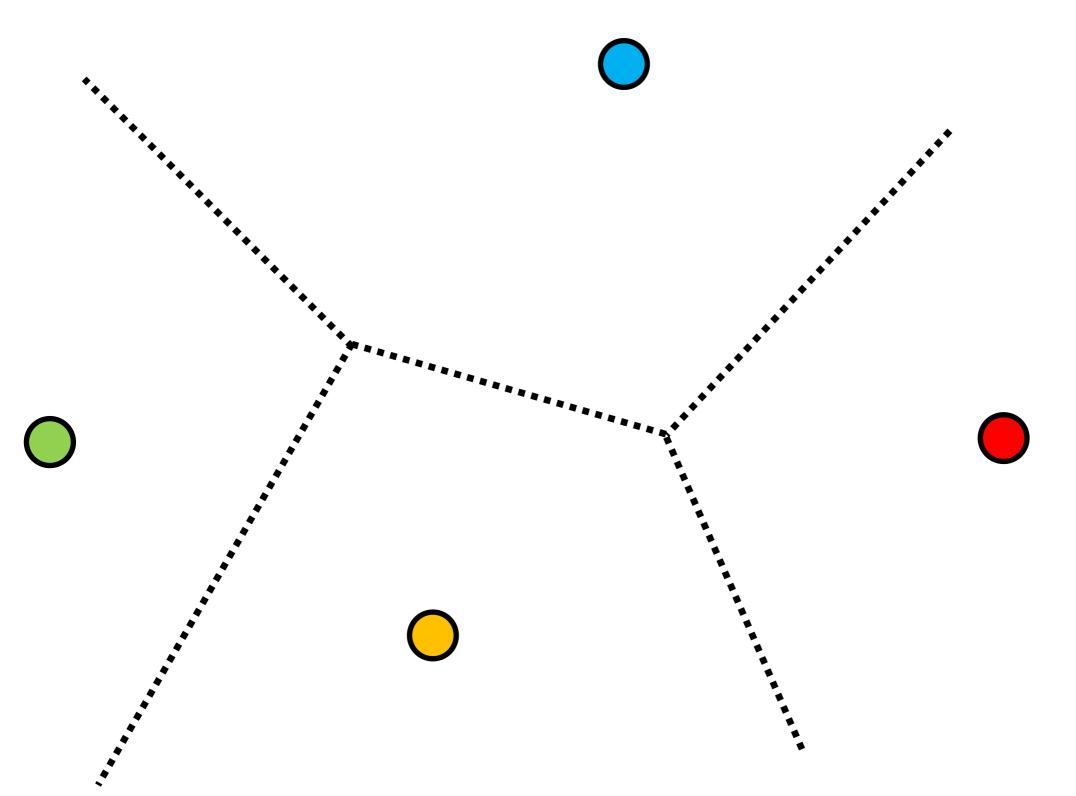
Voronoi Diagrams on Planar Graphs and Computing the Diameter in Deterministic Õ(n^{5/3}) time

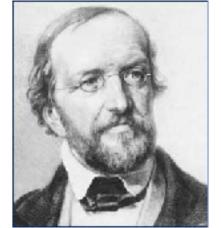
Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir and Oren Weimann

