Binary Searching a Tree

Oren Weimann MIT, CSAIL

Joint work with
Shay Mozes (Brown University)
Krzysztof Onak (MIT)

How old is Waldo?

How quickly can you learn Waldo's age?

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
- "No, l'm older."

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
- "No, l'm older."

Waldo, are you 22?

$\begin{array}{lllllll}17 & 18 & 19 & 20 & 21 & 22 & 23 \\ & 24\end{array}$

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
. "No, l'm older."

$1718192021 \times 2 \times 1$

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
- "No, l'm older."

Waldo, are you 18?

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
. "No, l'm older."

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
- "No, l'm older."

Waldo, are you 20?

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
. "No, l'm older."

$x \times 19 x \times \times \times x$

How old is Waldo?

How quickly can you learn Waldo's age?

- You can ask Waldo if he's x years old.
- Possible answers:
- "Yes, I'm x years old."
- "No, I'm younger."
- "No, l'm older."

You must be 19!

$x \times 19 x \times x \times x$

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
- Only two "directions": greater and smaller numbers.

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
- Only two "directions": greater and smaller numbers.
- Potential solutions constitute a totally ordered set.

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
- Only two "directions": greater and smaller numbers.
- Potential solutions constitute a totally ordered set.
- But...

Binary search

- Optimal solution:
- Always ask about the number in the middle of the range of potential solutions.
- $\left\lfloor\log _{2} n\right\rfloor$ questions in the worst case, where n is the size of the range.
- The searching problem is easy:
- Only two "directions": greater and smaller numbers.
- Potential solutions constitute a totally ordered set.
- But there is a greater challenge to face!

Searching in caves

- Waldo hides in a cave.

Searching in caves

- Waldo hides in a cave.
- The cave consists of chambers and corridors.

Searching in caves trees

- Waldo hides in a cave.
- The cave consists of chambers and corridors.
- The graph of the cave is a tree.

Searching in caves

 trees- Waldo hides in a cave.
- The cave consists of chambers and corridors.
- The graph of the cave is a tree.
- Goal: Figure out which chamber Waldo is in.

Two query models

1. Questions about vertices

Two query models

1. Questions about vertices

- Ask about a vertex-chamber v.

Two query models

1. Questions about vertices

- Ask about a vertex-chamber v.
- Learn either that Waldo is in v, or which corridor outgoing from v leads to Waldo.

Two query models

1. Questions about vertices

- Ask about a vertex-chamber v.
- Learn either that Waldo is in v, or which corridor outgoing from v leads to Waldo.

Two query models

1. Questions about vertices
2. Questions about edges

Two query models

1. Questions about vertices
2. Questions about edges

- Ask about an edge-corridor e.

Two query models

1. Questions about vertices
2. Questions about edges

- Ask about an edge-corridor e.
- Learn which endpoint of e is closer to Waldo.

Two query models

1. Questions about vertices
2. Questions about edges

- Ask about an edge-corridor e.
- Learn which endpoint of e is closer to Waldo.

Searching in partial orders

- Given is a partial order S (or its diagram).

Searching in partial orders

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.

Searching in partial orders

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \leq y$?"

Searching in partial orders

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \leq y$?"

Searching in partial orders

- Given is a partial order S (or its diagram).
- Waldo secretly chooses $x \in S$.
- Goal: Find out x by asking Waldo questions: "Is $x \leq y$?"
- For some posets the problem is identical to searching in trees in the edge-query model.

Optimal strategies

- By a strategy for a given problem we mean a decision tree for solving this problem.

Optimal strategies

- By a strategy for a given problem we mean a decision tree for solving this problem.
- By an optimal strategy for this problem we mean the shallowest decision tree for solving this problem.

