment schemesGenerally speaking commitment schemes are two-party protocols, partitioned into twophases, guaranteeing two conicting requirements. The �rst phase, called commit, is sup-posed to commit the sender to a value without allowing the receiver to know which valuethis is. In the second phase, called reveal, the value determined by the �rst phase canbe revealed. Hence, the conicting requirements are secrecy of the value at the commitphase and nonambiguity of the value revealed later. These two conditions can be stated ininformation theoretic or in computational terms. The information theoretic formulationimplies the computational one, but not vice versa.3.1 Commitment schemes of computational secrecyThe more standard commitment scheme is one in which the nonambiguity requirementis absolute (i.e., information theoretic) whereas the secrecy requirement is computational.For sake of simplicity we refer to such schemes as commitment schemes.6



Loosely speaking, a commitment scheme is an e�cient two-phase two-party protocolthrough which one party, called the sender, can commit itself to a value so the followingtwo conicting requirements are satis�ed.1. Secrecy: At the end of the commit phase, the other party, called the receiver, doesnot gain any (computational) knowledge of the sender's value. This requirement hasto be satis�ed even if the receiver tries to cheat.2. Nonambiguity: Given the transcript of the interaction in the commit phase, thereexists at most one value which the receiver may later (i.e., in the reveal phase) acceptas a legal \opening" of the commitment. This requirement has to be satis�ed evenif the sender tries to cheat.In addition, one should require that the protocol is viable in the sense that if both partiesfollow it then, at the end of the second phase, the receiver gets the value committed to bythe sender. Without loss of generality, the reveal phase may consist of merely letting thesender reveals the original value and the sequence of random coin tosses that it has usedduring the commit phase. The receiver will accept the value if and only if the suppliedinformation matches its transcript of the interaction in the commit phase. The latterconvention leads to the following de�nition (which refers explicitly only to the commitphase).De�nition 1 (bit commitment scheme): A bit commitment scheme is a pair of probabilisticpolynomial-time interactive machines, denoted (S;R) (for sender and receiver), satisfying:� Input Speci�cation: The common input is an integer n presented in unary (servingas the security parameter). The private input to the sender is a bit, denoted v.� Secrecy: The receiver (even when deviating from the protocol in an arbitrary polynomial-timemanner) cannot distinguish a commitment to 0 from a commitment to 1. Namely,for every probabilistic polynomial-time machine R� interacting with S, the randomvariables describing the output of R� in the two cases, namely (S(0); R�)(1n) and(S(1); R�)(1n), are polynomially-indistinguishable.� Nonambiguity:Preliminaries{ A receiver's view of an interaction with the sender, denoted (1n; r;m), consists ofthe random coins used by the receiver (denoted r) and the sequence of messagesreceived from the sender (denoted m). (In the sequel, we sometimes omit 1nfrom the receiver's view.){ Let � 2 f0; 1g. We say that a receiver's view (of such interaction), (1n; r;m),is a possible �-commitment if there exists a string s such that m describes themessages received by R when R uses local coins r and interacts with machine Swhich uses local coins s and has input (�; 1n).7



{ We say that the receiver's view (1n; r;m) is ambiguous if it is both a possible0-commitment and a possible 1-commitment.The nonambiguity requirement asserts that, for all but a negligible fraction of the cointosses of the receiver, there exists no sequence of messages (of the sender) whichtogether with these coin tosses forms an ambiguous receiver view. Namely, for allbut a negligible fraction of the r 2 f0; 1gpoly(n) there is no m such that (1n; r;m) isambiguous.The secrecy requirement (above) is a computational one; whereas, the nonambiguity re-quirement has an information theoretic avour (i.e., it does not refer to computationalpowers). A dual de�nition, requiring information theoretic secrecy and computationalinfeasibility of creating ambiguities, is presented in Subsection 3.2.Naor showed that commitment schemes can be constructed using any pseudorandom gener-ator [17], and the latter are known to exists provided that one-way functions exist [14, 13].A much simpler commitment scheme can be constructed using any one-way permutationf . Using the results in [9], we may assume without loss of generality that the permutationf has a hard-core predicate, denoted b.Construction 1 (simple bit commitment): Let f : f0; 1g� 7! f0; 1g� be a one-way per-mutation, and b : f0; 1g� 7! f0; 1g be a hard-core predicate.1. commit phase: To commit to value v 2 f0; 1g (using security parameter n), thesender uniformly selects s 2 f0; 1gn and sends the pair (f(s); b(s)�v) to the receiver.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if f(s) = � and b(s)� v = �, where (�; �) isthe receiver's view of the commit phase.The de�nition and the constructions of bit commitment schemes are easily extended togeneral commitment schemes enabling the sender to commit to a string rather than to asingle bit. For the purposes of the current paper we need a commitment scheme by whichone can commit to a ternary value. Extending the de�nition and the constructions to dealwith this case is even more straightforward.In the current paper we need commitment schemes with a seemingly stronger secrecyrequirement than de�ned above. Speci�cally, instead of requiring secrecy with respect toall polynomial-time machines, we will require secrecy with respect to all (not necessarilyuniform) families of polynomial-size circuits. Assuming the existence of non-uniformlyone-way functions (i.e., e�ciently computable functions that cannot be inverted even bynonuniform families of polynomial-size circuits) commitment schemes with nonuniformsecrecy can be constructed, following the same constructions used in the uniform case.8