Voronoi diagrams

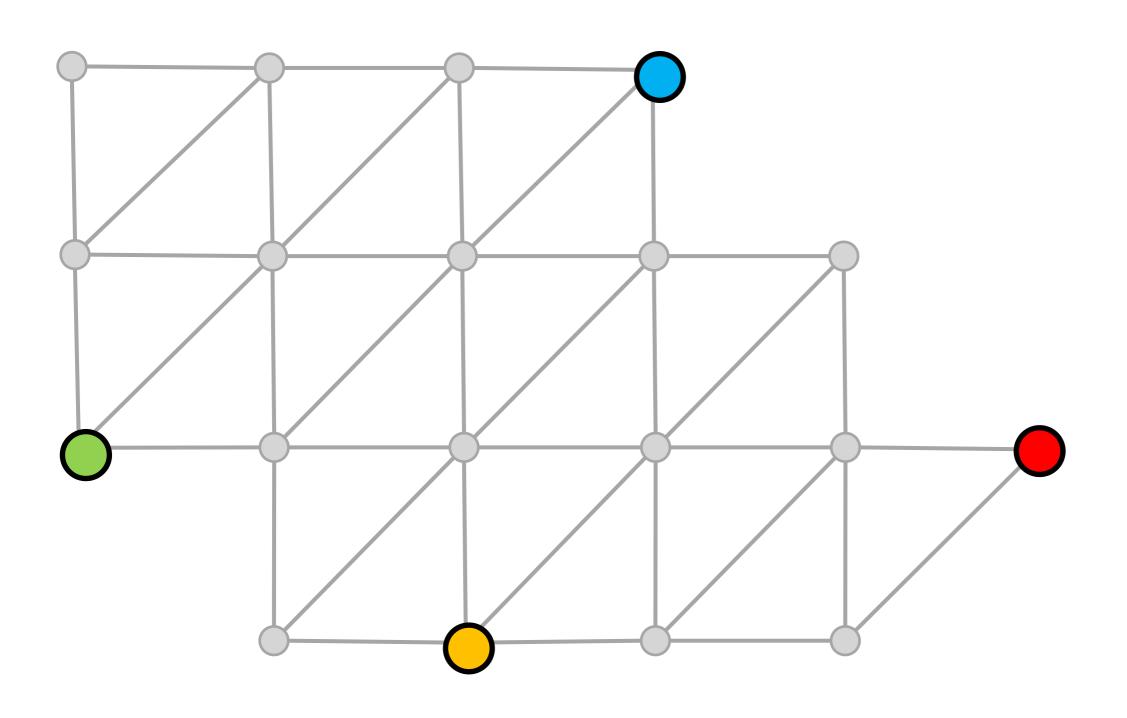


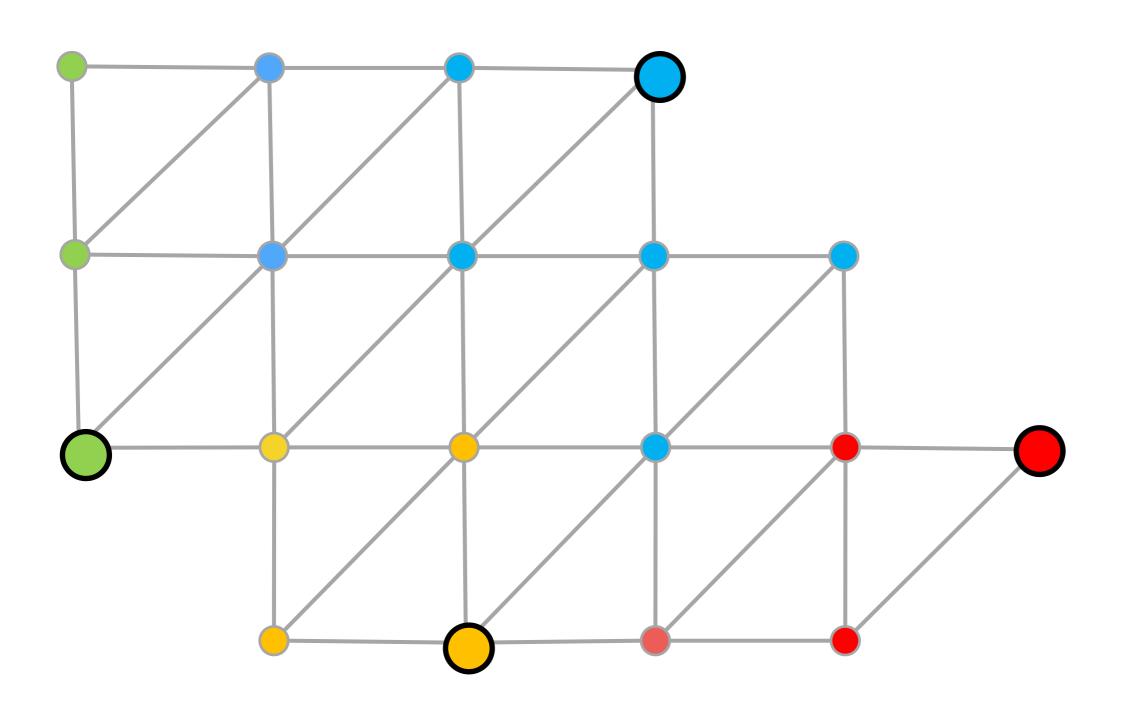
Voronoi 1908

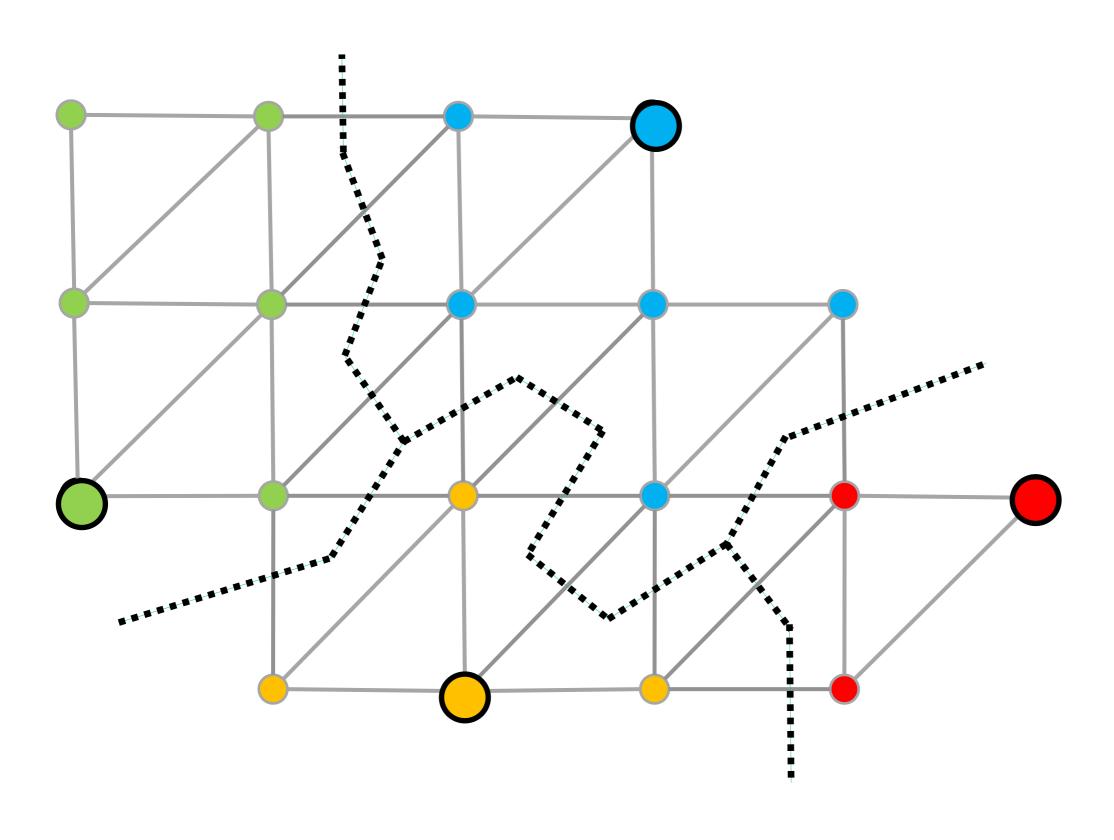
Descartes 1644

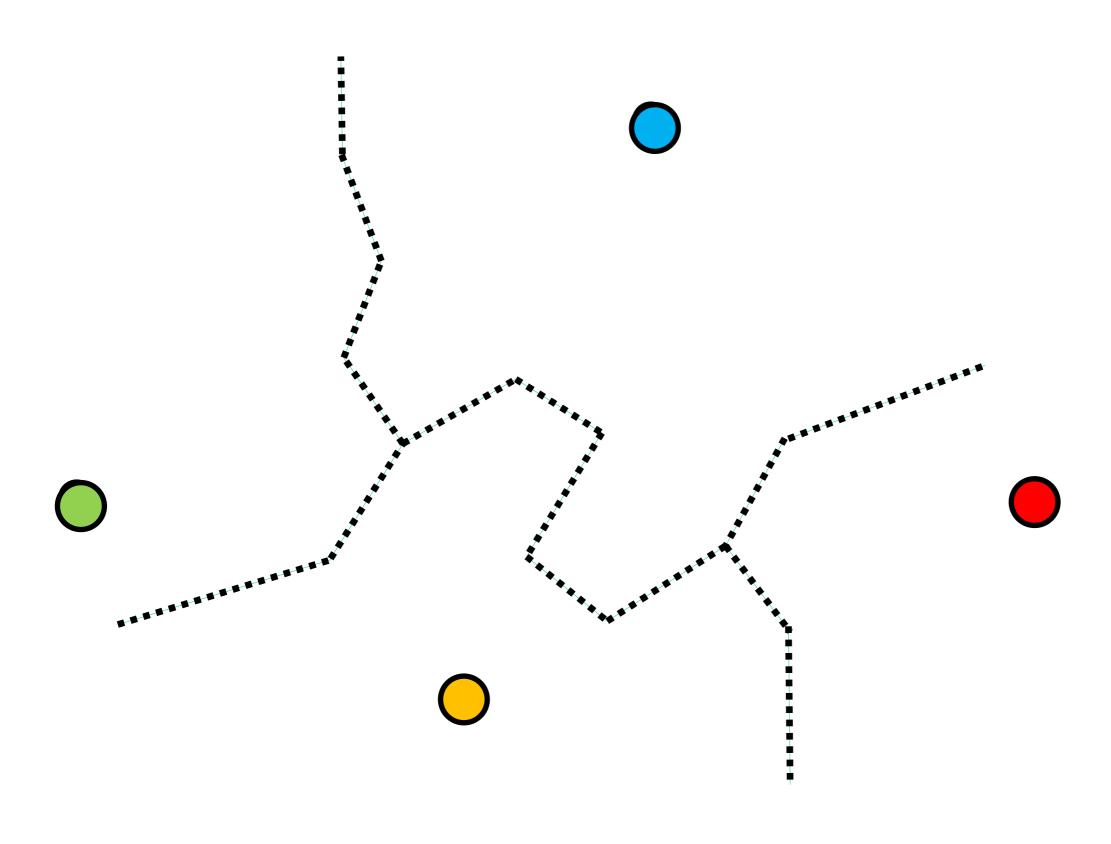


Dirichlet 1850







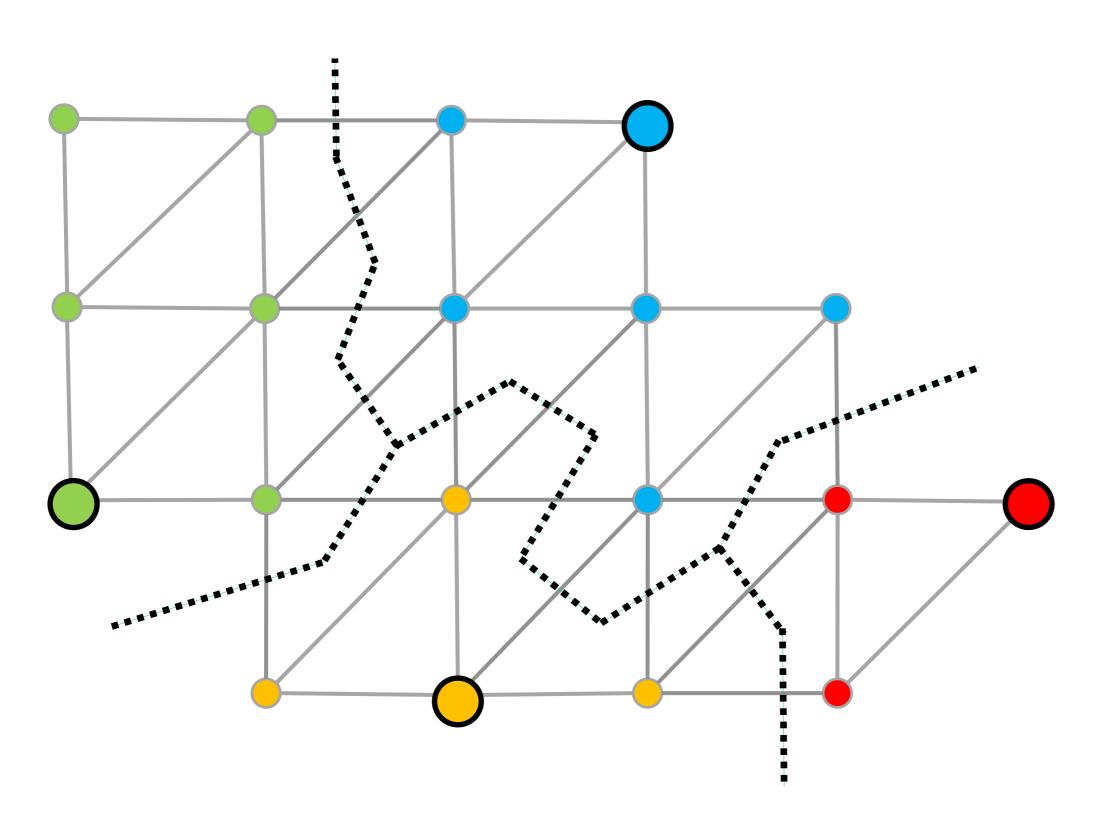


A fresh idea in algorithms for planar graph

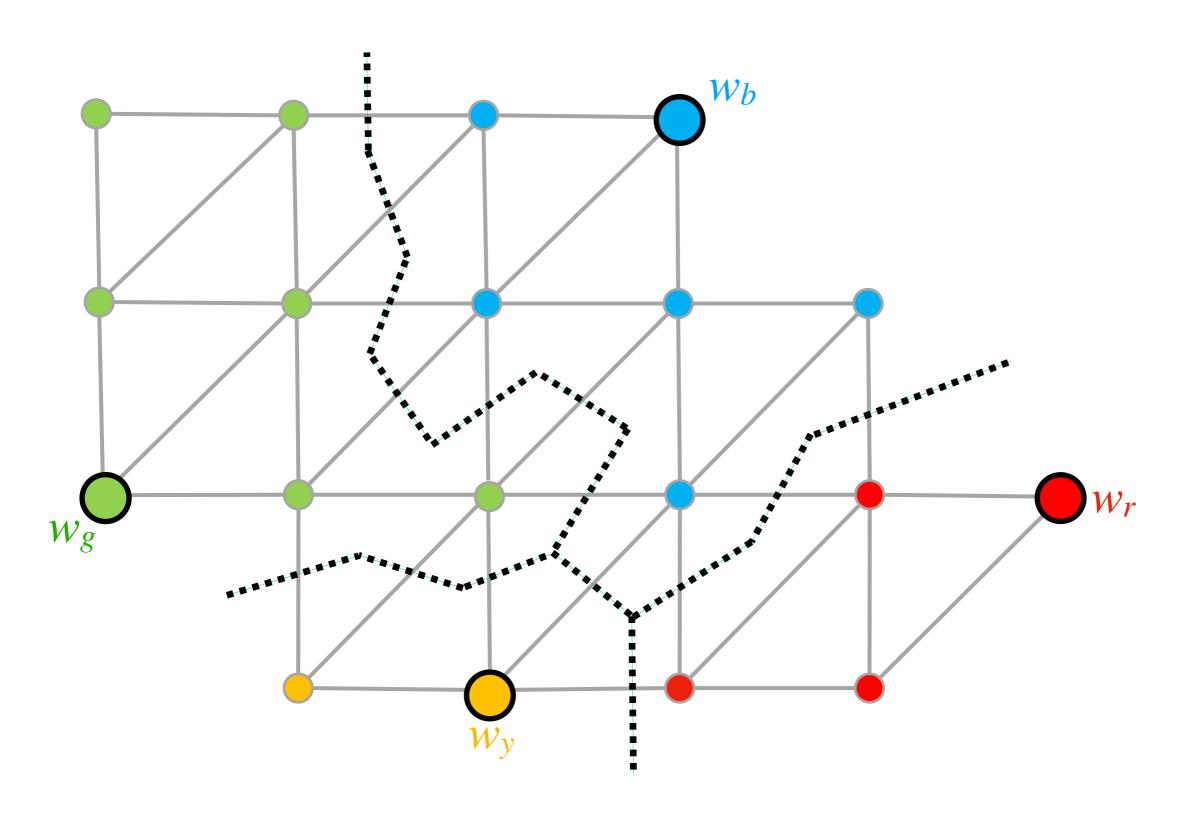
- Cabello's breakthrough (best paper in SODA 2017) -
 - can quickly construct Voronoi diagrams on planar graphs
 - (using randomized incremental construction of abstract Voronoi diagrams)
 - can use Voronoi diagrams to compute the diameter in sub-quadratic $\tilde{O}(n^{11/6})$ randomized time
- Led to exciting developments in distance oracles for planar graphs [Cohen-Addad et al. FOCS17, next talk]

