Approximating Maximum Constraint Satisfaction Problems

Johan Håstad
some slides by Per Austrin

Shafi and Silvio celebration, December 10, 2013

The Swedish Angle

Today we are celebrating a Turing Award.
December 10th is the day of the Nobel prizes.

The Swedish Angle

Today we are celebrating a Turing Award.
December 10th is the day of the Nobel prizes.
Maybe the Israeli dress code is a bit too relaxed for a merger.

The personal angle

You do not appreciate your parents until your own kids have grown up.

You do not appreciate your advisor until you have graduated a number of your own students

What was the best?

- Freedom to do what I wanted.
- Comments on talks and papers.

Enough

Back to business.

Apology

This is a survey talk but I focus on the story.
Will fail to acknowledge some critical contributions.
Essentially no technical details.

MAX k-SAT

The Max k-Sat problem:
Given: k-CNF formula
Goal: satisfy as many clauses as possible
(Note: exactly k literals in every clause)
E.g. MAX 3-SAT:

$\left(x_{1} \vee x_{2} \vee x_{3}\right)$	\wedge	$\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{4}}\right)$	\wedge
$\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right)$	$\wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$	\wedge	
$\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right)$	$\wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$	\wedge	
$\left(x_{2} \vee x_{3} \vee x_{5}\right)$	$\wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{5}\right)$	\wedge	
$\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)$	$\wedge\left(x_{3} \vee x_{4} \vee \overline{x_{5}}\right)$	\wedge	
$\left(\overline{x_{3}} \vee x_{4} \vee x_{5}\right)$	$\wedge\left(\overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right)$		

MAX k-SAT

The Max k-Sat problem:
Given: k-CNF formula
Goal: satisfy as many clauses as possible
(Note: exactly k literals in every clause)
E.g. MAX 3-SAT:

$\left(x_{1} \vee x_{2} \vee x_{3}\right)$	$\wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{4}}\right)$	\wedge
$\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right)$	$\wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$	\wedge
$\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right)$	$\wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$	\wedge
$\left(x_{2} \vee x_{3} \vee x_{5}\right)$	$\wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{5}\right)$	\wedge
$\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)$	$\wedge\left(x_{3} \vee x_{4} \vee \overline{x_{5}}\right)$	\wedge
$\left(\overline{x_{3}} \vee x_{4} \vee x_{5}\right)$	$\wedge\left(\overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right)$	

$x_{1}=$ FALSE
$x_{2}=$ FALSE
$x_{3}=$ TRUE
$x_{4}=$ FALSE
$x_{5}=$ FALSE

Basics for MAX k-SAT

NP-hard; Approximation ratio,

$$
\alpha=\frac{\text { Value }(\text { Found solution })}{\text { Value(Best solution) }}
$$

worst case over all instances.
$\alpha=1$ the same as finding optimal solution, otherwise $\alpha<1$.

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio 3/4 for MAX 2-SAT.
In fact satisfies fraction 3/4 of clauses.

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio 3/4 for MAX 2-SAT.
In fact satisfies fraction 3/4 of clauses.
Surely something smarter can be done?

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio 3/4 for MAX 2-SAT.
In fact satisfies fraction 3/4 of clauses.
Surely something smarter can be done?

Yes: Goemans-Williamson [GW95] used semi-definite programming to obtain 0.878 approximation for MAX 2-SAT.

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio $7 / 8$ for MAX 3-SAT.

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio $7 / 8$ for MAX 3-SAT.

Surely something smarter can be done?

Approximating MAX k-SAT

Trivial algorithm: Pick random assignment.
Approximation ratio $7 / 8$ for MAX 3-SAT.

Surely something smarter can be done?

No: NP-hard to achieve ratio $7 / 8+\epsilon[\mathrm{H} 01]$

- Random assignment gives optimal approximation ratio!