3.2 Perfect Commitment SchemesThe di�erence between commitment scheme (as de�ned in Subsection 3.1) and perfectcommitment schemes (de�ned below) consists of a switching in scope of the secrecy andnonambiguity requirements. In commitment schemes (see De�nition 1), the secrecy re-quirement is computational (i.e., refers only to probabilistic polynomial-time adversaries),whereas the nonambiguity requirement is information theoretic (and makes no referenceto the computational power of the adversary). On the other hand, in perfect commit-ment schemes (see de�nition below), the secrecy requirement is information theoretic,whereas the nonambiguity requirement is computational (i.e., refers only to probabilisticpolynomial-time adversaries). Hence, in some sense calling one of these schemes \per-fect" is somewhat unfair to the other (yet, we do so in order to avoid cumbersome termssuch as \perfectly-secret and computationally-nonambiguous commitment scheme"). Weremark that it is impossible to have a commitment scheme in which both the secrecy andnonambiguity requirements are information theoretic.The Basic De�nitionLoosely speaking, a perfect commitment scheme is an e�cient two-phase two-party protocolthrough which the sender can commit itself to a value so the following two conictingrequirements are satis�ed.1. Secrecy: At the end of the commit phase the receiver does not gain any informationof the sender's value.2. Nonambiguity: It is infeasible for the sender to interact with the receiver so that thecommit phase is successfully terminated and yet later it is feasible for the sender toperform the reveal phase in two di�erent ways leading the receiver to accept (as legal\openings") two di�erent values.Again, we require that the protocol is viable in the sense that if both parties follow it then,at the end of the second phase, the receiver gets the value committed to by the sender.Using analogous conventions to the ones used in Subsection 3.1, we make the followingde�nition.De�nition 2 (perfect bit commitment scheme): A perfect bit commitment scheme is apair of probabilistic polynomial-time interactive machines, denoted (S;R) (for sender andreceiver), satisfying:� Input Speci�cation: As in De�nition 1.� Secrecy: For every probabilistic (not necessarily polynomial-time) machine R� in-teracting with S, the random variables describing the output of R� in the two cases,namely (S(0); R�)(1n) and (S(1); R�)(1n), are statistically close.9



� Nonambiguity:Preliminaries. Fix any probabilistic polynomial-time algorithm F �.{ As in De�nition 1, a receiver's view of an interaction with the sender, denoted(1n; r;m), consists of the random coins used by the receiver (r) and the sequenceof messages received from the sender (m). A sender's view of the same inter-action, denoted (1n; s; ~m), consists of the random coins used by the sender (s)and the sequence of messages received from the receiver ( ~m). A joint view of theinteraction is a pair consisting of corresponding receiver and sender views of thesame interaction. (In the sequel, we sometimes omit 1n from the view.){ Let � 2 f0; 1g. We say that a joint view (of an interaction), (1n; (r;m); (s; ~m)),has a feasible �-opening (with respect to F �) if on input (s;m; ~m;�), algorithmF � outputs (say, with probability at least 1=2) a string s0 such that m describesthe messages received by R when R uses local coins r and interacts with machineS which uses local coins s0 and input (�; 1n).(Remark: We stress that s0 may, but need not, equal s. The output of algorithmF � has to satisfy a relation which depends only on the receiver's view part ofthe input; the sender's view is supplied to algorithm F � as additional help.){ We say that a joint view is ambiguous (with respect to F �) if it has both afeasible 0-opening and a feasible 1-opening (w.r.t. F �).The nonambiguity requirement asserts that, for all but a negligible fraction of thecoin tosses of the receiver, it is infeasible for the sender to interact with the re-ceiver so that the resulting joint view is ambiguous with respect to some probabilisticpolynomial-time algorithm F �. Namely, for every probabilistic polynomial time inter-active machine S�, probabilistic polynomial-time algorithm F �, polynomial p(�), andall su�ciently large n, the probability that the joint view of the interaction betweenR and with S�, on common input 1n, is ambiguous with respect to F �, is at most1=p(n).The nonambiguity requirement asserts that any e�cient strategy S� will fail to producea joint view of interaction, which can later be (e�ciently) opened in two di�erent wayssupporting two di�erent values. As usual, events occurring with negligible probability areignored. In the formulation of the nonambiguity requirement, S� describes the (cheating)sender strategy in the commit phase, whereas F � describes its strategy in the reveal phase.Hence, it is justi�ed (and in fact necessary) to pass the sender's view of the interaction(between S� and R) to algorithm F �. We remark that one could have provided F � alsowith the receiver's view as auxiliary input. This latter convention is a debatable choicewhich only strengthens the nonambiguity requirement, making it insensitive to whetherthe receiver keeps its view secret or not. Construction 2 would hold under the strongerde�nition provided that we use claw-free collections in which the ndex selection algorithm10



(i.e., I) outputs all its coin tosses. (Such stronger claw-free collections exist assuming theintractability of DLP; see, Appendix.)As in De�nition 1, the secrecy requirement refers explicitly to the situation at the endof the commit phase, whereas the nonambiguity requirement implicitly assumes that thereveal phase takes the following form:1. the committer sends to the receiver its initial private input, v, and the random coins,s, it has used in the commit phase;2. the receiver veri�es that v and s (together with the coins (r) used by R in the commitphase) indeed yield the messages R has received in the commit phase. Veri�cationis done in polynomial-time (by running the programs S and R).Construction based on claw-free collectionsPerfect commitment schemes can be constructed using a strong intractability assumption;speci�cally, the existence of claw-free collections (de�ned below). This assumption impliesthe existence of one-way functions, but it is not known whether the converse is true.Nevertheless, claw-free collections can be constructed under widely believed intractabilityassumptions such as the intractability of factoring and of DLP (see Appendix). We startwith a de�nition of claw-free collections. Loosely speaking, a claw-free collection consistsof a set of pairs of functions which are easy to evaluate, both have the same range, andyet it is infeasible to �nd a range element together with preimages of it under each ofthese functions. We de�ne claw-free collections in terms of the algorithms used to e�ectthem; the index/function selection algorithm I, the domain-sampling algorithm D andthe function evaluation algorithm F . Intuitively, algorithm I selects an index, i, whichspeci�es a pair of domains, D0i and D1i , and a pair of functions, f0i and f1i , de�ned overthe domains D0i and D1i , respectively. On input � and i, algorithm D selects randomly(but not necessarily uniformly) an element in the domain D�i . On input �, i and x 2D�i ,algorithm F computes the value of the function f�i at x.De�nition 3 (claw-free collection): A triple of algorithms, (I;D;F ), is called a claw-freecollection if the following conditions hold1. the algorithms are e�cient: Both I and D are probabilistic polynomial-time, whereasF is deterministic polynomial-time. We denote by f�i (x) the output of F on input(�; i; x), and by D�i the support of the random variable D(�; i).2. identical range distribution: For every i in the range of algorithm I, the randomvariables f0i (D(0; i)) and f1i (D(1; i)) are identically distributed.3. hard to form claws: For every probabilistic polynomial-time algorithm, A0, everypolynomial p(�), and all su�ciently large n'sProb �f0In(Xn) = f1In(Yn)� < 1p(n)11



