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Abstract

The main result of this paper is a generic composition theorem for low error two-query
probabilistically checkable proofs (PCPs). Prior to this work, composition of PCPs was well-
understood only in the constant error regime. Existing composition methods in the low error
regime were non-modular (i.e., very much tailored to the specific PCPs that were being com-
posed), resulting in complicated constructions of PCPs. Furthermore, until recently, composition
in the low error regime suffered from incurring an extra ‘consistency’ query, resulting in PCPs
that are not ‘two-query’ and hence, much less useful for hardness-of-approximation reductions.

In a recent breakthrough, Moshkovitz and Raz [In Proc. 49th IEEE Symp. on Foundations
of Comp. Science (FOCS), 2008] constructed almost linear-sized low-error 2-query PCPs for
every language in NP. Indeed, the main technical component of their construction is a novel
composition of certain specific PCPs. We give a modular and simpler proof of their result by
repeatedly applying the new composition theorem to known PCP components.

To facilitate the new modular composition, we introduce a new variant of PCP, which we
call a decodable PCP (dPCP). A dPCP is an encoding of an NP witness that is both locally
checkable and locally decodable. The dPCP verifier in addition to verifying the validity of the
given proof like a standard PCP verifier, also locally decodes the original NP witness. Our
composition is generic in the sense that it works regardless of the way the component PCPs are
constructed.

1 Probabistically Checkable Proofs – Introduction

Probabilistically checkable proofs (PCPs) provide a proof format that enables verification with only
a constant number of queries into the proof. This is formally captured by the (by now standard)
notion of a probabilistic verifier.

Definition 1.1 (PCP Verifier). A PCP verifier V for a language L is a polynomial time probabilistic
algorithm that behaves as follows: On input x, and oracle access to (proof) string π (over an alphabet
Σ), the verifier reads the input x, tosses some random coins r, and based on x and r computes a
window I = (i1, . . . , iq) of indices to read from π, and a predicate f : Σq → {0, 1}. The verifier
then accepts iff f(πI) = 1.
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• The verifier is complete if for every x ∈ L there is a proof π accepted with probability 1. I.e.,
∃π, PrI,f [f(πI) = 1] = 1.

• The verifier is sound with soundness error δ < 1 if for any x 6∈ L, every proof π is accepted
with probability at most δ. I.e., ∀π, PrI,f [f(πI) = 1] ≤ δ.

The celebrated PCP Theorem [AS98, ALM+98] states that every language in NP has a verifier
that is complete and sound with a constant δ < 1 soundness error while using only a logarithmic
number of random coins, and reading only q = O(1) proof bits. Naturally, (and motivated by
the fruitful connection to inapproximability due to [FGL+96]), much attention has been given to
obtaining PCPs with “good” parameters, such as q = 2, smallest possible soundness error δ, and
smallest possible alphabet size |Σ|. These are the parameters of focus in this paper.

How does one construct PCPs with such remarkable proof checking properties? In general, it is
easier to construct such PCPs if we relax the alphabet size |Σ| to be large (typically super-constant,
but sub-exponential). This issue is similar to a well-known issue that arises in coding theory;
wherein it is relatively easy to construct codes with good error-correcting properties over a large,
super constant sized, alphabet (e.g., Reed-Solomon codes). Codes over a constant-sized alphabet
(e.g., GF(2)) are then obtained from these codes by (repeatedly) applying the “code-concatenation”
technique of Forney [For66]. The equivalent notion in the context of PCP constructions is the
paradigm of “proof composition”, introduced by Arora and Safra [AS98]. Informally speaking,
proof composition is a recursive procedure applied to PCP constructions to reduce the alphabet
size. Proof composition is applied (possibly several times over) to PCPs over the large alphabet to
obtain PCPs over a small (even binary) alphabet.

Proof composition is an essential ingredient of all known constructions of PCPs. Composition
of PCPs with high soundness error (greater than 1/2) is by now well understood using the notion
of PCPs of proximity [BGH+06] (called assignment testers in [DR06]) (see also [Sze99]). These
allow for modular composition, in the high soundness error regime which in turn led to alternate
proofs of the PCP Theorem and constructions of shorter PCPs [BGH+06, Din08, BS08]. However,
these composition theorems are inapplicable when constructing PCPs with low-soundness error
(arbitrarily small soundness error or even any constant less than 1/2). (See survey on constructing
low error PCPs by Dinur [Din08] for a detailed explanation of this limitation).

Our first contribution is a definition of an object which we call a decodable PCP, which allows
for clean and modular composition in the low error regime.

2 Decodable PCPs (dPCPs)

Consider a probabilistically checkable proof for the language CircuitSat (the language of all
satisfiable circuits). The natural NP proof for CircuitSat is simply a satisfying assignment. An
intuitive way to construct a PCP for CircuitSat is to encode the assignment in a way that enables
probabilistic checking. This intuition guides all known constructions, although it is not stipulated
in the definition.

