
Worst-case to Average-case reductions for subclasses of P

Oded Goldreich∗ Guy N. Rothblum†

April 9, 2018

Abstract

For every polynomial q, we present worst-case to average-case (almost-linear-time) reductions
for a class of problems in P that are widely conjectured not to be solvable in time q. These
classes contain, for example, the problems of counting the number of t-cliques in a graph, for
any fixed t ≥ 3. In general, we consider the class of problems that consist of counting the
number of local neighborhoods in the input that satisfy some predetermined conditions, where
the number of neighborhoods is polynomial, and the neighborhoods as well as the conditions
can be specified by small uniform Boolean formulas. Hence, we show an almost-linear-time
reduction from solving any such problem in the worst-case to solving some other problem (in
the same class) on typical inputs. Furthermore, for some of these problems, we show that their
average-case complexity almost equals their worst-case complexity.

Contents

1 Introduction 1

1.1 Our results . 1
1.2 Comparison to the known average-case hierarchy theorem . 3
1.3 Techniques . 4
1.4 A side comment on AC0[2] . 5
1.5 Terminology and organization . 6

2 Counting local patterns: defining the class of counting problems 6

3 The worst-case to average-case reduction 8

3.1 The vanilla version . 9
3.2 Deriving the original conclusion . 14

4 The average-case to rare-case reduction 18

4.1 A sample-aided reduction . 19
4.2 Obtaining solved samples via downwards self-reduction . 22

References 26

Appendices 28

A.1 A related class (for context only) . 28
A.2 Worst-case to Average-case reduction for uniform AC0[2] . 29

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. rothblum@alum.mit.edu

1 Introduction

While most research in the theory of computation refers to worst-case complexity, the importance
of average-case complexity is widely recognized (cf., e.g., [13, Chap. 1–10.1] versus [13, Sec. 10.2]).
Worst-case to average-case reductions, which allow for bridging the gap between the two theories,
are of natural appeal (to say the least). Unfortunately, worst-case to average-case reductions are
known only either for “very high” complexity classes, such as E and #P (see [4] and [21, 9, 15]1,
resp.), or for problems of “very low” complexity, such as Parity (cf. [1, 3]). In contrast, presenting
a worst-case to average-case reduction for NP is a well-known open problem, which faces significant
obstacles [10, 8].

A recent work by Ball, Rosen, Sabin, and Vasudevan [5] initiated the study of worst-case to
average-case reductions in the context of fine-grained complexity.2 The latter context focuses on
the exact complexity of problems in P (see, e.g., survey by V. Williams [29]), attempting to classify
problems into classes of similar polynomial-time complexity (and distinguishing, say, linear-time
from quadratic-time and cubic-time). Needless to say, reductions used in the context of fine-grained
complexity must preserve the foregoing classification, and the simplest choice – taken in [5] (and
followed here) – is to use almost linear-time reductions.3

The pioneering paper of Ball et al. [5] shows that there exist (almost linear-time) reductions
from the worst-case of several natural problems in P, which are widely believed to be “somewhat
hard” (i.e., have super-linear time complexity (in the worst case)), to the average-case of some other
problems that are in P. In particular, this is shown for the Orthogonal Vector problem, for the
3-SUM problem, and for the All Pairs Shortest Path problem. Hence, the worst-case complexity of
problems that are widely believed to be “somewhat hard” is reduced to the average-case complexity
of some problems in P. Furthermore, the worst-case complexity of the latter problems matches
(approximately) the best algorithms known for the former problems (but note that the latter
problems may actually have higher complexity than the former problems).

1.1 Our results

In this paper we strengthen the foregoing result in two ways. First, we present worst-case to average-
case reductions (of almost linear-time) for a wide class of problems within P (see Theorem 1.1).
Second, we show that the average-case complexity of some of these problems approximately equals
their worst-case complexity, which is conjectured to be an arbitrary high polynomial (see Corol-
lary 1.2). Details follow.

1The basic idea underlying the worst-case to average-case reduction of the “permanent” is due to Lipton [21], but
his proof implicitly presumes that the field is somehow fixed as a function of the dimension. This issue was addressed
independently by [9] and in the proceeding version of [15]. In the current work, we shall be faced with the very same
issue.

2Actually, a worst-case to average-case reduction for a problem of this flavor was shown before by Goldreich and
Wigderson [17]. They considered the problem of computing the function fn(A1, ..., Aℓ(n)) =

P

S⊆[ℓ(n)] DET(
P

i∈S Ai),

where the Ai’s are n-by-n matrices over a finite field and ℓ(n) = O(log n), conjectured that it cannot be computed in
time 2ℓ(n)/3, and showed that it is random self-reducible (by O(n) queries). They also showed that it is downwards
self-reducible when the field has the form GF (2m(n)) such that m(n) = 2⌈log2 n⌉ (or m(n) = 2 · 3⌈log3 n⌉). We stress
that the (subquadratic-time) reduction of [17] does not run in almost-linear time, and that the foregoing problem is
not as well-studied as the problems considered in [5].

3Furthermore, typically, these reductions make a small number of queries (since their queries are of at least linear
length). In any case, composing them with a T -time algorithm for the target problem yields an “almost T -time”
algorithm for the reduced problem, provided that T (n) ∈ [Ω(n), poly(n)].

1

First, for each polynomial p, we define a worst-case complexity class C(p) that is a subset of
Dtime(p1+o(1)), and show for any problem Π in C(p) an almost linear-time reduction of Π to the
average-case of some problem Π′ in C(p). Loosely speaking, the class C(p) consists of counting prob-
lems that refer to p(n) local conditions regarding the n-bit long input, where each local condition
refers to no(1) bit locations and can be evaluated in no(1)-time.4 In particular, for any constant
t > 2 and pt(n) = nt, the class C(pt) contains problems such as t-CLIQUE and t-SUM (e.g., the num-
ber of t-cliques in an n-vertex is expressed as the sum of

(
n
t

)
local conditions, each referring to the

subgraph induced by t specific vertices).

Theorem 1.1 (worst-case to average-case reduction, loosely stated):5 For every polynomial p, and

every (counting) problem Π in C(p), there exists a (counting) problem Π′ in C(p) and an almost-

linear time randomized reduction of solving Π on the worst-case to solving Π′ on the average (i.e.,
on at least a 0.76 fraction of the domain).6

Hence, worst-case to average-case reductions are shown to be a rather general phenomenon: They
exist for each problem in a class that is defined in general terms (i.e., counting the number of
local conditions that are satisfied by the input, where the local conditions are specified by formulae
of certain complexity). Moreover, the reductions preserve membership in this class (rather than
moving to a problem of a different (arithmeticized) flavor as in [5]).

Note that the average-case complexity of Π′ is sandwiched between the worst-case complexities
of Π and Π′, where the worst-case complexities of Π′ is at most p1+o(1). This might leave a rather
wide gap between the average-case complexity of Π′ and its worst-case complexity (if the worst-
case of Π is significantly smaller than the worst-case of Π′). Our second improvement over [5] is
in narrowing the potential gap between the complexities of Π and Π′ (and, consequently, between
the average-case and worst-case complexities of Π′). We do so by taking advantage of the fact that
our reduction preserves membership in the class C(p). Specifically, assuming that the worst-case
complexity of Π is nc, and invoking Theorem 1.1 for O(1/ǫ) times, we obtain a problem whose
average-case complexity is at least nc′ and whose worst-case complexity is at most nc′+ǫ, where
c′ ∈ [c,O(1)]. Hence, the average-case complexity of this problem (which is in C(p)) is approximately
equal to its worst-case complexity.

Corollary 1.2 (average-case approximating worst-case): Suppose that C(p) contains a problem of

worst-case complexity at least nc. Then, for every constant ǫ > 0, there exists c′ ∈ [c, logn p(n)]
such that C(p) contains a problem of average-case complexity nc′ and worst-case complexity at most

nc′+ǫ.

Proof: Starting with Π(0) ∈ C(p) as in the hypothesis, we consider a sequence of O(1/ǫ) problems
in C(p) such that the problem Π(i) is obtained by applying (the worst-case to average-case reduction
of) Theorem 1.1 to Π(i−1). Recall that the average-case complexity of Π(i) is sandwiched between
the worst-case complexities of Π(i−1) and Π(i). Hence, the worst-case complexities of these problems
(i.e., the Π(i)’s) constitute a non-decreasing sequence that is upper bounded by p(n)1+o(1), and the
claim follows.

4Indeed, this class is related to the class of locally characterizable sets defined by us in [16]; see Appendix A.1.
5See Theorem 3.1 for a precise statement.
6Here 0.76 stands for any constant greater than 3/4.

2

Reductions to rare-case. The notion of average-case complexity that underlies the foregoing
discussion (see Theorem 1.1) refers to solving the problem on at least 0.76 fraction of the instances.
This notion may also be called typical-case complexity. A much more relaxed notion, called rare-

case complexity, refers to solving the problem on a noticeable fraction of the instances (say, on
a n−o(1) fraction of the n-bit long instances).7 Using non-uniform reductions, we establish the
following result.

Theorem 1.3 (worst-case to rare-case reduction, loosely stated):8 For every polynomial p, and

every problem Π in C(p), there exists a problem Π′ in C(p) and an almost-linear time non-uniform
reduction of solving Π on the worst-case to solving Π′ on a noticeable fraction of the instances (e.g.,
on at least exp(− log0.999 n) fraction of the n-bit long instances).

We also provide a uniform reduction from the worst-case complexity of the problem Π ∈ C(p) to
the rare-case complexity of some problem in Dtime(p′), where p′(n) = p(n) · n1+o(1). For details,
see Theorem 4.4.

1.2 Comparison to the known average-case hierarchy theorem

We mention the existence of an (unconditional) average-case hierarchy theorem of Goldmann,
Grape, and Hastad [12], which is essentially proved by diagonalization. While that result offers no
(almost linear-time) worst-case to average-case reduction, it does imply the existence of problems
in P that are hard on the average (at any desired polynomial level), let alone that this result is
unconditional. We point out several advantages of the current reductions (as well as those of [5])
over the aforementioned hierarchy theorem.

1. Worst-case to average-case reductions yield hardness results also with respect to probabilistic
algorithms, whereas the known hierarchy theorem does not hold for that case. Recall that an
honest-to-God hierarchy theorem is not known even for worst-case probabilistic time (cf. [6]).

2. Worst-case to average-case reductions are robust under the presence of auxiliary inputs (or,
alternatively, w.r.t non-uniform complexity), whereas the aforementioned hierarchy theorem
is not.

3. Our worst-case to average-case reductions (as well as those in [5]) do not depend on huge and
unspecified constants.

More importantly, while the standard interpretation of worst-case to average-case reductions is
negative (i.e., establishes hardness of the average-case problem based on the worst-case problem),
such reductions have also a positive interpretation (which is not offered by results of the type
of [12]): They can be used to actually solve a worst-case problem when given a procedure for the
average-case problem. Similarly, they may allow to privately compute the value of a function of a
secret instance by making queries that are distributed independently of that instance (see, e.g., [7]).

7Here a “noticeable fraction” is the ratio of a linear function over an almost linear function. We stress that this
is not the standard definition of this notion (at least not in cryptography).

8See Theorem 4.2 for a precise statement. Note that Theorem 4.2 refers to sample-aided reductions, which imply
non-uniform reductions.

3

1.3 Techniques

The proof of Theorem 1.1 is pivoted at arithmetic versions of the (Boolean) counting problems
belonging to the class C(p). These arithmetic versions refer to evaluating a small arithmetic formula
on p(n) different (short) projections of the n-symbol input, which is a sequence over a finite field
(of varying size). The counting problem is easily reduced to the arithmetic problem, which is
shown to have a worst-case to average-case reduction. The tricky part is presenting a reduction
of the arithmetic problem “back to” a counting problem in C(p), where the reduction preserves
average-case complexity (and in particular the error rate).

A direct attempt at such a reduction, captured by Proposition 3.5, increases the error rate of
the solver for the Boolean problem by a non-constant factor, yielding average-case hardness only
with respect to error rate that tends to zero.

Deriving average-case hardness with respect to constant error rate requires a few refinements of
the basic approach. First, rather than reducing the n-bit instance of the original counting problem
to a single instance of the Arithmetic problem defined over a finite field of size Ω(p(n)), we reduce it
to O(log p(n)) instances defined over different fields of much smaller size.9 Since all these instances
will be reduced to the same average-case complexity problem, some of the values obtained in these
reductions may be wrong, and Chinese Remaindering with errors (cf. [15]) is used in combining
them.

Now we face the problem of reducing the Arithmetic problem to a counting problem in the class
C(p), while preserving the average-case complexity (equiv., the error rate of potential solvers). To
do so, we use (a non-constant number of) Boolean circuits that compute each of the bits in the
representation of the output of the corresponding arithmetic circuit (a field element). Note now
that we cannot afford to deal with each of the resulting circuits separately, since this will increase
the error rate by a non-constant factor. Instead, we reduce evaluation of the arithmetic circuit
to solving a single counting problem in the class C(p). To do so, we construct a single Boolean
circuit that, when fed with an appropriate auxiliary input, outputs the corresponding bit in the
representation of the arithmetic circuit’s output field element. The (weighted) summation of the
Boolean outputs on the different auxiliary inputs (one per bit in the representation of the field
element) is performed by the counting problem itself (as detailed in Section 3.2), which yields a
single-query reduction of the Arithmetic problem to the Boolean problem.