Optimal strategies

- By a strategy for a given problem we mean a decision tree for solving this problem.
- By an optimal strategy for this problem we mean the shallowest decision tree for solving this problem.
- A sample optimal strategy in the vertex-query model:

Previous work

- Hyafil, Rivest [IPL 1976]:
- computing optimal decision trees is NP-hard for general structures

Previous work

- Hyafil, Rivest [IPL 1976]:
- computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
- edge-query model: optimal strategy in $O\left(n^{4} \log ^{3} n\right)$

Previous work

- Hyafil, Rivest [IPL 1976]:
- computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
- edge-query model: optimal strategy in $O\left(n^{4} \log ^{3} n\right)$
- Laber, Nogueira [ENDM 2001]:
- edge-query model: 2-approximation in $O(n \log n)$

Previous work

- Hyafil, Rivest [IPL 1976]:
- computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
- edge-query model: optimal strategy in $O\left(n^{4} \log ^{3} n\right)$
- Laber, Nogueira [ENDM 2001]:
- edge-query model: 2-approximation in $O(n \log n)$
- Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
- finding optimal poset searching strategy is NP-hard
- approximate strategies for random posets

Previous work

- Hyafil, Rivest [IPL 1976]:
- computing optimal decision trees is NP-hard for general structures
- Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:
- edge-query model: optimal strategy in $O\left(n^{4} \log ^{3} n\right)$
- Laber, Nogueira [ENDM 2001]:
- edge-query model: 2-approximation in $O(n \log n)$
- Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
- finding optimal poset searching strategy is NP-hard
- approximate strategies for random posets
- Onak, Parys [FOCS 2006]:
- edge-query model: optimal strategy in $O\left(n^{3}\right)$
- vertex-query model: optimal strategy in $O(n)$

Our Results

- $O(n)$ in the edge-query model [SODA 2008]
- novel bottom-up construction algorithm
- a method for reusing parts of already computed subproblems
- from a solution in the form of an edge-weighed tree to a decision tree solution in $O(n)$

Our Results

- $O(n)$ in the edge-query model [SODA 2008]
- novel bottom-up construction algorithm
- a method for reusing parts of already computed subproblems
- from a solution in the form of an edge-weighed tree to a decision tree solution in $O(n)$
- Applications
- file system synchronization
- bug detection

General technique [OP 2006]

Short overview:

General technique [OP 2006]

Short overview:

- Reduce the problem to optimizing a strategy function.

General technique [OP 2006]

Short overview:

- Reduce the problem to optimizing a strategy function.
- Recursively construct an optimum strategy function.

General technique [OP 2006]

Short overview:

- Reduce the problem to optimizing a strategy function.
- Recursively construct an optimum strategy function.

We start with the vertex-query model.

Strategy functions

Strategy function:

Strategy functions

Strategy function:

- A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

$$
f: V \rightarrow\{0,1,2, \ldots\} .
$$

Strategy functions

Strategy function:

- A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

$$
f: V \rightarrow\{0,1,2, \ldots\} .
$$

- For any two different v and w such that $f(v)=f(w)$, there is u on the path from v to w such that

$$
f(u)>f(v)=f(w) .
$$

Strategy functions

Strategy function:

- A function on objects that we can ask about. In our case it goes from the set of vertices to nonnegative integers,

$$
f: V \rightarrow\{0,1,2, \ldots\} .
$$

- For any two different v and w such that $f(v)=f(w)$, there is u on the path from v to w such that

$$
f(u)>f(v)=f(w) .
$$

Mutual correspondence

A strategy function bounded by k
\Rightarrow a strategy of at most k queries in the worst case

Mutual correspondence

A strategy function bounded by k
\Rightarrow a strategy of at most k queries in the worst case
Idea: Ask about the vertex of the greatest value in the subtree induced by the potential solutions

Mutual correspondence

A strategy function bounded by k
\Rightarrow a strategy of at most k queries in the worst case
Idea: Ask about the vertex of the greatest value in the subtree induced by the potential solutions

Mutual correspondence

A strategy of k queries in the worst case
\Rightarrow a strategy function bounded by k

Mutual correspondence

A strategy of k queries in the worst case
\Rightarrow a strategy function bounded by k
Idea: If we ask about a vertex v, let $f(v)$ be the number of further questions we need to ask before we find the target.

Mutual correspondence

A strategy of k queries in the worst case
\Rightarrow a strategy function bounded by k
Idea: If we ask about a vertex v, let $f(v)$ be the number of further questions we need to ask before we find the target.

Conclusion

It suffices to construct a strategy function of the least maximum!

Visibility

The value at a vertex w is visible from a vertex v if on the simple path from v to w there is no greater value.

Visibility

The value at a vertex w is visible from a vertex v if on the simple path from v to w there is no greater value.

