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Abstract. The combination of fully sequence genomes and new technologies 

for high density arrays and ultra-rapid sequencing enables the mapping of gene-

regulatory and epigenetics marks on a global scale. This new experimental 

methodology was recently applied to map multiple histone marks and genomic 

factors, characterizing patterns of genome organization and discovering interac-

tions among processes of epigenetic reprogramming during cellular differentia-

tion. The new data poses a significant computational challenge in both size and 

statistical heterogeneity. Understanding it collectively and without bias remains 

an open problem. Here we introduce spatial clustering - a new unsupervised 

clustering methodology for dissection of large, multi-track genomic and epige-

nomic data sets into a spatially organized set of distinct combinatorial behav-

iors. We develop a probabilistic algorithm that finds spatial clustering solutions 

by learning an HMM model and inferring the most likely genomic layout of 

clusters. Application of our methods to meta-analysis of combined ChIP-seq 

and ChIP-chip epigenomic datasets in mouse and human reveals known and 

novel patterns of local co-occurrence among histone modification and related 

factors. Moreover, the model weaves together these local patterns into a coher-

ent global model that reflects the higher level organization of the epigenome. 

Spatial clustering constitutes a powerful and scalable analysis methodology for 

dissecting even larger scale genomic dataset that will soon become available. 

Introduction 

The combination of fully sequenced genomes and new technologies for high density 

arrays (ChIP-chip) and ultra-rapid sequencing (ChIP-seq) enables the mapping of 

gene-regulatory and epigenetics marks on a global scale. Such mapping is being em-

ployed at an increasing pace to study genomic and epigenomic organization at differ-

ent developmental stages [1-5]. The new massive experimental data has already re-

vealed how genomes are programmed and reprogrammed by complex patterns of 

histone marks, transcription factors and regulatory complexes [6]. It was suggested 

that a mechanistic understanding of normal [7] and malignant [8, 9] differentiation 

processes can be facilitated through a comprehensive analysis of multiple marks and 

factors in multiple cell systems [10]. The great promise of the new datasets lies in 

their lack of bias and truly genomic scale. To fully exploit their potential, one must 

develop an adequate analysis methodology that can go beyond the study of a single 
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histone mark or transcription factor. The goal is to comprehensively identify complex 

genomic structures without an a-priori focus on known features (e.g., genes and pro-

moters). 

Current approaches for analyzing genomic information focus on the distributions 

of values relative to transcription start sites (TSS) or other genomic features (e.g., 

CTCF binding sites [11]). Computing such distributions is computationally easy and 

informative: one can depict the relations between TSSs and the profiled factors 

through graphs of the average factor/mark occupancy as a function of the distance to 

the nearest TSS. Comparing the profiles near active and inactive TSSs can highlight 

possible functional implications for the profiled distributions. Heat maps are used to 

show possible correlations between modification pairs [5]. While being easy to under-

stand and very effective in mapping the organization around TSSs, the averaging 

methods provide little help when trying to understand the datasets as a whole. Focus-

ing on the patterns around specific features does not enable the identification of novel 

genomic structures or higher level organization. The comprehensive and innovative 

nature of the experiments is therefore still unmatched analytically. 

The problem of identifying patterns in large datasets is a hallmark of computational 

biology. Extensive literature is dealing with the analysis of gene expression data, dis-

secting it into clusters [12, 13] or biclusters [14] or in explaining the data by means of 

a complex regulatory model [15]. Clustering became the method of choice for analy-

sis of gene expression, mostly due to its simple and unsupervised nature and since it 

allows effective visualization of the entire dataset by means of a few robust structures. 

The new generation of ChIP-chip and ChIP-seq datasets is however not easily ap-

proached using naïve clustering. At the most technical level, the datasets are huge and 

cannot be analyzed using the current algorithms' implementations. More fundamen-

tally, the genomic datasets are spatially arranged over chromosomes and their analysis 

must account for this organization. Present clustering methodologies are inadequate 

for analysis of multi-track and heterogeneous ChIP-chip and ChIP-seq data. 