On the proofs of Theorems 1.3 and 4.4. Turning from average-case hardness to rare-case
hardness (i.e., from the proof of Theorem 1.1 to the proofs of Theorems 1.3 and 4.4), we employ
worst-case to rare-case reduction techniques at the Arithmetic level. Specifically, we use the list
decoder of Sudan, Trevisan, and Vadhan [28]. For the proof of Theorem 4.4, we also employ a
methodology heralded by Impagliazzo and Wigderson [19], which we distill here. The methodology
is pivoted at the notion of sample-aided reductions, which is a relaxed notion of reduction between
problems. Specifically, a sample-aided reduction receives random solved instances of the problem
we reduce from, which means that it implies an ordinary non-uniform reduction. Furthermore,
when coupled with a downwards self-reduction for the problem we reduce from, a sample-aided
reduction implies a standard (uniform) reduction.

9The size of these fields is lower bounded not only by Ω(log p(n)) but also by the size of the Boolean formula used
in the original counting problem. The latter lower bound guarantees that the field is larger than the degree of the
polynomial that is computed by the Arithmetic problem used in the reduction.

4

In the following definition, a task consists of a computational problem along with a required
performance guarantee (e.g., “solving problem Π on the worst-case” or “solving Π with success rate
ρ”). For sake of simplicity, we consider the case that the first task is a worst-case task.

Definition 1.4 (sample-aided reductions): Let ℓ, s : N → N, and suppose that M is an oracle

machine that, on input x ∈ {0, 1}n, obtains a sequence of s = s(n) pairs of the form (r, v) ∈
{0, 1}n+ℓ(n) as an auxiliary input. We say that M is an sample-aided reduction of solving Π in the

worst-case to the task T if, for every procedure P that performs the task T, it holds that

Prr1,...,rs∈{0,1}n

[
Pr

[
∀x∈{0, 1}n MP (x; (r1,Π(r1)), ..., (rs,Π(rs))) = Π(x)

]
≥ 2

3

]
>

2

3
(1)

where the internal probability is taken over the coin tosses of the machine M and the procedure P .

As stated upfront, a sample-aided reduction implies an ordinary non-uniform reduction. In fact,
many known non-uniform reductions (e.g., [28]) are actually sample-aided reductions. Furthermore,
coupled with a suitable downwards self-reduction for Π, a sample-aided reduction of solving Π in
the worst-case to solving Π on the average (resp., in the rare-case) implies a corresponding standard
reduction (of worst-case to average-case (resp., to rare-case)).

Specifically, letting Πn denote the restriction of Π to n-bit instances, suppose that solving Πn

on the worst-case reduces to solving Π′
n on the average, when provided a sample of solved instances

of Πn, and that we have an average-case solver for Π′. Then, using the downwards self-reduction of
Π, a sample of solved instances of Πn can be generated by employing the downwards reduction of
Πn to Πn−1 and using the worst-case to average-case reduction of Πn−1 (to Π′

n−1), which in turn
requires a sample of solved instances of Πn−1. Similarly, generating a sample of solved instances for
Πn−1 is reduced to generating a sample of solve instances for Πn−2, and ditto for Πn−i via Πn−i−1.
We stress that the size of the sample remains unchanged at all levels; a sample of solved instances
for Πn−i−1 allows for solving all instances of Πn−i by using the average-case solver of Π′

n−i. The
actual process of generating samples of solved instances goes in the other direction (i.e., going from
j = 1 to j = n − 1, we use the sample of solved instances of Πj in order to generate a sample
of solved instances of Πj+1), and at the end we solve the instance of Πn given to us. Note that
for j = 1 (i.e., to begin this process) the reduction itself can generate solved instances of constant
length.

Using the foregoing methodology we establish Theorem 4.4, which provides a uniform reduction
from the worst-case complexity of the problem Π ∈ C(p) to the rare-case complexity of some
problem in Dtime(p′), where p′(n) = p(n) · n1+o(1). The proof of Theorem 1.3, which asserts a
non-uniform worst-case to rare-case reduction for C(p), does not use this methodology; it rather
uses the straighforward emulation of sample-aided reductions by non-uniform reductions.

1.4 A side comment on AC0[2]

We observe that adequately uniform versions of AC0[2] (i.e., constant-depth polynomial-size circuits
with parity gates) admit worst-case to average-case reductions that run in almost linear-time, but
these reductions do not preserve the complexities as well as in our main results. Specifically, the
decision problem regarding n-long inputs to (adequately uniform) poly(n)-size circuits of depth d
is reduced to a decision problem regarding Õ(n)-long inputs to (adequately uniform) poly(n)-size
circuits of depth O(d), where the constant in the O-notation is universal and small (but larger

5

than 2). Note that, while AC0[2] cannot count, these classes contain “seemingly hard problems in
P” (e.g., the t-CLIQUE problem for n-vertex graphs can be expressed as a highly uniform DNF with
nt terms (each depending on

(
t
2

)
variables)).

The foregoing reduction uses some of the ideas that are used in the proof of Theorem 1.1. Again,
the pivot is an arithmetic problem which admits a worst-case to average-case reduction, and the
point is reducing the Boolean problem to it and reducing it back to a Boolean problem. For the
first reduction we use the approximation method of Razborov [24] and Smolensky [27]. Specifically,
we obtain an Arithmetic circuit over an extension field of GF(2) having size that is larger than
the degree of the polynomial being computed, so that the standard worst-case to average-case
reduction can be used. In the backward reduction we rely on the fact that the multiplication gates
have logarithmic fan-in, that the Arithmetic circuit is defined for an extension field of GF(2), and
that we may use parity gates (of unbounded arity) in the Boolean circuit. For more deatils, see
Appendix A.2.

1.5 Terminology and organization

For a function f : N → N, we use exp(f(n)) to denote eO(f(n)). The notion of “almost linear”
functions is commonly given a variety of interpretations ranging from saying that a function f :
N→ N is almost linear if f(n) = n1+o(1) to requiring that f(n) = Õ(n). We shall restrict the range of
interpretations to the case of f(n) ≤ exp(f ′(n)) ·n, where at the very minimum f ′(n) = Õ(log log n)
and at the very maximum f ′(n) = (log n)/(log log n)ω(1). In these cases, we shall consider exp(f ′(n))
to be small, and exp(−f ′(n)) to be noticeable.

In Section 2 we define the classes of counting problems that will be studied in this work. In
Section 3 we present the proof of Theorem 1.1; our presentation proceeds in two steps: First, in
Section 3.1, we prove a weaker result (which refers to a lower error rate), and later (in Section 3.2)
we derive the original claim. The proof of Theorem 1.3 is presented in Section 4.1, and in Section 4.2
we prove the incomparable result stated in Theorem 4.4.

2 Counting local patterns: defining the class of counting problems

We consider a class of counting problems that are solvable in polynomial time. Such a counting
problem specifies a polynomial number of local conditions, where each local condition consists of a
short sequence of locations (in the input) and a corresponding predicate, and the problem consists
of counting the number of local conditions that are satisfied by the input. An archetypical example
is the problem of counting t-cliques, for some fixed t ∈ N, where the local conditions correspond to
all t-subsets of the vertex set, and each local condition mandates that the corresponding vertices

are adjacent in the graph. In general, for efficiently specified subsets S
(n)
1 , ..., S

(n)
poly(n) ⊂ [n] and

formulae φ
(n)
1 , ..., φ

(n)
poly(n), we consider the problem of counting, on input x ∈ {0, 1}n, the number

of subsets S
(n)
i such that φ

(n)
i (xSi) = 1. (As usual, for a set S = {i1, ..., is} ⊆ [n] such that

i1 < i2 < · · · < is and x = x1x2 · · · xn ∈ {0, 1}n, we denote xS = xi1xi2 · · · xis the projection of x
at the coordinates S.)10

Specifically, we assume that for some ℓ,m : N → N such that ℓ(n) = O(log n), there exists a
sub-exponential time algorithm that, on input n, outputs Boolean circuits φn : {0, 1}ℓ(n)+m(n) →

10Indeed, this class is related to the class of locally characterizable sets defined by us in [16]; see Appendix A.1.

6

{0, 1} and πn : {0, 1}ℓ(n) → [n]m(n) (of bounded fan-in) such that φ
(n)
i (z) = φn(i, z) and S

(n)
i =

πn(i). (Note that the running time of the foregoing algorithm is upper-bounded by exp(|n|c) =
exp((log n)c), for some constant c ∈ (0, 1).) In addition, we shall assume that these circuits have
bounded depth, which may mean that they have depth at most (log n)c for some constant c ∈ (0, 1).

The fact that the time (upper) bound is exponential in the depth (upper) bound is no coinci-
dence. It reflects the fact that one measure of overhead in our results is polynomial in the time
bound, whereas another is exponential in the depth bound. Since our reductions may increase the
depth of the formulae by a poly(log log n) factor, we consider classes of bounding functions that
are closed under multiplication by such a factor. Hence, we call a class of functions admissible if
it is closed in the foregoing sense, or actually closed under polylogarithmic factors (i.e., Õ(f) is in
the class if f is in it). In addition, we require that the class contains only non-decreasing functions
of sublogarithmic growth rate and is closed under addition of O(log log n) terms.

Definition 2.1 (admissible classes of functions): A class of functions D is admissible if for every

f ∈ D it holds that

1. Closure: The functions f ′ and f ′′ such that f ′(n) = Õ(f(n)) and f ′′(n) = f(n)+ log log n are

in D.

2. Non-decreasing: f(n + 1) ≥ f(n).

3. Sublogarithmic growth rate: f(n) = o(log n).

Examples of admissible classes of functions include D1 = {f : f(n) ≤ Õ(log log n)}, D2 = {f :
f(n) ≤ poly(log log n)}, D3 = {f : f(n) ≤ O(log n)c}c∈(0,1), and D4 = {f : f(n) ≤ log n

(log log n)ω(1) },
where the unspecified constants allow for ignoring finitely many n’s. Recall that admissible classes
will be used as bounds on the depth of the circuits that define the local patterns. For a fixed
admissible class D, we say that the function f : N→ N is almost linear if f(n) ≤ exp(f ′(n)) · n for
some f ′ ∈ D.

Turning back to the Boolean circuits φn : {0, 1}ℓ(n)+m(n) → {0, 1} and πn : {0, 1}ℓ(n) → [n]m(n),
observe that their size is upper-bounded by the time that it takes to construct them, where the
latter bound is exponential in the depth of these circuits. Thus, we may consider Boolean formulae

of such size instead. (We also replace πn : {0, 1}ℓ(n) → [n]m(n) by πn,1, ..., πn,m(n) : {0, 1}ℓ(n) → [n].)
With these preliminaries in place, we are finally ready to state the definition of the class of counting
problems that we consider. Actually, we present a family of such classes, each corresponding to a
different set of admissible functions.

Definition 2.2 (counting local patterns): Let D be a set of admissible functions. For every f ∈ D
and ℓ,m : N → N such that ℓ : N → N is a logarithmic function (i.e., ℓ(n) = ⌈c · log n⌉ for some
constant c > 0), let A be an algorithm that, on input n, runs for exp(f(n))-time and outputs

Boolean formulae φn : {0, 1}ℓ(n) × {0, 1}m(n) → {0, 1} and πn,1, ..., πn,m(n) : {0, 1}ℓ(n) → [n]. The

counting problem associated with A, denoted #A, consists of counting, on input x ∈ {0, 1}∗, the

number of w ∈ {0, 1}ℓ(|x|) such that

Φx(w)
def
= φn(w, xπn,1(w), ..., xπn,m(n)(w)) (2)

equals 1. The class of counting problems associated with ℓ and D is denoted Cℓ,D.

7

Note that any problem in the class Cℓ,D can be solved in polynomial-time; specifically, n-bit long
instances can be solved in time 2ℓ(n) · exp(f(n)) = 2(1+o(1))·ℓ(n) on a direct access machine. We
mention that the doubly-efficient interactive proof systems presented by us in [16] apply to these
counting problems, provided that the verifier is allowed to run in time exp(f(n)) · n = n1+o(1), for
some f ∈ D.

We mention that a simplified form, in which φn ignores its ℓ(n)-bit long prefix (and so we may
have φn : {0, 1}m(n) → {0, 1}), suffices for capturing many natural problems. Specifically, for fixed
t ∈ N, when representing n-vertex graphs by their adjacency matrix, denoted x = (xr,c)r,c∈[n], the
problem of counting the number of t-cliques in the graph is captured by Φx(i1, ..., it) = ∧j<kxij ,ik ;

that is, we use φn2 : {0, 1}t2 → {0, 1} and πn2,(j,k) : {0, 1}t log n → [n2] (for j, k ∈ [t]) such that
φn2(z1,1, ..., zt,t) = ∧j<kzj,k and πn2,(j,k)(i1, ..., it) = (ij , ik). Likewise, with some abuse of notation,
the problem of counting t-tuples of integers in the input sequence x = (x1, ..., xn) ∈ [−m,m]n

that sum-up to zero, is captured by Φx(i1, ..., it) = 1 if and only if
∑

j∈[t] xij = 0; that is, we use

φn : [m]t → {0, 1} such that φn(z1, ..., zt) = TruthValue(
∑

j∈[t] zj = 0) and πn,j : {0, 1}t log n → [n]
such that πn,j(i1, ..., it) = ij for j ∈ [t].

