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Abstract

Locally testable codes (LTCs) are error-correcting codes that admit very efficient codeword
tests. An LTC is said to be strong if it has a proximity-oblivious tester; that is, a tester that
makes only a constant number of queries and reject non-codewords with probability that depends
solely on their distance from the code.

Locally decodable codes (LDCs) are complimentary to LTCs. While the latter allow for highly
efficient rejection of strings that are far from being codewords, LDCs allow for highly efficient
recovery of individual bits of the information that is encoded in strings that are close to being
codewords.

While there are known constructions of strong-LTCs with nearly-linear length, the existence
of a constant-query LDC with polynomial length is a major open problem. In an attempt to
bypass this barrier, Ben-Sasson et al. (SICOMP 2006) introduced a natural relaxation of local
decodability, called relaxed-LDCs. This notion requires local recovery of nearly all individual
information-bits, yet allows for recovery-failure (but not error) on the rest. Ben-Sasson et al.
constructed a constant-query relaxed-LDC with nearly-linear length (i.e., length k1+α for an
arbitrarily small constant α > 0, where k is the dimension of the code).

This work focuses on obtaining strong testability and relaxed decodability simultaneously.
We construct a family of binary linear codes of nearly-linear length that are both strong-LTCs
(with one-sided error) and constant-query relaxed-LDCs. This improves upon the previously
known constructions, which obtain either weak LTCs or require polynomial length.

Our construction heavily relies on tensor codes and PCPs. In particular, we provide strong
canonical PCPs of proximity for membership in any linear code with constant rate and rela-
tive distance. Loosely speaking, these are PCPs of proximity wherein the verifier is proximity
oblivious (similarly to strong-LTCs) and every valid statement has a unique canonical proof.
Furthermore, the verifier is required to reject non-canonical proofs (even for valid statements).

As an application, we improve the best known separation result between the complexity of
decision and verification in the setting of property testing.
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for Education and Research.
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1 Introduction

Locally testable codes (LTCs) are error-correcting codes that can be tested very efficiently. Specif-
ically, a code is said to be an LTC if there exists a probabilistic algorithm, called a tester, that
is given a proximity parameter ε > 0 and oracle access to an input string (an alleged codeword),
makes a small number (e.g., poly(1/ε)) of queries to the input and is required to accept valid code-
words, and reject with high probability input strings that are ε-far from being a codeword (i.e.,
reject strings that disagree with any codeword on ε fraction of the bits). The systematic study of
LTCs was initiated by Goldreich and Sudan [GS06], though the notion was mentioned, in passing,
a few years earlier by Friedl and Sudan [FS95] and Rubinfeld and Sudan [RS96].

A natural strengthening of the notion of locally testable codes (LTCs) is known as strong-LTCs.
While LTCs (also referred to as weak-LTCs) allow for a different behavior of the tester for different
values of the proximity parameter, strong-LTCs are required to satisfy a strong uniformity condition
over all values of the proximity parameter. In more detail, the tester of a strong-LTC does not get
a proximity parameter as an input, and is instead required to make only a constant number of
queries and reject non-codewords with probability that is related to their distance from the code.
See [GS06, Gol10] for a discussion on both types of local testability. We note that from a property
testing point of view, strong-LTCs can be thought of as codes that can be tested by a proximity-
oblivious tester (see [GR09]).

The two most fundamental parameters of error-correcting codes (and strong-LTCs in particular)
are the distance and the codeword length. Throughout this work we will only consider codes with
constant relative distance, and so our main parameter of interest is the length, which measures the
amount of redundancy of information in each codeword. By this criterion, constructing a strong-LTC
with linear length (and constant relative distance) is the holy grail of designing efficient locally
testable codes. Although recently some progress was made towards showing the impossibility of
such linear length LTCs [DK11, BV12], there are known constructions of strong-LTCs with relatively
good parameters: Goldreich and Sudan [GS06] constructed a strong-LTC with constant relative
distance and nearly-linear length, where throughout this paper a code of dimension k is said to
have nearly-linear length if its codewords are of length k1+α for an arbitrarily small constant α > 0.
Furthermore, recently Viderman [Vid13] constructed a strong-LTC with constant relative distance
and quasilinear length (i.e., length k · polylogk).

An equally important local property of codes is local decodability. A code is said to be a locally
decodable code (LDC) if it allows for a highly efficient recovery of any individual bit of the message
encoded in a somewhat corrupted codeword. That is, there exists a probabilistic algorithm, called
a decoder, that is given a location i and oracle access to an input string w that is promised to be
sufficiently close to a codeword. The decoder is allowed to make a small number (usually constant)
of queries to the input w and is required to decode the ith bit of the information that corresponds
to the codeword that w is closest to. Following the work of Katz and Trevisan [KT00] that formally
defined the notion of LDCs, these codes received much attention and found numerous applications
(see e.g., [Tre04, Yek12] and references therein). They are also related to private information
retrieval protocols [CKGS98] (see [Gas04] for a survey).

Despite much attention that LDCs received in recent years, the best known LDCs are only of
super-polynomial length (cf. [Efr12], building on [Yek08]). While the best known lower bound (cf.

[KT00]) only shows that any q-query LDC must be of length Ω
(
k

1+ 1
q−1

)
(where k is the dimension

of the code), the existence of a constant-query LDC with polynomial length remains a major open
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problem.
In an attempt to bypass this barrier, Ben-Sasson et al. [BGH+06] introduced a natural relaxation

of the notion of local decodability, known as relaxed-LDCs. This relaxation requires local recovery
of most (or nearly all) individual information-bits, yet allows for recovery-failure (but not error)
on the rest. Specifically, a code is said to be a relaxed-LDC if there exists an algorithm, called
a (relaxed) decoder, that has oracle access to an input string that is promised to be sufficiently
close to a codeword. Similarly to LDCs, the decoder is allowed to make few queries to the input in
attempt to decode a given location in the message. However, unlike LDCs, the relaxed decoder is
allowed to output an abort symbol on a small fraction of the locations, which indicates that the
decoder detected a corruption in the codeword and is unable to decode this specific information-bit.
Note that the decoder must still avoid errors (with high probability).

Throughout this work, unless explicitly stated otherwise, when we say that a code is a relaxed-LDC,
we actually mean that it is a relaxed-LDC with constant query complexity.

Ben-Sasson et al. [BGH+06] constructed a relaxed-LDC with nearly-linear length. More gener-
ally, they showed that for every constant α > 0 there exists a relaxed-LDC (with constant relative
distance) that maps k-bit messages to k1+α-bit codewords and has query complexity O

(
1/α2

)
.

While these relaxed-LDCs are dramatically shorter than any known LDC, they do not break the
currently known lower bound on LDCs (cf. [KT00]), and hence it is it still an open question
whether relaxed-LDC are a strict relaxation of LDCs.

In this work, we are interested in short codes that are both (strongly) locally testable and
(relaxed) locally decodable.1 The motivation behind such codes is very natural, as the notion of
local decodability is complimentary to the notion of local testability: The success of the decoding
procedure of a locally decodable code is pending on the promise that the input is sufficiently close
to a valid codeword. If the locally decodable code is also locally testable, then this promise can
be guarantied by the testing procedure. However, recall that there are no known constant-query
LDCs with even polynomial length, let alone such that are also locally testable. Hence, we focus
on relaxed-LDCs.2

There are a couple of known constructions of codes that are both locally testable and relaxed
decodable (with constant query complexity). Ben-Sasson et al. [BGH+06] observed that their
relaxed-LDC can be modified to also be a weak-LTC (i.e., an LTC that is not strong), while keeping its
length nearly-linear. However, the local testability of their code is inherently weak (see Section 1.2
for details). In a recent development, Gur and Rothblum [GR13] constructed a relaxed-LDC that
is also a strong-LTC, albeit with polynomial length.

In this paper, we improve upon the aforementioned results of [BGH+06] and [GR13], achieving
the best of both worlds. That is, we construct a code that is both a strong-LTC and a relaxed-LDC
with nearly-linear length.

Theorem 1.1 (Informal). There exists a binary linear code that is a relaxed-LDC and a (one-sided
error) strong-LTC with constant relative distance and nearly-linear length.

1Note that although the notion of local testability and decodability are related, LTCs do not imply LDCs (i.e.,
there are LTCs that are not LDCs) and vice-versa. (See [KV10].)

2A different possible approach to solve this problem is to settle for codes with long length. Indeed, there are
codes with exponential length that are both (constant-query) LDCs and LTCs, e.g., the Hadamard code. Another
approach to solve this problem is to settle for codes with large query complexity. In a recent work, Guo, Kopparty,
and Sudan [GKS13] constructed very short length codes that are both locally testable and locally decodable, albeit
with large (yet needless to say, sub-linear) query complexity.
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A formal statement of Theorem 1.1 is given in Section 3. We remark that we actually prove
a slightly stronger claim; namely, that any good linear code can be augmented (by appending
additional bits to each codeword) into a code that is both a relaxed-LDC and a strong-LTC, at the
cost of increasing the codeword length from linear to nearly-linear.

1.1 Strong Canonical PCPs of Proximity

The notion of PCPs of proximity plays a major role in many constructions of LTCs and relaxed-LDCs,
as well as in our own. Loosely speaking, PCPs of proximity (PCPPs) are a variant of PCP proof
systems, which can be thought of as the PCP analogue of property testing. Recall that a standard
PCP is given explicit access to a statement (i.e., an input that is supposedly in some NP language)
and oracle access to a proof (i.e., a “probabilistically checkable” NP witness). The PCP verifier is
required to probabilistically verify whether the (explicitly given) statement is correct, by making
few queries to proof. In contrast, a PCPP is given oracle access to a statement and a proof, and is
only allowed to make a small number of queries to both the statement and the proof. Since a PCPP
verifier only sees a small part of the statement (most commonly, only a constant number of bits), it
cannot be expected to verify the statement precisely. Instead, it is required only to accept correct
statements and reject statements that are far from being correct (i.e., far in Hamming distance
from any valid statement).

PCPs of proximity were first studied by Ben-Sasson et al. [BGH+06] and by Dinur and Rein-
gold [DR06] (wherein they are called assignment testers). The main parameters of interest in a
PCPP system for some language L are its query complexity (i.e., the total number of queries to
the input and to the proof that the PCPP verifier makes in order to determine membership in L)
and its proof length, which can be thought as measuring the amount of redundancy of information
in the proof. Ben-Sasson et al. [BGH+06] showed a PCPP for any language in NP, with constant
query complexity and nearly-linear length (in fact, the length is n1+o(1), where n is the size of the
input).

As we have already noted, PCPPs have a central theoretical significance as the property testing
analogue of PCP proof-systems. Moreover, PCPPs were shown to be useful in various applications,
e.g., for PCP composition and alphabet reduction [BGH+06, DR06], and for locally testable and lo-
cally decodable codes [BGH+06, GS06, GR13]. Further information regarding the latter application
follows.

The notion of locally testable codes and PCPs of proximity are tightly connected. Not only
that PCPPs (and PCPs in general) can be thought of as the computational equivalent of the (com-
binatorial) notion of LTCs, but also any code can be made locally testable by using an adequate
PCPP. Specifically, Ben-Sasson et al. [BGH+06] showed that any linear code can be transformed to
a (weak) LTC by appending each codeword with a PCPP proof that ascertains that the codeword
is indeed properly encoded.3 However, since there is no guarantee that every two different proofs
for the same statement are far (in Hamming distance), in order to prevent deterioration of the
distance of the code two additional steps are taken: Firstly, the appended PCPP proof is uniquely
determined per codeword (i.e., each codeword has a canonical proof), and secondly, each codeword
is repeated many times so that the PCPP part constitutes only a small fraction of the total length.

The drawback of the foregoing approach is that it results with locally testable codes that are

3Note that membership in any linear code is in P, and so, the efficient PCPP for NP of Ben-Sasson et al. [BGH+06]
can handle these statements.
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inherently weak (i.e., codes that do not allow for proximity-oblivious testing). To see this, note
that PCPPs only guarantee that false assertions are rejected (with high probability), while true
assertions can be accepted even if the proof is incorrect. Hence, corruptions in the PCPP part
cannot be detected and the canonicity of the PCPP proofs cannot be verified, ruling out the
possibility of a (strong) tester that is uniform over all possible values of the proximity parameter.4

Moreover, an additional problem when trying to build strong-LTC is that, by definition, PCPPs do
not necessarily provide strong soundness, i.e., reject false proofs with probability that depends only
on their distance from a correct proof.

Motivated by constructing strong locally testable codes, Goldreich and Sudan [GS06, Section
5.3] considered a natural strengthening of the notion of PCPPs, known as strong canonical PCPs
of proximity (hereafter scPCPP), which addresses the aforementioned difficulties. Loosely speaking,
scPCPP are PCPPs with strong soundness that are required to reject “wrong” proofs, even for
correct statements. Moreover, they require that each correct statement will only have one acceptable
proof. In more detail, scPCPP are PCPP with two additional requirements: (1) canonicity : for
every true statement there exists a unique proof (called the canonical proof) that the verifier is
required to accept, and any other proof (even for a correct statement) must be rejected, and (2)
strong soundness: the scPCPP verifier is required to be proximity oblivious and reject any pair of
statement and proof with probability that is related to its distance from a true statement and its
corresponding canonical proof. A formal definition of scPCPPs can be found in Section 2.4.

Given a construction of adequate scPCPPs, the aforementioned strategy of appending each
codeword with an efficient scPCPP (which ascertains membership in a code) will allow to transform
any code to a strong-LTC. Unfortunately, unlike standard PCPPs, for which there are efficient
constructions for any language in NP, there are no known constructions of general-purpose scPCPPs.
Yet, Goldreich and Sudan constructed mechanism, called linear inner proof systems (LIPS), which
is closely related to some special-purpose scPCPPs. Loosely speaking, the LIPS mechanism allows
to transform linear strong locally testable codes over a large alphabet into strong locally testable
codes over a smaller alphabet (see [GS06, Section 5.2] for further details). By a highly non-trivial
construction and usage of the LIPS mechanism, Goldreich and Sudan showed efficient constructions
of strong-LTCs. Building upon their techniques, we show strong canonical PCPs of proximity with
polynomial length for any good linear code.

Theorem 1.2 (scPCPP for good codes — informal). Let C be a linear code with constant relative
distance and linear length. Then, there exists a scPCPP with polynomial proof length for membership
in the set of all codewords of C.

In fact, we actually prove a slightly stronger statement. Specifically, our scPCPPs satisfy two
additional properties that will be useful for our main construction: The scPCPP proofs are linear
(over GF(2)), and the queries that the verifier makes are roughly uniform. We remark that not
only that the scPCPPs in Theorem 1.2 are crucial to our construction (see Section 1.3 for details),
we also view these scPCPPs as interesting on their own. A formal statement of Theorem 1.2 and
its proof are presented in Section 6.

4In contrast, note that for weak LTCs this problem can be easily avoided by simply making the PCPPs themselves
a sufficiently small part of the codewords. Recall that weak LTCs are allowed to only work for values of the proximity
parameter that are sufficiently large to ensure that a corrupted codeword and PCPP sequence will include (significant)
corruption in the codeword part. Thus, there is no need to verify the canonicity or even validity of the PCPP proof.
However, when we seek to achieve the stronger definition of LTCs (i.e., strong-LTCs), this problem becomes relevant
(and cannot be avoided).
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1.2 Previous Works and Techniques

In this subsection, we survey the previous works and techniques regarding relaxed-LDCs upon which
we build. We start by recalling the construction of the (nearly) quadratic length relaxed-LDC of
Ben-Sasson et al. [BGH+06, Section 4.2]. The core idea that underlies their construction is to
separate each codeword into three parts: The first providing the distance property, the second
allowing for “local decodability”, and the third ascertaining the consistency of the first two parts.
The natural decoder for such a code will verify the consistency of the first two parts via the third
part and decode according to the second part in case it detects no consistency error. Details follow.

Let C be any good linear code (i.e., a code with constant relative distance and linear length).
Ben-Sasson et al. defines a new code C ′ whose codewords consist of three parts of equal length: (1)
repetitions of a good codeword C(x) that encodes the message x; (2) repetitions of the explicitly
given message x; and (3) PCPPs that ascertain the consistency of each individual bit in the message
x (which is explicitly given in the second part) with the codeword C(x) (which is explicitly given
in the first part). We remark that since the PCPPs are significantly longer than the statements
they ascertain, the desired length proportions are obtained by the repetitions in the first two parts.
Observe that the first part grants the new code C ′ good distance (but is not locally decodable),
the second part allows for a highly efficient decoding of the message (at the cost of reducing the
distance), and the third part is needed in order to guarantee that the first two parts refer to the
same message. The (relaxed) decoder for C ′ will use the PCPPs in the third part in order to verify
that the first part (the codeword C(x)) is consistent with the bit we wish to decode in the second
part (the message x). If the PCPP verifier detects no error, the decoder returns the relevant bit in
the second part; otherwise, it returns an abort symbol.

