
Ben-Gurion University of the Negev

Thesis submitted in partial fulfillment of the requirements for the
degree of “DOCTOR OF PHILOSOPHY”

On Refined Notions of Embeddings

By

Arnold Filtser

Submitted to the Senate of Ben-Gurion University of the Negev

March 2019

Beer-Sheva

ii

Ben-Gurion University of the Negev

Thesis submitted in partial fulfillment of the requirements for the
degree of “DOCTOR OF PHILOSOPHY”

On Refined Notions of Embeddings

Author:

Arnold Filtser

Submitted to the Senate of Ben-Gurion University of the Negev

Approved by:

Professor

Robert Krauthgamer

Advisor

Professor

Ofer Neiman

Advisor

March 2019

Beer-Sheva

iv

This work was carried out under the supervision of

Prof. Robert Krauthgamer and Prof. Ofer Neiman

In the Department of Computer Science

Faculty of Natural Sciences

v

vi

I Arnold Filtser, whose signature appears below, hereby declare that

• I have written this thesis by myself, except for the help and guidance offered by my thesis advisors.

• The scientific materials included in this thesis are products of my own research, culled from the period

during which I was a research student.

• This thesis incorporates research materials produced in cooperation with others. Specifically:

The results in Part II were obtained jointly with Michael Elkin and Ofer Neiman.

The results in Part III were obtained jointly with Yair Bartal and Ofer Neiman.

The results in Part V were obtained jointly with Robert Krauthgamer.

Date Name Signature

vii

26-Mar-2019 Arnold Filtser

viii

Acknowledgements

First and foremost I would like to thank the Israeli taxpayer who supported my research via vari-

ous funds. Specifically, this research was supported in part by the planning and budgeting committee

Levtzion scholarship, Kreitman School Negev Scholarship, general BGU CS department funds, ISF grant

No. (523/12 and 1817/17) and BSF Grant 2015813. I would like to thank the many individuals and

organizations for their private donations to BGU, the fruits of which I also enjoyed. Further, I would like

to thank the European taxpayer who supported me via the European Union Seventh Framework Program

(FP7/2007-2013) under grant agreement n◦303809. In addition I would like to thank for various travel

funds I received during the PhD (in particular from SIAM, ACM, Microsoft, Google).

Next, I would like to express my special appreciation and thanks to my advisers, Professors Robert

Krauthgamer and Ofer Neiman. I learned a lot from you both. Robi, you are an endless source of

knowledge, always full with ideas, possible directions and good advice, thanks a lot! Ofer, thank you for

the patience, continuous support, all the hours of deep discussions, constant availability and great ideas.

I have a lot of gratitude, this PhD was a real pleasure. Additionally, I would like to thank Professor

Michael Elkin. Thank you for suggesting many excellent research problems, and often sharing various

advice with me.

I gratefully acknowledge all my collaborators: Ittai Abraham, Stephen Alstrup, Yair Bartal, Shiri

Chechik, Søren Dahlgaard, Michael Elkin, Omrit Filtser, Lee-Ad Gottlieb, Anupam Gupta, Robert

Krauthgamer, Ofer Neiman, Shay Solomon, Morten Stöckel, Nimrod Talmon, Ohad Trabelsi and Chris-

tian Wulff-Nilsen. It was a delight to work with you, and I hope for future collaborations.

I also thank Ben-Gurion University, for its funding, flexibility and thoughtfulness. Many thanks also

to the the technical and administrative staff who make this research pleasant and possible. Thanks to

all the people who attend and organize the theory seminar, for the excellent atmosphere.

Special thanks to the Weizmann institute for our extra-marital relationship... Thanks for the ex-

treme flexibility, the excellent courses, and the theory lunch. The place is simply buzzing with ideas.

Additionally, thanks to all the members of Robi’s group throughout the years: Chen Attias, Diptarka

Chakraborty, Rajesh Chitnis, Shaofeng Jiang, Lior Kamma, Bundit Laekhanukit, Yevgeny Levanzov,

Yosef Pogrow, David Reitblat, Havana Rika, Roi Sinoff, Nimrod Talmon, Ohad Trabelsi, Otniel van

Handel and Shai Vardi. Thank you for the outstanding atmosphere, the discussions and all the fun hours

spent together.

A special thanks to my family. Words cannot express how grateful I am to my mother and father.

Thank you for accepting that my work will not have any practical value in this world or the next... Thank

you for encouraging and nurturing my love for math and knowledge, for investing time and money in my

education, believing in my abilities and pushing me towards excellence. Thanks a lot also to my siblings,

grandparents and all further family for love and support.

Most of all, I would like to express my gratitude and appreciation to my beloved wife Omrit to whom

I am deeply obligated for her love, care, infinite support, encouragement, and for always being there.

Additionally, for hearing and debating on various ideas, for editing my English, good advice, and for

preventing me from becoming an engineer. I would like to thank my daughters Naama and Hadass, for

their patience to hear research discussions during dinner. You are an endless source of joy and happiness,

a real inspiration.

Finally, I would like to express thanks, respect and admiration to the theoretical computer science

community. Thank you for the good will and the collaborative atmosphere. I am really happy to be part

of this community.

ix

x

To Omrit, Naama and Hadass.

xi

xii

Contents

I Introduction, Results and Discussion 1

1 Introduction 1

1.1 Refined Notions of Embeddings . 4

1.2 Related Work . 5

2 Results 6

2.1 Results Presented in this Thesis . 6

2.2 Results: Related, Published During the PhD, but do not appear in the Thesis 9

3 Summary, Discussion and Open Problems 12

II Prioritized Metric Structures and Embedding 21

III On Notions of Distortion and an Almost Minimum Spanning Tree with
Constant Average Distortion 52

IV Steiner Point Removal with distortion O(log k), using the Relaxed-Voronoi
algorithm 67

V Sparsification of Two-Variable Valued CSPs 98

xiii

xiv

Abstract

Metric spaces are used to represent various relations such as transportation cost between cities or

dissimilarity between bacterial strains. However, general metrics can be quite difficult to manage. It

would be very convenient if we could represent the points in a more structured form. Such a representation

can provide insight and allow us to execute efficient algorithms. For example, we would like to represent

the metric as points in Euclidean space, where the distance between every pair of metric points is equal

to the Euclidean distance between their representations. Unfortunately, this is impossible. Nevertheless,

if we allow to somewhat distort the distances, such a representation becomes possible, and has been

found extremely useful.

Embedding is a mapping between metric spaces that approximately preserves the geometry of the

original space. Often the host space has a simple structure or desirable features. This wide framework pro-

vides an algorithmic methodology, which has been successfully applied for approximation/online/distributed

algorithms, etc. However, this methodology appears to have some limitations: the performance inher-

ently depends on the cardinality of the metric. The guarantee is a worst-case type, i.e., the same for

all the point pairs. One could not specify in advance which points should enjoy a better service (i.e.

distortion, dimension, etc.) than that given by the worst-case guarantee.

We alleviate this limitation by devising a suite of prioritized distortion. We show that given a priority

ordering (x1, x2, . . . , xn) of the metric points, one can devise an embedding, in which the distortion

incurred by any pair containing a vertex xj will depend on the rank j of the vertex. The worst-case

performance of our embeddings is typically asymptotically no worse than that of their non-prioritized

counterparts.

We also study scaling distortion, which requires that for every 0 < ε < 1, the distortion of all

but an ε-fraction of the pairs is bounded by the appropriate function of ε. Such distortion guarantee

implies bounds on the average distortion, as well as on higher moments of the distortion function. We

show an equivalence theorem between prioritized distortion and a strong version of scaling distortion.

This equivalence implies many new embeddings results. Another application is an algorithm that, given

weighted undirected graph, returns a spanning tree whose weight is at most (1 + ρ) times that of the

MST, and provids constant average distortion O(1/ρ).

We also study the Steiner Point Removal problem. Here we are given a weighted graph G = (V,E)

and a set of terminals K ⊂ V of size k. The objective is to find a minor M of G with only the terminals

as its vertex set, such that distances between the terminals are preserved up to a small multiplicative

distortion. The underlying question would be to consider some restricted graph family. Is it possible to

significantly enrich the various geometries induced by k-vertex graphs in the family by adding additional

Steiner vertices? Our contribution is an upper bound of O(log k) on the distortion, improving a previous

O(log2 k) upper bound. We achieve this upper bound using a novel algorithm called the Relaxed-Voronoi

algorithm, which is simpler than previously used algorithms. In particular we provide an almost linear

time implementation.

Finally we turn to study sparsification. A valued constraint satisfaction problem (VCSP) instance

(V,Π, w) is a set of variables V with a set of constraints Π weighted by w. Given a VCSP instance,

we are interested in a re-weighted sub-instance (V,Π′ ⊂ Π, w′) that preserves the value of the given

instance (under every assignment to the variables) within factor 1± ε. A well-studied special case is cut

sparsification in graphs, which has found various applications. We show that a VCSP instance consisting

of a single boolean predicate P (x, y) (e.g., for cut, P = XOR) can be sparsified into O(|V |/ε2) constraints

if and only if the number of inputs that satisfy P is anything but one (i.e., |P−1(1)| 6= 1). Furthermore,

this sparsity bound is tight unless P is a relatively trivial predicate. We conclude that systems of 2SAT

(or 2LIN) constraints can also be sparsified.

Part I

Introduction, Results and Discussion

1 Introduction

Low-distortion metric embeddings are a crucial component in the modern algorithmist toolkit. Given a pair

of (finite) metric spaces (X, dX), (Y, dY), a map φ : X → Y , the contraction and expansion of the map φ are

the smallest τ, ρ, respectively, such that for every pair x, y ∈ X,

1

τ
≤ dY (φ(x), φ(y))

dX(x, y)
≤ ρ .

The distortion of the embedding is τ ·ρ. If τ = 1 (resp. ρ = 1) we say that the embedding is non-contractive

(expansive). If ρ = O(1), we say that the embedding is Lipschitz. If τ ≥ 1 we say that the embedding is

dominating. If the distortion τ · ρ is 1, we say that X embeds isometrically into Y .

Metric embeddings have applications in approximation algorithms [LLR95], online algorithms [BBMN11],

distributed algorithms [KKM+12], and for solving linear systems and computing graph sparsifiers [ST04a].

The basic approach behind most of the applications is as following: Suppose we have some hard problem

in a metric space X. In many cases this problem might become simpler if we assume that X has certain

properties (e.g., Euclidean space, tree metric). Suppose further that there is an embedding φ of X into a

metric space Y that possesses the desired property with distortion t. Instead of solving the problem directly

in X, we start by solving the problem efficiently in the embedded space φ(X). We would then pull the

solution back to X, while paying some approximation factor f(t) w.r.t. the optimal solution.

Metric embeddings are often very useful for graphs. Consider a weighted graph G = (V,E,w), the metric

dG associated with the graph is the shortest path metric. Here the distance between a pair of vertices v, u

is the weight of the shortest path between them. In the rest of the introduction we describe various results

in metric embeddings theory and related areas. In particular we mentioned some applications of each type

of embedding.

Metric Embeddings into `p Spaces. `p spaces possess a natural geometric structure, especially `2 the

Euclidean space, which has an inner product. This special structure is very helpful for solving various

problems, even more so when the dimension is low. More interestingly, embeddings into `1 have implica-

tion for graph partitioning problems. Specifically, the ratio between the Sparsest Cut and the maximum

multicommodity flow (called flow cut gap) is bounded by the distortion of the optimal embedding into `1
(see [LLR95, GNRS04]). In particular, if one embeds a graph into `1 with distortion t, it will imply a

t-approximation to the sparsest cut problem.

We will be interested in finite subsets of `p spaces for p ∈ [1,∞]. Every finite subset of `2 embeds

isometrically to every `p for p ∈ [1,∞]. Every finite metric space (even not `p) embeds isometrically into

`∞. Every finite subset of `p space for p ∈ [1, 2] embeds isometrically into `1. For any other pair `p, `q, there

is no embedding with constant distortion for all finite subsets. See [Mat02] for details.

In a celebrated result, Bourgain [Bou85] showed that any metric space on n points embeds with distortion

O(log n) into Euclidean space (and therefore to any `p). Linial, London, and Rabinovich [LLR95] have shown

this to be tight.

If the source space X is n points in `2, a famous dimension reduction lemma by Johnson and Lin-

densstrauss [JL84], asserts that for every parameter ε ∈ (0, 1) X can be embedded into `
O(logn/ε2)
2 (i.e.,

1

Euclidean space of dimension O(log n/ε2)) with distortion 1 + ε. This is an extremely useful lemma with

applications for streaming algorithms, nearest neighbor search, compressed sensing and many more.

Metric Embeddings of Special Graph Families. Since general n-point metrics require Ω(logn/p)-

distortion to embed into `p-norms, much attention was given to embeddings of restricted graph families that

arise in practice. As the class of graphs embeddable with some distortion into some target normed space is

closed under taking minors, it is natural to focus on minor-closed graph families. A long-standing conjecture

in this area is that all non-trivial minor-closed families of graphs embed into `1 with distortion depending

only on the graph family and not the size n of the graph.

Stochastic Metric Embeddings. Given a graph family F , a stochastic embedding of G = (V,E,w) into

F is a distribution D over pairs (H, fH) where H ∈ F and fH is embedding of G into H. We say that

D is dominating if for every (H, fH) ∈ supp(D), fH is dominating. We say that a dominating1 stochastic

embedding D has expected distortion t, if for every pair u, v ∈ V it holds that

E(H,fH)∼D [dH (fH(u), fH(v))] ≤ t · dG(u, v) .

In a highly influential series of works by Bartal and Fakcharoenphol, Rao and Talwar [Bar96b, FRT04], it

was shown that every n-point metric space has a stochastic embedding to the families of ultrametrics (or

trees) with expected distortion O(log n) (which is also tight [Bar96b]). In some applications, it is important

that the sampled tree will be a spanning tree rather than only dominating (e.g. for routing). In this case

Abraham and Neiman [AN12] (following [EEST05]) showed an Õ(log n) expected distortion. Stochastic

embeddings into trees have become a very basic technique in approximation and online algorithms, as trees

are easy to work with and generally enjoy efficient algorithms.

Metric Data Structures. In some cases we might prefer to represent distances in a data structure rather

than as a metric space / graph. Such a representation is often more computationally efficient, and might

have better distortion. A distance oracle is a data structure that supports distance queries between vertex

pairs. In the study of distance oracles, we look for tradeoffs between space, query time and distortion (the

accuracy of the answers). Given an n-vertex graph and parameter t = 1, 2, . . ., Thorup and Zwick [TZ01a]

constructed a distance oracle of size O(t ·n1+1/t), O(t) query time and distortion 2t− 1. In a recent series of

works [WN13, Che14, Che15] the space and query time were improved to O(n1+1/t) and O(1) respectively.

An another example of metric data structure is a distance labeling [Pel99, GPPR01]. Here we assign

each vertex a label, and identify a global function that, given two labels, can estimate the distance between

the respective vertices. The goal is to optimize the tradeoff between the label size and distortion. The

distance oracle of Thorup and Zwick [TZ01a] can be converted into a distance-labeling scheme with label

size O(n1/t · log1−1/t n) and distortion (2t−1). An interesting special case is when the input graph is planar.

Here an 1 + ε stretch labeling scheme is possible with label size O(1
ε log n) [Tho01, Kle02].

A routing scheme in a network is a mechanism that allows packets to be delivered from any node to any

other node. The network is represented as a weighted undirected graph, and each node can forward incoming

data by using local information stored at the node, often called a routing table, and the (short) packet’s

header. The routing scheme has two main phases: in the preprocessing phase, each node is assigned a routing

table and a short label. In the routing phase, each node receiving a packet should make a local decision,

based on its own routing table and the packet’s header (which may contain the label of the destination, or

1Recall that embedding fH : G→ H is dominating if there are no contractions.

2

a part of it), where to send the packet. The routing decision time is the time required for a node to make

this local decision. The stretch of a routing scheme is the worst ratio between the length of a path on which

a packet is routed, to the shortest possible path. The classical routing scheme of [TZ01b], for a parameter

k > 1, provides a scheme with routing tables of size O(k ·n1/k), labels of size (1+o(1))k log n, stretch 4k−5,

and decision time O(1) (but the initial decision time is O(k)). The stretch was improved recently to roughly

3.68k by [Che13].

Spanners. Given a n-vertex graph G = (V,E,w) and a parameter t ≥ 1, a subgraph H = (V,E′, w) of G

(E′ ⊆ E) is called a t-spanner for G if for all u, v ∈ V , δH(u, v) ≤ t · δG(u, v). The parameter t is called the

stretch of H. While minimizing the stretch we also wish the spanner to have a small number of edges. In

addition, its weight w(H) =
∑
e∈E′ w(e) should be close to the weight of a minimum spanning tree (MST)

of the graph G. The normalized notion of weight Ψ(H) = w(H)
w(MST (G)) , is called lightness. Light and sparse

spanners are particularly useful for broadcast protocols, network synchronization, data gathering, routing,

sensor networks, VLSI circuit design and much more (see [FS16] for references and further applications).

The greedy spanner2 by Althöfer et al. [ADD+93] is arguably the simplest and most well-studied spanner

construction. Althöfer et al. [ADD+93], for every parameter k ≥ 1, showed that the greedy (2k− 1)-spanner

has O(n1+1/k) edges. Chandra et al. [CDNS92] proved that the greedy spanner with stretch parameter

t = (2k − 1) · (1 + ε) has lightness Oε(k · n1/k) 3. Later, Elkin, Neiman, and Solomon [ENS14] improved the

analysis of [CDNS92] and showed Oε(
k

logk · n1/k) lightness. In a recent breakthrough, Chechik and Wulff-

Nilsen [CW18] used a much more complicated algorithm and constructed an (2k − 1) · (1 + ε) spanner with

Oε(n
1/k) lightness. Under Erdős’ girth conjecture [Erd64], the lightness is asymptotically tight up to the

dependency on ε.

Das, Heffernan, and Narasimhan [DHN93] showed that in d dimensional Euclidean metrics4, the greedy

(1+ε)-spanner has lightness ε−O(d). For the case where the shortest path dG of the input graph has doubling

dimension5 ddim, Gottlieb [Got15] constructed 1+ε spanners with lightness (ddim/ε)O(ddim) (improving over

[Smi09]).

Steiner Point Removal. In the Steiner point removal (SPR) problem we are given a subset of terminals

K ⊆ V of size k (the non-terminal vertices are called Steiner vertices). The goal is to construct a new

graph M = (K,E′) with positive weight function w′, with the terminals as its vertex set, such that: (1)

M is a graph minor of G, and (2) the distance between every pair of terminals t, t′ is distorted by at most

a multiplicative factor of α (that is ∀t, t′ ∈ K, dG(t, t′) ≤ dM (t, t′) ≤ α · dG(t, t′). Property (1) expresses

preservation of the topological structure of the original graph. For example if G was planar, so will M

be, whereas property (2) expresses preservation of the geometric structure of the original graph, that is,

distances between terminals. The question is: what is the minimal α (which may depend on k) such that

every graph with a terminal set of size k will admit a solution to the SPR problem with distortion α.

The underlying fundamental question is the following: given some graph family F , is the collection of

geometries obtained by k-vertex graphs from F can be significantly different from the collection of geometries

obtained by restricting the attention to k terminals in a big graphs from F?

2The greedy spanner H with parameter t is constructed by repeatedly adding an edge between the closest pair of neighboring

vertices {u, v} such that dH(u, v) > t · dG(u, v).
3In Oε notation we hide polynomial factors in ε.
4By d dimensional Euclidean metric here we mean a complete graph on n vertices, where each vertex v is associated with a

point pv ∈ Rd such that the weight of the edge {u, v} equals ‖pv − pu‖2.
5The doubling dimension of a metric space (M, δ) is the smallest value ddim such that every ball B in the metric space can

be covered by at most 2ddim balls of half the radius of B.

3

The minor restriction ensures that the graph on the terminals will remain in the family. However it has

additional advantages. Suppose that the given graph is planar and all the terminals lie on a single face

(Okamura-Seymour instance), then every minor restricted to the terminals will be an outerplanar.

If the given graph G is a tree, Gupta [Gup01] constructed a minor with distortion 8, which is tight by

Chan et al. [CXKR06]. This lower bound of 8 is the best known lower bound for general graphs as well.

Basu and Gupta [BG08] showed that on outerplanar graphs, the SPR problem can be solved with distortion

O(1). Kamma, Krauthgamer, and Nguyen [KKN15] provided an O(log5 k) upper bound for general graphs,

which was recently improved to O(log2 k) by Cheung [Che18].

Englert et al. [EGK+14] showed that every graph G, admits a distribution D over terminal minors with

expected distortion O(log k). Further, if the graph is β-decomposable, it admits a distribution with O(β log β)

expected distortion. In particular, planar graphs and graphs excluding a fixed minor are O(1)-decomposable.

Krauthgamer, Nguyen, and Zondiner [KNZ14] showed that if we allow the minor M to contain at most

O(k4) Steiner vertices (in addition to the terminals), then distortion 1 can be achieved. They further showed

that for graphs with constant treewidth, O(k2) Steiner points will suffice for distortion 1. Cheung, Gramoz,

and Henzinger [CGH16] showed that allowing O(k2+ 2
t) Steiner vertices, one can achieve distortion 2t− 1 (in

particular distortion O(log k) with O(k2) Steiners). For planar graphs, [CGH16] achieved 1 + ε distortion

with Õ((kε)2) Steiner points.

Sparsifiers. In metric embeddings, spanners, etc., we look for succinct representation of graphs while

preserving the geometry, i.e., distances between vertices. However, there are other graph properties that

one might wish to preserve while using a succinct representation. The seminal work of Benczúr and Karger

[BK96] showed that every edge-weighted undirected graph admits cut-sparsification within factor (1+ε) using

O(ε−2n log n) edges. More precisely, let CutG(S) denote the total weight of edges in G that have exactly one

endpoint in S. Then for every such G and ε ∈ (0, 1), there is a re-weighted subgraph Gε = (V,Eε ⊆ E,wε)

with |Eε| ≤ O(ε−2n log n) edges, such that

∀S ⊂ V, CutGε(S) ∈ (1± ε) · CutG(S), (1)

and moreover, such Gε can be computed efficiently.

This sparsification methodology turned out to be very influential. The original motivation was to speed

up algorithms for cut problems – one can compute a cut sparsifier of the input graph and then solve an

optimization problem on the sparsifier – and indeed this has been a tremendously effective approach, For

example, see [BK96, BK02, KL02, She09, Mad10]. Another application of this remarkable notion is to reduce

space requirement, either when storing the graph or in streaming algorithms [AG09]. In fact, followup work

offered several refinements, improvements, and extensions (such as to spectral sparsification), see [ST04b,

ST11, SS11, dCHS11, FHHP11, KP12, NR13, BSS14, KK15]. The current bound for cut sparsification is

O(n/ε2) edges, proved by Batson, Spielman and Srivastava [BSS14], and it is known to be tight [ACK+16].

1.1 Refined Notions of Embeddings

Consider a non-contractive embedding φ : X → Y . The distortion of the pair x, y is dY (φ(x),φ(y))
dY (x,y) . Thus the

distortion of the embedding φ is simply the worst case (maximal) distortion over all the pairs. This is the

definition all previous results coped with. A natural disadvantage of these results is the dependence of all

the relevant parameters on n, the cardinality of the input graph/metric. Nevertheless, most of these results

are either completely tight, or very close to being so. Several approaches to cope with this shortcoming were

proposed.

4

Terminal Embeddings. Here we are given a set K ⊆ X of points of size k, which are designated as

terminals. The objective is to embed the metric into a simpler metric, while approximately preserving

the distances between the terminals to all other points. Formally, the terminal distortion of an embedding

φ : X → Y is the maximal distortion over all pairs in K ×X. Terminal embeddings have implications for

the areas of approximation and online algorithms.

This notion of distortion was studied in the master thesis of the author, and in particular published

in [EFN17] co-authored with Elkin and Neiman. In many cases, the cardinality of the input metric n can

be replaced by that of the terminal set k. Some notable results are as follows: embedding of a general

metric into `2 with terminal distortion O(log k), spanner construction with terminal distortion 4t − 1 and

O(n+
√
n·k1+ 1

t) edges, construction of a single spanning tree with terminal distortion 2k−1+ε and lightness

O(kε) for any ε > 0, stochastic embedding into spanning trees with expected terminal distortion Õ(log k),

and more.

In a follow up paper, Elkin and Neiman [EN18] study terminal embedding of metric spaces with constant

doubling metrics. In particular they constructed a spanner with 1+ ε terminal distortion and n+o(n) edges.

Additionally, they constructed a labeling scheme with ≈ log k label size.

Recently, Mahabadi et al. [MMMR18] answered a question from our paper [EFN17], showing a terminal

version of the JL lemma. Specifically, they show that given a set K of k points in Rd, it is possible to embed

all of Rd into Rlog k/ε4 with terminal distortion 1 + ε. Even more recently Narayanan and Nelson [NN18]

were able to reduce the number of dimensions to log k
ε2 , which is also tight. These new embeddings are called

Terminal JL.