In this work, we make the intuitive notion of proof encoding explicit by introducing the notion
of a decodable PCP (dPCP). A dPCP for CircuitSat is an encoding of the satisfying assignment
that can be both verified and decoded locally in a probabilistic manner. In this setting, the verifier
is supposed to both verify that the dPCP is encoding a satisfying assignment, as well as to decode a
symbol in that assignment. More precisely, we define a PCP decoder for CircuitSat to be (along
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the lines of Definition 1.1) a probabilistic algorithm that is given an input circuit C, oracle access
to a dPCP π, and, in addition, an index i. Based on C, i and the randomness r it computes a
window I and a function f (rather than a predicate). This function is supposed to evaluate to the
i-th symbol of a satisfying assignment for C; or to reject.

• The PCP decoder is complete if for every y such that C(y) = 1 there is a dPCP π such that
Pri,I,f [f(πI) = yi] = 1.

• The PCP decoder has soundness error δ and list size L if for any (purported) dPCP π there
is a list of ≤ L valid proofs such that the probability (over the index i and (I, f)) that f(πI)
is inconsistent with the list but not reject is at most δ.

The list of valid proofs can be viewed as a “list decoding” of the dPCP π. Since we are interested
in the low soundness error regime, list-decoding is unavoidable. Of course, we can define dPCPs
for any NP language and not just CircuitSat, but we focus on CircuitSat since it suffices for
the purpose of composition.

The notion of dPCPs allows for modular composition in the case of low soundness error (de-
scribed next) in analogy to the way PCPPs and assignment testers [BGH+06, DR06] allow for
modular composition in the case of high soundness error. Moreover, using dPCPs we show a two
query composition that yields a completely modular proof of the recent result of Moshkovitz and
Raz [MR08b].

Finally, we note that decodable PCPs are not hard to come by. Decodable PCPs or variants
of them are implicit in many PCP constructions [AS03, RS97, DFK+99, BGH+06, DR06, MR07,
MR08b] and existing PCP constructions can often be adapted to yield decodable PCPs.

3 Composition with dPCPs

There is a natural and modular way to compose a PCP verifier V with a PCP decoder D. The
composed PCP verifier V ′ begins by simulating V on a probabilistically checkable proof Π. It
determines a set of queries into Π (a local window I), and a local predicate f . Instead of directly
querying Π and testing if f(ΠI) = 1, V ′ relies on the inner PCP decoder D to perform this action.
For this task, the inner PCP decoder D is supplied with a dedicated proof that is supposedly an
encoding of the relevant local view ΠI . The main issue is consistency: the composed verifier V ′

must ensure that the dedicated proofs supposedly encoding the various local views are consistent
with the same Π (i.e. they should be encodings of local views coming from a single valid PCP
for V ). This is achieved easily with PCP decoders: the composed verifier V ′ asks D to decode a
random value from the encoded local view, and compares it to the appropriate symbol in Π.

The above description of composition already appears to lead to a modular presentation of the
composition performed in earlier low-error PCP constructions [AS03, RS97, DFK+99, MR07]. But
at the same time, like these compositions, it incurs an additional query per composition, namely
the “consistency” query to the outer PCP Π. (The queries made by V ′ are the queries of D plus
the one additional consistency query to Π).

Nevertheless, inspired by [MR08b] and equipped with a better understanding of composition in
the low soundness error case, we are, now, in a position to remove this extra consistency query.
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4 Composition with only two queries

Our main contribution is a composition theorem that does not incur an extra query. The extra
query above comes from the need to check that all the inner PCP decoders decode to the same
symbol. This check was performed by comparing the decoded symbol to the symbol in the outer
PCP Π. Instead, we verify consistency by invoking all the inner PCP decoders that involve this
symbol in parallel, and then checking that they all decode to the same symbol. This avoids the
necessity to query the outer PCP Π for this symbol and saves us the extra query.

We describe our new composed verifier V ′ more formally below. As before, let V be a PCP
verifier, and D a PCP decoder.

1. The composed PCP verifier simulates V on a hypothetical PCP Π; it chooses a random index
i in Π, and then determines all the possible random strings R1, . . . , RD that cause V to query
this index.

2. For each random string Rj (j = 1 . . . D), V ′ needs to check that the corresponding local
view of Π would have lead V to accept. This is done by running D, for each j = 1 . . . D,
on a dedicated proof π(Rj) that is supposedly the encoding of the j-th local view (i.e., the
one generated by V on random string Rj) into Π. Furthermore, V ′ expects D to decode the
symbol Πi.

3. Finally V ′ accepts if and only if all the D parallel runs of D accept and output the same
symbol.

Observe that the composed verifier V ′ does not access the PCP for V (i.e., Π) at all, rather only
the dedicated proofs for the inner PCP decoders. The outer PCP Π is only “mentally” present in
order to compute R1, . . . , RD. A few important points are in order.