In order to implement the aforementioned relaxed-LDC, an adequate PCPP is needed; that is, an
efficient PCPP for verifying the consistency of each individual bit in a message x with the codeword
C(x). We note that such statements are in P. Recall that Ben-Sasson et al. [BGH+06, Section 3]
showed PCPPs with nearly-linear length for any language in NP. Hence, the consistency of each
message bit with a codeword of C can be guarantied by a PCPP of length that is nearly-linear in
the length of C. Since C ′ is obtained by augmenting a good linear code C with a single PCPP
proof per every message bit (claiming consistency between that bit and the codeword of C), the
length of C ′ is (nearly) quadratic (i.e., length k2+α for an arbitrarily small constant α > 0, where
k is the dimension of the code). We note that Ben-Sasson et al. showed that the length of C ′ can
be improved to nearly-linear by, roughly speaking, partitioning the message into small blocks and
recursively applying the quadratic construction.5

Recall that any code can be transformed to a weak locally testable code by appending adequate
PCPPs to it (See [BGH+06, Section 4.1]). Applying this transformation to the relaxed-LDC does
not hamper the relaxed decodability of the code, and only increase its length by a moderate amount
(since the PCPPs are of nearly-linear length); hence this transformation yields a (constant query)
relaxed-LDC with nearly-linear length that is also a (weak) LTC. We stress that the aforementioned

5In more detail, the message is partitioned into
√
k blocks, each of length

√
k. Then, the original message, as

well as each of the smaller blocks is encoded by an error-correcting code. For each of the encoded smaller blocks,
the following PCPPs are added: (1) a PCPP that ascertains the consistency of the encoded block with the encoded
original-message; and (2) PCPPs that ascertains the consistency of each bit in the encoded block with the entire
encoded block. Observe that the total encoding length decreased, since there are

√
k proofs of statements of length

O(k) and k proofs of statements of length O(
√
k), thus, the total length is nearly-linear in k3/2. By repeating this

process, we can reduce the length of the code to k1+α for an arbitrarily small constant α > 0 (see [BGH+06, Section
4.2] for details).
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transformation yields local testability that is inherently weak due to the fact that it uses standard
PCPPs. However, if the PCPPs in use were actually scPCPPs (of nearly-linear length), then the
foregoing code would have been strongly testable.

In a recent work, Gur and Rothblum [GR13] constructed scPCPPs with polynomial length for
the particular family of linear length statements that are needed for the [BGH+06] relaxed-LDC.
By using these scPCPPs in the construction of [BGH+06], they obtained a relaxed-LDC that is
also a strong-LTC, albeit with polynomial length (due to the length of their scPCPPs). While we
conjecture it is feasible to construct nearly-linear length scPCPPs for P (which contains the family
of statements we wish to have scPCPPs for) and even for unique-NP (also known as the class US),6

we do not obtain such scPCPPs here. Instead, we take an alternative approach, which circumvents
this challenge, as described in the next subsection.

1.3 Our Techniques

In this subsection, we present our main techniques and ideas for constructing a relaxed-LDC with
nearly-linear length that is also a strong-LTC. Our starting point is the (weakly testable) relaxed-LDC
construction of Ben-Sasson et al. [BGH+06]. However, we wish to replace the PCPPs that they use
with scPCPPs, in order to achieve strong local testability.

Since we do not have general-purpose scPCPPs (let alone of near-linear length), we construct
special-purpose scPCPPs that allow us to ascertain the particular statements we are interested
in (see Theorem 1.2). It is crucial to note that the scPCPPs we are able to construct are with
polynomial proof length (and not nearly-linear length, as we would have hoped). Recall that
the statements that are needed for the construction of Ben-Sasson et al. (i.e., ascertaining the
consistency of each bit of the message with the entire codeword for decodability, and ascertaining
the validity of the codeword for testability) are linear in the length of the message. Therefore,
applying our scPCPPs in a naive way (i.e., replacing the PCPPs in the construction of Ben-Sasson
et al. with our scPCPPs) would yield codes with polynomial length, whereas we are aiming for
nearly-linear length. Instead, we use an alternative approach.

The key idea is to provide scPCPPs that only refer to sufficiently short statements such that
even with the polynomial blow-up of the scPCPP, the length of each proof would still be sub-linear.
Specifically, instead of providing proofs for the validity of the entire codeword and the consistency of
each message bit with the entire codeword (as in [BGH+06]), we provide proofs for the consistency
of each message bit with “small” parts of the code and for the validity of these small parts. If
each part is sufficiently small (i.e., of length kα for an arbitrarily small constant α > 0, where k
is the length of the message), then we can still obtain a code with nearly-linear length, even when
providing polynomial length proofs for all of the small parts.

The caveat, however, is that proving that each message bit is consistent with a small part (or
local view) of a codeword does not necessary imply that the message bit is consistent with the entire
codeword. Similarly, partitioning a codeword into small parts and proving the validity of each part
does not imply the validity of the entire codeword. Therefore, we need the base code (to which
we append scPCPPs) to be highly structured so that, loosely speaking, the local consistency and
validity we are able to ascertain can be used to enforce global consistency and validity. Concretely,

6We note that the class unique-NP(i.e., the class of NP problems with unique witnesses) seems more likely to have
scPCPPs than NP. This is because a language in NP may have many witnesses per instance, and it is not clear how
to recognize the “canonical” NP-witness.
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the strategy we employ is using tensor codes and proving this family of codes has features that
allow us to overcome the aforementioned caveat. Details follow.

Given a linear code C : {0, 1}k → {0, 1}n, the tensor code C ⊗ C : {0, 1}k2 → {0, 1}n2
consists

of all n × n matrices whose rows and columns are codewords of C. Similarly, the d-dimensional
tensor code C⊗d = C ⊗ C ⊗ · · · ⊗ C︸ ︷︷ ︸

d times

: {0, 1}kd → {0, 1}nd is defined in the natural way. Namely,

C⊗d consists of all n× n× · · · × n︸ ︷︷ ︸
d times

-dimensional tensors such that each (axis-parallel) line in the

tensor is a codeword of C.7 (See Section 2.3 for the exact definitions.)
Towards obtaining relaxed local decodability, we show that tensor codes satisfy a feature, which

we call local propagation, that allows us to verify global consistency statements (such as the ones
that are used in the [BGH+06] relaxed-LDC) by verifying local consistency statements, which we can
afford to prove with polynomial length scPCPPs. That is, we can ascertain that the value at each
point in the tensor is consistent with the entire codeword by verifying the consistency of a constant
number of randomly selected statements regarding small parts of the tensor (specifically, statements
of consistency between the value at a point in the tensor and a line that passes through it). We
remark that Theorem 1.2 can be used to derive polynomial-length scPCPPs for such statements (see
Section 6). Therefore, we can replace the nearly-linear length PCPPs that are used in [BGH+06]
with our polynomial length scPCPPs, while preserving the functionality for relaxed local decoding
and keeping the total length of the construction nearly-linear. (See Section 4.1 for a more detailed
high-level description of our approach, followed by a full proof in Section 4.2.)

Recapping, so far our construction is as follows. Let C be a good linear code and d ∈ N be
a sufficiently large constant. Each codeword of our code consists of the following equal-length
parts: (1) repetitions of the tensor codeword C⊗d(x) that encodes the message x; (2) repetitions
of the explicitly given message x; and (3) scPCPPs for small statements (specifically, regarding
the consistency of each point in the tensor C⊗d(x) with each line that passes through it), which
are used to ascertain the consistency of each individual bit in the message x with the codeword
C⊗d(x).8

Finally, we augment the aforementioned construction with a forth and last part that allows us
to obtain strong local testability. The naive approach is to append a scPCPP that ascertains the
validity of all three parts of our code. However, recall that we can (strongly) test the consistency of
the first two parts via the third part (which is also strongly testable, since it is a scPCPP). Thus, in
order to obtain strong local testability it suffices to ascertain that the first part is a valid codeword
of C⊗d using scPCPPs. Luckily, tensor codes also satisfy the robustness feature, which allows us
to ascertain the validity of an entire codeword of C⊗d by ascertaining the validity of small parts of
the codeword. Detail follows.

Loosely speaking, a code is said to be robust if the corruption in a random “local view” of
a codeword is proportional to the corruption in the entire codeword. In more detail, we use a
recent result of Viderman [Vid12] (building on [BS06]) that states that the corruption in a random
2-dimensional (axis-parallel) plane of a corrupted codeword of a binary tensor code C⊗d (where
d ≥ 3) is proportional to the corruption in the entire codeword. This feature allows us to ascertain
the validity of the first part (i.e., the tensor codeword C⊗d(x)) by only providing scPCPPs for

7Axis-parallel lines in high-dimensional tensors simply generalize the notion of rows and columns in n×n matrices.
8We remark that the actual construction differs slightly from the above in that, for connivence, we use systematic

tensor codes that contain the message explicitly in the encoding, instead of providing repetitions of the message as a
part of the code.
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short statements that refer to 2-dimensional planes in C⊗d(x). (See Section 5 for a more detailed
high-level description, followed by a full proof.)

1.4 Applications to Property Testing

As an application of our main result (Theorem 1.1) we improve on the best known separation result
(due to [GR13]) between the complexity of decision and verification in the setting of property testing.

The study of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich, Gold-
wasser and Ron [GGR98], considers highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Recently, Gur and Roth-
blum [GR13] initiated the study ofMA proofs of proximity (hereafterMAPs), which can be viewed
as the NP analogue of property testing. They reduced the task of separating the power of property
testers and MAPs to the design of very local codes, both in terms of testability and decodability.
Furthermore, they noticed that for such a separation, relaxed decodability would suffice.

Gur and Rothblum used several weaker codes to obtain weaker separation results than the one
we obtain here. Specifically, they either show a smaller gap between the query complexity of testers
and MAPs, or show a separation for a limited range of the proximity parameter. In contrast, by
plugging in our code from Theorem 1.1, we obtain the best known (exponential) separation result
between the power of MAPs and property testers.

Theorem 1.3 (Informal). There exists a property that requires n0.999 queries for every property
tester but has an MAP that uses a proof of logarithmic length and makes poly(1/ε) queries.

For more information regarding this application, we refer the reader to Section 7.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. For
i ∈ [n] and for x ∈ {0, 1}n, denote by xi the ith bit of x. For x, y ∈ {0, 1}n, we denote by ∆(x, y)
the Hamming distance between x and y, and denote by δ(x, y) the relative (Hamming) distance
between x and y, i.e., δ(x, y) = ∆(x, y)/n. We say that x is δ-close to (respectively, δ-far from) y
if the relative distance between x and y is at most δ (respectively, at least δ).

Given a set S, we denote by s∈RS the distribution that is obtained by selecting uniformly
at random s ∈ S. For a randomized algorithm A, we write PrA[·] (or EA[·]) to state that the
probability (or expectation) is over the internal randomness of the algorithm A.

(Non) Uniformity. Throughout this paper, for the simplification of the presentation, we for-
mally treat algorithms (testers, decoders, and verifiers) as (non-uniform) polynomial-size circuits.
We note, however, that all of our algorithms can be made uniform by making straightforward
modifications. Furthermore, it will be convenient for us to view the length n ∈ N of objects as
fixed. We note that although we fix n, it should be viewed as a generic parameter, and so we allow
ourselves to write asymptotic expressions such as poly(n), O(n), etc. In contrast, when we say that
something is a constant, we mean that it is independent of the length parameter n.
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2.1 Error Correcting Codes

Let k, n ∈ N. A binary linear code C : {0, 1}k → {0, 1}n of distance d is a linear mapping over GF(2),
which maps messages to codewords, such that the Hamming distance between any two codewords is
at least d = d(n). The relative distance of C, denoted by δ(C), is given by d/n. The length of a code
is n = n(k). By slightly abusing notation, we say that we can construct a code C with nearly linear
length if for any constant α > 0 we can construct a code C : {0, 1}k → {0, 1}n, where n = k1+α.
For any x ∈ {0, 1}n, denote the relative distance of x to the code C by δC(x) = miny∈C{δ(x, y)}.

We say that C is systematic, if the first k bits of every codeword of C contain the message; that
is, if for every x ∈ {0, 1}k and every i ∈ [k] it holds that C(x)i = xi. Since C is a linear code, we
may assume without loss of generality that it is systematic.

2.2 Local Testability and Decodability

Following the discussion in the introduction, strong locally testable codes are defined as follows.

Definition 2.1 (strong-LTC). A code C : {0, 1}k → {0, 1}n is a strong-LTC, if there exists a
probabilistic algorithm (tester) T that, given oracle access to w ∈ {0, 1}n, makes O(1) queries to
w, and satisfies:

1. Completeness: For any codeword w of C it holds that Tw = 1.

2. Strong Soundness: For all w ∈ {0, 1}n,

Pr
T

[Tw = 0] ≥ poly
(
δC(w)

)
.

We say that a tester makes nearly-uniform queries if it queries each bit in the (alleged) codeword
input w ∈ {0, 1}n with probability Θ(1/n).

Following the discussion in the introduction, relaxed locally decodable codes are defined as
follows.

Definition 2.2 (relaxed-LDC). A code C : {0, 1}k → {0, 1}n is a relaxed-LDC if there exists a
constant δradius ∈ (0, δ(C)/2), a constant ρ > 0 and a probabilistic algorithm (decoder) D that,
given oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes O(1) queries to w, and satisfies:

1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.

2. Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close to a codeword
C(x),9 it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

3. Success Rate: For every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for at least
a ρ fraction of the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the ith

bit of x. That is, there exists a set Iw ⊆ [l] of size at least ρk such that for every i ∈ Iw it
holds that PrD [Dw(i) = xi] ≥ 2/3.

We remark that our definition is slightly stronger than the one given in [BGH+06] as we require
prefect completeness (i.e., that the decoder always outputs the correct value given oracle access to
a valid codeword of the code C).

9Note that since δradius < δ(C)/2, for every x ∈ {0, 1}n that is δradius-close to C there exists a unique codeword x′

of C such that x is δC′(x)-close to x′.
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2.3 Tensor Codes

Tensor codes are defined as follows.

Definition 2.3. Let C : {0, 1}k → {0, 1}n be a linear code. The tensor code C ⊗ C : {0, 1}k2 →
{0, 1}n2

is the code whose codewords consists of all n× n matrices such that each axis-parallel line
(i.e., a row or a column) in the matrix is a codeword of C. Similarly, given d ∈ N, the tensor code

C⊗d : {0, 1}kd → {0, 1}nd is the code whose codewords consists of all d-dimensional tensors such
that each axis-parallel line in the tensor is a codeword of C.

It is well-known that for every d ∈ N the tensor code C⊗d is a linear code with relative distance
δ(C)d (see e.g., [BS06]). Given a message x ∈ {0, 1}kd and coordinate ı̄ = (̄ı1, . . . , ı̄d) ∈ [n]d, we
denote the value of C⊗d(x) at coordinate ı̄ by C⊗d(x)ı̄.

Remark 2.4. By the definition of tensor codes, if a linear code C is systematic, then the tensor
code C⊗d is also a systematic code;10 that is, for every x ∈ {0, 1}kd and ı̄ ∈ [k]d it holds that
C⊗d(x)ı̄ = xı̄.

Next, we provide notations for the restriction of tensors to lines and planes. We start by defining
axis-parallel lines.

Definition 2.5 (Axis-Parallel Lines). For j ∈ [d] and ı̄ = (i1, . . . , id) ∈ [n]d, we denote by `j,̄ı the
jth axis-parallel line passing through ı̄. That is,

`j,̄ı = {(i1, . . . , ij−1, x, ij+1, . . . , id)}x∈[n] .

We denote by Lines(n, d) the multi-set that contains all axis-parallel lines that pass through each

point ı̄ ∈ [n]d.11 That is, Lines(n, d) = {`j,̄ı}ı̄∈[n]d,j∈[d]. Lastly, given a tensor w ∈ {0, 1}nd we

denote by w|`i,j ∈ {0, 1}n the restriction of w to the line `i,j, i.e., the jth axis-parallel line that
passes through ı̄.