This work

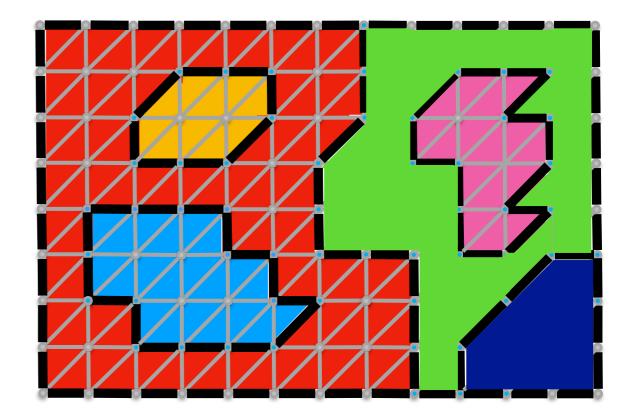
- construction of Voronoi diagrams on planar graphs
 - faster, deterministic, more general
- leads to a faster $O(n^{5/3})$ -time algorithm for diameter



Additively weighted Voronoi diagram

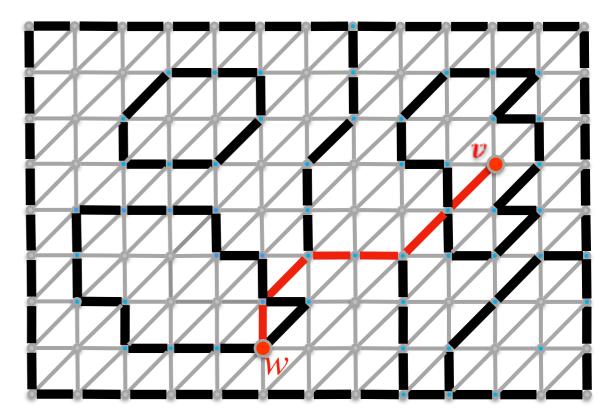


• compute an r-division: O(n/r) pieces, each with O(r) vertices and $O(r^{1/2})$ boundary vertices



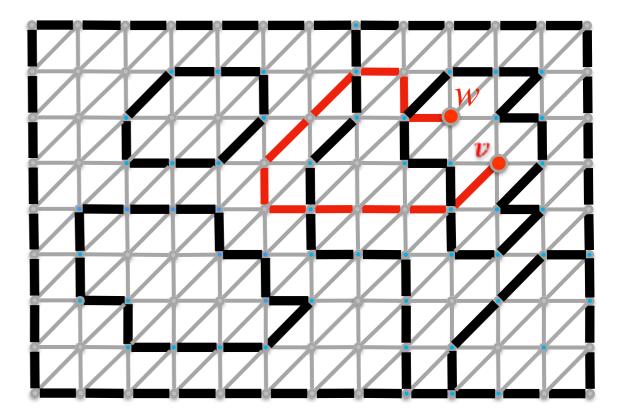
there are three types of distances:

• compute an r-division: O(n/r) pieces, each with O(r) vertices and $O(r^{1/2})$ boundary vertices



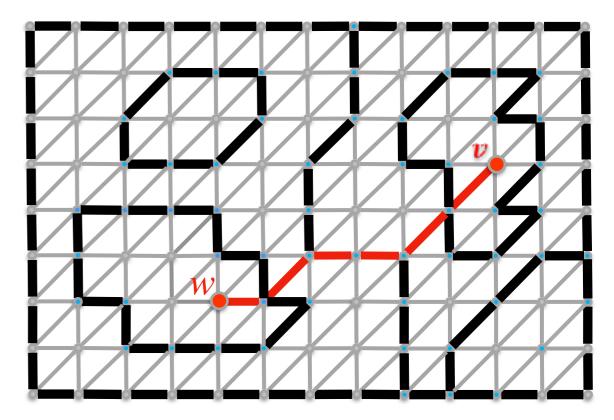
- there are three types of distances:
 - between a vertex and a boundary vertex

• compute an r-division: O(n/r) pieces, each with O(r) vertices and $O(r^{1/2})$ boundary vertices



- there are three types of distances:
 - between a vertex and a boundary vertex
 - between two vertices in the same piece

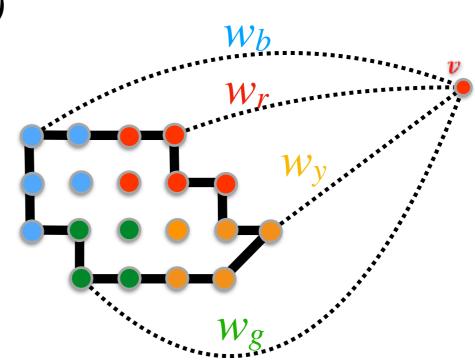
• compute an r-division: O(n/r) pieces, each with O(r) vertices and $O(r^{1/2})$ boundary vertices

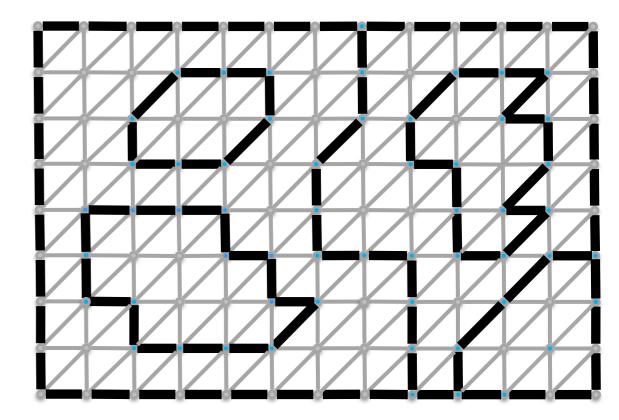


- there are three types of distances:
 - between a vertex and a boundary vertex
 - between two vertices in the same piece
 - between two vertices in different pieces

Dist. between vertices in different pieces

- already computed distances from v to boundary nodes of the other piece
- compute additively weighted Voronoi diagram for the other piece in $\tilde{O}(r^{1/2})$ time
- use Voronoi diagram to return the node furthest from each boundary site in $\tilde{O}(1)$ amortized time per site
- total $\tilde{O}(n \cdot n/r \cdot r^{1/2}) = \tilde{O}(n^2/r^{1/2})$ # vertices # pieces
- requires $\tilde{O}(n/r \cdot r^2) = O(nr)$ preprocessing





- compute an r-division
- three types of distance:
 - between a vertex and a boundary vertex
 - between two vertices inside the same piece
 - between two vertices in different pieces

