
Testing (Subclasses of) Halfspaces

Kevin Matulef∗

ITCS, Tsinghua University
matulef@itcs.tsinghua.edu

January 27, 2010

1 Introduction

The purpose of this document is to summarize the talk I gave at the property testing workshop at ITCS
in January 2010- or more accurately, the talk I would have given, had I not been sick with the flu. In my
absence, Rocco Servedio actually gave the talk. Here I will attempt to summarize what I would have said,
or what Rocco might have said, or some combination of the two.

The purpose of the talk was to present the results from two papers, [13] and [12], regarding the testability
of halfspaces and certain subclasses of halfspaces. A halfspace is a function of the form f(x) = sgn(w1x1+
· · · + wnxn − θ) where w1, ..., wn, θ ∈ R. The wi’s are called “weights,” and θ is called the “threshold.”
The sgn function is 1 on arguments ≥ 0, and −1 otherwise. The inputs to f can be either Boolean or
real. Here we will mainly be concerned with functions over the Boolean cube, i.e. functions of the form
f : {−1, 1}n → {−1, 1}. Halfspaces are also known as threshold functions or linear threshold functions;
for brevity we shall refer to them here as LTFs.

LTFs are a simple yet powerful class of functions, which for decades have played an important role
complexity theory, optimization, and perhaps especially machine learning (see e.g. [9, 18, 2, 15, 14, 17]). A
lot of attention has been paid to the problem of learning LTFs- that is, given examples labeled according to an
unknown LTF (either random examples or queries to the function), find an LTF that it is ε-close to. However,
the question we want to address is that of testing LTFs. That is, given query access to a function, we would
like to distinguish whether it is an LTF or whether it is ε-far from any LTF. Though any proper learning
algorithm can be used as a testing algorithm (see, e.g., the observations of [8]), testing potentially requires
fewer queries. Indeed, in situations where query access is available, a query-efficient testing algorithm can
be used to check whether a function is close to an an LTF, before bothering to run a more intensive algorithm
to learn which LTF it is close to.

2 LTFs are testable with poly(1/ε) queries

The main result in [13] is to show that halfspaces can be tested with a number of queries that is independent
of n. In fact the dependence is only polynomial in 1/ε. We note that any learning algorithm — even one
with black-box query access to f — must make at least Ω(nε) queries to learn an unknown LTF to accuracy
ε under the uniform distribution on {−1, 1}n (this follows easily from, e.g., the results of [11]). So at least

∗Supported in part by the National Natural Science Foundation of China Grant 60553001, and the National Basic Research
Program of China Grant 2007CB807900,2007CB807901.

1

in terms of relationship to n, our testing algorithm is a significant improvement over just using a learning
algorithm. More formally, our main result is the following:

Theorem 1 ([13]). Let f be a Boolean function f : {−1, 1}n → {−1, 1}, and (as is standard in property
testing) we measure the distance between functions with respect to the uniform distribution over {−1, 1}n.
Then there is an algorithm with 2-sided error making poly(1ε) queries that accepts f with high probability
if it is an LTF, and rejects with high probability if it ε-far from all LTFs.

We remark that the class of halfspaces is qualitatively much different than the other classes of Boolean
functions that we know how to test. Previously in this workshop, Rocco spoke about about using the method
of “implicit learning” to test classes such as s-term DNF formulas and size-s decision trees [4]. However
the implicit learning technique only works for classes of functions whose members are close to juntas. This
is not the case here, since the class of halfspaces contains (for example) the majority function. Other classes
of Boolean functions that we know how to test have some algebraic structure, like parity functions and
low-degree polynomials, but these classes also seem quite different from halfspaces.

Characterizations and Techniques.
To prove our results, we establish new structural results about LTFs which essentially characterize them

in terms of their degree-0 and degree-1 Fourier coefficients. For functions mapping {−1, 1}n to {−1, 1} it
has long been known [3] that any linear threshold function f is completely specified by the n+ 1 parameters
consisting of its degree-0 and degree-1 Fourier coefficients (also referred to as its Chow parameters). While
this specification has been used to learn LTFs in various contexts [1, 7, 16], it is not clear how it can be
used to construct efficient testers (for one thing this specification involves n + 1 parameters, and we want
a query complexity independent of n). Intuitively, we get around this difficulty by giving new characteriza-
tions of LTFs as those functions that satisfy a particular relationship between just two parameters, namely
the degree-0 Fourier coefficient and the sum of the squared degree-1 Fourier coefficients. Moreover, our
characterizations are robust in that if a function approximately satisfies the relationship, then it must be
close to an LTF. This is what makes the characterizations useful for testing.

We first consider functions mapping Rn to {−1, 1} where we view Rn as endowed with the standard
n-dimensional Gaussian distribution. Our characterization is particularly clean in this setting and illustrates
the essential approach that also underlies the much more involved Boolean case. On one hand, it is not hard
to show that for every LTF f , the sum of the squares of the degree-1 Hermite coefficients1 of f is equal to
a particular function of E[f] — regardless of which LTF f is (we call this function W ; it is essentially the
square of the “Gaussian isoperimetric” function).

