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A fresh idea in algorithms 
for planar graph

• Cabello’s breakthrough (best paper in SODA 2017) - 

• can quickly construct Voronoi diagrams on planar 

graphs  
(using randomized incremental construction of abstract Voronoi diagrams)


• can use Voronoi diagrams to compute the 
diameter in sub-quadratic Õ(n11/6) randomized 
time


• Led to exciting developments in distance oracles 
for planar graphs [Cohen-Addad et al. FOCS17, 
next talk]



This work

• construction of Voronoi diagrams on planar graphs 
- faster, deterministic, more general


• leads to a faster O(n5/3)-time algorithm for diameter
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Additively weighted Voronoi diagram
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• compute an r-division:  
O(n/r) pieces, each  
with O(r) vertices and  
O(r1/2) boundary vertices 
  

• there are three types of distances:

• between a vertex and a boundary vertex

• between two vertices in the same piece

• between two vertices in different pieces
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Dist. between vertices in different pieces

• already computed distances from v to boundary 
nodes of the other piece


• compute additively weighted Voronoi diagram for 
the other piece in Õ(r1/2) time


• use Voronoi diagram to return the node furthest from 
each boundary site in Õ(1) amortized time per site


• total Õ(n·n/r·r1/2) = Õ(n2/r1/2)  
 
 

• requires Õ(n/r·r2) = O(nr)  
preprocessing
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• compute an r-division

• three types of distance:


• between a vertex and a boundary vertex                O(n2/r1/2) time

• between two vertices inside the same piece          O(nr) time

• between two vertices in different pieces                Õ(nr + n2/r1/2) time


• setting r = n2/3 yields total running time of Õ(n5/3)

High-level approach for diameter



Remainder of the talk:  
constructing Voronoi diagrams



Voronoi vertices - adjacent to three different Voronoi 
cells



Voronoi vertices - adjacent to three different Voronoi 
cells (= trichromatic faces)



Voronoi diagram with b sites has b cells, O(b) Voronoi 
vertices, and O(b) Voronoi edges (by Euler’s formula).



Bisectors - Voronoi diagram with just two sites



Every Voronoi edge is a subpath of a bisector



• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors
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• Every Voronoi edge is a  
subpath of a bisector

• Every Voronoi vertex is the  
intersection of two bisectors

• Precompute and store all possible bisectors (for all 
pairs of sites and all possible weights…)

• Represent Voronoi edges as subpaths of bisectors
• Construct Voronoi diagram with b sites in Õ(b) time 

using divide and conquer by intersecting bisectors

Strategy:
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Computing bisectors
• only depends on the  

difference wb-wg 

 
 
 
 
 

reminiscent of MSSP

[Cabello, Chambers, Erickson]
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• only depends on the  
difference wb-wg 

• as we increase wb-wg the  
bisector sweeps the graph


• changes occur at discrete  
critical values, where blue  
vertices become green
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• as we increase wb-wg the  
bisector sweeps the graph


• changes occur at discrete  
critical values, where blue  
vertices become green 

➡ In a graph with O(r) vertices  
there are only O(r) bisectors (for each pair of sites).  
can be computed in Õ(r) time


• for each pair of sites, all bisectors stored in Õ(r) 
space and time using persistent binary search trees


• for r1/2 sites total preprocessing Õ(r2) time and space

Computing bisectors

wg
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• compared to Õ(r3) time and space in Cabello’s 



Intersecting bisectors = finding 
trichromatic faces

• three sites with  
weights wb, wg, wg.


• want to find a face with 
one vertex in each of the 
Voronoi cells.
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Dynamics of trichromatic faces
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• fix wb and wg, and gradually   
decrease wg.



wg

wb

• fix wb and wg, and gradually   
decrease wg.

wr

Dynamics of trichromatic faces



wg

wb

wr

wg

wb

wr

• fix wb and wg, and gradually   
decrease wg.


• as we decrease wr, the 
trichromatic face moves 
monotonically along the 
(g,b)-bisector.
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Finding trichromatic faces
• as we decrease wr, the 

trichromatic face moves 
monotonically along the 
(g,b)-bisector.
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• given  wb, wg, wr can  
determine in constant time 
whether an edge has a red endpoint.


• binary search for the last edge on the (g,b)-bisector 
that has a red endpoint


• takes Õ(1) time

• need to extend to groups of sites. Becomes much 

more complicated



• we have precomputed bisectors in Õ(r2) 
• we know how to find a trichromatic face in Õ(1) 

time  
• we compute the weighted Voronoi diagram of r1/2 

sites in Õ(r1/2) time using divide and conquer. 

Constructing a Voronoi diagram
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Constructing diagram via divide and conquer
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Combined diagram



• since we can compute trichromatic vertices in Õ(1) 
time, we can merge two Voronoi diagrams with b1 
and b2  sites in Õ(b1 + b2) time 

• so constructing a Voronoi diagram with r1/2 sites 
takes Õ(r1/2) time   

Constructing a Voronoi diagram



• handling sites on more than one face (holes) 

• mechanism for finding furthest vertex in a Voronoi 
cell (similar to Cabello’s) 

Things I swept under the rug



Conclusion
• efficient deterministic construction of Voronoi diagrams on 

planar graphs 
• diameter of a planar graph in deterministic Õ(n5/3) time 

• can we get below for Õ(n5/3) time diameter?

• nearly linear time / (conditional) lower bounds? 

• what other problems can benefit from these techniques?