In this paper we introduce the spatial clustering problem and describe our probabil-

istic algorithm for solving it. Our algorithm clusters a set of genomic profiles (tracks), 

representing epigenetic modifications, factor occupancy or other spatially distributed 

data. We model the data using an HMM which is being learned in an unsupervised 

fashion. The algorithm then infers the most likely coverage of the genome with con-

tiguous spatial clusters. The HMM component of our model can flexibly express local 

structure (short genomic intervals with similar profiles) and global structure (groups 

of clusters that tend to co-occur and form larger domains). We demonstrate this by 

analyzing two combined whole genome datasets including epigenomic profiles of 

human cells and differentiating mouse stem cells. In both cases, our analysis provides 

a comprehensive map of epigenomic modes that extend beyond the reported patterns 

around TSSs. Spatial Clustering is a flexible and robust tool that is designed to meet 

the requirements of large genomic and epigenomic projects. It provides a powerful al-

ternative to the limited and supervised analysis scheme which is currently in common 

use. 
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Methods 

The K-Spatial Clustering problem. Given a multivariate genomic dataset, we seek a 

representation of the data using a limited repertoire of distinct behaviors that are spa-

tially organized. We formalize this notion as the K-Spatial clustering problem. As-

sume that we are studying a linearly organized (possibly on more than one interval) 

set of genomic measurement loci (or probes). Loci can be ordered along complete 

chromosomes at fixed distances (as in binned ChIP-seq data), or may tile selected 

parts of the genome at variable distances (as in ChIP-chip data). For simplicity, we 

will look only at the sequential position of each locus inside its surrounding contigu-

ous segment, breaking chromosomes into segments wherever there is large gap be-

tween two adjacent probes. Assume also that we are given a vector of experimental 

measurements at each of the loci. The experimental data can come from different 

types of experiments or different cell types and conditions, but we disregard any 

available information on a-priori connections between vector entries. A K-Spatial 

clustering is a partition of the underlying genomic region into disjoint and contiguous 

intervals and a tagging of these intervals with cluster numbers [1..K]. In the most gen-

eral settings, we introduce a quality function that scores K-Spatial clustering instances 

given the genomic dataset and defines the K-Spatial clustering problem as an optimi-

zation problem that seeks the maximal scoring K-Spatial clustering. We note that in 

the degenerate case, when the scoring function ignores the genomic layout of the data 

and is based solely on similarity of measured values per loci, the K-Spatial clustering 

problem is equivalent to a standard clustering problem. Needless to say, in any rea-

sonable application, the quality function will take advantage of the genomic organiza-

tion of the data to derive better solutions. 
Spatial clustering can be considerably more informative and powerful than simple 

clustering of the probes. First, in most practical cases, the experimental values for ad-

jacent probes are highly correlative as important biological features would typically 

span several measurement loci. These effects are making the common assumptions 

underlying most clustering frameworks incorrect (i.e., the a-priori independence 

among samples is not holding). A good K-Spatial clustering solution would therefore 

maximize the number of adjacent loci that are part of the same cluster (reducing the 

overall number of intervals) while not compromising the integrity and specificity of 

the clusters. A second source of spatial information works at a higher level. In many 

genomic datasets we can observe coupling between related phenomena. For example, 

transcription start sites (TSS) would often be followed by a transcribed region. Ex-

pressing the couplings between clusters, and introducing it into the quality function 

can have an important contribution to the quality of the results, and to our ability to 

understand them. 