where In is a random variable describing the output distribution of algorithm I oninput 1n, and (Xn; Yn) is a random variable describing the output of algorithm A0 oninput (random variable) In.Item (2) in the de�nition requires that the functions f0i and f1i induce the same distributionwhen applied to elements selected at random by D(0; i) and D(1; i), respectively. A spe-cial case of interest is when both domains are identical (i.e., Di def= D0i = D1i ), the randomvariable D(�; i) is uniformly distributed over Di, and the functions, f0i and f1i , are permu-tations over Di. Such a collection is called a collection of permutations. Anyhow, Item (2)implies that there exist many pairs (x; y) so that f0i (x) = f1i (y) (e.g., in case of collectionsof permutations the number of such pairs is exactly jDij, but in general the number maybe larger7). Such a pair is called a claw. The claw-forming adversary algorithm is givenas input an index i, and tries to �nd a claw. It is required that although many clawsdo exist, e�cient algorithms are unable to �nd claws. Clearly, a claw-free collection ofpermutations (resp., functions) yields a collection of strong one-way permutations (resp.,functions). Examples of claw-free collections are presented in the Appendix. At this pointwe present a construction of perfect commitment schemes that uses a restricted type of aclaw-free collection; speci�cally, we assume that the set of indices of the collection (i.e.,the range of algorithm I) can be e�ciently recognized (i.e., is in BPP).Construction 2 (perfect bit commitment): Let (I;D;F ) be a triplet of e�cient algo-rithms.1. commit phase: To receive a commitment to a bit (using security parameter n), thereceiver randomly generates an index i by invoking I(1n) and sends it to the sender.To commit to value v 2 f0; 1g (upon receiving the message i from the receiver),the sender checks if indeed i is in the range of I(1n), and if so the sender randomlygenerates a domain element s by invoking D(v; i), computes c def= F (v; i; s), and sendsc to the receiver. (In case i is not in the range of I(1n) the sender aborts the protocolannouncing that the receiver is cheating.)2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if F (v; i; s) = c, where (i; c) is the receiver's(partial) view of the commit phase.Proposition 1 Let (I;D;F ) be a claw-free collection with a probabilistic polynomial-timerecognizable set of indices (i.e., the range of algorithm I is in BPP). Then, the protocolpresented in Construction 2 constitutes a perfect bit commitment scheme.Proof: The secrecy requirement follows directly from Property (2) of a claw-free collection(combined with the test i 2 I(1n) conducted by the sender). The nonambiguity require-ment follows from Property (3) of a claw-free collection, using a standard reducibilityargument.7In the general case, the number of claws equalsP�N0i (�) �N1i (�), where N�i (�) def= jfx : f�i (x)=�gj.12



Remark 1 The de�nition of a claw-free collection may be relaxed in several ways main-taining the validity of Proposition 1. In particular, it su�ces to require that the distribu-tions, f0i (D(0; i)) and f1i (D(1; i)), are statistically close (rather than identical). Further-more, this need not hold for all i's in the range of I, but rather for all i 2 I 0, where I 0 isan e�ciently recognizable set so that Prob(I(1n) 62 I 0) is a negligible fraction.Commitment Schemes with a posteriori secrecyWe conclude the discussion of perfect commitment schemes by introducing a relaxation ofthe secrecy requirement, that su�ces for the purposes of the current work. The advantagein the relaxation is that it allows to construct commitment schemes using any claw-freecollection, thus waiving the additional requirement that the index set is e�ciently recog-nizable.Loosely speaking, we relax the secrecy requirement of perfect commitment schemes byrequiring that it only holds whenever the receiver follows its prescribed program (denotedR). This seems strange since we don't really want to assume that the real receiver followsthe prescribed program (but rather allow it to behave arbitrarily). The point is that a realreceiver may disclose the coin tosses used by it in the commit phase at a later stage, sayeven after the reveal phase, and by doing so a posteriori prove that (at least in some weaksense) it was following the prescribed program. Actually, the receiver only proves that hebehaved in a manner which is consistent with its program.De�nition 4 (commitment scheme with perfect a posteriori secrecy): A bit commitmentschemewith perfect a posteriori secrecy is de�ned as in De�nition 3.2, except that the secrecyrequirement is replaced by the following a posteriori secrecy requirement: For every stringr 2 f0; 1gpoly(n) it holds that (S(0); Rr)(1n) and (S(1); Rr)(1n) are statistically close, whereRr denotes the execution of the interactive machine R when using internal coin tosses r.The above a posteriori secrecy requirement can be further relaxed by requiring thatit hold only for every r 2 R0, where R0 is e�ciently recognizable and contains all but anegligible fraction of the strings of length poly(n) (i.e., the number of coins used by thereceiver on input 1n). This relaxation of the a posteriori secrecy requirement is used forcarrying out the proof of the following proposition using claw-free collections which havethe identical range property only for most indices (see Remark 1 above).Proposition 2 Let (I;D;F ) be a claw-free collection. Consider a modi�cation of Con-struction 2, in which the sender's check, of whether i is in the range of I(1n), is omitted(from the commit phase). Then the resulting protocol constitutes a bit commitment schemewith perfect a posteriori secrecy.In contrast to Proposition 1, here the claw-free collection may not have an e�cientlyrecognizable index set. Hence, the sender's check must be omitted from the commit phase.13



