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Abstract

We show that any explicit example for a tensor A : [n]r → F with tensor-rank
≥ nr·(1−o(1)), where r = r(n) ≤ log n/ log logn is super-constant, implies an explicit
super-polynomial lower bound for the size of general arithmetic formulas over F. This
shows that strong enough lower bounds for the size of arithmetic formulas of depth 3
imply super-polynomial lower bounds for the size of general arithmetic formulas.

One component of our proof is a new approach for homogenization and multilin-
earization of arithmetic formulas, that gives the following results:

We show that for any n-variate homogeneous polynomial f of degree r, if there
exists a (fanin-2) formula of size s and depth d for f then there exists a homogeneous

formula of size O
((

d+r+1
r

)
· s
)

for f . In particular, for any r ≤ O(log n), if there

exists a polynomial size formula for f then there exists a polynomial size homogeneous
formula for f . This refutes a conjecture of Nisan and Wigderson [NW95] and shows
that super-polynomial lower bounds for homogeneous formulas for polynomials of small
degree imply super-polynomial lower bounds for general formulas.

We show that for any n-variate set-multilinear polynomial f of degree r, if there
exists a (fanin-2) formula of size s and depth d for f then there exists a set-multilinear
formula of size O ((d + 2)r · s) for f . In particular, for any r ≤ O(log n/ log logn),
if there exists a polynomial size formula for f then there exists a polynomial size
set-multilinear formula for f . This shows that super-polynomial lower bounds for
set-multilinear formulas for polynomials of small degree imply super-polynomial lower
bounds for general formulas.

∗ran.raz@weizmann.ac.il, Research supported by the Israel Science Foundation (ISF), the Binational
Science Foundation (BSF) and the Minerva Foundation.
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1 Introduction

1.1 Arithmetic Formulas

Let F be a field and let {x1, . . . , xn} be a set of input variables. An arithmetic formula is
a directed tree whose edges are directed from the leaves to the root. Every leaf of the tree
is labeled with either an input variable or a field element. Every other node of the tree is
labeled with either + or ×; in the first case the node is a sum gate and in the second case a
product gate. The size of a formula is the number of edges in it. The depth of a formula is
the length of the longest directed path in it1. The fanin of a gate is its in-degree.

Every node of an arithmetic formula computes a polynomial in the ring F[x1, . . . , xn] as
follows. A leaf just computes the input variable or field element that labels it. A sum gate
computes the sum of the polynomials computed by its children. A product gate computes
the product of the polynomials computed by its children. The output of the formula is the
polynomial computed by the root. The root of the formula is also called the output node.

An arithmetic circuit is defined in the same way as an arithmetic formula, except that
the underlying graph is a general directed acyclic graph (rather than a directed tree). For
simplicity, we assume that every circuit has exactly one output node.

Proving super-polynomial lower bounds for the size of arithmetic circuits and formulas
(for explicit polynomials) is one of the most interesting and most challenging open problems
in computational complexity. Such lower bounds are only known for restricted cases. For
example, super-polynomial lower bounds were proved for non-commutative formulas [Nis91],
for depth 3 formulas over finite fields [GK98, GR98], and for multilinear formulas [R04a,
R04b].

For an excellent recent survey on arithmetic circuits and formulas, see [SY10].

1.2 Homogeneous Formulas

A polynomial f in the ring F[x1, . . . , xn] is homogeneous if all the monomials that occur in f
are of the same degree. An arithmetic formula (or circuit) is homogeneous if the polynomial
computed by each of its nodes is homogeneous.

A standard (and straightforward) homogenization technique by Strassen [Str73] shows
that for any homogeneous polynomial f ∈ F[x1, . . . , xn] of degree r, if there exists a formula
of size s for f then there exists a homogeneous formula of size poly(slog r) for f . It was
conjectured (see for example [NW95]) that this technique is optimal for every degree r. We
show that this is not the case. In particular, we show that for any homogeneous polynomial
f ∈ F[x1, . . . , xn] of degree r ≤ O(log n), if there exists a polynomial size formula for f then
there exists a polynomial size homogeneous formula for f . Thus, super-polynomial lower
bounds for homogeneous formulas for polynomials of degree up to O(log n) imply super-

1When counting the depth of a formula, it is customary not to count scalar-products, that is, product
gates of fanin 2 that at least one of their children is a leaf labeled by a field element.
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polynomial lower bounds for general arithmetic formulas. Our approach can be viewed as a
tighter analysis of the standard technique.

1.3 Set-Multilinear Formulas

Let X1, . . . , Xr be disjoint sets of variables. A polynomial f over the set of variables X1 ∪
. . . ∪ Xr is set-multilinear in the sets X1, . . . , Xr if every monomial that occurs in f is
multilinear and contains exactly one variable from each set Xi. An arithmetic formula (or
circuit) is set-multilinear in the sets X1, . . . , Xr if the polynomial computed by its output
node is set-multilinear in the sets X1, . . . , Xr and the polynomial computed by each of its
other nodes is set-multilinear in a subset of {X1, . . . , Xr}.

A standard (and straightforward) multilinearization technique shows that for any set-
multilinear polynomial f over the sets X1, . . . , Xr, if there exists a formula of size s for
f then there exists a set-multilinear formula of size poly(sr) for f . We show that this
technique is not optimal. In particular, we show that for any set-multilinear polynomial f
of degree r ≤ O(log n/ log log n), if there exists a polynomial size formula for f then there
exists a polynomial size set-multilinear formula for f . Thus, super-polynomial lower bounds
for set-multilinear formulas for polynomials of degree up to O(log n/ log log n) imply super-
polynomial lower bounds for general arithmetic formulas. Our approach can be viewed as a
tighter analysis of the standard technique.

