It's Not The Assumption, It's The Reduction

GMfest13c Assumptions Panel Presentation

Ran Canetti

Let's assume $\mathrm{P}=\mathrm{NP}$

Let's assume $\mathrm{P}=\mathrm{NP}$

- But proof is non-constructive...
... and we still have no idea how to factor...

Let's assume $\mathrm{P}=\mathrm{NP}$

- But proof is non-constructive...
... and we still have no idea how to factor...
- Is cryptography as we know it dead?

Let's assume $\mathrm{P}=\mathrm{NP}$

- But proof is non-constructive...
... and we still have no idea how to factor...
- Is cryptography as we know it dead?
- Do we need to resort to heuristics?

Let's assume $\mathrm{P}=\mathrm{NP}$

- But proof is non-constructive...
... and we still have no idea how to factor...
- Is cryptography as we know it dead?
- Do we need to resort to heuristics? NO!

Let's assume $\mathrm{P}=\mathrm{NP}$

- But proof is non-constructive...
... and we still have no idea how to factor...
- Is cryptography as we know it dead?
- Do we need to resort to heuristics?

NO!
The "security by reduction" paradigm still works!

Need to change mindset

Can no longer assume "There is no PT algorithm for factoring".

- But it doesn't matter:

The universal quantifier is a nice mathematical abstraction, but doesn't really capture what we want...

- A "good" reduction to factoring is still as valid as before!

The case of Collision Resistant Functions [Rogaway 07]

- A single compressing function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ cannot be CR in the standard sense:
$\forall \mathrm{n} \exists$ polysize A_{n} that finds n -bit collisions.

The case of Collision Resistant Functions [Rogaway 07]

- A single compressing function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ cannot be CR in the standard sense: $\forall n \exists$ polysize A_{n} that finds n-bit collisions.
- "Textbook" Solutions:
- Move to asymptotic security and require A to be uniform: Way Too Weak
- Move to a family of functions f_k : Unnatural, Unrealistic

The case of Collision Resistant Functions [Rogaway 07]

- A single compressing function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ cannot be $C R$ in the standard sense: $\forall n \exists$ polysize A_{n} that finds n-bit collisions.
- "Textbook" Solutions:
- Move to asymptotic security and require A to be uniform: Way Too Weak
- Move to a family of functions f_k : Unnatural, Unrealistic
- "Real" solution:

Forget the assumption, reduce to Human ignorance...

So, sometimes the gist is in the reduction, not the assumption...

Classification of reductions

Classification of reductions

- By assumption and complexity: time, space, \#queries,...

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")
- By advice:
- No advice: completely algorithmic (this is what we want!)

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")
- By advice:
- No advice: completely algorithmic (this is what we want!)
- Advice depending on security parameter + primitive (eg: Collision in a hash function)

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")
- By advice:
- No advice: completely algorithmic (this is what we want!)
- Advice depending on security parameter + primitive
(eg: Collision in a hash function)
- ... + adversary program ("non-uniform")
(eg: inverse of adv's challenge, Points queried in point obfuscation)

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")
- By advice:
- No advice: completely algorithmic (this is what we want!)
- Advice depending on security parameter + primitive
(eg: Collision in a hash function)
- ... + adversary program ("non-uniform")
(eg: inverse of adv's challenge, Points queried in point obfuscation)
- ... + public randomness/ secrets
(eg: extractable functions,knowledge of exponent/ UCE, DI-IO,...)

Classification of reductions

- By assumption and complexity: time, space, \#queries,...
- By access to the underlying adversary:
- One pass Black Box
- "Quantum" (uncontrollable randomness)
- Resettable Black Box
- General ("Non BB")
- By advice:
- No advice: completely algorithmic (this is what we want!)
- Advice depending on security parameter + primitive (eg: Collision in a hash function)
- ... + adversary program ("non-uniform")
(eg: inverse of adv's challenge, Points queried in point obfuscation)
- ... + public randomness/ secrets (eg: extractable functions,knowledge of exponent/ UCE, DI-IO,...)
\rightarrow Viewed this way, KOE \& friends are not "assumptions"; they are "holes" in a reduction that we fill via external advice.

The new mindset*

(This slide is a later addition... was indeed missing in the presentation)

- The goal when analyzing security of a scheme is to come up with a reduction to another problem.

The new mindset*

(This slide is a later addition... was indeed missing in the presentation)

- The goal when analyzing security of a scheme is to come up with a reduction to another problem.
- The result statement is now unconditional:
"We show how to transform an adversary that breaks X into an adversary that breaks Y."
- If the transformation is not completely specified then need to be explicit about it

The new mindset*

(This slide is a later addition... was indeed missing in the presentation)

- The goal when analyzing security of a scheme is to come up with a reduction to another problem.
- The result statement is now unconditional:
"We show how to transform an adversary that breaks X into an adversary that breaks Y."
- If the transformation is not completely specified then need to be explicit about it
- This has multiple corollaries:
- In of itself: A reduction to "Human Ignorance"
- Non-u security of Y implies non-u security of X
- Uniform security of Y implies uniform security of X
- ...

The new mindset*

(This slide is a later addition... was indeed missing in the presentation)

- The goal when analyzing security of a scheme is to come up with a reduction to another problem.
- The result statement is now unconditional:
"We show how to transform an adversary that breaks X into an adversary that breaks Y."
- If the transformation is not completely specified then need to be explicit about it
- This has multiple corollaries:
- In of itself: A reduction to "Human Ignorance"
- Non-u security of Y implies non-u security of X
- Uniform security of Y implies uniform security of X
- ...
- (In fact, the mindset is pretty old... was around in the 80's)