Yet, the receiver can later prove that the message sent by it during the commit phase (i.e.,i) is indeed a valid index by disclosing the random coins it has used in order to generate i(using algorithm I). This will, a posteriori, convince the sender that its committed valuewas kept secret till the reveal phase. In case we used a claw-free collection of the relaxedsense discussed in Remark 1, the sender must also check that i 2 I 0. (Note that, for thepurposes of the current paper, we could have further relaxed the de�nition of claw-freecollections and settle for a set I 0, containing all but a negligible fraction of I \f0; 1gn, suchthat I 0 has a constant-round interactive proof system.)Proof: The a posteriori secrecy requirement follows directly from Property (2) of a claw-free collection (combined with the assumption that i is indeed a valid index). The nonam-biguity requirement follows as in Proposition 1.A typical application of commitment scheme with perfect a posteriori secrecy is pre-sented in the current work. In our setting the commitment scheme is used inside aninteractive proof with the veri�er playing the role of the sender (and the prover playingthe role of the receiver). If the veri�er a posteriori learns that the prover has been cheatingthen the veri�er rejects the input. Hence, no damage is caused, in this case, by the factthat the secrecy of the veri�er's commitments might have been breached.ExtensionsAs in the previous subsection, we need to extend the de�nitions and the constructions ofperfect commitment schemes so that they enable the sender to commit to a string ratherthan to a single bit. The de�nitional extensions, omitted here, are quite straightforward.As for the constructions, we may use the following generalization of the commitmentschemes presented above. In the commit phase the receiver generates and sends to thesender a single index i specifying a pair of functions (f0i ; f1i ). To commit to the bit string,v def= �1 � � � �m, the sender sends to the receiver a sequence (f�1i (s1); :::; f�mi (sm)), where sjis generated by invoking D(�j ; i). Preservation of perfect secrecy is argued by using thefact that the statistical di�erence between two product distributions is bounded by thesum of the component-wise statistical di�erences. Computational nonambiguity is arguedusing a standard reducibility argument while observing that two di�erent \openings" of acommitment-sequence yield a claw in at least one component.In addition, for the purposes of this paper, we need perfect commitment schemes withcomputational nonambiguity stated in non-uniform terms. Speci�cally, instead of requiringnonambiguity with respect to all polynomial-time machines, we will require nonambiguitywith respect to all (not necessarily uniform) families of polynomial-size circuits. Assumingthe existence of claw-free collections for which even non-uniform polynomial-size circuitscannot form claws, perfect commitment schemes with non-uniform nonambiguity can beconstructed. The constructions are identical to the ones used in the uniform case.14



4 The Interactive Proof SystemFor the sake of clarity, let us start by presenting a detailed description of the constant-round interactive proof, for Graph 3-Colorability (i.e., G3C), sketched in Section 2. Thisinteractive proof employs two di�erent commitment schemes. The �rst scheme is thesimple commitment scheme (with \computational" secrecy) presented in Construction 1.We denote by Cs(�) the commitment of the sender, using coins s, to the (ternary) value�. The second commitment scheme is a commitment scheme with perfect secrecy (seeSubsection 3.2). For simplicity, we assume that the latter scheme has a commit phase inwhich the receiver sends one message to the sender which then replies with a single message(e.g., the schemes presented in Subsection 3.2). Let us denote by Pm;s(�) the commitmentof the sender to string �, upon receiving message m (from the receiver) and when usingcoins s.Construction 3 (A round-e�cient zero-knowledge proof for G3C):� Common Input: A simple (3-colorable) graph G=(V;E). Let n def= jV j, t def= 2n � jEjand V = f1; :::; ng.� Auxiliary Input to the Prover: A 3-coloring of G, denoted  .� Prover's preliminary step (P0): The prover invokes the commit phase of the perfectcommitment scheme, which results in sending to the veri�er a message m.� Veri�er's preliminary step (V0): The veri�er uniformly and independently selects asequence of t edges, E def= ((u1; v1); :::; (ut; vt)) 2 Et, and sends to the prover a randomcommitment to these edges. Namely, the veri�er uniformly selects s 2 f0; 1gpoly(n)and sends Pm;s(E) to the prover;� Motivating Remark: At this point the veri�er is committed to a sequence of t edges.(This commitment is of perfect secrecy.)� Prover's step (P1): The prover uniformly and independently selects t permutations,�1; :::; �t, over f1; 2; 3g, and sets �j(v) def= �j( (v)), for each v 2 V and 1 � j � t.The prover uses the computational commitment scheme to commit itself to the colorsof each of the vertices according to each 3-coloring. Namely, the prover uniformlyand independently selects s1;1; :::; sn;t 2 f0; 1gn, computes ci;j = Csi;j (�j(i)), for eachi 2 V and 1�j� t, and sends c1;1; :::; cn;t to the veri�er;� Veri�er's step (V1): The veri�er reveals the sequence E = ((u1; v1); :::; (ut; vt)) to theprover. Namely, the veri�er send (s;E) to the prover;� Motivating Remark: At this point the entire commitment of the veri�er is revealed.The veri�er now expects to receive, for each j, the colors assigned by the jth coloringto vertices uj and vj (the endpoints of the jth edge in E).15