Scaling Distortion. Another approach to cope with large worst-case distortion bounds is to construct

embeddings where some pairs of vertices/points enjoy better guarantees. Specifically, [KSW04, ABC+05,

ABN11, CDG06] studied embeddings in which the distortion of at least 1−ε fraction of the pairs is improved

as a function of ε, for all ε ∈ [0, 1] simultaneously. Formally, given a function α : (0, 1) → R+ we say that

embedding φ : X → Y has scaling distortion α if for every ε ∈ (0, 1) at most ε fraction of the pairs (that is

ε ·
(|X|

2

)
) suffer from distortion α(ε) or larger. Some notable results being: an embedding of a general metric

space into `2 with scaling distortion O(log 1
ε), and stochastic embedding into trees with expected scaling

distortion O(log 1
ε). Note that while the worst case distortion is O(log n) (fixing ε = 1

n2), half of the pairs

are guaranteed constant distortion! A nice property of scaling distortion is that it is also provides constant

average distortion6
∑
x,y∈(X2)

dY (φ(x),φ(y)
dX(x,y) = O(1) 7.

1.2 Related Work

While the minor embedding conjecture of [GNRS04] remains unresolved in general, some progress has been

made on special classes of graphs. The class of outerplanar graphs (which exclude K2,3 and K4 as a minor)

embeds isometrically into `1; this follows from results of Okamura and Seymour [OS81] as was proved

by Hurkens, Schrijver, and Tardos [HST86]. Following [GNRS04], Chakrabarti et al. [CJLV08] show that

every graph with treewidth-2 (which excludes K4 as a minor) embeds into `1 with distortion 2 (which is

tight, as shown by [LR10]). Lee and Sidiropoulos [LS13] showed that every graph with pathwidth k can be

embedded into `1 with distortion (4k)k
3+1. Chekuri et al. [CGN+03] extend the Okamura and Seymour

bound for outerplanar graphs to k-outerplanar graphs, and showed that these embed into `1 with distortion

2O(k). Rao [Rao99] (see also [KLMN04]) embed planar graphs into `p with distortion O(log1/p n). For

6As long as the scaling distortion is smaller than O(ε−δ) for some δ < 1.
7There are alternative definitions of average distortion that could be found in the literature, see related works.

5

graphs with genus g, [LS10] showed an embedding into Euclidean space with distortion O(log g +
√

log n).

Finally, for H-minor-free graphs, combining the results of [AGG+14, KLMN04] gives `p-embeddings with

O(|H|1−1/p log1/p n) distortion.

Some progress has also been made on stochastic embeddings. Gupta et al. [GNRS04] showed that

outerplanar graphs embed into trees with O(1) expected distortion. Lee and Sidiropoulos [LS13] showed

that pathwidth k graphs embedded into trees with distortion (4k)k
3+1. On the negative side, [LS13] showed

that pathwidth k + 1 graphs cannot be stochastically embedded into pathwidth k graphs with constant

distortion. Further, Gupta et al. [GNRS04] showed that already planar graphs (or even treewidth 2 graphs)

cannot be embedded into trees with any constant distortion.

Rabinovich [Rab08] defined the average distortion of a dominating embedding f : X → Y as∑
x,y∈X dY (f(x),f(y))∑

x,y∈X dX(x,y) .

2 Results

In the introduction section we presented the state of the art in various metric embeddings related topics,

as it was before the contribution in this thesis, as well as other follow-up contributions. In Section 2.1 we

describe the results presented in this thesis. Afterwards, in Section 2.2 we describe our results that were not

fortunate enough to make it into the thesis. We would like to emphasize that the criteria for entering the

thesis was rather technical than qualitative (journal publication).

2.1 Results Presented in this Thesis

The descriptions of the results is organized according to the papers constituting the thesis.

Prioritized Embedding ([EFN15, EFN18]). An inherent shortcoming of scaling distortion is that the

pairs that enjoy better than worst-case distortion cannot be specified in advance. We introduce a novel

definition of distortion called priority distortion. Here, in addition to the metric space (X, d), we are given

an ordering of the metric points X = (x1, . . . , xn) arbitrarily in advance, and devise an embedding in which

the distortion of the pair {xi, xj} depends on min{i, j}, regardless of the cardinality of the metric space. In

many cases, we are able to construct embeddings such that the guarantee for low priority pairs is similar to

the worst case guarantee in the classic setting, while the guarantee for high priority pairs are considerably

improved. Hence our results are stronger.

Formally, for a function α : N → R+, we say that embedding φ has prioritized distortion α if for all

1 ≤ j < i ≤ n,

dX(xj , xi) ≤ dY (φ(xj), φ(xi)) ≤ α(j) · dX(xj , xi) .

Partial list of results:

• Embedding into `p. Every metric space embeds into `p space with prioritized distortion Õ(log j).

By [LLR95], an Ω(log j) lower bound on prioritized distortion follows. Thus the result is tight up to

second order factors. We close this gap in the paper presented next [BFN19].

• Embedding into `p with prioritized dimension. We say that point x has prioritized dimension

β, if for every j ∈ [n], only the first β(j) coordinates in φ(xj) may be nonzero. We showed that every

metric space embeds into `p space with prioritized distortion8 polylog(j) and prioritized dimension

polylog(j).

8Actually in this case the distortion guarantee is changed to 1
α(j)

· dX(xj , xi) ≤ dY (φ(xj), φ(xi)) ≤ dX(xj , xi) .

6

• Stochastic Embedding. Every metric space admits a stochastic embedding into trees with expected

prioritized distortion O(log j). This result is also tight [Bar96a].

• Embedding into a single tree. Define Φ to be the family of non-decreasing functions α : N→ R+

such that
∑∞
i=1 1/α(i) ≤ 1. Then for any finite metric space (X, d) and any α ∈ Φ, there is a (non-

contractive) embedding of X into a single tree with priority distortion 2α(j). This result is tight (up to

a constant). That is, if
∑∞
i=1 1/α(i) > 1 then embedding into a single tree with prioritized distortion

α is impossible. As an example, this result implies that every metric embeds into a single tree with

prioritized distortion Õ(j).

• Distance Oracle & Labeling. For distance oracles we got several tradeoffs between space and

prioritized distortion. For distance labeling, we offer a construction where in addition to prioritized

distortion, we have prioritized label size. This could be useful in a setting where the high ranked points

participate in numerous computations, as representing these points requires very few coordinates. We

can thus store many of them in the cache or other high speed memory. All the tradeoffs are presented

in the table below.

Distance Oracle

Priority Distortion Space Query time

O
(

logn
1+log(n/j)

)
O(n log log log n) O(1)

2d t log j
logn e − 1 O(tn1+1/t) O(d t log j

logn e)
2 log j − 1 O(n log n) O(log j)

Labeling Scheme

Priority Distortion Prioritized label size

2d t log j
logn e − 1 O(n1/t · log j)

2 log j − 1 O(log j)

1 + ε O(1
ε log j) (for graphs excluding a fixed minor)

• Routing Scheme. Given a priority ranking and a parameter t ≥ 1, we construct a routing scheme,

such that the label size of xj is at most log j · d t log j
logn e · (1 + o(1)), its header of size log j · (1 + o(1)),

and it stores a routing table of size O(n1/t · log j). Routing from any vertex into xj will have stretch

at most 4d t log j
logn e − 3. In particular, for t = log n we roughly have labels of size log2 j, header log j,

routing table O(log j) and stretch O(log j).

On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average

Distortion [BFN16, BFN19]. In scaling distortion [ABN11] we are guaranteed that most of the pairs

will suffer from small distortion only. In particular, scaling distortion implies constant average distortion.

However, there is no way to choose which pairs will enjoy small distortion. On the other hand, in priority

distortion [EFN18] we may choose the priority, and can guarantee small distortion for points of high impor-

tance. However, most of the pairs might suffer from high distortion. In particular, the average distortion

might be almost as large as the worst case.

At first glance, these two notions of distortion seem very different. The most surprising ingredient of this

work is a general reduction relating the notions of prioritized distortion and scaling distortion. In fact, we

show that prioritized distortion is essentially equivalent to a strong version of scaling distortion called coarse

scaling distortion, in which for every point p and every 0 < ε < 1, the distances to the 1− ε fraction of the

farthest points from p are preserved with the desired distortion. We prove that there is a particular priority

π such that any embedding with a prioritized distortion α (w.r.t. π) has coarse scaling distortion bounded

7

by O(α(8/ε)). We further show a reduction in the opposite direction, informally, that given an embedding

with coarse scaling distortion γ, there exists an embedding with prioritized distortion γ(µ(j)), where µ is a

function such that
∑
i µ(i) = 1 (e.g., µ(j) = Θ̃(1

j)). We note that this reduction heavily relies on the property

of coarse scaling distortion embeddings and does not apply to non-coarse scaling embeddings. Yet, most

existing scaling embeddings are indeed coarse. This result implies that all existing priority distortion results

have their coarse scaling distortion counterparts, and vice versa. In particular, this equivalence implies many

new results on refined notions of distortion. See the list below.

A less direct application of the equivalence theorem is a construction that, given a weighted graph,

provides a spanning tree whose weight is at most (1+ρ) times that of the MST, while having O(1/ρ) average

distortion. We show this tradeoff to be tight. This result may be of interest for network applications. It is

extremely common in the area of distributed computing that an MST is used for communication between the

network nodes. This allows easy centralization of computing processes and an efficient way of broadcasting

through the network, allowing communication to all nodes at a minimum cost. Yet, when communication is

required, the cost of routing through the MST may be extremely high, even between nearby points. However,

in practice it is the average distortion, rather than the worst-case distortion, that is often used as a practical

measure of quality, as has been a major motivation behind the initial work of [KSW04, ABN11, ABN15].

The MST still fails even in this relaxed measure. Our result overcomes this by promising small routing

cost between nodes on average, while still possessing the low cost of broadcasting through the tree, thereby

maintaining the standard advantages of the MST.

A partial list of new results on refined notions of distortion proved in this paper appears below. The

only one proven directly is the spanner with lightness 1 + ρ and prioritized distortion Õ (log j) /ρ. All others

follow from the equivalence theorem.

• Embedding into `p: For p ∈ (0, 1) every metric space embeds into `p space with prioritized distortion

O(log j) (removing the log log factors from [EFN18]).

• Decomposable Metric: For p ∈ (0, 1) every τ -decomposable metric space embeds into `p with

prioritized distortion O(τ1−1/p(log j)1/p).

• Distance Oracle: For every metric space there exists a distance oracle with O(n) space, O(1) query

time and O(log j) priority distortion (improving over [EFN18]).

• Graph spanners: Given a weighted graph G there is a:

– Spanner with O(n) edges and O (log j) prioritized distortion.

– Spanner with lightness 1+ρ and prioritized distortion Õ (log j) /ρ, for arbitrarily small parameter

ρ ∈ (0, 1).

– Spanner with lightness 1 + ρ and coarse scaling distortion Õ (log 1/ε) /ρ, for arbitrarily small

parameter ρ ∈ (0, 1).

– Spanning tree with lightness 1 + ρ and scaling distortion Õ(
√

1/ε)/ρ, for arbitrarily small param-

eter ρ ∈ (0, 1).

Steiner Point Removal with distortion O(log k), using the Relaxed-Voronoi algorithm ([Fil18,

Fil19]). In this paper we study the SPR problem on general graphs. The previous works [KKN15, Che18]

constructed minors using the Ball-growing algorithm. In this paper we devise a novel algorithm called the

Relaxed-Voronoi algorithm. The main contribution of this paper is a new upper bound of O(log k) for the

8

SPR problem. Furthermore, the Relaxed-Voronoi algorithm is simpler and more intuitive compared to the

Ball-growing algorithm. Both algorithms grow clusters around the terminals, the main difference is that

the Ball-growing algorithm has many iterations, growing slowly from all terminals (almost in parallel),

while the Relaxed-Voronoi algorithm has one round only (each terminal construct a cluster by turn and

done).

Additionally, we devise an efficient implementation of the Relaxed-Voronoi algorithm in almost linear

time O (m+ min{m,nk} · log n) (m = |E|). While the Ball-growing algorithm can be implemented in

polynomial time, it is not clear how to do so efficiently.

Sparsification of Two-Variable Valued CSPs ([FK17]). A valued constraint satisfaction problem

(VCSP) instance (V,Π, w), is a set of variables V , with a set of constraints Π weighted by w. The value

of an assignment of values to the variables is the total weight of the satisfied constrains. Following cut

sparsification, we study the analogous problem of sparsifying VCSP, which was raised in [KK15, Section 4].

Given a VCSP instance, we are interested in a re-weighted sub-instance (V,Π′ ⊂ Π, w′) that preserves the

value of the given instance (under every assignment to the variables) within factor 1± ε. Such sparsification

of CSPs can be used to reduce storage space and running time of many algorithms.

We restrict our attention to two-variable constraints (i.e., of arity 2) over boolean domain (i.e., alphabet of

size 2). To simplify matters even further, we focus on the case where all the constraints use the same predicate

P : {0, 1}2 → {0, 1}. This restricted case of VCSP sparsification already generalizes cut-sparsification —

simply representing every vertex v ∈ V by a variable xv, and every edge (v, u) ∈ E by the constraint xv 6= xu.

Observe that such VCSPs capture also other interesting graph problems, such as the uncut edges (using the

predicate xv = xu), covered edges (using the predicate xv ∨xu) or the directed-cut edges (using the predicate

xv ∧ ¬xu).

For CSPs consisting of a single predicate P : {0, 1}2 → {0, 1}, we show that a (1 + ε)-sparsifier of size

O(n/ε2) always exists if and only if |P−1(1)| 6= 1 (i.e., P has 0,2,3 or 4 satisfying inputs). Observe that the

latter condition includes the two graphical examples above of uncut edges and covered edges, but excludes

directed-cut edges. We further show that our sparsity bound above is tight, except for some relatively trivial

predicates P . We then build on our sparsification result to obtain (1+ε)-sparsifiers for other CSPs, including

2SAT (which uses 4 predicate types) and 2LIN (which uses 2 predicate types).

In a recent follow-up, Butti and Živný [BZ19] generalize our result for binary predicates to any finite

domain (as oppose to our {0, 1}). They show that a predicate P : D2 → {0, 1} admits a sparsifier if and

only if there are no A,B ⊂ D of size 2 such that P restricted to A×B has a single 1 in its truth table.

2.2 Results: Related, Published During the PhD, but do not appear in the

Thesis

The Greedy Spanner is Existentially Optimal ([FS16]). The greedy spanner is arguably the simplest

and most well-studied spanner construction. Experimental results demonstrate that it is at least as good as

any other spanner construction, in terms of both the size and weight parameters. However, a rigorous proof

for this statement has remained elusive.

In this work we fill in the theoretical gap via a surprisingly simple observation: The greedy spanner is

existentially optimal (or existentially near-optimal) for several important graph families, in terms of both the

size and weight. Roughly speaking, the greedy spanner is said to be existentially optimal (or near-optimal)

for a graph family G if the worst performance of the greedy spanner over all graphs in G is just as good (or

nearly as good) as the worst performance of an optimal spanner over all graphs in G.

9

Focusing on the weight parameter, the state-of-the-art spanner constructions for both general graphs

[CW18] and doubling metrics [Got15] are complex. Plugging our observation into these results, we conclude

that the greedy spanner achieves near-optimal weight guarantees for both general graphs and doubling

metrics, thus resolving two longstanding conjectures in the area.

Further, we observe that approximate-greedy spanners are existentially near-optimal as well. Conse-

quently, we provide an O(n log n)-time construction of (1 + ε)-spanners for doubling metrics with con-

stant lightness and degree. Our construction improves Gottlieb’s [Got15] construction, whose runtime is

O(n log2 n) and whose number of edges and degree are unbounded, and remarkably, it matches the state-

of-the-art Euclidean result (due to Gudmundsson et al. [GLN02]) in all the involved parameters (up to

dependencies on ε and the dimension).

Light Spanners for High Dimensional Norms via Stochastic Decompositions ([FN18]). Span-

ners for low dimensional spaces (e.g., Euclidean space of constant dimension, or doubling metrics) are well

understood. This lies in contrast to the situation in high dimensional spaces, where except for the work

of Har-Peled, Indyk and Sidiropoulos [HPIS13], who showed that any n-point Euclidean metric has an

O(t)-spanner with Õ(n1+1/t2) edges, little is known.

In this paper we study several aspects of spanners in high dimensional normed spaces. First, we build

spanners for finite subsets of `p with 1 < p ≤ 2. Second, our construction yields a spanner which is both

sparse and light. In particular, we show that any n-point subset of `p for 1 < p ≤ 2 has an O(t)-spanner

with n1+Õ(1/tp) edges and lightness nÕ(1/tp).

Our results can also be applied more generally to any metric space admitting a certain low diameter

stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-spanner with lightness

O(n1/t). We exhibit the following tradeoff: metrics with decomposability parameter ν = ν(t) admit an

O(t)-spanner with lightness Õ(ν1/t). For example, metrics with doubling constant λ, graphs of genus g, and

graphs of treewidth k, all have spanners with stretch O(t) and lightness Õ(λ1/t) (resp. Õ(g1/t), Õ(k1/t)).

While these families do admit a (1 + ε)-spanner, its lightness depends exponentially on the dimension (resp.

log g, log k). Our construction alleviates this exponential dependency, at the cost of incurring larger stretch.

Constructing Light Spanners Deterministically in Near-Linear Time ([ADF+19]). In their

recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the lightness of the state-of-the-art

(2k − 1)(1 + ε)-spanner construction to Oε(n
1/k) lightness. Soon after, the author and Solomon [FS16]

showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the

greedy spanner is its running time of O(mn1+1/k) (which is faster than [CW18]). This makes the construc-

tion impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only

achieve lightness Ωε(kn
1/k), even when randomization is used.

The contribution of this paper is fast deterministic spanner constructions, and achieve similar bounds

as the state-of-the-art slower constructions. Our first result is an Oε(n
2+1/k+ε′) time spanner construction

which achieves the state-of-the-art bounds. Our second result is an Oε(m + n log n) time construction of

a spanner with (2k − 1)(1 + ε) stretch, O(log k · n1+1/k) edges and Oε(log k · n1/k) lightness. For the case

k = log n this is an exponential improvement in the dependence on k compared to the previous result with

such running time. Finally, for the important special case where k = log n, for every constant ε > 0, we

provide an O(m + n1+ε) time construction that produces an O(log n)-spanner with O(n) edges and O(1)

lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a

spanner for any k = ω(1). We describe our results and compare them to previous ones in the table below.

10

Stretch Size Lightness Construction Ref

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
nΘ(1) [CW18]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O
(
mn1+1/k

)
[FS16]

(2k − 1) O
(
kn1+1/k

)
no bound O (km) [BS07, RTZ05]

(2k − 1)(1 + ε) O
(
kn1+1/k

)
O
(
kn1/k

)
O (km+ n log n) [ES16]

O(k) O(log k · n1+1/k) no bound O(m+ n · log k) [MPVX15]

(2k − 1)(1 + ε) O(log k · n1+1/k) O
(
k · n1/k

)
O(m+ n · log n) [EN17]

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
O
(
log k · n1/k

)
O(m+ n · log n) [ADF+19]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O(n2+1/k+ε′) [ADF+19]

O(k) O
(
n1+1/k

)
O
(
n1/k

)
O
(
m+ n1+ε′+1/k

)
[ADF+19]

O(log n)/δ O (n) 1 + δ O
(
m+ n1+ε′

)
[ADF+19]

To achieve our constructions, we show a novel deterministic incremental approximate distance oracle.

Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption

of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues.

Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our

spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our

new oracle is of independent interest.

Ramsey Spanning Trees and their Applications ([ACE+18]). The metric Ramsey problem asks for

the largest subset S of a metric space that can be embedded into an ultrametric (more generally into `2)

with a given distortion. Study of this problem was motivated as a non-linear version of Dvoretzky theorem.

Mendel and Naor [MN07] devised the so called Ramsey Partitions to address this problem, and showed the

algorithmic applications of their techniques to approximate distance oracles and ranking problems.

In this paper we study the natural extension of the metric Ramsey problem to graphs, and introduce the

notion of Ramsey Spanning Trees. We ask for the largest subset S ⊆ V of a given graph G = (V,E), such

that there exists a spanning tree of G that has small stretch for S. Applied iteratively, this provides a small

collection of spanning trees, such that each vertex has a tree providing low stretch paths to all other vertices.

The union of these trees serves as a special type of spanner, a tree-padding spanner. We use this spanner

to devise the first compact stateless routing scheme with O(1) routing decision time, and labels which are

much shorter than in all currently existing schemes.

We first revisit the metric Ramsey problem, and provide a new deterministic construction. We prove that

for every k, any n-point metric space has a subset S of size at least n1−1/k which embeds into an ultrametric

with distortion 8k. We use this result to obtain the state-of-the-art deterministic construction of a distance

oracle. Building on this result, we prove that for every k, any n-vertex graph G = (V,E) has a subset S of

size at least n1−1/k, and a spanning tree of G, that has terminal distortion O(k log log n) w.r.t. S.

Metric embedding via shortest path decompositions ([AFGN18]). In this paper we study embed-

dings of special graph families into `p spaces. We devise embeddings for any graph family which admits

“shortest path decompositions” (SPD) of “low depth”. Every (weighted) path graph has an SPD of depth

1. A graph G has an SPD of depth k if after removing some shortest path P , every connected component

in G \ P has an SPD of depth k − 1. The main result of this paper is that every weighted graph with an

SPD of depth k, is embeddable into `p with distortion O(kmin{1/p,1/2}). This result is tight for every p > 1.

11

We summarize the implications for various graph families in the table below.
Graph Family Our results Previous results

Pathwidth k O(k1/p) (4k)k
3+1 into `1 [LS13]

Treewidth k O((k log n)1/p) O(k1−1/p · log1/p n) [KLMN04]

O((log(k log n))1−1/p(log1/p n)) [KK16]

Planar O(log
1/p n) O(log

1/p n) [Rao99]

H-minor-free O((g(H) log n)1/p) O(|H|1−1/p log
1/p n) [AGG+14]+[KLMN04]

For bounded pathwidth graphs we provide super-exponential improvement for the case p = 1, while

having completely new results for every p > 1. For bounded treewidth graphs we improve the state of the

art for the case where p > 2. For minor free graphs we provide improvement for large enough values of p.

Finally, for planar graphs we just re-proved the celebrated result of Rao, while using completely different

techniques.

Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems ([FKT19]). This is

a follow-up paper to [Fil19]. We used the Relaxed-Voronoi framework presented there to reprove three

known algorithmic bounds for terminal-clustering problems. In this genre of problems, the input is a metric

space (X, d) (possibly arising from a graph) and a subset of terminals K ⊂ X, and the goal is to partition

the points X such that each part, called a cluster, contains exactly one terminal (possibly with connectivity

requirements) so as to minimize some objective. The three bounds we reprove are for Steiner Point Removal

on trees [Gup01], for Metric 0-Extension in bounded doubling dimension [LN03], and for Connected Metric

0-Extension [EGK+14].

The Relaxed-Voronoi framework was already employed successfully to provide state-of-the-art results

for terminal-clustering problems on general metrics [CKR01, Fil19]. However, for restricted families of

metrics, e.g., trees and doubling metrics, only more complicated, ad-hoc algorithms are known. Our main

contribution is to demonstrate that the Relaxed-Voronoi algorithm is applicable to restricted metrics, and

actually leads to relatively simple algorithms and analyses.

3 Summary, Discussion and Open Problems

Classically, most of the results in metric embedding theory, and more generally in theoretical computer

science, are concerned with analyzing the worst case scenario. One reason is that it is usually easier to

rigorously analyze worst case, while it is much harder to give a more precise description of richer behaviors.

This approach often gives overwhelming importance to outliers that essentially could be neglected. On the

other hand, industry and more practically oriented fields of study, are interested in “better descriptions” of

performance, and are not willing to be satisfied with worst case only. However, their analysis is typically

based on experiments, while the algorithms are just heuristics. In other words, they sometimes lack a stable

theoretical foundation. Understanding this phenomena and giving rigorous explanations is a fascinating

theoretical question. Even more importantly, once a phenomenon is fully understood, we gain a much

stronger advantage using it.

The most famous example is the Simplex algorithm for Linear programming. The Simplex algorithm has

been used very successfully in the industry since the late 1940s. However, it was shown that in the worst

case its running time is exponential. It took some time, an only in the early 1980s was a polynomial time

algorithm for linear programming discovered. Nevertheless, the industry kept using the Simplex algorithm,

as apparently in practice it is much more efficient. The Simplex algorithm lacked any theoretical explanation

for its excellent performance. Finally, Spielman and Teng came up with a smooth analysis for the Simplex

12

algorithm. They proved that the cases where the runtime of the Simplex algorithm is exponential are isolated

and essentially negligible. More formally, they show that given a linear programming instance, if we add

random small perturbations to the constraints, then w.h.p. the Simplex will run in only polynomial time.