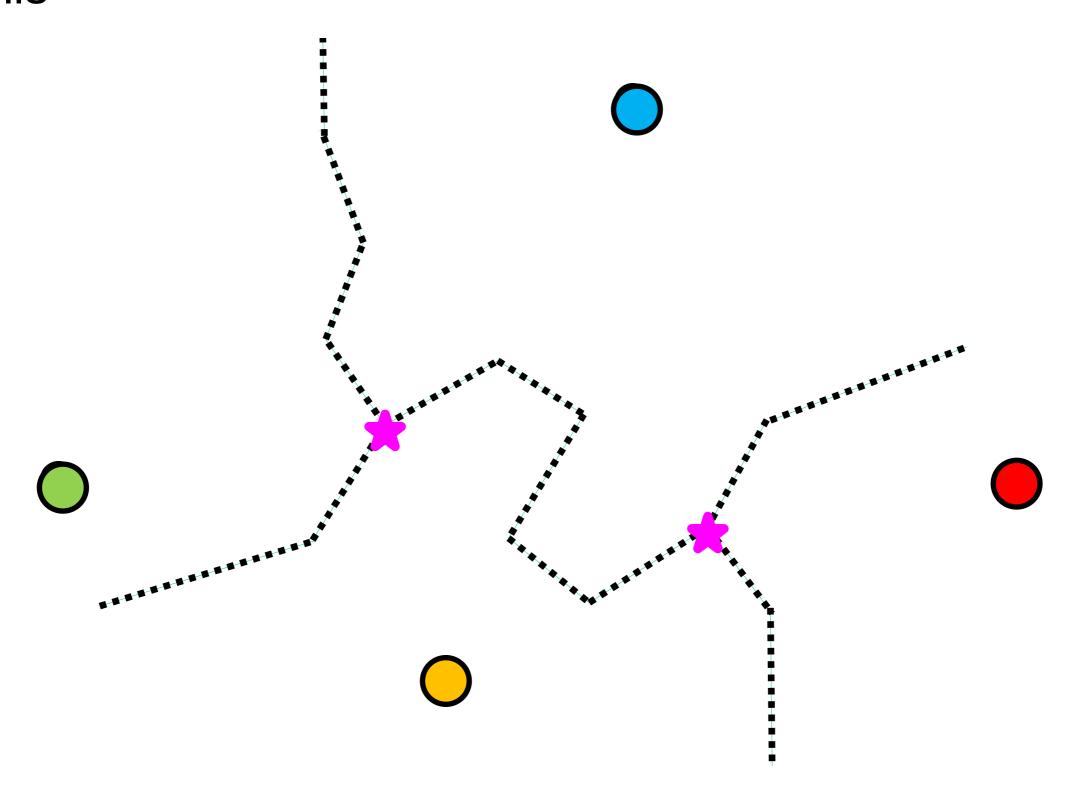
 $O(n^2/r^{1/2})$ time

O(nr) time

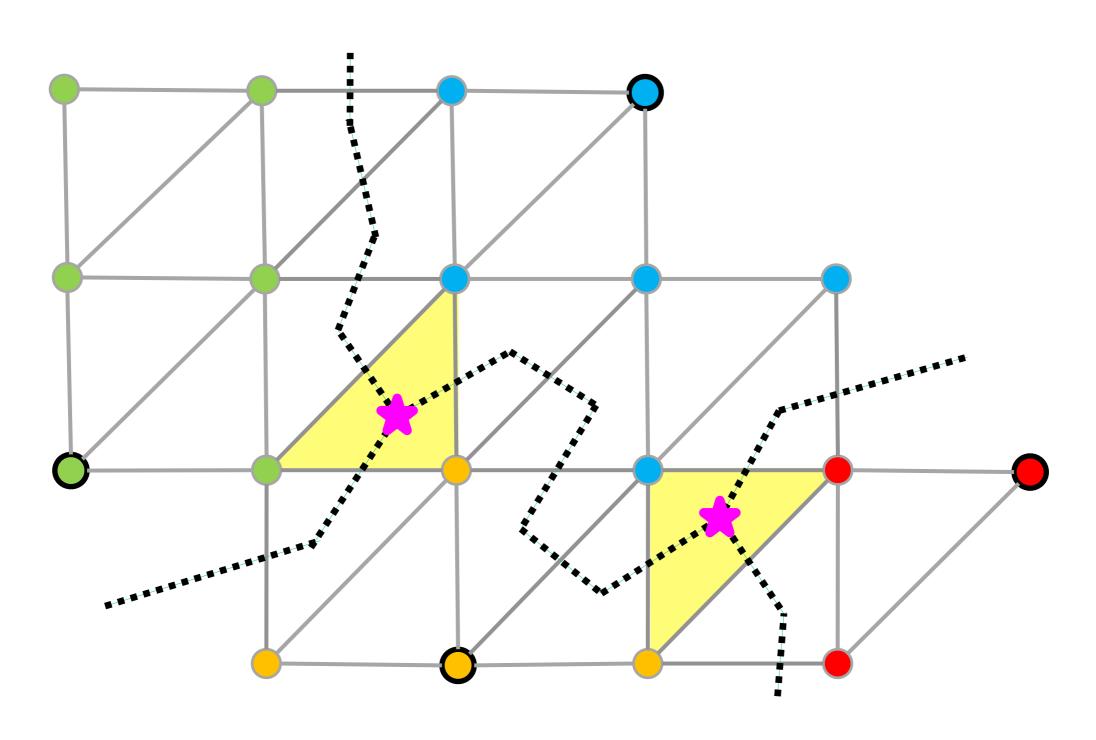
 $\tilde{O}(nr + n^2/r^{1/2})$ time

• setting $r = n^{2/3}$ yields total running time of $\tilde{O}(n^{5/3})$

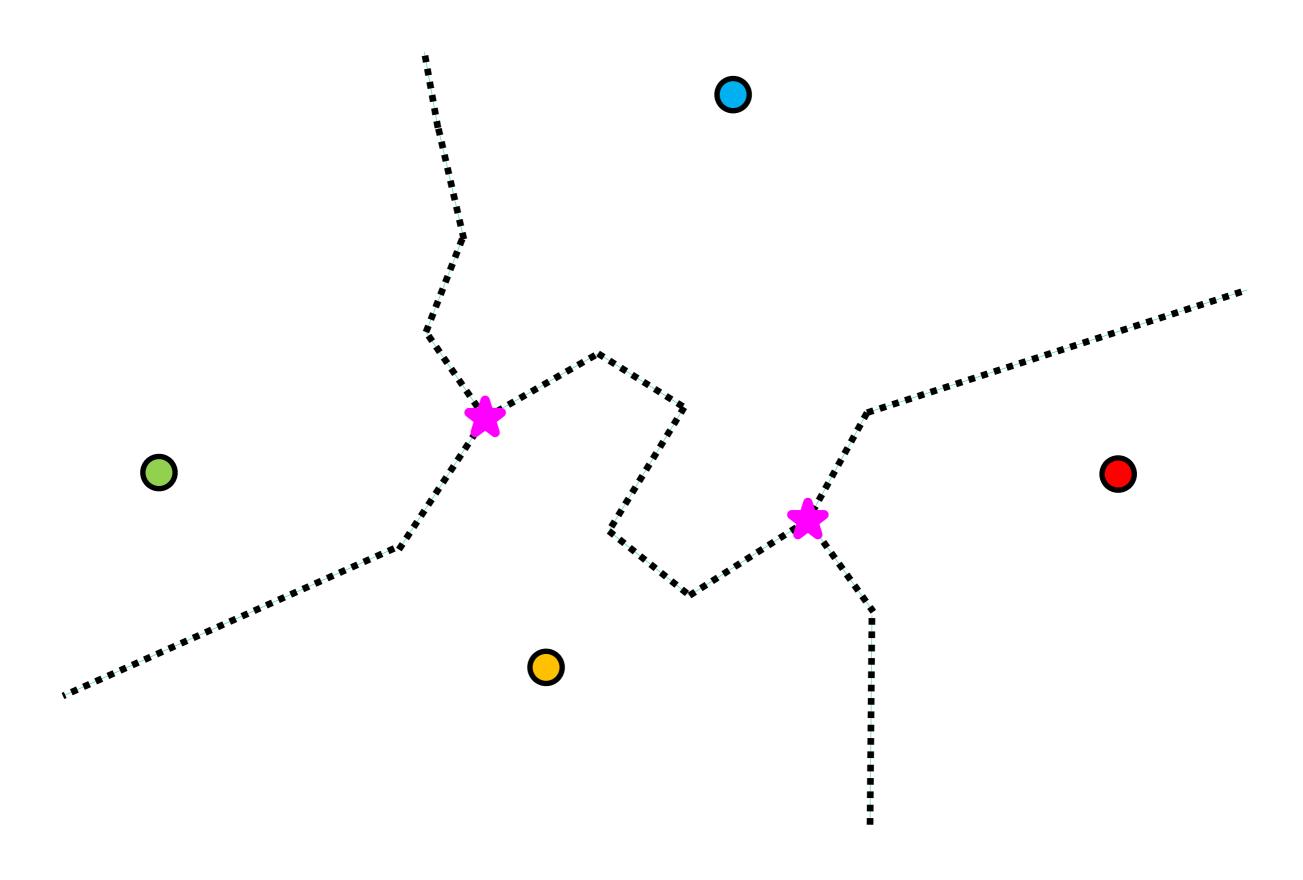
Remainder of the talk: constructing Voronoi diagrams Voronoi vertices - adjacent to three different Voronoi cells



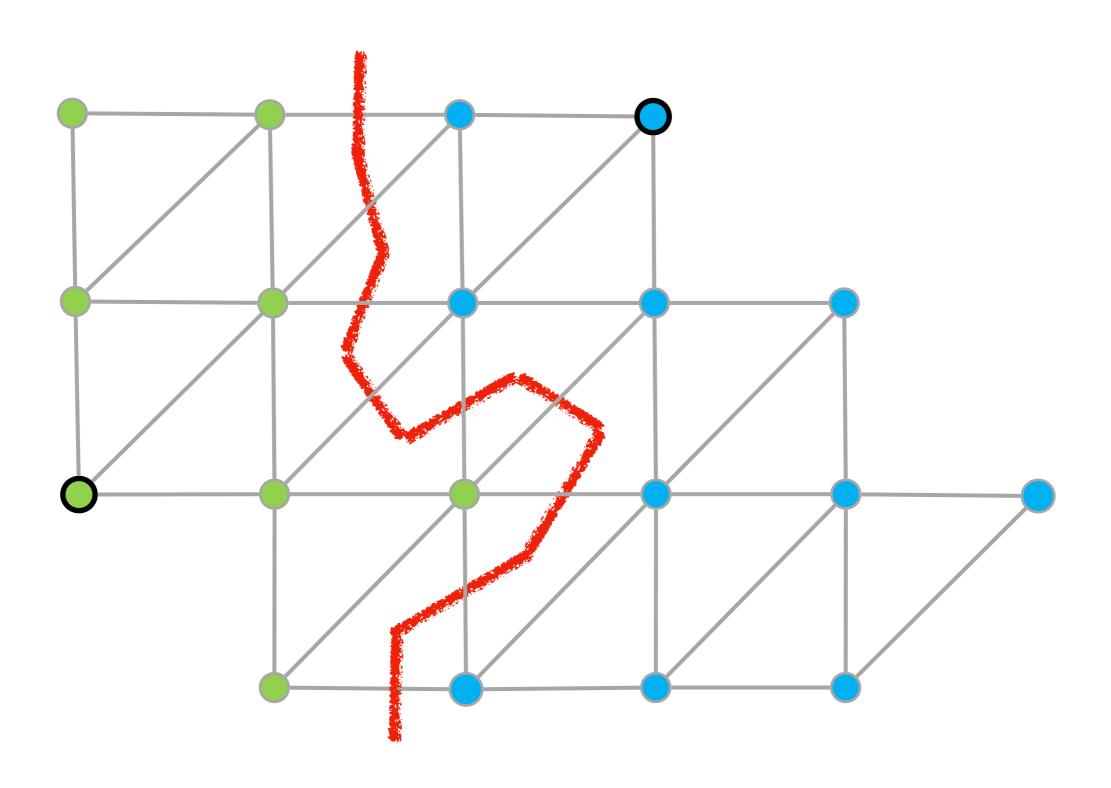
Voronoi vertices - adjacent to three different Voronoi cells (= trichromatic faces)