 

Probabilistic K-Spatial clustering: Our approach for deriving K-Spatial clustering is 

based on a probabilistic formulation of the problem (Fig. 1A). This is analogous to 

the standard approach that estimates a mixture model (for example, a mixture of mul-

tivariate Gaussians) to cluster large data sets [16]. We extend the naïve mixture model 

using an HMM structure that expresses the tendency of adjacent loci to remain in the 

same cluster and the spatial coupling among clusters. Specifically, the model is de-

fined using K multivariate distributions over the experimental tracks and an HMM 
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model connecting the clusters (with additional hidden states, see below). The topolo-

gies we shall consider for the HMM graph reflect constraints on higher level organi-

zation of clusters across the genome. Given a fixed topology, we apply the expecta-

tion maximization (EM) algorithm to learn the model and its parameters and then 

compute posterior probabilities for the association between measurement loci and 

HMM clusters. The set of contiguous intervals associated with the same HMM state 

(with high posterior probability) are then used as our spatial clustering. We can also 

study the parameters of the distributions defining each cluster and the transition prob-

abilities between clusters to get a more global picture of the model and its implica-

tions. 
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Figure 1. A) Spatial clustering of genomic profiles (tracks). Multi-dimensional genomic 

datasets, including heterogeneous ChIP-seq and ChIP-chip experiments as well as other ge-

nomic sources of information are analyzed together using a probabilistic hidden Markov model. 

The model is then used to infer the most likely partition of the genome into spatial clusters, 

each representing a specific genomic or epigenomic behavior which is determined based on the 

distribution of all data tracks. B) Hierarchical spatial clustering. Shown is a schematic view 

of the HMM topology we use for building hierarchical spatial clustering. The model consists of 

a set of small complete graphs (super clusters, here on 3 states) that are connected through 

dedicated connector state pairs. Transition probabilities inside each connector pair are fixed 

throughout the learning process and add a penalty for crossing super cluster boundaries. 

Local distribution parameterization: In our generative model, multi-track data is 

emitted from cluster states given a probability distribution associated with the cluster. 

To learn the model, we need to specify a family of distributions appropriate for the 
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tracks we analyze. A good selection of distributions family is one that will be able to 

generate, given the correct parameters, a distribution of values that is as close as pos-

sible to the one observed, and would also allow robust learning with limited data. The 

simplest class of distributions assumes tracks are generated independently (once the 

cluster is determined). This simplification, which we use in the present work, is eco-

nomical in terms of parameters and allows for learning robustly, even when the num-

ber of tracks grows. More refined classes of distributions (e.g., multinormal distribu-

tion with arbitrary covariance matrices, [8]) are currently practical only for smaller 

number of tracks and should be further developed to allow robust learning in general. 

The most common sources of comprehensive genomic data are ChIP-chip and 

ChIP-seq experiments. Results from ChIP-chip experiments are real valued binding 

ratios. ChIP-seq results are lists of sequenced reads which are normalized into some 

coverage statistics on genomic intervals. For ChIP-chip data, the combination of ex-

perimental and biological noise can be modeled using simple normal distributions. 

Chip-seq results are by nature discrete, and should be theoretically distributed as a 

combination of samples from two fragment pools (false positives and enriched IP 

fragments [4, 17]). However, according to our analysis, the empirical distribution of 

ChIP-seq tracks cannot be effectively approximated as a mixture of noise and a geo-

metric distribution, featuring a very heavy tail (data not shown). We therefore model 

ChIP-seq tracks using an a-parametric discrete distribution on variable sized bins. We 

generate the bins by identifying, for each track, the values of the (1-2
k
) percentiles 

(for k=1 to 10). The distributions considered for the track are now defined using a dis-

crete distribution over 10 bins, where we map physical measurements to bins with 

values in the percentile intervals [(1-2
k+1

): (1-2
k
)]. 

 

The HMM structure. We use the HMM structure to impose constraints on clustering 

solutions, demanding clusters would occupy contiguous genomic intervals and cou-

pling together clusters that are frequently occurring next to each other. We use several 

structure families with increasing degrees of details. In its most simple form, the 

model has a star structure, which is associating all cluster states through a central hid-

den (non-emitting) state. The structure is in essence a simple mixture model (transi-

tions probabilities from the central states to cluster states correspond to the mixture 

coefficients), but uses the states self transitions to increase the likelihood of solutions 

with contiguous clusters. The star topology imposes no constraint on transitions be-

tween specific emitting clusters pairs (all transitions must go through the central hid-

den node). Such transitions can be inferred from the posterior state probabilities in 

post process. Alternatively, an HMM over a clique topology (connecting all pairs of 

cluster states) is by far more expressive, but may be too detailed to allow robust learn-

ing, especially when the number of clusters increase. We note that even the clique to-

pology can capture only coupling between pairs of clusters and cannot be used to rep-

resent higher order structures, which are frequently observed in genomic data.  

