Binary Searching a Tree

Oren Weimann MIT, CSAIL

Joint work with Shay Mozes (Brown University) Krzysztof Onak (MIT)

How quickly can you learn Waldo's age?

How quickly can you learn Waldo's age?

• You can ask Waldo if he's x years old.

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

Waldo, are you 22?

17 18 19 20 21 22 23 24

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

Waldo, are you 18?

17 18 19 20 21 🗙 🗙 🗙

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

Waldo, are you 20?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
 - "Yes, I'm x years old."
 - "No, I'm younger."
 - "No, I'm older."

You must be 19!

 \mathbf{X} \mathbf{X} 19 \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where n is the size of the range.

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
 - Only two "directions": greater and smaller numbers.

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where *n* is the size of the range.
- The searching problem is easy:
 - Only two "directions": greater and smaller numbers.
 - Potential solutions constitute a totally ordered set.

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
 - Only two "directions": greater and smaller numbers.
 - Potential solutions constitute a totally ordered set.
- 🧕 But . . .

- Optimal solution:
 - Always ask about the number in the middle of the range of potential solutions.
 - $\lfloor \log_2 n \rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
 - Only two "directions": greater and smaller numbers.
 - Potential solutions constitute a totally ordered set.
- But there is a greater challenge to face!

Searching in caves

Waldo hides in a cave.

Searching in caves

- Waldo hides in a cave.
- The cave consists of chambers and corridors.

Searching in caves trees

- Waldo hides in a cave.
- The cave consists of chambers and corridors.
- The graph of the cave is a tree.

Searching in caves trees

- Waldo hides in a cave.
- The cave consists of chambers and corridors.
- The graph of the cave is a tree.
- Goal: Figure out which chamber Waldo is in.

1. Questions about vertices

- 1. Questions about vertices
 - Ask about a vertex-chamber v.

- 1. Questions about vertices
 - Ask about a vertex-chamber v.
 - Learn either that Waldo is in v, or which corridor outgoing from v leads to Waldo.

- 1. Questions about vertices
 - Ask about a vertex-chamber v.
 - Learn either that Waldo is in v, or which corridor outgoing from v leads to Waldo.

- 1. Questions about vertices
- 2. Questions about edges

- 1. Questions about vertices
- 2. Questions about edges
 - Ask about an edge-corridor e.

- 1. Questions about vertices
- 2. Questions about edges
 - Ask about an edge-corridor e.
 - Learn which endpoint of e is closer to Waldo.

- 1. Questions about vertices
- 2. Questions about edges
 - Ask about an edge-corridor e.
 - Learn which endpoint of e is closer to Waldo.

 \checkmark Given is a partial order S (or its diagram).

- \checkmark Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \le y$?"

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \le y$?"

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \le y$?"
- For some posets the problem is identical to searching in trees in the edge-query model.

Optimal strategies

By a strategy for a given problem we mean a decision tree for solving this problem.

Optimal strategies

- By a strategy for a given problem we mean a decision tree for solving this problem.
- By an optimal strategy for this problem we mean the shallowest decision tree for solving this problem.

Optimal strategies

- By a strategy for a given problem we mean a decision tree for solving this problem.
- By an optimal strategy for this problem we mean the shallowest decision tree for solving this problem.
- A sample optimal strategy in the vertex-query model:

- Hyafil, Rivest [IPL 1976]:
 - computing optimal decision trees is NP-hard for general structures

- Hyafil, Rivest [IPL 1976]:
 - computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
 - edge-query model: optimal strategy in $O(n^4 \log^3 n)$

- Hyafil, Rivest [IPL 1976]:
 - computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
 - edge-query model: optimal strategy in $O(n^4 \log^3 n)$
- Laber, Nogueira [ENDM 2001]:
 - edge-query model: 2-approximation in $O(n \log n)$

- Hyafil, Rivest [IPL 1976]:
 - computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
 - edge-query model: optimal strategy in $O(n^4 \log^3 n)$
- Laber, Nogueira [ENDM 2001]:
 - edge-query model: 2-approximation in $O(n \log n)$
- Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
 - finding optimal poset searching strategy is NP-hard
 - approximate strategies for random posets

