
Voronoi Diagrams on Planar
Graphs and Computing the

Diameter in Deterministic Õ(n5/3)
time

Pawel Gawrychowski, Haim Kaplan, Shay Mozes,
Micha Sharir and Oren Weimann

Voronoi diagrams

Voronoi 
1908

Descartes 
1644

Dirichlet 
1850

Voronoi diagrams on planar graphs

Voronoi diagrams on planar graphs

Voronoi diagrams on planar graphs

Voronoi diagrams on planar graphs

A fresh idea in algorithms
for planar graph

• Cabello’s breakthrough (best paper in SODA 2017) -

• can quickly construct Voronoi diagrams on planar

graphs  
(using randomized incremental construction of abstract Voronoi diagrams)

• can use Voronoi diagrams to compute the
diameter in sub-quadratic Õ(n11/6) randomized
time

• Led to exciting developments in distance oracles
for planar graphs [Cohen-Addad et al. FOCS17,
next talk]

This work

• construction of Voronoi diagrams on planar graphs
- faster, deterministic, more general

• leads to a faster O(n5/3)-time algorithm for diameter

Voronoi diagrams on planar graphs

Additively weighted Voronoi diagram

wg

wb

wr

wy

• compute an r-division:  
O(n/r) pieces, each  
with O(r) vertices and  
O(r1/2) boundary vertices 

• there are three types of distances:

• between a vertex and a boundary vertex

• between two vertices in the same piece

• between two vertices in different pieces

High-level approach for diameter

High-level approach for diameter

• compute an r-division:  
O(n/r) pieces, each  
with O(r) vertices and  
O(r1/2) boundary vertices 

• there are three types of distances:

• between a vertex and a boundary vertex

• between two vertices in the same piece

• between two vertices in different pieces

w

• compute an r-division:  
O(n/r) pieces, each  
with O(r) vertices and  
O(r1/2) boundary vertices 

• there are three types of distances:

• between a vertex and a boundary vertex

• between two vertices in the same piece

• between two vertices in different pieces

w

High-level approach for diameter

• compute an r-division:  
O(n/r) pieces, each  
with O(r) vertices and  
O(r1/2) boundary vertices 

• there are three types of distances:

• between a vertex and a boundary vertex

• between two vertices in the same piece

• between two vertices in different pieces

w

High-level approach for diameter

Dist. between vertices in different pieces

• already computed distances from v to boundary
nodes of the other piece

• compute additively weighted Voronoi diagram for
the other piece in Õ(r1/2) time

• use Voronoi diagram to return the node furthest from
each boundary site in Õ(1) amortized time per site

• total Õ(n·n/r·r1/2) = Õ(n2/r1/2)  
 

• requires Õ(n/r·r2) = O(nr)  
preprocessing

wg

wb

wr

wy

vertices # pieces

• compute an r-division

• three types of distance:

• between a vertex and a boundary vertex O(n2/r1/2) time

• between two vertices inside the same piece O(nr) time

• between two vertices in different pieces Õ(nr + n2/r1/2) time

• setting r = n2/3 yields total running time of Õ(n5/3)

High-level approach for diameter

Remainder of the talk:  
constructing Voronoi diagrams

Voronoi vertices - adjacent to three different Voronoi
cells

Voronoi vertices - adjacent to three different Voronoi
cells (= trichromatic faces)

Voronoi diagram with b sites has b cells, O(b) Voronoi
vertices, and O(b) Voronoi edges (by Euler’s formula).

Bisectors - Voronoi diagram with just two sites

Every Voronoi edge is a subpath of a bisector

• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors

Strategy:

• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors

• Precompute and store all possible bisectors (for all
pairs of sites and all possible weights…)

Strategy:

• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors

• Precompute and store all possible bisectors (for all
pairs of sites and all possible weights…)

• Represent Voronoi edges as subpaths of bisectors

Strategy:

• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors

• Precompute and store all possible bisectors (for all
pairs of sites and all possible weights…)

• Represent Voronoi edges as subpaths of bisectors
• Construct Voronoi diagram with b sites in Õ(b) time

using divide and conquer by intersecting bisectors

Strategy:

Computing bisectors

Computing bisectors
• only depends on the  

difference wb-wg 

 
 
 
 
 

reminiscent of MSSP

[Cabello, Chambers, Erickson]

wg

wb

• only depends on the  
difference wb-wg

• as we increase wb-wg the  
bisector sweeps the graph

• changes occur at discrete  
critical values, where blue  
vertices become green