3 The worst-case to average-case reduction

We are now ready to (re)state our main result.

Theorem 3.1 (worst-case to average-case reduction, Theorem 1.1 formalized): Let D be a set of

admissible functions and ℓ be a logarithmic function. For every counting problem Π in Cℓ,D, there

exists a counting problem Π′ in Cℓ,D and an almost-linear time randomized reduction of solving Π
on the worst case to solving Π′ on at least 0.75 + ǫ fraction of the domain, where ǫ is any positive

constant.

Recall that, for every f ∈ D, the function n 7→ exp(f(n)) · n = n1+o(1) is considered almost linear.
The reduction consists of two main steps.

1. An almost-linear time randomized reduction of solving Π on the worst case to evaluating
certain Arithmetic expressions over a non-binary finite field, where the evaluation subroutine
is correct on at least a 0.5 + o(1) fraction of the instances.

2. An almost-linear time reduction of evaluating the foregoing Arithmetic expressions on at
least a 0.5 + o(1) fraction of the instances to solving Π′ on at least 0.75 + o(1) fraction of the
instances.

We start by presenting the aforementioned arithmetic problem. Recall that an Arithmetic circuit
(resp., formula) is a directed acyclic graph (resp., directed tree) with vertices (of bounded in-
degree) that are labeled by multiplication-gates and linear-gates (i.e., gates that compute linear
combination of their inputs). Actually, since we consider generic Arithmetic circuits, which are well
defined for any field, the scalars allowed in the linear gates are only 0, 1 and −1.

Definition 3.2 (evaluating arithmetic expressions of a local type): For f ∈ D and ℓ,m : N→ N as

in Definition 2.2, let A′ be an algorithm that, on input n, runs for exp(f(n))-time and outputs an

Arithmetic formula φ̂n : Fℓ(n)×Fm(n) → F and Boolean formulae πn,1, ..., πn,m(n) : {0, 1}ℓ(n) → [n],

8

where F is a generic finite field. Fixing a finite field F , the evaluation problem associated with A′

and F , denoted EVA′,F , consists of computing the function Φ̂A′ : Fn → F such that

Φ̂A′(X1, ...,Xn)
def
=

∑

w∈{0,1}ℓ(n)

φ̂n(w,X
i
(1)
n,w

, ...,X
i
(m(n))
n,w

), (3)

where i
(j)
n,w = πn,j(w).

Indeed, as in Eq. (3), we shall often abuse notation and view t-long binary strings as t-long se-
quences over F . The formally inclined reader should consider a mapping ξ : {0, 1} → F such
that ξ(0) = 0 ∈ F and ξ(1) = 1 ∈ F , and write φ̂n(ξ(w1), ..., ξ(wℓ(n)),Xi

(1)
n,w

, ...,X
i
(m(n))
n,w

) instead of

φ̂n(w,X
i
(1)
n,w

, ...,X
i
(m(n))
n,w

).

We shall first prove a weaker version of Theorem 3.1 in which the tolerated error rate is
1/O(log n) rather than 0.25 − o(1). This proof is presented in Section 3.1, and it will serves
as a basis for the proof of Theorem 3.1 itself, which is presented in Section 3.2.

3.1 The vanilla version

Our first step is reducing the (Boolean) counting problem to the Arithmetic evaluation problem.
This reduction is based on the folklore emulation of Boolean circuits by Arithmetic circuits, which
yields a worst-case to worst-case reduction. The validity of the reduction relies on the choice of the
field for the Arithmetic evaluation problem; specifically, we choose a finite field of characteristic
that is larger than the number of terms in the counting problem. (The worst-case to average-
case reduction, for the Arithmetic evaluation problem, will be performed in the next step, and it
is enabled by keeping track of the degree of the polynomial that is computed by the Arithmetic
circuit that is derived by the Boolean-to-Arithmetic reduction.)

Proposition 3.3 (reducing worst-case Boolean counting to worst-case arithmetic evaluation): Solv-

ing the counting problem associated with an algorithm A (and functions ℓ,m and f) is reducible in

almost-linear time to the evaluation problem that is associated with a related algorithm A′, and any

finite field of prime cardinality greater than 2ℓ(n). Furthermore, the reduction makes a single query,

the degree of the polynomial Φ̂A′ is at most exp(f(n)), and the functions ℓ,m and f equal those in

the counting problem.

Proof: The basic idea is to emulate the Boolean formula φn by the Arithmetic formula φ̂n, where
we shall first transform the former formula into an almost-balanced one. The almost-balanced
structure will yield a bound on the degree of the derived Arithmetic formula.

Let ℓ = ℓ(n) = O(log n). We may assume, without loss of generality, that the depth the
Boolean formula φn is logarithmic in its size, which is upper-bounded by s = exp(f(n)). Observe
that the transformation of arbitrary formula to this (almost-balanced) form can be performed
in polynomial (in s) time. Within the same complexity bound, we can construct an Arithmetic
formula φ̂n : Fℓ(n)+m(n) → F that agrees with φn on {0, 1}ℓ(n)+m(n); that is, φ̂n(w, z) = φn(w, z)
for every (w, z) ∈ {0, 1}ℓ(n)+m(n). This construction is obtained by replacing each and-gate by a
multiplication gate, and replacing each negation-gate by a gate that computes the linear mapping
v 7→ 1− v. The crucial point is that φ̂n preserves the depth of φn, and so the degree of the function

9

computed by φ̂n is upper-bounded by D = exp(O(log s)) = poly(s) ≪ |F|, where F is chosen to
be a finite field of prime cardinality that is larger than 2ℓ.

Hence, we reduce the counting problem #A (associated with an algorithm A) to the arithmetic
evaluation problem EVA′,F associated with an algorithm A′ that computes the foregoing φ̂n and

πn,j’s, by first invoking algorithm A, and then proceeding as outlined above. Defining Φ̂A′ as in
Eq. (3), for every x = x1 · · · xn ∈ {0, 1}n ⊂ Fn, it holds that

Φ̂A′(x1, ..., xn) =
∑

w∈{0,1}ℓ

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

)

=
∑

w∈{0,1}ℓ

φn(w, xπn,1(w), ..., xπn,m(n)(w))

=
∑

w∈{0,1}ℓ

Φx(w)

where the equalities hold both over F and over the integers, because each term is in {0, 1} and
F is a finite field of prime cardinality that is larger than 2ℓ. Hence, #A(x) = EVA′,F (x) for every
x ∈ {0, 1}n ⊂ Fn. Recalling that D = poly(s) = exp(f(n)), the furthermore clause follows.

Proposition 3.4 (folklore worst-case to average-case reduction for evaluating polynomials of bounded
degree): Let P : Fn → F be a polynomial of total degree d < |F|/3. Then, evaluating P on any

input can be randomly reduced to evaluating P correctly on at least a 8/9 fraction of the domain,

by invoking the latter evaluation procedure for 3d times.

We stress that the reduction is randomized, and, on each input, it yields the correct answer with
probability at least 2/3.

Proof: On input x ∈ Fn, we select r ∈ Fn uniformly at random, and invoke the evaluation
procedure on the points x + ir, where i = 1, ..., 3d. (This description presumes that F is a prime
field; but otherwise, we may use 3d distinct non-zero elements of F instead of the i’s.) Note that the
queried points are uniformly distributed in Fn, and so, with probability at least 1/3, the evaluation
procedure answers correctly on at least two-thirds of the queried points. Using the Berlekamp–
Welch algorithm, we reconstruct the unique degree d polynomial that agrees with these correct
answers, and return its free-term (i.e., its value at 0, which corresponds to P (x)). This value is
correct with probability at least 2/3.

A pause. Combining Propositions 3.3 and 3.4, we obtain a reduction of solving the (Boolean)
counting problem, on the worst-case, to solving the Arithmetic problem on the average (i.e., for
a 8/9 fraction of the instances). In order to prove Theorem 3.1, we have to reduce the latter
problem to a (Boolean) counting problem, and this reduction has to be analyzed in the average-
case regime. This raises a difficulty, since the Arithmetic problem (denoted EVA′,GF(p)) refers to

any fixed prime p > 2ℓ(n). Note that Proposition 3.3 does not specify how this prime is chosen.
Indeed, such a prime can be selected at random by the reduction (of Proposition 3.3), but in such
a case different invocations will yield different primes, and so we shall not have a single Arithmetic
problem but rather a distribution over such problems. This difficulty could have been avoided if
we had a deterministic exp(f(n))-time algorithm for generating primes that are larger than 2ℓ(n),

10

but such an algorithm is not known (since exp(f(n)) = no(1) whereas 2ℓ(n) = nΩ(1)). We prepare
to accommodate this difficulty by considering an extension of Definition 2.2 in which the algorithm
that generates the Boolean formulae is given an auxiliary input (in addition to the length parameter
n). Indeed, providing the algorithm associated with the Boolean problem with an auxiliary input
that specifies the field used in the Arithmetic problem, allows us to reduce the Arithmetic problem
to a Boolean problem. We stress that this reduction will be analyzed with respect to potential
solvers that err on a noticeable fraction of the domain.

Proposition 3.5 (reducing average-case Arithmetic evaluation to average-case Boolean counting):
For a finite field F of prime size p ≤ poly(n), let A′ be as in Definition 3.2, and Φ̂A′ be the

corresponding polynomial. Then, the problem of evaluating Φ̂A′ on at least a 8/9 fraction of the

domain Fn is randomly reducible in almost-linear time to solving a counting problem of the flavor

of Definition 2.2 on at least 1 − (1/O(log p)) fraction of the domain {0, 1}n′′
, where n′′ = Õ(n).

The reduction makes log p queries to the counting problem, where each query has input length

n′′. Specifically, we consider an algorithm as in Definition 2.2, except that it is given the prime

p in addition to its length parameter. Furthermore, if ℓ′, f ′ and m′ (resp., ℓ′′, f ′′ and m′′) are the

functions used in the Arithmetic (resp., Boolean) problem, then ℓ′′ = ℓ′, f ′′(Õ(n)) ≤ poly(log log p) ·
f ′(n), and m′′(Õ(n)) = O(log n) ·m′(n).

Note that m′′(Õ(n)) ≤ O(log n) · exp(f ′(n)) = exp(f ′′(n)) for a suitable choice of f ′′ such that
f ′′(Õ(n)) ≤ poly(log log p) · f ′(n). As for the prime provided to the algorithm that generates
instances of the counting problem, this deviation from Definition 2.2 will be eliminated when
applying Proposition 3.5. Specifically, in these applications the prime p will be chosen according to
the length parameter and fed to the foregoing algorithm (which will be used as a subroutine). As
hinted above, this will raise an issue that will be discussed and resolved in the proof of Corollary 3.6.

Proof: The basic idea is to let the Boolean formula emulate the computation of the Arithmetic
formula φ̂n that appears in Eq. (3). This will be done by using small Boolean formulae that emulate
the operations of the field F . Details follow.

We shall represent each element of F by an O(log n)-bit long string. Actually, each element of
F = GF(p) will have poly(n)-many possible representation by bit strings of length log p+O(log n).
When reducing the Arithmetic evaluation problem to a Boolean counting problem, we shall select
at random one of them; that is, for each input symbol (in F), we shall select at random one of
these representations (as a bit string). This redundant representation is used in order to guarantee
that all field elements have approximately the same number of representations (as O(log n)-long
bit strings).11

The Boolean formula will first map each such representation to the canonical representation,
and then emulate the computation of the Arithmetic circuit using the canonical representations
all along. Specifically, the canonical representation of e ∈ GF(p) will be the (zero-padded) binary
expansion of e, and the other representations will correspond to the binary expansion of e+ i · p for
i ∈ [poly(n)]. Hence, the output will be t = ⌈log p⌉ bits long, whereas in the input of the Boolean
circuit each field element will be represented by a block of t′ = t + O(log n) bits.

11The source of trouble is that F = GF(p) is a prime field and so representing its elements by ⌈log2 p⌉-bit long
strings will leave some of these strings unused. In such a case, a uniform distribution on GF(p) will be mapped to a
uniform distribution on p of these strings, but not on all of them. The random representation used below will map the
uniform distribution over GF(p) to a distribution that is almost uniform over all strings of length log2 p + O(log n).

11

Next, we consider Boolean formula φ′
n that emulates the computation of the corresponding

φ̂n (over F = GF(p)). Specifically, each arithmetic gate will be replaced by an NC circuit that
emulates the corresponding field operation.12 Note that these gate-emulation circuits have depth
poly(log log |GF(p)|) = poly(log log p), and that their construction depends on the prime p. In
addition, we need to slightly modify the sequence of functions that determines the indices of the
field elements fed to φ̂n. Suppose that the sequence fed to φ̂n(w, ·) is determined by π′

n,1, ..., π
′
n,m(n) :

{0, 1}ℓ′ → [n]. Then, each π′
n,j determines the index of a field element in the input to φ̂n, and

so it should be replaced by functions πn,(t′−1)j+1, ..., πn,t′j : {0, 1}ℓ′ → [t′n] that determine the
corresponding bits in the input to φ′

n (i.e., πn,(t′−1)j+k(w) = (t′ − 1) · π′
n,j(w) + k for k ∈ [t′]).