- Hyafil, Rivest [IPL 1976]:
 - computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
 - edge-query model: optimal strategy in $O(n^4 \log^3 n)$
- Laber, Nogueira [ENDM 2001]:
 - edge-query model: 2-approximation in $O(n \log n)$
- Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
 - finding optimal poset searching strategy is NP-hard
 - approximate strategies for random posets
- Onak, Parys [FOCS 2006]:
 - edge-query model: optimal strategy in $O(n^3)$
 - vertex-query model: optimal strategy in O(n)

Our Results

- O(n) in the edge-query model [SODA 2008]
 - novel bottom-up construction algorithm
 - a method for reusing parts of already computed subproblems
 - from a solution in the form of an edge-weighed tree to a decision tree solution in O(n)

Our Results

- O(n) in the edge-query model [SODA 2008]
 - novel bottom-up construction algorithm
 - a method for reusing parts of already computed subproblems
 - from a solution in the form of an edge-weighed tree to a decision tree solution in O(n)
- Applications
 - file system synchronization
 - bug detection

Short overview:

Short overview:

Reduce the problem to optimizing a strategy function.

Short overview:

- Reduce the problem to optimizing a strategy function.
- Recursively construct an optimum strategy function.

Short overview:

- Reduce the problem to optimizing a strategy function.
- Recursively construct an optimum strategy function.

We start with the vertex-query model.

Strategy function:

Strategy function:

A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

 $f: V \to \{0, 1, 2, \ldots\}.$

Strategy function:

A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

 $f: V \to \{0, 1, 2, \ldots\}.$

• For any two different v and w such that f(v) = f(w), there is u on the path from v to w such that f(u) > f(v) = f(w).

Strategy function:

A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

$$f: V \to \{0, 1, 2, \ldots\}.$$

• For any two different v and w such that f(v) = f(w), there is u on the path from v to w such that

f(u) > f(v) = f(w).

A strategy function bounded by k

 \Rightarrow a strategy of at most k queries in the worst case

A strategy function bounded by k

 \Rightarrow a strategy of at most k queries in the worst case

Idea: Ask about the vertex of the greatest value in the subtree induced by the potential solutions

A strategy function bounded by k

 \Rightarrow a strategy of at most k queries in the worst case

Idea: Ask about the vertex of the greatest value in the subtree induced by the potential solutions

A strategy of k queries in the worst case \Rightarrow a strategy function bounded by k

A strategy of k queries in the worst case \Rightarrow a strategy function bounded by k

Idea: If we ask about a vertex v, let f(v) be the number of further questions we need to ask before we find the target.

A strategy of k queries in the worst case \Rightarrow a strategy function bounded by k

Idea: If we ask about a vertex v, let f(v) be the number of further questions we need to ask before we find the target.

Conclusion

It suffices to construct a strategy function of the least maximum!

The value at a vertex w is visible from a vertex v if on the simple path from v to w there is no greater value.

Visibility

The value at a vertex w is visible from a vertex v if on the simple path from v to w there is no greater value.

Values visible from v: 3, 2, 5, 6

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

The visibility sequence from v: (6, 5, 3, 2)

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

The visibility sequence from v: (6, 5, 3, 2)

The visibility sequences are ordered lexicographically. For instance, (8, 4, 3, 2) > (7, 6, 4, 2, 1).

1. Root the input tree arbitrarily.

- 1. Root the input tree arbitrarily.
- 2. At each vertex v:

- 1. Root the input tree arbitrarily.
- 2. At each vertex *v*:
 - (a) Take recursively computed strategy functions on subtrees rooted at children of v.

- 1. Root the input tree arbitrarily.
- 2. At each vertex *v*:
 - (a) Take recursively computed strategy functions on subtrees rooted at children of v.
 - (b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix f(v).

- 1. Root the input tree arbitrarily.
- 2. At each vertex v:
 - (a) Take recursively computed strategy functions on subtrees rooted at children of v.
 - (b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix f(v).
- To get a correct strategy function, it suffices to know the visibility sequences from children of v in their subtrees.