� Prover's step (P2): The prover checks that the message just received from the veri�eris indeed a valid revealing of the commitment made by the veri�er at Step (V0).Otherwise the prover halts immediately. Let us denote the sequence of t edges, justrevealed, by (u1; v1); :::; (ut; vt). The prover uses the reveal phase of the computationalcommitment scheme in order to reveal (to the veri�er), for each j, the jth coloring ofvertices uj and vj. Namely, the prover sends to the veri�er the sequence of fourtuples(su1;1; �1(u1); sv1;1; �1(v1)); :::; (sut;t; �t(ut); svt;t; �t(vt))� Veri�er's step (V2): The veri�er checks whether, for each j, the values in the jthfourtuple constitute a correct revealing of the commitments cuj ;j and cvj ;j, and whetherthe corresponding values are di�erent. Namely, upon receiving (s1; �1; s01; �1) through(st; �t; s0t; �t), the veri�er checks whether for each j, it holds that cuj ;j = Csj (�j),cvj;j = Cs0j(�j), and �j 6= �j (and both are in f1; 2; 3g). If all conditions hold thenthe veri�er accepts. Otherwise it rejects.We �rst assert that Construction 3 is indeed an interactive proof for G3C. Clearly, theveri�er always accepts a common input in G3C. Suppose that the common input graph,G=(V;E), is not in G3C. Clearly, each of the \committed colorings" sent by the proverin Step (P1) contains at least one illegally-colored edge. Using the perfect secrecy of thecommitments sent by the veri�er in Step (V0), we deduce that at Step (P1) the proverhas \no idea" which edges the veri�er asks to see (i.e., as far as the information availableto the prover is concerned, each possibility is almost equally likely8). Hence, althoughthe prover sends the \coloring commitment" after receiving the \edge commitment", the\edge commitment" is (almost) statistically independent of the \coloring commitment".It follows that the probability that all the \committed edges" have legally \committedcoloring" is at most  1� 1jEj + �(jEj)!t < e�nwhere � is smaller than any non-negligible function (and in particular �(m) < 1=2m).Hence, we getProposition 3 Construction 3 constitutes an interactive proof system for Graph 3-Colorability.5 The SimulatorWe now turn to show that Construction 3 is indeed zero-knowledge (in the liberal sense al-lowing expected polynomial-time simulators). For every probabilistic (expected9) polynomial-8The negligible di�erence in likelihood is due to the fact that the de�nition of perfect secrecy onlyrequires the commitment distributions to be statistically close.9Veri�er strategies which run in expected polynomial-time but not in strict polynomial-time are con-sidered for sake of elegancy; cf., [11, 10]. There are two common alternative de�nitions for the (expected)16



time interactive machine, V �, we introduce an expected polynomial-time simulator, de-noted M�. The simulator starts by selecting and �xing a random tape, r, for V �. Next,M� simulates Step (P0) by invoking the commit phase (of the perfect commitment scheme)and producing a message m. Given the input graph G, the random tape r, and the prover-message m, the commitment message of the veri�er V � (for Step (V0)) is determined.Hence, M� invokes V �, on input G, random tape r, and message m, and gets the corre-sponding commitment message, denoted CM . The simulator proceeds in two steps.S1) Extracting the query edges: The simulator M� generates a sequence of n � t randomcommitments to dummy values (e.g., all values equal 1), and feeds it to V �. (Thesecommitments are via the regular commitment scheme and feeding them to V � corre-sponds to the prover's Step (P1).) In case V � replies by revealing correctly a sequenceof t edges, denoted (u1; v1); :::; (ut; vt), the simulator records these edges and proceedto the next step. In case the reply of V � is not a valid revealing of the commitmentmessage CM , the simulator halts outputting the current view of V � (e.g., G, r andthe commitments to dummy values). Note that halting in such a case is consistentwith the prover's behaviour (in Step (P2)).S2) Generating an interaction that satis�es the query edges (oversimpli�ed exposition):Let (u1; v1); :::; (ut; vt) denote the sequence of edges recorded in Step (S1). ThesimulatorM� generates a sequence of n � t commitments, c1;1; :::; cn;t, so that for eachj = 1; :::; t, it holds that cuj ;j and cvj;j are random commitments to two di�erentrandom values in f1; 2; 3g and all the other ci;j's are random commitments to dummyvalues (e.g., all values equal 1). The underlying values are called a pseudo-colorings.The simulator feeds this sequence of commitments to V � (which has been invokedfrom scratch with the same random-tape r and the same (Step P1)-message m).(Again, these commitments are via the regular commitment scheme and feeding themto V � corresponds to the prover's Step (P1).) If V � replies by revealing correctly theabove recorded sequence of edges, then M� can complete the simulation of a \real"interaction of V � (by revealing the colors of the endpoints of these recorded edges).Otherwise, the entire Step (S2) is repeated (until success occurs).To illustrate the behaviour of the simulator, assume that the program V � always revealscorrectly the commitment made in Step (V0). In such a case, the simulator will �nd outthe query edges in Step (S1), and using them in Step (S2) it will simulate the interactionof V � with the real prover. Using ideas as in [10], one can show that the simulation iscomputationally indistinguishable from the real interaction. Note that in this case (i.e.,when V � always replies properly), Step (S2) of the simulator is performed only once.running-time of an interactive machine; one alternative is to consider its executions with the prescribedcounterpart (in our case the honest prover) and the other is to consider its executions with an arbitrary(i.e., worse-case) counterpart. Here we may use the more liberal alternative and consider all veri�ers whichrun in expected polynomial-time when the expectation is taken over the coin tosses of both the veri�erand the honest prover. 17