• Two Queries and Robust Soundness As described, V ′ makes many queries rather than
just two. This is fixed by the following easy transformation: the first query will supposedly
be answered by the complete local view V ′ expects to read, and the second query will consist
of one random symbol in the local view of V ′. The soundness of the resulting two-query PCP
is equal to the robust soundness of V ′: an upper bound on the average agreement between a
local view read by V ′ and an accepting local view.

Thus, drawing on the above correspondence, the fact that V ′ has low robust soundness implies
the required two-query composition. Of course, the composition could have been described
entirely in the 2-query PCP language.

• Size of alphabet or window size The purpose of composition is to reduce the alphabet
size, or, in the language of robust PCPs, to reduce the window size, that is, the number of
queries made by V ′. Recall that V ′ runs D in parallel on all D local views corresponding
to R1, . . . , RD. Thus, the window size equals the query complexity of D multiplied by the
number D of local views (which we refer to as the proof degree of V ). Hence composition
is meaningful only if the proof degree is small to begin with (otherwise, the local window
of V ′ is not smaller than that of V and we haven’t gained anything from composition). In
general PCPs, the proof degree is very high. In fact, this has been one of the obstacles to
achieving this result prior to [MR08b]. However, a key observation of [MR08b] is that it is
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easy to reduce the proof degree using standard tools from derandomization (i.e., expander
replacement).

Viewed alternatively, one can handle V of arbitrarily high proof degree by making the fol-
lowing change to V ′. Instead of running D to verify the local tests corresponding to all of
R1, . . . , RD, V ′ can pseudo-randomly sample a small number of these and run D only on the
selected ones.

The fact that the query complexity is at least D is an inherent bottleneck in our composition
method. Combined with the bound of D ≥ 1/δ, this poses a limitation of this technique
towards achieving exponential dependence of the error probability on alphabet size, a point
discussed later in this introduction.

The new composition is generic in the sense that it works regardless of how the original com-
ponents V and D are constructed.

5 Background and Motivation

Let us step back to give some motivation for obtaining PCPs with small soundness and two queries
(for a more comprehensive treatment, see [MR08b]). Two is the absolute minimal number of queries
possible for a non-trivial PCP. Thus, it is interesting to find what are the strongest 2-query PCPs
that still capture NP. However, the main motivation for two query PCPs is for proving hardness of
approximation results.

Two query PCPs with soundness error δ are (more or less) equivalent to Label-Coverδ, which
is a promise problem defined as follows: The input is a bipartite graph and an alphabet Σ, and for
each edge e there is a function fe : Σ → Σ, which we think of as a constraint on the labels of the
vertices. The constraint is satisfied by values a and b iff fe(a) = b. The problem is to distinguish
between two cases: (1) there exists a labeling of the vertices satisfying all constraints, or (2) every
labeling satisfies at most δ fraction of the constraints.

Label-Coverδ is probably the most popular starting point for hardness of approximation
reductions. In particular, even though there are 3-query PCPs with much smaller soundness error,
they currently have far fewer applications to inapproximability.

The fact that Label-Coverα is NP-hard for some constant α < 1 (and constant alphabet size)
is nothing but a reformulation of the PCP Theorem [AS98, ALM+98]. Strong inapproximability
results, however, require1 NP-hardness of Label-Coverδ for arbitrarily small, sometimes even
sub-constant soundness error δ. There are two known routes to obtaining hardness results for
Label-Coverδ with small soundness δ. The first, is via an application of the parallel repetition
theorem of Raz [Raz98] to the Label-Coverα instance produced by the PCP Theorem. However,
this application of the repetition theorem blows up the size of the problem instance from n to
nO(log(1/δ)) and thus remains polynomial only for constant, though arbitrarily small, δ. One might
try to get a polynomial sized construction by carefully choosing a subset of the entire parallel
repetition construction. This is known as the problem of “derandomizing the parallel repetition
theorem”. Feige and Kilian [FK95] showed that such derandomization is impossible under certain
(rather general) conditions. Nevertheless, in a recent paper, Impagliazzo et. al. [IKW09] obtained

1In some cases the hardness gap is inversely proportional to δ, and in others, it is the sum of two terms: a
problem-dependent term (e.g. 7/8 in H̊astad’s hardness result [H̊as01] for 3-SAT), and a “low order” term that is
polynomial in δ.
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a related derandomization. While their derandomization result applies only to direct products and
not to the construction of PCPs, this direction seems promising. Another potential direction is
to use the gap-amplification technique of Dinur [Din07], however as shown by Bogdanov [Bog05]
gap-amplification fails below a soundness error of 1/2.