CSPs defined by a predicate P

For predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$, the $\operatorname{Max} \operatorname{CSP}(P)$ problem:
Given: set of constraints, each of the form $P\left(I_{1}, I_{2}, \ldots, I_{k}\right)=1$, literals I_{1}, \ldots, I_{k}
Goal: satisfy as many constraints as possible
E.g. $\operatorname{MAx} \operatorname{CSP}\left(x_{1} \vee x_{2} \vee x_{3}\right)=\operatorname{MAX} 3-\operatorname{SAT}$

$$
\begin{aligned}
& P\left(x_{1}, \overline{x_{2}}, x_{6}\right) \wedge P\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(\overline{x_{1}}, x_{2}, \overline{x_{4}}\right) \wedge \\
& P\left(\overline{x_{1}}, x_{4}, x_{7}\right) \wedge P\left(x_{1}, x_{3}, \overline{x_{4}}\right) \wedge P\left(x_{2}, \overline{x_{3}}, \overline{x_{4}}\right) \wedge \\
& P\left(x_{1}, \overline{x_{3}}, x_{6}\right) \wedge P\left(\overline{x_{2}}, x_{3}, \overline{x_{4}}\right) \wedge P\left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right) \wedge \\
& P\left(\overline{x_{4}}, x_{6}, \overline{x_{7}}\right) \wedge P\left(x_{2}, x_{3}, x_{5}\right) \wedge P\left(\overline{x_{2}}, \overline{x_{3}}, x_{5}\right) \wedge \\
& P\left(x_{3}, \overline{x_{6}}, x_{7}\right) \wedge P\left(\overline{x_{2}}, x_{4}, x_{5}\right) \wedge P\left(x_{3}, x_{4}, \overline{x_{5}}\right) \wedge \\
& P\left(x_{4}, x_{5}, x_{7}\right) \wedge P\left(\overline{x_{3}}, x_{4}\right) \wedge P\left(\overline{x_{3}}, x_{4}, \overline{x_{5}}\right)
\end{aligned}
$$

Satisfy as many as possible.

Approximation Resistance

Trivial algorithm: Pick random assignment.
Approximation ratio $\left|P^{-1}(1)\right| / 2^{k}$.
P is approximation resistant if hard to do better.

Alternative formulation

P is approximation resistant iff, for any $\epsilon>0$, it is hard to distinguish
$(1-\epsilon)$-satisfiable instances
and
$\left(\left|P^{-1}(1)\right| / 2^{k}+\epsilon\right)$-satisfiable instances.

Understanding Approximation Resistance

Overall goal: understand structure of resistant predicates.

- when is non-trivial approximation possible?

To make life simple:

- Boolean variables.
- Same predicate in each constraint.

Alternative view, non-resistant

Given a set of k-tuples of literals.
Promise: There is an assignment to the variables such that $(1-\epsilon$) fraction of the resulting k-bit strings satisfy P.

Achieved: An assignment to the variables such that more than the expected ratio of the k-bit strings satisfy P.

Given a set of k-tuples of literals.
Promise: There is an assignment to the variables such that ($1-\epsilon$) fraction of the resulting k-bit strings satisfy P.

Achieved: An assignment to the variables such that the distribution of k-bit strings is noticeably far from uniform.