Next, we define axis-parallel planes.

Definition 2.6 (Axis-Parallel (2-dimensional) Planes). For j1 < j2 ∈ [d] and ı̄ = (i1, . . . , id) ∈ [n]d,
we denote by pj1,j2 ,̄ı the (j1, j2)th axis-parallel plane passing through the point ı̄. That is

pj1,j2 ,̄ı = {(i1, . . . , ij1−1, x1, ij1+1, . . . , ij2−1, x2, ij2+1, . . . , id)}x1,x2∈[n] .

We denote by Planes(n, d) the set of all (distinct) axis-parallel planes in all directions in {0, 1}nd.12

Lastly, for a tensor w ∈ {0, 1}nd and a plane p ∈ Planes(n, d) we denote by w|p ∈ {0, 1}n
2

the
restriction of w to the coordinates in the plane p.

Throughout this work we deal with axis-parallel lines (respectively, axis-parallel planes); hence,
for brevity, we will sometimes refer to an axis-parallel line (respectively, axis-parallel plane) simply
as a line (respectively, plane). We remark that the multi-set Lines(n, d) contains d · nd lines and
the set Planes(n, d) contains

(
d
2

)
·nd−2 planes. We omit the parameters n and d when they are clear

from the context.
10We view the restriction of the tensor C⊗d to the coordinates in [k]d as the prefix of C⊗d.
11Note that each axis-parallel line in {0, 1}n

d

appears n times in Lines(n, d).
12Unlike the multi-set Lines(n, d), which contains n copies of each line, there is no redundancy in the set Planes(n, d).
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Testing Tensor Codes. The next theorem, which is implicit in [Vid12], shows that for every
d ≥ 3 and every linear code C, testing the tensor-code C⊗d can be reduced to testing whether a
random plane in C is a codeword of C⊗2.

Theorem 2.7. Let C be a linear binary code and d ≥ 3 an integer. Then, there exists a constant
crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd it holds that

E
p∈RPlanes

[
δ
(
w|p, C⊗2

)]
> crobust · δC⊗d(w).

Specifically, in [Vid12, Theorem A.5] it is shown that for d ≥ 3, if a codeword w of a tensor code
C⊗d is corrupted, then the corruption in a random (d−1)-dimensional subplane of w is proportional
to the corruption in the entire tensor w. By applying this result recursively (a constant number
of times), we obtain Theorem 2.7. For completeness, we provide the proof of Theorem 2.7 in
Appendix C.

2.4 PCPs of Proximity

Strong canonical PCPs of proximity were defined as follows in [GS06, Section 5.3].

Definition 2.8 (scPCPPs). Let V be a probabilistic algorithm (verifier) that is given oracle access
to an input x ∈ {0, 1}n and oracle access to a proof π ∈ {0, 1}`(n), where ` : N → N satisfies
`(n) ≤ exp

(
poly(n)

)
. We say that V is a strong (canonical) PCPP verifier for language L if it

makes O(1) queries and satisfies the following two conditions:

• Canonical Completeness: For all x ∈ L, there exists a unique canonical proof for x, denoted
πcanonical(x), such that the verifier always accepts the pair (x, πcanonical(x)); i.e., V x,πcanonical(x) =
1.

• Strong Canonical Soundness: For any input x′ ∈ {0, 1}n and proof π′ ∈ {0, 1}`(|x|) the verifier
rejects with probability at least poly

(
δPCPP(x′, π′)

)
, where

δPCPP(x′, π′) , min
x∈{0,1}n

{
max

(
∆(x, x′)

n
;

∆(πcanonical(x), π′)

`(n)

)}
, (2.1)

where for any x /∈ L we define πcanonical(x) = λ and say that any π′ is 1-far from λ.

We say that a scPCPP verifier makes nearly-uniform queries if it queries each bit in the input x
with probability Θ(1/|x|) and queries each bit in the proof π(x) with probability Θ(1/|π|).

We stress that these scPCPPs have one-sided error (i.e., they always accept inputs in L coupled
with their canonical proofs). Note that the canonical aspect is reflected in the dependence of
δPCPP(x′, π′) on ∆(πcanonical(x), π′), whereas the strong-soundness aspect is reflected in the tight
relation between the rejection probability and δPCPP(x′, π′).

3 The Main Construction

In this section we describe our construction of a family of binary linear codes that are both
(constant-query) relaxed-LDCs and strong-LTCs with constant relative distance and nearly-linear
length. Our codes rely heavily on special-purpose strong canonical PCPs of proximity (with poly-
nomial proof length), which we construct in Section 6, and so, we start by stating these scPCPPs.
Our first family of scPCPPs is for good linear codes.
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Theorem 3.1 (scPCPPs for good codes). Let C : {0, 1}k → {0, 1}n be a linear code with constant
relative distance and linear length. Then, there exists a scPCPP for codewords of C (i.e., for the
set {C(x) }x∈{0,1}k). Furthermore, the proof length of the scPCPP is poly(n), the scPCPP verifier
makes nearly-uniform queries, and the canonical scPCPP proofs are linear (over GF(2)).

As a corollary of Theorem 3.1, we obtain a family of scPCPPs for half-spaces of any good linear
code. That is, scPCPPs that ascertain membership in the set of all codewords wherein one given
location is set to a specific value (for example, all codewords that have 1 in their first location).

Theorem 3.2 (scPCPPs for half-spaces of good codes). Let C : {0, 1}k → {0, 1}n be a linear
code with constant relative distance and linear length. Let i ∈ [k] be a location in a message and
b ∈ {0, 1} a bit. Then, there exists a scPCPP for Ci,b, where Ci,b is the set of all codewords w of
C such that the ith-bit of w equals b (i.e., wi = b). Furthermore, the proof length of the scPCPP is
poly(n), the scPCPP verifier makes nearly-uniform queries, and the scPCPP proofs are linear (over
GF(2)).

See Section 6 for the full proofs of Theorems 3.1 and 3.2. Equipped with the foregoing scPCPPs,
we describe the construction of our code, which consists of three parts.

Tensor code part. Let C0 : {0, 1}k → {0, 1}n be a systematic linear code with linear length
(i.e., n = Θ(k)) and constant relative distance 0 < δ(C0) < 1. Let d ≥ 3 be a sufficiently large

constant (to be determined later). Let C , (C0)⊗d : {0, 1}kd → {0, 1}nd be the d-tensor product of
C0. By Remark 2.4, since C0 is systematic, then C is also systematic. Recall that δ(C) = δ(C0)d,
hence δ(C) is a constant.

We augment the code C with scPCPPs that ascertain the validity of each plane in C (using
Theorem 3.1) and scPCPPs that ascertain the consistency of each bit in C with each line that
passes through it (using Theorem 3.2). Details follow.

Plane scPCPPs part. Let C(x) be a codeword of the tensor code C. For every plane p in the
tensor C(x) we use our scPCPPs for good codes to prove that the restriction of C(x) to the plane
p (denoted by C(x)|p) is a codeword of C⊗2

0 . Specifically, for a codeword w of C⊗2
0 we denote by

πplane(w) the corresponding canonical proof for the scPCPP verifier of Theorem 3.1. Then, for every

message x ∈ {0, 1}kd we define πplanes(x) as the sequence of the canonical proofs for all planes in
C(x); that is,

πplanes(x) = {πplane(C(x)|p)}p∈Planes,

where Planes is the set of all (2-dimensional) axis-parallel planes in {0, 1}nd (see Definition 2.6).
We append πplanes(x) to the codeword C(x). Note that |πplanes(x)| =

(
d
2

)
nd−2 · |πplane(C(x)|p)| ≤

nd+O(1). We stress that the constant in the O(1) notation does not depend on d. These scPCPPs
will be used for the local testability of our code (see Section 5).

Point-line scPCPPs part. Let C(x) be a codeword of the tensor code C. For every point
ı̄ = (i1, . . . , id) ∈ [n]d and every direction j ∈ [d] we use our scPCPPs for half-spaces of good codes
to prove that the restriction of C(x) to the line that passes through point ı̄ in direction j (denoted
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by C(x)|`j,ı̄) is a codeword of C0 that is consistent with value of C(x) at point ı̄.13 Specifically, for
a codeword w of C0 and index s ∈ [n] we denote by πline(w, s) the canonical proof for the scPCPP
verifier of Theorem 3.2 (which corresponds to codewords of C0 whose sth-bit equals to ws). Then,

for every message x ∈ {0, 1}kd we define πlines(x) as the set of the canonical proofs for all lines
passing through each point in C(x); that is,

πlines(x) = {πline(C(x)|`j,ı̄ , ij)}`j,ı̄∈Lines,

where Lines = {`j,̄ı}ı̄∈[n]d,j∈[d], as in Definition 2.5 (i.e., the set Lines contains all axis-parallel lines

that pass through each point ı̄ ∈ [n]d).
We append πlines(x) to the codeword C(x). Note that |πlines(x)| = d·nd ·|πline(C(x)|`)| ≤ nd+O(1),

where the constant in the O(1) notation does not depend on d. These scPCPPs will be used for
the relaxed local decodability of our code (see Section 4).

Putting it all together. Our construction is obtained by combining the tensor codeword C(x)
with πlines(x) and πplanes(x), while ensuring that the three parts are of equal length. That is, for
k′ = kd define C ′ : {0, 1}k′ → {0, 1}n′ as follows.

C ′(x) ,
(

(C(x))t1 , (πlines(x))t2 , (πplanes(x))t3
)

where t1, t2 and t3 are the minimal integers such that |C(w)|t1 = |πlines(w)|t2 = |πplanes(w)|t3 .14

Length and relative-distance of C ′. For sufficiently large d the length of C ′ is nearly-linear.
To this end, observe that for every x ∈ {0, 1}kd it holds that |C(x)| = nd, |πlines(x)| ≤ poly(n) and
|πplanes(x)| ≤ poly(n2). Hence, for every constant α > 0, there exists some constant d > 0 so that

n′ = nd+O(1) = (O(1) · k)d+O(1) ≤
(
k′
)1+α

.

The code C ′ has constant relative distance since the relative distance of C (denoted by δ(C))

is constant, and since repetitions of C constitute a third of the length of C ′; that is, δ(C ′) ≥ δ(C)
3 .

In the next sections we prove the following theorem.

Theorem 1.1 (restated). For every constant α > 0, there exists some constant d ≥ 0 so that the
code C ′ : {0, 1}k′ → {0, 1}n′, as defined above, is a linear binary code that is a relaxed-LDC and a
strong-LTC with constant relative distance.

Specifically, in Section 4 we prove the relaxed-LDC feature of C ′, and in Section 5 we prove the
strong-LTC feature of C ′.

(Alleged) Codeword Notations. Consider an arbitrary string w ∈ {0, 1}n′ (which we think of
as an alleged codeword). We view w as a string composed of three parts (analogous to the three
parts of the construction above):

13Note that the ı̄th-bit of C(x) is, in fact, the ij
th-bit of the line C(x)|`j,ı̄ .

14Ignoring integrality issues, we can say that we “blow” the lengths of the two shorter parts to match the length
of the longest part, which (in case of our implementation of the scPCPPs) is the part of the plane scPCPPs. Hence,
actually, t3 = 1.
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1. c̄ = (c1, . . . , ct1) : the t1 alleged repetitions of the tensor code part.

2. p̄lines =
(
p̄lines1 , . . . , p̄linest2

)
: the t2 alleged repetitions of the scPCPP proofs for all the point-line

pairs (i.e., lines passing through all coordinates in all directions). For every i ∈ [t2], the string
p̄linesi consists of scPCPP proofs for every point-line pair, i.e., p̄linesi = {p`i}`∈Lines.

3. p̄planes =
(
p̄planes1 , . . . , p̄planest3

)
: the t3 alleged repetitions of the scPCPP proofs for all the

(2-dimensional) planes. For every i ∈ [t3], the string p̄planesi consists of scPCPP proofs for

every plane, i.e., p̄planesi = {ppi }p∈Planes.

4 Establishing the Relaxed-LDC Property

In this section we prove that the code C ′, which was defined in Section 3, is a relaxed locally
decodable code.

Theorem 4.1. The code C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC.

In order to prove Theorem 4.1, it would be convenient to use an alternative definition of
relaxed-LDCs, which implies the standard definition (Definition 2.2) by applying known transfor-
mations. Specifically, in Appendix D (following [BGH+06, Section 4.2]) we show that it suffices to
relax the soundness parameter in Definition 2.2 to Ω(1) (instead of 2/3), and replace the success rate
condition with the following average smoothness condition. Loosely speaking, average smoothness
requires that the decoder makes nearly uniform queries on average (over all indices to be decoded).
By the foregoing, to prove Theorem 4.1 it suffices to show that the code C ′ satisfies the following
definition.

Definition 4.2 (Modified relaxed-LDCs). A code C : {0, 1}k → {0, 1}n is a modified relaxed-LDC
if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder) D that, given
oracle access to w ∈ {0, 1}n and explicit input i ∈ [k], makes q = O(1) queries to w, and satisfies:

1. Completeness: For any i ∈ [k] and x ∈ {0, 1}k it holds that DC(x)(i) = xi.

2. Modified Relaxed Soundness: For any i ∈ [k] and any w ∈ {0, 1}n that is δradius-close to a
codeword C(x) it holds that

Pr
D

[Dw(i) ∈ {xi,⊥}] = Ω(1).

where δradius ∈ (0, δ(C ′)/2), the decoding radius of C, is a universal constant, to be determined
later.

3. Average Smoothness: for every w ∈ {0, 1}n and v ∈ [n],

Pr
i,j,r

[Dw(i, j, r) = v] <
2

n
,

where Dw(i, j, r) denotes the distribution of the jth query of the decoder Dw on coordinate i
and coin tosses r, where the probability is taken uniformly over all possible choices of i ∈ [k],
j ∈ [q], and coin tosses r.
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We remark that in [BGH+06, Section 4.2], the definition of average smoothness also requires a
matching lower bound, i.e., the decoder should satisfy 1

2n < Pri,j,r [Dw(i, j, r) = v] < 2
n . However,

for our applications it suffices to only require the upper bound. We note that the lower bound can
be easily obtained by adding (random) dummy queries.

We start by showing a decoder that satisfies the first two aforementioned conditions (i.e., the
completeness condition and the modified relaxed soundness). Next, in Section 4.3 we show how to
obtain a related decoder that also satisfies the average smoothness condition.

The Setting. Consider an arbitrary input w ∈ {0, 1}n′ such that 0 ≤ δC′(w) < δradius. We view
w as a string composed of three parts as in Section 3, i.e., w = (c̄, p̄lines, p̄planes). We stress that any
part of w might suffer from corruptions, and so, we have to be able to decode correctly assuming
that not too many corruptions have occurred (i.e., less than δradius fraction). Denote by x the
unique string such that w is δC′(w)-close to C(x) (see Footnote 9).

High-Level Idea. Recall that a valid codeword of C ′ consists of three (repeated) parts: (1) a
systematic tensor code C, (2) point-line scPCPPs, and (3) plane scPCPPs. Our general approach is
to decode according to the prefix of the first part (which allegedly contains the message x explicitly
(since we use a systematic code), and to use the second part to ensure that each bit in message x is
consistent with the rest of the (tensor) codeword C(x). (The third part is not used here; it is only
used for the testability of the code.) Thus, the task of (relaxed) decoding the ith bit of the message
is reduced to verifying that the explicitly given value of the ith bit of the message is consistent with
the rest of the codeword.

Towards this end, recall that the second part of each codeword contains scPCPPs that ascertain
the consistency of each bit in the tensor with each line that passes through it, but not consistency
with the entire tensor. Therefore, in order to verify the consistency of each message bit with the
entire codeword, our decoder uses a feature of tensor codes, which we call local propagation. This
feature allows us to verify the consistency of a single message bit with the entire codeword by
verifying the consistency of a carefully chosen sequence of d point-line pairs (using the point-line
scPCPP). Details follow.

Loosely speaking, the local propagation feature of tensor codes implies that if one corrupts a
single point in a codeword and attempts to keep most local views (say, lines in the tensor) consistent
with this corruption, then a chain of highly structured modifications must be made that causes the
“corruption” to propagate throughout the entire tensor. This is best exemplified by our decoder,
which is tailored to take advantage of the foregoing phenomena.