Values visible from $v: 3,2,5,6$

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

The visibility sequence from v : $(6,5,3,2)$

Visibility sequences

The visibility sequence from a vertex v is the sequence of all values visible from v, enumerated from the greatest to the least.

The visibility sequence from v : $(6,5,3,2)$
The visibility sequences are ordered lexicographically. For instance, $(8,4,3,2)>(7,6,4,2,1)$.

Extension operator

1. Root the input tree arbitrarily.

Extension operator

1. Root the input tree arbitrarily.
2. At each vertex v :

Extension operator

1. Root the input tree arbitrarily.
2. At each vertex v :
(a) Take recursively computed strategy functions on subtrees rooted at children of v.

Extension operator

1. Root the input tree arbitrarily.
2. At each vertex v :
(a) Take recursively computed strategy functions on subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix $f(v)$.

Extension operator

1. Root the input tree arbitrarily.
2. At each vertex v :
(a) Take recursively computed strategy functions on subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix $f(v)$.

- To get a correct strategy function, it suffices to know the visibility sequences from children of v in their subtrees.

Extension operator

1. Root the input tree arbitrarily.
2. At each vertex v :
(a) Take recursively computed strategy functions on subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In vertex-query model we only need to fix $f(v)$.

- To get a correct strategy function, it suffices to know the visibility sequences from children of v in their subtrees.
- An extension operator is a procedure that takes those visibility sequences, extends the function, and returns the visibility sequence from v in the subtree rooted at v.

An Optimal Extension

- A minimizing extension is one that gives the lexicographically smallest visibility sequence at v.
- minimizing extensions accumulate to an optimal solution [OP 2006].

Vertex-query model

- An extension operator \mathbb{V} for a vertex v :

Vertex-query model

- An extension operator \mathbb{V} for a vertex v :

1. Find the greatest value q that occurs in more than one sequence.

Vertex-query model

- An extension operator \mathbb{V} for a vertex v :

1. Find the greatest value q that occurs in more than one sequence.
2. Let $f(v)$ be the least value greater than q that does not occur in any visibility sequence.

Vertex-query model

- An extension operator \mathbb{V} for a vertex v :

1. Find the greatest value q that occurs in more than one sequence.
2. Let $f(v)$ be the least value greater than q that does not occur in any visibility sequence.

Vertex-query model

- One can show that \mathbb{V} is minimizing.

Vertex-query model

- One can show that \mathbb{V} is minimizing.
- The whole computation takes $O(n \log n)$ time, as in the vertex-query model the required vertex can always be located in at most $\left\lfloor\log _{2} n\right\rfloor$ queries.

Vertex-query model

- One can show that \mathbb{V} is minimizing.
- The whole computation takes $O(n \log n)$ time, as in the vertex-query model the required vertex can always be located in at most $\left\lfloor\log _{2} n\right\rfloor$ queries.
- The running time can be improved to $O(n)$ fairly simple.

Edge-query model

Edge-query model

- Questions about edges.

Edge-query model

- Questions about edges.
- Ask about an edge e.

Edge-query model

- Questions about edges.
- Ask about an edge e.
- Learn which endpoint of e is closer to Waldo.

Edge-query model

- An extension assigns all $f\left(e_{i}\right)$'s

Edge-query model

- An extension assigns all $f\left(e_{i}\right)$'s

$$
\text { - } f\left(e_{i}\right) \neq f\left(e_{j}\right)
$$

Edge-query model

- An extension assigns all $f\left(e_{i}\right)$'s
- $f\left(e_{i}\right) \neq f\left(e_{j}\right)$
- $f\left(e_{i}\right)$ is not in s_{i}

Edge-query model

- An extension assigns all $f\left(e_{i}\right)$'s
- $f\left(e_{i}\right) \neq f\left(e_{j}\right)$
- $f\left(e_{i}\right)$ is not in s_{i}
- $f\left(e_{i}\right)$ is in $s_{j} \Rightarrow f\left(e_{j}\right)>f\left(e_{i}\right)$

Edge-query model

- An extension assigns all $f\left(e_{i}\right)$'s
- $f\left(e_{i}\right) \neq f\left(e_{j}\right)$
- $f\left(e_{i}\right)$ is not in s_{i}
- $f\left(e_{i}\right)$ is in $s_{j} \Rightarrow f\left(e_{j}\right)>f\left(e_{i}\right)$
- u is in s_{i} and $s_{j} \Rightarrow \max \left\{f\left(e_{i}\right), f\left(e_{i}\right)\right\}>u$