To try and model higher order genomic structure, we are using a hierarchical to-

pology (Fig. 1B). In this scheme, we construct small clique HMMs (super-clusters) to 

represent specific genomic structures that tend to co-occur over larger domains. We 

then connect super clusters using dedicated connector state pairs that implicate a 

probabilistic payment for each transition between super clusters. In the current 

framework we have worked with two levels of hierarchy, but these can be naturally 
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generalized. More specific HMM topologies can be developed to model additional 

biological phenomena. For example, genomic structure is often polarized according to 

the direction of the nearby transcript, but our basic HMM implementation reads all 

data in the same order and can therefore learn only unidirectional couplings. To im-

prove on that, we can form two copies of our model, each representing one genomic 

polarization, such that all transition probabilities are reverse symmetric between the 

two copies. 

 

Model Learning: Given an HMM topology, we learn the model parameterization us-

ing a standard Expectation-Maximization (EM) algorithm [18]. The success of the lo-

cal optimization performed by the EM algorithm depends, as is often the case, on 

careful selection of initial conditions. The most critical initialization for the spatial 

clustering model is proper selection of initial cluster state emission distributions. In 

our implementation, we first preprocess the data to identify standard clusters (ignor-

ing spatial information). We then use a repertoire of detected clusters to initialize 

cluster states over some initial topology. The clustering algorithm in the preprocess-

ing stage can be selected arbitrarily. The implementation we report here consist of 

three phases: a) We discretize all data to three levels (-1,0 and 1) using predefined Z-

score thresholds for each track. b) We group together all probes with the same discre-

tized multi-track vector and count how many probes are classified for each vector. c) 

For each discretized vector with a sufficient number of associated probes, we estimate 

from the original data the (non discrete) multivariate distribution over the tracks and 

add it to the set of potential initial cluster states (or seeds). In case too few heavy clus-

ters are available, we adjust the Z-score threshold and return to step a. Given a set of 

seed states, we generate an initial model by randomly selecting initial cluster states 

from the pool of generated seeds. Our analysis suggests that testing few dozens of ini-

tial conditions is performing effectively, and is comparable in performance to a 

greedy scheme in which we construct the model state by state, at each step testing EM 

after addition of each of the seeds and choosing the seed with the maximal likelihood 

gain (data not shown). 

To learn a hierarchical model we work from top down. We first learn an HMM 

model on K states using a star topology. We then use inference with the derived 

model to partition the data into K sets, one for each cluster. We apply the initialization 

procedure described above separately for each of the K probes sets, and construct an 

initial model by combining together K clique models (each with L states) using the 

connector states described above (Fig. 1B). 

Our unsupervised approach to the learning problem provides us with a robust and 

unbiased way to analyze the data. The approach can however lead to models that are 

optimized toward better representation of the experimental noise in the genomic 

background rather than models outlining meaningful biological effects. A large per-

centage of the genome may be showing little or no meaningful signal. Modeling these 

parts of the genome accurately yields a high likelihood gain – pushing the learning 

process to use additional clusters for refined background models. We can somewhat 

control this problem by increasing the total number of clusters in the model. More 

heuristically, we can also employ constraints to the learning process, limiting the 

variance of the emission distributions so that states cannot be too tuned for a specific 
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background behavior (by having small variance), or too broad to absorb several bio-

logical phenomena (by having large variance). 

We note that the datasets our algorithm is handling are imposing new kinds of 

technical challenges on design and implementation. For example, the largest gene ex-

pression datasets analyzed thus far are limited to ~10
4
 genes and ~10

3
 conditions. The 

dataset we have analyzed here have ~10
8
 probes (tiling the human genome in 25bp-

50bp resolution) and ~10
2
 tracks, making it 2-3 order of magnitudes larger. These 

numbers are expected to increase further. We are therefore forced to utilize consider-

able computational resources even if the algorithm is extremely efficient. In our im-

plementation, the EM inference (Forward-Backward) step is massively parallelized 

over a computer cluster, allowing learning on large genomes to be completed quickly. 