Set-multilinear formulas were first studied in [NW95]. Super-polynomial lower bounds
for multilinear formulas (that are more general than set-multilinear formulas) were proved
in [R04a, R04b] (see also [Aar04, RSY07, RY08a, RY08b]). These techniques however do
not give super-polynomial lower bounds for polynomials of very small degree.

1.4 Tensor-Rank

A tensor A : [n]r → F is of rank 1 if there exist r vectors a1, . . . , ar : [n] → F such that
A = a1 ⊗ . . .⊗ ar (where ⊗ denotes tensor product, that is, A is defined by A(i1, . . . , ir) =
a1(i1) · · · ar(ir)). More generally, the tensor-rank of A is the minimal k such that there
exist k tensors A1, . . . , Ak : [n]r → F of rank 1 such that A =

∑k
i=1Ai. This is a natural

generalization of matrix-rank.

Given a tensor A : [n]r → F and r sets of variables X1, . . . , Xr, where Xi = {xi,1, . . . , xi,n},
one can define the set-multilinear polynomial fA as follows

fA(x1,1, . . . , xr,n) =
∑

i1,...,ir∈[n]

A(i1, . . . , ir) ·
r∏

j=1

xj,ij

A beautiful well known and straightforward insight, going back to [Str73] (see [Gat88]
for a survey), shows that the tensor-rank of tensors of order r = 3 is very related to bilinear
complexity and hence also to general arithmetic circuit complexity. In particular (using
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also [BS83]), if the tensor-rank of A : [n]3 → F is k then the smallest circuit for fA is of
size Ω(k). Thus, one can prove lower bounds for arithmetic circuit size by proving lower
bounds for tensor-rank. Note, however, that the tensor-rank of A : [n]3 → F is bounded
by O(n2). Hence, this approach can only give lower bounds of up to Ω(n2) for arithmetic
circuit size. We note that the tensor-rank of most tensors A : [n]3 → F is Θ(n2). However,
to date, no lower bound better than Ω(n) is known for the tensor-rank of any explicit tensor
A : [n]3 → F. Lower bounds of 3n−O(log n) were recently proved in [AFT11].

Here we consider tensors A : [n]r → F where r = r(n) is super-constant and satisfies
r ≤ O(log n/ log log n). We show that for any such A, if there exists an arithmetic formula

of size nc for fA then the tensor-rank of A is at most nr·(1−2−O(c)). Thus, a lower bound of
nr·(1−o(1)) for the tensor-rank of A implies a super-polynomial lower bound for the size of any
arithmetic formula for2 fA.

Since the tensor-rank of A corresponds to computations of fA by depth-3 (set-multilinear)
formulas, our result shows that strong enough lower bounds for the size of arithmetic formulas
of depth 3 imply super-polynomial lower bounds for the size of general arithmetic formulas.
Previously, it was well known that strong enough lower bounds for the size of arithmetic
circuits of depth 4 imply exponential lower bounds for the size of general arithmetic circuits
(see for example [RY08a, R08]). Moreover, a striking recent result of Agrawal and Vinay
(based on [VSBR83]) shows that any exponential lower bound for the size of arithmetic
circuits of depth 4 implies an exponential lower bound for the size of general arithmetic
circuits [AV08].

We note that it is very easy to give lower bounds of nbr/2c for the tensor-rank of tensors
A : [n]r → F (by taking a full-rank matrix of size nbr/2c × nbr/2c). Lower bounds of 2nbr/2c +
n − O(r log n) for the tensor-rank of explicit tensors A : [n]r → F (for odd r) were recently
proved in [AFT11]. We note also that it was proved by H̊astad that computing the tensor-
rank is an NP-complete problem [H89].

1.5 Preliminaries

We say that an arithmetic formula (or circuit) is of fanin 2 if the fanin of every gate in it
is 2. We say that an arithmetic formula (or circuit) is of product-fanin-2 if the fanin of every
product gate in it is 2. The product-depth of a product-fanin-2 formula (or circuit) is the
maximal number of product gates along a directed path in it.

For a formula (or circuit) Φ and a node u in it, we denote by Φu the sub-formula of Φ
rooted at u and by Φ̂u the polynomial computed by the formula Φu.

It is well known that for any fanin-2 formula Φ of size s, one can assume without loss of
generality that the depth of Φ is O(log s). That is, there exists a formula of size poly(s) and
depth O(log s) that computes the same polynomial computed by Φ.

2Moreover, it was noted to us by Amir Yehudayoff that by the completeness of the permanent [Val79], if
the tensor A is “explicit” the super-polynomial lower bound holds for the permanent.
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1.6 Discussion

A well known approach, first suggested by Strassen [Str73], is to consider the tensor-product
of tensors of high tensor-rank as a candidate for a larger tensor with high tensor-rank.

Let n,m, r be such that mr = n, and for simplicity assume that F is a finite field. Let
A1, . . . , Ar : [m]r → F be random tensors, and let A = A1 ⊗ . . . ⊗ Ar : [n]r → F be their
tensor-product, defined by

A((i1,1, . . . , i1,r), . . . , (ir,1, . . . , ir,r)) = A1(i1,1, . . . , ir,1) · · ·Ar(i1,r, . . . , ir,r).