Our decoder is given a coordinate ı̄ = (i1, . . . , id) ∈ [k]d and oracle access to an alleged codeword
w as above. The decoder looks for “inconsistencies” in w and if it finds any, it outputs ⊥. Otherwise,
it simply output wı̄ (which should contain the ı̄th bit of the message). Since our base code C0 has
constant relative distance, in order to “corrupt” the point ı̄ in the tensor code without causing the
lines that pass through ı̄ to be inconsistent with the corrupted value at ı̄, one has to corrupt a
constant fraction of each line on which ı̄ resides. Thus, our decoder uses the scPCPPs to verify that
a line ` that passes through ı̄ is consistent with the value at ı̄, assuring that a constant fraction of
many lines on which ı̄ resides is corrupted.

Similarly, in order to “corrupt” a constant fraction of the line ` in the tensor codeword without
causing inconsistency between the corrupted points in ` and the lines that pass through these
corrupted points, one has to change a constant fraction of each line that passes through a corrupted
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point in ` (therefore, corrupting a constant fraction of each plane wherein the line ` resides). Thus,
our decoder uses the scPCPPs to verify that the line that passes through a random point ı̄′ in `
(which is corrupted with probability Ω(1)) is consistent with the value at ı̄′, assuring that a constant
fraction of many planes on which line ` resides were corrupted.

Thus, if the ı̄th point of the tensor codeword (i.e., the bit we wish to decode) is corrupted,
then by iteratively continuing this procedure d times, and only performing d point-line consistency
tests, the decoder can detect the corruption in ı̄ with high probability, unless a large fraction of the
codeword is corrupted (i.e., the corruption at a single point, ı̄, propagated to the entire tensor).

We remark that in the proof that C ′ is a relaxed-LDC we do not use the strongness and canonicity
properties of the scPCPPs (they are only used to prove that C ′ is a strong-LTC). Furthermore, since
in the following we only wish to present a decoder satisfies Condition 1 and 2 of Definition 4.2,
we can allow the decoder to output a “don’t-know” symbol whenever the codeword is corrupted.15

Thus, we are not concerned with corruptions in the scPCPP parts, since a corruption in these parts
can only increase the rejection probability for strings that are not codewords. Regarding inputs
that are legal codewords, there are no corruptions and hence, no “inconsistencies”. Thus, for legal
codewords our tester will always output the correct value.

4.1 Warm-up: Two-Dimensional Tensors

Before we proceed to prove Theorem 4.1, we sketch a proof for two-dimensional tensor codes; that
is, when we set d = 2 in the construction that appears in Section 3. In this warm-up, towards the
end of simplifying the presentation, we make the following assumptions: We omit the third part of
the codeword (i.e., the plane scPCPPs), and we omit the repetitions of the first and second parts
of the code (i.e., the tensor code, and the point-line scPCPPs) and assume instead that the lengths
of the first and the second parts are equal. We note that both assumptions can be easily removed
(see Section 4.2 for details).

Let w = (c, p) be an alleged codeword that consists of two parts of equal length: (1) c, an alleged
2-dimensional tensor code C⊗2

0 : {0, 1}k2 → {0, 1}n2
, and (2) p, a sequence of alleged scPCPPs for

every pair of point ı̄ in [n]2 and line ` in C⊗2
0 that passes through ı̄; each scPCPP ascertains that

the line ` is a codeword of C0 that is consistent with the value at the point ı̄.
Given a point ı̄ = (i1, i2) ∈ [k]2, the decoder first runs the point-line scPCPP that corresponds

to ı̄ and the line `1,̄ı = {(x, i2)}x∈[n] passing through ı̄ in direction “1” (i.e., parallel to the first
axis), and outputs ⊥ if the scPCPP verifier rejected. Otherwise, the decoder picks a random point
ı̄′ on the line `1,̄ı, runs the corresponding scPCPP for ı̄′ and the line `2,̄ı = {(i1, x)}x∈[n] that passes
through ı̄′ in direction “2”, and output ⊥ if the scPCPP verifier rejected. If none of the scPCPP
verifiers rejected, the verifier outputs cı̄.

For the completeness condition, assume that the decoder is given a valid codeword. In this
case, the first part is indeed a valid copy of C⊗2

0 (x), and the second part consists of the canonical
proofs for C⊗2

0 (x). Hence, all of the scPCPP verifiers accept, and since C⊗2
0 (x)ı̄ = xı̄, the decoder

succeeds in decoding xı̄.
For the (modified) relaxed soundness condition, assume that the decoder is given a corrupted

codeword w = (c, p) that is δ-close to a valid codeword C⊗2
0 (x), where δ ≤ δradius for a sufficiently

15Recall that the completeness condition of Definition 4.2 requires the decoder to successfully decode valid codeword,
and the modified relaxed soundness condition requires that the decoder does not make a mistake in the decoding with
probability at least Ω(1). However, the decoder is allowed to output a “don’t-know” symbol with arbitrary probability
on any (even on only slightly) corrupted codeword.
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small (constant) decoding radius δradius. Note that if cı̄ = xı̄, then the decoder satisfies the soundness
condition (since it always outputs either xi or ⊥); hence, we assume that cı̄ 6= xı̄. In this case, when
the decoder runs the scPCPP verifier for ı̄ and (the restriction of c to) `1,̄ı it does not reject (with
high probability) only if C|`1,ı̄ is “close” to a codeword of C0 that disagrees with c on ı̄ (since the
i2

th bit of this codeword of C0 must be different than xı̄). Since C0 is a code with constant relative
distance, this implies that a constant fraction of the line `1,̄ı must be corrupted (i.e., the restriction
of c to the line `1,̄ı is Ω(1)-far from its corresponding line in C(x)) for the scPCPP verifier to accept.
Finally, if the decoder selected ı̄′ that is one of the Ω(n) corrupted points on `1,̄ı, then by the same
argument, a constant fraction points on the restriction of c to the line `2,̄ı′ (that passes through ı̄′)
must be corrupted. We deduce that in order to both scPCPP verifiers to accept (and hence defy the
soundness condition), c must contain Ω(n2) corrupted points, i.e., c should be β-far from C⊗2

0 (x)
for some constant β. By fixing δradius < β, we prevent this possibility.

4.2 The General Case

We proceed with the full proof that C ′ has a decoder that satisfies the first two conditions in the
definition of a relaxed-LDC (i.e., the completeness and (modified) relaxed soundness conditions of
Definition 4.2). We generalize the decoder of Section 4.1 to d-dimensional tensors and ensure it
works without the assumptions that were made there for simplicity. The decoder D is formally
described in Figure 1.

Let ı̄ ∈ [k]d. The completeness of the decoder is immediate from the construction: If the
input is a codeword, i.e., w = C ′(x) and all of the scPCPPs proofs are the canonical proofs for
C ′(x) (i.e., p̄lines and p̄planes), then all of the executions of the scPCPP verifiers accept (since the
scPCPP verifiers are with one-sided error). Recalling that, by definition, C(x)ı̄ = C⊗d0 (x)ı̄ = xı̄,
the decoding procedure Dw (̄ı) returns xı̄ with probability 1, as required.

Next, we prove the (modified) relaxed soundness of the decoder. Let w ∈ {0, 1}n be a corrupted
codeword that is δradius-close to a codeword C(x), where δradius is a sufficiently small constant, to be
determined later. We partition the analysis into three cases (Claims 4.3 and 4.4 and Lemma 4.5)
that we analyze in the rest of this section. We begin with the following two simple claims.

The first claim shows that probability Ω(1), the random copy c in (c1, . . . , ct1) that is chosen in
Step 1 cannot be “too far” from the codeword C(x).

Claim 4.3. With probability at least 1/4, the random copy c is 4δC′(w)-close to C(x), where c is
chosen uniformly at random from c̄. That is,

Pr
c∈R(c1,...,ct1 )

[δC(c) ≤ 4δC′(w)] ≥ 1

4
.

Proof. Since |c̄| =
∣∣p̄lines∣∣ =

∣∣p̄planes∣∣, then c̄ = (c1, . . . , ct1) is 3δC′(w)-close to C(x)t1 . This means
that the expected relative distance of a random c ∈ {c1, . . . , ct1} from C(x) is at most 3δC′(w).
Hence, by Markov’s inequality, c is 4δC′(w)-far from C(x) with probability at most 3/4.

Therefore, throughout the rest of the proof we fix a random copy c and assume that it is
4δC′(w)-close to C(x). This only costs us at most a constant factor in the success probability of
the decoder. Having fixed c, recall that for ı̄ ∈ [n]d, the notation cı̄ refers to the value of c at point
ı̄. The next claim shows that if the bit we are trying to decode is not “corrupted” (in the random
copy c), then the decoder D never outputs a mistake.
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The relaxed-LDC Procedure for C ′

Input: a coordinate ı̄ ∈ [k]d and an oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let Vs,b be a scPCPP verifier that refers to an input of the form z ∈ {0, 1}n, and
asserts that there exists y ∈ C0 such that z = y and zs = b.

1. Choose a random copy of a tensor code c in c̄ and a random copy of a set of point-line proofs p̄ in p̄lines.
That is, choose uniformly at random r ∈ [t1] and r′ ∈ [t2], and set c , cr and p̄ , {pj,̄ı}ı̄∈[n]d, j∈[d] ,
p̄linesr′ .

2. Initialize a set of points P1 to contain the singleton ı̄; i.e., P1 = {ı̄}.

3. For j = 1 until j = d:

(a) Select uniformly at random a point ū = (u1, . . . , ud) from the set Pj .

(b) Verify that the jth-axis-parallel line passing through ū is a legal codeword of C0 and that it
is consistent with the value at cū. That is, run the scPCPP verifier Vs,cū

, where s , uj , with
proof oracle pj,ū and input that consists of the jth-axis-parallel line passing through ū in c. In
other words, we run Vs,cū

on input c|`j,ū and proof pj,ū.

(c) If V rejects, output ⊥ and halt.

(d) If j < d, fix Pj+1 to be a set of points in [n]d that reside on the jth-axis-parallel lines passing
through the points in Pj . That is, Pj+1 = {`j,z̄}z̄∈Pj

, where `j,z̄ (defined in Definition 2.5) is

the jth axis-parallel line passing through the point z̄.

4. Query cı̄ and return its value.

Figure 1: Relaxed local decoder D for C ′

Claim 4.4. If cı̄ = xı̄, then PrD[Dw (̄ı) ∈ {xı̄,⊥}] = 1.

Proof. By the definition of the decoder (see Figure 1), regardless of the rest of the values in the
input, D always outputs either cı̄ or ⊥.

The main part of the analysis takes place in the next lemma, where we assume that cı̄ 6= xı̄
and c is close to C(x), and prove that the decoder succeeds with constant probability, as required.
Recall that δC′(w) < δradius, where δradius is a sufficiently small constant, to be determined later.

Lemma 4.5. Suppose that c is 4δC′(w)-close to C(x) and that cı̄ 6= xı̄. Then,

Pr
D

[Dw (̄ı) ∈ {xı̄,⊥}] = Ω(1).

Proof. We say that a point ū ∈ [n]d in the tensor code c is corrupted if cū 6= C(x)ū. Since we assume
that c is corrupted in the point ı̄ (which we wish to decode), by the definition of the decoder, the
probability that D makes a mistake is equal to the probability that D reaches Step 4 and outputs
cı̄.

Recall that Pj is the set of points that we consider in the jth iteration of the decoder. The set
P1 is the singleton that contains ı̄; i.e., P1 = { ı̄ } and for every j ∈ { 2, . . . , d+ 1 } we recursively
define Pj as the set of all points that reside on the (j−1)-axis-parallel lines that pass through points
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in Pj−1 (see Step 3d). Note that for every j ∈ [d] the cardinality of Pj is equal to the number of

points in a codeword of C⊗j−1
0 ; that is, |Pj | = nj−1. Hence, the number of points in all lines that

pass through points in Pj (i.e., nj) equals the number of points in a codeword of C⊗j0 . We will show
that in order to corrupt cı̄ without being detected by the scPCPPs, one has to corrupt a constant
fraction of a large portion of the lines that pass through points in Pd, which in turn implies that
one has to corrupt a constant fraction of the tensor code C, in contradiction to our assumption
that δC′(w) < δradius, for a sufficiently small constant δradius.

Consider the first iteration of Step 3 (where j = 1). Denote by s , i1 the index of the bit that
we wish to decode in the line c|`1,ı̄ , and denote by b , cı̄ the value of c at ı̄.

We verify that the line that passes through ı̄ in the 1-direction is a codeword of C0 that is
consistent with the value of c at ı̄. This is done by running the verifier Vs,b on input c|`1,ı̄ and proof
p1,̄ı. Recall that the relative distance of C0 (i.e., δ(C0)) is a constant. Since ı̄ is corrupted (i.e.,
b = cı̄ 6= C(x)ı̄), if the line c|`1,ı̄ is δ(C0)/2-close to the line C(x)|`1,ı̄ (which is a codeword of C0

that is inconsistent with cı̄), then c|`1,ı̄ is δ(C0)/2-far from any codeword y ∈ C0 that is consistent
with cı̄ (i.e., such that ys 6= C(x)ı̄). In this case, the verifier Vs,b rejects c|`1,ı̄ with probability
at least poly (δ(C0)/2) = Ω(1) (regardless of the corresponding proof), as required. Hence, in the
following we assume that the line c|`1,ı̄ is δ(C0)/2-far from C(x)|`1,ı̄ , and therefore P2 contains a

constant fraction of at least β1 , δ(C0)/2 corrupted points.
We proceed by induction. Consider the jth iteration, where 2 ≤ j ≤ d. We show that if

the set of points that we consider in the jth iteration (the set Pj) contains a constant fraction of
corrupted points, then either the decoder rejects with constant probability in the jth iteration, or
Pj+1 contains a constant fraction of corrupted points (we denote this probability by βj+1).

Claim 4.6. Let 2 ≤ j ≤ d and let 0 < βj ≤ 1 be a constant. If Pj contains a at least a βj fraction
of corrupted points, then either:

1. The decoder rejects with probability at least Ω(1) in the jth iteration; or,

2. Pj+1 contains at least βj+1 , βj ·δ(C0)
4 fraction of corrupted points.

Proof of Claim 4.6. Consider the jth iteration of Step 3. The decoder selects uniformly at random
a point ū = (u1, . . . , ud) ∈ Pj . Denote by s = uj the index of the bit that we wish to decode on the
line c|`j,ū (which passes through ū in the jth-direction), and denote by b , cū the value of c at ū.
By the hypothesis, ū is corrupted with probability at least βj .

Next, the verifier Vs,b is executed on input c|`j,ū and proof pj,ū. Observe that if a fraction of at
most βj/2 of the j-axis-parallel lines that pass through points in Pj (i.e.,

{
c|`j,z̄

}
z̄∈Pj

) are δ(C0)/2-

far (each) from their corresponding lines in C(x), then the decoder outputs ⊥ with probability at
least βj/2 ·poly (δ(C0)/2) = Ω(1), as required. This is because in this case, with probability at least
βj/2, we hit a line that is δ(C0)/2-close to its corresponding line in C(x) (but the value of this line
in uj differs from C(x)ū). As in the first iteration, this implies that this line is δ(C0)/2-far from any
codeword y ∈ C0 such that ys 6= C(x)ū, and hence the verifier Vs,b rejects c|`j,ū with probability at
least poly (δ(C0)/2) (regardless of the corresponding proof).

Otherwise (i.e., if the above case does not hold), at least βj/2 of the lines in
{
c|`j,z̄

}
z̄∈Pj

are

δ(C0)/2-far (each) from their corresponding lines in C(x). Therefore, Pj+1 contains at least a
βj ·δ(C0)

4 fraction of corrupted points.
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Note that Pd+1 is the set of all points in [n]d. By solving the recurrence relation, we get that

βd+1 = δ(C0)d

22d−1 .16 Recall that according to the hypothesis of the lemma, c is 4δradius-close to C(x).
Fix the decoding radius δradius to a sufficiently small constant such that 4δradius < βd+1. Thus,
Claim 4.6 implies that in one of the iterations the decoder must reject with probability at least
Ω(1), as required.

Remarks. The codewords of C ′ are of the form w = (c̄, p̄lines, p̄planes), where the three parts are
of equal length. The fact that the length of each of the three parts is proportional to the others
is critical. The length of c̄ must be proportional to the length of w in order for our code to
have constant relative distance (recall that there is no guarantee on the distance of the scPCPPs).
Moreover, the length of each of the scPCPP parts, c̄ and p̄lines, should be proportional to the length
of w in order to obtain the average smoothness requirement (see Section 4.3).

