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A fresh idea in algorithms
for planar graph

—aui
- Cabello’s breakthrough (best paper in SODA 2017) -

+ can quickly construct Voronoi diagrams on planar
graphs
(using randomized incremental construction of abstract Voronoi diagrams)

+ can use Voronoi diagrams to compute the
diameter in sub-quadratic O(n!1/6) randomized
time

-+ Led to exciting developments in distance oracles
for planar graphs [Cohen-Addad et al. FOCS17,
next talk]



This work

» construction of Voronoi diagrams on planar graphs

- faster, deterministic, more general

- leads to a faster O(n3)-time algorithm for diameter
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High-level approach for diameter

e compute an r-division:
O(n/r) pieces, each
with O(r) vertices and
O(r!’?2) boundary vertices

- there are three types of distances:



* compute an r-division:

V N/
O(n/r) pieces, each I = \ Vi é
with O(r) vertices and | LI__LE_-I /7
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O(r!’2) boundary vertices

- there are three types of distances:

+ between a vertex and a boundary vertex
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O(r!’2) boundary vertices

- there are three types of distances:
+ between a vertex and a boundary vertex

- between two vertices in the same piece



compute an r-division: I
O(n/r) pieces, each LD o
with O(r) vertices and |
O(r!2) boundary vertices |

- there are three types of distances:
+ between a vertex and a boundary vertex
- between two vertices in the same piece

- between two vertices In different pieces



Dist. between vertices in different pieces

» already computed distances from v to boundary
nodes of the other piece

* compute additively weighted Voronoi diagram for
the other piece in O(r!”2) time

* use Voronoi diagram to return the node furthest from
each boundary site in O(1) amortized time per site

e total O(n-n/r-r2) = O(n2/ri2)

Whoe...
#vertices| |#pieces| T W_rlc
I‘ -Q-: """""""""""
* requires O(n/r-r?) = O(nr) S : i
preprocessing i 7



High-level approach for diameter
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+ compute an r-division L Lemf o _I / _I
- three types of distance: - -
* between a vertex and a boundary vertex O(n?/r2) time
 between two vertices inside the same piece O(nr) time
* between two vertices in different pieces O(nr + n2/r12) time

. setting r = n23 yields total running time of O(n53)
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adjacent to three different Voronoil
cells

A EEEEEETS

.
.
.
.
.
.
.
.
3
D)
0
0
N
D
D
s
.
* .
. +*%e ““
. “ .. 1 S
. . . S N
. o* ‘e *
PR .
* % »*
¢ .
¢ .
C o .
. . 0
. . .
. . .
. . .
o .
4
““ ’. “
e® . .
.s® * o* .
we” ¢ * g
_“‘ ’,“ .
|

O



Voronol vertices - adjacent to three different Voronoi
cells (= trichromatic faces)

O




Voronoi diagram with b sites has b cells, O(b) Voronoil
vertices, and O(b) Voronoi edges (by Euler’s formula).



Bisectors - Voronoi diagram with just two sites




Every Voronoi edge is a subpath of a bisector
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Strategy:

Every Voronoi edge is a
subpath of a bisector

Every Voronoi vertex is the
intersection of two bisectors




Strategy:

- Every Voronoi edge is a
subpath of a bisector

- Every Voronoi vertex is the 4
intersection of two bisectors o e

- Precompute and store all possible bisectors (for all
pairs of sites and all possible weights...)



Strategy:

- Every Voronoi edge is a
subpath of a bisector

- Every Voronoi vertex is the 4
intersection of two bisectors o e

- Precompute and store all possible bisectors (for all
pairs of sites and all possible weights...)

- Represent Voronoi edges as subpaths of bisectors



Strategy:

- Every Voronoi edge is a
subpath of a bisector

- Every Voronoi vertex is the 4
intersection of two bisectors o e

- Precompute and store all possible bisectors (for all
pairs of sites and all possible weights...)

- Represent Voronoi edges as subpaths of bisectors

. Construct Voronoi diagram with 4 sites in O(b) time
using divide and conquer by intersecting bisectors



Computing bisectors



Computing bisectors
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[Cabello, Chambers, Erickson]
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Computing bisectors

* as we increase wy-wgthe
bisector sweeps the graph

-+ changes occur at discrete
critical values, where blue
vertices become green

(o
8

= |n a graph with O(r) vertices
there are only O(r) bisectors (for each pair of sites).
can be computed in O(r) time

- for each pair of sites, all bisectors stored in O(r)
space and time using persistent binary search trees

- for ri2 sites total preprocessing O(r2) time and space

. compared to O(r3) time and space in Cabello’s



Intersecting bisectors = finding
trichromatic faces

- three sites with
weights wy, we, we.

- want to find a face with o
one vertex in each of the We
Voronoi cells.




Dynamics of trichromatic faces

- fix wp,and w,, and gradually
decrease w,.
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- as we decrease w,, the

Finding trichromatic faces

trichromatic face moves
monotonically along the
(2,b)-bisector.

+ given wy, w,, W, can We
determine in constant time
whether an edge has a red endpoint.

- binary search for the last edge on the (g,/)-bisector
that has a red endpoint

- takes O(1) time

+ need to extend to groups of sites. Becomes much
more complicated



Constructing a Voronoi diagram

we have precomputed bisectors in O(r2)

we know how to find a trichromatic face in O(1)
time

we compute the weighted Voronoi diagram of r/2
sites in O(r!2) time using divide and conquer.



Constructing diagram via divide and conquer
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Constructing diagram via divide and conquer
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Constructing a Voronoi diagram

 since we can compute trichromatic vertices in O(1)
time, we can merge two Voronoi diagrams with b;

and b, sites in O(b; + b>) time

e s0 constructing a Voronoi diagram with r//2 sites
takes O(r22) time



Things | swept under the rug

* handling sites on more than one face (holes)

 mechanism for finding furthest vertex in a Voronol
cell (similar to Cabello’s)



Conclusion

o efficient deterministic construction of Voronoi diagrams on
planar graphs

» diameter of a planar graph in deterministic O(n°3) time

» can we get below for O(n3) time diameter?

e nearly linear time / (conditional) lower bounds?

* what other problems can benefit from these techniques?