$$
\begin{aligned}
& P\left(x_{1}, \overline{x_{2}}, x_{6}\right) \wedge P\left(x_{1}, x_{2}, x_{3}\right) \wedge P\left(\overline{x_{1}}, x_{2}, \overline{x_{4}}\right) \wedge \\
& P\left(\overline{x_{1}}, x_{4}, x_{7}\right) \wedge P\left(x_{1}, x_{3}, \overline{x_{4}}\right) \wedge P\left(x_{2}, \overline{x_{3}}, \overline{x_{4}}\right) \wedge \\
& P\left(x_{1}, \overline{x_{3}}, x_{6}\right) \wedge P\left(\overline{x_{2}}, x_{3}, \overline{x_{4}}\right) \wedge P\left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right) \wedge \\
& P\left(\overline{x_{4}}, x_{6}, \overline{x_{7}}\right) \wedge P\left(x_{2}, x_{3}, x_{5}\right) \wedge P\left(\overline{x_{2}}, \overline{x_{3}}, x_{5}\right) \wedge \\
& P\left(x_{3}, \overline{x_{6}}, x_{7}\right) \wedge P\left(\overline{x_{2}}, x_{4}, x_{5}\right) \wedge P\left(x_{3}, x_{4}, \overline{x_{5}}\right) \wedge \\
& P\left(x_{4}, x_{5}, x_{7}\right) \wedge P\left(\overline{x_{3}}, x_{4}, x_{5}\right) \wedge P\left(\overline{x_{3}}, x_{4}, \overline{x_{5}}\right)
\end{aligned}
$$

$$
\begin{array}{llll}
\left(x_{1}, \overline{x_{2}}, x_{6}\right) & , & \left(x_{1}, x_{2}, x_{3}\right) & , \\
\left(\overline{x_{1}}, x_{4}, x_{7}\right) & , & \left.\left(x_{1}, x_{2}, \overline{x_{4}}\right), \overline{x_{4}}\right), & , \\
\left(x_{2}, \overline{x_{3}}, \overline{x_{4}}\right), \\
\left(x_{1}, \overline{x_{3}}, x_{6}\right) & , & \left(\overline{x_{2}}, x_{3}, \overline{x_{4}}\right) & , \\
\left(\overline{x_{4}}, x_{6}, \overline{x_{7}}\right) & , & \left(\overline{x_{2}}, \overline{x_{3}}, \overline{x_{4}}\right), \\
\left(x_{3}, \overline{x_{3}}, x_{5}\right) & , & \left(\overline{x_{2}}, \overline{x_{3}}, x_{5}\right) & , \\
\left(\overline{x_{2}}, x_{4}, x_{5}\right) & , & \left(x_{3}, x_{4}, \overline{x_{5}}\right), \\
\left(x_{4}, x_{5}, x_{7}\right) & , & \left(\overline{x_{3}}, x_{4}, x_{5}\right) & , \\
\left(\overline{x_{3}}, x_{4}, \overline{x_{5}}\right)
\end{array}
$$

Within ϵ of the uniform distribution on k-bit strings?

Useless

P is Useless.
Given a set of k-tuples of literals, it is hard to distinguish.
Yes: There is an assignment to the variables such that ($1-\epsilon$) fraction of the resulting k-bit strings satisfy P.

No: For all assignments to the variables the distribution of k-bit strings is at most ϵ far from uniform.

Two easy facts

If P is useless then it is approximation resistant.
If P useless and P implies Q then Q is useless.

A good fact

Most early approximation resistance proofs in fact proved uselessness.

In particular 3-Lin [H01], i.e. $P(x)=x_{1} \oplus x_{2} \oplus x_{3}$ is useless.

First we take a look at small arities of P and then we turn to asymptotic questions.

$k=2$

$k=2$

No predicate on two variables is resistant [GW95]

Johan Håstad (KTH)

3-XOR is resistant [H01]

$k=3$

3-XOR is useless [H01]

Everything else has non-trivial approximation [Zwick99]

$k=4$

weight	\#approx	\#resist	\#unknown
15	0	1	0
14	0	4	0
13	1	4	1
12	3	15	1
11	9	11	7
10	26	22	2
9	27	6	23
8	52	16	6
7	50	0	6
6	50	0	0
5	27	0	0
4	19	0	0
3	6	0	0
2	4	0	0
1	1	0	0

Most predicates on four variables classified [Hast05]

- After eliminating symmetries a total of 400 predicates
- 79 resistant, 275 approximable, 46 unknown
- Little apparent structure (4Lin useless gives some but not all hardness)

Systematic Results?