Algorithm Outline

free values | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Algorithm Outline

\bigcirc set $u=\max \left\{s_{i}\right\}$

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	3		5	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$

u							
\mathcal{W}							
free values							

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w

$u \quad w$						
free values	0	1	2	3	5	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free

c															
\mathcal{W}															
free values							$	$	0	1	2	3		5	6
:---:	:---:	:---:	:---:	:---:	:---:	:---:									

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values <w from S_{j}

0	1		3		5	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values $<w$ from S_{j}

u																
free values								$	$	0	1		3		5	6
:---:	:---:	:---:	:---:	:---:	:---:	:---:										

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values $<w$ from S_{j}

	u		W		
free values	0	1	3	5	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values <w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values $<w$ from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values $<w$ from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values <w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

0	1				5	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

U							
free values0 1 5 6							

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise:
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}
\square

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

O otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}
\square

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

D otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

O otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values <w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

	u		w	
free values	0	2	4	6

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

O otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values <w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

O otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}
\square

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once mark u as not free, move to next largest u
- otherwise: and $u \neq 0$
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$
- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

2 otherwise: and $u \neq 0$

- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

u	W					
$\mathbf{0}$	$\mathbf{1}$			$\mathbf{4}$		$\mathbf{6}$

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$

That's it!

- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u

O otherwise: and $u \neq 0$
2 $w=$ smallest free value $>u$

- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}

Algorithm Outline

- set $u=\max \left\{s_{i}\right\}$

That's it!

- while not all edges assigned
- if u appears once, mark u as not free, move to next largest u
- otherwise: and $u \neq 0$
- $w=$ smallest free value $>u$
- $S_{j}=$ any maximal sequence w.r.t w
- mark w as not free
- set current $f\left(e_{j}\right)=w$
- mark all S_{j} values between u and w as free
- remove all values < w from S_{j}
\square

Running Time

Running Time

๑ $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound !

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself
- $k(v)=\# v$'s children

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself
- $k(v)=\# v$'s children
- $q(v)=\left|S_{2}\right|+\ldots+\left|S_{k}\right|$

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself
- $k(v)=\# v$'s children
- $q(v)=\left|S_{2}\right|+\ldots+\left|S_{k}\right|$
© $t(v)=$ largest value that appears in S_{v} but not in S_{l}

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself
- $k(v)=\# v$'s children
- $q(v)=\left|S_{2}\right|+\ldots+\left|S_{k}\right|$
© $t(v)=$ largest value that appears in S_{v} but not in S_{I}
- an extension can be computed in $O(k(v)+q(v)+t(v))$

Running Time

- $\left|S_{l}\right|+\left|S_{2}\right|+\ldots+\left|S_{k}\right|$ is not a lower bound!
- in many cases, the largest values of the largest visibility sequence are unchanged at v itself
- $k(v)=\# v$'s children
- $q(v)=\left|S_{2}\right|+\ldots+\left|S_{k}\right|$
© $t(v)=$ largest value that appears in S_{v} but not in S_{l}
- an extension can be computed in $O(k(v)+q(v)+t(v))$
$2 \sum k(v)+q(v)+t(v)=O(n)$

From Strategy Function to Decision Tree in $O(n)$ Time

From Strategy Function to Decision Tree in $O(n)$ Time

From Strategy Function to Decision Tree in $O(n)$ Time

- For all edges e

2 let $s=$ visibility sequence at bottom(e)

- if s contains no values smaller than $f(e)$

D set $\operatorname{bottom}(e)$ as the solution when the query on e returns $\operatorname{bottom}(e)$
2 else, let $v_{1}<\ldots<v_{k}<f(e)$ in s, let e_{i} be the edge v_{i} is assigned to
ρ set e_{k} as the solution when the query on e returns bottom(e)

- for every $1 \leq i<k$ set e_{i} as the solution when the query on e_{i+1} returns top $\left(e_{i+1}\right)$
- set top $\left(e_{1}\right)$ as the solution when the query on e_{1} returns $\operatorname{top}\left(e_{1}\right)$

Thank you !!