Note that the formula φ′
n outputs t = log p bits, whereas we seek a Boolean formula with a single

output bit. Such a Boolean formula is obtained by using an auxiliary input i ∈ [t], which determines
the bit to be output; that is, φ′′

n(w, (·, i)) equals the ith bit of φ′
n(w, ·). The corresponding function

Φ′′
y,i (per Eq. (2)) is such that Φ′′

y,i(w) = φ′′
n(w, (y, i)πn(w)), where πn denote the sequence of πn,j’s

(augmented by functions that indicate the bit positions of i in the input (y, i)). Hence, we reduce
the evaluation of of Φ̂A′ on input x ∈ Fn to counting the number of w’s that satisfy Φ′′

y,i(w) = 1,

for each i ∈ [t], where y ∈ {0, 1}t′n is a random representation of x. Specifically, the value of Φ̂A′

on x = (x1, ..., xn) ∈ Fn is obtained as follows.

1. For each k ∈ [n], randomly map xk ∈ GF(p) to a t′-bit string, denoted yk, that represents it.
Recall that yk ∈ {0, 1}t

′ ≡ [2t′] is a random integer that is congruent to xk modulo p.

2. For each i ∈ [t], compute the number of w’s that satisfy Φ′′
y,i(w) = 1 by invoking the algorithm

that supposedly solves the counting problem (on input (y, i) = (y1, ..., yn, i)), where Φ′′
y,i is as

above (i.e., Φ′′
y,i(w) = φ′′

n(w, (y, i)πn(w)), where πn denote the sequence of πn,j’s).

Recall that the formulae πn,j determine integers in [t′n + log t] such that the value πn,j(w)
determines the (|w| + j)th bit that will be fed to φ′′

n(w, ·). (Note that the bits in locations
t′n + 1, ..., t′n + log t, which represent i ∈ [t], will always be fed to φ′′

n.)

3. Denoting by ci the count obtained by the ith call, output the value
∑t

i=1 ci · 2i−1 mod p.

The key observation is that

∑
w∈{0,1}ℓ′(n) φ̂n(w, x

i
(1)
n,w

, ..., x
i
(m(n))
n,w

) ≡ ∑
w∈{0,1}ℓ′(n)

∑
i∈[t] φ

′′
n(w, (y, i)πn(w)) · 2i−1 (mod p)

≡ ∑
i∈[t] 2

i−1 ·∑w∈{0,1}ℓ′(n) φ′′
n(w, (y, i)πn(w)) (mod p).

Hence, EVA′,GF(p)(x) =
∑

i∈[t] 2
i−1 ·#A′′(p)(y, i), where A′′ is the algorithm that (on input p) gen-

erates φ′′
n (and πn). Note that, when given a uniformly distributed x ∈ Fn, the ith query made by

our reduction is almost uniformly distributed in {(y, i) : y ∈ {0, 1}n·t′}, where the small deviation
arises from the fact that some elements in F = GF(p) have ⌊2t′/|F|⌋ representations, whereas
others have ⌈2t′/|F|⌉ representations. Hence, if the invoked algorithm errs on at most an η fraction
of its inputs (i.e., inputs in {0, 1}nt′+log t), then our algorithm will err (with probability exceeding
0.1) on at most a t · (10 · η + n · (|F|/2t′)) fraction of its inputs (i.e., inputs in Fn), where the factor
of t accounts for the different i’s (and the factor of 10 accounts for input symbols that have more
than 10% bad representations for a fixed i). Seeking to err on at most a 1/9 fraction of the inputs

12Recall that integer arithmetics is in NC; see, e.g., [22, Lect. 30].

12

in Fn, we may use any counting algorithm that errs on at most an η = 0.1/t = 1/O(log n) fraction
of its inputs (which are strings in {0, 1}t′n).

The claim follows, except that our counting problem refers to 2ℓ′(n) = 2ℓ′′(n) terms and to
input-length of n′′ = t′n + log t = Õ(n), whereas the claim asserts a reduction to a counting
problem that refers to 2ℓ′′(n′′) terms. This can be fixed by introducing 2ℓ′′(n′′) − 2ℓ′′(n) dummy
terms. Specifically, for λ = ℓ′′(n′′) − ℓ′′(n) ≈ c · log(n′′/n) ≈ c · log t′, we consider counting the
number of (w, v) ∈ {0, 1}ℓ′′(n)+λ that satisfy Φy,i, where Φy,i(w, 1λ) = Φ′′

y,i(w) and Φy,i(w, v) = 0

for every v 6= 1λ.

An intermediate conclusion. Combining Propositions 3.3–3.5, we obtain a weaker version of
Theorem 3.1 in which the tolerated error rate is smaller and the class of admissible functions is
slightly more restricted. Specifically:

Corollary 3.6 (weak version of Theorem 3.1): Let D be a set of admissible functions that is further

closed under multiplication by poly(log log n) factors, and ℓ be a logarithmic function. Then, for

every counting problem Π in Cℓ,D, there exists a counting problem Π′ in Cℓ,D and an almost-linear

time randomized reduction of solving Π on the worst case to solving Π′ on at least 1− (1/O(log n))
fraction of the domain.

Note that the extra hypothesis regarding D is satisfied in the case that D contains a function f
such that f(n) ≥ exp((log log n)Ω(1)).

Proof: We select a prime number p ∈ (2ℓ(n), 2ℓ(n)+1) at random, and observe that (by Propo-
sition 3.3) the original counting problem #A is reduced (in the worst-case) to the Arithmetic
evaluation problem EVA′,GF(p) (i.e., evaluating the Arithmetic formula Φ̂A′ over GF(p)). We apply

the worst-case to average-case reduction of Proposition 3.4 to the evaluation of Φ̂A′ over GF(p),
and next apply the reduction of Proposition 3.5, which yields a counting problem #B(p) for some

adequate algorithm B. Hence, we map the parameter f ′ ∈ D of Φ̂A′ to a parameter f ′′ of the new
counting problem such that f ′′(Õ(n)) = poly(log log n) · f ′(n).

We stress that the prime p is selected, upfront, by our reduction; that is, it is determined prior
to applying Propositions 3.3–3.5. Thus, the algorithm underlying the final counting problem (i.e.,
B) views p as part of its input, whereas the algorithm in Definition 2.2 gets no such input. To bridge
the gap, we include this input (i.e., p) in the input to the counting problem to which we reduce;
that is, the input is now (p, y′) rather than being y′ = (y, i) as in the proof of Proposition 3.5; that
is, we consider the counting problem #B′ such that #B′(p, y′) = #B(p)(y

′). This requires modifying
the algorithm so that the small circuits that emulate GF(p) computation take p as additional input,
rather than being generated for a fixed p (by an algorithm that takes p as input). We also augment
the sequence of functions πn′ such that p is always fed to the formula φn′ . The minor increase
in the length of the input of the counting problem may require additional padding of the index
of the summation (but this is needed only if ℓ(n′ + ℓ(n′)) > ℓ(n′), which is quite unlikely since
ℓ(n) = O(log n)).

The analysis uses the fact that if the final counting problem (i.e., #B′) is solved correctly with
probability 1− η, when the probability is take over pairs of the form (p, y′), then, with probability
at least 0.9 over the choice of p, the residual counting problem (i.e., #B′(p, ·) ≡ #B(p)) is solved
correctly with probability 1−10η (and the success probability of the entire reduction is 0.9·2/3·0.9).

13

Digest. When tracing the cost of the reduction, one should focus on the depth of the various
formulae, while assuming that they are in balanced form (i.e., that their depth is logarithmic in their
size). The reduction in Proposition 3.3 preserves the depth, while the reduction Proposition 3.5
increases the depth by a poly(log log p) ≤ poly(log log n) factor, where p is the size of the field in
use. Recall that Proposition 3.4 does not change the formula, and that the depth overhead is due to
the implementation of the field’s operations by Boolean formulae (in the proof of Proposition 3.5).
Note that using Proposition 3.7 allows using p = exp(f(n)) (rather than p = poly(n)), which means
that the depth increase is only a poly(log f(n)) factor.

3.2 Deriving the original conclusion

The small level of error rate that is allowed by Corollary 3.6 is rooted mainly in the fact that the

arithmetic evaluation over a field of size p > 2ℓ(n) (which refers to φ̂n (and to the i
(j)
n,w’s)) is emulated

by t = log2 p invocations of a Boolean counting problem, which refers to the Boolean formula φ′′
n

(and to πn). The key observation, made in the proof of Proposition 3.5, is that
∑

w∈{0,1}ℓ(n)

φ̂n(w, x
i
(1)
n,w

, ..., x
i
(m(n))
n,w

) ≡
∑

w∈{0,1}ℓ(n)

∑

i∈[t]

φ′′
n(w, (y, i)πn(w)) · 2i−1 (mod p). (4)

In the proof of Proposition 3.5, we computed the r.h.s of Eq. (4) by counting, separately, for each

i ∈ [t], the number of w’s that satisfy φ′′
n(w, (y, i)πn(w)), and taking a weighted (by 2i−1) sum

of these counts (modulo p). But an alternative solution is to replace these weights by auxilary
summations; that is, the r.h.s of Eq. (4) can be computed by

∑

i∈[t]

∑

w∈{0,1}ℓ(n)

∑

u∈{0,1}t

φ′′′
n (w, u, (y, i)πn(w)) (5)

such that φ′′′
n (w, u, (y, i)πn(w)) = φ′′′

n (w, (y, i)πn(w)) if u ∈ {0, 1}t ends with t− (i− 1) ones (i.e., u ∈
{u′1t−(i−1) :u′∈{0, 1}i−1}) and φ′′′

n (w, u, (y, i)πn(w)) = 0 otherwise. The problem with this solution
is that it doubles the length of the index of the summation (i.e., |(i, w, u)| > ℓ(n) + t ≥ 2ℓ(n) =
2|w|). The source of the trouble is that the reduction of the (Boolean) counting to the Arithmetic
evaluation (i.e., Proposition 3.3) uses a setting of p > 2ℓ(n) (which implies t = log2 p > ℓ(n)).

Instead, we can use a reduction to O(ℓ(n)/f(n)) arithmetic problems that refer to fields of size
exp(f(n) + ω(1)) = no(1) (rather than of size 2ℓ(n) = poly(n)), where the the field size should be at
least exp(f(n) + ω(1)) for the application of Proposition 3.4 (which requires the field to be larger
than the degree bound). The corresponding O(ℓ(n)/f(n)) values will be combined using Chinese
Remaindering with errors (cf. [15]) so that we only incur a constant loss in the error rate (rather
than a loss factor of O(ℓ(n)/f(n))). This “CRT with errors” is reminiscent of the Berlekamp–Welch
algorithm, which was employed in the proof of Proposition 3.4 (in order to obtain a constant error
rate rather than an error rate that is inversely proportional to the degree of the polynomial). For
sake of simplicity, we first present an alternative to Proposition 3.3 using CRT with no errors.

Proposition 3.7 (Proposition 3.3, revised): Solving the counting problem associated with an al-

gorithm A and functions ℓ,m and f is reducible in almost-linear time to O(ℓ(n)/f(n)) < log n
evaluation problems that are all associated with a related algorithm A′, and finite fields of prime

cardinality at least s = exp(f(n) + ω(1)). Furthermore, the reduction makes a single query to each

problem, the degree of the polynomial Φ̂A′ is o(s), and the functions ℓ,m and f equal those in the

counting problem.

14

Note that s is set as small as possible subject to being sufficiently larger than the degree of Φ̂A′ .
We wish s to be small because it determines the various overheads that we shall incur when
emulating the Arithmetic formula by Boolean formula (in Proposition 3.9). (On the other hand,
using Proposition 3.8 requires that s be sufficiently larger than the degree of Φ̂A′ .)

Proof: Following the proof of Proposition 3.3, while using the field GF(p) for an arbitrary prime
p, yields a (worst-case) reduction of “counting (mod p) problem #A” (i.e., counting the number
of w’s mod p that satisfy Φx) to the evaluation problem associated with A′ and GF(p). Invoking
this reduction for t primes p of size exp(f(n)), and invoking the Chinese Remainder Theorem, the

claim follows provided that exp(f(n))t > 2ℓ(n), which solves to t > ℓ(n)
f(n) .

Terminology. For the rest of this section, it will be convenient to consider the average success
probability of randomized algorithms, where the average is taken over all inputs with uniform
probability distribution. Hence, rather than considering the fraction of the inputs on which the
randomized algorithm succeeds with probability at least 2/3, we consider the average success prob-
ability of the algorithm, hereafter referred to as its success rate. (Indeed, an algorithm that succeeds
with probability at least 2/3 on a ρ fraction of its inputs has success rate at least ρ · 2/3.)

Proposition 3.8 (Proposition 3.4, revised): Let P : Fn → F be a polynomial of total degree

d = o(ǫ2 · |F|). Then, evaluating P on any input can be randomly reduced to evaluating P with

success rate at least 0.5 + ǫ, by invoking the latter evaluation procedure for O(d/ǫ2) times.

Recall that the reduction is randomized, and, on each input, it yields the correct answer with
probability at least 2/3.