The second route to sub-constant δ goes through the classical (algebraic) construction of PCPs.
Indeed, hardness for label cover with sub-constant error can be obtained from the low soundness
error PCPs of [RS97, AS03, MR08a], more or less by omitting the composition steps, and care-
fully combining queries. The following “manifold vs. point” PCP construction has been folklore
since [RS97, AS03], and formally described in [MR08b].

Theorem 5.1 (Manifold vs. Point PCP). There exists a constant c > 1 such that the following
holds: For every 1

n ≤ δ ≤ 1
(logn)c , there exists an alphabet Σ of size at most exp(poly(1/δ)) such

that Label-Coverδ over Σ is NP-hard.

The above result is unsatisfactory as the size of the alphabet |Σ| is super-polynomial. Combined
with the fact that hardness-of-approximation reductions are usually exponential in |Σ| (and always
at least polynomial in |Σ|) the super polynomial size of Σ renders the above theorem useless. The
situation can be redeemed if the theorem could be extended to the entire range of smaller |Σ| (with
a corresponding increase in δ).

A natural way to perform this extension would be to apply the composition paradigm to the
PCPs constructed in Theorem 5.1 and reduce the alphabet size. Indeed, this is how one constructs
PCPs with sub-constant error and a constant number of queries for the entire range of Ω(1) ≤ |Σ| ≤
exp((log n)1−ε) [RS97, AS03, DFK+99]. However, the composition a la [RS97, AS03, DFK+99]
incurs at least one additional query, which means that the final PCP is no longer “two-query”, so
it does not lead to a hardness result for label cover. Alternatively, the composition technique of
[BGH+06, DR06] using PCPs of proximity or assignment testers is inapplicable in this context as it
fails to work for soundness error less than 1/2. Thus, all earlier composition techniques are either
inapplicable in the low error regime or if applicable, incur an extra query and thus, are no longer
in the framework of the Label-Cover problem.

6 The Two-Query PCP of Moshkovitz and Raz [MR08b]

In a recent breakthrough, [MR08b] show that the above theorem can in fact, be extended to the
entire range of δ and |Σ| (and maintaining |Σ| ≈ exp(poly(1/δ))). This is done by composing
certain specific 2-query PCPs with low soundness error without incurring an additional query per
composition.

Theorem 6.1 ([MR08b]). For every δ ∈ (1/polylogn, 1), there exists an alphabet Σ of size at most
exp(poly(1/δ)) such that Label-Coverδ over Σ is NP-hard (in fact, even under nearly length
preserving reductions).

The main technical component of their construction is a novel composition of certain specific
PCPs. However, the construction is so organically tied to the specific algebraic components that
are being composed, as to make it extremely difficult to differentiate between the details of the
PCP, and what it is that makes the composition go through.

We give a modular and simpler proof of this theorem using our composition theorem. Our
proof relies on a PCP system based on the manifold vs. point construction. The parameters we
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need are rather weak: it is enough that on input size n the PCP decoder / verifier makes nα

queries and has soundness error δ = 1/nβ, for small constants α, β. After one composition step the
number of queries goes (roughly) from nα to nα

2
, and so on. After each composition step we add a

combinatorial step, consisting of degree and alphabet reduction, that prepares the verifier for the
next round of composition. After i rounds the number of queries is about nα

i
, and the soundness

error is about δ = 1/nO(αi). Choosing 1 ≤ i ≤ log logn appropriately gives us the result.
The modular composition theorem allows us to easily keep track of a super-constant number of

steps, thus avoiding the need for another tailor-made Hadamard-based PCP which was required in
the proof of [MR08b]. (The later approach could also be implemented in our setting).

Randomness and the length of the PCP: The above discussion completely ignores the ran-
domness complexity of the underlying PCPs. However, it is easy to verify that the composition
described above is, in fact, randomness efficient; this is because the same inner randomness can
be used for all the D parallel runs of the inner PCP decoder. Thus, if we start from a version of
the Theorem 5.1 (the manifold vs. point PCP) based on an almost linear-size low-degree test (c.f.,
[MR08a]), we obtain a nearly length preserving version of Theorem 6.1 (i.e., a reduction taking
instances of size n to instances of size almost linear in n). Furthermore, the fact that we account for
the input index i separately from the inner randomness r of the PCP decoder leads to an even more
randomness-efficient composition, however, we do not exploit this fact in the proof of Theorem 6.1.

Polynomial dependence of soundness error on alphabet size: Theorem 6.1 suffers from
the following bottleneck: the error probability δ is inverse logarithmic (and not inverse-polynomial)
with respect to the size of the alphabet Σ. This limitation is inherent in our composition method
as discussed above. Thus, the “sliding-scale conjecture” of Bellare et al. [BGLR93] that for every
|Σ| ∈ (1, n), Label-Coverδ over Σ is NP-hard for δ = poly(1/|Σ|) remains open.
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