We remark that we chose our tensor code to be systematic only for the sake of convenience.
Instead, we could have added the message itself (repeated to obtain the proper length) as a fourth
part to the code C ′.17.

Next, we note that for the proof that our code C ′ is a relaxed-LDC we only use the point-
line scPCPPs and ignore the plane scPCPPs (i.e., the third part of w). Furthermore, we do not
use the fact that the point-line scPCPPs are neither strong nor canonical. That is, to get only a
relaxed-LDC with nearly-linear length it is enough to augment a good systematic tensor code (i.e., a
tensor product of a systematic linear code with constant rate and constant relative distance) with
a “regular” PCPP. However, the plane scPCPPs and the strongness and canonicity of the PCPPs
will be heavily used in the proof that C ′ is also a strong-LTC (see Section 5).

4.3 Obtaining Average Smoothness

In this subsection, we conclude the proof that C ′ : {0, 1}k′ → {0, 1}n′ is a relaxed-LDC. Recall
that in Section 4.2 we showed a decoder D for C ′ (described in Figure 1) that satisfies the first
two conditions of Definition 4.2, i.e., the completeness and (modified) relaxed soundness conditions.
Next, we show that D can be modified such that it also satisfies the third and final condition of
Definition 4.2, i.e., the average smoothness condition (which, roughly speaking, requires that the
decoder makes nearly-uniform queries on average).

Denote by Dw(i, j, r) the jth query of the decoder D on coordinate i ∈ [k′], coin tosses r, and
input oracle w. Recall that D satisfies the average smoothness condition if for every w ∈ {0, 1}n′

and v ∈ [n′], it holds that

Pr
i,j,r

[
Dw(i, j, r) = v

]
<

2

n′
, (4.1)

where the probability is taken uniformly over all possible choices of i ∈ [k′], j ∈ [q] (where q is the
number of queries that D makes), and coin tosses r.

16Recall that the fraction of corrupted points in P2 is at least δ(C0)/2, and that for 2 ≤ j ≤ d the fraction of

corrupted points in Pj+1 (which we denote by βj+1) is at least
βj ·δ(C0)

4
.

17Actually, this approach (of adding the message itself to the output of the code) was taken in previous construc-
tions of relaxed-LDC (see [BGH+06, GR13]). By using a systematic tensor code, we circumvented this unnecessary
complication.
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Firstly, we can relax the condition in Equation (4.1) and replace it with the condition

Pr
i,j,r

[
Dw(i, j, r) = v

]
= O

(
1

n′

)
. (4.2)

To see this, note that if the decoder D (which makes q = O(1) queries) satisfies Equation (4.2),
then we can obtain a decoder D′ that makes q′ = O(q) queries and satisfy Equation (4.1) simply by
running D and adding O(q) uniformly distributed “dummy” queries (whose answers the decoder
ignores).

Secondly, note that by the construction of D (of Figure 1), each of the scPCPPs verifiers that
are being emulated by D makes nearly-uniform queries (see Theorems 3.1 and 3.2) to the statement
it refers to and to its corresponding proof. Observe that on a random index ū ∈ [k]d the decoder
D invokes the verifier of the point-line scPCPP on uniformly selected lines in a uniformly selected
copy of the tensor code. Since the length of the first and second part of each codeword of C ′ (i.e.,
the tensor code and the point-line scPCPPs) constitutes a constant fraction of the length of each
codeword of C ′, the decoder D satisfies Equation (4.2). Finally, by the foregoing discussion, D can
be modified to satisfy Equation (4.1).

5 Establishing the Strong-LTC Property

In this section we prove that the code C ′, which was defined in Section 3, is a strong locally testable
code.

Theorem 5.1. The code C ′ : {0, 1}k′ → {0, 1}n′ as defined in Section 3 is a strong-LTC.

In order to prove Theorem 5.1 we need to present a tester T that is given an oracle access to
w ∈ {0, 1}n′ , makes O(1) queries to w, and satisfies the following: For all w ∈ C it holds that
Tw = 1, and for all w 6∈ C it holds that PrT [Tw = 0] ≥ poly (δC′(w)).

5.1 Outline of the Tester and its Analysis

Recall that each codeword of C ′ consists of three parts: (1) an alleged d-dimensional tensor code

C = C⊗d0 : {0, 1}kd → {0, 1}nd , (2) alleged scPCPPs for every 2-dimensional plane in C; each
scPCPP ascertains that the given plane is consistent with C, and (3) alleged scPCPPs for every
pair of point ı̄ in C and line ` in C that passes through ı̄; each scPCPP ascertains that a line ` is a
codeword of C0 that is consistent with the value at a point ı̄.

For the simplicity of the exposition, we omit the repetitions of the three parts of the code (i.e.,
the tensor code, the point-line scPCPPs, and the plane scPCPPs) and assume instead that the
length of the each part is equal. We note that this assumption can be easily removed by using an
additional consistency test. See the full details in Section 5.2.

The key idea is that by the robustness property of tensor codes, the corruption rate of a codeword
is proportional to the corruption rate of a random plane in the codeword. Hence, in order to ensure
that the tensor code part of C ′ is valid, our tester use the plane scPCPPs to ascertain that a random
plane is close to being valid. We note that for the tester, we do not need the point-line scPCPPs
(which we only need for the decoder); however, since we need to ensure that also the point-line
scPCPPs part is not corrupted, our tester also verifies a random point-line scPCPPs.
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Clearly, this tester always accepts valid codewords. To analyze what happens with non-
codewords consider a string that is somewhat far from C ′. In this case, one of the following
three cases must hold:

1. The tensor code part is far from a legal codeword of C⊗d.

2. The tensor code part is close to a legal codeword of C⊗d but the plane scPCPP proofs part
is far from the corresponding canonical proofs.

3. The tensor code part is close to a legal codeword of C⊗d but the point-line scPCPP proofs
part is far from the corresponding canonical proofs.

To ensure that in the first case the tester succeeds (i.e., rejects with sufficiently high probability),
it is enough to test that a random plane in c is close to a codeword of C⊗2. To accomplish this,
we choose uniformly at random a (2-dimensional, axis-parallel) plane and run the corresponding
plane scPCPP verifier. This suffices, since Theorem 2.7 asserts that if a tensor c is far from a legal
codeword of C⊗d, then a random (2-dimensional, axis-parallel) plane in c must also be far from a
legal codeword of C⊗2.

The second and third cases are similar, and so, we only sketch how to handle the second case.
Assume that the tensor is close to a codeword but the plane scPCPPs are far from the corresponding
canonical proofs. From this assumption we can deduce that there are many planes that are close
to legal codewords of C⊗2, but whose corresponding scPCPPs are far from the canonical proofs.
Thus, choosing a random plane and running the corresponding plane scPCPP verifier ensures that
the tester rejects with a sufficiently high probability. This is due to the strongness and canonicity
features of our scPCPPs.

To conclude, the tester consists of three parts: (1) a repetition test, wherein we verify the
repetition structure of the tensor, (2) plane scPCPP consistency test, wherein we verify that a
random plane in the tensor is a legal codeword; this test ensures that both the tensor code part
consists of valid codewords and its plane scPCPPs are the corresponding canonical proofs, and (3)
point-line scPCPP consistency test, which we perform only to verify that the point-line scPCPPs
consists of the canonical proofs that corresponds to the tensor part of the code.

5.2 The Full Proof

We proceed with the full proof of Theorem 5.1, which formalizes the intuition given in the previous
section. We show a strong-LTC procedure for C ′. The tester T is formally described in Figure 2.

Consider an arbitrary input w ∈ {0, 1}n′ such that δC′(w) ≥ 0. We view w as a string composed
of three parts as in Section 3, i.e., w = (c̄, p̄lines, p̄planes). The completeness of the tester is immediate:
Indeed, if the input is a codeword, i.e., w = C ′(x), then the first part of w consists of identical
copies of a tensor code, and hence the codeword repetition test accepts with probability 1. Similarly,
the second and third parts consists of the canonical point-line and plane scPCPP proofs for the
aforementioned tensor code, respectively; hence the (one-sided error) scPCPP verifiers will accept
with probability 1.

Next, we prove the soundness of the tester. We partition the analysis into three cases (Claim 5.2
and Lemmas 5.3 and 5.4), which we analyze in the rest of this section.

Let ĉ ∈ {0, 1}nd be a tensor that is closest on average to the tensors in c̄, i.e., a string that
minimizes ∆(c̄, ĉt1) =

∑t1
i=1 ∆(ci, ĉ). The first (and standard) claim shows that if c̄ is far from
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The strong-LTC Procedure for C ′

Input: oracle access to a string w = (c̄, p̄lines, p̄planes).

For s ∈ [n] and b ∈ {0, 1} let V line(s, b) be a scPCPP verifier that refers to an input of the form z ∈ {0, 1}n
and asserts that there exists y ∈ C0 such that z = y and zs = b.

Let V plane be a scPCPP verifier that refers to an input of the form z ∈ {0, 1}n2

and asserts that there exists
y ∈ C⊗2

0 such that z = y.

Choose a random copy of each of the three replicated parts of w. That is, choose uniformly at random a
copy c in c̄, a copy p̄line = {pj,̄ı}{ı̄∈[n]d, j∈[d]} in p̄lines, and a copy p̄plane = {pp}{p∈Planes} in p̄planes.

Accept if none of the following tests reject:

1. The repetition test: We query two random copies from the tensor part of w and check if they
agree on a random location. More accurately, we select uniformly at random r, r′ ∈ [t1] and reject if
and only if cr and cr′ disagree on a random coordinate.

2. The plane scPCPP consistency test: Choose a uniformly at random a plane p ∈ Planes. Reject
if the verifier V plane rejects on the plane p (i.e., input c|p) and the proof pp.

3. The point-line scPCPP consistency test: Choose uniformly at random a coordinate ū =
(u1, . . . , ud) ∈ [n]d and a direction j ∈ [d] in c. Reject if the verifier V line(uj , cū) rejects on the
line passing through ū in direction j and the proof pj,ū. In other words, we reject if V line(uj , cū)
rejects on input c|`j,ū and proof pj,ū.

Figure 2: Strong local tester for C ′

consisting of t1 identical tensors, then the repetition test (of Step 1) rejects with high probability.
Let γ be a constant set to δ(C)/(24d) (for the purpose of Lemma 5.4).

Claim 5.2. If δ(c̄, ĉt1) ≥ γ
5 · δC′(w), then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. Suppose that δ(c̄, ĉt1) ≥ γ
5 · δC′(w). The codeword repetition test rejects with probability at

least

E
r,r′∈R[t1]

[
∆(cr, cr′)

nd

]
≥ E

r∈R[t1]

[
∆(cr, ĉ)

nd

]
=

∆(c̄, ĉt1)

t1nd
.

Therefore, PrT [Tw = 0] ≥ γ
5 · δC′(w) ≥ poly

(
δC′(w)

)
.

The following lemma shows that if c̄ consists of t1 nearly identical tensors that are far from a
codeword of C, then due to the robustness feature of tensor codes, a random plane in a random
copy in c̄ will be far from valid, and hence, Step 2 of the tester rejects with high probability.

Lemma 5.3. Assume δ(c̄, ĉt1) < γ
5 · δC′(w). If c̄ is γ · δC′(w)-far from Ct1, then PrT [Tw = 0] ≥

poly
(
δC′(w)

)
.
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Proof. Observe that a random copy c of a tensor code in c̄ is Ω
(
δC′(w)

)
-far from C with high

probability. This is because δCt1 (c̄) ≤ δCt1
(
ĉt1
)

+δ
(
ĉt1 , c̄

)
, which implies δC(ĉ) > 4γ

5 ·δC′(w). Since
at least 2/3 of the ci’s are 3 · γ5 · δC′(w)-close to ĉ, these ci’s are γ

5 · δC′(w)-far from C.
Next, by the robustness feature of tensor codes, we deduce that if the randomly selected tensor

code c is Ω
(
δC′(w)

)
-far from being valid, then a random plane of c is also Ω

(
δC′(w)

)
-far from being

valid. Specifically, by Theorem 2.7, there exists a constant crobust ∈ (0, 1) such that for every tensor

w ∈ {0, 1}nd we have

E
p∈RPlanes

[
δ
(
w|p, C⊗2

)]
> crobust · δC⊗d(w).

Hence, by an averaging argument,

Pr
p∈Planes

[
δC⊗2(c|p) >

crobust
2
· γ

5
· δC′(w)

]
>
crobust

2
· γ

5
· δC′(w). (5.1)

Note that, by Equation (5.1), with probability Ω
(
δC′(w)

)
we select a plane that is Ω

(
δC′(w)

)
-far

from a codeword of C⊗2
0 . Given such plane, the scPCPP verifier V plane rejects with probability

Ω
(
δC′(w)

)
. Thus, the tester T rejects with probability poly(δC′(w)) over the internal randomness

of T .

In the next lemma, we complete the analysis by assuming that c̄ is sufficiently close to a
codeword of Ct1 , and showing that in this case most of the “corruption” takes place in the parts
of the scPCPP proofs, and hence the scPCPP consistency tests will reject with high probability.

Lemma 5.4. If c̄ is γ · δC′(w)-close to being a codeword of Ct1, then PrT [Tw = 0] ≥ poly
(
δC′(w)

)
.

Proof. Recall that γ = δ(C)
24d < δ(C)

2 . Therefore, our assumption that c̄ is γ · δC′(w)-close to being a
codeword of Ct1 implies that there exists a unique codeword c′ of C that minimizes the distance
of c̄′ , (c′)t1 from c̄. Let w′ be the codeword of C ′ that consists of repetitions of the tensor code c′

and its canonical scPCPP proofs; that is, Let w′ =
(
c̄′, (πlines(c

′))t2 , (πplanes(c
′))t3

)
be a codeword

of C ′. Denote by x the inverse of w′ (i.e., , w′ = C ′(x)).
It is convenient to introduce notations for the fraction of corruptions in each part of C ′. Towards

this end, denote the fraction of errors in the first part of the code (the copies of the tensor code)
by δc̄ = δ(c̄, c̄′). Analogously, denote by δp̄lines and δp̄planes the fraction of errors in the second
and third parts of w (point-line scPCPPs and plane scPCPPs), respectively. Denote by δp̄total =(
δp̄lines + δp̄planes

)
/2 the total fraction of errors in the second and third part of w together.

Observe that assuming the hypothesis of Lemma 5.4 (i.e., c̄ is sufficiently close to c̄′), the
scPCPPs part (i.e., p̄lines and p̄planes) must be somewhat far from the corresponding set of canonical
scPCPP proofs; that is, assuming δc̄ < δC′(w), then δp̄total ≥ δC′(w).

Therefore, since δc̄ ≤ γ ·δC′(w) < δC′(w), we may assume that either: (1) the plane scPCPPs are
sufficiently corrupted, i.e., δp̄planes > δC′(w), or (2) the point-line scPCPPs are sufficiently corrupted,
i.e., δp̄lines > δC′(w). We claim that in the first case the plane scPCPP consistency test will reject
with high probability, and in the second case the point-line scPCPP consistency test will reject with
high probability. We prove this in the following two claims, from which Lemma 5.4 follows.

Claim 5.5. Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1, if δp̄planes > δC′(w), then
PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Claim 5.6. Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1, if δp̄lines > δC′(w), then
PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.
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Claims 5.5 and 5.6 follow immediately from the canonicity and strong soundness features of
the scPCPPs (along with averaging arguments). Since the proofs of Claims 5.5 and 5.6 are similar,
we conclude the proof of Lemma 5.4 by showing Claim 5.5 and defer the proof of Claim 5.6 to
Appendix E.

Proof of Claim 5.5. Loosely speaking, the hypothesis of the claim guarantees that: (1) c̄ is close to
being a unique codeword C(x)t1 , and hence (by averaging arguments), most restrictions of a random
copy c in c̄ = (c1, . . . , ct1) to a plane cannot be significantly corrupted; (2) the plane scPCPPs are
far, on average, from the canonical proofs that corresponds to C(x), and thus many plane scPCPPs
are far from the canonical proofs for the planes of C(x) they correspond to. By the foregoing, we
conclude that there are many planes in c that are close to planes of C(x) but their alleged plane
scPCPP proofs are far from their canonical proofs. Thus, by the canonicity and strong soundness
features of the scPCPPs, the verifier will reject with high probability. Details follow.