Conversely, we show that if f : Rn → {−1, 1} is any function for which the sum of the squares of
the degree-1 Hermite coefficients is within ±ε3 of W (E[f]), then f must be O(ε)-close to an LTF — in
fact to an LTF whose n weights are the n degree-1 Hermite coefficients of f. The value E[f] can clearly
be estimated by sampling, and moreover it can be shown that a simple approach of sampling f on pairs
of correlated inputs can be used to obtain an accurate estimate of the sum of the squares of the degree-1
Hermite coefficients. We thus obtain a simple and efficient test for LTFs under the Gaussian distribution.

To handle general LTFs over {−1, 1}n, we first develop an analogous characterization and testing al-
gorithm for the class of balanced regular LTFs over {−1, 1}n; these are LTFs with E[f] = 0 for which
all degree-1 Fourier coefficients are small. The heart of this characterization is a pair of results which give
Boolean-cube analogues of our characterization of Gaussian LTFs. We show that the sum of the squares
of the degree-1 Fourier coefficients of any balanced regular LTF is approximately W (0) = 2

π . Conversely,
we show that any function f whose degree-1 Fourier coefficients are all small and whose squares sum to
roughly 2

π is in fact close to an LTF — in fact, to one whose weights are the degree-1 Fourier coefficients

1These are analogues of the Fourier coefficients for L2 functions over Rn with respect to the Gaussian measure.

2

of f. Similar to the Gaussian setting, we can estimate E[f] by uniform sampling and can estimate the sum
of squares of degree-1 Fourier coefficients by sampling f on pairs of correlated inputs. (An additional algo-
rithmic step is also required here, namely checking that all the degree-1 Fourier coefficients of f are indeed
small; it turns out that this can be done by estimating the sum of fourth powers of the degree-1 Fourier
coefficients, which can again be obtained by sampling f on (4-tuples of) correlated inputs.)

The general case of testing arbitrary LTFs over {−1, 1}n is substantially more complex. Very roughly
speaking, the algorithm has three main conceptual steps:

• First the algorithm implicitly identifies a set ofO(1) many variables that have “large” degree-1 Fourier
coefficients. Even a single such variable cannot be explicitly identified using o(log n) queries; we
perform the implicit identification using O(1) queries by adapting an algorithmic technique from [6].
This is similar to the ”implicit learning” approach in [4].

• Second, the algorithm analyzes the regular subfunctions that are obtained by restricting these implic-
itly identified variables; in particular, it checks that there is a single set of weights for the unrestricted
variables such that the different restrictions can all be expressed as LTFs with these weights (but dif-
ferent thresholds) over the unrestricted variables. Roughly speaking, this is done using a generalized
version of the regular LTF test that tests whether a pair of functions are close to LTFs over the same
linear form but with different thresholds.

• Finally, the algorithm checks that there exists a single set of weights for the restricted variables that
is compatible with the different biases of the different restricted functions. If this is the case then
the overall function is close to the LTF obtained by combining these two sets of weights for the
unrestricted and restricted variables. (Intuitively, since there are only O(1) restricted variables there
are only O(1) possible sets of weights to check here.)

3 Testing a natural subclass of halfspaces requires more queries

Complementing the work in [13], in [12] we consider the problem of testing whether a function f belongs
to a natural subclass of halfspaces, the class of ±1-weight halfspaces. These are functions of the form
f(x) = sgn(w1x1 +w2x2 + · · ·+wnxn) where the weights wi all take values in {−1, 1}. Included in this
class is the majority function on n variables, and all 2n “reorientations” of majority, where some variables
xi are replaced by −xi. Alternatively, this can be viewed as the subclass of halfspaces where all variables
have the same amount of influence on the outcome of the function, but some variables get a “positive” vote
while others get a “negative” vote.

For the problem of testing ±1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which distinguishes ±1-weight half-
spaces from functions that are ε-far from ±1-weight halfspaces must make at least Ω(log n) many
queries. By a standard transformation (see e.g. [5]), this also implies an Ω(log logn) lower bound
for adaptive algorithms. Taken together with [13], this shows that testing this natural subclass of
halfspaces is more query-intensive then testing the general class of all halfspaces.

2. Upper Bound. We give a nonadaptive algorithm makingO(
√
n·poly(1/ε)) many queries to f , which

outputs YES with probability at least 2/3 if f is a ±1-weight halfspace, and NO with probability at
least 2/3 if f is ε-far from any ±1-weight halfspace.

We note that it follows from [11] that learning the class of ±1-weight halfspaces requires Ω(n/ε)
queries. Thus, while some dependence on n is necessary for testing, our upper bound shows testing
±1-weight halfspaces can still be done more efficiently than learning.