Proof: On input x ∈ Fn, we select a random curve of degree two that passes through x, and invoke
the evaluation procedure on the first m = O(d/ǫ2) points of this curve. Note that the queried points
are pairwise independent and uniformly distributed in Fn. Hence, with probability at least 2/3, the
evaluation procedure answers correctly on at least a 0.5+0.5ǫ fraction of the queried points. Using
the Berlekamp–Welch algorithm, we reconstruct the unique degree 2d polynomial that agrees with
these correct answers, and return its value at x. This value is correct with probability at least 2/3.

Proposition 3.9 (Proposition 3.5, revised): For a finite field F of prime size p ≤ poly(n), let A′ be
as in Definition 3.2, and Φ̂A′ be the corresponding polynomial. Then, the problem of evaluating Φ̂A′ :
Fn → F with success rate at least ρ, is randomly reducible in almost-linear time to solving a counting

problem of the flavor of Definition 2.2 with success rate at least ρ− (1/poly(n)). Specifically, as in

Proposition 3.5, we consider an algorithm as in Definition 2.2, except that it is given the prime p in

addition to its length parameter. Let ℓ′, f ′ and m′ (resp., ℓ′′, f ′′ and m′′) be the functions used in the

Arithmetic (resp., Boolean) problem. The reduction makes a single query to the counting problem,

where the input length is n′′ = exp(f ′(n)) ·n. Furthermore, ℓ′′ = ℓ′, f ′′(n′′) ≤ poly(log log p) · f ′(n),
and m′′(n′′) = O(log n) ·m′(n).

We shall use the setting ρ = 0.5 + ǫ > 0.5.

Proof: Following the proof of Proposition 3.5, we derive the same formula φ′
n, and recall that

the formula φ′
n outputs t = log p bits, whereas we seek a Boolean formula with a single output bit.

15

Again, the latter formula is derived by using an auxiliary input i ∈ [t], which determines the bit to
be output; that is, φ′′

n(w, i, z) equals the ith bit of φ′
n(w, z). Unlike in the proof of Proposition 3.5,

we shall not view i as part of the input to the counting problem (which is fed into φ′′
n, just like z),

but rather as part of the index of summartion (i.e., just as w). The corresponding Boolean formula
Φ′′

y (per Eq. (2)) is such that Φ′′
y(w, i) = φ′′

n(w, i, yπn(w)), where πn denote the sequence of πn,j’s.
(That is, the input to this counting problem is y, and the desired output is the number of pairs
(w, i) that satisfy Φ′′

y.) Recall that, on input x ∈ Fn, we do not wish to obtain
∑

w,i Φ
′′
y(w, i), but

rather wish to obtain the related sum

∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

2i−1 · Φ′′
y(w, i), (6)

where y ∈ {0, 1}t′n is a random representation of x. The difficulty is that Eq. (6) does not correspond
to a counting problem, but this can be fixed by replacing the scalar multiplication by 2i−1 with a sum
over 2i−1 terms. Specifically, consider Φ′′′

y : {0, 1}ℓ′(n)× [t]×{0, 1}t such that Φ′′′
y (w, i, u) = Φ′′

y(w, i)

if u ∈ {u′1t−(i−1) :u′∈{0, 1}i−1} and Φ′′′
y (w, i, u) = 0 otherwise. Thus, Eq. (6) equals

∑

w∈{0,1}ℓ′(n)

∑

i∈[t]

∑

u∈{0,1}t

Φ′′′
y (w, i, u). (7)

Hence, we reduce the evaluation of Φ̂A′ on x ∈ Fn to counting the number of (w, i, u)’s that
satisfy Φ′′′

y , where y ∈ {0, 1}t′n is a random representation of x. Specifically, the value of Φ̂A′ on
x = (x1, ..., xn) ∈ Fn is obtained as follows.

1. As in the proof of Proposition 3.5, for each k ∈ [n], randomly map xk ∈ GF(p) to a random
t′-bit string, denoted yk, that represents it. Recall that yk ∈ {0, 1}t

′ ≡ [2t′] is a random
integer that is congruent to xk modulo p (and that t′ = t + O(log n)).

2. Compute the number of (w, i, u)’s that satisfy Φ′′′
y (w, i, u) = 1 by invoking the algorithm that

supposedly solves the counting problem (on input y = (y1, ..., yn)), where Φ′′′
y is as in Eq. (7).

3. Denoting by c the count obtained by the foregoing invocation, output the value c mod p.

As argued before, the key observation is that

∑
w∈{0,1}ℓ′(n) φ̂n(w, x

i
(1)
n,w

, ..., x
i
(m(n))
n,w

) ≡ ∑
w∈{0,1}ℓ′(n)

∑
i∈[t] φ

′′
n(w, i, yπn(w)) · 2i−1 (mod p)

≡ ∑
i∈[t]

∑
(w,u)∈{0,1}ℓ′(n)+t φ′′′

n (w, i, u, yπn(w)) (mod p),

where φ′′′
n (w, i, u, z) = φ′′

n(w, i, z) if u ∈ {0, 1}i−1×{1}t−i−1 and φ′′′
n (w, i, u, z) = 0 otherwise. Hence,

EVA′,GF(p)(x) = #A′′′(p)(y, i), where A′′′ is the algorithm that (on input p) generates φ′′′
n (and πn).

Note that the query made by our algorithm is almost uniformly distributed in {0, 1}n·t′ , where
the small deviation arises from the fact that some elements in F have ⌊2t′/|F|⌋ representations,
whereas others have ⌈2t′/|F|⌉ representations. Hence, if the invoked algorithm has success rate ρ
(on inputs in {0, 1}nt′), then our algorithm will will have success rate at least η − n · (|F|/2t′) (on
inputs in Fn).

The claim follows, except that our counting problem refers to 2ℓ′(n)+t+log t terms and to input-
length of t′n+log t = Õ(n), whereas the claim asserts a reduction to a counting problem that refers

16

to 2ℓ′′(n′) terms and to input length n′′ = exp(f ′(n)) · n. This can be fixed by artificially padding
the input to length n′′ and noting that ℓ′′(n′′) ≥ ℓ′(n) + t + log t (where t = log p = f ′(n)).13

Proof of Theorem 3.1. The claim of Theorem 3.1 follows by combining the revised reductions
provided by Propositions 3.7–3.9. Specifically, using (a generalization of) Proposition 3.7, we reduce
the original counting problem #A to τ = O(ℓ(n)/f(n)) instances of the Arithmetic evaluation
problem, where all instances refer to the same algorithm A′ but to different primes p > s =
exp(f(n). Note that we can afford to find and use the first τ such primes (since we can run for
poly(s)-time). Hence, in the final counting problem, denoted #B , the input will be prepended by
an index j ∈ [τ] of one of these primes, and Proposition 3.9 will be applied to these primes. But
before getting there, Proposition 3.8 will be applied to each value of j ∈ [τ] (i.e., to each of the
foregoing τ primes), which means that we will employ error reduction to obtain the correct answer
in all τ invocations.

(Note that applying Proposition 3.9 increases the depth of the formula by a factor of poly(log f(n))
(rather than poly(log log n)), and increases the length of the input by a factor of exp(f(n)).) More
importantly, the τ values obtained by the τ applications of Proposition 3.9 (to different primes) will
be combined using Chinese Remaindering with errors (cf. [15]). Indeed, the error-correcting version
of the CRT will be used instead of the plain version used in Proposition 3.7, and the number of
primes is increased (from (ℓ(n)/f(n)) + O(1) to O(ℓ(n)/f(n)) = τ) so as to allow for such an error
correcting feature.

Let us spell out the reduction that is obtained by combining all the above. Recall that we are
given an input x ∈ {0, 1}n to a counting problem #A associated with an algorithm A. For an
arbitrary small constant ǫ > 0, we proceed in three steps, which correspond to the three foregoing
reductions.

1. Denoting the first τ = O(ǫ−1 · ℓ(n)/f(n)) primes that are greater than s = exp(f(n)) by
p1, ..., pτ , we consider the τ evaluation problems obtained by applying Proposition 3.7 to
algorithm A (i.e., all these problems are associated with algorithm A′). The ith such problem,
denoted EVA′,GF(pi), consists of evaluating the polynomial Φ̂A′ at points in GF(pi)

n, and we
shall apply it at the point x ∈ {0, 1}n, viewed as an element of GF(pi)

n.

2. For each i ∈ [τ], we use Proposition 3.8 to reduce the evaluation of Φ̂A′ at x ∈ GF(pi)
n to

its evaluation at s′ = O(s/ǫ2) points in GF(pi)
n, denoted x(i,j). Actually, this procedure is

repeated for O(log τ) times, and the plurality value is used, so that the probability of error
is smaller than 0.1/τ (rather than smaller than 1/3).

We stress that at this point we only determined the x(i,j)’s, where i ∈ [τ] and j ∈ [s′′] (where
s′′ = O(s′ log τ)).

3. For each i ∈ [τ], we apply Proposition 3.9 to Φ̂A′ , while providing pi as an auxiliary input.
Denoting the resulting Boolean formulae by Φ(i)’s, we consider the Boolean formula Φ that is
given i as auxiliary input and applies the relevant Φ(i); that is, Φ(i, z) =

∨
j∈[τ](i=j∧Φ(j)(z)).

Denoting the corresponding algorithm that produces Φ by B, the foregoing specifies the
counting problem #B .

At this point, for each i ∈ [τ] and j ∈ [s′′], we select uniformly at random a representation
y(i,j) ∈ {0, 1}n′

of x(i,j) ∈ GF(pi)
n, where n′ = exp(f(n)) · n.

13This uses the hypothesis that ℓ′′(n) = c log n, which implies that ℓ′′(exp(f ′(n)) · n) = O(f ′(n)) + ℓ′′(n).

17

The actual computation (of the reduction) goes in the opposite direction. For every i ∈ [τ] and
j ∈ [s′′], let v(i,j) denote the answer provided (by a hypothetical solver of the counting problem
#B) for the input y(i,j); that is, v(i,j) is supposed to equal #B(i, y(i,j)), where #B(i, y(i,j)) ≡
EVA′,GF(pi)(x

(i,j)) (mod pi). Now, for each i ∈ [τ], we apply the decoding procedure (of Proposi-

tion 3.8, with error reduction) to the values v(i,1), ..., v(i,s′′), and obtain a value v(i) ∈ GF(pi), which
is supposed to equal #A(x) mod pi. Finally, we perform Chinese Remaindering with errors on the
v(i)’s, and obtain the desired value of #A(x) (with high probability).

In the analysis, we observe that if some procedure P solves the final counting problem (i.e., #B)
with success rate at least a 0.75 + ǫ (on instances (i, y) ∈ [τ] × {0, 1}n′

), then, for at least 0.5 + ǫ
of the i ∈ [τ], the procedure P solves this counting problem with success rate at least a 0.5 + ǫ (on
instances of the form (i, ·)). Hence, for each of these majority i’s, Proposition 3.9 yields a procedure
that solves EVA′,GF(pi) with success rate at least (0.5 + ǫ− o(1)) (over instances in GF(pi)

n). This
means that, for each of these i’s, the hypothesis of Proposition 3.8 holds, and so (for each of these
i’s) the decoding procedure (of Proposition 3.8) obtains (w.h.p.) the value of #A(x) mod pi. In
this case, Chinese Remaindering with errors works, since the error rate is below its resiliency rate
(i.e., log p1

log p1+log pτ
− ǫ

2). The theorem follows.

4 The average-case to rare-case reduction

Fixing any admissible class D and a logarithmic function ℓ, and letting C = Cℓ,D, Theorem 3.1
provides an almost-linear time randomized reduction of solving any problem Π in C on the worst-
case to solving such some problem Π′ in C on the average-case, where the notion of average-case
requires solving the problem on at least a 0.76 fraction of the instances. In this section we show
that, for every f ∈ D, the latter (average-case) task can be reduced to solving a related problem
on at least a exp(−f(n)) fraction of the instances. Combined, these reductions show that solving
the latter related problem on a noticeable fraction of its domain is essentially as hard as solving Π
on the worst-case.

We show two related results of this flavor. The first result, stated in Theorem 1.3, shows a
non-uniform reduction from the average-case task Π′ to solving some problem Π′′ in C on at least
a exp(−f(n)) fraction of the instances. The second result, stated in Theorem 4.4, shows a uniform

reduction to solving some problem Π̂. While Π̂ is not in C it can be solved in Dtime(p(n) ·n1+o(1)),
where p(n) = 2ℓ(n) · exp(f(n)) bounds the worst-case time to solve Π′. On a technical level,
both results use sample-aided reductions: reductions that are given uniformly-distributed “solved
instances” of the problem that they aim to solve. We provide a definition of this relaxed notion of
a reduction between problems, which has been implicit in several past works, and which we find to
be of independent interest.

Technical Overview. Our starting point is the realization that when referring to such low
success rate (i.e., a exp(−f(n)) fraction for some f ∈ D), we are in the regime of list decoding.
Hence, for starters, Proposition 3.8 should (and can) be replaced by the list decoding result of
Sudan, Trevisan, and Vadhan [28, Thm. 29]. This result essentially asserts an explicit list of oracle
machines such that if F agrees with a low-degree polynomial P : Fn → F on a noticeable fraction
of the instances, then given oracle access to F one of these machines computes P correctly on all
instances.