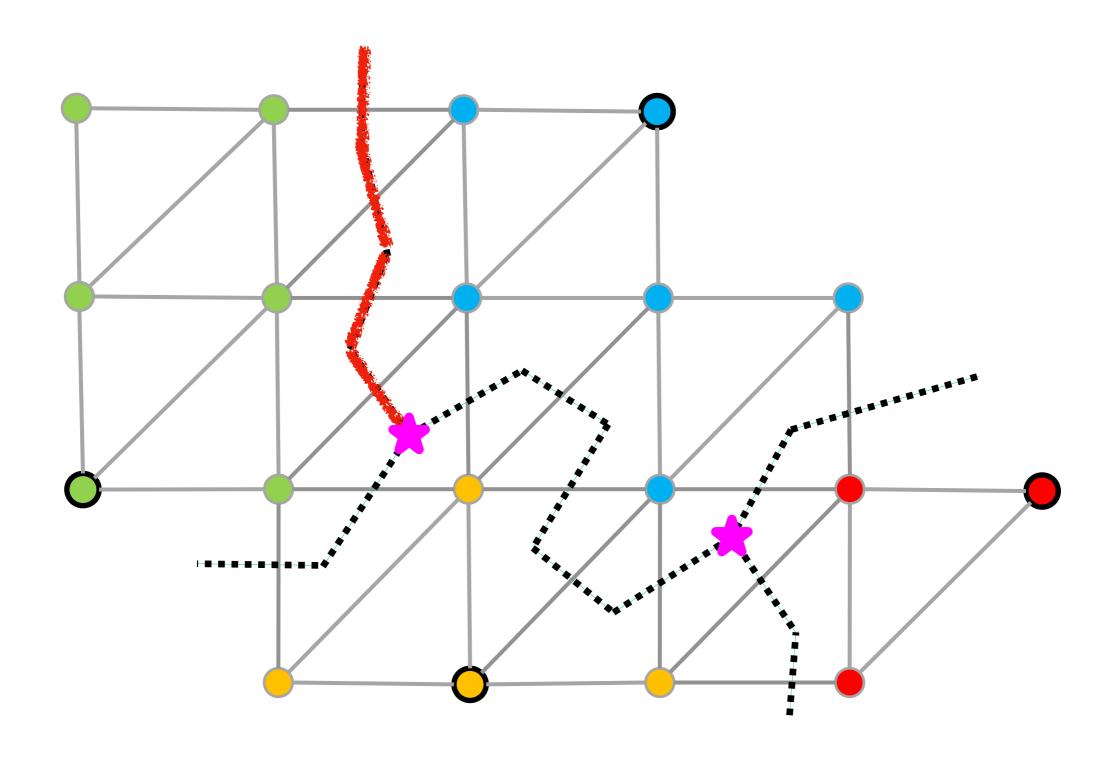
Voronoi diagram with b sites has b cells, O(b) Voronoi vertices, and O(b) Voronoi edges (by Euler's formula).



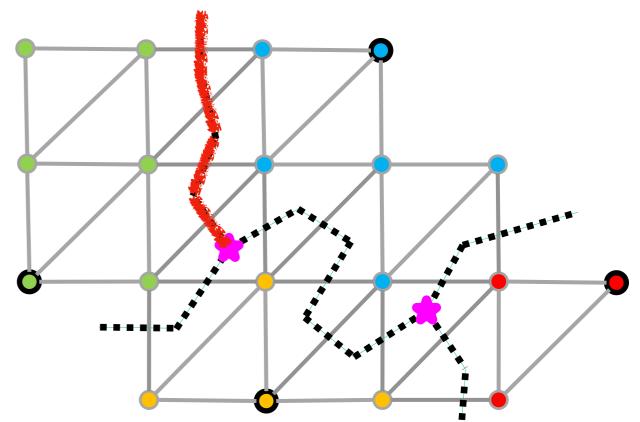
Bisectors - Voronoi diagram with just two sites



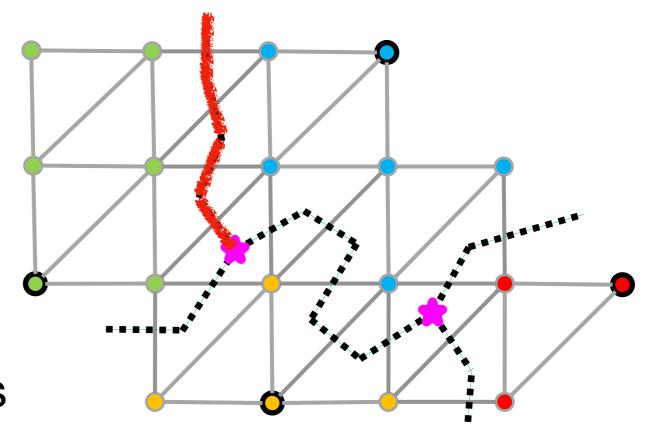
Every Voronoi edge is a subpath of a bisector



- Every Voronoi edge is a subpath of a bisector
- Every Voronoi vertex is the intersection of two bisectors

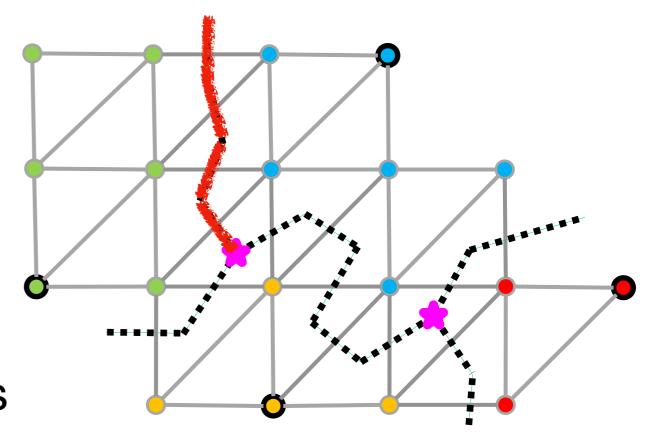


- Every Voronoi edge is a subpath of a bisector
- Every Voronoi vertex is the intersection of two bisectors



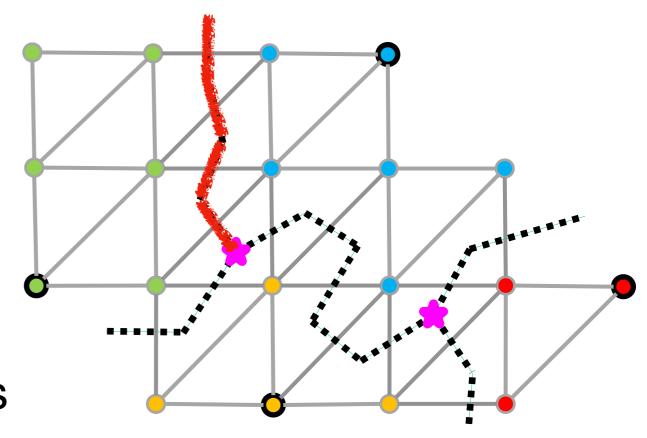
 Precompute and store all possible bisectors (for all pairs of sites and all possible weights...)

- Every Voronoi edge is a subpath of a bisector
- Every Voronoi vertex is the intersection of two bisectors

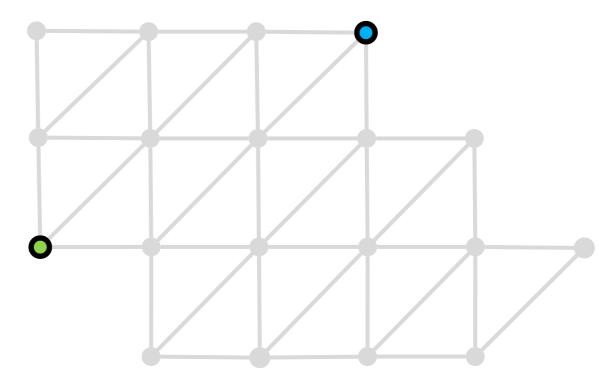


- Precompute and store all possible bisectors (for all pairs of sites and all possible weights...)
- Represent Voronoi edges as subpaths of bisectors

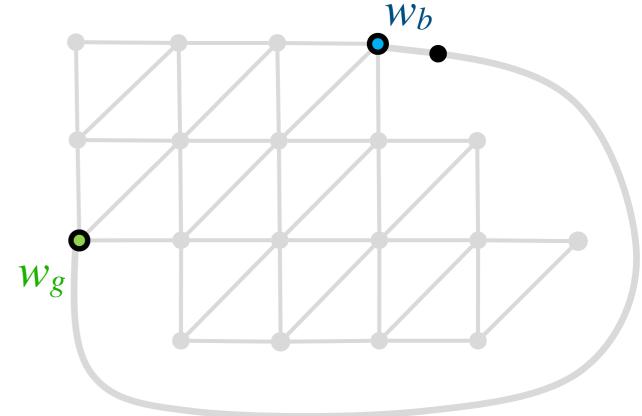
- Every Voronoi edge is a subpath of a bisector
- Every Voronoi vertex is the intersection of two bisectors



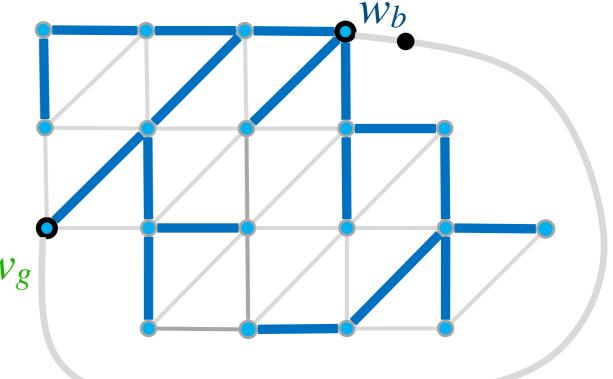
- Precompute and store all possible bisectors (for all pairs of sites and all possible weights...)
- Represent Voronoi edges as subpaths of bisectors
- Construct Voronoi diagram with b sites in $\tilde{O}(b)$ time using divide and conquer by intersecting bisectors