Since A1, . . . , Ar are random, with high probability their tensor-rank is high. If one can prove
that with probability larger than 0 the tensor-rank of A is at least nr·(1−o(1)), one obtains
super-polynomial lower bounds for arithmetic formulas for the polynomial fA, where the
entries of the tensors A1, . . . , Ar are viewed as additional input variables (note that there
are only r · n such entries).

2 Homogenization

For a polynomial f ∈ F[x1, . . . , xn], denote by fi the homogeneous part of f of degree i.
That is, f =

∑
i fi where each fi is a homogeneous polynomial of degree i. In the same way,

for a formula (or circuit) Φ and a node u in it denote by Φ̂u,i the homogeneous part of degree

i of the polynomial Φ̂u.

Obviously, if u is a fanin-2 sum gate with children v, w then for every i

Φ̂u,i = Φ̂v,i + Φ̂w,i (1)

and if u is a fanin-2 product gate with children v, w then for every i

Φ̂u,i =
i∑

j=0

Φ̂v,j · Φ̂w,i−j (2)

Let Φ be a fanin-2 circuit of size s and depth d that computes a homogeneous polynomial
of degree r. There is a standard and straightforward technique to turn Φ into a fanin-
2 homogeneous circuit of size s · poly(r) and depth O(d · log r) that computes the same
polynomial [Str73]. The main idea of the homogenization technique is to split every node u
in the circuit into r + 1 nodes u0, . . . , ur, where each node ui in the new circuit computes
the homogeneous part of degree i of the polynomial computed by u; that is, ui computes
the polynomial Φ̂u,i. The computation of each Φ̂u,i is done recursively using Equation 1 and
Equation 2. If u is the output node of the original circuit, the output node of the new circuit
is the node ur that computes the polynomial Φ̂u,r = Φ̂u (since we assumed that the original
circuit computes a homogeneous polynomial of degree r). The size of the new circuit is
s · poly(r). When we turn the new circuit into a fanin-2 circuit its depth may increase to
O(d · log r) since the sum in Equation 2 is over up to r + 1 elements.
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Let Φ be a formula of size s that computes a homogeneous polynomial of degree r. The
standard homogenization technique turns Φ into a homogeneous formula of size poly(slog r)
that computes the same polynomial, as follows. First, assume for simplicity and without loss
of generality that Φ is a fanin-2 formula, and assume without loss of generality that the depth
of Φ is O(log s) (see Section 1.5) - this step may increase the size of Φ polynomially. Next, use
the homogenization technique described above to turn Φ into a fanin-2 homogeneous circuit
of depth O(log s · log r) for the same polynomial. Finally, turn that circuit into a formula of
size 2O(log s·log r) = poly(slog r) (by duplicating every node as many times as needed, until the
out-degree of every node is at most 1).

It was conjectured in [NW95] that the increase in the formula-size by a power of O(log r)
in the exponent is necessary. We note also that for the special case of multilinear formulas,
it was recently proved in [HY09] that for r = poly(n) this is indeed the case.

2.1 A New Homogenization Theorem

Our approach can be viewed as a tighter analysis of the standard technique described above.
For simplicity and without loss of generality we state and prove our theorem for fanin-2
formulas.
Theorem 1. Let Φ be a fanin-2 formula of size s and product-depth d that computes a
homogeneous polynomial of degree r. Then there exists a fanin-2 homogeneous formula Ψ of
size O

((
d+r+1

r

)
· s
)
and product-depth d that computes the same polynomial3.

Proof. For every node u in the formula Φ, denote by path(u) the set of all nodes on the
directed path from u to the root (including the node u). For every node u denote by Nu the
set of all functions D : path(u)→ {0, . . . , r} such that:

1. For every v, w ∈ path(u) such that v is a sum gate and w is a child of v, D(v) = D(w).

2. For every v, w ∈ path(u) such that v is a product gate and w is a child of v, D(v) ≥
D(w).

Intuitively, a function D ∈ Nu describes a possible progression of the degree of a monomial
along the path from u to the root.

Construction of Ψ:

The formula Ψ is constructed as follows. For every node u in Φ and D ∈ Nu we will have a
node (u,D) in Ψ. Every node (u,D) will compute in Ψ the polynomial

Ψ̂(u,D) = Φ̂u,D(u)

3In the same way, if the polynomial computed by Φ is not homogeneous and is of an arbitrary degree,
and r is an integer, there exists Ψ as above that computes the homogeneous part of degree r of the polynomial
computed by Φ.
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that is, the homogeneous part of degree D(u) of the polynomial Φ̂u computed by u in Φ. To
compute Φ̂u,D(u), the node (u,D) will only use the outputs of nodes (v,D′) such that v is a
child of u and D′ extends D (that is, D′ agrees with D on every node on the path from u
to the root). This is done inductively in a straightforward manner (using Equation 1 and
Equation 2) as follows:

1. u is a leaf: If u is a leaf in Φ then for every D ∈ Nu the node (u,D) will be a leaf. If
u is labeled by a field element, (u,D) is labeled by the same field element if D(u) = 0
and by 0 if D(u) 6= 0. If u is labeled by an input variable, (u,D) is labeled by the same
input variable if D(u) = 1 and by 0 if D(u) 6= 1. By the definitions, for every D ∈ Nu,

Ψ̂(u,D) = Φ̂u,D(u)