18

Trying to integrate this result in the procedure presented in Section 3.2 means that we proceed
as follows: First, we reduce solving the Boolean counting problem Π′ on the average-case (i.e., on
76% of the instances) to evaluating a polynomial Φ̂ over (exp(f(n))) many different prime fields
(on all instances). Next, we apply the foregoing reduction of [28, Thm. 29] in each of these fields,
and finally we reduce the oracle calls made by the latter reductions to solving the Boolean counting
problem Π′′ (on a noticeable fraction of the instances). (Although the statement of [28, Thm. 29]
only claims running time that is polynomial in all relevant parameters, it is clear that the running
time is linear in the number of variables.)

As in Section 3.2, the input to Π′′ is a pair of the form (p, y), where p is a prime and y represents
an input to the problem of evaluating Φ̂ in GF(p). Hence, solving Π′′ on a noticeable fraction of its
inputs implies that for a noticeable fraction of the primes p, we correctly solve Π′′ on a noticeable
fraction of the inputs of the form (p, ·), which implies that one of the foregoing oracle machines
computes Φ̂ : GF(p)n → GF(p) correctly on all inputs. If we can identify these primes p and the
corresponding oracle machines, then we can solve Π′ (on all its instances). (Jumping ahead, we
mention that we shall only solve Π′ on 76% of its instances, because our identification of the good
machines will be approximate in the sense that machines that are correct on almost all their inputs
may also pass.)

Towards this end, let us assume that we have access to uniformly distributed “solved instances”
of Π′ (i.e., we get a sample of pairs (r,Π′(r)) for uniformly distributed r’s). Using such a sample
of solved instances it is easy to estimate the probability that a procedure (e.g., an oracle machine
equipt with an adequate oracle) correctly computes Π′ mod p: We just compare the value provided
for each of the sample points r to the value computed by the procedure. In particular, we can
distinguish a procedure that is always correct from a procedure that errs on at least 1/ log n of the
inputs. Hence, we can pick ℓ(n)/f(n) distinct primes (i.e., p’s), and an oracle machine for each
such prime p such that the chosen machine computes Π′ mod p correctly on at least 1− (1/ log n)
fraction of the inputs. Using Chinese Remaindering without errors, this allows us to compute Π′

correctly on at least 1− ℓ(n)
f(n) · 1

log n
= 1− o(1) fraction of the inputs. For details see Section 4.1.

This leaves us with the problem of obtaining uniformly distributed “solved instances” of Π′.
There are two trivial solutions to this problem: The first is that such random solved instances
may be available to us in the application, and the second is that such solved instances can be
“hard-wired” in the reduction. This yields a non-uniform reduction, which establishes Theorem
1.3. A third solution, detailed in Section 4.2, is that such samples can be obtained by a downwards
self-reduction, whereas each problem in C can be reduced to one that has a suitable downwards
self-reduction.14 Unfortunately, we were not able to apply this idea to the reduction of Π′ to Π′′;
instead, we apply it to the (“internal”) reduction of the Arithmetic problem (i.e., the reduction
between the worst-case and average-case (or rather rare-case) versions of the Arithmetic problem).
This yields the result stated in Theorem 4.4.

4.1 A sample-aided reduction

We start by spelling out the notion of a reduction that obtains uniformly distributed “solved
instances” of the problem that it tries to solve.

Definition 4.1 (sample-aided reductions, revisited): Suppose that M is an oracle machine that,

on input x ∈ {0, 1}n, obtains as an auxiliary input a sequence of s = s(n) pairs of the form

14Indeed, this follows a paradigm that can be traced to the work of Impagliazzo and Wigderson [19].

19

(r, v) ∈ {0, 1}n+ℓ(n). We say that M is an sample-aided reduction of solving Π′ on ρ′ of the instances

to solving Π′′ on ρ′′ of the instances if, for every procedure P that answers correctly on at least a ρ′′

fraction of the instances of length n′, it holds that

Prr1,...,rs∈{0,1}n

[∣∣∣corrP,Π′

M (r1, ..., rs)
∣∣∣ ≥ ρ′ · 2n

]
> 2/3 (8)

where

corrP,Π′

M (r1,, rs)
def
=

{
x ∈ {0, 1}n : Pr[MP (x; (r1,Π

′(r1)), ..., (rs,Π
′(rs))) = Π′(x)] ≥ 2/3

}
(9)

and the latter probability is taken over the coin tosses of the machine M and the procedure P .

The error probability bounds in Eq. (8)-(9) can be reduced at a moderate cost. This is straightfor-
wards for Eq. (9), but the error reduction for Eq. (8) comes at a (small) cost and requires some care.

Specifically, we have to approximate the size of the set corrP,Π′

M (r1,, rs), and this can be done
using an auxiliary sample of the solved instances. (In particular, using O(k · s) + O(k/ǫ2) solved
samples, we can output a sequence of s solved samples that, with probability at least 1− exp(−k),

has a corrP,Π′

M -value of at least ρ′ − ǫ.)
Although Definition 4.1 is stated in terms that fit average-case to rare-case (or average-case)

reductions, the definition also applies to reductions from worst-case problems (by setting ρ′ = 1).
We mention that sample-aided reductions are implicit in many known results (see, for exam-

ple, [14, 28, 20]). Furthermore, any average-case to rare-case reduction of the “list-decoder” type
(i.e., which outputs a short list of oracle machines that contains the correct one) yields a sample-
aided reduction (as in Definition 4.1).15

Theorem 4.2 (sample-aided reduction of average-case to rare-case): Let D be a set of admissible

functions, f ∈ D, and ℓ be a logarithmic function. For every counting problem Π′ in Cℓ,D, there

exists a counting problem Π′′ in Cℓ,D and an almost-linear time sample-aided reduction of solving Π′

on at least 0.99 fraction of the domain to solving Π′′ on at least exp(−f(n)) fraction of the domain.

In particular, this yields an almost-linear time non-uniform reduction of solving Π′ on at least 0.99
fraction of the domain to solving Π′′ on at least exp(−f(n)) fraction of the domain. We mention
that the following proof can be slightly adapted to yield a sample-aided reduction from solving Π′

on at least a 1− exp(−f(n)) fraction of the domain (to solving Π′′ on at least exp(−f(n)) fraction
of the domain).

Proof Sketch: Given an input x ∈ {0, 1}n, we seek to output Π′(x), and we are required to
provide the correct output (with high probability) on 99% of the possible x’s. (We shall reduce the
counting problem Π′ to the task of evaluating a polynomial Φ̂ in many prime fields, moving from
an average-case version of this problem to a rare-case version, and reduce the latter to a rare-case
version of solving the counting problem Π′′.)

We start by employing a reduction as in Proposition 3.7, except that here we use poly(D) primes
of size poly(D), where D = exp(f(n)) denotes the degree of the polynomial Φ̂ that is derived in
Proposition 3.7; specifically, we refer to the first Θ(D · ℓ(n)) primes that are larger than poly(D).

15The auxiliary sample can be used to test the candidate oracle machines (as outlined in the foregoing discussion).
Note that this allows to distinguish machines that are correct on all inputs from machines that err on a noticeable
fraction of the inputs, but not to rule out machines that err on a negligible fraction of the inputs.

20

Note that at this point we only produce the polynomial Φ̂ and determine the fields in which it will
be evaluated. (Recall that Φ̂ is a generic polynomial that will be evaluated over different finite
fields. Jumping ahead, we note that, on input x, we shall only use the evaluation of Φ̂ at x in
ℓ(n)/f(n) of these fields, and combine these values using Chinese Remaindering (without errors).)

Now, for each prime p, we invoke [28, Thm. 29] to obtain O(1/ǫ) oracle machines that supposedly
evaluate Φ̂ on GF(p)n, when given oracle access to a procedure that computes Φ̂ correctly on an
ǫ fraction of the inputs, where ǫ = exp(−f(n)). Next, for each prime p, we invoke Proposition 3.9
in order to answer the queries of these oracle machines such that query q ∈ GF(p)n is answered
by querying Π′′ on the pair (p, y), where y is a (random) representation of q. Let us denote the
random representation so generated by rr (i.e., y ← rr(q)). We also note that Π′′ is actually fed
the index of p in the said set of primes (or some other representation that selects such primes almost
uniformly).16

(Recall that if the counting problem Π′′ is solved correctly on an 2ǫ fraction of the inputs, then,
for at least an ǫ fraction of the p’s, the solution provided for at least ǫ fraction of the fairs (p, ·) is
correct. For each such p, at least one of the foregoing oracle machines will evaluate Φ̂ correctly on
GF(p)n when fed with answers obtained from this “weak Π′′-solver”.)

For each prime p and for each of the corresponding oracle machines M , we approximate the
success probability of M in evaluating Φ̂ over a random element in {0, 1}n, which is viewed as an
element of GF(p)n. This is done by using the solved sample (for Π′). Specifically, for each pair
(r, v) ∈ {0, 1}n+ℓ(n) in the sample (such that v = Π′(r)), we compare v to the output of M on
input r, while answering the queries of M with the values obtained by the reduction to solving the
counting problem Π′′ such that the query q ∈ GF(p)n is answered by taking the count provided for
the input (p, rr(q)) and reducing it modulo p. If any mismatch is found, then M is discarded as
a candidate reduction, and if all oracle machines that correspond to p are eliminated then so is p
itself.

Note that a (solved) sample of size O(f(n) · log n) suffices to approximate all poly(D) =
exp(O(f(n)) quantities such that, with high probability, all values that are below 1 − (1/ log n)
are estimated as smaller than 1. Hence, with high probability, the list of surviving machines will
only contain machines that are correct on at least a 1− (1/ log n) fraction of the inputs in {0, 1}n.
Needless to say, with high probability, the said list contains all machines that are correct on all
inputs, where the small probability of error is due to the error probability of the (randomized)
oracle machines. Hence, the said list contains more that ℓ(n)/f(n) machines that correspond to
different primes, since ǫ · Ω(D · ℓ(n)) > ℓ(n).

Lastly, we pick any ℓ(n)/f(n) surviving primes, and pick any surviving oracle machine for each
of them. For each such prime p and machine M , we use M to solve “Π′ mod p” on the original input
x ∈ {0, 1}n, which is viewed as an element of GF(p)n.17 As above, this is done while answering the
queries of M with the values obtained by the reduction to solving the counting problem Π′′ such
that the query q ∈ GF(p)n is answered by taking the count provided for the input (p, rr(q)) and
reducing it modolu p. Finally, we combine the values obtained for the count mod each of these
primes, by using Chinese Remaindering (without errors).

16Note that the formula Φ that underlies the counting problem Π′′ can be implemented as a selector function that
picks the corresponding formula Φ(p) that emulates the computation of bΦ in GF(p)n.

17Note that, since the solved instances given to the reduction are over boolean inputs, we can only estimate the
success probability of a machine over {0, 1}n. In particular, for a surviving prime p and surviving oracle machine M
for p, we cannot guarantee that M also gives correct answers on inputs that are outside {0, 1}n.

21

The analysis amounts to showing that, with very high probability, each of the surviving machines
is correct on at least a 1 − (1/ log n) fraction of the inputs in {0, 1}n. Hence, the value computed

via the CRT is correct on at least a 1− ℓ(n)
f(n) · 1

log n
= 1− o(1) fraction of {0, 1}n. The claim follows.

4.2 Obtaining solved samples via downwards self-reduction

A general paradigm that can be traced to the work of Impagliazzo and Wigderson [19] asserts that if

Π′ is “downward self-reducible” and Π′ has a sample-aided reduction to Π′′, then Π′ has a standard

reduction to Π′′. On input x ∈ {0, 1}n, the standard reduction first generates a (solved) sample for
Π′, for each length m ≤ n, where these samples are generated starting at m = 1 and going upwards
to m = n. Specifically, when generating the sample for length m, we produce the answers by using
the downwards self-reduction, which generates queries of length m− 1, which in turn are answered
by the sample-aided reduction of Π′ to Π′′, while using the (already generated) sample for length
m− 1. At the end, the answer to the original input x is found using the sample-aided reduction of
Π′ to Π′′ , while using the sample for length n.

The foregoing outline works well in the context of worst-case to rare-case reductions, since in
that case the solved sample generated for length m − 1 is perfect (i.e., free of errors). But when
using an average-case to rare-case reduction (as in Section 4.1), we run into a problem: In that
case, we can only guarantee that 1− ρ′ fraction of the solutions obtained for the sampled (m− 1)-
bit instances are correct, and in such a case the fraction of errors in the solved sample of m-bit
instances generated via downwards self-reduction may increase by a factor that equals the query
complexity of the latter reduction, which is typically at least two. The error-doubling effect is
disastrous, because the downwards self-reduction is applied many times.