• only depends on the difference w_b - w_g



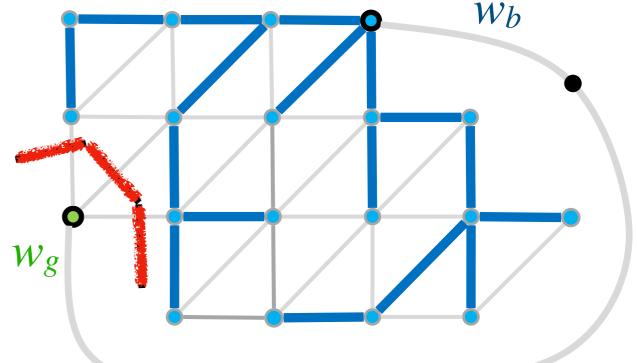
- only depends on the difference w_b - w_g
- as we increase w_b - w_g the bisector sweeps the graph w_g
- changes occur at discrete critical values, where blue vertices become green



• only depends on the difference w_b - w_g

• as we increase w_b - w_g the bisector sweeps the graph w_g

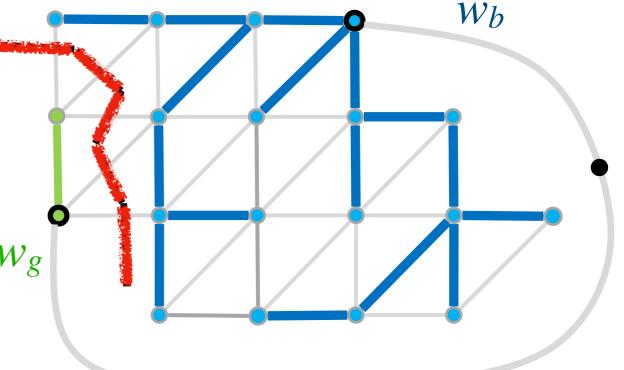
 changes occur at discrete critical values, where blue vertices become green



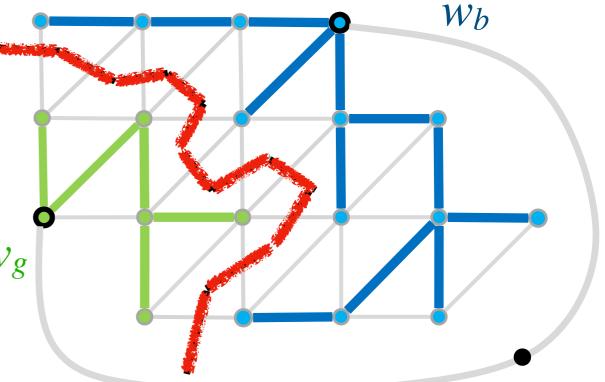
• only depends on the difference w_b - w_g

• as we increase w_b - w_g the bisector sweeps the graph w_g

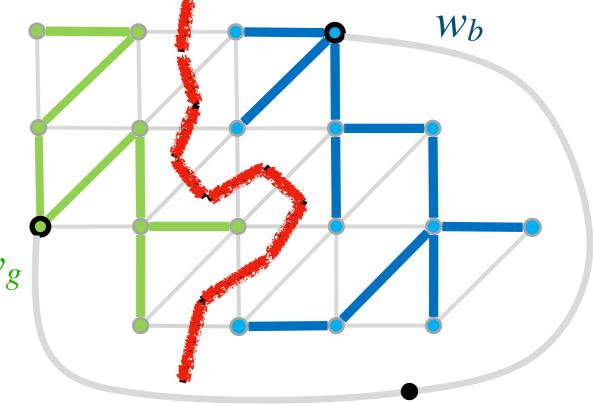
 changes occur at discrete critical values, where blue vertices become green



- only depends on the difference w_b - w_g
- as we increase w_b - w_g the bisector sweeps the graph w_g
- changes occur at discrete critical values, where blue vertices become green

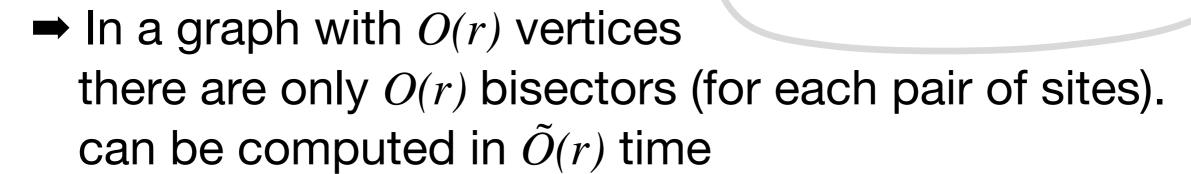


- only depends on the difference w_b - w_g
- as we increase w_b - w_g the bisector sweeps the graph w_g
- changes occur at discrete critical values, where blue vertices become green



 W_b

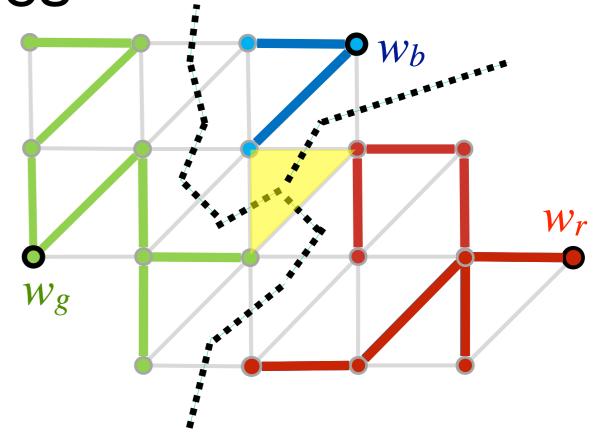
- as we increase w_b - w_g the bisector sweeps the graph
- changes occur at discrete critical values, where blue w_g vertices become green



- for each pair of sites, all bisectors stored in $\tilde{O}(r)$ space and time using persistent binary search trees
- for $r^{1/2}$ sites total preprocessing $\tilde{O}(r^2)$ time and space
- compared to $\tilde{O}(r^3)$ time and space in Cabello's

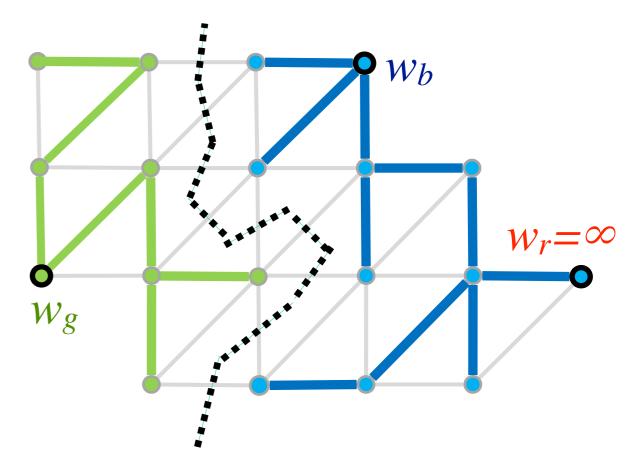
Intersecting bisectors = finding trichromatic faces

- three sites with weights w_b , w_g , w_g .
- want to find a face with one vertex in each of the Voronoi cells.

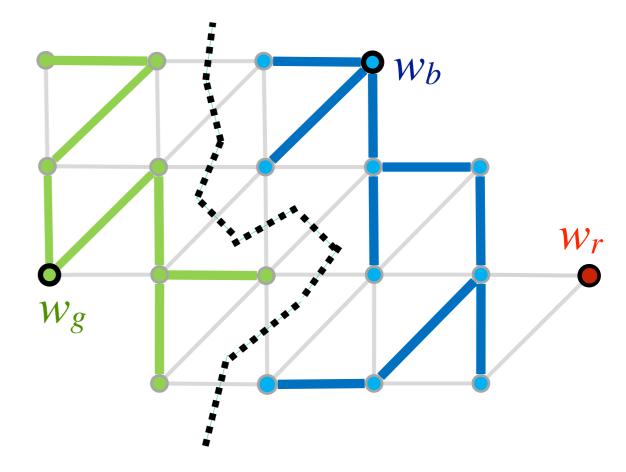


Dynamics of trichromatic faces

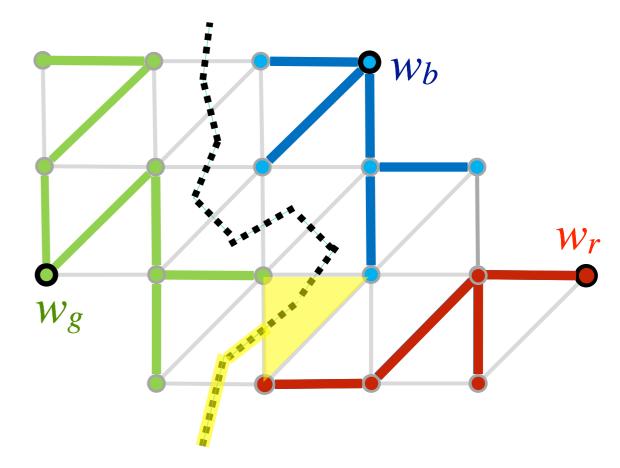
• fix w_b and w_g , and gradually decrease w_g .



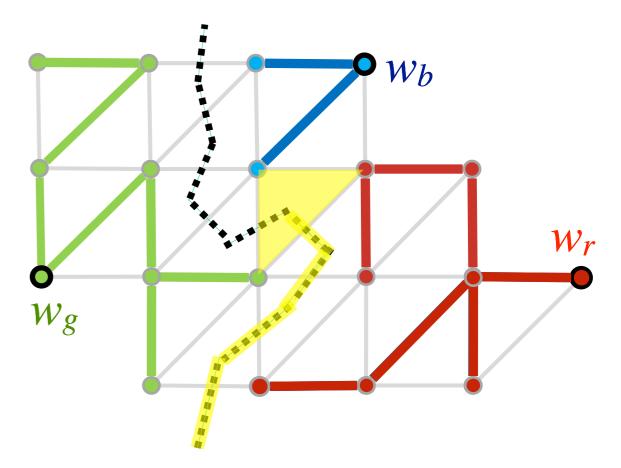
• fix w_b and w_g , and gradually decrease w_g .