3

Although we prove our results specifically for the case of halfspaces with all weights ±1, our methods
can be used to obtain similar results for other subclasses of halfspaces such as {−1, 0, 1}-weight halfspaces
(±1-weight halfspaces where some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using Yao’s method. We de-
fine two distributions DY ES and DNO over functions, where a draw from DY ES is a randomly chosen
±1-weight halfspace and a draw from DNO is a halfspace whose coefficients are drawn uniformly from
{+1,−1,+

√
3,−
√

3}. We show that a random draw from DNO is with high probability Ω(1)-far from ev-
ery ±1-weight halfspace, but that any set of o(log n) query strings cannot distinguish between a draw from
DY ES and a draw from DNO.

Our upper bound is achieved by an algorithm which uniformly selects a small set of variables and checks,
for each selected variable xi, that the magnitude of the corresponding singleton Fourier coefficient |f̂(i)| is
close to to the right value. We show that any function that passes this test with high probability must have
its degree-1 Fourier coefficients very similar to those of some ±1-weight halfspace, and that any function
whose degree-1 Fourier coefficients have this property must be close to a ±1-weight halfspace. At a high
level this approach is similar to some of what is done in [13], but here we are estimating

∑
i |f̂(i)| rather

than
∑

i f̂(i)2. In both instances we are checking that the contribution of the degree-1 Fourier coefficients is
“large,” but in the second case we are estimating the coefficients more accurately in order to insure to insure
that we only pass functions close to ±1-weight halfspaces.

4 Open questions

Several questions related to testing halfspaces are still open. Here we point out a just a few:

• First is the question of whether there is a simpler algorithm for testing the general class of halfspaces
over the Boolean cube. Although our algorithm makes “only” poly(1/ε) queries, the exponent of the
polynomial is something like 4000. Our algorithm is quite complicated, and hardly seems optimal.
Obviously a more efficient algorithm utilizing new ideas would be preferred.

• Our current approach to testing halfspaces seems inherently two-sided. It is unclear whether this
is necessary. In order to get a better handle on testing halfspaces, we might restrict ourselves to
the question of one-sided testing. Can we devise a one-sided tester, or show that there is none?
(I am willing to conjecture, though I won’t bet any money, that one-sided testing requires a query
complexity that is dependent on n. I make this conjecture based on the fact that there exist boolean
functions which are not halfspaces, yet are consistent with a halfspace on any set of less than o(log n)
examples [10].)

• Perhaps the most obvious lingering question is whether we can extend our algorithm for LTFs to test
degree-d polynomial threshold functions, or PTFs. This seems to require a significant amount of extra
machinery, for example in relating the size of the degree-d Fourier coefficients to the weights of the
corresponding terms inside a PTF, and to the bias of the PTF. Although there are some highly technical
obstacles, given all of the recent structural results on PTFs, there is some hope that a testing algorithm
can be achieved.

References

[1] A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner, and H.U. Simon. On restricted-focus-of-
attention learnability of Boolean functions. Machine Learning, 30:89–123, 1998.

4

[2] H. Block. The Perceptron: a model for brain functioning. Reviews of Modern Physics, 34:123–135,
1962.

[3] C.K. Chow. On the characterization of threshold functions. In Proceedings of the Symposium on
Switching Circuit Theory and Logical Design (FOCS), pages 34–38, 1961.

[4] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Testing for
concise representations. In Proc. 48th Ann. Symposium on Computer Science (FOCS), pages 549–558,
2007.

[5] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the European
Association for Theoretical Computer Science, 75:97–126, 2001.

[6] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science, pages 103–112, 2002.

[7] P. Goldberg. A Bound on the Precision Required to Estimate a Boolean Perceptron from its Average
Satisfying Assignment. SIAM Journal on Discrete Mathematics, 20:328–343, 2006.

[8] O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45:653–750, 1998.

[9] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded depth.
Journal of Computer and System Sciences, 46:129–154, 1993.

[10] L. Hellerstein. On generalized constraints and certificates. Discrete Mathematics, 226(211-232), 2001.

[11] S. Kulkarni, S. Mitter, and J. Tsitsiklis. Active learning using arbitrary binary valued queries. Machine
Learning, 11:23–35, 1993.

[12] K. Matulef, R. Rubinfeld, R. A. Servedio, and R. O’Donnell. Testing -1,1 weight halfspaces. In 13th
International Workshop on Randomness and Computation (RANDOM), 2009.

[13] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing halfspaces. In
20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 256–264, 2009.

[14] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press,
Cambridge, MA, 1968.

[15] A. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathemat-
ical Theory of Automata, volume XII, pages 615–622, 1962.

[16] R. Servedio. Every linear threshold function has a low-weight approximator. Computational Complex-
ity, 16(2):180–209, 2007.

[17] J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines. Cambridge University
Press, 2000.

[18] A. Yao. On ACC and threshold circuits. In Proceedings of the Thirty-First Annual Symposium on
Foundations of Computer Science, pages 619–627, 1990.

5

	Introduction
	LTFs are testable with poly(1/) queries
	Testing a natural subclass of halfspaces requires more queries
	Open questions