The main theme of this thesis is the construction of metric embedding with refined guarantees. That

is, our goal is to give rigorous theorems explaining a more subtle behavior than simply worst case. Indeed,

we proved some theorems that cannot be described using the crude notion of worst case. We started by

defining prioritized distortion. We constructed various embeddings with prioritized distortion, emphasizing

the phenomenon that generally, the distortion could be a function of the relative ranking, rather than the

same worst case for all points. Further, we study the previously introduced scaling distortion. Even though

intuitively priority and (coarse) scaling distortion significantly differ, we prove that they are essentially

equivalent. This equivalence theorem implies many new results on refined embeddings. Another interesting

application is the construction of a tree with 1+ρ lightness and O(1/ρ) average distortion for every ρ ∈ (0, 1).

Next we turn to study the fundamental question of Steiner point removal. Consider k terminals in some

huge planar graph. Is there a planar graph supported only on these terminals that (approximately) preserves

the distances between terminals? What is the best possible distortion? While we were not able to answer

this question, we provide an O(log k) upper bound for general graphs (for SPR), which is also the best known

for planar graphs and for the question above.

The best known lower bound for the SPR problem is 8 [CXKR06]. This bound is achieved using the

unweighted full binary tree with the leaves being the terminals and depth tending to infinity. Once we

analyze more complicated graph families the possible geometries increase considerably. On the other hand,

we also add edges and therefore increase the possibilities for minor construction. We believe that the increase

in minors overwhelms the increase in geometries. In particular, that trees are indeed the hardest instances,

or not far from it.

Conjecture 1. There is a universal constant α ≥ 1 such that for every weighted graph G = (V,E,w) and

a terminal set K ⊂ V , there is a weighted minor of G supported on K only such that for every x, y ∈ K,

dG(x, y) ≤ dM (x, y) ≤ α · dG(x, y) .

Both our framework (Relaxed-Voronoi) and the previously used one (Ball-growing) proceed by creating

random terminal partitions. These partitions are determined using random parameters, which are chosen

with no consideration whatsoever of the input graph G. In contrast, the optimal tree algorithm of [Gup01]

is a deterministic recursive algorithm which makes decisions after considering the tree structure at hand.

It seems that the input-oblivious approach of the Relaxed-Voronoi and the Ball-growing algorithms will

fail to push beyond the log k upper bound. As a conclusion, input-sensitive approaches seem to be more

promising for future attempts to resolve the SPR problem.

In the Relaxed-Voronoi algorithm there are two degrees of freedom: choosing the order of terminals,

and the magnitude of each terminal. In [Fil19] we choose the order arbitrarily, and the magnitudes randomly

with exponential-like distribution. In a follow-up paper with Krauthgamer and Trabelsi [FKT19], we used

the Relaxed-Voronoi algorithm in order to re-prove Gupta’s [Gup01] optimal upper bound of 8. This was

done by deterministically choosing order and magnitudes, where the order depends on the graph’s geometry.

This example demonstrates that one can use the Relaxed-Voronoi algorithm also in an input-sensitive

manner in order to achieve optimal results.

In the final paper presented in this thesis [FK17], we studied sparsification of binary CSPs with domain

of size 2. Our results have been generalized to any finite domain D [BZ19]. As CSPs are broadly used, we

believe that these sparsification results will soon find applications. Moreover, it will be very interesting to

13

generalize these results beyond binary. One special case that has been studied is the sparsification of cut

edges in hypergraphs [KK15, SY19]. Further, Soma and Yoshida used this hypergraph sparsifier in order to

learn and provide succinct representation of sub-modular functions.

We finish with a list of open questions:

• Prioritized JL: Recently, in [MMMR18, NN18] a terminal version of the JL lemma was constructed.

Specifically, given a set K ⊆ Rd of k terminals, an embedding φ : Rd → RO(log k/ε2) with terminal

distortion 1 + ε was constructed. We would like to get a similar result with prioritized dimension.

Specifically, given a set X ⊆ Rd with priority ordering x1, x2, . . . , xn , we would like to create an

embedding ψ : X → `2 with distortion 1 + ε such that ψ(xj) can be non zero only in the first α(j)

coordinates. For which functions α : N→ N is this possible? Clearly for α(j) = j − 1 we can even get

isometry (using rotations). Ideally, we would like to get α(j) = O(log j/ε2).

• Prioritzed Spanner: In [BFN19] we constructed a spanner with prioritized distortion Õ(log j) and

constant lightness. Could we reduce the prioritized distortion to a clean O(log j)?

• Stochastic Embedding into Spanning Trees: It is known how to embed every n-point metric

space via stochastic embedding into tree metrics with expected distortion O(log n). When the input

is a weighted graph, it might be beneficial to embed it into distribution of spanning trees, instead of

just arbitrary ones. However, here it is only known how to embed with expected distortion Õ(log n)

[AN12]. Could we embed into a distribution of trees with expected distortion O(log n)?

• SPR: Prove/disprove Conjecture 1. As making progress on the conjecture might be hard, we present

several simpler problems.

– Expected distortion: What distortion parameters could we achieve by stochastic embedding

into a distribution of minors, instead of a single embedding? Currently, for general graphs the

state of the art for usual (worst-case) distortion, and expected distortion for the SPR problem are

the same, O(log k) upper bound and Ω(1) lower bound. What are the right bounds for expected

distortion for the SPR problem? For planar graphs for example an O(1) distortion is known.

Could we achieve similar bound for general graphs?

– Special graph families: [BG08] showed a constant distortion for the SPR problem on outer-planar

graphs. It will be very interesting to achieve better upper bounds for planar graphs, and more

generally for minor-free graphs, bounded treewidth graphs etc. In the expected distortion regime,

an O(1) upper bound is already known [EGK+14] for these families. Possibly one can use the

Relaxed-Voronoi algorithm with a clever choice of order and magnitudes in order to achieve such

results.

• Beyond binary CSP’s: In our paper on CSP sparsification [FK17], we characterized which binary

predicates with domain of size 2 are sparsifiable. In a recent follow-up [BZ19], this result was generalized

to arbitrary finite domains. However, the case of arity 3 and beyond is open. Could we generalize the

results to higher arities?

References

[ABC+05] Ittai Abraham, Yair Bartal, Hubert T.-H. Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg,

Ofer Neiman, and Aleksandrs Slivkins. Metric embeddings with relaxed guarantees. In FOCS, pages

83–100. IEEE Computer Society, 2005. 5

14

[ABN11] Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances in

Mathematics, 228(6):3026 – 3126, 2011. 5, 7, 8

[ABN15] Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and graphs into

spanning trees with constant average distortion. SIAM J. Comput., 44(1):160–192, 2015. 8

[ACE+18] Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey spanning trees

and their applications. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1650–1664, 2018. 11

[ACK+16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin Zhang. On

sketching quadratic forms. In Innovations in Theoretical Computer Science, ITCS’16, pages 311–319.

ACM, 2016. 4

[ADD+93] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs.

Discrete & Computational Geometry, 9:81–100, 1993. 3

[ADF+19] Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Con-

structing light spanners deterministically in near-linear time. In 27th Annual European Symposium on

Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., pages 4:1–4:15, 2019. 10,

11

[AFGN18] Ittai Abraham, Arnold Filtser, Anupam Gupta, and Ofer Neiman. Metric embedding via shortest path

decompositions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 952–963, 2018. 11

[AG09] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In 36th International

Colloquium on Automata, Languages and Programming, ICALP ’09, pages 328–338. Springer-Verlag,

2009. 4

[AGG+14] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers, and

threatening skeletons: padded decomposition for minor-free graphs. In Symposium on Theory of Com-

puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 79–88, 2014. 6, 12

[AN12] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree. In

Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,

USA, May 19 - 22, 2012, pages 395–406, 2012. 2, 14

[Bar96a] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In 37th

Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages 184–193. IEEE

Comput. Soc. Press, Los Alamitos, CA, 1996. 7

[Bar96b] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS,

pages 184–193, 1996. 2

[BBMN11] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-competitive

algorithm for the k-server problem. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd

Annual Symposium on, pages 267 –276, oct. 2011. 1

[BFN16] Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum

spanning tree with constant average distortion. In Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,

pages 873–882, 2016. The embedding of β-decomposable metrics appears in the full version http:

//arxiv.org/abs/1609.08801. 7

[BFN19] Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning

tree with constant average distortion. J. Comput. Syst. Sci., 105:116–129, 2019. 6, 7, 14

[BG08] A. Basu and A. Gupta. Steiner point removal in graph metrics. Unpublished Manuscript, available from

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf, 2008. 4, 14

15

http://arxiv.org/abs/1609.08801
http://arxiv.org/abs/1609.08801
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

[BK96] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In 28th Annual ACM

Symposium on Theory of Computing, pages 47–55. ACM, 1996. 4

[BK02] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and flows in

capacitated graphs. CoRR, cs.DS/0207078, 2002. 4

[Bou85] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathe-

matics, 52(1-2):46–52, 1985. 1

[BS07] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing

sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563, 2007. See also

ICALP’03. 11

[BSS14] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM

Review, 56(2):315–334, 2014. 4

[BZ19] Silvia Butti and Stanislav Zivny. Sparsification of binary csps. In 36th International Symposium on

Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, pages

17:1–17:8, 2019. 9, 13, 14

[CDG06] Hubert T.-H. Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In Algorithms - ESA

2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings, pages

196–207, 2006. 5

[CDNS92] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners. In Proc.

of 8th SOCG, pages 192–201, 1992. 3

[CGH16] Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph minors for preserving terminal

distances approximately - lower and upper bounds. In 43rd International Colloquium on Automata,

Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 131:1–131:14, 2016. 4

[CGN+03] Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Embedding

k-outerplanar graphs into `1. In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 527–536. Society for Industrial and Applied Mathematics, 2003. 5

[Che13] Shiri Chechik. Compact routing schemes with improved stretch. In ACM Symposium on Principles of

Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 33–41, 2013. 3

[Che14] Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of the 46th Annual

ACM Symposium on Theory of Computing, STOC ’14, pages 654–663, New York, NY, USA, 2014. ACM.

2

[Che15] Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the Forty-Seventh

Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,

2015, pages 1–10, 2015. 2

[Che18] Yun Kuen Cheung. Steiner point removal - distant terminals don’t (really) bother. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,

USA, January 7-10, 2018, pages 1353–1360, 2018. 4, 8

[CJLV08] Amit Chakrabarti, Alexander Jaffe, James R. Lee, and Justin Vincent. Embeddings of topological

graphs: Lossy invariants, linearization, and 2-sums. In 49th Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 761–770, 2008. 5

[CKR01] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the 0-extension

problem. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, SODA

’01, pages 8–16, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics. 12

[CW18] Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms,

14(3):33:1–33:15, 2018. 3, 10, 11

16

[CXKR06] T.-H. Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. A tight lower bound for the steiner point

removal problem on trees. In Proceedings of the 9th International Conference on Approximation Algo-

rithms for Combinatorial Optimization Problems, and 10th International Conference on Randomization

and Computation, APPROX’06/RANDOM’06, pages 70–81, Berlin, Heidelberg, 2006. Springer-Verlag.

4, 13

[dCHS11] Marcel K. de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums of positive semidef-

inite matrices. CoRR, abs/1107.0088, 2011. 4

[DHN93] Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in 3-dimensional

euclidean space. In Proceedings of the Ninth Annual Symposium on Computational GeometrySan Diego,

CA, USA, May 19-21, 1993, pages 53–62, 1993. 3

[EEST05] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning trees.

In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages

494–503, New York, NY, USA, 2005. ACM Press. 2

[EFN15] Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding. In

Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,

Portland, OR, USA, June 14-17, 2015, pages 489–498, 2015. 6

[EFN17] Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci., 697:1–36,

2017. 5

[EFN18] Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding. SIAM

J. Comput., 47(3):829–858, 2018. 6, 7, 8

[EGK+14] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-Cohen, and Kunal

Talwar. Vertex sparsifiers: New results from old techniques. SIAM J. Comput., 43(4):1239–1262, 2014.

4, 12, 14

[EN17] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and emulators.

CoRR, abs/1607.08337, Version 2, 2017. 11

[EN18] Michael Elkin and Ofer Neiman. Near isometric terminal embeddings for doubling metrics. In 34th In-

ternational Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,

pages 36:1–36:15, 2018. 5

[ENS14] Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. In Proc. of 41th ICALP, pages 442–452,

2014. 3

[Erd64] Paul Erdős. Extremal problems in graph theory. In Proc. of Sympos. Smolenice, pages 29–36, 1964. 3

[ES16] Michael Elkin and Shay Solomon. Fast constructions of lightweight spanners for general graphs.

12(3):29:1–29:21, 2016. See also SODA’13. 11

[FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi. A general frame-

work for graph sparsification. In 43rd Annual ACM Symposium on Theory of Computing, pages 71–80.

ACM, 2011. 4

[Fil18] Arnold Filtser. Steiner point removal with distortion O(log k). In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January

7-10, 2018, pages 1361–1373, 2018. 8

[Fil19] Arnold Filtser. Steiner point removal with distortion o(log k) using the relaxed-voronoi algorithm. SIAM

J. Comput., 48(2):249–278, 2019. 8, 12, 13

[FK17] Arnold Filtser and Robert Krauthgamer. Sparsification of two-variable valued constraint satisfaction

problems. SIAM J. Discrete Math., 31(2):1263–1276, 2017. 9, 13, 14

17

[FKT19] Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. Relaxed voronoi: A simple framework for

terminal-clustering problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019,

January 8-9, 2019 - San Diego, CA, USA, pages 10:1–10:14, 2019. 12, 13

[FN18] Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decomposi-

tions. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,

Finland, pages 29:1–29:15, 2018. 10

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics

by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, November 2004. 2

[FS16] Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings of the

2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July

25-28, 2016, pages 9–17, 2016. 3, 9, 10, 11

[GLN02] Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan. Fast greedy algorithms for con-

structing sparse geometric spanners. SIAM J. Comput., 31(5):1479–1500, 2002. 10

[GNRS04] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and `1s-embeddings

of graphs. Combinatorica, 24(2):233–269, 2004. 1, 5, 6

[Got15] Lee-Ad Gottlieb. A light metric spanner. In Proc. of 56th FOCS, pages 759–772, 2015. 3, 10

[GPPR01] Cyril Gavoille, David Peleg, Stephane Perennes, and Ran Raz. Distance labeling in graphs. In Proceedings

of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA.,

pages 210–219, 2001. 2

[Gup01] Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the Twelfth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 220–227, Philadelphia, PA, USA,

2001. Society for Industrial and Applied Mathematics. 4, 12, 13

[HPIS13] Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high dimensions. In

Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,

pages 804–809. SIAM, 2013. 10

[HST86] Cor A. J. Hurkens, Alexander Schrijver, and Éva Tardos. On fractional multicommodity flows and

distance functions. Discrete Mathematics, 73:99–109, 1986. 5

[JL84] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.

Contemporary Mathematics, 26:189–206, 1984. 1

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings

of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,

January 11-13, 2015, pages 367–376, 2015. 4, 9, 14

[KK16] Lior Kamma and Robert Krauthgamer. Metric decompositions of path-separable graphs. Algorithmica,

pages 1–9, 2016. 12

[KKM+12] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Efficient distributed

approximation algorithms via probabilistic tree embeddings. Distributed Computing, 25(3):189–205,

2012. 1

[KKN15] Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. Cutting corners cheaply, or how to remove

steiner points. SIAM J. Comput., 44(4):975–995, 2015. 4, 8

[KL02] David R. Karger and Matthew S. Levine. Random sampling in residual graphs. In Proceedings of the

Symposium on Theory of Computing (STOC), pages 63–66, 2002. 4

[Kle02] Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries.

In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8,

2002, San Francisco, CA, USA., pages 820–827, 2002. 2

18

[KLMN04] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent: A new embed-

ding method for finite metrics. In 45th Annual IEEE Symposium on Foundations of Computer Science,

pages 434–443. IEEE, October 2004. 5, 6, 12

[KNZ14] Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. Preserving terminal distances using minors.

SIAM J. Discrete Math., 28(1):127–141, 2014. 4

[KP12] Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In 3rd Innovations

in Theoretical Computer Science Conference, pages 393–398. ACM, 2012. 4

[KSW04] Jon M. Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and embedding using small sets

of beacons. In FOCS, pages 444–453, 2004. 5, 8

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica, 15(2):215–245, 1995. 1, 6

[LN03] James R. Lee and Assaf Naor. Metric decomposition, smooth measures, and clustering. Unpublished

Manuscript, available from https://www.math.nyu.edu/~naor/homepage%20files/cluster.pdf, 2003.

12

[LR10] James R. Lee and Prasad Raghavendra. Coarse differentiation and multi-flows in planar graphs. Discrete

& Computational Geometry, 43(2):346–362, 2010. 5

[LS10] James R. Lee and Anastasios Sidiropoulos. Genus and the geometry of the cut graph. In Proceedings of

the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,

USA, January 17-19, 2010, pages 193–201, 2010. 6

[LS13] James R. Lee and Anastasios Sidiropoulos. Pathwidth, trees, and random embeddings. Combinatorica,

33(3):349–374, 2013. 5, 6, 12

[Mad10] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In

Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 245–254. IEEE,

2010. 4

[Mat02] Jiri Matoušek. Lectures on discrete geometry. Springer-Verlag, New York, 2002. 1

[MMMR18] Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Nonlinear

dimension reduction via outer bi-lipschitz extensions. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages

1088–1101, 2018. 5, 14

[MN07] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal of the

European Mathematical Society, 9(2):253–275, 2007. 11

[MPVX15] Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms for

spanners and hopsets. In Proc. 27th, pages 192–201, 2015. 11

[NN18] Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in euclidean space.

CoRR, abs/1810.09250, 2018. 5, 14

[NR13] I. Newman and Y. Rabinovich. On multiplicative λ-approximations and some geometric applications.

SIAM Journal on Computing, 42(3):855–883, 2013. 4

[OS81] Haruko Okamura and P.D. Seymour. Multicommodity flows in planar graphs. Journal of Combinatorial

Theory, Series B, 31(1):75 – 81, 1981. 5

[Pel99] David Peleg. Proximity-preserving labeling schemes and their applications. In Graph-Theoretic Concepts

in Computer Science, 25th International Workshop, WG ’99, Ascona, Switzerland, June 17-19, 1999,

Proceedings, pages 30–41, 1999. 2

[Rab08] Yuri Rabinovich. On average distortion of embedding metrics into the line. Discrete & Computational

Geometry, 39(4):720–733, 2008. 6

19

https://www.math.nyu.edu/~naor/homepage%20files/cluster.pdf

[Rao99] Satish Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In

Proceedings of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, Florida,

USA, June 13-16, 1999, pages 300–306, 1999. 5, 12

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance

oracles and spanners. In Proceedings of the 32Nd International Conference on Automata, Languages and

Programming, ICALP’05, pages 261–272, Berlin, Heidelberg, 2005. Springer-Verlag. 11

[She09] Jonah Sherman. Breaking the multicommodity flow barrier for O(
√

logn)-approximations to sparsest

cut. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 363–372,

2009. 4

[Smi09] Michiel H. M. Smid. The weak gap property in metric spaces of bounded doubling dimension. In Efficient

Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 275–289,

2009. 3

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM J. Com-

put., 40(6):1913–1926, dec 2011. 4

[ST04a] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding network distances in Euclidean

space. IEEE/ACM Trans. Netw., 12(6):993–1006, 2004. 1

[ST04b] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. In 36th Annual ACM Symposium on Theory of Computing, pages 81–90.

ACM, 2004. 4

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981–

1025, jul 2011. 4

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,

January 6-9, 2019, pages 2570–2581, 2019. 14

[Tho01] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. In 42nd

Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,

Nevada, USA, pages 242–251, 2001. 2

[TZ01a] M. Thorup and U. Zwick. Approximate distance oracles. In 33rd Annual ACM Symposium on Theory

of Computing (STOC), pages 183–192, Hersonissos, Crete, Greece, July 2001. 2

[TZ01b] Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, pages 1–10, 2001. 3

[WN13] Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Proceedings of the

Twenty-Forth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13. SIAM, 2013. 2

20

Part II

Prioritized Metric Structures and Embedding

21

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2018 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 829–858

PRIORITIZED METRIC STRUCTURES AND EMBEDDING∗

MICHAEL ELKIN† , ARNOLD FILTSER† , AND OFER NEIMAN†

Abstract. Metric data structures (distance oracles, distance labeling schemes, routing schemes)
and low-distortion embeddings provide a powerful algorithmic methodology, which has been success-
fully applied for approximation algorithms [N. Linial, E. London, and Y. Rabinovich, Combinatorica,
15 (1995), pp. 215–245], online algorithms [N. Bansal et al., Proceedings of the 52th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’08, IEEE Computer Society, Washing-
ton, DC, 2011, pp. 267–276], distributed algorithms [M. Khan et al., Distrib. Comput., 25 (2012),
pp. 189–205], and for computing sparsifiers [Y. Shavitt and T. Tankel, IEEE/ACM Trans. Netw., 12
(2004), pp. 993–1006]. However, this methodology appears to have a limitation: the worst-case per-
formance inherently depends on the cardinality of the metric, and one could not specify in advance
which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension)
than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a
suite of prioritized metric data structures and embeddings. We show that given a priority ranking
(x1, x2, . . . , xn) of the graph vertices (resp., metric points) one can devise a metric data structure
(resp., embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex
xj will depend on the rank j of the vertex. We also show that other important parameters, such as
the label size and (in some sense) the dimension, may depend only on j. In some of our metric data
structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size
(resp., dimension) simultaneously. The worst-case performance of our metric data structures and
embeddings is typically asymptotically no worse than of their nonprioritized counterparts.

Key words. metric embedding, distance oracles, routing, priorities

AMS subject classifications. 68W01, 68P05

DOI. 10.1137/17M1118749

1. Introduction. The celebrated distance oracle of Thorup and Zwick [TZ05]
enables one to preprocess an undirected weighted n-vertex graph G = (V,E) so as to
produce a data structure (also known as distance oracle) of size O(t · n1+1/t) (for a
parameter t = 1, 2, . . .) that supports distance queries between pairs u, v ∈ V in time
O(t) per query. (The query time was recently improved to O(1) by [Che14, Wul13],
and the size to O(n1+1/t) by [Che15].) The distance estimates provided by the oracle
are within a factor of 2t− 1 from the actual distance dG(u, v) between u and v in G.
The approximation factor (2t − 1 in this case) is called the stretch. Distance oracles
can serve as an example of a metric data structure; other very well-studied examples
include distance labeling [Pel99, GPPR01] and routing [TZ01, AP92]. Thorup–Zwick’s
oracle can also be converted into a distance-labeling scheme: each vertex is assigned
a label of size O(n1/t · log1−1/t n) so that given labels of u and v the query algorithm
can provide a (2t− 1)-approximation of dG(u, v). Moreover, the oracle also gives rise
to a routing scheme [TZ01] that exhibits a similar trade-off.

A different but closely related thread of research concerns low-distortion embed-
dings. A celebrated theorem of Bourgain [Bou86] asserts that any n-point metric
(X, d) can be embedded into an O(log n)-dimensional Euclidean space with distortion

∗Received by the editors February 27, 2017; accepted for publication (in revised form) February
9, 2018; published electronically June 14, 2018. A preliminary version of this paper was published
in STOC’15, ACM, New York, 2015, pp. 489–498 [EFN15].

http://www.siam.org/journals/sicomp/47-3/M111874.html
Funding: The first author’s research was supported by the ISF grant (724/15). The third

author’s research was supported in part by ISF grant (523/12) and by BSF grant 2015813.
†Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

(elkinm@cs.bgu.ac.il, arnoldf@cs.bgu.ac.il, neimano@cs.bgu.ac.il).

829

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

830 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

O(log n). (Roughly speaking, distortion and stretch are the same thing. See section 2
for formal definitions.) Fakcharoenphol, Rao, and Talwar [FRT04] (following Bartal
[Bar96, Bar98]) showed that any metric (X, d) embeds into a distribution over trees
(in fact, ultrametrics) with expected distortion O(log n).

These (and many other) important results are not only appealing from a mathe-
matical perspective, but they also were found extremely useful for numerous applica-
tions in theoretical computer science and beyond [LLR95, BBMN11, KKM+12, ST04].
A natural disadvantage is the dependence of all the relevant parameters on n, the car-
dinality of the input graph/metric. However, all these results are either completely
tight, or very close to being completely tight. In order to address this issue, metric
data structures and embeddings in which some pairs of vertices/points enjoy better
stretch/distortion or with improved label size/dimension were developed. Specifi-
cally, [KSW09, ABC+05, ABN11, CDG06] studied embeddings and distance oracles
in which the distortion/stretch of at least 1 − ε fraction of the pairs is improved
as a function of ε, either for a fixed ε or for all ε ∈ [0, 1] simultaneously (e.g., for
a fixed ε, embeddings into Euclidean space of dimension O(log 1/ε) with distortion

O(log(1/ε)), or a distance oracle with stretch 2dt · log(2/ε)
logn e + 1 for 1 − ε fraction

of the pairs). Also, [ABN07, SS09, AC14] devised embeddings and distance oracles
that provide distortion/stretch O(log k) for all pairs (x, y) of points such that y is
among the k closest points to x, and distance labeling schemes that support queries
only between k-nearest neighbors, in which the label size depends only on k rather
than n.