 

Visualization. The most direct visualization scheme for genomic data is as data tracks 

in genome browsers [19, 20]. When the data includes many tracks this scheme may 

prove difficult to follow, and at any rate can only provide local information on a spe-

cific locus and not global understanding on how the data is organized. Another com-

mon approach is to average the available genomic profiles with respect to a genomic 

feature (usually TSSs), but as argued above, this approach is strongly biased to a spe-

cific phenomenon and may miss important genomic structures. Our spatial cluster 

model opens the way to new visualization schemes of complex genomic data. We use 

a learned model to infer the most probable cluster state associated with each locus. 

We can then color code the genome according to the associated clusters in a way that 

summarizes all available experimental profiles in one color per locus. With appropri-

ate selection of colors, this can be an effective way to identify both global and local 

behavior (see below). A complementary approach is attempting to visualize the entire 

data set in one figure. To do this we identify contiguous intervals associated with a 

cluster by looking at ranges of probes with consecutive high posterior probabilities for 

the same HMM state. We then pool together groups of intervals that were associated 

with the same cluster and plot the genomic profiles inside and around them in stan-

dard cluster-gram (each row represents an interval and its margins). From our experi-

ence, although the color coding approach is somewhat qualitative, it is currently the 

best way to rapidly understand the entire dataset in one view, providing a good start-

ing point for further analysis.  

Results 

Spatial clustering model for human T cells epigenetics. Barksi et al. [1] have used 

ChIP-seq and a collection of antibodies for 20 histone methylation marks, RNAP, the 

Histone variant H2A.Z and CTCF to globally map the epigenome of human T-cells. 

This constitutes the most comprehensive epigenomic dataset on a single mammalian 

cell type to date. TSS averaging analysis of the data confirmed and extended known 

principles of chromatin organization around active and repressed TSSs [5]. Recently, 

work from the Van Steensel group has put forward a genome wide map of chromatin 

interactions with the nuclear lamina [21], characterizing large lamina-associated do-

mains that are very gene sparse and flanked by transcriptional units, insulators and 



8      Rami Jaschek and Amos Tanay 

H3K27 trimethylation. In an attempt to gain an unbiased view on the interactions 

among the profiled histone marks and other factors, we have combined these two 

datasets and applied spatial clustering analysis to them. We note that the two sets of 

experiments we used were derived from different cell types (T-cells vs. fibroblasts) 

and different technologies. To allow common analysis, we transformed all ChIP-seq 

data to coverage statistics on 50bp bins, assuming fragment length of 300bp (as de-

scribed in [4]). We also assumed that each Lamin B1 tiling array probe represents the 

occupancy at all 50bp bins in the range of 1000bp around the probe. 
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Figure 2. Spatial clustering of the human epigenome. A) HMM basic topology. Shown are 

the model states, where we connect pairs of states that frequently follow each other. B) Color 

coded visualization of clusters and their flanking region. Each row segment represents the 

occupancy of one mark or factor over one spatial cluster and its flanking region, where we 

stack together loci that were associated to the same cluster (blocks). The color coding is provid-

ing a quick visualization of the complex model, for a more quantitative view consult 

http://www.wisdom.weizmann.ac.il/~ramij/recomb2009.html. C) TSS enrichments. The graph 

shown indicates for each cluster and offset from the TSS (X axis) the ratio between the fraction 

of loci associated with the cluster at that TSS offset to the overall fraction of genomic loci at 

that TSS offset (Y axis, 0.2 to 6, log scale). D) Cluster coverage. Shown are the fractions of 

genomic loci covered by each of the clusters. Color coding is similar to panel B. 