2. u is a sum gate: Assume that u is a sum gate in Φ with children v, w. For every
D ∈ Nu denote by Dv ∈ Nv the function that agrees with D on path(u) and satisfies
Dv(v) = D(u), and in the same way denote by Dw ∈ Nw the function that agrees with
D on path(u) and satisfies Dw(w) = D(u). The node (u,D) will sum the outputs of
the nodes (v,Dv) and (w,Dw). By the induction hypothesis and Equation 1 we have

Ψ̂(u,D) = Ψ̂(v,Dv) + Ψ̂(w,Dw) = Φ̂v,Dv(v) + Φ̂w,Dw(w) = Φ̂v,D(u) + Φ̂w,D(u) = Φ̂u,D(u)

3. u is a product gate: Assume that u is a product gate in Φ with children v, w. For
every D ∈ Nu and i ∈ {0, . . . , D(u)} denote by Dv,i ∈ Nv the function that agrees with
D on path(u) and satisfies Dv,i(v) = i, and in the same way denote by Dw,i ∈ Nw the
function that agrees with D on path(u) and satisfies Dw,i(w) = i. The node (u,D)

will compute Ψ̂(u,D) from the outputs of the nodes {(v,Dv,i) : i ∈ {0, . . . , D(u)}} and
{(w,Dw,i) : i ∈ {0, . . . , D(u)}} by the formula

Ψ̂(u,D) =

D(u)∑
i=0

Ψ̂(v,Dv,i) · Ψ̂(w,Dw,D(u)−i)

By the induction hypothesis and Equation 2 we have

Ψ̂(u,D) =

D(u)∑
i=0

Ψ̂(v,Dv,i) · Ψ̂(w,Dw,D(u)−i) =

D(u)∑
i=0

Φ̂v,Dv,i(v) · Φ̂w,Dw,D(u)−i(w) =

D(u)∑
i=0

Φ̂v,i · Φ̂w,D(u)−i = Φ̂u,D(u)

We fix the output node of Ψ to be the node (u,D) such that u is the output node of Φ and
D ∈ Nu is the function that satisfies D(u) = r.

Comment: Note that in the construction above there may be nodes (u,D) that are
not connected by a path to the output node of Ψ. These nodes do not contribute to the
functionality of Ψ and should be removed so that the final Ψ is a tree rather than a union
of trees.
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Functionality of Ψ:

We proved by induction that every node (u,D) in Ψ computes the polynomial Ψ̂(u,D) =

Φ̂u,D(u). In particular, the output node (u,D) computes the polynomial Ψ̂(u,D) = Φ̂u,D(u) =

Φ̂u,r = Φ̂u, which is the polynomial computed by Φ.

Properties of Ψ:

To see that Ψ is a formula note that the output of a node (v,D′) is only used by a node
(u,D) such that u is the parent of v and D agrees with D′ on path(u), and there is at most
one such node (u,D). Thus, the out-degree of every node is at most 1.

Ψ is homogeneous since (by induction) each of its nodes computes a homogeneous poly-
nomial.

The product-depth of Ψ is the same as the product-depth of Φ since the “product-depth”
of Equation 1 is 0 and the “product-depth” of Equation 2 is 1.

Finally, since the size of every Nu is bounded by
(
d+r+1

r

)
, the size of Ψ is at most

O
((

d+r+1
r

)
· s
)
.

(Note also that we can replace every gate of fanin larger than 2 by a tree of gates of
fanin 2, so that the final fanin of every gate in the formula is at most 2).

Corollary 2. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree ≤ O(log n). If
there exists a polynomial size formula for f then there exists a polynomial size homogeneous
formula for f .

Proof. Let Φ be a polynomial size formula for f . Without loss of generality Φ is a fanin-2
formula of depth O(log n). The proof hence follows from Theorem 1.

3 Multilinearization

For vectors a, b ∈ {0, 1}r, we say that b ≤ a if for every i ∈ {1, . . . , r}, b(i) ≤ a(i).

Let X1, . . . , Xr be disjoint sets of variables. For a vector a ∈ {0, 1}r and a monomial q in
the set of variables X1∪ . . .∪Xr, we say that q is set-multilinear of type a if it is multilinear
and contains exactly one variable from each set Xi such that a(i) = 1 and no variables from
sets Xi such that a(i) = 0. For a polynomial f over the set of variables X1 ∪ . . . ∪Xr, and
a vector a ∈ {0, 1}r, denote by fa the set-multilinear part of f of type a. That is, fa is the
sum of all the set-multilinear monomials of type a that occur in f with the same coefficient
as their occurrence in f .

In the same way, for a formula (or circuit) Φ and a node u in it denote by Φ̂u,a the

set-multilinear part of type a of the polynomial Φ̂u.
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Obviously, if u is a fanin-2 sum gate with children v, w then for every a

Φ̂u,a = Φ̂v,a + Φ̂w,a (3)

and if u is a fanin-2 product gate with children v, w then for every a

Φ̂u,a =
∑

b∈{0,1}r s.t. b≤a

Φ̂v,b · Φ̂w,a−b (4)

Let Φ be a fanin-2 circuit of size s and depth d that computes a set-multilinear polynomial
in the sets X1, . . . , Xr. There is a standard and straightforward technique to turn Φ into a
fanin-2 set-multilinear circuit of size s · poly(2r) and depth O(d · r) that computes the same
polynomial. The main idea of the multilinearization technique is to split every node u in
the circuit into 2r nodes {ua}a∈{0,1}r , where each node ua in the new circuit computes the
set-multilinear part of type a of the polynomial computed by u; that is, ua computes the
polynomial Φ̂u,a. The computation of each Φ̂u,a is done recursively using Equation 3 and
Equation 4. If u is the output node of the original circuit, the output node of the new circuit
is the node u~1 (where ~1 ∈ {0, 1}r denotes the vector (1, . . . , 1)) that computes the polynomial

Φ̂u,~1 = Φ̂u (since we assumed that the original circuit computes a set-multilinear polynomial
in the sets X1, . . . , Xr). The size of the new circuit is s · poly(2r). When we turn the new
circuit into a fanin-2 circuit its depth may increase to O(d · r) since the sum in Equation 4
is on up to 2r elements.