An inherent shortcoming of these results is, however, that the pairs that enjoy
better than worst-case distortion cannot be specified in advance. In this paper we
alleviate this shortcoming and devise a suite of prioritized metric data structures
and low-distortion embeddings. Specifically, we show that one can order the graph
vertices V = (x1, . . . , xn) arbitrarily in advance, and devise metric data structures
(i.e., oracles/labelings/routing schemes) that, for a parameter t = 1, 2, . . . , provide
stretch 2dt · log j

logne − 1 (instead of 2t − 1) for all pairs involving xj ,
1 while using the

same space as corresponding nonprioritized data structures! In some cases the label
size can be simultaneously improved for the high priority points, as described in the
following.

The same phenomenon occurs for low-distortion embeddings. We devise an em-
bedding of general metrics into an O(log n)-dimensional Euclidean space that provides
prioritized distortion O(log j · (log log j)1/2+ε), for any constant ε > 0 (i.e., the distor-
tion for all pairs containing xj is O(log j · (log log j)1/2+ε)). Similarly, our embedding
into a distribution of trees provides prioritized expected distortion O(log j).

We introduce a novel notion of improved dimension for high priority points. In
general we cannot expect that the dimension of a Euclidean embedding with low
distortion (even prioritized) will be small (as Euclidean embedding into dimension
D has worst-case distortion of Ω(n1/D · log n) for some metrics [ABN11]). What we
can offer is an embedding in which the high ranked points have only a few “active”
coordinates. That is, only the firstO(poly(log j)) coordinates in the image of xj will be
nonzero, while the distortion is also bounded by O(poly(log j)). This could be useful
in a setting where the high ranked points participate in numerous computations, then
since representing these points requires very few coordinates, we can store many of

1In the case j = 1, the stretch is 1. For ease of presentation, we ignore this special case in the
statement of the results—the stretch/distortion for x1 will always be at most the value guaranteed
for x2. (In the technical sections we do provide a separate analysis for x1 when needed.)

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 831

them in the cache or other high speed memory. We remark that our framework is the
first which allows simultaneously improved distortion and dimension (or improved
stretch and label size) for the high priority points, while providing a meaningful
guarantee for all pairs.

We have a construction of prioritized distance oracles that exhibits a qualita-
tively different behavior than our aforementioned oracles. Specifically, we devise a
distance oracle with space O(n log log n) (resp., O(n log∗ n)) and prioritized stretch

O(logn
log(n/j)) (resp., 2O(logn

log(n/j)
)). Observe that as long as j < n1−ε for any fixed

ε > 0, the prioritized stretch of both these oracles is O(1). The query time is
O(1). These oracles are, however, not path reporting (a path-reporting oracle can
return an actual approximate shortest path in the graph, in time proportional to
its length). We also devise a path-reporting prioritized oracle, which was men-
tioned above: it has space O(t · n1+1/t), stretch 2dt · log j

logne − 1, and query time

O(t · log jlogn).
This second oracle can be distributed as a labeling scheme, in which not only the

stretch 2dt · log jlogne − 1 is prioritized, but also the label size is smaller for high priority

points: it is O(n1/t · log j) rather than the nonprioritized O(n1/t · log n). Our routing
scheme has prioritized stretch 4dt · log jlogne−1 (instead of 4t−5), the routing tables have

size O(n1/t · log j) (instead of O(n1/t · log n)), and labels have size O(log j · dt log jlogne)
(instead of O(t · log n)).

We also consider the dual setting in which the stretch is fixed, and label size λ(j)
of xj is smaller when j � n. The function λ(j) will be called prioritized label size.
Specifically, with prioritized label size O(j1/t · log j) we can have stretch 2t − 1. For
certain points on the trade-off curve we can even have both stretch and label size
prioritized simultaneously! In particular, a variant of our distance labeling scheme
provides a prioritized stretch 2dlog je−1 and prioritized label sizeO(log j). For routing
we have similar guarantees independent of n. We also devise a distance labeling
scheme for graphs that exclude a fixed minor with stretch 1 + ε and prioritized label
size O(1/ε · log j) (extending [AG06, Tho01]).

Another notable result in this context is our prioritized embedding into a sin-
gle tree. It is well known that any metric can be embedded into a single domi-
nating tree with linear distortion, and that it is tight [RR98]. We show that any
n-point metric (X, d) enjoys an embedding into a single dominating tree with pri-
oritized distortion α(j) if and only if the sum of reciprocals

∑∞
j=1 1/α(j) converges.

In particular, prioritized distortion α(j) = j · log j · (log log j)1.01 is admissible, while
α(j) = j · log j · log log j is not, i.e., both our upper and lower bounds are tight.
This lower bounds stands out as it shows that it is not always possible to replace
nonprioritized distortion of α(n) by a prioritized distortion α(j). For single-tree em-
bedding the nonprioritized distortion is linear, while the prioritized one is provably
superlinear.

1.1. Overview of techniques. We elaborate briefly on the methods used to
obtain our results.

Distance oracles, distance labeling, and routing. We have two basic techniques
for obtaining distance oracles with prioritized stretch. The first one is manifested in
Theorem 5, and the idea is as follows: partition the vertices into sets according to
their priority, and for each set K ⊆ V , apply as a black box a known distance oracle
on K, while for the other vertices store the distance to their nearest neighbor in K.
We show that the stretch of pairs in K × V is only a factor of 2 worse than the one

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

832 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

guaranteed for K × K. Furthermore, we exploit the fact that for sets K of small
size, we can afford a very small stretch and still maintain a small space. The exact
choice of the partitions enables a range of trade-offs between space and prioritized
stretch.

Our second technique for an oracle with prioritized stretch, used in Theorem 6,
is based on a non-black-box variation of the [TZ05] oracle. In their construction for
stretch 2t−1, a (nonincreasing) sequence of t−1 sets is generated by repeated random
sampling. We show that if a vertex is chosen i times, then the query algorithm can be
changed to improve the stretch from 2t−1 to 2(t−i)−1, for any pair containing such a
vertex. This observation only shows that there exists a priority ranking for which the
oracle has the required prioritized stretch. In order to handle any given ranking, we
alter the construction by forcing high ranked elements to be chosen numerous times,
and show that this increases the space usage by at most a factor of 2.

In order to build a distance labeling scheme out of their distance oracle, [TZ05] pay

an overhead of O(log1−1/t n) in the label size (which essentially comes from applying
concentration bounds). Attempting to circumvent this logarithmic dependence on n,
in Theorem 7 we give a different bound on the deviation probability that depends on
the priority ranking of the point. Thus the overhead in the label size for the jth point
in the ranking is only O(log j). To derive our result in Theorem 8, which has fixed
stretch 2t − 1 for all pairs, but fully prioritized label size O(j1/t log j), we combine
this probabilistic argument with an iterative application of a source restricted distance
labeling of [RTZ05].

Most results on distance labeling for bounded treewidth graphs, planar graphs,
and graphs excluding a fixed minor, are based on recursively partitioning the graph
into small pieces using small separators (as in [LT79]). The label of a vertex essentially
consists of the distances to (some of) the vertices in the separator. In order to obtain
prioritized label size, such as those given in Theorems 10 and 11, high ranked vertices
should participate in few iterations. To this end, we define multiple phases of applying
separators, where each phase tries to separate only a certain subset of the vertices
(starting with the highest ranked, and finishing in the lowest). This way high ranked
vertices will belong to a separator after a few levels, thus their label will be short.

Tree routing of [TZ01] is based on categorizing tree vertices as either heavy or
light, depending on the size of their subtree. Our prioritized tree routing assigns
each vertex a weight which depends on its priority, and a vertex is heavy if the sum
of weights of its descendants is sufficiently large. This idea paves the way to our
prioritized routing scheme for general graphs as well.

Embeddings. It is folklore that a metric minimum spanning tree (henceforth,
MST) achieves distortion n − 1. For our prioritized embedding of general metrics
(X, d) into a single tree we consider a complete graph G = (X,

(
X
2

)
) with weight func-

tion that depends on the priority ranking. Specifically, edges incident on high priority
points get higher weights. We then compute an MST in this (generally nonmetric)
graph, and show that, given a certain convergence condition on the priority ranking,
this MST provides a desired prioritized single-tree embedding. Remarkably, we also
show that when this condition is not met, no such an embedding is possible even for
the metric induced by Cn. Hence this embedding is tight.

Our probabilistic embedding into trees with prioritized expected distortion in
Theorem 4 is based on the construction of [FRT04]. The method of [FRT04] involves
sampling a random permutation and a random radius, then using these to create a
hierarchical partitioning of the metric from which a tree is built. We make the obser-
vation that, in some sense, the expected distortion of a point depends on its position

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 833

in the permutation. Rather than choosing a permutation uniformly at random, we
choose one which is strongly correlated with the given priority ranking. One must be
careful to allow sufficient randomness in the permutation choice so that the analysis
can still go through, while guaranteeing that high ranked points will appear in the
first positions of the permutation.

The embedding of Theorem 14 for arbitrary metrics (X, d) into Euclidean space
(or any `p space) with prioritized distortion uses similar ideas. We partition the points
into sets according to the priorities; for every such a subset K apply as a black box
the embedding of [Bou85]. We show that since the embedding has certain properties,
it can be extended in a Lipschitz manner to all of the metric, while having distortion
guarantee for any pair in K ×X.

The result of Theorem 15, which gives prioritized distortion and dimension, is
more technically involved. In order to ensure that high priority points are mapped
to the zero vector in the embeddings tailored for the lower priority points, we change
Bourgain’s embedding, which is defined as distances to randomly chosen sets. Roughly
speaking, when creating the embedding for a setK, we add all the higher ranked points
to the random sets. As a result, the original analysis does not apply directly, and
we turn to a subtle case analysis to bound the distortion; see section 8.2 for more
details.

Subsequent work. Following our work, [BFN16] exhibited a tight connection be-
tween embeddings with prioritized distortion and a certain type of scaling distor-
tion called coarse scaling distortion. Using this connection and a result of [ABN11],
[BFN16] showed an embedding of general metrics into an O(log n)-dimensional Eu-
clidean space (or any `p space) with asymptotically optimal prioritized distortion
O(log j), improving our bound of O(log j(log log j)1/2+ε), for any ε > 0.

1.2. Organization. After a few preliminary definitions, we show the single-tree
prioritized embedding in section 3, and the probabilistic version in section 4. In
section 5 we discuss our prioritized distance oracles, and in section 6 the prioritized
labeling schemes. The prioritized routing is shown in section 7. Finally, in section 8
we present our prioritized embedding results into normed spaces.

2. Preliminaries. Throughout the paper, all logarithms are in base 2. All the
graphs G = (V,E) we consider are undirected and weighted. Let x1, . . . , xn ∈ V be
a priority ranking of the vertices. Let dG be the shortest path metric on G, and let
α, β : [n]→ R+ be a monotone nondecreasing functions.

A distance oracle for a graphG is a succinct data structure that can approximately
report distances between vertices of G. The parameters of this data structure we will
care about are its space, query time, and stretch factor. We always measure the space
of the oracle as the number of words needed to store it (where each word is O(log n)
bits). The oracle has prioritized stretch α(j) if for any 1 ≤ j < i ≤ n, when queried
for xj , xi the oracle reports a distance d̃(xj , xi) such that

dG(xj , xi) ≤ d̃(xj , xi) ≤ α(j) · dG(xj , xi) .

Some oracles can be distributed as a labeling scheme, where each vertex is given a
short label, and the approximate distance between two vertices should be computed
by inspecting their labels alone. We say that a labeling scheme has prioritized label
size β(j) if for every j ∈ [n], the label of xj consists of at most β(j) words. See
section 7 for the precise settings of routing that we consider.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

834 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

x2

x4x3

x1 4

1

2

1

3
3

x2

x4x3

x1 8

4

8

8

6
6

x2

x4x3

x1

4
6

6

x2

x4x3

x1

1
3

3

prioritized weights MST original weights

Fig. 1. An illustration for the algorithm presented during the proof of Theorem 1. We are given
a metric space over X = {x1, x2, x3, x4}, with the function α(1) = 2, α(2) = 4, α(3) = 8, α(4) = 16.
In the first step we assign new weights over the edges, then find an MST in the new graph and,
finally, restore the original weights. For example the original distance between x2, x3 was 2, while
in the returned tree the distance is 7. Hence the pair x2, x3 suffers distortion 3.5 < 4.

Let (X, dX) be a finite metric space, and let x1, . . . , xn be a priority ranking of the
points in X. Given a target metric (Y, dY), and a noncontractive map f : X → Y ,2

we say that f has priority distortion α(j) if for all 1 ≤ j < i ≤ n,

dY (f(xj), f(xi)) ≤ α(j) · dX(xj , xi) .

Similarly, if f : X → Y is nonexpansive, then it has priority distortion α(j) if for all
1 ≤ j < i ≤ n, dY (f(xj), f(xi)) ≥ dX(xj , xi)/α(j). For probabilistic embedding, we
require that each map in the support of the distribution is noncontractive, and the
prioritized bound on the distortion holds in expectation.

In the special case that the target metric is a normed space, we say that the
embedding has prioritized dimension β(j) if for every j ∈ [n], only the first β(j)
coordinates in f(xj) may be nonzero.

3. Single-tree embedding with prioritized distortion. In this section we
show tight bounds on the priority distortion for an embedding into a single tree.
The bounds are somewhat nonstandard, as they are not attained for a single specific
function, but rather for the following family of functions. Define Φ to be the family
of functions α : N→ R+ that satisfy the following properties:

• α is nondecreasing.
• ∑∞i=1 1/α(i) ≤ 1.

3.1. Upper bound.

Theorem 1. For any finite metric space (X, d) and any α ∈ Φ, there is a (non-
contractive) embedding of X into a single tree with priority distortion 2α(j).

Proof. Let x1, . . . , xn be the priority ranking of X, and let G = (X,E) be the
complete graph on X. For e = {u, v} ∈ E, let `(e) = d(u, v). We also define the
following (prioritized) weights w : E → R, for any 1 ≤ j < i ≤ n the edge e = {xj , xi}
will be given the weight w(e) = α(j) · `(e). Observe that the w weights on G may not
satisfy the triangle inequality. Let T be the MST of (X,E,w) (this tree is formed by
iteratively removing the heaviest edge from a cycle). Finally, return the tree T with
the edges weighted by `. We claim that this tree has priority distortion α(j). See
Figure 1 for an illustration of the algorithm to construct T .

Consider some xj , xi ∈ X, if the edge e = {xj , xi} ∈ E(T), then clearly this pair
has distortion 1. Otherwise, let P be the unique path between xj and xi in T . Since
e is not in T , it is the heaviest edge on the cycle P ∪ {e}, and for any edge e′ ∈ P we

2The map f is noncontractive if for any u, v ∈ X, dX(u, v) ≤ dY (f(u), f(v)).

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 835

have that w(e′) ≤ w(e) = α(j) · d(xj , xi). Consider some xk ∈ X, and note that there
can be at most 2 edges touching xk in P . If e′ ∈ P is such an edge, and its weight by
w was changed by a factor of α(k), then α(k) · `(e′) ≤ α(j) · d(xj , xi). Summing this
over all the possible values of k we obtain that the length of P is at most

(1)
∑

e′∈P
`(e′) ≤ 2

n∑

k=1

α(j)

α(k)
· d(xj , xi) ≤ 2α(j) · d(xj , xi) .

Corollary 1. For any finite metric space (X, d) and any fixed 0 < ε < 1/2,
there is a (noncontractive) embedding of X into a single tree with priority distortion
O(j(log j)1+ε). Furthermore, the distortion of the pairs containing x1 is only 1 + 3ε.

Proof. Take the function α : N→ R defined by α(1) = 1+ε, and for j ≥ 2, α(j) =
j(ln j)1+ε

c (c is a constant to be determined later). Then
∑
j≥3

1
α(j) ≤

∫∞
2

c
x(ln x)1+ε dx =

−c
ε·lnε x |∞2 = c

ε·lnε 2 . In particular,
∑
j≥1

1
α(j) = 1

1+ε+ c
2(ln 2)1+ε

+ c
ε·lnε 2 ≤ 1 for c = O(ε2).

We conclude that α ∈ Φ. The corollary now follows by Theorem 1, except that it only
provides distortion 2(1+ ε) for pairs containing x1. To see the improved distortion for
pairs (x1, xi), consider the proof of Theorem 1. Observe that in the case {x1, xi} /∈ T ,
the first edge of the path P from x1 to xi has weight at most d(x1, xi), while none
of the other edges on P are touching x1. Furthermore, since 1/α(1) > 1− ε, we have
that

∑∞
k=2 1/α(k) < ε, and so we can replace (1) by

∑

e′∈P
`(e′) ≤ d(x1, xi) + 2

n∑

k=2

α(1)

α(k)
· d(x1, xi) ≤ (1 + 3ε) · d(x1, xi) .

3.2. Lower bound. Here we show a matching lower bound (up to a constant),
which is only 2 for trees without Steiner nodes3 on the possible functions admitting an
embedding into a tree with priority distortion. We first show that a (nondecreasing)
function which is not in Φ cannot bound the priority distortion in a spanning tree
embedding. Then using an argument similar to that of [Gup01], we extend this for
arbitrary dominating trees,4 while losing a factor of 8 in the lower bound.

Theorem 2. For any nondecreasing function α : N→ R with α /∈ Φ, there exists
an integer n, a graph G = (V,E) with |V | = n vertices, and a priority ranking of V ,
such that no spanning tree of G has priority distortion strictly less than α.

Proof. Since α /∈ Φ, there exists an integer n′ such that
∑n′

i=1 1/α(i) > 1. Take
some integer n > n′ such that n

α(i)+1 is an integer for all 1 ≤ i ≤ n′ (assume without

loss of generality (w.l.o.g.) that the α(i) are rational numbers). Then let G = Cn,
a cycle on n points with unit weight on the edges. Clearly, a spanning tree of Cn is
obtained by removing a single edge, thus we will choose the priorities x1, . . . , xn ∈ V
in such a way that no edge can be spared.

Seeking contradiction, assume that there exists a spanning tree with priority
distortion less than α. Let x1 be an arbitrary vertex, and note that if u is a vertex
within distance (in G) a1 = n

α(1)+1 from x1, then all the edges on the shortest path

from x1 to u must remain in the tree. Otherwise, the distortion of the pair {x1, u}
will be at least n−a1

a1
= α(1). There are 2n

α(1)+1 such edges that must belong to the

3We say that the target tree has Steiner nodes if it contains more vertices than the original graph.
4A tree T dominates a graph G if dT ≥ dG.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

836 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

x1

x2
x3

a1a1

a2

a2 a3

a3

Fig. 2. An illustration for the proof of Theorem 2. As all the pairs containing xi cannot suffer
distortion greater than or equal to α(i), all the edges of distance at most ai from xi cannot be deleted
from the tree. As

∑
ai > n, placing x1, x2, . . . so that the relevant sets of edges are disjoint and

cover all the edges, there is no edge that can be deleted.

tree (since we consider vertices from both sides of x1). Now take x2 to be a vertex at
distance n

α(1)+1 + n
α(2)+1 from x1. By a similar argument, the 2n

α(2)+1 edges closest to

x2 must be in the tree as well. Observe that these edges form a continuous sequence
on the cycle with those edges near x1. Continue in this manner to define x3, . . . , xn′ ,
and conclude that there are at least

(2)

n′∑

i=1

2n

α(i) + 1
≥

n′∑

i=1

n

α(i)
> n

edges that are not allowed to be removed, but this is a contradiction, as there are
only n edges in Cn. See Figure 2 for an illustration of this argument.

Theorem 3. For any nondecreasing function α : N→ R with α /∈ Φ, there exists
an integer n, a metric (X, d) on n points, and a priority ranking x1, . . . , xn ∈ X, such
that there is no embedding of X into a dominating tree metric with priority distortion
strictly less than α/8.

Proof. Take n, the metric (X, d) induced by Cn, and the same priority ranking
as in Theorem 2. First consider any tree T with exactly n vertices, but which is not
necessarily spanning. That is, T is allowed to have edges that did not exist in Cn.
Since T must be dominating, we may assume that an edge in T connecting vertices
of distance k in Cn will have weight exactly k (if it has larger weight, reducing it to
k can only improve the distortion). We extend an argument of [Gup01] to prove that
the priority distortion of T is at least α.

The argument in section 7 of [Gup01] says that T can be replaced by a tree T ′

satisfying d ≤ dT ′ ≤ dT , and such that any vertex in T ′ has at most one edge to its
left semicircle and one edge to its right semicircle.5 A crucial observation (made in
[Gup01]) is that for any pair of vertices at distance k in Cn, their distance in T ′ can
be either k or at least n − k. Now we may use similar reasoning as in the proof of

5If the vertices of Cn are labeled 0, 1, . . . , n − 1 as ordered on the cycle, the right semicircle of
vertex i is {i+ 1, i+ 2, . . . i+ bn/2c} (addition is modulo n), and the left semicircle is V \{i, i+ 1, i+
2, . . . i+ bn/2c}.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 837

Theorem 2; assume that x1 is the ith vertex of Cn, and observe that any vertex i+ j
for 1 ≤ j ≤ a1, must be connected by an edge to one of the vertices i, i+1, . . . , i+j−1,
as otherwise dT ′(i, i + j) ≥ n − a1, and the distortion of the pair {x1, j} will be at
least α(1). Notice that the edges x2 forced to exist are disjoint from those of x1. It
follows that for each 1 ≤ i ≤ n′, xi forces at least 2n

α(i)+1 disjoint edges to be in the

tree, which is impossible due to (2).
Finally, consider arbitrary dominating tree metrics, which may have Steiner nodes

(nodes which no vertex of Cn is mapped onto). By a result of [Gup01], such nodes
may be removed while increasing the distance between any pair of points by at most
8, so we conclude that such a tree cannot have priority distortion strictly less than
α/8.

4. Probabilistic embedding into ultrametrics with prioritized distor-
tion. In this section, we present our probabilistic embedding into trees with priori-
tized expected distortion. Specifically, we generalize the embedding of [FRT04] which
has a worst-case expected distortion guarantee, to prioritize expected distortion.

Theorem 4. For any metric space (X, d), there exists a distribution over embed-
dings of X into ultrametrics with expected prioritized distortion O(log j).

Proof. Let x1, . . . , xn be the priority ranking of X, and let ∆ be the diameter
of X. We assume w.l.o.g. that the minimal distance in X is 1, and let δ be the
minimal integer so that ∆ ≤ 2δ. We shall create a hierarchical laminar partition,
where for each i ∈ {0, 1, . . . , δ}, the clusters of level i have diameter at most 2i, and
each of them is contained in some level i + 1 cluster. The ultrametric is built in
the natural manner, the root corresponds to the level δ cluster which is X, and each
cluster in level i corresponds to an inner node of the ultrametric with label 2i, whose
children correspond to the level i−1 clusters contained in it. The leaves correspond to
singletons, that is, to the elements of X. Clearly, the ultrametric will dominate (X, d).

In order to define the partition, we choose a random permutation π : X → [n]
which is strongly correlated with the priority ranking, and in addition we choose a
random number β ∈ [1, 2] from an appropriate distribution. (See line 2 of Algo-
rithm 1.) Let K0 = {x1, x2}, and for any integer 1 ≤ j ≤ dlog log ne let Kj =

{xh : 22
j−1

< h ≤ 22
j} The permutation π is created by choosing a uniformly random

permutation on each Ki, and concatenating these. Note that π−1({h ∈ N : h ∈
(22

j−1

, 22
j

]}) = Kj , and π−1({1, 2}) = K0.
In each step i, we partition a cluster S of level i+ 1 as follows. Each point x ∈ S

chooses the point u ∈ X with minimal value according to π among the points of
distance at most βi := β · 2i−2 from x, and joins to the cluster of u. Observe that
x ∈ S might belong to the cluster of u where u /∈ S. In particular, a point may not
belong to the cluster associated with it, and some clusters may be empty (which we
can discard). The description of the hierarchical partition appears in Algorithm 1.

Let T denote the ultrametric created by the hierarchical partition of Algorithm 1,
and dT (u, v) the distance between u to v in T . Consider the clustering step at some
level i, where clusters in Di+1 are picked for partitioning. In each iteration l, all
unassigned points z such that d (z, π(l)) ≤ βi assign themselves to the cluster of π(l).
Fix an arbitrary pair {v, u}. We say that center w settles the pair {v, u} at level i, if
it is the first center so that at least one of u and v gets assigned to its cluster. Note
that exactly one center w settles any pair {v, u} at any particular level. Further, we
say that a center w cuts the pair {v, u} at level i, if it settles them at this level, and
exactly one of u and v is assigned to the cluster of w at level i. Whenever w cuts

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

838 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

a pair {v, u} at level i, dT (v, u) is set to be 2i+1 ≤ 8βi. We charge this length to
the point w and define dwT (v, u) to be

∑
i 1 (w cuts {v, u} at level i) · 8βi (where 1 (·)

denotes an indicator function). We also define d
Kj
T (v, u) =

∑
w∈Kj d

w
T (v, u). Clearly,

dT (v, u) ≤∑j d
Kj
T (v, u).