- 1. Root the input tree arbitrarily.
- 2. At each vertex *v*:
 - (a) Take recursively computed strategy functions on subtrees rooted at children of v.
 - (b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix f(v).
- To get a correct strategy function, it suffices to know the visibility sequences from children of v in their subtrees.
- An extension operator is a procedure that takes those visibility sequences, extends the function, and returns the visibility sequence from v in the subtree rooted at v.

An Optimal Extension

- A minimizing extension is one that gives the lexicographically smallest visibility sequence at v.
 - *minimizing extensions* accumulate to an optimal solution [OP 2006].

• An extension operator \mathbb{V} for a vertex v:

- An extension operator \mathbb{V} for a vertex v:
 - 1. Find the greatest value *q* that occurs in more than one sequence.

- An extension operator \mathbb{V} for a vertex v:
 - 1. Find the greatest value q that occurs in more than one sequence.
 - 2. Let f(v) be the least value greater than q that does not occur in any visibility sequence.

- An extension operator \mathbb{V} for a vertex v:
 - 1. Find the greatest value *q* that occurs in more than one sequence.
 - 2. Let f(v) be the least value greater than q that does not occur in any visibility sequence.

 \checkmark One can show that $\mathbb V$ is minimizing.

• One can show that \mathbb{V} is minimizing.

• The whole computation takes $O(n \log n)$ time, as in the vertex-query model the required vertex can always be located in at most $\lfloor \log_2 n \rfloor$ queries.

• One can show that \mathbb{V} is minimizing.

• The whole computation takes $O(n \log n)$ time, as in the vertex-query model the required vertex can always be located in at most $\lfloor \log_2 n \rfloor$ queries.

• The running time can be improved to O(n) fairly simple.

Questions about edges.

- Questions about edges.
 - Ask about an edge e.

- Questions about edges.
 - Ask about an edge e.
 - Learn which endpoint of e is closer to Waldo.

An extension assigns all $f(e_i)$'s

Solution An extension assigns all $f(e_i)$'s If $f(e_i) ≠ f(e_i)$

An extension assigns all $f(e_i)$'s

An extension assigns all $f(e_i)$'s

f(*e_i*) ≠ *f*(*e_j*) *f*(*e_i*) is not in *s_i f*(*e_i*) is in *s_j* ⇒ *f*(*e_j*) > *f*(*e_i*)

An extension assigns all $f(e_i)$'s

f(*e_i*) ≠ *f*(*e_j*) *f*(*e_i*) is not in *s_i f*(*e_i*) is in *s_j* ⇒ *f*(*e_j*) > *f*(*e_i*) *u* is in *s_i* and *s_j* ⇒ max{*f*(*e_i*), *f*(*e_i*)} > *u*

 \square set $\boldsymbol{u} = max\{\boldsymbol{s}_i\}$

\square set $u = max\{s_i\}$

while not all edges assigned

$set u = max\{s_i\}$

while not all edges assigned

I if **u** appears once mark **u** as *not free*, move to next largest **u**

$set u = max\{s_i\}$

while not all edges assigned

I if **u** appears once mark **u** as *not free*, move to next largest **u**

$set u = max\{s_i\}$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*

 $set u = max\{s_i\}$

while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

 $\square w =$ smallest free value > u

- $S_i = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

 $f(e_k)$?

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set** current $f(e_j) = w$
- **\square** mark all S_i values between u and w as free

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*
 - **set current** $f(e_j) = w$
 - **\square** mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

*UW*free values013

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

 $f(e_2)?$

S₁

4

 $f(e_k)$?