In light of the above, we wish to apply the foregoing process to a worst-case to a rare-case re-
duction, and recall that the reduction of [28, Thm. 29] is actually of that type. Hence, starting from
an arbitrary problem Π in C, we first reduce it to a problem of evaluating low-degree polynomials
that is downwards self-reducible. This problem will be a generalization of the evaluation problem
presented in Definition 3.2. Before presenting this generalization, we introduce a more stringent
notion of downwards self-reducibility, which is essential to our application. In particular, we require
the reduction to work in almost-linear time (rather than in polynomial-time), and that the iterative
process of downward self-reduction terminates after few steps (when reaching input length that is
only slightly smaller than the original one). Specifically, we say that a problem Π is downward

self-reducible if there exists an almost-linear time oracle machine that, on input x ∈ {0, 1}n, makes

queries of length n − 1 only, and outputs Π(x) provided that its queries are answered by Π. In
addition, we require that for a sufficiently dense set of input lengths, the problem can be solved
in almost linear time without making any queries to shorter input lengths (i.e., for these input
lengths, the oracle machine makes no queries at all). Specifically, for some f ∈ D, we require that

for every n ∈ N the interval [n + 1, n + exp(f(n))] contains such a length. This additional require-
ment, hereafter referred to as Condition A, offers a crucial saving in the foregoing transformation
from sample-aided reductions to standard reductions: The iterative downwards reduction proce-
dure reaches the “base case” rather quickly; that is, on input x ∈ {0, 1}n, the iterative downwards
reduction stops at length n′ such that n′ ≥ n − exp(f(n)) (where the downwards self-reduction
makes no queries on inputs of length n′). Consequently, it suffices for the standard reduction to
generate samples for lengths n′, n′ + 1, ..., n.

22

Turning to the generalization of the evaluation problem presented in Definition 3.2, we seize
the opportunity to pack together the different problems defined for the various fields. Recalling
that the proof of Proposition 3.7 utilizes only ℓ(n)/f(n) different fields, which correspond to the
first ℓ(n)/f(n) primes that are larger than 2f(n), we make the index of the field part of the input.
Actually, to guarantee that inputs that correspond to different fields have different lengths, we
present the index of the field in unary.18

To obtain a downward self-reduction, we reduce the original n-bit long instance, which sums
over the entire range of indices {0, 1}ℓ(n) (i.e., the index w in Eq. (3) of Definition 3.2), to (two
instances of) summation over a smaller range {0, 1}ℓ(n)−1. This is accomplished in the natural
way by fixing the first bit of the summation-index (to 0 or 1), and making this bit part of an
augmenged input. Similarly, for any j ∈ {0, . . . , ℓ(n) − 1}, summation over a restricted range
{0, 1}ℓ(n)−j is reduced to (two instances of) summation over the smaller range {0, 1}ℓ(n)−j−1, which
yields inputs that have j + 1 bits of augmentation. Finally, when the “summation” is over a single
element, which happens when the augmented input has length n + ℓ(n), the problem can be solved
directly in nearly-linear time, which satisfies the additional condition (Condition A) of downward
self-reducibility (see above). Note that this iterative process increases the length of the input in
each iteration by one bit, whereas we want the input length to decrease in the iterations. This is
achieved by padding the original input, and removing two bits of this padding in each iteration.

Thus, we divide the input to the problem into three parts, denoted U, V and X. The first
part (i.e., U) includes the index of the field in unary, as described above, as well as the padding
for guaranteeing that the input length shrinks when we fix a bit of the index. The second part
(i.e., V) represents the prefix of the summation-index that has been fixed, and X is the “main”
input. We shall use a multi-linear function EQ : GF(p)m × GF(p)m → GF(p) that tests equality
of m-bit long strings (viewed as m-long sequences over GF(p)); that is, EQ(y1 · · · ym, z1 · · · zm) =∏

i∈[m](yizi + (1− yi)(1− zi)).

Definition 4.3 (Generalization of Definition 3.2): For f ∈ D and n ∈ N, let p1, ..., pℓ′(n) denote the

first ℓ′(n) = ℓ(n)/f(n) primes that are larger than 2f(n), and Ln = {0, 1, ..., ℓ(n)}. For A′, φ̂n and

πn,1, ..., πn,m(n) as in Definition 3.2, the generalized evaluation problem associated with A′ consists of

computing the function Φn :
⋃

i∈[ℓ′(n)],j∈Ln
GF(pi)

ℓ(n)2·n+(ℓ(n)+1)·i−j × GF(pi)
n → ⋃

i∈[ℓ′(n)] GF(pi)

defined as follows: For every i ∈ [ℓ′(n)] and j ∈ Ln, and every X = (X1, ...,Xn) ∈ GF(pi)
n and

(U, V) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2j ×GF(pi)

j , it holds that

Φn(UV,X)
def
=

∑

w′∈{0,1}ℓ(n)−j

φ̂n(V w′, F1(V w′,X), ..., Fm(n)(V w′,X)) mod pi, (10)

where Fk(W,X) =
∑

α∈[n] EQ(α, π̂n,k(W)) · Xα and π̂n,k : GF(pi)
ℓ(n) → GF(pi)

log n is a low degree

polynomial that agrees with πn,k : {0, 1}ℓ(n) → [n] (cf. the proof of Proposition 3.3), and [n] ≡
{0, 1}log n ⊂ GF(pi)

log n.

Note that UV is a sequence of ℓ(n)2 ·n+(ℓ(n)+1) ·i−j elements of GF(pi) ⊂ {0, 1}f(n)+1 , and that
the said length determines both i and j. For simplicity, the reader may consider the length of the

18We shall reduce solving the original (worst-case) instance of length n to rare-case solving instances of various
lengths, which correspond to different prime fields. Hence, for each input length for the original problem, we rely on
being able to rarely solve the reduced problem on several input lengths (rather than on one input length as in the
reduction presented so far). We note that this disadvantage is inherent to the downwards self-reduction paradigm
of [19], so we may just take advantage of it for this additional purpose.

23

instance (UV,X) in terms of GF(pi)-elements (i.e., as equal (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i− j), but
the following observations remain valid also when defining the length of that instance as f(n) + 1
times longer (and observing that all pi’s satisfy ⌈log pi⌉ = f(n) + 1).

1. The problem in Definition 3.2 (when restricted to any of fields GF(pi)) is (worst-case) reducible
to the problem in Definition 4.3 (equiv., each counting problem in C is reducible to the
generalized evaluation problem).

The reduction may consist of mapping the instance x ∈ GF(pi)
n to the instance (1ℓ(n)2·n+(ℓ(n)+1)·i, x).

(Equivalently, the proof of Proposition 3.7 can be similarly adapted.)

2. The mapping (n, i, j) → (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i − j is injective when restricted to
i ∈ [ℓ′(n)] and j ∈ Ln, since ℓ′(n) < ℓ(n) (and Ln = {0, 1, ..., ℓ(n)}).

3. Φ satisfies the additional condition (Condition A) of downward self-reducibility, since for every
x ∈ GF(pi)

n and (u, v) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2ℓ(n) ×GF(pi)

ℓ(n), where i ∈ [ℓ′(n)], it holds
that Φ(uv, x) = φ̂n(v, F1(v, x), ..., Fm(n)(v, x)) mod pi, can be computed in almost-linear time
with no oracle calls. In particular, each Fk(v, x) =

∑
α∈[n] EQ(α, π̂n,k(v)) ·xα can be computed

in almost-linear time.

4. Φ satisfies the main condition of downward self-reducibility, since for every x ∈ GF(pi)
n and

(u, v) ∈ GF(pi)
ℓ(n)2·n+(ℓ(n)+1)·i−2j × GF(pi)

j , where i ∈ [ℓ′(n)] and j ∈ {0, 1, ..., ℓ(n) − 1}, it
holds that Φ(uv, x) = Φ(u′0v, x)+Φ(u′1v, x), where u′ is the (ℓ(n)2 ·n+i ·ℓ(n)−2(j+1))-long
prefix of u (i.e., u = u′τ1τ2 for some τ1, τ2 ∈ GF(pi)).

(Indeed, the fact that u′ is two field-elements shorter than u, allows to extend v by one
field-element, while yielding an input that is shorter than the original one.)

Theorem 4.4 (worst-case to rare-case reduction): Let D be a set of admissible functions, f ∈ D,

and ℓ be a logarithmic function. For every counting problem Π in C = Cℓ,D, there exist a generalized

evaluation problem Φ (as in Definition 4.3) and an almost-linear time randomized reduction of

solving Π (in the worst-case) to solving Φ on at least exp(−f(n)) fraction of the domain.

Recall that the foregoing evaluation problem can be solved in time 2ℓ(n) · n1+o(1). Hence, we have
reduced the worst-case complexity of C to the rare-case complexity of Φ, while upper-bounding the
worst-case complexity of Φ (alas not reducing Φ to C).
Proof Sketch: By the forgeoing discussion, solving Π reduces to solving Φ. Specifically, for every
x ∈ {0, 1}n, the value of Π(x) is obtained by applying the Chinese Remaindering (without errors)
to the values of Φ on the ℓ′(n) instances (1ℓ(n)2·n+(ℓ(n)+1)·i, x) for i ∈ [ℓ′(n)]. Hence, fixing any
(n ∈ N and) i ∈ [ℓ′(n)] and following the length convention stated above, we focus on reducing the
task of computing Φ on any instance of length ñ = (ℓ(n)2 + 1) · n + (ℓ(n) + 1) · i to obtaining this
value of an ǫ = exp(−f(n)/4) fraction of these instances, where the relevant domain is GF(pi)

en.
(Note that we reduced obtaining the value of Π on an arbitrary (worst-case) x ∈ {0, 1}n to

obtaining values of Φ on the ℓ′(n) instances, having varying lengths (i.e., the ith instance has length
ℓ(n)2 · n + (ℓ(n) + 1) · i + n = ñ; it consists of padding x with ñ − n ones). Thus, we presented a
worst-case to worst-case reduction from solving Π for every input length on all inputs to solving Φ
for every input length on all inputs. We stress that this reduction does not reduce solving Π on all
inputs of a specific length n to solving Φ on all inputs of some (possibly other) length n′. The next

24

step, which is based on a downward self-reduction, will have a similar flavour (w.r.t input lengths):
We shall present a worst-case to rare-case reduction from solving Φ for every input length on all

inputs to solving Φ for every input length on rare inputs. Indeed, using many input lengths in the
target of the reduction is inherent to the use of downward self-reductions.)

Focusing on the goal of presenting a worst-case to rare-case reduction for Φ, we observe that the
result of [28, Thm. 29] provides a sample-aided reduction that achieves the desired goal. Specifically,
as stated, their algorithm outputs a list of O(1/ǫ) oracle machines that contain machines that
compute any polynomial that has agreement at least ǫ with the given oracle.19 The list may contain
also other machines. Still, using low-degree tests (e.g., [26]), we can guarantee that all machines on
the list are very close to computing some low degree polynomial, and by employing self-correction
procedures (e.g., [11]) we obtain machines that compute low degree polynomials. Next, using
a solved sample of the polynomial that we seek to compute (i.e., Φ : GF(pi)

en → GF(pi)), we
can identify a machine that computes the correct polynomial (since the other machines compute
polynomials that disagree with the correct one on most inputs). Although this machine may not
be unique, all surviving machines compute the same polynomial, and we may use any of them.
Note that a sample of size O(log(1/ǫ)) = O(f(n)) suffices for identifying all bad machines with
high probability.

The solved sample for Φ : GF(pi)
en → GF(pi) is obtained by the foregoing downwards self-

reduction, while using the fact that, for every j ∈ Ln, we can apply the foregoing argument to
Φ : GF(pi)

en−j → GF(pi). Specifically, on input y ∈ GF(pi)
en, we proceed as follows.

1. Generate a random sample of O(f(n)) solved instances for Φ : GF(pi)
en−ℓ(n) → GF(pi), while

relying on the fact that, for such an input length, the function Φ can be computed in almost-
linear time (Condition A of downward self-reducibility).

2. For k = ñ− ℓ(n) + 1, ..., ñ (equiv., using k = ñ− j for j = ℓ(n)− 1, ..., 0), generate a random
sample of O(f(n)) solved instances for Φ : GF(pi)

k → GF(pi), where the values of Φ on
r = (uv, x) ∈ GF(pi)

k−n × GF(pi)
n is obtained by invoking the downwards self-reducibilirty

on input r and answering its queries by using the sample-aimed reduction for inputs of length
k − 1 (while using the samples generated in the previous iteration). Recall that on input
r = (uv, x) ∈ GF(pi)

en−2(en−k)+(en−k)−n × GF(pi)
n the value of Φ(r) is obtained by querying

Φ on (u′v0, x) and on (u′v1, x), where u′ is the (ñ − 2(ñ − k) − 2)-long prefix of u, and that
these inputs are of length ñ− (ñ− k)− 1 = k − 1.

3. Lastly, obtain the value of Φ̂(y) by invoking the sample-aimed reduction for inputs of length
ñ (while using the samples generated in the previous step).

We stress that the invocations of the sample-aided reductions are invoked with a number of samples
that guarantees that the probability of error in the invocation is smaller than exp(−f(n))≪ 1/ℓ(n).
Hence, with high probability, our reduction provides the correct value of Φ(x(i)) ≡ Π(x) (mod pi),
where x(i) = (1ℓ(n)2·n+(ℓ(n)+1)·i, x).

Digest of the reduction of Π to Φ(r). The description of the reduction goes top-down (i.e., from
Π to the generalized problem, then uses its worst-case to average-case reduction, and the downwards

19As noted in Section 4.1, although the statement of [28, Thm. 29] only claims running time that is polynomial in
all relevant parameters, it is clear that the running time is linear in the number of variables.