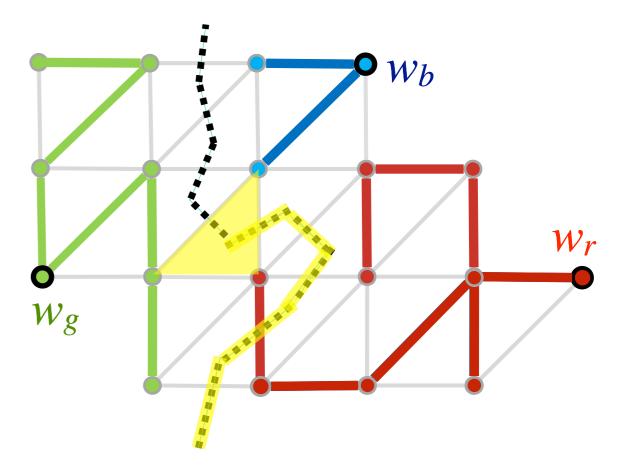
- fix w_b and w_g , and gradually decrease w_g .
- as we decrease w_r , the trichromatic face moves monotonically along the (g,b)-bisector.



- fix w_b and w_g , and gradually decrease w_g .
- as we decrease w_r , the trichromatic face moves monotonically along the (g,b)-bisector.



- fix w_b and w_g , and gradually decrease w_g .
- as we decrease w_r , the trichromatic face moves monotonically along the (g,b)-bisector.



Finding trichromatic faces

- as we decrease w_r , the trichromatic face moves monotonically along the (g,b)-bisector.
- given w_b , w_g , w_r can determine in constant time whether an edge has a red endpoint.
- binary search for the last edge on the (g,b)-bisector that has a red endpoint

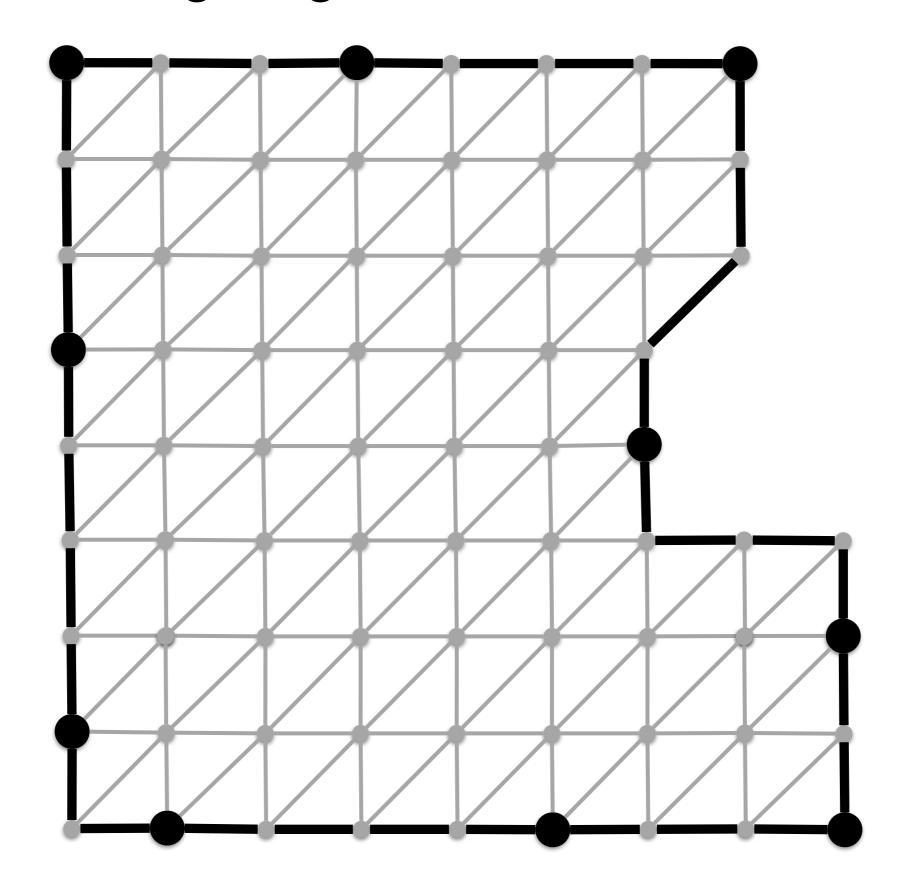
 W_b

- takes $\tilde{O}(1)$ time
- need to extend to groups of sites. Becomes much more complicated

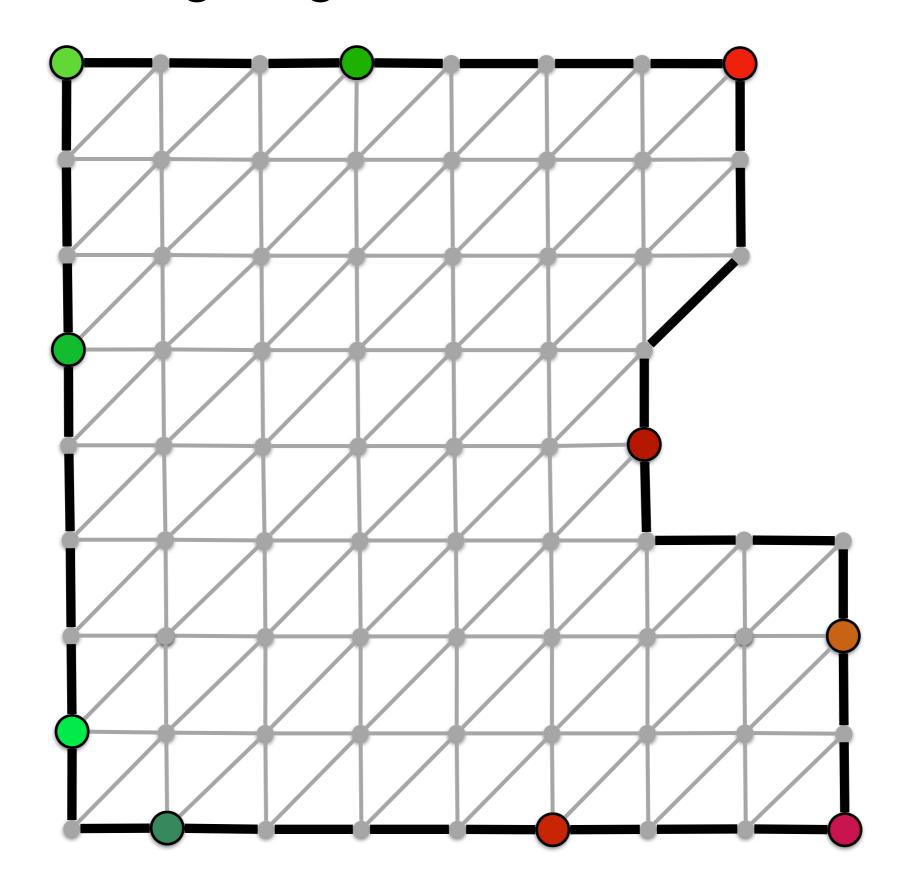
Constructing a Voronoi diagram

- we have precomputed bisectors in $\tilde{O}(r^2)$
- we know how to find a trichromatic face in $\tilde{O}(1)$ time
- we compute the weighted Voronoi diagram of $r^{1/2}$ sites in $\tilde{O}(r^{1/2})$ time using divide and conquer.

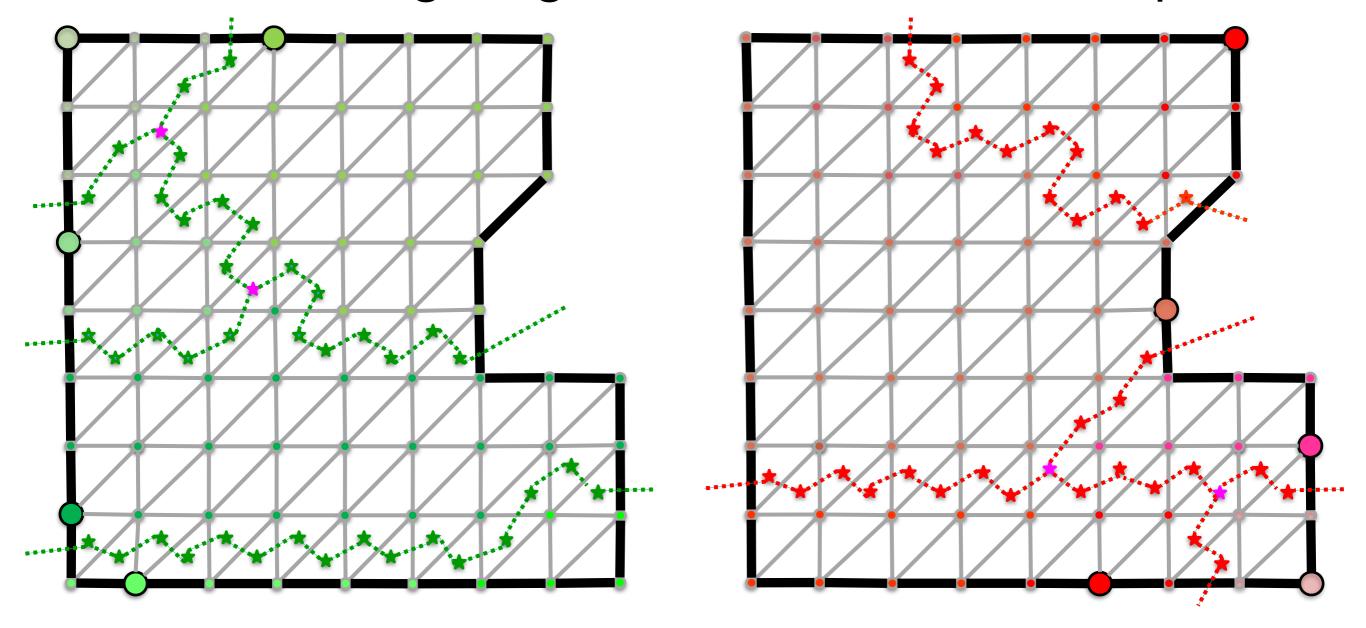
Constructing diagram via divide and conquer