Let Φ be a formula of size s that computes a set-multilinear polynomial in the sets
X1, . . . , Xr. The standard multilinearization technique turns Φ into a set-multilinear formula
of size poly(sr) that computes the same polynomial, as follows. First, assume for simplicity
and without loss of generality that Φ is a fanin-2 formula, and assume without loss of
generality that the depth of Φ is O(log s) (see Section 1.5) - this step may increase the size of
Φ polynomially. Next, use the multilinearization technique described above to turn Φ into a
fanin-2 set-multilinear circuit of depth O((log s) · r) for the same polynomial. Finally, turn
that circuit into a formula of size 2O((log s)·r) = poly(sr).

3.1 A New Multilinearization Theorem

Our approach can be viewed as a tighter analysis of the standard technique described above.
For simplicity and without loss of generality we state and prove our theorem for fanin-
2 formulas. The technique that we use is very similar to the technique that we used in
Section 2.1.

Theorem 3. Let Φ be a fanin-2 formula of size s and product-depth d that computes a
set-multilinear polynomial over the disjoint sets X1, . . . , Xr. Then there exists a fanin-2 set-
multilinear formula Ψ of size O ((d+ 2)r · s) and product-depth d that computes the same
polynomial.
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Proof. For every node u in the formula Φ, denote by path(u) the set of all nodes on the
directed path from u to the root (including the node u). For every node u denote by Nu the
set of all functions D : path(u)→ {0, 1}r such that:

1. For every v, w ∈ path(u) such that v is a sum gate and w is a child of v, D(v) = D(w).

2. For every v, w ∈ path(u) such that v is a product gate and w is a child of v, D(v) ≥
D(w).

Intuitively, a function D ∈ Nu describes a possible progression of the type of a set-multilinear
monomial along the path from u to the root.

Construction of Ψ:

The formula Ψ is constructed as follows. For every node u in Φ and D ∈ Nu we will have a
node (u,D) in Ψ. Every node (u,D) will compute in Ψ the polynomial

Ψ̂(u,D) = Φ̂u,D(u)

that is, the set-multilinear part of type D(u) of the polynomial Φ̂u computed by u in Φ. To
compute Φ̂u,D(u), the node (u,D) will only use the outputs of nodes (v,D′) such that v is a
child of u and D′ extends D (that is, D′ agrees with D on every node on the path from u
to the root). This is done inductively in a straightforward manner (using Equation 3 and
Equation 4) as follows:

1. u is a leaf: If u is a leaf in Φ then for every D ∈ Nu the node (u,D) will be a leaf. If
u is labeled by a field element, (u,D) is labeled by the same field element if D(u) = ~0
and by 0 if D(u) 6= ~0 (where ~0 denotes the 0 vector in {0, 1}r). If u is labeled by an
input variable from the set Xi, (u,D) is labeled by the same input variable if D(u) = ~ei
and by 0 if D(u) 6= ~ei (where ~ei ∈ {0, 1}r is defined by ~ei(j) = 1 iff j = i). By the
definitions, for every D ∈ Nu,

Ψ̂(u,D) = Φ̂u,D(u)

2. u is a sum gate: Assume that u is a sum gate in Φ with children v, w. For every
D ∈ Nu denote by Dv ∈ Nv the function that agrees with D on path(u) and satisfies
Dv(v) = D(u), and in the same way denote by Dw ∈ Nw the function that agrees with
D on path(u) and satisfies Dw(w) = D(u). The node (u,D) will sum the outputs of
the nodes (v,Dv) and (w,Dw). By the induction hypothesis and Equation 3 we have

Ψ̂(u,D) = Ψ̂(v,Dv) + Ψ̂(w,Dw) = Φ̂v,Dv(v) + Φ̂w,Dw(w) = Φ̂v,D(u) + Φ̂w,D(u) = Φ̂u,D(u)

3. u is a product gate: Assume that u is a product gate in Φ with children v, w. For
every D ∈ Nu and a ∈ {0, 1}r such that a ≤ D(u) denote by Dv,a ∈ Nv the function
that agrees with D on path(u) and satisfies Dv,a(v) = a, and in the same way denote by
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Dw,a ∈ Nw the function that agrees with D on path(u) and satisfies Dw,a(w) = a. The

node (u,D) will compute Ψ̂(u,D) from the outputs of the nodes {(v,Dv,a) : a ≤ D(u)}
and {(w,Dw,a) : a ≤ D(u)} by the formula

Ψ̂(u,D) =
∑

a≤D(u)

Ψ̂(v,Dv,a) · Ψ̂(w,Dw,D(u)−a)

By the induction hypothesis and Equation 4 we have

Ψ̂(u,D) =
∑

a≤D(u)

Ψ̂(v,Dv,a) · Ψ̂(w,Dw,D(u)−a) =

∑
a≤D(u)

Φ̂v,Dv,a(v) · Φ̂w,Dw,D(u)−a(w) =
∑

a≤D(u)

Φ̂v,a · Φ̂w,D(u)−a = Φ̂u,D(u)

We fix the output node of Ψ to be the node (u,D) such that u is the output node of Φ and
D ∈ Nu is the function that satisfies D(u) = ~1.