By the claim’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). Hence, by an averaging
argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x). Assume from
now on that this is indeed the case. We say that a point ı̄ ∈ [n]d in c is corrupted if cı̄ 6= C(x)ı̄,
and so, there are at most 3δc̄n

d corrupted points in c. Since there are
(
d
2

)
nd−2 axis-parallel planes

in c, then on average, the number of corrupted points in a random axis-parallel plane in c is at
most 3δc̄nd

(d2)nd−2
< 3δc̄n

2. Thus, by an averaging argument, we obtain that at most
δp̄
4 fraction of the

axis-parallel planes in c contain at least 4
δp̄
· 3δc̄n2 corrupted points.

Secondly, we note that a random copy of the plane scPCPP proofs contains a fraction of
Ω
(
δC′(w)

)
corrupted points with probability Ω

(
δC′(w)

)
. That is, by an averaging argument, with

probability at least δp̄ , δp̄planes/2 the random copy p̄ in p̄planes is δp̄-far from its corresponding set
of canonical proofs, πplanes(x) = {πplane(C(x)|p)}p∈Planes. Assume from now on that p̄ is δp̄-far from
πplanes(x). Then, by an averaging argument, we obtain that at least δp̄/2 fraction of the proofs in
p̄ = {pp}p∈Planes are δp̄/2-far from their corresponding (canonical) proofs πplanes(x).

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-fraction of

the planes p in c are both δ(C⊗2
0 )/2-close to the restriction of the tensor codeword C(x) to p, and

their corresponding proofs are Ω
(
δC′(w)

)
-corrupted; that is, a fraction of at least

δp̄
4 of the axis-

parallel planes p in c are δ(C⊗2
0 )/2-close to C(x)|p (recall that 4

δp̄
· 3δc̄ < 12γ < δ(C)/2 ≤ δ(C⊗2

0 )),

and in addition, their corresponding (alleged) plane scPCPP proofs in {pp}p∈Planes are δp̄/2-far from
their (correct) canonical proofs in πplanes(x). Denote the set of planes that satisfy the foregoing
condition by BAD.

Observe that for every plane p ∈ BAD, in order for input c|p and proof pp to be a valid claim
(for the input-proof language that V plane verifies), one must make at least one of the following

changes: (1) change a fraction of at least
δp̄
2 of the proof pp such that it matches πplane (C(x)|p),

or (2) change a fraction of at least δ(C⊗2
0 )/2 of c|p (since pp might be a valid proof for input

C⊗2
0 (y) 6= c|p). Thus, for every p ∈ BAD, the probability that V plane rejects input c|p and proof pp

is at least polynomial in δC′(w).
Putting it all together, with probability 2/3 we hit a random copy c of the tensor code that

is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random copy p̄ that is
δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a plane scPCPP proof that is δp̄/2-
corrupted. Finally, assuming the foregoing, the scPCPP verifier V plane rejects with probability
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poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2

3
· δp̄ ·

δp̄
2
· poly (δC′(w)) ≥ poly

(
δC′(w)

)
.

This concludes the proof of Lemma 5.4.

6 Strong Canonical PCPs of Proximity

In this section we construct scPCPPs with polynomial proof length for any good linear code (see
Theorem 3.1) and for any half-space of a any good linear code (see Theorem 3.2). Our starting point
(see Corollary 6.2) is the following result of [GR13],18 which in turn builds upon [GS06, Section
5.2]: For any good code C : {0, 1}k → {0, 1}ck, there exists a strong-LTC C ′ : {0, 1}k → {0, 1}poly(k)

such that the first half of C ′(x) consists of c blocks, each depending only on a k-bit long block
of C(x). Using this result, we construct a scPCPP for any good code C, where this construction
applies the above result to several auxiliary codes that are derived from C.

6.1 scPCPPs for Good Codes

We start by recalling the statement of Theorem 3.1.

Theorem 3.1 (restated). Let C : {0, 1}k → {0, 1}n be a linear code with constant relative distance
and linear length. Then, there exists a scPCPP for codewords of C (i.e., for the set {C(x) }x∈{0,1}k).
Furthermore, the proof length of the scPCPP is poly(n), the scPCPP verifier makes nearly-uniform
queries, and the canonical scPCPP proofs are linear (over GF(2)).

The main technical tool upon which we rely (when proving Theorem 3.1) is the linear inner
proof systems (hereafter, LIPS), constructed by Goldreich and Sudan. Loosely speaking, the LIPS
mechanism allows to transform linear strong locally testable codes over a large alphabet into strong
locally testable codes over a smaller alphabet (see [GS06, Section 5.2]). We encapsulate our usage of
the LIPS mechanism in the following theorem, which generalizes [GS06, Theorem 5.20] and [GS06,
Proposition 5.21]. Throughout this section, denote F = GF(2).

Theorem 6.1. Let Σ = Fb. For infinitely many k, there exists n = poly(k) and a linear code
E : Σ → Fn with constant relative distance such that the following holds. Suppose that C : ΣK →
ΣN is a strong-LTC that is linear over F and has a (non-adaptive) tester that uses r random bits
and makes nearly-uniform queries. Then, there exists ` = poly(k) such that ` is a multiple of
n, and a linear strong-LTC C ′′ : Fbk → F2r+1·` such that the 2r · `-bit long prefix of C ′′(x) equals(
E(C(x)1), . . . , E(C(x)N )

)2r`/(Nn)
. Moreover, the tester of C ′′ makes nearly-uniform queries.

As a corollary of Theorem 6.1, we obtain that any good linear code can be augmented to a
linear strong-LTC with polynomial length, such that the prefix of the new code is closely related to
that of the original code (but is not equal to the original code). This is done by viewing the good
linear code as a trivial strong-LTC over a sufficiently large alphabet.

18Actually, Corollary 6.2 is a straightforward generalization of [GR13, Corollary B.3].
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Corollary 6.2 (our starting point). Let C : {0, 1}k → {0, 1}ck be a good linear code with constant
relative distance, where c ∈ N is a constant. Then, for some M,m = poly(k), there exists a linear
strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k → {0, 1}m, which has constant rel-

ative distance, such that the M -bit long prefix of C ′(x) equals
(
E(C(x)[1]), . . . , E(C(x)[c])

)M/(c·m)
,

where C(x)[i] is the ith block of length k in C(x). Furthermore, the (strong) tester of C ′ makes
nearly-uniform queries.

We remark that Theorem 6.1 and Corollary 6.2 are straightforward generalization of [GR13,
Theorem B.2] and [GR13, Corollary B.3] (respectively), and we defer their proofs to Appendix A.

The Plan. Let C : {0, 1}k → {0, 1}ck be a good linear code, where c ∈ N is a constant. We
construct a strong-LTC C ′ such that a constant fraction of each codeword C ′(x) contains copies
of C(x). This, in turn, implies a scPCPP for C (see Proposition 6.5). Note that by applying
Corollary 6.2 to C we obtain a strong-LTC C ′ such that a constant fraction of each codeword C ′(x)
contains copies of

(
E(C(x)[1]), . . . , E(C(x)[c])

)
, but not of C(x). This does not seem to suffice for

obtaining a scPCPP, and so we use a different approach.
We start by using Corollary 6.2 to obtain a family of linear strong-LTCs

{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

,

where n = poly(k), with constant relative distance such that the prefix of each codeword Ci(x) con-
tains a linear number of copies of the ith-bit of C(x) (as well as other structural features that will
be useful for us). This is done via the next lemma, which uses techniques from [GR13].

Lemma 6.3 (obtaining auxiliary codes Ci). Let C : {0, 1}k → {0, 1}ck be a good linear code, where
c ∈ N is a constant. There exist a constant α ∈ (0, 1), a polynomial value n = poly(k), and a
linear code Ĉ : {0, 1}k → {0, 1}cn with constant relative distance, which satisfy the following: For
every i ∈ [ck], there exists a function πi : {0, 1}k → {0, 1}(c+1)n such that the code Ci : {0, 1}k →
{0, 1}αn+cn+(c+1)n, given by

Ci(x) =
(
(C(x)i)

αn, Ĉ(x), πi(x)
)
,

is a linear strong-LTC with constant relative distance. Moreover, for every i ∈ [ck] the (strong)
tester of Ci makes nearly-uniform queries.

We stress that the code Ĉ (which is common to all Ci’s) is independent of i and constitutes a
constant fraction of the length of each Ci.

Proof of Lemma 6.3. For every j ∈ [c], we denote by C(x)[j] the jth block of length k of C(x). For
every i ∈ [ck], consider the code C ′i : {0, 1}k → {0, 1}(c+1)k given by

C ′i(x) ,
(
(C(x)i)

k, C(x)
)

=
(
(C(x)i)

k, C(x)[1], . . . , C(x)[c]
)
.

Note that C ′i is a good linear code.
For every i ∈ [ck], we apply Corollary 6.2 to C ′i and obtain a linear strong-LTC C ′′i : {0, 1}k →

{0, 1}2(c+1)·n with constant relative distance, which is (up to a permutation of its bit locations) of
the form

C ′′i (x) =

((
E
(
(C(x)i

)k)t
,
(
E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t
, πi(x)

)
where m,n = poly(k), the function E : {0, 1}k → {0, 1}m is a linear code with constant relative
distance, t = n/m, and πi(x) ∈ {0, 1}(c+1)n is some string. Moreover, the (strong) tester of C ′′i
makes nearly-uniform queries.
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Denote by Ĉ : {0, 1}k → {0, 1}cn the linear code (with constant relative distance) that is given by

Ĉ(x) =

((
E
(
C(x)[1]

))t
, . . . ,

(
E
(
C(x)[c]

))t)
. Since E is a linear code with constant relative dis-

tance, then E(0k) = 0m and ∆
(
E
(
1k
)
, 0m

)
≥ αm for some constant α ∈ (0, 1). Now, for every i ∈

[ck], consider the code Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n, given by Ci(x) =
(

(C(x)i)
αn , Ĉ(x), πi(x)

)
,

which is obtained from C ′′i by simply removing coordinates on which E(0k) and E(1k) agree, in

each of the t copies in the first part (i.e., E
(
C(x)i

)k
).

Note that Ci has constant relative distance. Furthermore, since C ′′i is linear and since we only
removed coordinates on which the value is 0, the code Ci is also a linear code. Finally, by emulating
the execution of the tester of C ′′i on an (alleged) codeword of Ci (which can be done by returning
0 whenever a coordinate that was omitted is being queried), we obtain that Ci(x), which is of the
required form of the hypothesis, is a strong-LTC with a (strong) tester that makes nearly-uniform
queries.

In the actual proof of Theorem 3.1, we will construct a code C ′ that encodes a message x by
concatenating the encodings of x by all of the strong-LTCs in

{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

(i.e.,

C ′(x) ,
(
C1(x), . . . , Cck(x)

)
). Thus, we will obtain a strong-LTC that (up to a permutation of the

bit locations) contains copies of the entire codeword C(x) in its prefix. We remark that, in general,
the concatenation of strong-LTCs is not a strong-LTC. However, the structure of the aforementioned
family of codes (specifically, the fact that all codes in the family contains a common sub-code) im-
plies that the concatenation of codes in

{
Ci : {0, 1}k → {0, 1}n

}
i∈[ck]

yields a strong-LTC. The next

proposition shows a sufficient condition for obtaining strong-LTCs via concatenation of strong-LTCs.

Proposition 6.4 (concatenating multiple encodings of strong-LTCs with a common sub-code).
Let C1, . . . , Ct : {0, 1}k → {0, 1}n be strong-LTCs with constant relative distance. Let I ⊆ [n]
such that |I| = Ω(n), and let Ĉ : {0, 1}k → {0, 1}|I| be a code with constant relative distance.
If Ĉ(x) = C1(x)|I = C2(x)|I = . . . = Ct(x)|I for every x ∈ {0, 1}k, where Ci(x)|I denotes the
restriction of Ci(x) to I, then the code C ′(x) ,

(
C1(x), . . . , Ct(x)

)
is a strong-LTC with constant

relative distance. Moreover, if the (strong) testers of C1, . . . , Ct make nearly-uniform queries, then
the (strong) tester of C ′ also makes nearly-uniform queries

Proposition 6.4 follows by using a tester that (1) emulates the strong-LTC tester of a randomly
selected concatenated code Ci (to ascertain that each concatenated codeword is valid), and (2) tests
the consistency of the common code Ĉ in two randomly selected concatenated codes (to assure that
all of the concatenated codewords encode the same message). The analysis is quite straightforward
and is deferred to Appendix B.

The last tool we shall need in order to prove Theorem 3.1 is the following proposition, which
allows us to transform strong-LTCs to scPCPPs for prefixes of the strong-LTCs’ codewords.

Proposition 6.5 (from strong-LTCs to scPCPPs for related codewords). Let C : {0, 1}k → {0, 1}n
be a linear code, and let C ′ : {0, 1}k → {0, 1}n′ be a linear strong-LTC. If there exists I ⊆ [n′] where

|I| = Ω(n′) and n′ − |I| = Ω(n′) such that C ′(x)|I =
(
C(x)

)|I|/n
, then there exists a scPCPP for

C (i.e., for the set of codewords {C(x)}x∈{0,1}k) with proof length O(n′). Moreover, the canonical
scPCPP proofs are linear, and if the (strong) tester of C ′ makes nearly-uniform queries, then the
verifier of the scPCPP for C also makes nearly-uniform queries.
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Proof. Let C, C ′, and I be as in the hypothesis. Assume, without loss of generality, that I =
{1, . . . , |I|}. Denote the (strong) tester of C ′ by T . We use T in a black-box manner in order to
construct a scPCPP for the set {C(x)}x∈{0,1}k .

Given a codeword C(x), the canonical scPCPP proof for C(x) is given by π(x) , C ′(x)|[n′]\I ,
where C ′(x)|[n′]\I is the restriction of C(x) to the coordinates outside of I. Let V be the scPCPP
verifier that gets oracle access to an alleged codeword w ∈ {0, 1}n and oracle access to a proof
oracle p of length n′ − |I|. Let t = |I| /n. The verifier V emulates the execution of T on (wt, p) as
follows: Each query that T makes to the first part (which are allegedly C(x)t) is simulated by a
corresponding query to the input oracle w,19 and each query that T makes to the other coordinates
(which is allegedly π(x)) is simulated by a corresponding query to the proof oracle. The verifier V
accepts if and only if the emulated run of T on (wt, p) accepted. Note that if T makes nearly-uniform
queries, then V also makes nearly-uniform queries.

The completeness of V is immediate: If w is a codeword C(x) and p = π(x), then
(
wt, p

)
is a

codeword of C ′. We conclude the proof by showing the soundness of V . Note that V gets as input
a pair of an alleged codeword w and an alleged canonical proof p. Suppose that δPCPP(w, p) ,
minx∈{0,1}n

{
max

(
δ(x,w) ; δ(πcanonical(x), p)

)}
> 0.

For every x ∈ {0, 1}n, either the alleged proof p is δPCPP(w, p)-far from πcanonical(x), or the
alleged codeword is δPCPP(w, p)-far from C(x). In the former case, since |p| = n′ − |I| = Ω(n′),
it holds that δ

(
(wt, p), (xt, πcanonical(x))

)
= Ω

(
δPCPP(w, p)

)
. In the latter case, since δCt(w

t) =
δC(w) and |wt| = Ω(n′), it holds that δ

(
(wt, p), (xt, πcanonical(x))

)
= Ω

(
δPCPP(w, p)

)
. Therefore

δC′
(
(wt, p)

)
= Ω

(
δPCPP(w, p)

)
, and thus the tester of C ′, and subsequently the verifier V , will

reject with probability poly(δPCPP(w, p)) as required.

Using Lemma 6.3 and Propositions 6.4 and 6.5, we proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. Let c ∈ N be a constant and C : {0, 1}k → {0, 1}ck be a linear code with
constant relative distance. We show a scPCPP, with polynomial proof length, for the language of
all codewords of C.

First, we apply Lemma 6.3 on C and get that there exists a linear code Ĉ : {0, 1}k → {0, 1}cn
with constant relative distance and a set of codes

{
Ci : {0, 1}k → {0, 1}αn+cn+(c+1)n

}
{i∈[ck]} such

that each Ci is a linear code with constant relative distance that is given by

Ci(x) =
(
(C(x)i)

αn, Ĉ(x), πi(x)
)
,

where α ∈ (0, 1), n = poly(k) and πi : {0, 1}k → {0, 1}(c+1)n. Moreover, each Ci makes nearly-
uniform queries.