We have two useful tools.

- "Approximability by nice low-degree expansion" using semidefinite programming.
- Prove very sparse predicates useless.

Fourier representation

Every $P:\{-1,1\}^{k} \rightarrow\{0,1\}$ has unique Fourier representation

$$
P(x)=\sum_{S \subseteq[k]} \hat{P}(S) \prod_{i \in S} x_{i} .
$$

Let $P^{=d}(x)$ be the part that is of degree d

$$
\begin{aligned}
& P^{=1}(x)=\sum_{i=1}^{k} \hat{P}(\{i\}) x_{i} \\
& P^{=2}(x)=\sum_{i<j} \hat{P}(\{i, j\}) x_{i} x_{j}
\end{aligned}
$$

Approximability by nice low-degree expansion

Theorem ([Hast05])

Suppose there is a $C \in \mathbb{R}$ such that

$$
C \cdot P^{=1}(x)+P^{=2}(x)>0
$$

for every $x \in P^{-1}(1)$. Then P is approximable.

The Theorem is somewhat more general allowing $C \cdot P^{=1}(x)+P^{=2}(x)$ to equal 0 on up to two accepting inputs.

Implications

Hast's Theorem implies the following:

Theorem ([Hast05])

Every predicate with fewer than $2\left\lceil\frac{k+1}{2}\right\rceil$ accepting assignments is approximable.

Implications

Hast's Theorem implies the following:

Theorem ([Hast05])

Every predicate with fewer than $2\left\lceil\frac{k+1}{2}\right\rceil$ accepting assignments is approximable.

Theorem ([Austrin-H09])

Let $s \leq c_{\frac{k^{2}}{\log k}}$. A uniformly random predicate with s satisfying assignments is approximable with probability $1-o_{k}(1)$.

A very sparse predicate

"Hadamard predicate" of arity $k=2^{t}-1$, indexed by non-zero linear functions.
$\operatorname{Had}(x)$ true iff exists $x^{0} \in\{0,1\}^{t}, x_{L}=L\left(x^{0}\right)$.
The sparsest linear subspace without constant or repeated coordinates.

Results for Had

Was proved useless assuming the Unique Games Conjecture (UGC) by Samorodnitsky and Trevisan [ST06].

Theorem

[Chan12] Had is useless for any t (arity $k=2^{t}-1$))

Note that $t=2$ is 3Lin.

Random predicates

Had is very sparse and we get.

Theorem ([H07])

Let $s \geq c 2^{k} / k^{1 / 2}$. A uniformly random predicate
$P:\{0,1\}^{k} \rightarrow\{0,1\}$ with s satisfying assignments is useless with probability $1-o_{k}(1)$.

In Pictures

Getting more hardness results

Not many more hardness results are known with NP-hardness and we turn to the Unique Games Conjecture (UGC).

Unique games conjecture?

UGC, made by Khot in 2002.
Constraint Satisfaction Problem $x_{j} \in[L]$

$$
P_{i}\left(x_{j}, x_{k}\right) \quad \Leftrightarrow \quad\left(\pi_{i}\left(x_{j}\right)=x_{k}\right), \quad 1 \leq i \leq m
$$

distinguish whether optimal value is $(1-\epsilon) m$ or ϵm.
Conjecture: NP-hard or at least not polynomial time.

Further restriction, UGC

Can have constraints on form

$$
x_{j}-x_{k} \equiv c \quad \bmod L
$$

Consequences of UGC

Vertex Cover is hard to approximate within $2-\epsilon$, [Khot-Regev 03].

Optimal constant for Max-Cut [KKMO04].
Very useful for approximation resistance.