Comment: Note that in the construction above there may be nodes (u,D) that are
not connected by a path to the output node of Ψ. These nodes do not contribute to the
functionality of Ψ and should be removed so that the final Ψ is a tree rather than a union
of trees.

Functionality of Ψ:

We proved by induction that every node (u,D) in Ψ computes the polynomial Ψ̂(u,D) =

Φ̂u,D(u). In particular, the output node (u,D) computes the polynomial Ψ̂(u,D) = Φ̂u,D(u) =

Φ̂u,~1 = Φ̂u, which is the polynomial computed by Φ.

Properties of Ψ:

To see that Ψ is a formula note that the output of a node (v,D′) is only used by a node
(u,D) such that u is the parent of v and D agrees with D′ on path(u), and there is at most
one such node (u,D). Thus, the out-degree of every node is at most 1.

Ψ is set-multilinear since (by induction) each of its nodes computes a set-multilinear
polynomial.

The product-depth of Ψ is the same as the product-depth of Φ since the “product-depth”
of Equation 3 is 0 and the “product-depth” of Equation 4 is 1.

Finally, since the size of every Nu is bounded by (d + 2)r, the size of Ψ is at most
O ((d+ 2)r · s).

(Note also that we can replace every gate of fanin larger than 2 by a tree of gates of
fanin 2, so that the final fanin of every gate in the formula is at most 2).
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Corollary 4. Let f be a set-multilinear polynomial over sets X1, . . . , Xr of size n each, where
r ≤ O(log n/ log log n). If there exists a polynomial size formula for f then there exists a
polynomial size set-multilinear formula for f .

Proof. Let Φ be a polynomial size formula for f . Without loss of generality Φ is a fanin-2
formula of depth O(log n). The proof hence follows from Theorem 3.

4 Tensor-Rank and Formula Size

Recall that given a tensor A : [n]r → F and r sets of variables X1, . . . , Xr, where Xi =
{xi,1, . . . , xi,n}, we defined the set-multilinear polynomial fA by

fA(x1,1, . . . , xr,n) =
∑

i1,...,ir∈[n]

A(i1, . . . , ir) ·
r∏

j=1

xj,ij

In this section, we show that for any tensor A : [n]r → F with r ≤ O(log n/ log log n),
if there exists a polynomial size formula for the polynomial fA then the tensor-rank of A is
not too high.

Theorem 5. Let n > 1. Let A : [n]r → F be a tensor such that r ≤ O(log n/ log log n). If
there exists a formula of size nc for the polynomial fA then the tensor-rank of A is at most
nr·(1−2−O(c)).

Proof. Let Φ be a formula of size nc for fA. Without loss of generality Φ is a fanin-2 formula
of depth O(log(nc)). Hence, by Theorem 3 we can assume without loss of generality that Φ
is a set-multilinear formula (in the sets X1, . . . , Xr) of size nO(c).

Formulas in Normal Form:

It will be convenient in this proof to allow a leaf of a formula to be labeled by a product of
a field element and an input variable (rather than by only one of them). The polynomial
computed by such a leaf is the product that labels it.

We will say that a set-multilinear formula is in a normal form if it satisfies the following
properties (that can be assumed without loss of generality):

1. The fanin of every product gate in the formula is 2.

2. The sum gates in the formula are collapsed so that a child of a sum gate is never a
sum gate.

3. No node of the formula computes the 0 polynomial.
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4. Every leaf of the formula is labeled by a product of a field element (different than 0)
and an input variable (and hence the polynomial computed by any node in the formula
is of degree larger than 0).

Without loss of generality we assume that the formula Φ is in normal form.

Tensor-Rank:

We will use the following 3 (straightforward) properties of tensor-rank:

1. For any A′ : [n]r
′ → F, where r′ > 0,

rank(A′) ≤ nr′−1 (5)

2. For any A1, . . . , Ak : [n]r
′ → F,

rank

(
k∑

i=1

Ai

)
≤

k∑
i=1

rank(Ai) (6)

3. For any A1 : [n]r1 → F and A2 : [n]r2 → F
rank (A1 ⊗ A2) ≤ rank(A1) · rank(A2) (7)

(where A1 ⊗ A2 : [n]r1+r2 → F is the tensor-product of A1 and A2, defined by
A1 ⊗ A2(i1, . . . , ir1+r2) = A1(i1, . . . , ir1) · A2(ir1+1, . . . , ir1+r2)).

Syntactic-Rank:

For a set-multilinear formula Ψ in normal form in the sets of variables X1, . . . , Xr, we define
the syntactic-rank of Ψ inductively as follows:

1. If u is a leaf,
syn-rank(Ψu) = 1

2. If u is a sum gate with children u1, . . . , uk,

syn-rank(Ψu) = min

(
nr′−1 ;

k∑
i=1

syn-rank(Ψui
)

)
where r′ is the degree of Ψ̂u (and note that since Ψ is in normal form, r′ > 0).