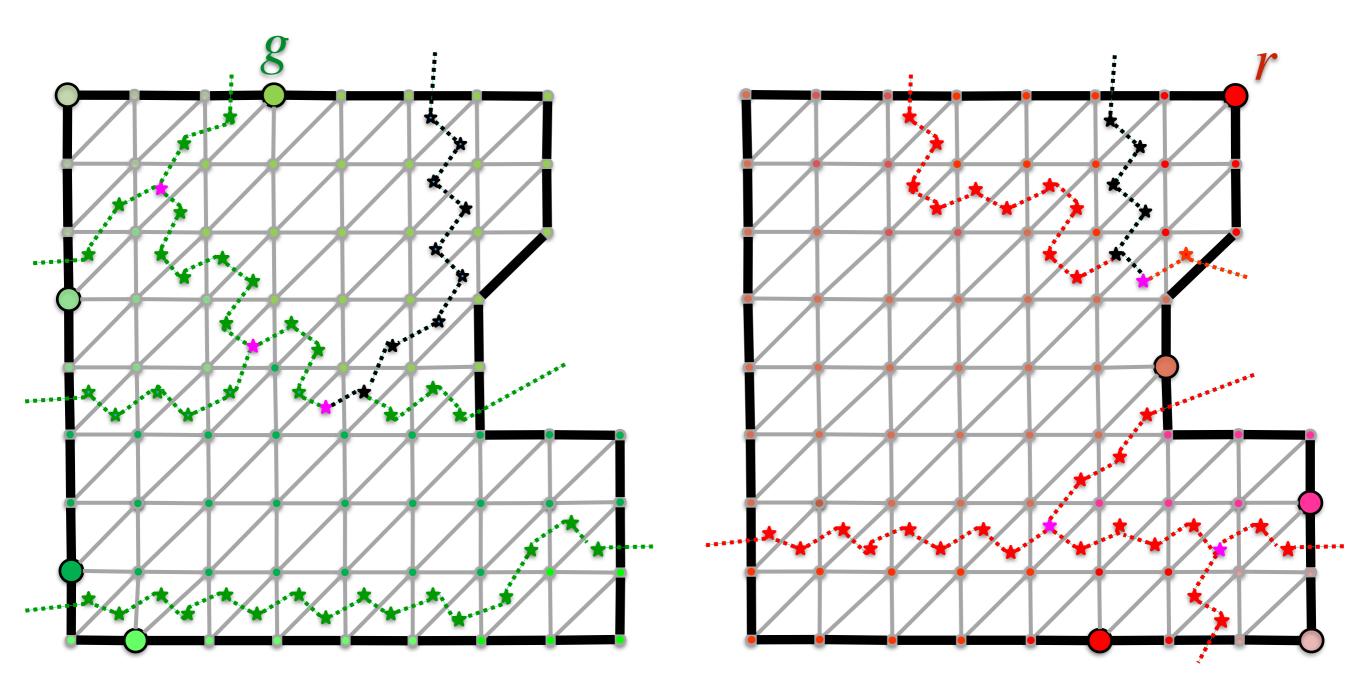


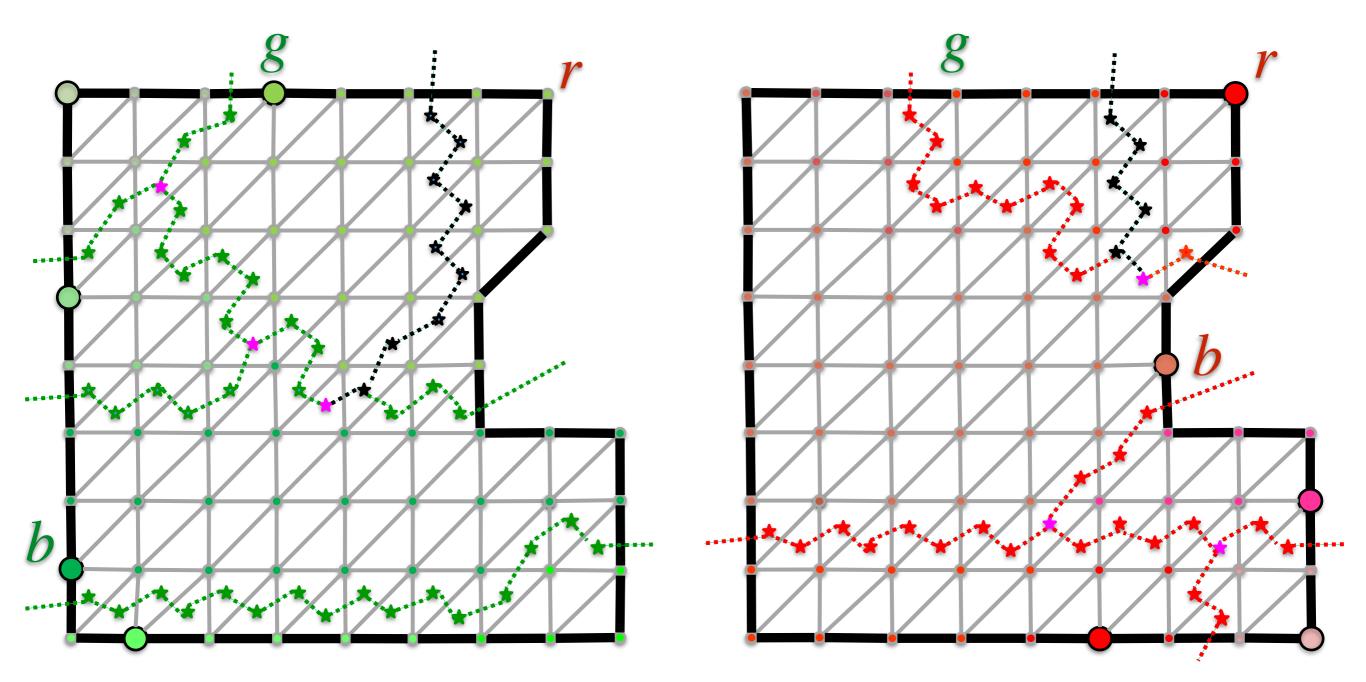
Constructing diagram via divide and conquer



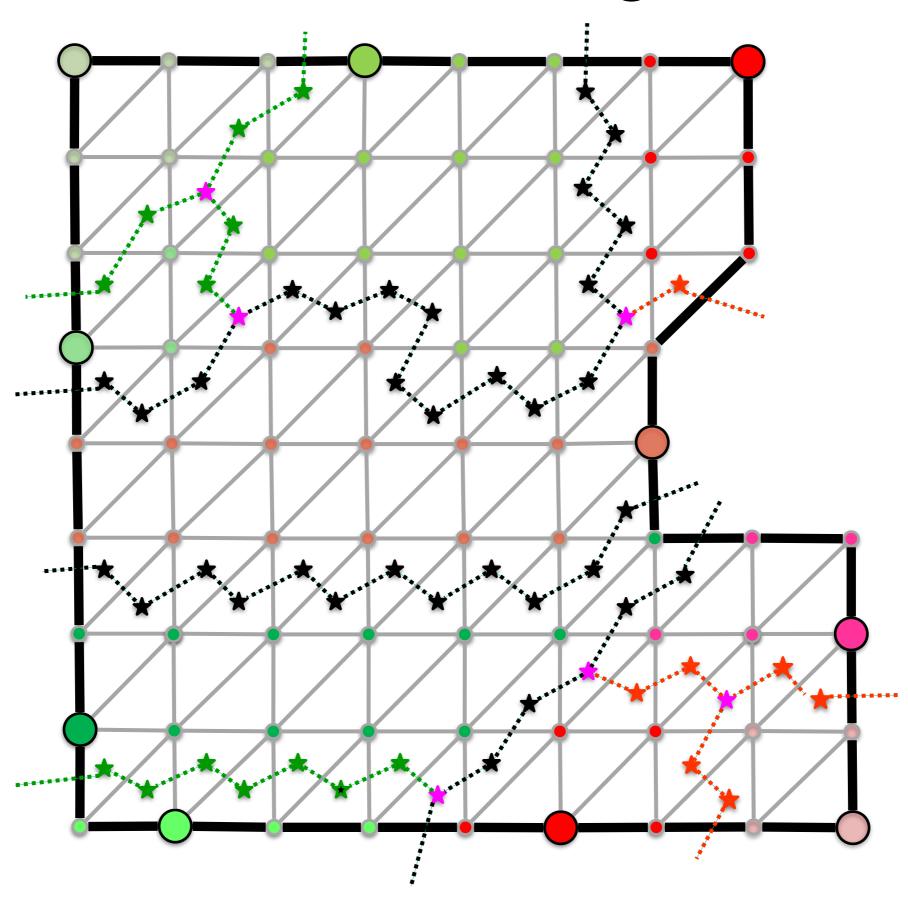
Constructing diagram via divide and conquer







Combined diagram



Constructing a Voronoi diagram

- since we can compute trichromatic vertices in $\tilde{O}(1)$ time, we can merge two Voronoi diagrams with b_1 and b_2 sites in $\tilde{O}(b_1 + b_2)$ time
- so constructing a Voronoi diagram with $r^{1/2}$ sites takes $\tilde{O}(r^{1/2})$ time

Things I swept under the rug

- handling sites on more than one face (holes)
- mechanism for finding furthest vertex in a Voronoi cell (similar to Cabello's)

Conclusion

- efficient deterministic construction of Voronoi diagrams on planar graphs
- diameter of a planar graph in deterministic $\tilde{O}(n^{5/3})$ time
- can we get below for $\tilde{O}(n^{5/3})$ time diameter?
- nearly linear time / (conditional) lower bounds?
- what other problems can benefit from these techniques?