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set current** $f(e_j) = w$
- **J** mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

3

free values 0 1

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*
 - **set current** $f(e_j) = w$
 - **\square** mark all S_i values between u and w as free
 - \square remove all values < w from S_i

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*
 - **set current** $f(e_j) = w$
 - **\square** mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:

0

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set current** $f(e_j) = w$

2

1

 \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*

U

0

set current $f(e_j) = w$

2

 \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$

W

2

U

0

 \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

free values

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*
 - **set** current $f(e_j) = w$

W

U

0

 \square mark all S_j values between u and w as free

5

6

 \square remove all values < w from S_i

free values

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned

 \square if *u* appears once mark *u* as *not free*, move to next largest *u*

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:

0

1

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- mark w as not free
- **set current** $f(e_j) = w$
- \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

free values

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:
 - $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
 - $S_j = any maximal sequence w.r.t w$
 - **•** mark *w* as *not free*

U

0

- **set current** $f(e_j) = w$
- \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

- $set u = max\{s_i\}$
- while not all edges assigned
 - \square if *u* appears once mark *u* as *not free*, move to next largest *u*
 - otherwise:

U

0

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- mark w as not free
- **set current** $f(e_j) = w$
- \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*

 $\mathbf{P} w =$ smallest free value > u

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set current** $f(e_j) = w$
- \square mark all S_i values between u and w as free

5

6

 \square remove all values < w from S_i

free values

U

while not all edges assigned

If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*

 $\mathbf{P} w =$ smallest free value $> \mathbf{u}$

 $S_j = any maximal sequence w.r.t w$

- *Imark w* as *not free*
- **set** current $f(e_j) = w$

 \square mark all S_i values between u and w as free

W

5

6

 \square remove all values < w from S_i

free values

U

while not all edges assigned

If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

 $S_j = any maximal sequence w.r.t w$

- *Imark w* as *not free*
- **set** current $f(e_j) = w$

 \square mark all S_i values between u and w as free

W

6

 \square remove all values < w from S_i

free values

U

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

5

2

-**s**_I-

4

3

 \mathcal{W} -

 $f(e_k)?$

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set** current $f(e_j) = w$

 \square mark all S_i values between u and w as free

W

6

 \square remove all values < w from S_i

free values

U

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set** current $f(e_j) = w$

\square mark all S_j values between u and w as free

4

W

6

 \square remove all values < w from S_i

3

free values

U

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

W

6

- $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$
- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set current** $f(e_j) = w$
- **\square** mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

3

U

$$set u = max\{s_i\}$$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

6

 $\mathbf{P} w =$ smallest free value > u

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set current** $f(e_j) = w$
- **\square** mark all S_i values between u and w as free
- \square remove all values < w from S_i

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$
- **\square** mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

W

3

free values 0

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$
- **\square** mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

W

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$
- **\square** mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

W

 $set u = max\{s_i\}$

while not all edges assigned

If u appears once mark u as not free, move to next largest u
If u appears once mark u as not free, move to next largest u
If and u ≠ 0
V
V

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- mark w as not free
- **set** current $f(e_j) = w$

2

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

W

 $set u = max\{s_i\}$

while not all edges assigned

If u appears once mark u as not free, move to next largest u
If u appears once mark u as not free, move to next largest u
If u appears once mark u as not free, move to next largest u
If u appears once mark u as not free, move to next largest u

6

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set** current $f(e_j) = w$

2

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

W

U

$$set u = max\{s_i\}$$

while not all edges assigned

If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*

6

 $\mathbf{P} w =$ smallest free value > u

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set current** $f(e_j) = w$
- **\square** mark all S_i values between u and w as free
- \square remove all values < w from S_i

 \square set $u = max\{s_i\}$

while not all edges assigned

 \square if *u* appears once₁ mark *u* as *not free*, move to next largest *u* and $u \neq 0^{1}$ otherwise:

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_i = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set current** $f(e_i) = w$

2

\square mark all S_i values between u and w as free

4

• remove all values < w from S_i

U

0

free values

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*

3

3

5

5

W

6

 $f(e_k)?$

1

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$

W

2

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

free values

U

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*If *u* appears once_mark *u* as *not free*, move to next largest *u*

W

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **S** mark *w* as *not free*
- **set** current $f(e_j) = w$

W

J mark all S_i values between *u* and *w* as *free*

4

 \square remove all values < w from S_i

free values

U

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*

5

5

W

6

3

1

3

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$

W

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

free values

U

 $set u = max\{s_i\}$

while not all edges assigned

If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*If *u* appears once, mark *u* as *not free*, move to next largest *u*