3. If u is a product gate with children u1, u2,

syn-rank(Ψu) = syn-rank(Ψu1) · syn-rank(Ψu2)

By Equation 5, Equation 6, and Equation 7, it is straightforward to verify by induction on
the formula that the syntactic-rank bounds the tensor-rank in the following sense: if AΨ is the
tensor such that the formula Ψ computes the polynomial fAΨ

then rank(AΨ) ≤ syn-rank(Ψ).
Hence, in order to bound the tensor-rank of A it’s sufficient to bound the syntactic-rank
of Φ.
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Extended-Formulas:

It will be convenient to extend the definition of a set-multilinear formula in normal form
(in the sets of variables X1, . . . , Xr), so that each node in the formula can be labeled (in
addition to its label in the formula) by an additional real number larger or equal to 1, referred
to as the weight of the node (if the node is not labeled we think of the weight as 1). We
refer to such formulas as extended-formulas (in the sets of variables X1, . . . , Xr). (Note that
extended-formula already means that the formula is set-multilinear in normal form).

Intuitively, one should think of a weight w of a node as indicating that the sub-formula
rooted at that node is duplicated w times and all the w copies are summed. Note however
that w is a real number and not necessarily integer.

We stress that an extended-formula is not viewed as a computational device and we will
not care about its functionality. We define it in order to explore the relations between size
and syntactic-rank of a formula. We will next define the size, the syntactic-degree and the
syntactic-rank of an extended formula. Note that the size, the syntactic-degree and the
syntactic-rank of an extended formula do not depend on the original labels of the leaves (by
field elements and input variables). These labels can be ignored and are irrelevant for the
rest of the proof.

Size of an Extended-Formula:

For a leaf u in an extended formula, consider the product of the weights of all the nodes
on the directed path from u to the root of the formula. We define the size of an extended-
formula to be the sum over all the leaves, of the product of the weights of all the nodes on
the directed path from u to the root of the formula.

Note that if all weights are 1, the size of an extended-formula is the number of leaves in
the formula. This definition is different than our original definition for the size of a formula
as the number of edges in the formula, but the two notions differ by a factor of at most 2
and hence the difference will not be important.

Note that if in an extended-formula Ψ, u is a node with children u1, . . . , uk, then

size(Ψu) = weight(u) ·
k∑

i=1

size(Ψui
) (8)

(where size(Ψu) and size(Ψui
) denote the sizes of the extended-formulas Ψu and Ψui

).

Syntactic-Degree of an Extended Formula:

We define the syntactic-degree of an extended-formula Ψ inductively as follows:

1. If u is a leaf, syn-deg(Ψu) = 1.
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2. If u is a sum gate with children u1, . . . , uk, syn-deg(Ψu) = syn-deg(Ψu1) (note that for
every i, j, syn-deg(Ψui

) = syn-deg(Ψuj
)).

3. If u is a product gate with children u1, u2, syn-deg(Ψu) = syn-deg(Ψu1)+syn-deg(Ψu2).

Syntactic-Rank of an Extended Formula:

We extend the definition of syntactic-rank to extended-formulas. We define the syntactic-
rank of an extended-formula Ψ (in the sets of variables X1, . . . , Xr) inductively as follows:

1. If u is a leaf,
syn-rank(Ψu) = 1 (9)

2. If u is a sum gate with children u1, . . . , uk,

syn-rank(Ψu) = min

(
nr′−1 ; weight(u) ·

k∑
i=1

syn-rank(Ψui
)

)
(10)

where r′ = syn-deg(Ψu) (and note that r′ > 0).

3. If u is a product gate with children u1, u2,

syn-rank(Ψu) = min
(
nr′−1 ; weight(u) · syn-rank(Ψu1) · syn-rank(Ψu2)

)
(11)

where r′ = syn-deg(Ψu) (and note that r′ > 0).

Note that if all weights are 1 the definition coincides with the original definition of syntactic-
rank.

By the definition, for any node u in Ψ, syn-rank(Ψu) ≤ nr′−1, where r′ = syn-deg(Ψu).
We say that a node u in Ψ is of full-rank if syn-rank(Ψu) = nr′−1.

Size versus Syntactic-Rank of an Extended-Formula:

For a fixed s = nc′ , where 1 ≤ c′ ≤ log r − 3, consider all of the extended-formulas Ψ′ (in
the sets of variables X1, . . . , Xr) such that syn-deg(Ψ′) = r and size(Ψ′) ≤ s; and let Ψ be
an extended-formula with the largest syntactic-rank among all these formulas4 (if there are
many extended-formulas with the same syntactic-rank, take Ψ to be an extended-formula
with the smallest size among all these formulas5). We will show that without loss of generality
the extended-formula Ψ is of a very specific form.

4The maximum exists because the set of extended-formulas Ψ′ such that syn-deg(Ψ′) = r and size(Ψ′) ≤ s
is a compact space, and syn-rank(Ψ′) is a continuous function over that domain.

5The minimum exists because the set of extended-formulas Ψ′ such that syn-deg(Ψ′) = r and size(Ψ′) ≤ s
is a compact space, and syn-rank(Ψ′), size(Ψ′) are both continuous functions over that domain.
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First we claim that without loss of generality we can assume that every sum gate in Ψ is
of fanin 1. Let u be a sum gate in Ψ, with children u1, . . . , uk (where k > 1). Note that for ev-
ery i, syn-deg(Ψu) = syn-deg(Ψui

). Let i ∈ {1, . . . , k} be such that syn-rank(Ψui
)/size(Ψui

)
is maximal, and let q =

∑k
j=1 size(Ψuj

). We will multiply the weight of u by q/size(Ψui
) and

remove all children of u (together with the sub-trees below them) except ui. By Equation 8,
size(Ψu) and hence also size(Ψ) didn’t change, while by Equation 10 (and since i ∈ {1, . . . , k}
is such that syn-rank(Ψui

)/size(Ψui
) is maximal), syn-rank(Ψu) and hence also syn-rank(Ψ)

may only increase. Note also that syn-deg(Ψ) didn’t change. Thus, we have turned u into
a fanin 1 gate without increasing the size of the extended-formula and without decreasing
its syntactic-rank. By repeating this process we can assume that every sum gate in Ψ is of
fanin 1.