Consider now a more complex case in which, on each possible sequence of internalcoin tosses r, program V � correctly reveals the commitment made in Step (V0) only withprobability 13. The probability in this statement is taken over all possible commitmentsgenerated to the dummy values (in the simulator Step (S1)). We �rst observe that theprobability that V � correctly reveals the commitment made in Step (V0), after receivinga random commitment to a sequence of pseudo-colorings (generated by the simulator inStep (S2)), is approximately 13 . (Otherwise, we derive a contradiction to the computationalsecrecy of the commitment scheme used by the prover.) Hence, the simulator reaches Step(S2) with probability 13 , and each execution of Step (S2) is completed successfully withprobability p � 13 . It follows that the expected number of times that Step (S2) is invokedwhen running the simulator is 13 � 1p � 1.Let us now consider the general case. Let q(G; r) denote the probability that programV �, on input graph G and random tape r, correctly reveals the commitment made inStep (V0), after receiving random commitments to dummy values (generated in Step (S1)).Likewise, we denote by p(G; r) the probability that V � (on input graph G and randomtape r), correctly reveals the commitment made in Step (V0), after receiving a randomcommitment to a sequence of pseudo-colorings (generated by the simulator in Step (S2)).As before the di�erence between q(G; r) and p(G; r) is negligible (in terms of the size of thegraph G), otherwise one derives contradiction to the computational secrecy of the prover'scommitment scheme. We conclude that the simulator reaches Step (S2) with probabilityq def= q(G; r), and each execution of Step (S2) is completed successfully with probabilityp def= p(G; r). It follows that the expected number of times that Step (S2) is invoked whenrunning the simulator is q � 1p . Here are the bad news: we cannot guarantee that qp isapproximately 1 or even bounded by a polynomial in the input size (e.g., let p = 2�nand q = 2�n=2, then the di�erence between them is negligible and yet qp is not boundedby poly(n)). This is why the above description of the simulator is oversimpli�ed and amodi�cation is indeed required.We make the simulator expected polynomial-time by modifying Step (S2) as follows.We �rst add an intermediate step, denoted (S1.5), to be performed only if the simulatordid not halt in Step (S1). The purpose of Step (S1.5) is to provide a good estimate ofq(G; r). The estimate is computed by repeating the experiment of Step (S1) until a �xed(polynomial in jGj) number of correct10 V �-reveals are encountered (i.e., the estimate willbe the ratio of the number of successes divided by the number of trial). We stress that, incase Step (S1.5) is performed, the number of trials (in it) is not necessarily a polynomialbut is rather poly(jGj)=q(G; r), on the average. By �xing a su�ciently large polynomial, wecan guarantee that with overwhelmingly high probability (i.e., 1� 2�poly(jGj)) the estimateis within a constant factor of q(G; r). Step (S2) of the simulator is modi�ed by adding abound on the number of times it is performed, and if none of these executions yield a correct10We don't require here that the revealed string matches the one recorded in Step (S1). The distinction,however, is immaterial in view of the last modi�cation described below.18



V �-reveal then the simulator outputs a special symbol indicating time-out. Speci�cally,Step (S2) will be performed at most poly(jGj)=q times, where q is the estimate to q(G; r)computed in Step (S1.5). In addition, we modify the simulator so that if the veri�erever reveals a correct opening of the commitment that is di�erent from the one recordedin Step (S1) then the simulator halts outputting a special symbol indicating ambiguity.One can easily verify that the modi�ed simulator has expected running time bounded byq(G; r) � poly(jGj)q(G;r) = poly(jGj). Hence,Claim 1 The modi�ed simulator runs in expected polynomial-time.It is left to analyze the output distribution of the modi�ed simulator. We start byreducing this analysis to the analysis of the output distribution of the original simulator.The modi�ed simulator, hereafter denoted M��, di�ers from the original one (i.e.,M�) intwo types of executions in which M�� outputs special symbols, speci�cally `time-out' and`ambiguity', whereas the original simulator proceeds to the next iteration of (S2). Hence,we need to bound the probability that these executions occur.Claim 2 The probability that the modi�ed simulator outputs the time-out symbol is anegligible function of jGj.Proof: Let �(G; r) denote the probability that, on input a graph G and coin tosses r, themodi�ed simulator outputs a special time-out symbol. Then�(G; r) = q(G; r) �Xi�1 Prob(b1=qc = i) � (1 � p(G; r))i�poly(jGj)< q(G; r) �  Prob q(G; r)q = �(1)! � (1 � p(G; r))poly(jGj)=q(G;r)+Prob q(G; r)q 6= �(1)!!< q(G; r) � (1� p(G; r))poly(jGj)=q(G;r) + 2�jGjIn the sequel, we ignore the additive 2�jGj term. We now show that �(G; r) is a negligiblefunction of jGj. Assume, to the contrary, that there exists a polynomial P (�), an in�nitesequence of graphs fGng (with jGnj = n), and an in�nite sequence of random tapes frng,such that �(Gn; rn) > 1=P (n). It follows that for each such n we have q(Gn; rn) > 1=P (n).We consider two cases.Case 1: For in�nitely many of these n's, it holds that p(Gn; rn) � q(Gn; rn)=2. In such acase we get for these n's�(Gn; rn) � (1 � p(Gn; rn))poly(jGn j)=q(Gn;rn)�  1 � q(Gn; rn)2 !poly(jGnj)=q(Gn;rn)< 2�poly(jGnj)=219