In Fig. 2A we show the major topological interactions in the spatial cluster model 

we derived and in Fig. 2B we present a color coded clustergram of the inferred clus-

tering, depicting the profiles in and around the clusters (Each row represent one spa-

tial cluster at one genomic locus, rows are grouped according to their associated clus-

ter state, see Methods). A more quantitative summary of Fig. 2 is shown in 

http://www.wisdom.weizmann.ac.il/~ramij/recomb2009.html. We used the hierarchi-

cal learning process described above, with two clusters at the first phase and eight 

clusters per super-cluster in the second phase. The algorithm chose to first partition 

the genome according to the strength of interaction with the nuclear lamina (upper 

clusters – strong interaction, lower clusters – no interaction) and then constructed a 

detailed model to describe different combinations of histone modification and factor 

occupancy and their couplings. To further illustrate the possible relationships between 

the clusters and genes we computed the enrichment of cluster associations as a func-

tion of the distance from the TSSs (Fig. 2C). 

Several clusters we detected represent known structure around TSSs which the al-

gorithm rediscovered in a completely unsupervised fashion and without using infor-

mation on the TSSs locations. Cluster 15 is the only one with high levels of RNA 

PolII, and is further associated with very high H3K4me3 levels and significant en-

richments of H2A.Z. The cluster is also enriched with H3K9me1, and is sometime 

observed with CTCF binding. CTCF binding was reported before to occur at alterna-

tive promoters sites [22], and this may explain the partial co-occurrence between 

RNAP and CTCF at cluster 15. Cluster 12 and cluster 10 represent a combination of 

mono methylation at multiple positions (H3K4me1, H3K36me1, H3K9me), all of 

which were associated before with the regions flanking the TSS. For cluster 12, there 

are very strong enrichments of H4K20me1 and H2BK5me1 and a detected preference 

for the regions downstream the TSS, while for cluster 10, little H4K20me1 and 

H2BK5me1 enrichment is detected. Each of the clusters are covering about 2% of the 

genome (Fig. 2D). The five monomethylation marks (at H3 K4, K9, K36, H4K20 and 

H2BK5) were associated before with active chromatin, but here we see that there are 

at least two modes of correlation among them. We note that since we observe such 

complex pattern, general monomethylation antibody specificity is unlikely to explain 

these patterns. The monomethylation marks may still share a mechanism that will ex-

plain their high degree of correlation. Cluster 8 is representing enriched trimethylation 

at H3K36, which is largely free of other marks and is found in the longer range down-

stream of transcribed genes. This modification was previously associated with tran-
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scription elongation. Cluster 11 shows insulator patterns, including hotspots of CTCF 

and H2A.Z, with a preference to the region upstream of the TSS. 

Other clusters are not tightly associated to TSSs and represent weaker enrichments 

than the clear preferences discussed above. They still show a high degree of correla-

tion between marks and can provide insights into the organization of chromatin out of 

the TSS context. Cluster 6 represents cores of Lamin B1 interaction and is not linked 

to any of the histone modifications. All clusters associated with the lamina are gener-

ally void of activation mark, as noted before, and even though the datasets compared 

two different cell types. Clusters 5 and 13 are characterized by the polycomb modifi-

cations, H3K27me3 and H3K27me2 and are occupying over 10% of genome, mostly 

in intergenic regions. Polycomb marks were characterized extensively in embryonic 

stem cells, and domains with strong H3K27me3 enrichment were linked to gene re-

pression in genes poised for later activation upon differentiation. Cluster 5 and 13 

may represent a broader and weaker pattern of polycomb marks, reminiscent of recent 

evidence on large H3K27me3 domains or large scale polycomb domains in flies [23]. 