A distribution μ over $\{0,1\}^{k}$ is balanced and pairwise independent if the marginal distributions on every pair of coordinates are uniform
E.g. μ_{\oplus}^{3} : pick random $x \in\{0,1\}^{3}$ s.t. $x_{1} \oplus x_{2} \oplus x_{3}=1$

$$
\operatorname{Supp}\left(\mu_{\oplus}^{3}\right)=\{001,010,100,111\}
$$

A distribution μ over $\{0,1\}^{k}$ is balanced and pairwise independent if the marginal distributions on every pair of coordinates are uniform
E.g. μ_{\oplus}^{3} : pick random $x \in\{0,1\}^{3}$ s.t. $x_{1} \oplus x_{2} \oplus x_{3}=1$

$$
\operatorname{Supp}\left(\mu_{\oplus}^{3}\right)=\{001,010,100,111\}
$$

We say that $P:\{0,1\}^{k} \rightarrow\{0,1\}$ contains a balanced pairwise independent distribution μ over $\{0,1\}^{k}$ if $\operatorname{Supp}(\mu) \subseteq P^{-1}(1)$

Pairwise independence

Theorem ([Austrin-Mossel09])

Let $P:\{0,1\}^{k} \rightarrow\{0,1\}$ contain a balanced pairwise independent distribution. Then, assuming the UGC, P is useless.

We say that $P:\{0,1\}^{k} \rightarrow\{0,1\}$ contains a balanced pairwise independent distribution μ over $\{0,1\}^{k}$ if $\operatorname{Supp}(\mu) \subseteq P^{-1}(1)$

Pairwise independence

Theorem ([Austrin-Mossel09])
 Let $P:\{0,1\}^{k} \rightarrow\{0,1\}$ contain a balanced pairwise independent distribution. Then, assuming the UGC, P is useless.

In fact this is necessary for uselessness [AH12].

Implications of AM

Theorem ([Austrin-Mossel09])

Assuming the UGC and the Hadamard Conjecture there exist hereditarily resistant predicates with $4\left\lceil\frac{k+1}{4}\right\rceil$ accepting assignments for any k.

Theorem ([Austrin-H09])

Let $s \geq c k^{2}$. Assuming the UGC, a uniformly random predicate $P:\{0,1\}^{k} \rightarrow\{0,1\}$ with s satisfying assignments is resistant with probability $1-o_{k}(1)$.

Theorem ([Austrin-H09])

Assuming the UGC, every predicate with more than $\frac{32}{33} 2^{k}$ accepting assignments is resistant.

In Pictures with UGC

Resistant but not useless

Approximation resistant but not useless.
Consider predicate GLST : $\{-1,1\}^{4} \rightarrow\{0,1\}$

$$
\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \neq x_{3} & \text { if } x_{1}=1 \\ x_{2} \neq x_{4} & \text { if } x_{1}=-1\end{cases}
$$

GLST is resistant [GLST98] but does not contain pairwise independence and hence is not useless.

GLST continued

$\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \neq x_{3} & \text { if } x_{1}=1 \\ x_{2} \neq x_{4} & \text { if } x_{1}=-1\end{cases}$

Let μ be uniform distribution over

$$
\left\{x: x_{1} x_{2} x_{3}=-1 \text { and } x_{4}=-x_{3}\right\}
$$

GLST continued

$\operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}x_{2} \neq x_{3} & \text { if } x_{1}=1 \\ x_{2} \neq x_{4} & \text { if } x_{1}=-1\end{cases}$

Let μ be uniform distribution over

$$
\left\{x: x_{1} x_{2} x_{3}=-1 \text { and } x_{4}=-x_{3}\right\}
$$

- Balanced pairwise independent except x_{3} and x_{4} correlated

GLST continued

$\begin{aligned} \operatorname{GLST}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & = \begin{cases}x_{2} \neq x_{3} & \text { if } x_{1}=1 \\ x_{2} \neq x_{4} & \text { if } x_{1}=-1\end{cases} \\ & =\frac{1}{2}-\frac{x_{2} x_{3}}{4}-\frac{x_{2} x_{4}}{4}-\frac{x_{1} x_{2} x_{3}}{4}+\frac{x_{1} x_{2} x_{4}}{4}\end{aligned}$