which contradicts our hypothesis that �(Gn; rn) > 1=poly(n).Case 2: For in�nitely many of these n's, it holds that p(Gn; rn) < q(Gn; rn)=2. It fol-lows that for these n's we have jq(Gn; rn) � p(Gn; rn)j > P (n)=2, which leads tocontradiction of the computational secrecy of the commitment scheme (used by theprover).Hence, contradiction follows in both cases.2Claim 3 The probability that the modi�ed simulator outputs the ambiguity symbol is anegligible function of jGj.Proof: Intuitively, the claim follows by using the (computational) nonambiguity propertyof the veri�er's commitment scheme. However, when trying to carry out the standardargument one encounter the following di�culty. The standard argument proceeds bycontradiction and uses the machine V �, invoked by the simulator, to do things assumedimpossible (i.e., produce ambiguous commitments). The problem is that V � might haverevealed di�erent values when invoked more than polynomially many times. Recall thatthe number of times Step (S2) is performed is not bounded by a polynomial; only theexpected number of times that Step (S2) is performed (by the modi�ed simulator) isbounded by a polynomial. Nevertheless, the problem is easily resolved by disregardingthe executions of the modi�ed simulator in which Step (S2) is performed too many times.Speci�cally, assume by contraction that the `ambiguity' symbol is output with probabilityat least 1=P (jGj), for a polynomial P (�) and an in�nite sequence of graphs. Then, we cantruncate the executions ofM�� in which Step (S2) is performed more than 2T (jGj) �P (jGj)times, where T (�) denotes the expected running-time of M��. By an averaging argumentit follows that also in these truncated executions M�� outputs an `ambiguity' symbol withnon-negligible probability (i.e., with probability at least 1=2P (jGj)). Contradiction nowfollows using the standard techniques. 2To conclude, it su�ces to show that the output of the original simulator (i.e., M�) iscomputationally indistinguishable from the output of veri�er V � (when interacting withthe prover).Claim 4 The ensemble fM�(G)gG2G3C is computationally indistinguishable from the en-semble f(P; V �)(G)gG2G3C , where (P; V �)(G) denotes the output of V � after an interactionwith the prover on common input G.Proof: When trying to carry out the standard argument (i.e., as in [10]), we again en-counter the di�culty mentioned in the proof of the previous claim. Namely, the standardargument proceeds by contradiction and uses the machine M� to do things assumed im-possible (i.e., distinguish computationally secure commitments to di�erent values). Buthere M� is not strictly polynomial-time, and furthermore M� is not even guaranteed to20



be expected polynomial-time. Yet, again, the problem is resolved by truncating the rareexecutions of M� which are too long. Speci�cally, assume that the above ensembles aredistinguished (by an e�cient algorithm A) with gap �(G) (i.e., �(G) = jProb(A(M�(G))=1) � Prob(A((P; V �)(G)) = 1)j), and that �(G) � 1=P (jGj) for a polynomial P (�) and anin�nite sequence of graphs fGn : n 2 Sg (with jGnj = n). De�ning a predicate R sothat R(y) = 1 if y is an interaction-transcipt in which the veri�er correctly reveals thecommitment made in Step (V0) and R(y) = 0 otherwise, we consider two casesCase 1: For in�nitely many n 2 S, it holds that Prob(R((P; V �)(Gn)) = 1) � �(Gn)=3.On these Gn's, it is guaranteed that the expected number of times that Step (S2)is performed (by M�) is at most 3=�(Gn) < 3P (jGnj). Hence, runs of M� in whichStep (S2) is repeated more than T (jGnj) def= 6P (jGnj)2 times occur with probabilityat most 1=2P (jGn j). Thus, truncating the execution of M� after T (jGnj) repetitionsof Step (S2) yields output that is at most 1=2P (jGnj) away (in statistical distance)from the output of the original M�. It follows that algorithm A still distinguishes,with gap at least �(Gn)� 1=2P (jGn j), the output of the truncated M� from the realinteraction with the prover. At this point, we may apply the standard techniques(cf. [10], but actually the proof here is simpler).Case 2: For in�nitely many n 2 S, it holds that Prob(R((P; V �)(Gn)) = 1) < �(Gn)=3.It follows that, on these Gn's, with probability at least 1 � �(Gn)=3, the interactionof V � with the real prover is suspended at Step (V1). There are two subcases toconsider.� In the �rst subcase, we assume that the simulator halts in Step (S1) with prob-ability at most 1 � �(Gn)=2. Thus, there is a gap, of at least �(Gn)=6 betweenthe probability that V � correctly reveals its commitments when interacting withthe prover and the probability that V � correctly reveals its commitments when\interacting" with the simulator. In this case V � is used to distinguish thecommitments to dummy values (as produced by the simulator) from commit-ments to legal coloring (as produced by the prover), in contradiction to thecomputational secrecy of the prover's commitment scheme.� In the second subcase, we assume that the simulator halts in Step (S1) withprobability at least 1 � �(Gn)=2. This means that both the real and the simu-lated interactions are suspended with probability at least 1 � �(Gn)=2. Hence,algorithm A must distinguish such suspended interactions with gap at least�(Gn)=2. It follows that algorithm A distinguishes commitments to dummy val-ues (as appearing in suspended interactions produced by the simulator) fromcommitments to legal coloring (as appearing in suspended interactions with theprover).Since in all cases we reached contradiction to the computational secrecy of the prover'scommitment, the claim follows. 2 21