A different type of repressive mark is H3K9me3 which is the main distinguishing fea-

ture of cluster 2. Interestingly, cluster 2 is also associated with H4K20me3 which was 

observed before to correlated with H3K9me3 [24] but was not suggested to co-occur 

with H3K9me3 in the original TSS-centric analysis of the data [1]. Here we also ob-

serve association of the H3K9me3 heterochromatic mark with trimethylation at 

H3K79, in concordance with recent evidence on H3K79me3 pericentromeric localiza-

tion in mice [25] and with results derived from the same dataset using a local pattern 

search approach [26]. Finally, two clusters (3 and 16) are characterized by cryptic en-

richment of H3K79me1 – with unclear functional or organizational specificity. 
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Figure 1: Hotspots of H3K9me3/H3K79me3/H4K20me3 (cluster 2) enrichment. We com-

puted the fraction the genome covered by cluster 2 in bins of 1MB. Shown is the overall distri-

bution of these fractions (upper right) and how it is spatially organized in chromosome 1-13 

(main figure, blue curves). Hotspots (fraction over 4%) are marked in red and are preferentially 

occurring in pericentromeric regions 

Beyond the set of clusters and their properties, the spatial cluster model also re-

flects higher level genomic organization. As shown in Fig. 3, cluster 2 occupancy 

(Representing trimethylation in H3K9, H3K79 and H4K20) is distributed in a highly 

non uniform fashion across the genome, with mean occupancy of less than 1%, but a 

significant number of 1MB genomic bins with more than four fold that number. As 

expected, the strongest cluster 2 hotspots are observed in pericentromeric regions, but 

many additional hotspots are apparent. Fig. 3 provides a general reference for the or-

ganization of H3K9me3 heterochromatin in CD4+ T-cells. 

In Fig. 4 we illustrate the clustering of a specific chromosomal region around the 

HOXA gene family. The higher level view shows domains of "open" chromatin (red 

and gray bars) packed between larger domains of repressed  ("closed") chromatin 

(blue bars: clusters 5,13 and 2, yellow bars: cluster 11). "Closed" clusters are fre-

quently co-occuring with lamina clusters (light blue: cluster 6). The 100KB around 

the HOXA genes are unique in showing both active (red) and repressive (blue) marks. 

A higher resolution view (lower panel) shows activation domains at key HOXA gene 

promoters, and insulator/lamina domains flanking the entire region.  

HOXA

“Open” clusters
“Closed” clusters
LaminB hotspots

Genes

CTCF LaminBHOXA

“Open” clusters
“Closed” clusters
LaminB hotspots

Genes

CTCF LaminB

 

Figure 2: Spatial clustering in the HOXA region.  Shown is the clustering of some 10MB in 

the human chromosome 7, color coded according to the clustering shown in Fig 2.  Genes are 

marked in the lower track. 

Spatial clustering model for differentiation of mouse embryonic stem cells. The 

genomes of embryonic stem cells (ESC) are uniquely organized to ensure pluripo-

tency and maximize flexibility upon a differentiating signal. Genome wide maps of 

key histone marks, involving the trithorax- (H3K4) and Polycomb- (H3K27) associ-

ated modifications have revolutionized our understanding of the pluripotent epige-

netic state [4, 27, 28]. To analyze the mouse ESC epigenomic state we applied spatial 

clustering to a combined ChIP-seq dataset [3, 4]. The data set included only few of 

the histone marks that were analyzed above for human T-cells, but allowed compari-

son between different cell types. To apply our algorithm, we used ChIP-seq coverage 

statistics in bins of 50bp as described [4] and derived a model including 3 super-

clusters and 6 sub clusters in each of them. We also used DNA methylation data from 
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the same experiments, but since their overall genomic coverage was very low, we 

omit them from the discussion. 

As shown in Fig. 5 the spatial clustering reveals both cell-type conserved and cell 

type specific patterns (compare also http://www.wisdom.weizmann.ac.il/~ramij/re-

comb2009.html for a better quantitative resolution),. As expected, and similarly to the 

pattern observed in somatic human cell (Fig. 2), the algorithm generated a cluster 

(#16) that is defined by strong H4Kme3 presence and is observed almost exclusively 

at annotated TSSs. Cluster 15, which is coupled by the HMM to cluster 16, represents 

a region with dominant H3K4me1 levels, which are conserved between cell types (see 

http://www.wisdom.weizmann.ac.il/~ramij/recomb2009.html) and clusters 18,14 (and 

to a lesser extent 2) are based on cell-type conserved H3K36me3 elongation marks. 