Next, we consider the code C ′(x) ,
(
C1(x), . . . , Cck(x)

)
. Observe that, up to a permutation of

the indices, C ′ has the form
C ′(x) =

(
C(x)αn, Ĉ(x)ck, π(x)

)
,

where π(x) = π1(x), . . . , πck(x). Note that
∣∣∣Ĉ(x)ck

∣∣∣ = ck · cn, which is a constant fraction of

|C ′(x)|. By Proposition 6.4, the code C ′ is a strong-LTC with constant relative distance that makes
nearly-uniform queries.

19Note that the tester expects t copies of C(x), while the input oracle consists of a single copy. Hence, the emulation
is done simply by directing the query of the ith bit of the jth copy to the ith bit of the input oracle, for every i, j.

29



Finally, the theorem follows by applying Proposition 6.5 to the code C ′ with I = [αn · ck],
where the code C is repeated αn = |I|/(ck) times. (Indeed, we use the fact that |I| is a constant
fraction of |C ′(x)|.) Note that the scPCPP proof we obtain (namely,

(
Ĉ(x)ck, π(x)

)
) is of length

poly(k).

6.2 scPCPPs for Half-Spaces of Good Codes

We start by recalling the statement of Theorem 3.2.

Theorem 3.2 (restated). Let C : {0, 1}k → {0, 1}n be a linear code with constant relative distance
and linear length. Let i ∈ [k] be a location in a message and b ∈ {0, 1} a bit. Then, there exists
a scPCPP for Ci,b, where Ci,b is the set of all codewords w of C such that the ith-bit of w equals b
(i.e., wi = b). Furthermore, the proof length of the scPCPP is poly(n), the scPCPP verifier makes
nearly-uniform queries, and the scPCPP proofs are linear (over GF(2)).

Theorem 3.2 is obtained by using Theorem 3.1 in a black-box manner. Specifically, note that
in case b = 0, the code Ci,0 is linear, and thus we can apply Theorem 3.1 directly. On the other
hand, in case b = 1, the code Ci,1 is not linear, but we can “shift” it (by a fixed codeword of Ci,1)
and apply Theorem 3.1.

Proof of Theorem 3.2. In light of the above, we focus on the case in which b = 1. Assume, without
loss of generality, that there exists a codeword c(i) of C such that that the ith-bit of c(i) is 1
(otherwise, we can always reject). Consider a verifier, Vi,1, that gets oracle access to an input
string w and a proof π, and proceeds as follows. The verifier Vi,1 emulates the execution of Vi,0
(obtained via Theorem 3.1) on input oracle w+c(i) (where the summation is point-wise over GF(2))
and its proof oracle π (which should be the canonical proof for w+c(i) ∈ Ci,0). Note that the verifier
Vi,0 makes nearly-uniform queries, and so Vi,1 also makes nearly-uniform queries. We show that
Vi,1 is a scPCPP for Ci,1

The completeness is immediate: Recall that if w is a codeword of Ci,1, then w = C(x) such
that wi = 1. By the linearity of C, w + c(i) is a codeword of C such that its ith bit is 0 (i.e.,(
w + c(i)

)
i

= 0). Therefore, we actually invoke Vi,0 on a codeword of Ci,0. For the soundness
condition, assume that δCi,1(w) > 0. Observe that

δCi,0

(
w + c(i)

)
= min

w′∈Ci,0
δ
(
w′, w + c(i)

)
= min

w′∈Ci,0
δ
(
w′ + c(i), w

)
= δCi,1(w).

Therefore, the verifier Vi,1 will reject the input w + c(i) (given the corresponding canonical proof)
with probability at least poly

(
δCi,1(w)

)
, as required.

7 Application to Property Testing

In this section we give an application of our main result (Theorem 1.1) to the area of property testing.
Specifically, we improve on the best known separation result, due to Gur and Rothblum [GR13],
between the complexity of decision versus verification in the property testing model. Details follow.

The study of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich, Gold-
wasser and Ron [GGR98], considers highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such algorithms, commonly
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referred to as testers, are given oracle access to some object, and are required to determine whether
the object has some predetermined property or is far (say, in Hamming distance) from every object
that has the property.

Remarkably, it turns out that many natural properties can be tested by making relatively few
queries to the object. However, there are also many natural properties that no tester can test
efficiently. In fact, “almost all” properties require a very large query complexity to be tested.
Motivated by this limitation, Gur and Rothblum [GR13] initiated the study of MA proofs of
proximity (hereafter MAPs), which can be viewed as the NP proof-system analogue of property
testing.

Loosely speaking, an MAP is a probabilistic proof system that augments the property testing
framework by allowing the tester full and free access to an (alleged) proof. That is, such a proof-
aided tester for a property Π is given oracle access to an input x and free access to a proof string
w, and should distinguish between the case that x ∈ Π and the case that x is far from Π, while
only making a sublinear number of queries. More precisely, given a proximity parameter ε > 0, we
require that for inputs x ∈ Π, there exist a proof that the tester accepts with high probability, and
for inputs x that are ε-far from Π no proof will make the tester accept, except with some small
probability of error. For formal definitions we refer to [GR13, Section 2].

As observed by [GR13], given an MAP proof of length that is linear in the size of the object
(specifically, a proof that fully describes the object), every property can be tested by only making
O(1/ε) queries to the object, simply by verifying the proof’s consistency with the object. Hence, it
is natural to measure the complexity of an MAP by both the length of the proof and the number
of queries made in order to decide whether x ∈ Π or ε-far from it. We note that a property tester
can be viewed as an MAP that uses a proof of length 0.

Gur and Rothblum [GR13] showed that the task of separating the power of property testers
andMAPs can be reduced to the task of designing a code that is both locally testable and locally
decodable. Furthermore, they noticed that for such a separation, relaxed decodability suffices.
Unable to construct a code as in Theorem 1.1, Gur and Rothblum used several weaker codes to
obtain partial separation results. Specifically, they proved the following theorem.

Theorem 7.1 (Theorems 3.1, 3.2 and 3.3 in [GR13]). In all items, n denotes the length of the
main input being tested.

1. For every constant α > 0, there exists a property Πα that has an MAP that uses a proof of
length O(log n) and makes poly(1/ε) queries for every ε > 1/polylog(n), but for which every
property tester must make Ω(n1−α) queries.

2. For every constant α > 0, there exists a property Πα that has an MAP that uses a proof of
length O(log n) and makes poly(log n, 1/ε) queries, but for which every property tester must
make Ω(n1−α) queries.

3. There exists a universal constant c ∈ (0, 1) and a property Π that has an MAP that uses a
proof of length O(log n) and makes poly(1/ε) queries (without limitation on ε), but for which
every property tester must make nc queries.

Furthermore, each of the above MAPs has one-sided error.

Note that each of these separation results has a drawback: The first separation works only for
sufficiently large values of the proximity parameter, the second separation has non-constant query
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complexity for the MAPs, and the third separation does not require property testers to make
nearly-linear number of queries.

Plugging in the code C ′ from Theorem 1.1 into the framework developed by [GR13, Lemmas 3.4
and 3.5], we achieve the best of all the aforementioned results; that is, a separation for all values of
the proximity parameter, with constant query complexity for the MAPs, and nearly-linear query
complexity for testers. Formally, we obtain the following separation result between MAPs and
property testers.

Theorem 1.3 (Restated). For every constant α > 0, there a property Πα that has an MAP that
uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation on ε), but for which
every property tester must make n1−α queries. Furthermore, the MAP has one-sided error.
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A Obtaining Strong LTCs from LIPS

In this appendix, we provide tools that allow us to use the linear inner proof systems (hereafter,
LIPS), constructed by Goldreich and Sudan [GS06], to obtain families of strong-LTCs with several
features that we take advantage of in Section 6. Specifically, we prove Theorem 6.1 and Corol-
lary 6.2. Throughout this section, denote F = GF(2). Recall the statement of Theorem 6.1.
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Theorem 6.1 (restated). Let Σ = Fb. For infinitely many k, there exists n = poly(k) and a linear
code E : Σ → Fn such that the following holds. Suppose that C : ΣK → ΣN is a strong-LTC that
is linear over F and has a (non-adaptive) tester that uses r random bits and makes nearly-uniform
queries. Then, there exists ` = poly(k) such that ` is a multiple of n, and a linear strong-LTC C ′′ :

Fbk → F2r+1·` such that the 2r · `-bit long prefix of C ′′(x) equals
(
E(C(x)1), . . . , E(C(x)N )

)2r`/Nn
.

Moreover, the tester of C ′′ makes nearly-uniform queries.

Proof. We follow the proof of [GS06, Theorem 5.20], while using the code C of the theorem’s hy-
pothesis instead of the third ingredient in that proof. In addition, following [GS06, Proposition
5.21], we use composition theorems (i.e., [GS06, Theorem 5.15] and [GS06, Theorem 5.17]) that
preserve the nearly-uniform distribution of the queries the verifiers (or tester) make, thus ascer-
taining that C ′′(x) has a tester that queries each location with probability Θ(1/N). We note that
in our settings, the overhead of replacing the “vanilla” composition theorems (which are used in
[GS06, Theorem 5.20]) with the composition theorems that preserve the nearly-uniform queries is
insignificant. Details follow.

In the following description, all references refer to [GS06]. Recall some basics regarding the
terminology used in [GS06]. By Definitions 5.8 and 5.9, a

(
F, (q, b) → (p, a), δ, γ

)
-LIPS refers to

input oracles X1, ..., Xq : [n] → Fa and a proof oracle Xq+1 : [`] → Fa, where the input oracles
provide an n-long encoding (over Fa) of a single symbol in the (much) bigger alphabet Fb (i.e., this
encoding is denoted E : Fb → (Fa)n). (In addition δ is the relative distance of the encoding used,
and γ is the detection ratio in strong soundness. In the following, both parameters will be small
constants.)

The proof of Theorem 5.20 starts with an overview (page 79), and then lists three ingredients
(page 80) that will be used: (1) The Hadamard based

(
F, (pH , kH) → (pH + 5, 1), 1/2, 1/8

)
-LIPS

(for any choice of pH and kH) of Proposition 5.18, (2) The Reed-Muller based
(
F, (pRM , kRM ) →

(pRM +4, poly(log pRMkRM )), 1/2,Ω(1)
)
-LIPS (for any choice of pRM and kRM ) of Proposition 5.18,

and (3) a specific strong-LTC (namely, the strong-LTC in Part 1 of Theorem 2.4). We shall use the
very same first two ingredients,20 but use the code C in place of the third. Assume, without loss
of generality, that the randomness complexity r of the strong (tester) of C satisfies that 2r is a
multiple of N . (We remark that all three ingredients have verifiers or testers that make nearly-
uniform queries, and that we compose these ingredients via the composition theorems that preserve
this distribution of queries.) Specifically, the second paragraph following the ingredients-list asserts
that for any desired p′′ and k′′, an

(
F, (p′′, k′′)→ (p′′+13, 1),Ω(1),Ω(1/p′′)2

)
-LIPS with randomness

O(p′′ log k′′), input length poly(p′′k′′), and proof length that are poly(p′′k′′). We shall use p′′ = O(1)
and k′′ = b, where the O(1) stands for the query complexity of the codeword tester for C. Thus
the above simplifies to asserting an

(
F, (O(1), b) → (O(1), 1),Ω(1),Ω(1)

)
-LIPS with randomness

O(log b) and input/proof lengths (i.e., n and `) that are poly(b). Without loss of generality, we may
assume that ` is a multiple of n.

Next, we wish to compose C with the above LIPS via Theorem 5.15 (instead of via Theorem
5.13, which does not preserve the nearly-uniform distribution of the queries). It follows that in
Item 1 of Theorem 5.15 we use K,N and r as provided by the hypothesis and q = O(1). For
Item 2, we use b as provided by the hypothesis, (q = O(1) as above), p = O(1) and a = 1, and
n, ` = poly(b) (all fitting the LIPS above). So we have Γ = F , and get a strong-LTC mapping FbK
to F2r+1·`, which makes nearly-uniform queries. In particular, for t = 2r`/Nn (i.e., tNn = 2r`), as

20We remark that while these two LIPSs are presented in [GS06] as if they are non-uniform, it can be verified that
they can be presented in uniform terms (i.e., computable by Turing machines rather than by circuits).
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shown on top of page 56 (see Equation (32)), the first half of the codewords of the resulting code

have the form
(
E(C(x)1)), ..., E(C(x)N )

)t
, where x ∈ FbK is viewed as an element of ΣK . The

theorem follows.

Next, recall the statement of Corollary 6.2.

Corollary 6.2 (restated). Let C : {0, 1}k → {0, 1}ck be a good linear code with constant rela-
tive distance, where c ∈ N is a constant. Then, for some M,m = poly(k), there exists a linear
strong-LTC C ′ : {0, 1}k → {0, 1}2M and a linear code E : {0, 1}k → {0, 1}m, which has constant

relative distance, such that the M -bit long prefix of C ′(x) equals
(
E(C(x)[1]), ..., E(C(x)[c])

)M/cm
,

where C(x)[i] is the ith block of length k in C(x). Furthermore, the (strong) tester of C ′ makes
nearly-uniform queries.

Proof. Let C : Fk → Fck be a good linear code. Viewing C as a mapping from Σ = Fk to Σc,
note that C is a strong-LTC, which is (trivially) checked by reading all c symbols (and hence, by
definition, it makes uniform queries). The claim follows by instantiating Theorem 6.1 using the
code C and taking b = k, K = 1, N = c = O(1), and r = 0.

B Concatenating Multiple Encodings of Strong LTCs

In this appendix, we show a sufficient condition for obtaining strong-LTCs via concatenation of
strong-LTCs. Recall the statement of Proposition 6.4.

Proposition 6.4 (restated). Let C1, . . . , Ct : {0, 1}k → {0, 1}n be strong-LTCs with constant rel-
ative distance. Let I ⊆ [n] such that |I| = Ω(n), and let Ĉ : {0, 1}k → {0, 1}|I| be a code with
constant relative distance. If Ĉ(x) = C1(x)|I = C2(x)|I = . . . = Ct(x)|I for every x ∈ {0, 1}k,
where Ci(x)|I denotes the restriction of Ci(x) to I, then the code C ′(x) ,

(
C1(x), . . . , Ct(x)

)
is

a strong-LTC with constant relative distance. Moreover, if the (strong) testers of C1, . . . , Ct make
nearly-uniform queries, then the (strong) tester of C ′ also makes nearly-uniform queries

Proof. Let |I| = α · n for constant 0 ≤ α ≤ 1. Assume, without loss of generality, that I =
{1, . . . , α · n}. For every i ∈ [t], we refer to an alleged (n-bit) codeword Ci(x) as the pair of strings
(yi, zi) ∈ {0, 1}α·n×{0, 1}(1−α)·n, so that yi is the common codeword Ĉ(x) and zi is the rest of the
codeword.

We show a (strong) tester that, given oracle access to a binary string w =
(
(y1, z1), . . . , (yt, zt)

)
,

where (yi, zi) ∈ {0, 1}n for every i ∈ [t], accepts every codeword of C ′ and rejects non-codewords of
C ′ with probability that is polynomial in their relative distance from C ′. The strong-LTC procedure
for C ′ is described in Figure 3.

Note that Step 1 of the tester T invokes the tester of a uniformly selected inner code (Ci), and
so, if the testers of C1, . . . , Ct make nearly-uniform queries, then Step 1 of T also makes nearly-
uniform queries. As for Step 2 of T (which queries a uniformly selected bit in two uniformly selected
yi’s), note that by adding two dummy queries to the second part of each inner code (i.e., query
a uniformly selected bit in two uniformly selected zi’s) we ensure that the first test also makes
nearly-uniform queries.

The completeness of the tester is straightforward. If
(
(y1, z1), . . . , (yt, zt)) is equal to C ′(x) for

some x ∈ {0, 1}k, then: (1) for every i1, i2 ∈ [t] it holds that yi1 = yi2 , and (2) for every i ∈ [t] it
holds that (yi, zi) is equal to Ci(x). Thus the tester accepts.

35



The strong-LTC Procedure for C ′

Input: a string
(
(y1, z1), . . . , (yt, zt)

)
∈ {0, 1}n·t.

1. The inner strong-LTC test: Select at random i ∈ [t], and run the strong-LTC tester of Ci on (yi, zi).

2. The common codeword consistency test: Select at random i1, i2 ∈ [t] and j ∈ [n], and reject if
the jth bit of yi1 and yi2 differs.