Algorithm 1 Modified FRT(X,π).

1: Choose a random permutation π : X → [n] as above.
2: Choose β ∈ [1, 2] randomly by the distribution with the following probability

density function p (x) = 1
x ln 2 .

3: Let Dδ = X; i← δ − 1.
4: while Di+1 has nonsingleton clusters do
5: Set βi ← β · 2i−2.
6: for l = 1, . . . , n do
7: for every cluster S in Di+1 do
8: Create a new cluster in Di, consisting of all unassigned points in S closer

than βi to π (l).
9: end for

10: end for
11: i← i− 1.
12: end while

Fix some 0 ≤ j ≤ dlog log ne. Our next goal is to bound the expected value of

d
Kj
T (v, u) by O (log (|Kj |)). We arrange the points of Kj in nondecreasing order of

their distance from the pair {v, u} (breaking ties arbitrarily). Consider the sth point
ws in this sequence. W.l.o.g. assume that d (ws, v) ≤ d (ws, u). For a center ws to cut
{v, u}, it must be the case that

1. d (ws, v) ≤ βi < d (ws, u) for some i;
2. ws settles {v, u} at level i.

Note that for each x ∈ [d (ws, v) , d (ws, u)), the probability that βi ∈ [x, x+ dx) is at
most dx

x·ln 2 . Conditioning on βi taking such a value x, any one of w1, . . . , ws can settle
{v, u}. The probability that ws is the first in the permutation π among w1, . . . ws is
1
s . (In fact, there may be points from

⋃
0≤r<j Kr that settle {v, u} before ws. It is

safe to ignore that, as it can only decrease the probability that ws cuts {v, u}.) Thus,
we obtain

(3) E[dwsT (v, u)] ≤
∫ d(ws,u)

d(ws,v)

8x· dx
x ln 2

· 1
s

=
8

s · ln 2
(d(ws, u)−d(ws, v)) ≤ 16

s
·d(v, u) .

Hence, we conclude

(4) E[d
Kj
T (v, u)] ≤

∑

ws∈Kj
E[dwsT (v, u)]

(3)

≤ 16d(v, u)

|Kj |∑

s=1

1

s
= log |Kj | ·O(d(v, u)) .

Assume v = xh is the hth vertex in the priority ranking for some h > 2. Let a be
the integer such that v ∈ Ka, and recall that 22

a−1

< h ≤ 22
a

, i.e., 2a ≤ 2 log h. The
crucial observation is that if y ∈ Kb such that b > a, then y cannot settle {v, u}. The
reason is that v always appears before y in π, so v will surely be assigned to a cluster
when it is the turn of y to create a cluster. This leads to the conclusion that for all

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 839

b > a, E[dKbT (v, u)] = 0. We conclude

E[dT (v, u)] ≤
a∑

j=0

E[d
kj
T (v, u)]

(4)

≤ O(d(v, u))
a∑

j=0

log |Kj |

= O(d(v, u))
a∑

j=0

log
(

22
j
)

= O(d(v, u))
a∑

j=0

2j

= O(d(v, u)) · 2a
= O(d(v, u)) · log h .

When h ∈ {1, 2} we can take a = 0, and thus obtain a bound of O(d(v, u)).

5. Distance oracles with prioritized stretch. In this section we consider
distance oracles where the stretch scales with the priority of the vertices. See section 2
for the basic definitions. A classical result of [TZ05], with improved query time and
size due to [Che14, Che15], asserts that for any parameter t ≥ 1 and any graph on n
vertices, there exists a (2t − 1)-stretch distance oracle of space O(n1+1/t) with O(1)
query time.

5.1. Prioritized stretch with small space. Our first result provides a range of
distance oracles with prioritized stretch and extremely low space. They also exhibit a
somewhat nonintuitive (although very good) dependence of the stretch on the priority
of the vertices. The drawbacks of these oracles are that they cannot report the
approximate paths in the graph between the queried vertices, and it is not clear if
they can be distributed as a labeling scheme.

For the sake of brevity, denote τ(j) =
⌊

logn
log(n/j)

⌋
(where n is always the number

of vertices). For a function f : N → N, define its iterative application F : N → N as
follows: F (0) = 1, and, for integer k ≥ 1, as F (k) = f(F (k − 1)). That is, F (k) is
determined by iteratively applying f for k times starting at 1.

Theorem 5. Let G = (V,E) be a weighted graph on n vertices. For any positive
integer T , let f : N → R+ be any monotone increasing function such that f(1) = 2
and F (T) ≥ log n. Then there exists a distance oracle that requires space O(T · n),
has query time O(1), and prioritized stretch

min {4f (τ(j))− 5, log n} .

Corollary 2. Any weighted graph G = (V,E) on n vertices admits distance
oracles with the following possible trade-offs between space and prioritized stretch:

(1) space O(n log n) and prioritized stretch min{4τ(j)− 1, log n};
(2) space O(n log log n) and prioritized stretch min{8τ(j)− 5, log n};
(3) space O(n log log log n) and prioritized stretch min{4τ(j)2 − 5, log n};
(4) space O(n log∗ n) and prioritized stretch min{4 · 2τ(j) − 5, log n}.
Observe that the first two oracles have stretch 3 for all points of priority rank less

than
√
n, and that in all of these oracles, for any fixed ε > 0, all vertices of priority

at most n1−ε have constant stretch.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

840 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Proof of Corollary 2. All the trade-offs follow by simple choices for T and f , which
are described in the next bullets.

• For the first trade–off let T = log n (assume w.l.o.g. this is an integer), and
take the function f(k) = k + 1, so that F (k) = k + 1 as well for all k, so
indeed F (T) ≥ log n. Thus the space is indeed O(n log n), and the prioritized
stretch is min{4τ(j)− 1, log n} by Theorem 5.

• For the second trade-off, using T = log log n, it suffices to take f(k) = 2k, so
that F (k) = 2k and F (T) = log n as required. The space is now O(n log log n)
and the prioritized stretch is as promised applying Theorem 5 again.

• In the third trade-off we use T = 1 + log log log n, and let f(1) = 2 and for

k ≥ 2, f(k) = k2. It implies that F (k) = 22
k−1

. The bounds on the space
and the prioritized stretch follow as before.

• The final trade-off holds by taking T = log∗ n− 1, and setting f(k) = 2k, so
that F (k) = tower(k).6 The bounds on the space and the prioritized stretch
follow as before.

We now turn to proving the theorem, and start with the following lemma.

Lemma 1. For any t ≥ 1 and any graph G = (V,E) on n vertices with a subset
K ⊆ V of size |K| = k, there exists a distance oracle which can answer in O(1) time
queries on every pair in K × V with stretch 4t− 1, using space O(k1+1/t + n).

Proof. Apply the distance oracle of [Che15] on the complete graph G′ = (K,E′)
with parameter t, where the weight of each edge in E′ is the shortest path distance in
G between its endpoints. This gives stretch 2t− 1 for any pair in K×K and requires
space O(k1+1/t). For every vertex u ∈ V \K, store only dG(u,K) and the name of
the vertex ku ∈ K that manifests this distance (that is, dG(u, ku) = dG(u,K)). We
obtain a data structure of space O(k1+1/t + n). To answer a distance query between
v ∈ K and u ∈ V , report d̃(v, ku) + dG(ku, u), where d̃ is the distance reported by
the oracle of G′. It remains to bound the stretch: observe that since ku is the closest
vertex to u in K, we have that dG(v, ku) ≤ dG(v, u)+dG(ku, u) ≤ 2dG(u, v), and thus
the reported distance is bounded as follows,

d̃(v, ku) + dG(ku, u) ≤ (2t− 1)dG(v, ku) + dG(u, v) ≤ (4t− 1)dG(u, v) .

Using the triangle inequality and that the reported distance is never larger than the
original,

d̃(v, ku) + dG(ku, u) ≥ dG(v, ku) + dG(ku, u) ≥ dG(u, v) .

We are finally ready to prove Theorem 5.

Proof of Theorem 5. Let x1, . . . , xn ∈ V be the priority ranking of V . For each
i ∈ [T], let Si = {xj : 1 ≤ j ≤ n1−1/F (i)}, and apply the oracle of Lemma 1 on
G with the set Si and parameter ti = F (i) − 1, let Oi be the resulting oracle.7 Also
invoke the oracle OMN of [MN06] on G, that has stretch log n on all pairs using only
O(n) space (with O(1) query time).

Observe that for each i ∈ [T], the stretch ti was chosen so that (1 − 1/F (i)) ·
(1 + 1/ti) = 1, so that the oracle Oi has space

O(|Si|1+1/ti + n) = O(n) .

6tower(k) is defined as tower(0) = 1 and tower(k) = 2tower(k−1), so that tower(log∗ n) = n.
7Since F (0) = 1 and f is strictly monotone, it follows that F (i) ≥ 2 for all i ≥ 1, so that ti ≥ 1.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 841

The total space is thus O(T · n), as promised. It remains to prove the prioritized
stretch guarantee. Fix any v = xj , and let i be the minimal such that xj ∈ Si
(observe that if j > n/2 there is not necessarily any such i). For i = 1 the stretch
guaranteed by O1 is 4ti−1 = 4(F (1)−1)−1 = 3, as promised (recall that f(k) ≥ 2 for
all k ≥ 1, so the required stretch is never smaller than 3). For i > 1, by minimality of

i it follows that j > n1−1/F (i−1), that is, F (i− 1) ≤
⌊

logn
log(n/j)

⌋
= τ(j) (since F (i− 1)

is an integer). The stretch of Oi for v with any other point is at most

4(F (i)− 1)− 1 = 4F (i)− 5 = 4f(F (i− 1))− 5 ≤ 4f (τ(j))− 5 ,

while the stretch of OMN is at most log n for all pairs, which handles the case no
i exists, and allows us to report the minimum of the two terms. The query time is
O(1), since each v stores the relevant oracle for it, whose query time is O(1).

5.2. Prioritized distance oracles with bounded prioritized stretch. In
this section we prove the following theorem, which prioritizes the stretch of the dis-
tance oracle of [TZ05]. Unlike the oracles of Theorem 5, this oracle can also support
path queries, that is, return a path in the graph that achieves the required stretch, in
time proportional to its length (plus the distance query time). Additionally, it can be
distributed as a labeling scheme, which we exploit in the next section. Furthermore,
this oracle matches the best known bounds for the worst-case stretch of [TZ05], which
are conjectured to be optimal.

Theorem 6. Let G = (V,E) be a graph with n vertices. Given a parameter t ≥ 1,
there exists a distance oracle of space O(tn1+1/t) with prioritized stretch 2d t log jlogn e − 1

and query time O(d t log jlogn e).

Overview. Recall that in the distance oracle construction of [TZ05], a sequence
of sets V = A0 ⊇ A1 ⊇ · · · ⊇ At = ∅ is sampled randomly, by choosing each element
of Ai−1 to be in Ai with probability n−1/t. We make the crucial observation that the
distance oracle provides improved stretch of 2(t− i)− 1, rather than 2t− 1, to points
in Ai. However, as these sets are chosen randomly, they have no correlation with our
given priority list over the vertices. We therefore alter the construction, to ensure
that points with high priority will surely be chosen to Ai for sufficiently large i.

Proof of Theorem 6. Let x1, . . . , xn ∈ V be the priority ranking of V . For each
i ∈ {0, 1, . . . , t−1} let Si = {xj : 1 ≤ j ≤ n1−i/t}. Let A0 = V , At = ∅, and for each
1 ≤ i ≤ t− 1 define A′i by including every element of Ai−1 with probability n−1/t/2,
and let Ai = A′i ∪ Si. For each v ∈ V and 0 ≤ i ≤ t − 1, define the ith pivot pi(v)
as the nearest point to v in Ai, and Bi(v) = {w ∈ Ai : d(v, w) < d(v,Ai+1)}.8 Also
the bunch of v is defined as B(v) =

⋃
0≤i≤t−1Bi(v). The distance oracle will store in

a hash table, for each v ∈ V , all the distances to points in B(v), and also the pi(v)
vertices.

The query algorithm for the distance between u, v is essentially the same as in
[TZ05], the main difference is that we start the process at level i rather than level 0,
for a specified value of i.

Stretch. Let v = xj be the jth point in the ordering for some j > 1, and fix
any u ∈ V . (For j = 1, observe that every vertex of At−1 lies in all the bunches, so
when considering x1 ∈ At−1, we have that x1 ∈ B(u) and so Algorithm 2 will return
the exact distance.) Let 0 ≤ i ≤ t − 1 be the integer satisfying that n1−(i+1)/t <

8We assume that d(v, ∅) =∞ (this is needed as At = ∅).

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

842 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Algorithm 2 Dist(v, u, i).
1: w ← v;
2: while w /∈ B(u) do
3: i← i+ 1;
4: (u, v)← (v, u);
5: w ← pi(v);
6: end while
7: return d(w, u) + d(w, v);

j ≤ n1−i/t, that is, the maximal i such that v ∈ Si. By definition we have that
v ∈ Ai as well, so we may run Dist(v, u, i). Assuming that all operations in the
hash table cost O(1), the query time is O(t − i). The stretch analysis is similar to
[TZ05]: letting uk, vk, and wk be the values of u, v, and w at the kth iteration, it
suffices to show that at every iteration in which the algorithm did not stop, d(vk, wk)
increases by at most d(u, v). It suffices because there are at most t− 1− i iterations
(since wt−1 ∈ At−1, it lies in all bunches), so if ` is the final iteration, it must be
that d(v`, w`) ≤ (`− i) · d(u, v) (initially d(wi, vi) = 0), and by the triangle inequality
d(w`, u`) ≤ d(u, v) + d(v`, w`) ≤ (`− i+ 1) · d(u, v), and as ` ≤ t− 1 we conclude that

d(w, u) + d(w, v) ≤ (2(t− i)− 1) · d(u, v) .

To see the increase by at most d(u, v) at every iteration, we first note that wi = vi ∈ Ai
(this fact enables us to start at level i rather than in level 0). In the kth iteration,
observe that as wk /∈ B(uk) but wk ∈ Ak, it must be that d(uk, pk+1(uk)) ≤ d(uk, wk).
The algorithm sets wk+1 = pk+1(uk), vk+1 = uk, and uk+1 = vk, so we get that

d(vk+1, wk+1) = d(uk, pk+1(uk)) ≤ d(uk, wk) ≤ d(uk, vk) + d(vk, wk)

= d(u, v) + d(vk, wk) .

Note that as n1−(i+1)/t < j ≤ n1−i/t, it follows that t− i− 1 < t log j
logn ≤ t− i, so

that t− i = d t log jlogn e. The guaranteed stretch for pairs containing xj is thus bounded

by 2d t log jlogn e − 1 (or stretch 1 for x1).

Space. Fix any u ∈ V , and let us analyze the expected size of B(u). Fix any
0 ≤ i ≤ t − 2, and consider Bi(u). Assume we have already chosen the set Ai, and
arrange the vertices of Ai = {a1, . . . am} in order of increasing distance to u. Note
that if ar is the first vertex in the ordering to be in Ai+1, then |Bi(u)| = r− 1. Every
vertex of Ai is either in Si+1 and thus will surely be included in Ai+1, otherwise it
has probability n−1/t/2 to be in A′i+1 and so in Ai+1 as well. The number of vertices
that we see until the first success (being in Ai+1) is stochastically dominated by a
geometric distribution with parameter p = n−1/t/2, which has expectation 2n1/t.
For the last level t − 1, note that each vertex in Si \ Si+1 has probability exactly
(n−1/t/2)t−1−i = n−1+(i+1)/t/2t−1−i to be included in At−1, independently of all
other vertices. As |Si\Si+1| ≤ |Si| = n1−i/t, the expected number of vertices in At−1 is

t−1∑

i=0

n1−i/t · n−1+(i+1)/t/2t−1−i < 2n1/t .(5)

This implies that E[|Bt−1(u)|] ≤ 2n1/t as well, and so E[|B(u)|] ≤ 2t · n1/t. The total
expected size of all bunches is therefore at most 2t · n1+1/t.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 843

6. Prioritized distance labeling. In this section we discuss distance labeling
schemes, in which every vertex receives a short label, and it should be possible to
approximately compute the distance between any two vertices from their labels alone.
The novelty here is that we would like “important” vertices, those that have high
priority, to have both improved stretch and also short labels.

6.1. Distance labeling with prioritized stretch and size. We begin by
showing that the stretch-prioritized oracle of Theorem 6 can be made into a labeling
scheme, with the same stretch guarantees, and with a small label for high ranking
points. The result has some dependence on n in the label size, and it seems to be
interesting particularly for large values of t. Indeed, we shall use this result with
parameter t = log n in the following, to obtain a fully prioritized label size which will
be independent of n, and can support any desired maximum stretch. Furthermore,
this result is the basis for our routing schemes with prioritized label size and stretch.

Theorem 7. For any graph G = (V,E) with n vertices and any t ≥ 1, there
exists a distance labeling scheme with prioritized stretch 2d t log jlogn e − 1 and prioritized

label size O(n1/t · log j).

Proof. Using the same notation as section 5, the label of vertex v ∈ V consists
of its hash table (which contains distances to all points in the bunch B(v), and the
identity of the pivots pi(v) for 0 ≤ i ≤ t − 1). Note that Algorithm 2 uses only this
information to compute the approximate distance. The stretch guarantee is prioritized
as above, and it remains to give an appropriate bound on the label sizes.

Let x1, . . . , xn ∈ V be the priority ranking of V . Fix a point v = xj for some
j > 1, and let i be the maximal such that v ∈ Si. Note that this implies that
t− i− 1 < t log j

logn . Observe that B0(v)∪ · · · ∪Bi−1(v) = ∅, so it remains to bound the

size of Bi(v), . . . , Bt−1(v). For the last set Bt−1(v) = At−1, let E be the event that
|At−1| ≤ 8n1/t. We already noted in (5) that the expected size of At−1 is at most
2n1/t, thus using Markov inequality, with probability at least 3/4 event E holds.

For i ≤ k ≤ t − 2, let Xk be a random variable distributed geometrically with
parameter p = n−1/t/2, thus E[Xk] = 2n1/t for all k. We noted above that the
distribution of Xk is stochastically dominating the cardinality of Bk(v), thus it suffices

to bound
∑t−2
k=iXk. Observe that for any integer s, if

∑t−2
k=iXk > s, then it means

that in a sequence of s independent coin tosses with probability p for heads, we have
seen less than t− 1− i heads. That is, if Z ∼ Bin(s, p) is a binomial random variable,
then

Pr

[
t−2∑

k=i

Xk > s

]
= Pr[Z < t− 1− i] ≤ Pr

[
Z <

t log j

log n

]
≤ Pr[Z < log j] .

Take s = 16n1/t · log j (assume this is an integer), so that µ := E[Z] = 8 log j, and by
a standard Chernoff bound

Pr[Z < log j] = Pr[Z < µ/8] ≤ e−3µ/8 < 1/j3 .

Let F be the event that for some 2 ≤ j ≤ n,
∣∣∣
⋃t−2
k=0Bk(xj)

∣∣∣ > 16n1/t · log j. By taking

a union bound over all 2 ≤ j ≤ n (note that the bound is nonuniform, and depends
on j), we obtain that

Pr[F] ≤
n∑

j=2

Pr

[∣∣∣∣∣
t−2∑

k=0

Bk(xj)

∣∣∣∣∣ > 16n1/t · log j

]
≤

n∑

j=2

1/j3 < 1/4 .

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

844 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

We conclude that with probability at least 1/2 both events E and F̄ hold, which
means that the size of the bunch of each xj is bounded by O(n1/t · log j), as required.
(Recall that x1 ∈ At−1, so its label size is |At−1| ≤ 8n1/t when event E holds.)

Corollary 3. Any graph G = (V,E) has a distance labeling scheme with prior-
itized stretch 2dlog je − 1 and prioritized label size O(log j).

6.2. Distance labeling with prioritized label size. In this section we con-
struct a labeling scheme in which the maximum stretch is fixed for all points, and the
label size is fully prioritized and independent of n.

Theorem 8. For any graph G = (V,E) and an integer t ≥ 1, there exists a
distance labeling scheme with stretch 2t− 1 and prioritized label size O(j1/t · log j).

Proof overview. The idea is to partition the vertices into m := d lognt e sets
S1, . . . , Sm, and to apply the result of section 6.1 in conjunction with a variation
of the source-restricted distance oracles of [RTZ05], using a labeling scheme rather
than an oracle. In a source restricted labeling scheme on X with a subset S ⊆ X,
only distances between pairs in S×X can be queried. Replacing the source restricted
oracle with a labeling scheme demands that we use an analysis similar to section 6.1
to guarantee a prioritized bound on the label sizes. We will apply this for each
i ∈ {2, 3, . . . ,m} with X = Si ∪ · · · ∪ Sm and the subset Si. Thus an element of Si
will have a label which consists of i schemes, and we will guarantee that their sizes
form a geometric progression, so that the total label size is sufficiently small.

As it turns out, the construction of [RTZ05] is inadequate for the first 2t elements
S1, which have very strict requirement on their label size. We will use the construction
of section 6.1 to handle distances involving the elements in S1. Fortunately, the stretch
incurred by this construction is 2dlog je− 1 which is bounded by 2t− 1 for the first 2t

elements in the ranking. We begin by stating the source-restricted distance labeling,
based on [RTZ05].

Theorem 9. For any integer t ≥ 1, any graph G = (V,E) and a subset S ⊆
V , there exists a source-restricted distance labeling scheme with stretch 2t − 1 and
prioritized label size O(|S|1/t · log j).

Proof. The observation made in [RTZ05] is that to obtain a source-restricted
distance oracle, it suffices to sample the random sets S = A0 ⊇ A1 ⊇ · · · ⊇ At = ∅ only
from S, where each element of Ai−1 is included in Ai independently with probability
|S|−1/t. They show that defining the bunches as in [TZ05], the resulting stretch is
2t− 1 for all pairs in S×V . We shall use a similar analysis as in Theorem 7 to argue
that this can be made into a labeling scheme. The expected label size is O(|S|1/t), and
we can show that with constant probability, every point xj pays only an additional
factor of O(log j). As the proof is very similar, we leave the details to the reader.

Proof of Theorem 8. Let S1 = {xj : 1 ≤ j ≤ 2t}, and for each i ∈ {2, 3, . . . ,m}
let Si = {xj : 2(i−1)t < j ≤ 2it}. We have a separate construction for i = 1 and for
i > 1. For the case i = 1, use the labeling scheme of Corollary 3 on G = (V,E). For
each 2 ≤ i ≤ m, apply Theorem 9 on G and the subset Si, but append the resulting
labels only for vertices in Si ∪ · · · ∪ Sm.

Fix any u, v ∈ V , and w.l.o.g. assume that v ∈ Si has a higher rank than u.
This implies that u ∈ Si ∪ · · · ∪ Sm, thus the source restricted labeling scheme for Si
guarantees stretch at most 2t−1 for the pair u, v (and u indeed stored the appropriate
label). Note that in the case of v = xj ∈ S1, the stretch can be improved to 2dlog je−1
(recall that log j ≤ t).

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 845

We now turn to bounding the label sizes. First consider v = xj ∈ S1, then it
must be that j ≤ 2t. The label size of v is by Corollary 3 at most O(log j), and
this is the final label of v. For v = xj ∈ Si when i ≥ 2, the label of v consists of
labels created for the sets S1, . . . , Si. Notice that 2t(i−1) < j ≤ 2ti, so it holds that
2i = (2t · 2t(i−1))1/t < 2j1/t. By Corollary 3 the label due to S1 is at most O(log j),
and using Theorem 9 the label size of v is at most

O(log j) +

i∑

k=2

O(|Sk|1/t · log j) = O(log j) ·
i∑

k=1

2k = O(2i · log j) = O(j1/t · log j) .

6.3. Prioritized distance labeling for graphs with bounded separators.

6.3.1. Exact labeling with prioritized size. In this section we exhibit a
prioritized exact distance labeling scheme tailored for graphs that admit a small sep-
arator. We say that a graph G = (V,E) admits an s-separator, if for any weight
function w : V → R+, there exists a set U ⊆ V of size |U | = s, such that each
connected component C of G \ U , has w(C) ≤ 2w(V)/3.9 It is well known that trees
admit a 1-separator, and graphs of treewidth k admit a k-separator.

The basic idea for constructing an exact distance labeling scheme based on sep-
arators is to create a hierarchical partition of the graph, each time by applying the
separator on each connected component. Then the label of a vertex u consists of all
distances to all the vertices in the separators of clusters that contain u. To answer a
query between vertices u, v, we return the minimum of d(u, s)+d(v, s) for all separator
vertices s that u, v have in common in their labels (this is the exact distance, because
at some point a vertex on the shortest path from u to v must be chosen to be in a
separator). Since at every iteration the number of vertices in each cluster drops by
at least a constant factor, after O(log n) levels the process is complete, thus the label
size is at most O(s log n).

Our improved label size for vertices of high priority, will be based on the following
observation: if the weight function w is an indicator for a set S ⊆ V (that is, if u ∈ S,
then w(u) = 1, and if u ∈ V \S then w(u) = 0), then after dlog |S|e+ 1 iterations, all
vertices of S must have been removed from the graph.