Next we claim that without loss of generality we can assume that there are no sum gates
in Ψ. This is obvious because any sum gate u of fanin 1 can be removed by connecting its
child directly to its parent (or just removing u if it has no parent) and passing its weight
to its child (that is, multiplying the weight of the child of u by weight(u)). Note that this
operation doesn’t change size(Ψ) or syn-rank(Ψ) (even if the child of u is a leaf). We can
hence assume that Ψ has no sum gates.

Thus, Ψ is a binary tree and every non-leaf node in it is a product gate. Since syn-deg(Ψ) =
r, the number of leaves in Ψ is r.

We will now analyze the possible weights of the nodes of Ψ.

First we claim that for every leaf u, weight(u) = 1. This is because for every leaf u,
syn-rank(Ψu) = 1 (regardless of its weight). Therefore, weight(u) = 1, since a higher weight
increases the size of the extended-formula without increasing its syntactic-rank.

Let u be a non-leaf node with children u1, u2. Denote r1 = syn-deg(Ψu1) and r2 =
syn-deg(Ψu2). Thus, syn-deg(Ψu) = r1 + r2. We know that syn-rank(Ψu1) ≤ nr1−1 and
syn-rank(Ψu2) ≤ nr2−1. We claim the following:

1. If weight(u) > 1 then u1, u2 are of full-rank. Proof: Assume for a contradiction that
weight(u) > 1, and u1 is not of full-rank. (In particular, u1 is not a leaf). Then by
multiplying weight(u1) by 1 + ε and dividing weight(u) by 1 + ε (for a small enough ε)
we preserve the syntactic-rank of Ψu (by Equation 11) while decreasing its size (by
Equation 8). Thus, we preserve the syntactic-rank of Ψ while decreasing its size, in
contradiction to the definition of Ψ.

2. If u is of full-rank then weight(u) = n. Proof: Since u is of full-rank, syn-rank(Ψu) =
nr1+r2−1. Hence by Equation 11, weight(u) ≥ n. Thus, by 1, u1, u2 are of full-rank.
Thus, syn-rank(Ψu1) = nr1−1 and syn-rank(Ψu2) = nr2−1. Hence, by Equation 11,
weight(u) = n (otherwise, by reducing weight(u) to n we preserve the syntactic-rank
of Ψ while decreasing its size, in contradiction to the definition of Ψ).

3. By the previous two items, if u is of full-rank then both u1, u2 are of full-rank.

Consider the nodes along a path from a leaf to the root in Ψ. The leaf is always of
full-rank and, as we saw, the weight of the leaf is 1. By 1,2,3, following the leaf we have a
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certain number of full-rank nodes with weight n. After that we have at most one node that
is not of full-rank and its weight is larger than 1, and after that we have nodes that are not
of full-rank and are with weight 1. Since the size of Ψ is s = nc′ , the number of full-rank
nodes with weight n along a path from a leaf to the root in Ψ is at most logn(s) = c′.

Denote by V the set of non-leaf nodes in Ψ that are not of full-rank and their weight
is 1. Thus, from any leaf of Ψ we can reach a node in the set V by a path of length at most
c′ + 2. Hence, since the number of leaves in Ψ is r and since Ψ is a binary tree, |V | ≥ r

2c′+2 .
Also, by 1,2,3, V is a binary tree (of product gates) such that if v ∈ V and v is a child of u
then u ∈ V .

Denote by U the set of nodes that are not in V but are connected to V by an edge, that is,
U is the set of direct descendants of V out of V . Let l = |U | and let u1, . . . , ul be the nodes in
U and let ri = syn-deg(Ψui

). Note that l > |V | and that for every i, syn-rank(Ψui
) ≤ nri−1.

Since V is a binary tree of product gates
∑l

i=1 ri = syn-deg(Ψ) = r, and since the weight of
every node in V is 1, by Equation 11 (applied |V | times)

syn-rank(Ψ) ≤
l∏

i=1

syn-rank(Ψui
) ≤ n(

∑l
i=1 ri)−l ≤ nr−r/2c

′+2

Since Ψ was chosen to be the extended-formula with the highest syntactic-rank among
all the extended-formulas of size nc′ , we have the same bound for every extended-formula
(as a function of its size). In particular, since Φ is a formula of size nO(c),

rank(A) ≤ syn-rank(Φ) ≤ nr−r/2O(c)

Corollary 6. Let A : [n]r → F be a tensor such that r ≤ O(log n/ log log n). If the tensor-
rank of A is ≥ nr·(1−o(1)) then there is no polynomial size formula for the polynomial fA.

(Note that the corollary is interesting only when r = r(n) is super-constant. For r = O(1),
the corollary holds trivially since the tensor-rank of any A : [n]r → F is at most nr−1, so the
tensor-rank of A is never ≥ nr·(1−o(1))).
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