Let μ be uniform distribution over

$$
\left\{x: x_{1} x_{2} x_{3}=-1 \text { and } x_{4}=-x_{3}\right\}
$$

- Balanced pairwise independent except x_{3} and x_{4} correlated
- But x_{3} and x_{4} never appear together in expansion of GLST

Other Type of Algorithms

Raghavendra [R08][RS09] tells that if Max-P is not approximation resistance then a Semi-Definite Programming algorithm gives a non-trivial approximation ratio.

Other Type of Algorithms

Raghavendra [R08][RS09] tells that if Max-P is not approximation resistance then a Semi-Definite Programming algorithm gives a non-trivial approximation ratio.

We know what kind of algorithm to look for.

Other Type of Algorithms

Raghavendra [R08][RS09] tells that if Max-P is not approximation resistance then a Semi-Definite Programming algorithm gives a non-trivial approximation ratio.

We know what kind of algorithm to look for.
Have not been used to classify any explicit predicate.

Other Type of Algorithms

Raghavendra [R08][RS09] tells that if Max-P is not approximation resistance then a Semi-Definite Programming algorithm gives a non-trivial approximation ratio.

We know what kind of algorithm to look for.
Have not been used to classify any explicit predicate.
Possibly undecidable.

More hardness results

Khot, Tulsiani and Worah, [KTW14] show that existence of a certain measure on possible pairwise correlations is equivalent to UG-hardness.

More hardness results

Khot, Tulsiani and Worah, [KTW14] show that existence of a certain measure on possible pairwise correlations is equivalent to UG-hardness.

We know what property to focus on.

More hardness results

Khot, Tulsiani and Worah, [KTW14] show that existence of a certain measure on possible pairwise correlations is equivalent to UG-hardness.

We know what property to focus on.
Not been used to get any new explicit hardness result.

More hardness results

Khot, Tulsiani and Worah, [KTW14] show that existence of a certain measure on possible pairwise correlations is equivalent to UG-hardness.

We know what property to focus on.
Not been used to get any new explicit hardness result.
Possibly undecidable.

Fact

P does not contain pairwise independence iff it implies a predicate P^{\prime} of the form $P^{\prime}(x)=\frac{1+\operatorname{sign}(Q(x))}{2}$, where Q is a quadratic polynomial without constant term.

Predicates We Can't Characterize

Maybe signs of quadratic forms are always approximable?

Fact

P does not contain pairwise independence iff it implies a predicate P^{\prime} of the form $P^{\prime}(x)=\frac{1+\operatorname{sign}(Q(x))}{2}$, where Q is a quadratic polynomial without constant term.

Maybe signs of quadratic forms are always approximable?

No: Exists a quadratic form Q on $k=12$ variables which turns out to be resistant using "generalized [AM09]".

Maybe signs of linear forms are always approximable?

Special case 1: "Monarchy" - x_{1} decides outcome unless all other variables unite against it

- Can't be handled using Hast's Theorem but turns out to be approximable [Austrin-Benabbas-Magen09]

Predicates We Can't Characterize

Maybe signs of linear forms are always approximable?

Special case 1: "Monarchy" $-x_{1}$ decides outcome unless all other variables unite against it

- Can't be handled using Hast's Theorem but turns out to be approximable [Austrin-Benabbas-Magen09]

Special case 2: "Republic" - x_{1} decides outcome unless $3 / 4$ of the other variables unite against it

Open Problem

Is "Republic" approximable?

Final Comments

Classification is doing fairly well.

- Conditional on UGC we know SDPs are universal.
- Simple unknown predicates such as "Republic".

Open questions

- Is there a "nice" complete characterization?
- Can we get NP-hardness?
- Can we get more results for satisfiable instances?
- Should we hope/fear for a new complexity class (UGC)?

Thank you!