Theorem 10. Let G = (V,E) be a graph admitting an s-separator, and let V =
(x1, . . . , xn) be a priority ranking of the vertices. Then there exists an exact distance
labeling scheme with prioritized label size O(s · log j).

Proof. let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si = {xj : 22
i−1

< j ≤
22
i} The hierarchical partition will be performed in log log n phases. The ith phase

consists of 2i + 1 levels. In each level of the ith phase, we generate an s-separator for
each remaining connected component C with the following weight function

w(u) =

{
1 if u ∈ Si ∩ C,
0 otherwise.

Then this separator is removed from the component. By the observation made above,
after at most 1+log |Si| ≤ 2i+1 levels, all remaining components have no vertices from
Si. The label of a vertex u ∈ V will be the distances to all points in the separators
created for components containing u.

9For a set C ⊆ V , its weight is defined as w(C) =
∑

u∈C w(u).

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

846 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Fix some vertex xj (for j > 1), and assume xj ∈ Si. Notice that 2i−1 < log j.
Then the label size of xj is at most

i∑

k=0

s · (2k + 1) = O(s · 2i) = O(s · log j) .

6.3.2. Planar graphs and graphs excluding a fixed minor. While exact
distance labeling for planar graphs requires polynomial label size or query time, there
is a 1 + ε stretch labeling scheme for planar graphs with label size O(log n) [Tho01,
Kle02], which was extended to graphs excluding a fixed minor [AG06]. All these
constructions are based on path separators: a constant number of shortest paths in
the graph, whose removal induces pieces of bounded weight. The label of a vertex
consists of distances to carefully selected vertices on these paths. We may use the
same methodology as above; generate these path separators for the sets Si in order,
and obtain the following.

Theorem 11. Let G = (V,E) be a graph excluding some fixed minor, and V =
(x1, . . . , xn) a priority ranking of the vertices. Then for any ε > 0 there exists a
distance labeling scheme with stretch 1 + ε and prioritized label size O((log j)/ε).

7. Routing.

7.1. Routing in trees with prioritized labels. In this section we extend a
result of [TZ01], and show a routing scheme on trees. The setting is that each vertex
stores a routing table, and when a routing request arrives for vertex v, it contains
L(v), the label of vertex v. We will show the following.

Theorem 12. For any tree T = (V,E) there is a routing scheme with routing
tables of size O(1) and labels of prioritized size log j + 2 log log j + 4.

Proof. The proof follows closely the one of [TZ01], with the major difference being
the assignments of weights, which gives preference to the high priority vertices, thus
ensuring that when routing from the root of the tree to a vertex of rank j, there are
≈ log j junctions that require routing information from the label of the vertex.

Let x1, . . . , xn be the priority ranking of V . Let S0 = {x1} and for each 1 ≤ i ≤
log n, let Si = {xj : 2i−1 < j ≤ 2i}. Fix an arbitrary root r of the tree T . For every
v ∈ Si define p(v) = 1

2i·(i+1)2 . Note that as |Si| ≤ 2i we have that

∑

v∈V
p(v) ≤

logn∑

i=0

2i

2i · (i+ 1)2
≤ 2 .

For each v ∈ V , define the weight of v as sv =
∑
u∈Tv p(u), where Tv is the subtree

rooted at v (including v itself). A child v′ of v is called heavy if its weight is greater
than sv/2; otherwise it is called light. The root r of the tree will always be considered
heavy. Observe that any vertex can have at most one heavy child. The light level `(v)
of a vertex v is defined as the number of light vertices on the path from the root to v,
denoted by Path(v) = (r = v0, v1, . . . , vk = v). The label size of v will be `(v) words.

We enumerate all vertices T in depth-first search (DFS) order, where all the light
children of a vertex are visited before its heavy child is visited. (The order is otherwise
arbitrary.) We identify each vertex v with its DFS number. Let fv denote the largest
descendant of v. Also, let hv denote its heavy child, if exists. If it does not exist

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 847

define hv = fv+1. Also, let P (π(v)) denote the port number of the edge connecting v
to its parent π(v), and P (hv) denote the port number connecting v to its heavy child
(if it exists). The routing table stored at v is (v, fv, hv, P (π(v)), P (hv)). It requires
O(1) words.

Each time an edge from a vertex to one of its light children is taken, the weight
of the corresponding subtree decreases by at least a factor of 2. Note that a vertex
v = xj ∈ Si has weight at least w(v) ≥ p(v) = 1

2i·(i+1)2 , and since the root has weight

at most 2, it follows that `(v) ≤ log(2 · 2i · (i + 1)2) = i + 2 log(i + 1) + 1. Since
2i−1 < j, we conclude that

`(v) ≤ log j + 2 log(log(j) + 2) + 2 .

For each index q, 1 ≤ q ≤ `(v), denote by iq the index of the qth light vertex of
Path(v). Let L(v) = (v, (port(vi1−1, vi1), . . . , port(vi`(v)−1

, vi`(v)))) be the label of v,
which consists of its name, and a sequence of at most `(v) words containing the port
numbers corresponding to the edges leading to light children on Path(v).

The routing algorithm works as follows. Suppose we need to route a message with
the header L(v) at a vertex w. The vertex w checks if w = v. If it is the case then
we are done. Otherwise, w checks if v ∈ [w,w + 1, . . . , fw]. If it is not the case, then
v is not in the subtree of w, and then w sends the message to its parent. Otherwise
w checks if v ∈ [hw, hw + 1, . . . , fw]. If it is the case then the message is sent to the
heavy child. Otherwise v is a descendant of a light child of w. The vertex w finds
itself in the sequence of L(v), and determines to which light child of w the message
should be sent. Then it sends the message to this child.

7.2. Routing in general graphs. To obtain a routing scheme for general
graphs, we use the same method as [TZ01], but replace their distance labeling with
our prioritized ones from Theorem 7. This routing scheme has the following property:
after an initial calculation using the entire label of the destination vertex v, all routing
decisions are based on a much shorter header appended to the message. In particular,
we obtain the following theorem.

Theorem 13. For any graph G = (V,E) with priority ranking x1, . . . , xn of V ,
and any parameter t ≥ 1, there exists a routing scheme, such that the label size of xj
is at most log j · d t log jlogn e · (1 + o(1)), and it stores a routing table of size O(n1/t · log j).

Routing from any vertex into xj will have stretch at most 4d t log jlogn e− 3 using a header

of size log j · (1 + o(1)), while routing from xj towards any other vertex incurs stretch

at most 4d t log jlogn e − 1 using a header of size at most log n · (1 + o(1)).

Sketch. We use the definitions of section 5.2. Consider the distance labeling
scheme given in Theorem 7. Following [TZ05], this labeling scheme yields a tree
cover: a collection of subtrees such that vertex v = xj belongs to at most |B(v)| trees.
The tree Tz for vertex z contains z as the root, and the shortest path to all the vertices
in C(z) = {x ∈ V : z ∈ B(x)}. To route from some vertex u ∈ V to v, it suffices to
find an appropriate z ∈ B(u) ∩B(v), and route in Tz by applying Theorem 12.

The routing table stored at each vertex v ∈ V contains the hash table for its
bunch B(v), and the routing table needed to route in Tz for each z ∈ B(v). Recall
that by Theorem 7, |B(v)| ≤ O(n1/t · log j) (where v = xj), and by Theorem 12,
the routing table of each tree is of constant size. Assume first that we route towards
a high ranked vertex, and let i be the minimal such that v = xj ∈ Si. The label
of v is ((pi(v), Li(v)), . . . , (pt−1(v), Lt−1(v))), where Lh(v) is the label of v that is

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

848 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

required to route in Tph(v). Note that the label is of size (t − i) log j · (1 + o(1)) =

log j · d t log jlogn e · (1 + o(1)) (the equality follows from a calculation done in section 5.2).
Finding the tree which guarantees the prioritized stretch as in Theorem 7 could

have been achieved by using Algorithm 2; alas, this requires knowledge of the bunches
of both vertices u and v. It remains to see that using only the label of v and the routing
table at u, one can find a tree in the cover which has stretch at most 4d t log jlogn e − 3 for

u, v (routing in the tree does not increase the stretch). To see this, let i ≤ h ≤ t− 1
be the minimal such that ph(v) ∈ B(u). Following [TZ01], we prove by induction that
for each i ≤ k ≤ h it holds that

d(v, pk(v)) ≤ 2(k − i) · d(u, v).

The base case for k = i holds as v = pi(v), assume for k, and for k + 1: Since k < h
it follows that pk(v) /∈ B(u), thus it must be that d(u, pk+1(u)) ≤ d(u, pk(v)). Now,

d(v, pk+1(v)) ≤ d(v, pk+1(u))

≤ d(v, u) + d(u, pk+1(u))

≤ d(v, u) + d(u, pk(v))

≤ 2d(v, u) + d(v, pk(v))

≤ (2(k − i) + 2) · d(u, v) ,

where the last inequality uses the induction hypothesis. Finally, routing through the
shortest path tree rooted at ph(v) will have stretch at most

d(u, ph(v)) + d(ph(v), v) ≤ d(u, v) + 2d(v, ph(v))

≤ (4(h− i) + 1) · d(u, v)

≤ (4(t− i)− 3) · d(u, v)

=

(
4

⌈
t log j

log n

⌉
− 3

)
· d(u, v) ,

using that h ≤ t−1 and that t−i = d t log jlogn e. Note that once the vertex ph(v) is found,

all other vertices on the route from u to v only require the information (ph(v), Lh(v)),
which is appended to the message as a header of size log j · (1 + o(1)).

We now turn to the case where u is the high ranked vertex, and let i be the minimal
index such that u ∈ Si. Since u ∈ Ai by definition, we have that d(v, pi(v)) ≤ d(v, u).
The label of v contains ((pi(v), Li(v)), . . . , (pt−1(v), Lt−1(v))) (since v has worse rank
than u), so we can use the same algorithm as above: find the minimal i ≤ h ≤ t− 1
such that ph(v) ∈ B(u), and route in Tph(v). We can prove by induction that for
i ≤ k ≤ h,

d(v, pk(v)) ≤ (2(k − i) + 1) · d(u, v).

The base case k = i holds since we have d(v, pi(v)) ≤ d(u, v). The rest of the proof
is similar to the one above, and we leave the details to the reader. The final stretch
will be 4d t log jlogn e − 1 (the +1 will increase it by an additive 2), as required.

Corollary 4. Any graph G = (V,E) with a priority ranking x1, . . . , xn has
a fully prioritized routing scheme, such that the label size of xj is at most log2 j ·
(1 + o(1)), and it stores a routing table of size O(log j). Routing from or towards xj
will have stretch at most 4dlog je − 1.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 849

8. Prioritized embedding into normed spaces. We start by providing some
notations used in this section. For p ∈ [1,∞] and m ∈ N, `mp = (Rm, ‖·‖p) denotes the
m-dimensional real vector space with the `p-norm. Specifically, for x = (x1, . . . , xm) ∈
Rm we have ‖x‖p = (

∑m
i=1 |xi|

p
)

1
p . As usual, the `p-norm induces a metric on Rm,

where the distance between x, y ∈ Rm is ‖x−y‖p. Distortion, priority, and prioritized
distortion are defined naturally using this metric. Given some metric space (X, dX)
and two functions f1 : X → `d1p and f2 : X → `d2p , their concatenation is a function

from X into `d1+d2p , denoted f1 ⊕ f2.
For a metric space (K, dK), an embedding f : K → Rm is called a (normalized)

Fréchet embedding if there are some m sets A1, . . . , Am ⊆ K such that f is defined as
f(x) = m−1/p

⊕m
i=1 dK (x,Ai). A useful property of Fréchet embeddings is that they

can be extended into nonexpansive embedding. Formally, suppose (X, dX) is a metric
space, and K ⊆ X admits a Fréchet embedding f : K → `mp (with the induced metric).

An extension f̂ is a function f̂ : X → `mp , such that for every x ∈ K, f(x) = f̂(x). To

get a nonexpansive extension for y ∈ X, simply define f̂(y) = m−1/p
⊕m

i=1 dX (y,Ai).

It is straightforward that f̂ is an extension of f . As for every x, y,∈ X,

∥∥∥f̂(x)− f̂(y)
∥∥∥
p

=

(
m∑

i=1

∣∣∣m− 1
p · dX (x,Ai)−m−

1
p · dX (y,Ai)

∣∣∣
p
) 1
p

≤
(

1

m
·
m∑

i=1

|dX (x, y)|p
) 1
p

= d (x, y) ,

so f̂ is also nonexpansive.

8.1. Embedding with prioritized distortion. In this section we study em-
bedding arbitrary metrics into normed spaces, where the distortion is prioritized ac-
cording to the given ranking of the points in the metric. Our main result is the
following

Theorem 14. For any p ∈ [1,∞], ε > 0, and any finite metric space (X, d) with

priority ranking X = (x1, . . . , xn), there exists an embedding of X into `
O(log2 n)
p with

priority distortion O(log j · (log log j)(1+ε)/2).

Proof overview. Our improved distortion guarantee for high ranked points comes
from a variation of Bourgain’s embedding [Bou85] of finite metric spaces into `p space.
Bourgain’s embedding is based on randomly sampling sets in various densities, and
defining the coordinates as distances to these sets. Our first observation (see Lemma 2)
is sampling points only from a subset K ⊆ X suffices to obtain an embedding which
is nonexpansive for all pairs, and has bounded contraction for pairs in K ×X. Fur-
thermore, the contraction depends only on |K|, rather than on |X|.

We then use a similar strategy as in previous sections, and partition X into
roughly log log n subsets S0, S1, . . . , Slog logn, where Si is of size ≈ 22

i

. The doubly
exponential size arises because for any u, v ∈ Si, the logarithm of the ranking of u
and of v differs by at most a factor of 2. For each i, we create the embedding fi that
will “handle” pairs in Si×X, and concatenate all these functions f =

⊕log logn
i=0 αi ·fi.

Without the αi factor, every pair will suffer a (log log n)1/p term in the distortion
due to expansion. We introduce these factors into the embedding, where αi is such
that

∑∞
i=0 α

p
i ≤ 1. In such a way, the function f is nonexpansive, but we pay a small

factor of 1/αi in the distortion for pairs in Si ×X.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

850 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Lemma 2. Let (X, d) be a metric space of size |X| = n, K ⊆ X a subset of size
|K| = k, and a parameter p ∈ [1,∞]. Then there is a nonexpansive embedding of X

into `
O(log2 k)
p such that the contraction of any pair in K ×X is at most O(log k).

Proof. Let m = O(log2 k), and f : K → `mp be a nonexpansive embedding with
contraction δ = O(log k) on the pairs of K ×K, which exists due to [Bou85, LLR95].

Let f̂ be a nonexpansive extension to all of X as above. Let h : X → R be defined
by h(x) = d(x,K). The embedding F : X → `mp is defined by the concatenation of

these maps F = f̂ ⊕ h. Since both of the maps f̂ , h are nonexpansive, it follows that
for any x, y ∈ X,

‖F (x)− F (y)‖pp ≤ ‖f̂(x)− f̂(y)‖pp + |h(x)− h(y)|p ≤ 2 · d(x, y)p ,

hence, F has expansion at most 21/p for all pairs. Let t ∈ K and x ∈ X, and let
kx ∈ K be such that d(x,K) = d(x, kx) (it could be that kx = x). If it is the case that
d(x, t) ≤ 3δ ·d(x, kx), then by the single coordinate of h we get a sufficient contribution
for this pair:

‖F (t)− F (x)‖p ≥ |h(t)− h(x)| = h(x) = d(x, kx) ≥ d(x, t)

3δ
.

The other case is that d(x, t) > 3δ · d(x, kx), here we will get the contribution from f̂ .
First observe that by the triangle inequality,

(6) d(t, kx) ≥ d(t, x)− d(x, kx) ≥ d(t, x)(1− 1/(3δ)) ≥ 2d(t, x)/3 .

By another application of the triangle inequality, using that f̂ is nonexpansive, and
that f has contraction δ on K, we get the required bound on the contraction:

‖F (t)− F (x)‖p ≥ ‖f̂(t)− f̂(x)‖p
≥ ‖f̂(t)− f̂(kx)‖p − ‖f̂(kx)− f̂(x)‖p
≥ ‖f(t)− f(kx)‖p − d(x, kx)

≥ d(t, kx)

δ
− d(t, x)

3δ
(6)

≥ 2d(t, x)

3δ
− d(t, x)

3δ

=
d(t, x)

3δ
.

In particular, the function 2−
1
p · F is nonexpansive for all pairs, and has contraction

at most 2
1
p · 3 · δ = O(log k) for pairs in K ×X.

We are now ready to prove Theorem 14.

Proof of Theorem 14. Let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si =

{xj : 22
i−1

< j ≤ 22
i}. For every i, let fi : X → `p be the embedding of Lemma 2

with K = Si, and let αi = c · (i+ 1)−(1+ε)/p for sufficiently small constant c, so that∑∞
i=0 α

p
i ≤ 1. Finally, define the embedding f : X → `p by

f =

dlog logne⊕

i=0

αi · fi .

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 851

To see that f is indeed nonexpansive, recalling that each fi is nonexpansive, we obtain
that for any u, v ∈ X

‖f(u)− f(v)‖pp ≤
dlog logne∑

i=0

αpi · ‖fi(u)− fi(v)‖pp ≤ d(u, v)p
∞∑

i=0

αpi ≤ d(u, v)p .

For the contraction, let v = xj for some j > 1, and take any u ∈ X. Let i be the
index such that v ∈ Si, and note that 2i−1 < log j. By Lemma 2, the embedding fi
has contraction at most O(log |Si|) = O(2i) = O(log j) for the pair u, v. Observe that
αpi = cp · (i+ 1)−(1+ε) = Ω

(
(2 + log log j)−(1+ε)

)
, thus

‖f(u)− f(v)‖pp ≥ αpi · ‖f(u)− f(v)‖pp ≥ Ω

(
d(u, v)p

(log j)p · (2 + log log j)−(1+ε)

)
.

It is not hard to verify that x1 has constant contraction with any u, so the
prioritized distortion is O

(
log j · (log log j)−(1+ε)/p

)
. Finally, since the dimension of fi

is O(log2 |Si|) = O(22i), the embedding f maps X into
∑dlog logne
i=0 O(22i) = O(log2 n)

dimensions. For 1 ≤ p ≤ 2, one may embed first into `2, use [JL84] to reduce the

dimension to O(log n), and then apply an embedding to `
O(logn)
p , while paying a

constant factor in the distortion [FLM77]. The prioritized distortion will thus be at
most O(log j · (log log j)(1+ε)/2).

8.2. Embedding with prioritized dimension. The main result of this section
is an embedding with prioritized distortion and dimension. This means that a high
ranking point will have low distortion (with any other point) and, additionally, its
image will consist of few nonzero coordinates, followed by zeros in the rest.

Theorem 15. For any p ∈ [1,∞], ε > 0, and any metric space (X, d) on n points,

there exists an embedding of X into `
O(log2 n)
p with priority distortion O

(
log4+ε j

)
and

prioritized dimension O(log4 j).

Proof overview. The basic framework of this embedding appears at a first glance
to be similar to section 8.1, which is applying a variation of Bourgain’s embedding,
while sampling only from certain subsets Si of the points. However, the crux here is
that we need to ensure that high priority points will be mapped to the zero vector in
the embeddings that handle the lower ranked points.

Recall that the coordinates of the embedding are given by distances to sets. The
idea is the following: while creating the embedding for the points in Si, we insert all
the points with higher ranking (those in S0∪· · ·∪Si−1) into every one of the randomly
sampled sets. This will certify that the high ranked points are mapped to zero in every
one of these coordinates. However, the analysis of the distortion no longer holds, as
the sets are not randomly chosen. Fix some point u ∈ Si and v ∈ X. The crucial
observation is that if none of the higher ranked points lie in certain neighborhoods
around u and v (the size of these neighborhoods depends on d(u, v)), then we can still
use the randomness of the selected sets to obtain some bound (albeit not as good as
the standard embedding achieves). While if there exists a high ranked point nearby,
say z ∈ Si′ for some i′ < i, then we argue that u, v should already have sufficient
contribution from the embedding designed for Si′ . The formal derivation of this idea
is captured in Lemma 3.

The calculation shows that the distortion guarantee for u, v deteriorates by a
logarithmic factor for each i, that is, it is the product of the distortion bound for

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

852 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

points in Si−1 multiplied by O(log |Si|). This implies that the optimal size of Si is
triple exponential in i, which yields the best balance between the price paid due to
the size of Si and the product of the logarithms of |S0|, . . . , |Si−1|.

Lemma 3. Let p ∈ [1,∞] and D ≥ 1. Given a metric space (X, d), two disjoint
subsets A,K ⊆ X, where |K| = k ≥ 2, and a nonexpansive embedding g : X → `p with
contraction at most D for all pairs in A×X, then there is a nonexpansive embedding

f : X → `
O(log2 k)
p such that the following properties hold:

1. For all x ∈ A, f (x) = ~0 .

2. For all (x, y) ∈ K×X, ‖f(x)−f(y)‖p ≥ d(x,y)
1000D·log k or ‖g(x)−g(y)‖p ≥ d(x,y)

2D .

We postpone the proof of Lemma 3 to section 8.2.1, and prove Theorem 15 using
the lemma.

Proof of Theorem 15. Let I = dlog log log ne. Let S0 = {x1, x2, x3, x4} , and for
1 ≤ i ≤ I let

Si =

{
xj : 22

2i−1

< j ≤ 22
2i
}
.

Also define S<i =
⋃

0≤k<i Sk.
The desired embedding F : X → `p will be created by iteratively applying

Lemma 3, each time using its output function f as part of the input for the next
iteration. Formally, for each 0 ≤ i ≤ I apply Lemma 3 with parameters A = S<i,

K = Si, g = F (i−1), and D = 22
i+5i2 , to obtain a map fi : X → `p. The map

F (i) : X → `p is defined as follows: F (−1) ≡ 0 and F (i) =
⊕i

k=0 αk · fk, where
(αk) is a sequence that ensures F (i) is nonexpansive for all i. For concreteness, take
αk = (6

π2(k+1)2)1/p. The final embedding is defined by F = F (I).

Fix any pair x, y ∈ X. As fi is nonexpansive by Lemma 3, we obtain that F is
nonexpansive as well:

‖F (x)− F (y)‖pp =
I∑

i=0

αpi · ‖fi(x)− fi(y)‖pp ≤
∞∑

i=0

6

π2(i+ 1)2
· d(x, y)p = d(x, y)p .

Next, we must show that for each 0 ≤ i ≤ I, the embedding F (i−1) has contraction
at most 22

i+5i2 for pairs in S<i × X to comply with the requirement of Lemma 3.
We prove this by induction on i, the base case for i = 0 holds trivially as F (−1) has
no requirement on its contraction (since S<0 = ∅). Assume (for i) that F (i−1) has

contraction at most 22
i+5i2 on pairs in S<i ×X. For i+ 1, let x ∈ S<i+1 and y ∈ X.

Recall that F (i) is generated by applying Lemma 3 with A = S<i, K = Si, g = F (i−1),
and D = 22

i+5i2 . Then the lemma returns fi, and finally F (i) = g ⊕ (αi · fi).
We may assume that x ∈ Si, otherwise g = F (i−1) has the required contraction

on x, y by the induction hypothesis. Apply condition (2) of the lemma: if it is the

case that ‖g(x) − g(y)‖p ≥ d(x, y)/(2D), then clearly 2D < 22
i+1+5(i+1)2 . The other

case is that ‖fi(x)− fi(y)‖p ≥ d(x,y)
1000D·log |Si| . Since log |Si| ≤ 22

i

and 1/αi ≤ 2(i+ 1)2,

the contraction of F (i) is at most the contraction of αi · fi, which is bounded by

1000D · log |Si|
αi

≤ 1000 ·22i+5i2 ·22i ·2(i+1)2 < 22·2
i+5i2+2 log(i+1)+11 < 22

i+1+5(i+1)2 .

Observe that if x = xj ∈ Si for some j > 1, then 22
i−1

< log j, and thus

the distortion of F for any pair containing x is at most 22
i+1+5(i+1)2 = O(log4 j) ·

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 853

2O((2+log log log j)2) = O(log4+ε j). Additionally, note that as the distortion of F (I−1)

is at most D = 22
I+5I2 , the same argument suggests that the maximal distortion of

F = F (I) for any pair is at most

1000D · log n

αI
≤ 1000 · 22I+5I2 · log n · 2(I + 1)2 = O(log3+ε n) .

Finally, let us bound the number of nonzero coordinates of the points. Recall
that fi maps X into O(log2 |Si|) ≤ O(22

i+1

) dimensions. Fix some x = xj for j > 1,

and let i be such that xj ∈ Si. Note that 22
i−1

< log j, so that 22
i+1

< log4 j. By

Lemma 3, for every i′ > i, fi′(xj) = ~0, and the number of coordinates used by F (i) is
at most

i∑

k=0

O(22
k+1

) = O(22
i+1

) = O(log4 j) .