W

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

 $S_j = any maximal sequence w.r.t w$

S mark *w* as *not free*

set current $f(e_j) = w$

W

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

free values

U

0

 $set u = max\{s_i\}$

while not all edges assigned

If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u
If u appears once_mark u as not free, move to next largest u

W

6

 $\mathbf{P} w = \text{smallest free value} > \mathbf{u}$

 $S_j = any maximal sequence w.r.t w$

S mark *w* as *not free*

set current $f(e_j) = w$

W

\square mark all S_i values between u and w as free

4

 \square remove all values < w from S_i

free values

U

0

$$\square$$
 set $u = max\{s_i\}$

That's it!

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0
If *u* appears *u* are *u* as *not free*, move to next largest *u*

 $\mathbf{P} w =$ smallest free value > u

- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set current** $f(e_j) = w$
- **\square** mark all S_i values between u and w as free
- \square remove all values < w from S_i

free values

$$set u = max\{s_i\}$$

while not all edges assigned

If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once mark *u* as *not free*, move to next largest *u*If *u* appears once *u* and *u* ≠ 0
If *u* appears once *u* and *u* ≠ 0

- $\mathbf{P} w =$ smallest free value > u
- $S_j = any maximal sequence w.r.t w$
- **•** mark *w* as *not free*
- **set** current $f(e_j) = w$

 \square mark all S_i values between u and w as free

 \square remove all values < w from S_i

free values 0 1 4 6

 $|S_1| + |S_2| + ... + |S_k|$ is not a lower bound !

|S₁| + |S₂| +...+ |S_k/ is not a lower bound !
 in many cases, the largest values of the largest visibility sequence are unchanged at v itself

\$\langle S_1 / + \langle S_2 | +...+ |S_k / is not a lower bound !
 \$\text{in many cases, the largest values of the largest visibility sequence are unchanged at \$v\$ itself
 \$k(v) = #v\$'s children \$v\$

 $|S_1| + |S_2| + ... + |S_k|$ is not a lower bound ! In many cases, the largest values of the largest visibility sequence are unchanged at v itself $\int k(v) = \#v$'s children $\int q(v) = |S_2| + ... + |S_k|$

 $|S_1| + |S_2| + ... + |S_k|$ is not a lower bound ! In many cases, the largest values of the largest visibility sequence are unchanged at v itself $\int k(v) = \#v$'s children $\int q(v) = |S_2| + ... + |S_k|$ $\int t(v) =$ largest value that appears in S_v but not in S_1

 $|S_1| + |S_2| + ... + |S_k|$ is not a lower bound ! In many cases, the largest values of the largest visibility sequence are unchanged at v itself $\int k(v) = \#v$'s children $\int q(v) = |S_2| + ... + |S_k|$ $\int t(v) =$ largest value that appears in S_{ν} but not in S_{μ} In extension can be computed in O(k(v)+q(v)+t(v))1

 $|S_1| + |S_2| + ... + |S_k|$ is not a lower bound ! In many cases, the largest values of the largest visibility sequence are unchanged at v itself $\int k(v) = \#v$'s children $\int q(v) = |S_2| + ... + |S_k|$ $\int t(v) =$ largest value that appears in S_{ν} but not in S_{μ} In extension can be computed in O(k(v)+q(v)+t(v))1 1 $\sum k(v) + q(v) + t(v) = O(n)$

From Strategy Function to Decision Tree in *O(n)* Time

From Strategy Function to Decision Tree in *O(n)* Time

● For all edges e

J let s = visibility sequence at <math>bottom(e)

 \checkmark if s contains no values smaller than f(e)

set bottom(e) as the solution when the query on e returns bottom(e)

 \square else, let $v_1 < ... < v_k < f(e)$ in *s*, let e_i be the edge v_i is assigned to

 \mathbf{I} set e_k as the solution when the query on e returns bottom(e)

- **●** for every $1 \le i < k$ set e_i as the solution when the query on e_{i+1} returns $top(e_{i+1})$
- Set $top(e_1)$ as the solution when the query on e_1 returns $top(e_1)$

Thank you !!