Computing bisectors

wg

wb

reminiscent of MSSP

[Cabello, Chambers, Erickson]

Computing bisectors

wg

wb
• only depends on the  

difference wb-wg
• as we increase wb-wg the  

bisector sweeps the graph

• changes occur at discrete  

critical values, where blue  
vertices become green reminiscent of MSSP

[Cabello, Chambers, Erickson]

Computing bisectors

wg

wb
• only depends on the  

difference wb-wg
• as we increase wb-wg the  

bisector sweeps the graph

• changes occur at discrete  

critical values, where blue  
vertices become green reminiscent of MSSP

[Cabello, Chambers, Erickson]

Computing bisectors

wg

wb
• only depends on the  

difference wb-wg
• as we increase wb-wg the  

bisector sweeps the graph

• changes occur at discrete  

critical values, where blue  
vertices become green reminiscent of MSSP

[Cabello, Chambers, Erickson]

Computing bisectors

wg

wb
• only depends on the  

difference wb-wg
• as we increase wb-wg the  

bisector sweeps the graph

• changes occur at discrete  

critical values, where blue  
vertices become green reminiscent of MSSP

[Cabello, Chambers, Erickson]

• as we increase wb-wg the  
bisector sweeps the graph

• changes occur at discrete  
critical values, where blue  
vertices become green

➡ In a graph with O(r) vertices  
there are only O(r) bisectors (for each pair of sites).  
can be computed in Õ(r) time

• for each pair of sites, all bisectors stored in Õ(r)
space and time using persistent binary search trees

• for r1/2 sites total preprocessing Õ(r2) time and space

Computing bisectors

wg

wb

• compared to Õ(r3) time and space in Cabello’s

Intersecting bisectors = finding
trichromatic faces

• three sites with  
weights wb, wg, wg.

• want to find a face with
one vertex in each of the
Voronoi cells.

wg

wb

wr

wg

wb

wr

Dynamics of trichromatic faces

wg

wb

wr=∞

• fix wb and wg, and gradually  
decrease wg.

wg

wb

• fix wb and wg, and gradually  
decrease wg.

wr

Dynamics of trichromatic faces

wg

wb

wr

wg

wb

wr

• fix wb and wg, and gradually  
decrease wg.

• as we decrease wr, the
trichromatic face moves
monotonically along the
(g,b)-bisector.

Dynamics of trichromatic faces

• fix wb and wg, and gradually  
decrease wg.

• as we decrease wr, the
trichromatic face moves
monotonically along the
(g,b)-bisector.

wg

wb

wr

wg

wb

wr

Dynamics of trichromatic faces

• fix wb and wg, and gradually  
decrease wg.

• as we decrease wr, the
trichromatic face moves
monotonically along the
(g,b)-bisector.

wg

wb

wr

wg

wb

wr

Dynamics of trichromatic faces

Finding trichromatic faces
• as we decrease wr, the

trichromatic face moves
monotonically along the
(g,b)-bisector.

wg

wb

wr

wg

wb

wr

• given wb, wg, wr can  
determine in constant time 
whether an edge has a red endpoint.

• binary search for the last edge on the (g,b)-bisector
that has a red endpoint

• takes Õ(1) time

• need to extend to groups of sites. Becomes much

more complicated

• we have precomputed bisectors in Õ(r2)
• we know how to find a trichromatic face in Õ(1)

time
• we compute the weighted Voronoi diagram of r1/2

sites in Õ(r1/2) time using divide and conquer.

Constructing a Voronoi diagram

Constructing diagram via divide and conquer

Constructing diagram via divide and conquer

Constructing diagram via divide and conquer

rg

rg g

b

r

b

Combined diagram

• since we can compute trichromatic vertices in Õ(1)
time, we can merge two Voronoi diagrams with b1
and b2 sites in Õ(b1 + b2) time

• so constructing a Voronoi diagram with r1/2 sites
takes Õ(r1/2) time

Constructing a Voronoi diagram

• handling sites on more than one face (holes)

• mechanism for finding furthest vertex in a Voronoi
cell (similar to Cabello’s)

Things I swept under the rug

Conclusion
• efficient deterministic construction of Voronoi diagrams on

planar graphs
• diameter of a planar graph in deterministic Õ(n5/3) time 

• can we get below for Õ(n5/3) time diameter?

• nearly linear time / (conditional) lower bounds?

• what other problems can benefit from these techniques?