Since the dimension of fI is at most O(log2 n), we get that the total number of
coordinates used by F is only

I−1∑

k=0

O(22
k+1

) +O(log2 n) ≤ O(22
1+log log logn

) +O(log2 n) = O(log2 n) .

8.2.1. Proof of Lemma 3. The basic approach to the proof is similar to
Lemma 2, which is sampling subsets of K, according to various densities. The main
difference is that we insert all the points of A into each sampled set, to ensure f(x) = ~0
for all x ∈ A. The standard analysis of Bourgain for a pair x, y, considers certain
neighborhoods defined according to the density of points around x, y. We show that
the analysis still works as long as no point of A is present in those neighborhoods.
Thus we can obtain a contribution which is proportional to the distance of x, y to A
(or to d(x, y) if that distance is large). This motivates the following definition and
lemma.

Definition 1. The γ-distance between x and y with respect to A is defined to be

γA (x, y) = min

{
d(x, y)

2
, d(x,A), d(y,A)

}
.

Lemma 4. Let c = 24. There exists a nonexpansive embedding ϕ : X → `
O(log2 k)
p ,

such that for all z ∈ A, ϕ(z) = ~0, and for all x, y ∈ K,

‖ϕ(x)− ϕ(y)‖p ≥
γA(x, y)

c log k
.

We defer the proof of Lemma 4, and proceed first with the proof of Lemma 3.
Define h : X → R for x ∈ X as h(x) = d(x,A ∪K). Our embedding f is

f =
ϕ⊕ h
21/p

.

Since both ϕ and h are nonexpansive and vanish on A, clearly f is nonexpansive as
well, and f(z) = ~0 for any z ∈ A. It remains to show property (2) of the lemma. Fix
any x ∈ K and y ∈ X, and consider the following three cases:

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

854 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

Case 1. d ({x, y} , A) ≤ d(x,y)
4D .

In this case we shall use the guarantees of the map g. Assume w.l.o.g. that z ∈ A
is such that d(y, z) ≤ d(x,y)

4D . Then by the triangle inequality

(7) d(x, z) ≥ d(x, y)− d(y, z) ≥ d(x, y)− d(x, y)

4D
≥ 3d(x, y)

4
.

Now, using that g is nonexpansive, and has contraction at most D for any pair in
A×X, we obtain that

‖g(x)− g(y)‖p ≥ ‖g(x)− g(z)‖p − ‖g(z)− g(y)‖p

≥ d(x, z)

D
− d(z, y)

(7)

≥ 3d(x, y)

4D
− d(x, y)

4D

=
d(x, y)

2D
,

which satisfies property (2).

Case 2. d ({x, y} , A) > d(x,y)
4D and d(y,K) ≥ d(x,y)

20cD·log k (where c = 24 is the

constant of Lemma 4).
Here we shall use the map h for the contribution. Since d(y,A) ≥ d(x, y)/(4D),

we have that h(y) = d(y,A ∪K) ≥ d(x,y)
20cD·log k and of course h(x) = 0, so that

‖f(x)− f(y)‖p ≥
|h(x)− h(y)|

2
≥ d(x, y)

40cD · log k
,

as required.

Case 3. d ({x, y} , A) > d(x,y)
4D and d(y,K) < d(x,y)

20cD·log k .
In this case, the function ϕ will yield the required contribution, by employing a

similar strategy to Lemma 2. Let ky ∈ K be such that d(y, ky) = d(y,K). Note that

d(ky, A) ≥ d(y,A)− d(y, ky) ≥ d(x,y)
4D − d(x,y)

20cD·log k ≥
d(x,y)
5D , and it follows that

(8) γA(x, ky) ≥ d(x, y)

5D
.

By Lemma 4, since f is nonexpansive, and using another application of the triangle
inequality, we conclude that

‖f(x)− f(y)‖p ≥ ‖f(x)− f(ky)‖p − ‖f(y)− f(ky)‖p

≥ ‖ϕ(x)− ϕ(ky)‖p
2

− d(y, ky)

≥ γA(x, ky)

2c log k
− d(x, y)

20cD · log k
(8)

≥ d(x, y)

10cD · log k
− d(x, y)

20cD · log k

=
d(x, y)

20cD · log k
.

This concludes the proof of Lemma 3. It remains to validate Lemma 4, which is similar
in spirit to the methods of [Bou85, LLR95]; we give full details for completeness.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 855

Proof of Lemma 4. Let I = dlog ke and J = C · log k for a constant C that will
be determined later. For each i ∈ [I] and j ∈ [J] sample a set Q′ij by including

each x ∈ K independently with probability 2−i, and let Qij = Q′ij ∪ A. Define maps

ϕij : X → R by letting for each u ∈ X, ϕij(u) = d(u,Qij), and ϕ : X → `I·Jp by

ϕ(u) =
1

(I · J)1/p

⊕

i∈[I]

⊕

j∈[J]
ϕij(u) .

Since each ϕij is nonexpansive, ϕ is nonexpansive as well, and in what follows we
bound its contraction.

Define for u ∈ K and r ≥ 0 the ball restricted to K, BK(u, r) = B(u, r)∩K, and
recall that by B◦ we mean the open ball. Fix a pair u, v ∈ K, and for each 0 ≤ i ≤ I,
let r′i be the minimal such that both |BK(u, r)| ≥ 2i and |BK(v, r)| ≥ 2i. Define
ri = min{r′i, γA(u, v)} and let ∆i = ri− ri−1. Observe that r0 = 0 and rI = γA(u, v),
so that

(9)
∑

i∈[I]
∆i = γA(u, v) .

We first claim that for each i ∈ [I] and j ∈ [J],

(10) Pr[|ϕij(u)− ϕij(v)| ≥ ∆i] ≥ 1/12 .

If ∆i = 0 then there is nothing to prove. Assume then that ri−1 < ri, and note that
either |B◦K(u, ri)| ≤ 2i or |B◦K(v, ri)| ≤ 2i (otherwise it contradicts the minimality of
ri). W.l.o.g. we have that |B◦K(u, ri)| ≤ 2i. Furthermore, note that the sets B◦K(u, ri),
BK(v, ri−1), and A are pairwise disjoint. Let E be the event that {Qij∩B◦K(u, ri) = ∅}
and F be the event that {Qij ∩ BK(v, ri−1) 6= ∅}. Observe that if both events hold
then d(u,Qij) ≥ ri and d(v,Qij) ≤ ri−1, so that

|ϕij(u)− ϕij(v)| ≥ ri − ri−1 = ∆i .

Since both balls are disjoint from A, we have that

Pr[E] =
∏

x∈B◦K(u,ri)

Pr
[
x /∈ Q′ij

]
=
(
1− 2−i

)|B◦K(u,ri)| ≥
(
1− 2−i

)2i ≥ 1

4
.

And similarly,

Pr[F] = 1−
∏

x∈BK(v,ri−1)

Pr
[
x /∈ Q′ij

]
= 1−

(
1− 2−i

)|BK(v,ri−1)|

≥ 1−
(
1− 2−i

)2i−1

≥ 1− e− 1
2 ≥ 1

3
.

Since the events E and F are independent, this concludes the proof of (10). Let Xij

be an indicator random variable for the event that |ϕij(u)− ϕij(v)| ≥ ∆i, and Xi =

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

856 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

∑J
j=1Xij . Using the independence for different values of j, and that E[Xi] ≥ J/12,

a Chernoff bound yields that for any i

Pr[Xi < J/24] ≤ e−J/100 ≤ 1/k3 ,

when C is sufficiently large. Note that if indeed Xi ≥ J/24 for all 1 ≤ i ≤ I, then

‖ϕ(u)− ϕ(v)‖pp =
1

I · J
I∑

i=1

J∑

j=1

|ϕij(u)− ϕij(v)|p

≥ 1

24I

I∑

i=1

∆p
i

≥ I1−p

24I

(I∑

i=1

∆i

)p

(9)

≥ γA(u, v)p

24Ip
,

where the second inequality uses Hölder’s inequality. Applying a union bound over
the

(
k
2

)
possible pairs in

(
K
2

)
, and the I = dlog ke possible values of i, there is at least

a constant probability that for every pair ‖ϕ(u)− ϕ(v)‖p ≥ γA(u,v)
241/p·log k .

REFERENCES

[ABC+05] I. Abraham, Y. Bartal, H. T.-H. Chan, K. Dhamdhere, A.Gupta, J. M. Klein-
berg, O. Neiman, and A.s Slivkins, Metric embeddings with relaxed guarantees,
in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), Pittsburgh, PA, IEEE Computer Society, Los Alamitos, CA,
2005, pp. 83–100.

[ABN07] I. Abraham, Y. Bartal, and O. Neiman, Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion, in Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, 2007,
SIAM, Philadelphia, pp. 502–511.

[ABN11] I. Abraham, Y. Bartal, and O. Neiman, Advances in metric embedding theory, Adv.
Math., 228 (2011), pp. 3026–3126.

[AC14] I. Abraham and S. Chechik, Distance labels with optimal local stretch, in Proceedings
of the 41st International Colloquium on Automata, Languages, and Programming,
ICALP 2014, Copenhagen, Denmark, 2014, Part I, Springer, Heidelberg, 2014,
pp. 52–63.

[AG06] I. Abraham and C. Gavoille, Object location using path separators, in Proceed-
ings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, 2006, ACM, New York, 2006, pp. 188–197.

[AP92] B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-
off, SIAM J. Discrete Math., 5 (1992), pp. 151–162.

[Bar96] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applica-
tions, in Proceedings of the 37th Annual Symposium on Foundations of Computer
Science, FOCS ’96, IEEE Computer Society, Los Alamitos, CA, 1996, pp. 184–193.

[Bar98] Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the
30th Annual ACM Symposium on Theory of Computing, STOC ’98, NY, ACM,
New York, 1998, pp. 161–168.

[BBMN11] N. Bansal, N. Buchbinder, A. Madry, and J. Naor, A polylogarithmic-competitive
algorithm for the k-server problem, in Proceedings of the 52th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS ’08, IEEE, Piscataway, NJ,
2011, pp 267 –276.

[BFN16] Y. Bartal, A. Filtser, and O.Neiman, On notions of distortion and an almost
minimum spanning tree with constant average distortion, in Proceedings of the

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRIORITIZED METRIC STRUCTURES AND EMBEDDING 857

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’16, SIAM, Philadelphia, 2016, pp. 873–882.

[Bou85] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel
J. Math., 52 (1985), pp. 46–52.

[Bou86] J. Bourgain, The metrical interpretation of superreflexivity in Banach spaces, Israel
J. Math., 56 (1986), pp. 222–230.

[CDG06] H. T.-H. Chan, M. Dinitz, and A. Gupta, Spanners with slack, in Proceedings of the
14th Annual European Symposium, Algorithms - ESA 2006, Zurich, Switzerland,
Springer, Berlin, 2006, pp. 196–207.

[Che14] S. Chechik, Approximate distance oracles with constant query time, in Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, NY,
ACM, New York, 2014, pp. 654–663.

[Che15] S. Chechik, Approximate distance oracles with improved bounds, in Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, 2015, ACM, New York, 2015, pp. 1–10.

[EFN15] M. Elkin, A. Filtser, and O. Neiman, Prioritized metric structures and embedding,
in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, ACM, New York, 2015, pp. 489–498.

[FLM77] T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical
sections of convex bodies, Acta Math., 139 (1977), pp. 53–94.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbi-
trary metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[GPPR01] C. Gavoille, D. Peleg, S. Perennes, and R. Raz, Distance labeling in graphs, in
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2001, SIAM, Philadelphia, 2001, pp. 210–219.

[Gup01] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01,
SIAM, Philadelphia, 2001, pp. 220–227.

[JL84] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a
Hilbert space, in Conference in Modern Analysis and Probability (New Haven,
CT, 1982), AMS, Providence, RI, 1984, pp. 189–206.

[KKM+12] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar, Efficient dis-
tributed approximation algorithms via probabilistic tree embeddings, Distrib. Com-
put., 25 (2012), pp. 189–205.

[Kle02] P. N. Klein, Preprocessing an undirected planar network to enable fast approximate
distance queries, in Proceedings of the Thirteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 2002, San Francisco, CA, SIAM, Philadelphia, 2002,
pp. 820–827.

[KSW09] J. Kleinberg, A. Slivkins, and T. Wexler, Triangulation and embedding using
small sets of beacons, J. ACM, 56 (2009), 32.

[LLR95] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its
algorithmic applications, Combinatorica, 15 (1995), pp. 215–245.

[LT79] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math., 36 (1979), pp. 177–189.

[MN06] M. Mendel and A. Naor, Ramsey partitions and proximity data structures, in Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’06, IEEE Computer Society, Los Alamitos, CA, 2006, pp. 109–118.

[Pel99] D. Peleg, Proximity-preserving labeling schemes and their applications, in Proceed-
ings of the Graph-Theoretic Concepts in Computer Science, 25th International
Workshop, WG ’99, Ascona, Switzerland, 1999, Springer, Berlin, 1999, pp. 30–41.

[RR98] Y. Rabinovich and R. Raz, Lower bounds on the distortion of embedding finite metric
spaces in graphs, Discrete Comput. Geom., 19 (1998), pp. 79–94.

[RTZ05] L. Roditty, M.Thorup, and U. Zwick, Deterministic constructions of approximate
distance oracles and spanners, in Proceedings of the 32nd International Conference
on Automata, Languages and Programming, ICALP’05, Springer, Berlin, 2005,
pp. 261–272.

[SS09] G. Schechtman and A. Shraibman, Lower bounds for local versions of dimension
reductions, Discrete Comput. Geom., 41, (2009), pp. 273–283.

[ST04] Y. Shavitt and T. Tankel, Big-bang simulation for embedding network distances in
Euclidean space, IEEE/ACM Trans. Netw., 12 (2004), pp. 993–1006.

[Tho01] M. Thorup, Compact oracles for reachability and approximate distances in planar
digraphs, in Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, Las Vegas, NV, IEEE Computer Society, Los Alamitos,
CA, 2001, pp. 242–251.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

858 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

[TZ01] M. Thorup and U. Zwick, Compact routing schemes, in Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’01 New York, ACM, New York, 2001, pp. 1–10.

[TZ05] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1–
24.

[Wul13] C. Wulff-Nilsen, Approximate distance oracles with improved query time, in Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, LA, 2013, SIAM, Philadelphia, 2013, pp. 539–
549.

D
ow

nl
oa

de
d

02
/1

9/
19

 to
 1

32
.7

6.
61

.5
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Part III

On Notions of Distortion and an Almost

Minimum Spanning Tree with Constant

Average Distortion

52

Part IV

Steiner Point Removal with distortion

O(log k), using the Relaxed-Voronoi algorithm

67

SIAM J. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 2, pp. 249--278

STEINER POINT REMOVAL WITH DISTORTION \bfitO (log \bfitk) USING
THE RELAXED-VORONOI ALGORITHM\ast

ARNOLD FILTSER\dagger

Abstract. In the Steiner point removal problem, we are given a weighted graph G = (V,E)
and a set of terminals K \subset V of size k. The objective is to find a minor M of G with only
the terminals as its vertex set, such that distances between the terminals will be preserved up
to a small multiplicative distortion. Kamma, Krauthgamer, and Nguyen [SIAM J. Comput., 44
(2015), pp. 975--995] devised a ball-growing algorithm with exponential distributions to show that
the distortion is at most O(log5 k). Cheung [Proceedings of the 29th Annual ACM/SIAM Symposium
on Discrete Algorithms, 2018, pp. 1353--1360] improved the analysis of the same algorithm, bounding
the distortion by O(log2 k). We devise a novel and simpler algorithm (called the Relaxed-Voronoi

algorithm) which incurs distortion O(log k). This algorithm can be implemented in almost linear
time (O(| E| log | V |)).

Key words. Steiner point removal (SPR), distortion, metric embedding, minor graph, random-
ized algorithm

AMS subject classifications. 41, 60, 68

DOI. 10.1137/18M1184400

1. Introduction. In graph compression problems the input is usually a massive
graph. The objective is to compress the graph into a smaller graph, while preserving
certain properties of the original graph, such as distances or cut values. Compression
allows us to obtain faster algorithms while reducing the storage space. In the era
of massive data, the benefits are obvious. Examples of such structures are graph
spanners [37], distance oracles [39], cut sparsifiers [7], spectral sparsifiers [6], and
vertex sparsifiers [36].

In this paper we study the Steiner point removal (SPR) problem. Here we are
given an undirected graph G = (V,E) with positive weight function w : E \rightarrow \BbbR +,
and a subset of terminals K \subseteq V of size k (the nonterminal vertices are called Steiner
vertices). The goal is to construct a new graph M = (K,E\prime) with positive weight
function w\prime , with the terminals as its vertex set, such that (1) M is a graph minor of
G and (2) the distance between every pair of terminals t, t\prime is distorted by at most a
multiplicative factor of \alpha , formally

\forall t, t\prime \in K, dG(t, t
\prime) \leq dM (t, t\prime) \leq \alpha \cdot dG(t, t\prime) .

Property (1) expresses preservation of the topological structure of the original graph.
For example, if G was planar, so will M be. Property (2), however, expresses preser-
vation of the geometric structure of the original graph, that is, distances between
terminals. The question is, What is the minimal \alpha (which may depend on k) such
that every graph with a terminal set of size k will admit a solution to the SPR problem
with distortion \alpha ?

The first to study a problem of this flavor was Gupta [24], who showed that given
a weighted tree T with a subset of terminals K, there is a tree T \prime with K as its vertex

\ast Received by the editors April 30, 2018; accepted for publication January 22, 2019; published
electronically March 26, 2019. A preliminary version appeared in Proceedings of SODA'18, 2018.

http://www.siam.org/journals/sicomp/48-2/M118440.html
Funding: The research was supported in part by ISF grant (1718/18) and BSF grant 2015813.

\dagger Department of Computer Science, Ben Gurion University of the Negev, Beer Sheva, 8410501,
Israel (arnoldf@cs.bgu.ac.il).

249

250 ARNOLD FILTSER

set that preserves all the distances between terminals up to a multiplicative factor of
8. Chan et al. [9] observed that the tree T \prime of Gupta is in fact a minor of the original
tree T . They showed that 8 is the best possible distortion and formulated the problem
for general graphs. This lower bound of 8 is achieved on the complete unweighted
binary tree and is the best known lower bound for the general SPR problem.

Basu and Gupta [5] showed that on outerplanar graphs, the SPR problem can be
solved with distortion O(1).

Kamma, Krauthgamer, and Nguyen were the first to bound the distortion for
general graphs. They suggested the Ball-growing algorithm. Their first analysis
provide O(log6 k) distortion (conference version [26]), which they later improved to
O(log5 k) (journal version [27]). Recently, Cheung [11] improved the analysis of the
Ball-growing algorithm further, providing an O(log2 k) upper bound on the distor-
tion.

The Ball-growing algorithm constructs a terminal partition, that is, a partition
where each cluster is connected and contains a single terminal. The minor is then
constructed by contracting all the internal edges in all clusters. The weight of the
minor edge \{ t, t\prime \} (if it exists) is defined simply to dG(t, t

\prime). The clusters are generated
iteratively. In each round, by turn, each terminal tj increases the radius Rj of its ball
cluster Vj in an attempt to add more vertices to its ball cluster Vj . Once a vertex
joins some cluster, it will remain there. In round \ell , the radii are (independently) dis-
tributed according to an exponential distribution, where the mean of the distribution
grows in each round. A description of the Ball-growing algorithm can be found in
Appendix B.

The main contribution of this paper is a new upper bound of O(log k) for the SPR
problem. In a preliminary conference version [20], the author improved the analysis
of the Ball-growing algorithm, providing an O(log k) upper bound. In this paper
we devise a novel algorithm called the Relaxed-Voronoi algorithm. We bound the
distortion incurred by the minor produced using the Relaxed-Voronoi by O(log k)
as well. Nevertheless, the Relaxed-Voronoi algorithm is arguably simpler and more
intuitive compared to the Ball-growing algorithm. Both algorithms grow clusters
around the terminals; the main difference is that the Ball-growing algorithm has
many iterations, growing slowly from all terminals (almost in parallel), while the
Relaxed-Voronoi algorithm has one round only (the terminals create clusters by
turns. Once a cluster is created it will remain unchanged till the end of the algorithm).
The analysis in [20] was built upon [11]. In both papers, a considerable effort was
made to lower and upper bound the number of the round in which each nonterminal is
clustered. The analysis in this paper is quite similar to [20], while all the round-base
analysis simply becomes unnecessary.

Furthermore, we devise an efficient implementation of the Relaxed-Voronoi al-
gorithm in almost linear time O (m+min\{ m,nk\} \cdot log n) (m (resp., n) here is the
number of edges (resp., vertices) in G). While the Ball-growing algorithm can be
implemented in polynomial time, it is not clear how to do so efficiently.

We show that the analysis of the Relaxed-Voronoi algorithm is asymptotically
tight. That is, there are graphs for which the Relaxed-Voronoi produces a mi-
nor which incurs distortion \Omega (log k). We prove a similar lower bound also for the
Ball-growing algorithm. However, there we are only able to prove an \Omega (

\surd
log k)

lower bound on the performance of the algorithm.

1.1. Related work. Englert et al. [17] showed that every graph G admits a
distribution \scrD over terminal minors with expected distortion O(log k). Formally, for

all ti, tj \in K, it holds that 1 \leq \BbbE M\sim \scrD [dM (ti,tj)]
dG(ti,tj)

\leq O (log k). Thus, Theorem 3.1 can be

STEINER POINT REMOVAL WITH DISTORTION O(log k) 251

seen as an improvement upon [17], where we replace distribution with a single minor.
Englert et al. showed better results for \beta -decomposable graphs; in particular, they
showed that graphs excluding a fixed minor admit a distribution with O(1) expected
distortion.

Krauthgamer, Nguyen, and Zondiner [29] showed that if we allow the minorM to

contain at most
\bigl(
k
2

\bigr) 2
Steiner vertices (in addition to the terminals), then distortion 1

can be achieved. They further showed that for graphs with constant treewidth, O(k2)
Steiner points will suffice for distortion 1. Cheung, Goranci, and Henzinger [12]

showed that allowing O(k2+
2
t) Steiner vertices, one can achieve distortion 2t - 1 (in

particular distortion O(log k) with O(k2) Steiners). For planar graphs, they achieved
1 + \epsilon distortion with \~O((k\epsilon)

2) Steiner points.
There is a long line of work focusing on preserving the cut/flow structure among

the terminals by a graph minor. See [36, 32, 10, 34, 17, 13, 30, 2, 23, 31].
There are works studying metric embeddings and metric data structures concern-

ing preserving distances among terminals, or from terminals to other vertices, out of
the context of minors. See [14, 38, 25, 28, 15, 16, 4].

Finally, there are clustering algorithms similar in nature to the Relaxed-Voronoi
and Ball-growing algorithms [33, 3, 19, 8, 18, 35].

1.2. Technical ideas. The basic approach in this paper, as well as in all previous
papers on SPR in general graphs, is to use terminal partitions in order to construct
a minor for the SPR problem. Specifically, we partition the vertices into k connected
clusters, with a single terminal in each cluster. Such a partition induces a minor
by contracting all the internal edges in each cluster. See the preliminaries for more
details. Considering such a framework, the most natural idea will be to partition the
vertices into the Voronoi cells, i.e., the cluster Vj of the terminal tj will contain all
the vertices v for which tj is the closest terminal. However, this approach miserably
fails and can incur distortion as large as k - 1. See Figure 1.1 for an illustration.

t1 tkt2 t3 t4 tk−1tk−2

1 1 1 1 1 1 1

ε ε ε ε ε
v2 v3 v4 vk−1vk−2 vkv1

t1 tkt2 t3 t4 tk−1tk−2

2 + ε 2 + ε 2 + ε 2 + ε 2 + ε

G

M

Fig. 1.1. The graph G consists of a k-path of Steiner vertices v1, . . . , vk with edges of weight
\epsilon . To each Steiner vertex vj we add a terminal using a unit weight edge. The Voronoi cell of the
terminal tj is \{ tj , vj\} . The minor M induced by this terminal partition is a path t1, . . . , tk where
the weight of each edge equals 2 + \epsilon . The original distance in G between t1 to tk is 2 + (k - 1) \cdot \epsilon ,
while the distance in the minor M equals (k - 1) \cdot (2 + \epsilon). In particular, when \epsilon tends to 0, the
distortion tends to k - 1.

252 ARNOLD FILTSER

Our idea is to introduce some noise in order to avoid the sharp boundaries between
the clusters. Specifically, we order the terminals in an arbitrary order. For each
terminal tj we sample a parameter Rj \geq 1 that we will call its magnitude. Then, by
turn, each terminal will construct a cluster Vj which will be essentially a magnified (by
Rj) Voronoi cell (in the remaining graph). However, in order to maintain connectivity,
the magnified Voronoi cell is constructed in a ``Dijkstra manner"" as follows. For
every vertex v, denote by D(v) the distance from v to its closest terminal. Initially
Vj = \{ tj\} . In each step, every unclustered neighboring vertex v of Vj is examined. If
dG(v, tj) \leq Rj \cdot D(v), then v joins the cluster Vj . The process terminates when no
new potential vertices remain. Then we move on to the next terminal and repeat the
same process on the remaining graph. Eventually, all of G is partitioned into clusters.