25

self-reduction that goes from the top level to the bottom one), but the algorithm that computes Π
goes bottom-up. The original input x ∈ {0, 1}n is transformed into ℓ′(n) inputs for the generalized
problem, denoted x(1), ..., x(ℓ′(n)), such that x(i) = (1eni−n, x) and ñi = (ℓ(n)2 + 1) ·n + (ℓ(n) + 1) · i.
The instance x(i) is viewed both as an (f(n) + 1) · ñi-bit long string and as an ñi-long sequence
over GF(pi). The process of downwards self-reduction goes from length ñi to length ñi − ℓ(n),
whereas the actual generation of solved samples goes the other way around (i.e., from ñi − ℓ(n)
to ñi). Specifically, a sample for length ñi − ℓ(n) is generated by straightforward compuation of
the value of Φ on random instances length ñi − ℓ(n), whereas a sample for length k = ñi − j is
generated by using the downward self-reduction to length k − 1 and applying the sample-aided
worst-case to rare-case reduction for length k − 1 while using the solved sample generated in the
previous iteration. Lastly, the solution to x(i) = (1eni−n, x) is found using the sample-aided worst-
case to rare-case reduction for length ñi while using the solved sample generated above. Finaly,
the solution to x is obtained by combining the solutions to the various x(i)’s (using the CRT).

Acknowledgements

We are grateful to Madhu Sudan for many useful discussions regarding list decoding of multivariate
polynomials and related issues.

References

[1] Miklos Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, Vol. 24 (1), pages 1–48,

1983.

[2] Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple Construction of Almost
k-wise Independent Random Variables. Random Struct. Algorithms, Vol. 3 (3), pages 289–304,
1992.

[3] Laszlo Babai. Random oracles separate PSPACE from the Polynomial-Time Hierarchy. IPL,
Vol. 26, pages 51–53, 1987.

[4] Laszlo Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has Subexponential
Time Simulations unless EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages
307–318, 1993.

[5] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant N. Vasudevan. Average-Case Fine-
Grained Hardness. ECCC, TR17-039, February 2017.

[6] Boaz Barak. A Probabilistic-Time Hierarchy Theorem for “Slightly Non-uniform” Algorithms.
In the proceedings of the 6th RANDOM, pages 194–208, 2002.

[7] Omer Barkol and Yuval Ishai. Secure Computation of Constant-Depth Circuits with Applica-
tions to Database Search Problems. In the proceedings of CRYPTO, pages 395–411, 2005.

[8] Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions for NP
Problems. SIAM Journal on Computing, Vol. 36 (4), pages 1119–1159, 2006.

26

[9] Jin-yi Cai, Aduri Pavan, and D. Sivakumar. On the Hardness of Permanent. In 16th STACS,
pages 90–99, 1999.

[10] Joan Feigenbaum and Lance Fortnow. Random-Self-Reducibility of Complete Sets. SIAM

Journal on Computing, Vol. 22 (5), pages 994–1005, 1993.

[11] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
Testing/Correcting for Polynomials and for Approximate Functions . In the proceedings of
ACM Symposium on the Theory of Computing, pages 32–42, 1991.

[12] Mikael Goldmann, Per Grape, and Johan Hastad. On Average Time Hierarchies. Information

Processing Letters, Vol. 49 (1), pages 15–20, 1994.

[13] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[14] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050,
1995.

[15] Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese Remaindering with Errors. IEEE

Trans. Information Theory, Vol. 46 (4), pages 1330–1338, 2000. Preliminary version in 31st

STOC, 1999.

[16] Oded Goldreich and Guy N. Rothblum. Simple Doubly-Efficient Interactive Proof Systems for
Locally-Characterizable Sets. ECCC, TR17-018, February 2017.

[17] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice
that is typically good. ECCC, TR02-039, 2002.

[18] Alexander Healy and Emanuele Viola. Constant-Depth Circuits for Arithmetic in Finite Fields
of Characteristic Two. ECCC TR05-087, 2005.

[19] Russell Impagliazzo and Avi Wigderson. Randomness vs Time: Derandomization under a
Uniform Assumption. Journal of Computer and System Science, Vol. 63 (4), pages 672–688,
2001.

[20] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform Direct
Product Theorems: Simplified, Optimized, and Derandomized. SIAM Journal on Computing,
Vol. 39 (4), pages 1637–1665, 2010.

[21] Richard J. Lipton. New directions in testing. Distributed Computing and Cryptography, J.
Feigenbaum and M. Merritt (ed.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematics Society, Vol. 2, pages 191–202, 1991.

[22] Dexter Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, 1991.

[23] Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM Journal on Computing, Vol. 22 (4), pages 838–856, 1993. Preliminary
version in 22nd STOC, 1990.

27

[24] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. In Matematicheskie Zametki, Vol. 41, No. 4, pages 598–607, 1987
(in Russian). English translation in Mathematical Notes of the Academy of Sci. of the USSR,
Vol. 41 (4), pages 333–338, 1987.

[25] Ronitt Rubinfeld and Madhu Sudan. Self-Testing Polynomial Functions Efficiently and Over
Rational Domains. In the proceedings of 3rd SODA, pages 23–32, 1992.

[26] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, Vol. 25(2), pages 252–271, 1996. Unifies
and extends part of the results contained in [11] and [25].

[27] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In 19th ACM Symposium on the Theory of Computing pages 77–82, 1987.

[28] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom Generators without the
XOR Lemma. Journal of Computer and System Science, Vol. 62 (2), pages 236–266, 2001.

[29] Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on Popular Con-
jectures such as the Strong Exponential Time Hypothesis. In 10th Int. Sym. on Parameterized

and Exact Computation, pages 17–29, 2015.

Appendices

A.1 A related class (for context only)

Our starting point is the definition of locally-characterizable sets [16], which is slightly revised as
follows.20

Definition A.5 (locally-characterizable sets): A set S is locally-characterizable if there exist a

constant c, a polynomial p and a polynomial-time algorithm that on input n outputs poly(log n)-
sized formulae φn : {0, 1}c log n×{0, 1}p(log n) → {0, 1} and πn,1, ..., πn,p(log n) : {0, 1}c log n → [n] such

that, for every x ∈ {0, 1}n, it holds that x ∈ S if and only if for all w ∈ {0, 1}c log n

Φx(w)
def
= φn(w, xπn,1(w), ..., xπn,p(log n)(w)) (11)

equals 0.21

That is, each value of w ∈ {0, 1}c log n yields a local condition that refers to polylogarithmically
many locations in the input (i.e., the locations πn,1(w), ..., πn,p(log n)(w) ∈ [n]). This local condition
is captured by φn, and in its general form it depends both on the selected locations and on the value
on the input in these locations. A simplified form, which suffices in many case, uses a local condition

20In [16, Def. 2], the formula φn got as input (πn,1(w), ..., πn,p(log n)(w)) as well as (xπn,1(w), ..., xπ
n,p(log n)(w)). This

is equivalent to the form used here, since on the one hand φn can compute the πn,i’s (given w), and on the other
hand w can be reconstructed from c auxiliary πn,i’s.

21Indeed, it is required that in case of inputs in S, the predicate φn evaluates to 0 (rather than to 1). This choice
was made in [16] in order to simplify the exponsion.

28

that only depends on the values of the input in these locations (i.e., φn : [n]p(log n)×{0, 1}p(log n) →
{0, 1} only depends on the p(log n)-bit suffix).

A locally-characterizable set corresponds to the set of inputs for the counting problem (of
Definition 2.2) that have a zero count. The correspondence is not an equality, beacuse the sizes of
the formulae in the two definitions are different. Whereas in Definition 2.2 the number of formulae
and their sizes are exponential in a function f that is in the admissible class, in Definition A.5 the
number and size is poly-logarithmic in n. In both definitions, the formulae are constructed in time
that is polynomial in their number and size.

A.2 Worst-case to Average-case reduction for uniform AC0[2]

For constants c, d ∈ N, let C(d,c) denote the class of decision problems on n-bit inputs that can
be expressed by uniform depth d Boolean circuit of size nc, with and, or, parity, and not gates.
Specifically, a problem is parameterized by an efficient algorithm that on input n and i ∈ [ndc]
returns the type of the ith gate and the list of gates that feed into it (in the circuit that corresponds
to n-bit inputs). The term “efficient” is left unspecified on purpose; possible choices include poly(n)-
time and O(log n)-space. Note that the decision problem for sufficiently uniform AC0[2] circuits
can be represented by C(d,c) for adequate constants c, d ∈ N.

Proposition A.6 (worst-case to average case reduction forAC0): There exists a universal constant

γ such that for any c, d ∈ N, solving any problem in C(d,c) on the worst-case reduces in almost linear

time to solving some problem in C(γ·d,c+o(1)) on at least 90% of the instances.

Proof Sketch: We proceed in three steps: First we reduce the Boolean problem (in C(d,c)) to an
Arithmetic problem, next we show that the latter problem supports a worst-case to average-case
reduction, and lastly we reduce the Arithmetic problem to a Boolean problem (in C(γ·d,c+o(1))).

The first step is a randomized reduction of solving the Boolean problem in the worst-case
to solving a corresponding Arithmetic problem on the worst-case. This reduction uses the ideas
underlying the approximation method of Razborov [24] and Smolensky [27], while working with
the field GF(2) (as [24], rather than with GF(p) for some prime p > 2 (as [27])). When doing
so, we replace the random choices made at each gate by pseudorandom choices that are generated
by a small bias generator [23]; specifically, we use a highly uniform generator that uses a seed of
logarithmic (i.e., O(log n)) length and produces each output bit by a small (i.e., no(1)-size) circuit of
constant depth [2, 18].22 Hence, for a fixed Boolean circuit Cn, on input x ∈ {0, 1}n, we randomly
reduce the question of whether Cn(x) = 1 to the question of whether An(x, s) = 1, where An is
the resulting arithmetic circuit and s ∈ {0, 1}n represents a uniformly distributed sequence of seeds
for the said generator (i.e., Prs[An(x, s)=Cn(x)] > 2/3 for each x). Note that the depth of An is
only O(1) times larger than the depth of Cn, where the constant is determined by various (local)
manipulations (which include replacing and-gates by or-gates, computing inner products of gates’
values and generator outputs, and taking conjunctions of logarithmically many randomized copies).
Furthermore, An uses multiplication gates of O(log n) arity, its size is at most O(log n)d · nc, and

22Using the third constriction in [2], we need to perform exponentiation in a field of size 2ℓ, where ℓ = O(log n) is
half the length of the seed. By [18], this operation can be performed by a constant-depth circuit (with parity gates)

and size exp(eO(
√

ℓ)) = no(1). The same pseudorandom sequences can be used for all gates in the same level of the
circuit, since logarithmically many independent choices guarantee sufficiently small error probability (allowing the
application of a union bound).

29

it computes a polynomial of degree O(log n)d, where the O notation hides a factor of the constant
c · d. (Note that the bits produced by the pseudorandom generator are multilinear polynomials
in the bits of the seed, and that there are less than d multiplication gates on each path from the
output gate of An to its input gates.)

The next step is to embed GF(2) in an extension field of size greater than the foregoing degree,
so that the standard process of self-correction of polynomials can be performed. Hence, An is now
viewed as an arithmetic formula over F = GF(2ℓ) (i.e., An : F2n → F), where ℓ = d log log n+O(d),
and a worst-case to average-case reduction is applied to An (i.e., evaluating An on the worst case
reduces to evaluating An correctly on at least a 51% fraction of the instances). (Note that evaluating
Cn on input x reduces to evaluating An on input y ≡ (x, s), where s ∈ {0, 1}n is chosen uniformly,
and y is viewed as a sequence of length 2n over F that encodes the bits of xs.)

Lastly, we wish to get back to a class of Boolean problems. We can do so as follows. First,
we replace each (unbounded) addition gate by ℓ parity gates (which add-up the ℓ corresponding
bits in the sequence of field elements). Next, we replace each multiplication gate of arity at most
L = O(log n) by a multiplication gate of arity

√
L that is fed by

√
L multiplication gate that cover

the original L wires. Finally, we implement each of the latter gates by a small Boolean circuit of

depth two (via a look-up table of size |F|
√

L = exp(Õ(
√

log n)) = no(1)). Hence, for each i ∈ [ℓ],
we construct a Boolean circuit that, on input y ∈ F2n ≡ {0, 1}2nℓ, computes the ith bit of An(y).
The problem is that we need to derive a single circuit, and furthermore reduce to its average-case
evaluation problem. We can do so by using the Boolean circuit Bn : {0, 1}2nℓ+ℓ → {0, 1} that, on
input (y, r) ∈ {0, 1}2nℓ × {0, 1}ℓ, returns the inner product mod 2 of An(y) and r. Note that the
depth of Bn exceeeds the depth of An only by a constant term, and that computing An correctly
on a 1− ǫ fraction of the inputs reduces to computing Bn correctly on at least a 1− 0.24ǫ fraction
of the inputs, since the value of An(y) can be correctly retreived (w.h.p.) if Bn answers correctly
on at least 0.76 fraction of the inputs that have the form (y, ·).

To summarize, evaluating Cn : {0, 1}n → {0, 1} in the worst case reduces to evaluating Bn :
{0, 1}2n log log n+O(1) → {0, 1} on at least 1 − 0.24 · 0.49 ≈ 0.88 fraction of the instances. Using an
adequate indexing of the gates in Bn, the uniformity of Bn follows from the uniformity of Cn, since
all modifications we have performed are local.

30