Clusters 17 and 12 represent H3K4me1 domains that are specific to mESC or NP 

cells. As noted before [29], the active chromatin state in embryonic stem cells is fre-

quently co-occurring with high levels of H3K27me3, and this is reflected in cluster 

16. On the other hand, cluster 11 represent domains in which H3K27me3 is the only 

significantly enriched mark, with very mild bias to promoters and conserved intensity 

between stem cells and derived lineages (in contrast to the decreasing H3K27me3 in-

tensity in cluster 17) 
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Figure 3: Spatial clustering of the mouse ESC epigenome. A) HMM topology. Shown are 

the model states, where we connect pairs of states that frequently follow each other. B) Global 

view. Color coded visualization of clusters and their flanking region. Each row segment repre-

sents the occupancy of one mark or factor over one spatial cluster and its flanking region, 

where we stack together loci that were associated to the same cluster (left color coded blocks). 

The color coding is providing a quick visualization of the complex model, but may become 

saturated (e.g., in clusters 15 and 16). For a more quantitative view consult 

http://www.wisdom.weizmann.ac.il/~ramij/recomb2009.html. C) TSS enrichments. The graph 

shown indicates for each cluster and offset from the TSS (X axis) the ratio between the fraction 

of loci associated with the cluster at that TSS offset to the overall fraction of genomic loci at 

that TSS offset (Y axis, 0.2 to 6, log scale).  D) Cluster coverage. Shown are the fractions of 

genomic loci covered by each of the clusters. Color coding is similar to panel B. 

As observed in the human datasets, we observe clusters of H3K9me3 activity. 

Cluster 9 shows H3Kme9 in mESC, with some matching H4K20me3 co-occurrence. 

Perhaps surprisingly, this pattern is not conserved in NP cells, which have their own 

H3K9me3 cluster (#6). It is unclear if this represents real plasticity of these hetero-

chromatic marks, or experimental limitations (for example, cluster 8 and 4 isolate ex-

perimental artifacts by detecting clusters that are defined by elevated coverage in 

whole cell extract controls). These questions should be further addressed experimen-

tally. 

Discussion 

We have presented spatial clustering as a new analysis methodology for dissecting 

large ChIP-chip and ChIP-seq datasets into defined clusters of common genomic or 

epigenomic behavior. The new method is allowing unsupervised and global modeling 

of the data, in a way that matches the unbiased and comprehensive nature of the ex-

periments. It represents the entire genome as an organized set of contiguous clusters, 

and is capable of capturing both the nature of each cluster and the relations between 

them, something that is not available in local views [26]. Spatial clustering does not 

assume any gene structure or information on TSSs for defining clusters, and can 

therefore be used to study both TSS-related and TSS-unrelated genomic phenomenon. 

The model is constructing patterns that are based on a combined behavior over all ex-

perimental tracks and therefore scales well with increasing number of experiments. 

Spatial clustering can be the first line of analysis for genomic data, serving as a start-

ing point for more careful hypothesis testing in a way similar to that by which stan-

dard clustering is used for gene expression analysis. 

The data we analyzed here is providing us with a comprehensive view of the epi-

genomic structure of human T-cells and differentiating mouse ESCs. The analysis 

concisely summarizes known chromatin modes and reveals some new testable asso-

ciations between histone marks (e.g., H3K9me3 with H3K79me3). The results em-

phasize the need for an integrative and coherent model that can broadly combine mul-

tiple epigenomic datasets and derive architectural insights. Ultimately, such a model 

should be expanded to include more regulatory factors, in an attempt to explain how 

genomes organization is regulated. It should also take into account higher order 

chromatin structure, which may be critical for the understanding of genomic organiza-
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tion as already suggested by the remarkable nuclear lamina interaction data we used 

here. The Spatial clustering framework we introduced provides an immediate answer 

to problems with analysis of current data, as well as foundations for the development 

of more holistic models for genome organization. 
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