Combining the above four claims, we getProposition 4 Construction 3 is zero-knowledge.6 ConclusionOne can modify Construction 3 so that weaker forms of perfect commitment schemes canbe used. We refer speci�cally to commitment schemes with perfect a posteriori secrecy(see Subsection 3.2). In such schemes the secrecy is only established a posteriori by thereceiver which discloses the coin tosses it has used in the commit phase. In our case, theprover plays the role of the receiver, and the veri�er plays the role of the sender. Hence, theprover may establish the secrecy of the veri�er's commitment (of Step (V0)) by revealing,in Step (P2), the coins it has used as receiver in Step (P0). This su�ces since, in casesecrecy is not established, the veri�er may reject. In such a case no harm has been causedsince the secrecy of the perfect commitment scheme is used only to establish the soundnessof the interactive proof. Hence, combining the above discussion with Propositions 2, 3,and 4, we getTheorem 1 If a claw-free collection exists then every language in NP has a constant-round zero-knowledge interactive proof system.AcknowledgementsWe would like to thank the anonymous referees for their useful comments. Thanks alsoto Erez Petrank for pointing out a mistake in a previous version (which has unfortunatelyappeared in a journal). The mistake was in the last sentence of Subsection 1.1.
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A Examples of Claw-free CollectionsThe following examples of claw-free collections have been discovered independently bymany researchers. In particular, the DLP Claw-free Collection has appeared in [5], andthe Factoring Claw-free Collection is an obvious modi�cation of the construction appearingin [12].A.1 The DLP Claw-free CollectionWe start by presenting a claw-free collection under the assumption that the Discrete Log-arithm Problem (DLP) is intractable. Here we refer to the DLP for �elds of prime car-dinality. Namely, the input to DLP consists of a prime P , a primitive element of themultiplicative group mod P , and an element of the group. The problem is, given such atriplet (P;G; Y ), to �nd an x such that Gx � Y mod P . The DLP intractability assump-tion asserts that any e�cient algorithm succeeds only with negligible probability (wherethe probability is taken over all possible inputs of speci�c length and the coin tosses of thealgorithm).Following is the description of the algorithms de�ning a collection of claw-free permu-tations (based on the above assumption). On input 1n, the index selection algorithm IDLPselects uniformly a prime, P , such that 2n�1�P < 2n, a primitive element G in the mul-tiplicative group modulo P , and an arbitrary member Z of that group, and outputs theindex (P;G;Z). The domain of both functions with index (P;G;Z) is identical and equalsthe set f1; :::; P �1g. The domain sampling algorithm, DDLP, uniformly selects an elementof this set (i.e., DDLP(�; (P;G;Z)) is uniformly distributed over f1; :::; P � 1g, for both� 2 f0; 1g). As for the functions themselves, we set FDLP(�; (P;G;Z); x) def= Z� �Gx mod P ,for both � 2 f0; 1g. The reader can easily verify that both functions are permutations overf1; :::; P � 1g. Also, the ability to form a claw for the index (P;G;Z) yields the abilityto �nd the discrete logarithm of Z mod P to base G (since Gx � Z � Gy mod P yieldsGx�y � Z mod P ). Hence, ability to form claws for a non-negligible fraction of the indexset translates to a contradiction to the DLP intractability assumption.The above collection does not have the additional property of having an e�cientlyrecognizable index set, since it is not known how to e�ciently recognize primitive elementsmodulo a prime. This can be amended by making a slightly stronger assumption concerningthe intractability of DLP. Speci�cally, we assume that DLP is intractable even if one isgiven the factorization of the size of the multiplicative group (i.e., the factorization ofP � 1) as additional input. Such an assumption allows to add the factorization of P � 1into the description of the index. This makes the index set e�ciently recognizable (sinceone can �rst test P for primality, as usual, and next test whether G is a primitive elementby raising it to powers of the form (P � 1)=Q where Q is a prime factor of P � 1). If DLPis hard also for primes of the form 2Q+ 1, where Q is also a prime, life is even easier. Totest whether G is a primitive element mod P one just computes G2 (mod P ) and G(P�1)=225



(mod P ), and checks whether either of them equals 1.We remark that the above description assumes the existence of probabilistic polynomial-time algorithms for uniformly selecting primes and primitive elements. We only knowof expected polynomial-time algorithms for these tasks. Furthermore, primality testerswith no error are quite impractical, and therefore it is reasonable to use fast randomizedalgorithms (with negligible error probability) instead. Doing so we get something that isvery close to a claw-free collection but not quite achieves one (as with negligible probabilitythe algorithms fail). We stress that this issue has no practical signi�cance, yet if we wishto state a precise result then the de�nition of claw-free collections needs to be slightlymodi�ed. Relaxing so the de�nition of a claw-free collection requires a similar relaxationof the de�nition of perfect commitment schemes, so that Construction 2 remains valid.Details are omitted.A.2 The Factoring Claw-free CollectionWe now show that a claw-free collection (of functions) does exist under the assumption thatinteger factorization is intractable for integers which are the product of two primes eachcongruent to 3 mod 4. Such composite numbers, hereafter referred to as Blum Integers,have the property that the Jacobi symbol of �1 (relative to them) is 1 and half of thesquare roots of each quadratic residue, in the corresponding multiplicative group (modulothis composite), have Jacobi symbol 1. Let J+1N (respectively, J�1N ) denote the set ofresidues in the multiplicative group modulo N with Jacobi Symbol +1 (resp., �1).The index selecting algorithm, denoted IFCT, uniformly selects a Blum Integer, byuniformly selecting two (n-bit) primes each congruent to 3 mod 4, and outputs theirproduct, denoted N . The domains of the two functions with index N is J+1N and J�1N ,respectively. The domain sampling algorithm, DFCT, on input � and N , uniformly selectsan element of J (�1)�N (by uniformly selecting residues mod N and computing their JacobiSymbol). Finally, the functions themselves are de�ned by FFCT(�;N; x) def= f�N (x) def=x2 mod N , for both � 2 f0; 1g, where x 2 J (�1)�N . Note that each of the two functions is2-to-1.The reader can easily verify that both f0N (D(0; N)) and f1N (D(1; N)) are uniformlydistributed over the set of quadratic residues mod N . The di�culty of forming clawsfollows from the fact that a claw yields two residues, x and y of di�erent Jacobi Symbol(thus x 6= �y) such that x2 � y2 (mod N), and such residues yield a factorization of N .
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