Figure 3: Strong local tester for C ′

Next, we show the soundness of the tester. Let w =
(
(y1, z1), . . . , (yt, zt)

)
be δC′(w)-far from

the code C ′, let u ∈ {0, 1}n be a string that minimizes the value of ∆
(
(y1, . . . , yt), u

t
)
, and let

γ = δ(Ĉ)/36. Suppose that (y1, . . . , yt) is γ · δC′(w)-far from ut. In this case, the “common
codeword consistency test” rejects with probability

E
i1,i2∈R[t]

[
∆(yi1 , yi2)

n

]
≥ E

i1∈R[t]

[
∆(yi1 , u)

n

]
=

∆
(
(y1, . . . , yt), u

t
)

n · t
= γ · δC′(w).

Thus, in the sequel, we assume that (y1, . . . , yt) is γ · δC′(w)-close to ut.
Suppose that u is 3γ · δC′(w)-far from Ĉ. Since (y1, . . . , yt) is γ · δC′(w)-close to ut, at least

half of the yi’s must be 2γ · δC′(w)-close to u, so these yi’s are γ · δC′(w)-far from Ĉ. Thus, in the
invocation of the strong-LTC test of a random Ci, with probability 1/2, the test is invoked on a
string (yi, zi) such that yi is γ · δC′(w)-far from the codewords of Ĉ. Since |I| = |yi| the tester will
reject with probability Ω(δC′(w)). Hence, in the sequel, we assume that u is 3γ · δC′(w)-close to a
codeword of Ĉ. Since we also assume that (y1, . . . , yt) is γ · δC′(w)-close to ut, then by the triangle
inequality, the string (y1, . . . , yt) is 4γ · δC′(w)-close to a (unique, since 4γ < δ(Ĉ)/2) codeword
Ĉt(x). Furthermore, by an averaging argument, at most δC′(w)/8 fraction of the yi’s are δ(Ĉ)/2-far
from Ĉ(x).

Since |Ĉ(x)|t = α · |C ′(x)| for a constant α ∈ (0, 1), and since (y1, . . . , yt) is 4γ · δC′(w)-
close to Ĉt(x), then (z1, . . . , zt) is δC′(w)/2-far from any (ẑ1, . . . , ẑt) ∈ {0, 1}(n−|I|)t such that(
Ĉt(x), (ẑ1, . . . , ẑt)

)
is a codeword of C ′. Thus, at least δC′(w)/4 fraction of the zi’s are δC′(w)/4-

far from their corresponding ẑi’s. Hence, at least δC′(w)/8 fraction of the (yi, zi) pairs satisfy (1)
yi is δ(Ĉ)/2-close to Ĉ(x), and (2) zi is δC′(w)/4-far from ẑi(x). Therefore, if we invoke the verifier
of Ci on such (yi, zi), it will reject with probability Ω(δC′(w)). Therefore, the tester T rejects with
probability poly

(
δC′(w)

)
, as required.

C Robustness of Tensor Codes

In this section we prove Theorem 2.7, which is implicit in [Vid12]. Specifically, in [Vid12, Theorem
A.5] it is shown that for d ≥ 3, if a codeword w of a d-dimensional tensor code C⊗d is corrupted,
then the corruption in a random hyperplane (i.e., a d−1-dimensional subplane) of w is proportional
to the corruption in the entire (d-dimensional) tensor w. By applying this theorem recursively we
obtain that for constant values of d ≥ 3, the corruption in a random 2-dimensional plane of a
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corrupted codeword of C⊗d is proportional to the corruption in the entire codeword. Formally, we
show the following.

Theorem 2.7 (restated). Let C be a linear binary code and d ≥ 3 an integer. Then, there exists

a constant crobust ∈ (0, 1) such that for every tensor w ∈ {0, 1}nd it holds that

E
p∈RPlanes

[
δ
(
w|p, C⊗2

)]
> crobust · δC⊗d(w).

We start by recalling the definition of robustness. Informally, we say that a tester is robust if
for every word that is far from the code, the tester’s view is far in expectation from any consistent
view. This notion was defined for LTCs following an analogous definition for PCPs [BGH+06].

Definition C.1 (Robustness). Given a tester T for a code C : {0, 1}k → {0, 1}n, for every word
w ∈ {0, 1}k we define

ρT (w) = E
I

[
δ(w|I , C|I)

]
,

where w|I denotes the local view of the tester after querying on coordinates given by I. We say that
the tester T has robustness ρTC on the code C if for every w ∈ {0, 1}k it holds that ρT (w) ≥ ρTC ·δC(w).

Next, we consider the “hyperplane tester for tensor codes” of Ben-Sasson and Sudan [BS06].
Towards this end, we first provide a notation for hyperplanes. For every j ∈ [d], and b ∈ [n], we

say that τ is a (j, b)-hyperplane in {0, 1}nd if

τ = {(i1, . . . , ij−1, b, ij+1, . . . , id) : for all t ∈ [d] \ { j } we have it ∈ [n]} .

We denote by Hyperplanes = {(j, b)-hyperplane}{j∈[d],b∈[n]} the set of all hyperplanes in {0, 1}nd , and

denote the restriction of a tensor w ∈ {0, 1}nd to a hyperplane τ ∈ Hyperplanes by w|τ ∈ {0, 1}n
d−1

.

Definition C.2 (Hyperplane Tester for Tensor Codes). Let C be a linear code, d ≥ 3 an integer,

and w ∈ {0, 1}nd. The hyperplane tester for C⊗d selects uniformly at random τ ∈ Hyperplanes,
obtains w|τ by querying all points on τ , and accepts if and only if w|τ ∈ C⊗d−1.

Theorem C.3 ([Vid12, Theorem A.5]). Let C be a linear code and d ≥ 3. Let T be the hyperplane

tester for C⊗d. Then, ρT
C⊗d
≥ δ(C)d

2d2 .

We show that Theorem 2.7 follows by iterative applications of Theorem C.3.

Proof of Theorem 2.7. Let C be a linear code and d ≥ 3 a constant integer. Let w ∈ {0, 1}nd

be a tensor. For every 3 ≤ t ≤ d, let Tt be the hyperplane tester for C⊗t. Note that for every
3 ≤ t ≤ d, the tester Tt queries a hyperplane that is allegedly a codeword of C⊗t−1; hence Tt−1 can
be composed with Tt; that is, we can run Tt on input w, during which Tt generates a local view
w|I to be queried, and so, we can run Tt−1 on the local view w|I . (Note that the composed tester
T3 ◦ . . . ◦ Td queries the restriction of the input w to a uniformly selected plane p ∈ Planes.) The
robustness of the composed tester will hence be

ρT3◦...◦Td
C⊗d

≥ ρTd
C⊗d
· ρTd−1

C⊗d−1 · . . . · ρT3

C⊗3 .

By Theorem C.3, for every t ≥ 3 we have ρTt
C⊗t ≥

δ(C)t

2t2
. Thus, for constant d ≥ 3 it holds that

crobust , ρT3◦...◦Td
C⊗d

is a positive constant that depends only on δ(C) and d.
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D Average Smoothness and Error Reduction for Relaxed LDCs

In this appendix, following [BGH+06, Section 4.2], we show that the modified definition of relaxed-LDCs
(see Definition 4.2) implies the standard definition of relaxed-LDCs (see Definition 2.2). Towards
this end we need to show the following: (1) The soundness can be increased from Ω(1) (as in
Condition 2 of Definition 4.2) to 2/3 (as in Condition 2 of Definition 2.2), and (2) the average
smoothness (i.e., Condition 3 of Definition 4.2) can be replaced with the success rate condition
(i.e., Condition 3 of Definition 2.2). Both claims were shown in [BGH+06]; we provide their proofs
(adapted to our settings) for completeness.

We start by showing how to perform error-reduction for relaxed-LDC with soundness Ω(1).
Recall that the decoder is required to successfully decode each valid codeword, and in addition,
given a somewhat corrupted codeword the decoder is required to either decode successfully or
abort with probability Ω(1). On the face of it, it may seem that standard error reduction cannot
be applied (since we start with a large error probability). However, the error reduction can be
simply performed by repeating the execution of the decoder, outputting a bit only if all invocations
returned this bit, and aborting otherwise. We remark that the above may cause an increase in the
number of indices on which the decoder aborts (with probability at least 2/3). However, in the
modified definition (i.e., Definition 4.2) there is no restriction on the success rate.

Proposition D.1. Let C : {0, 1}k → {0, 1}n be a modified relaxed-LDC, according to Definition 4.2.
Then, C has a modified relaxed-LDC decoder that also satisfies Condition 2 of Definition 2.2.

Proof. Let C be a modified relaxed-LDC. Denote its decoder by D. There exists a constant p > 0
such that for every string w that is sufficiently close to a codeword of C it holds that PrD[Dw(i) =
{xi,⊥}] ≥ p. Consider a decoder D′ that operates follows: D′ executes the original decoder D
(with fresh randomness) for r times, where r is a constant to be determined later. If all of the
executions are consistent, i.e., there exists an a ∈ {0, 1,⊥} such that in every execution Dw(i) = a,
then D′ output a; otherwise, D′ output ⊥. (We remark that the distribution of queries of D′ is
identical to that of D, and thus D′ also satisfies the average smoothness condition.)

Note that the new decoder D′ satisfies Condition 1 of Definition 2.2 (the completeness condi-
tion). Moreover, D′ satisfies Condition 2 of Definition 2.2: Indeed, given w that is sufficiently close
to C(x), the probability that D′ errs is at most p′ = (1− p)r. Hence, by fixing r = 2/p we get that
PrD′ [D

′w(i) = {xi,⊥}] ≥ 1− p′ ≥ 2/3, as needed.

Finally, we show that the average smoothness condition (i.e., Condition 3 of Definition 4.2)
can be replaced by the success rate condition (i.e., Condition 3 of Definition 2.2, which limits the
number of indices upon which the decoder aborts (with probability at least 2/3)). The key idea is
that a decoder that satisfies the completeness and soundness conditions (i.e., Conditions 1 and 2
of Definition 2.2) only aborts if the local view of the codeword that it queries contains a corrupted
point. By the average smoothness, on average the decoder will only query a corrupted point with
low probability. Thus, by an averaging argument, we can deduce that there is a small number of
indices upon which the decoder might abort.

Proposition D.2. Let C : {0, 1}k → {0, 1}n be a linear code, and let D be a constant-query decoder
for C that satisfies Conditions 1 and 2 of Definition 2.2 as well as Condition 3 of Definition 4.2
(i.e., average smoothness). Then, C satisfies all three conditions of Definition 2.2.
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Proof. Let the code C and the decoder D be as in the hypothesis of the proposition. Denote the
(constant) query complexity of D by q. According to Condition 1, for any x ∈ {0, 1}k and every
i ∈ [k], it holds that Pr

[
DC(x)(i) = xi

]
= 1. Considering any w that is δ-close to C(x) (where

δ ≤ δradius), the probability that given a uniformly distributed index i ∈ [k] the decoder D queries a
location on which w and C(x) disagree is at most q · (2/n) · δn = 2qδ. This is due to the fact that,
for a uniformly distributed i, no position is queried with probability greater than 2/n.

Let pwi denote the probability that on input i the decoder D queries a location on which w and

C(x) disagree. We have just established that (1/k) ·
∑k

i=1 p
w
i ≤ 2qδ. By an averaging argument,

for Iw , {i ∈ [k] : pwi ≤ 1/3}, it holds that |Iw| ≥ (1 − 6qδ) · k. Observe that for any i ∈ Iw, it
holds that Pr[Dw(i) = xi] ≥ 1− 1/3 = 2/3, as required.

E Proof of Claim 5.6

In this section we provide the proof of Claim 5.6. The proof is similar to the proof of Claim 5.5.
However, note that Claims 5.5 and 5.6 deal with different objects: While Claim 5.5 deals with the
planes of the tensor code and the plane scPCPPs, Claim 5.6 deals with the lines of the tensor and
the point-line scPCPPs. In particular, every plane in the tensor code is coupled with a unique plane
scPCPP proof, whereas every line in the tensor code is coupled with n different point-line scPCPPs,
one for each point on the line. We begin by restating Claim 5.6. Recall that γ = δ(C)/(24d).

Claim 5.6 (restated). Assuming c̄ is γ · δC′(w)-close to being a codeword of Ct1, if δp̄lines > δC′(w),
then PrT [Tw = 0] ≥ poly

(
δC′(w)

)
.

Proof. By the lemma’s hypothesis, c̄ is δc̄-close to C(x)t1 , where δc̄ ≤ γ · δC′(w). By an averaging
argument, with probability at least 2/3 the random copy c is 3δc̄-close to C(x). We say that a
point ı̄ ∈ [n]d in c is corrupted if cı̄ 6= C ′(x)ı̄ and so, there are at most 3δc̄n

d corrupted points in c.
Since there are d · nd−1 axis-parallel lines in c, then on average, the number of corrupted points in
a random axis-parallel line is at most 3δc̄nd

d·nd−1 ≤ 3δc̄n. Thus, by an averaging argument, we obtain

that at most
δp̄
4 fraction of the axis-parallel lines in c contain at least 4

δp̄
· 3δc̄n corrupted points.

Recall that every axis-parallel line ` has n corresponding point-line scPCPP proofs (one for each
point on `). For every line ` we view these n proofs as one concatenated proof for the line `. By
an averaging argument, with probability at least δp̄ , δp̄lines/2 the random copy p̄ in p̄lines is δp̄-far
from its corresponding set of canonical proofs, πlines(x). Assume from now on that p̄ is δp̄-far from
πlines(x). By another averaging argument, at least a δp̄/2 fraction of the concatenated line proofs
(i.e., proofs which consists of n point-line scPCPP proofs) are δp̄/2-far from their corresponding
(concatenated) canonical line proofs.

By combining the conclusions of the last two paragraphs, we deduce that Ω
(
δC′(w)

)
-fraction of

the axis-parallel lines ` in c are both δ(C0)/2-close to the restriction of the tensor codeword C(x) to
`, and their corresponding (concatenated) proofs are Ω

(
δC′(w)

)
-corrupted; that is, there is a subset

of lines, denoted BAD, which consists of at least
δp̄
4 fraction of all the lines in c that are δ(C0)/2-close

to C(x)|` (recall that δc̄ ≤ γ · δC′(w) and δp̄ > δC′(w), therefore 12·δc̄
δp̄

< δ(C0)/2), and in addition

satisfy the following: For every ` ∈ BAD, the n (alleged) point-line scPCPP proofs that correspond
to ` are δp̄/2-far from their (correct) canonical proofs in πlines(x). By an averaging argument, for
every ` ∈ BAD it holds that δp̄/4 fraction of the point-line PCPP proofs that correspond to the line
` (recall that there are n such proofs) are δp̄/4-far from their canonical proof in πlines(x).
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Recall that the tester chooses a line ` = `j,̄ı by sampling uniformly at random a point ı̄ ∈ [n]d

and a direction j ∈ [d]. Notice that for if ` ∈ BAD, then with probability δp̄/4, in order for input
c|` and the proof p`j,ı̄ (that refers to the same line as `) to be a valid claim for the input-proof
language that V line(ij , cı̄) verifies, one must make at least one of the following changes: (1) change

a fraction of at least
δp̄
4 of the proof p`j,ı̄ such that it matches πline

(
C(x)|`j,ı̄ , ij

)
, or (2) change a

fraction of at least δ(C0)/2 of c|` (since p`j,ı̄ might be a valid proof for input C0(y) 6= c|`). Thus,
for every `j,̄ı ∈ BAD, the probability that V line(ij , cı̄) rejects input c|`j,ı̄ and proof p`j,ı̄ is at least
polynomial in δC′(w).

Putting it all together, with probability 2/3 we hit a random copy c of the tensor code that
is 3δc̄-close to C(x). Furthermore, with probability at least δp̄ we hit a random copy p̄ that is
δp̄-corrupted, and subsequently, with probability δp̄/2 we hit a set of n line scPCPP proofs that
are δp̄/2-corrupted. Moreover, with probability at least δp̄/4 we hit a point-line scPCPP proof that
is δp̄/4 corrupted. Finally, assuming the foregoing, the corresponding scPCPP verifier rejects with
probability poly (δC′(w)). Therefore,

Pr
T

[Tw = 0] ≥ 2

3
· δp̄ ·

δp̄
2
· δp̄

4
· poly (δC′(w)) ≥ poly

(
δC′(w)

)
.
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