To sample Rj , we first sample gj according to geometric distribution with param-
eter p = 1

5 . Then, Rj is set to be (1 + \delta)gj , where \delta = \Theta (1
ln k). In particular, all the

Rj 's are bounded by some universal constant with high probability (w.h.p.).
Next, we provide some intuition for the distortion analysis. Consider a pair of

terminals t, t\prime , and let Pt,t\prime be the shortest path between them in the original graph
G. When the algorithm terminates, all the vertices in Pt,t\prime are clustered by different
terminals. See Figure 4.2 for an illustration. Let \scrD \ell 1 , . . . ,\scrD \ell k be the partition of
the vertices in Pt,t\prime induced by the partition of all vertices created by the algorithm.
i.e., \scrD \ell i = Pt,t\prime \cap V\ell i . For simplicity at this stage, we will assume that every \scrD \ell j is
continuous. In the induced minor graph, there is an edge between any two consecutive
terminals t\ell j and t\ell j+1 . Therefore the distance between t and t

\prime in the minor graph can
be bounded by

\sum
j dG(t\ell j , t\ell j+1

). Let v\ell j be the ``first"" vertex on Pt,t\prime to be covered
by t\ell j . ``First"" here is in the following sense: we think about the sampling of Rj in a
gradual manner. For a vertex v, let rv denote the minimal value of Rj such that v \in Vj .
Then vj is defined to be the vertex with the minimal value rv. Using the triangle
inequality, dG(t\ell j , t\ell j+1) \leq dG(t\ell j , v

\ell j) + dG(v
\ell j , v\ell j+1) + dG(v

\ell j+1 , t\ell j+1). Therefore

dM (t, t\prime) \leq \sum k\prime - 1
i=1 dG(v

\ell i , v\ell i+1) + 2
\sum k\prime

i=1 dG(t\ell i , v
\ell i) \leq dG(t, t

\prime) + 2
\sum k\prime

i=1 dG(t\ell i , v
\ell i)

(see Figure 4.2 for an illustration).
In order to bound the distortion, we need to bound the sum of ``deviations""\sum k\prime

i=1 dG(t\ell i , v
\ell i) from the shortest path. However, these deviations are heavily de-

pendent. Instead of analyzing the deviations directly, we will follow an approach first
suggested by [11]. We partition the shortest path Pt,t\prime from t to t\prime into a set of in-
tervals \scrQ ; the idea will be to count for each interval Q how many deviations start
from this interval (denoted X(Q)). Specifically, for each deviation, we will charge the
interval in which this deviation was initiated. Afterward, we will be able to replace
the sum of deviations above by a linear combination of the interval charges.

The partition of the shortest path Pt,t\prime into intervals is done such that the length
of each interval Q \in \scrQ will be a log k fraction of the distance from the interval to
its closest terminal. Such interval lengths will ensure the following crucial property:
given that some vertex v \in Q joins the cluster Vj (of the terminal tj), with probability
at least 1 - p, all of Q joins Vj .

Using this property alone, one can show that the expected charge on each interval
is bounded by a constant. This already will imply an O(log k) distortion on each pair
in expectation. However, as we are interested in O(log k) distortion on all pairs
w.h.p., a more subtle argument is required. We couple the interval charges into a
series of independent random variables that dominate the interval charges. Then, a
concentration bound on the independent variables implies an upper bound on the sum
of interval charges, which provides O(log k) distortion w.h.p.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 253

1.3. Paper organization. In section 3 we describe the Relaxed-Voronoi al-
gorithm and prove some of its basic properties. Then, in section 4 we analyze the
distortion incurred by the Relaxed-Voronoi algorithm. In section 5 we introduce a
small modification to the Relaxed-Voronoi algorithm. We prove that the distortion
analysis is still valid and explain how the modified algorithm can be efficiently imple-
mented. In section 6 we prove that our analysis of the Relaxed-Voronoi algorithm
is asymptotically tight (and provide some lower bound on the performance of the
Ball-growing algorithm). Finally, in section 7 we provide some concluding remarks
and discuss further directions.

2. Preliminaries. Appendix C contains a summary of all the definitions and
notation we use. The reader is encouraged to refer to this index while reading.

We consider undirected graphs G = (V,E) with positive edge weights w : E \rightarrow
\BbbR \geq 0. Let dG denote the shortest path metric in G. For a subset of vertices A \subseteq V ,
let G[A] denote the induced graph on A. Fix K = \{ t1, . . . , tk\} \subseteq V to be a set of
terminals. For a vertex v, D(v) = mint\in K dG(v, t) is the distance from v to its closest
terminal. For clarity, we will assume that all metric distances are unique (that is, for
\{ v, v\prime \} \not = \{ u, u\prime \} , dG(v, v\prime) \not = dG(u, u

\prime)). Moreover, we will assume that for every pair
v, u there is a unique shortest path. Otherwise, we can introduce arbitrarily small
perturbations.

A graph H is a minor of a graph G if we can obtain H from G by edge deletions/
contractions and vertex deletions. A partition \{ V1, . . . , Vk\} of V is called a terminal
partition (w.r.t. K) if for every 1 \leq i \leq k, ti \in Vi, and the induced graph G[Vi] is
connected. See Figure 2.1 for an illustration. The induced minor by terminal partition
\{ V1, . . . , Vk\} is a minor M , where each set Vi is contracted into a single vertex called
(abusing notation) ti. Note that there is an edge inM from ti to tj iff there are vertices
vi \in Vi and vj \in Vj such that \{ vi, vj\} \in E. We determine the weight of the edge
\{ ti, tj\} \in E(M) to be dG(ti, tj). Note that by the triangle inequality, for every pair
of (not necessarily neighboring) terminals ti, tj , it holds that dM (ti, tj) \geq dG(ti, tj).

The distortion of the induced minor is maxi,j
dM (ti,tj)
dG(ti,tj)

.

2.1. Probability. For a distribution \scrD , X \sim \scrD denotes that X is a random
variable distributed according to \scrD .

4

2

5

3

3

1

23

3

4

1111

3
2

2

1

3

5

1

t1t1

t2

t2

t3t3

t4

t4

6

5

6

7
V1

V2

V3

V4

Fig. 2.1. The left side of the figure contains a weighted graph G = (V,E), with weights specified
in red, and four terminals \{ t1, t2, t3, t4\} . The dashed black curves represent a terminal partition of
the vertex set V into the subsets V1, V2, V3, V4. The right side of the figure represent the minor M

induced by the terminal partition. The distortion is realized between t1 and t3, and is
dM (t1,t3)
dG(t1,t3)

=
12
4

= 3.

254 ARNOLD FILTSER

\sansG \sanse \sanso (p) denotes the geometric distribution with parameter p. Here we toss a
biased coin with probability p for heads, until the first time we get heads. \sansG \sanse \sanso (p) is
the number of coin tosses. Formally, \sansG \sanse \sanso (p) is supported in \{ 1, 2, 3, . . . \} , where the
probability to get s is (1 - p)s - 1 \cdot p.

Exponential distribution is the continuous analogue of geometric distribution.
\sansE \sansx \sansp (\lambda) denotes the exponential distribution with mean \lambda and density function f(x) =
1
\lambda e

 - x
\lambda for x \geq 0. Exponential distribution is closed under scaling, that is, for

X \sim \sansE \sansx \sansp (\lambda), c \cdot X is distributed according to \sansE \sansx \sansp (c\lambda). We will use the following
concentration bound.

Lemma 2.1. Suppose X1, . . . , Xn's are independent random variables, where each
Xi is distributed according to \sansE \sansx \sansp (\lambda i). Let X =

\sum
iXi and \lambda M = maxi \lambda i. Set

\mu = \BbbE [X] =
\sum

i \lambda i.

For a \geq 2\mu , Pr [X \geq a] \leq exp

\biggl(
 - 1

2\lambda M
(a - 2\mu)

\biggr)
.

In Appendix A we prove a more general bound. In particular, Lemma 2.1 above
is a special case of Lemma A.1 (which is obtained by choosing parameters \alpha = a

\mu - 1

and t = 1
2\lambda M

).

3. Algorithm. The terminals are ordered in arbitrary order t1, t2, . . . , tk. The
Relaxed-Voronoi algorithm has k rounds, where in the round i, the cluster Vi (con-
taining ti) is constructed in the graph induced by the non-terminal vertices not clus-
tered so far.

The clusters are created using the Create-Cluster procedure. The algorithm
provides a random variable Rj = (1 + \delta)gj , where gj is distributed according to
geometric distribution with parameter p.

The Create-Cluster procedure runs in a Dijkstra-like fashion. During the exe-
cution, we maintain three sets: (1) Vj : the currently created cluster (initiated to be
\{ tj\}). (2) U : the set of vertices that were ``refused"" to join Vj . (3) N : the set of
neighboring vertices to Vj (that are not in U).

While N is nonempty, the algorithm extracts an arbitrary vertex v from N . If
dG(v, tj) \leq R(j) \cdot D(v) (the distance from tj to v is at most Rj times the distance
from v to its closest terminal), then v joins Vj . Otherwise v joins U . In the case
where v joins Vj , all its neighbors (outside of U \cup Vj) join N . As each vertex might
join N at most once, eventually N becomes empty. Then the procedure ceases and
returns Vj .

Theorem 3.1. With probability 1 - 1
k , in the minor graph M returned by Algo-

rithm 3.1, it holds that for every two terminals t, t\prime , dM (t, t\prime) \leq O (log k) \cdot dG(t, t\prime).
First we argue that Algorithm 3.1 indeed produces a terminal partition.

Lemma 3.2. The sets V1, . . . , Vk constructed by Algorithm 3.1 form a terminal
partition.

Proof. It is straightforward from the description of the algorithm that the sets
V1, . . . , Vk are disjoint and that for every j, tj \in Vj and G[Vj] is connected. The only
nontrivial property we have to show is that every vertex v \in V joins some cluster.

Fix some v \in V , let tj be the closest terminal to v (s.t. D(v) = dG(v, tj)), and
let P = \{ tj = u0, u1, . . . , us = v\} be the shortest path from tj to v in G. Note that
as P is a shortest path, tj is also the closest terminal to all the vertices in P . As
tj = u0 \in Vj , at least one vertex from P is clustered during the algorithm. Let ui\prime be

STEINER POINT REMOVAL WITH DISTORTION O(log k) 255

Algorithm 3.1. M = Relaxed-Voronoi(G = (V,E,w),K = \{ t1, . . . , tk\}).
1: Set \delta = 1

20 ln k and p = 1
5 .

2: Set V\bot \leftarrow V \setminus K. // V\bot is the currently unclustered vertices.
3: for j from 1 to k do
4: Choose independently at random gj distributed according to \sansG \sanse \sanso (p).
5: Set Rj \leftarrow (1 + \delta)gj .
6: Set Vj \leftarrow Create-Cluster(G,V\bot , tj , Rj).
7: Remove all the vertices in Vj from V\bot .
8: end for
9: return the terminal-centered minor M of G induced by V1, . . . , Vk.

the first clustered vertex from P (w.r.t. time). Denote by Vj\prime the cluster ui\prime joins to.
We argue by induction on i \geq i\prime that ui also joins Vj\prime . This will imply that us = v joins
Vj\prime and thus is clustered. Suppose ui joins Vj\prime . It holds that dG(ui, tj\prime) \leq Rj\prime \cdot D(ui).
Moreover, all the neighbors of ui join N . Therefore ui+1 necessarily joined to the set
N (at some stage during the execution of the Create-Cluster procedure for Vj\prime). As

dG(ui+1, tj\prime) \leq dG(ui+1, ui) + dG(ui, tj\prime)

\leq dG(ui+1, ui) +Rj\prime \cdot dG(ui, tj)
\leq Rj\prime \cdot dG(ui+1, tj) = Rj\prime \cdot D(ui+1) ,

ui+1 will join Vj\prime , as required.

3.1. Modification. Let \^\Delta = mint,t\prime \in K\{ dG(t, t\prime)\} denote the minimal distance

between a pair of terminals. Note that \^\Delta > 0. For the sake of analysis we will make
a preprocessing step to ensure that every edge e has weight at most cw \cdot \^\Delta = \delta

24 \cdot \^\Delta .
This can be achieved by subdividing larger edges, i.e., adding additional vertices of
degree two in the middle of such edges. Denote by \^G the modified graph G, when we
repeatedly subdivide edges until every edge e has small enough weight. We argue that
such subdivisions did not affect whatsoever the terminal-centered minor returned by
Algorithm 3.1.

Claim 3.3. Let G = (V,E,w) be a weighted graph with terminal set K = \{ t1, . . . ,
tk\} . Consider an edge e = \{ v, u\} \in E of weight \omega . Let \~G be the graph G with
subdivided edge e. Specifically, we add a new Steiner vertex ve and replace the edge e
by two new edges \{ ve, v\} , \{ ve, u\} , both of weight \omega /2.

Fix g1, . . . , gk and consider Algorithm 3.1, where the random choices in line 4 are
g1, . . . , gk, respectively. Then the terminal-centered minor M returned on input G is
the same as the terminal-centered minor \~M returned on input \~G .

Proof. As g1, . . . , gk are fixed, Algorithm 3.1 is now deterministic. Let V1, . . . , Vk
be the terminal partition induced by Algorithm 3.1 on G, and similarly let \~V1, . . . , \~Vk
be the terminal partition induced by Algorithm 3.1 on \~G. We argue that for all j,
Vj = \~Vj \setminus \{ ve\} . Note that this will imply our claim. Indeed, let Vj , Vj\prime be the clusters
such that v \in Vj and u \in Vj\prime . As each cluster is connected, necessarily ve \in Vj \cup Vj\prime .
By the definition of subdivision, this will imply that the terminal-centered minors are
indeed identical.

Each Steiner vertex can be clustered only after at least one of its neighbors is
clustered. Therefore ve cannot be clustered before both v and u. Without loss of
generality (w.l.o.g.) v joined Vj while u is still unclustered. The vertex ve wasn't

256 ARNOLD FILTSER

Algorithm 3.2. Vj = Create-Cluster(G = (V,E,w), V\bot , tj , Rj).

1: Set Vj \leftarrow \{ tj\} .
2: Set U \leftarrow \emptyset . // U is the set of vertices already denied from Vj.
3: Set N to be all the neighbors of tj in V\bot .
4: while N \not = \emptyset do
5: Let v be an arbitrary vertex from N .
6: Remove v from N .
7: if dG(v, tj) \leq Rj \cdot D(v) then
8: Add v to Vj .
9: Add all the neighbors of v in V\bot \setminus (U \cup Vj) to N .

10: else
11: Add v to U .
12: end if
13: end while
14: return Vj .

examined before the clustering of v. Denote by V \prime
j (resp., \~V \prime

j) the set Vj (resp., \~Vj)

right after the clustering of v at the execution of Algorithm 3.1 on G (resp., \~G).
Note that the order of extraction from N in line 5 of Algorithm 3.2 is determined
deterministically. Therefore, up to the clustering of v the algorithm behaved the
same on both G and \~G. In particular, for all j\prime \prime < j, Vj\prime \prime = \~Vj\prime \prime . Moreover, V \prime

j = \~V \prime
j .

After v joins Vj , ve joins (for the first time) to the set N (for \~G). Note that

D(ve) = min \{ D(v), D(u)\} + \omega

2
,

dG(tj,ve) = min \{ dG(tj,v), dG(tj , u)\} +
\omega

2
.

As v joined Vj , necessarily dG(tj , v) \leq Rj \cdot D(v). Consider the following cases:
\bullet u /\in Vj : In the algorithm for G, u was examined (as v \in Vj), thus dG(tj , u) >
Rj \cdot D(u). Therefore u will also not join \~Vj . As ve has edges only to v and

u, ve has no impact on any other vertex. Therefore the cluster \~Vj will be
constructed in the same manner as Vj (up to maybe containing ve). Note
that all the other clusters will not be affected, as if ve remained unclustered,
it becomes a leaf. We conclude that for every j\prime \prime , Vj\prime \prime = \~Vj\prime \prime \setminus \{ ve\} .

\bullet u \in Vj : It holds that dG(tj , u) \leq Rj \cdot D(u). Therefore

dG(tj,ve) = min \{ dG(tj,v), dG(tj,e)\} +
\omega

2
\leq Rj \cdot min \{ D(v), D(u)\}

+
\omega

2
\leq Rj \cdot D(ve) .

Therefore ve will join \~Vj , which will ensure that u joins \~N , and afterward

to \~Vj . Note that ve has no other impact. In particular, for every j\prime \prime \not = j,

Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .

Consider the modified graph \^G. Suppose that we proved that with probability at
least 1 - 1

k , in the minor graph \^M returned by Algorithm 3.1 for \^G, it holds that for
every two terminals t, t\prime , d \^M (t, t\prime) \leq O (log k) \cdot d \^G(t, t

\prime) = O (log k) \cdot dG(t, t\prime). Then by
repetitive use of Claim 3.3 (once for every new vertex), Theorem 3.1 follows. From
now on, we will abuse notation and refer to the graph \^G as G. Note that all this is

STEINER POINT REMOVAL WITH DISTORTION O(log k) 257

done purely for the sake of analysis, as by Claim 3.3 we will get the same minor when
running Algorithm 3.1 for either G or \^G. Thus, in fact, we will execute Algorithm 3.1
on the original graph with no modifications.

4. Distortion analysis.

4.1. Interval and charges. In this section we describe in detail the probabilistic
process of breaking the graph into clusters from the viewpoint of the Steiner vertices.
The main objective will be to define a charging scheme, which we can later use to
bound the distortion.

Consider two terminals t and t\prime . Let Pt,t\prime = \{ t = v0, . . . , v\gamma = t\prime \} be the shortest
path from t to t\prime in G. We can assume that there are no terminals in Pt,t\prime other than
t, t\prime . This is because if we will prove that for every pair of terminals t, t\prime such that
Pt,t\prime \cap K = \{ t, t\prime \} it holds that dM (t, t\prime) \leq O(log k) \cdot dG(t, t\prime), this property will be
implied for all terminal pairs.

For an interval Q = \{ va, . . . , vb\} \subseteq Pt,t\prime , the internal length is L(Q) = dG(va, vb),
while the external length is L+(Q) = dG(va - 1, vb+1).

1 The distance from the interval
Q to the terminals, denoted D(Q) = D(va), is simply the distance from its leftmost
point va to the closest terminal to va. Set cint =

1
6 (``int"" for interval). We partition

the vertices in Pt,t\prime into consecutive intervals \scrQ such that for every Q \in \scrQ ,

L(Q) \leq cint\delta \cdot D(Q) \leq L+(Q) .(4.1)

Such a partition could be constructed as follows. Sweep along the interval Pt,t\prime in
a greedy manner; after partitioning the prefix v0, . . . , vh - 1, to construct the next Q,
simply pick the minimal index s such that L+(\{ vh, . . . , vh+s\}) \geq cint\delta \cdot D(vh). By the
minimality of s, L(\{ vh, . . . , vh+s\}) \leq L+(\{ vh, . . . , vh+s - 1\}) \leq cint\delta \cdot D(vh) (in the case
s = 0, trivially L(\{ vh\}) = 0 \leq cint\delta \cdot D(vh)). Note that such s could always be found,
as L+(\{ vh, . . . , v\gamma \}) = dG(vh - 1, t

\prime) \geq dG(vh, t\prime) \geq D(vh) = D(Q).
In the beginning of Algorithm 3.1, all the vertices of Pt,t\prime are active. Consider

round j in the algorithm when terminal tj constructs its cluster Vj . Specifically, it
picks gj and sets Rj \leftarrow (1 + \delta)gj . Then, using the Create-Cluster procedure it
grows a cluster in a ``Dijkstra"" fashion. If no active vertex joins Vj , we say that tj
doesn't participate in Pt,t\prime . Otherwise, let aj \in Pt,t\prime (resp., bj) be the active vertex
that joins to Vj with minimal (resp., maximal) index (w.r.t. Pt,t\prime). All the vertices
\{ aj , . . . , bj\} \subset Pt,t\prime between aj and bj (w.r.t. the order induced by Pt,t\prime) become
inactive. We call this set \{ aj , . . . , bj\} a detour \scrD j from aj to bj . See Figure 4.1 for
an illustration.

Within each interval Q, each maximal subinterval of active vertices is called a
slice. We denote by \scrS (Q) the current number of slices in Q. In the beginning of the
algorithm, for every interval Q, \scrS (Q) = 1, while at the end of the algorithm \scrS (Q) = 0.

For an active vertex v, let rv be the minimal choice of Rj (determined by gj) that
will force v to join Vj . Let vj be the active vertex with minimal rv (breaking ties
arbitrarily). Note that Vj is monotone with respect to Rj . That is, if v will join Vj
for Rj = r, it will join Vj for Rj = r\prime \geq r as well. We denote by Qj \in \scrQ the interval
containing vj . Similarly, Sj is the slice containing vj . We charge Qj for the detour
\scrD j . We denote by X(Q) the number of detours the interval Q is currently charged
for. For every detour \scrD j\prime which is contained in \scrD j (that is, aj < aj\prime < bj\prime < bj w.r.t.
the order induced by Pt,t\prime), we erase the detour and its charge. That is, for every

1For ease of notation we will denote v - 1 = t and v\gamma +1 = t\prime .

258 ARNOLD FILTSER

tj

aj bj

Q1 Q2 Q3 = Qj Q4

tj

vj
bj

Q1 Q2 Q3 = Qj Q4

aj

S1 S2 S3 S4 = Sj S5 S6

S1 S2 S3 S4 = Sj S5 S6

(A)

(B)

D`1 D`2

D`1 D`2

vj

Fig. 4.1. The figure illustrates round j in Algorithm 3.1, when tj grows the cluster Vj . We
present two scenarios for different choices of Rj . The black line is part of Pt,t\prime the shortest path
from t to t\prime . The blue intervals Qi represent the intervals in \scrQ . The red subintervals Si represent
the slices (maximal continuous subsets of active vertices), where S2, S3 \subset Q2 and S4, S5 \subset Q3. The
yellow areas represent detours \scrD \ell 1 and \scrD \ell 2 , where Q2 (resp., Q3) is charged for \scrD \ell 1 (resp., \scrD \ell 2).
Note that vertices in those areas are inactive. The terminal tj increases gradually Rj , and the first
vertex to be covered is vj . In scenario (A), the growth of Rj terminates immediately after covering
vj and sets the borderline vertices aj and bj within the subinterval Sj . In scenario (B), the growth of
Rj continues for another step, setting both aj and bj out of Sj . Vertices already inactive are shown
in blue. Vertices that join the cluster Vj are shown in red. The green vertices are vertices which are
still uncovered, but nevertheless become inactive. Vertices which remain active after the creation
of Vj are colored in black. In scenario (A) all the vertices that become inactive, \scrD j , are included
in S4. Q3 is charged for \scrD j . The number of slices in Q3 is increased by 1, and no other changes
occur (X(Q2) = 1, X(Q3) = 2). In scenario (B) \scrD \ell contains all the vertices in S2, S3, S4, S5 and
part of the vertices in S1, S6. The number of slices in Q2 and Q3 becomes 0, while the number of
slices in Q1 and Q4 remains unchanged. Q3 is charged for \scrD \ell , while its charge for \scrD \ell 2 is erased.
Additionally, the charge of Q2 for \scrD \ell 1 is erased. That is, Q2 will remain uncharged till the end of

the algorithm (\~X(Q2) = X(Q2) = 0, X(Q3) = 1).

Q\prime \not = Qj , X(Q\prime) might only decrease, while X(Qj) might increase by at most 1 (and

can also decrease as a result of deleted detours). We denote by \~X(Q) the size of X(Q)
by the end of Algorithm 3.1. Figure 4.1 illustrates a single step.

Next, we analyze the change in the number of slices as a result of constructing
the cluster Vj . If Rj < rvj , then no active vertex joins Vj and therefore X(Q) and
\scrS (Q) stay unchanged, for all Q \in \scrQ . Otherwise, Rj \geq rvj , a new detour will appear

STEINER POINT REMOVAL WITH DISTORTION O(log k) 259

and will be charged upon Qj . All the slices S which are contained in \scrD j are deleted.
Every slice S that intersects \scrD j but is not contained in it will be replaced by one or
two new slices. If \scrD j \cap S /\in \{ \scrD j , S\} , then S is replaced by a single new subslice S\prime .
The only possibility for a slice to be replaced by two subslices is if \scrD j \subseteq S, and \scrD j

does not contain an ``extremal"" vertex in S (see Figure 4.1, scenario (A)). This can
happen only at Sj . We conclude that for every Q\prime \not = Qj , \scrS (Q\prime) might only decrease,
while \scrS (Qj) might increase by at most 1.

Claim 4.1. Assuming Rj \geq rvj , all of Sj joins Vj with probability at least 1 - p.
Proof. As vj joins Vj for Rj \geq rvj , by line 7 of Algorithm 3.2, necessarily

dG(vj ,tj)
D(vj) \leq rvj . We will argue that for every u \in Sj , the following inequality holds:

dG(u, tj)

D(u)
\leq dG(v

j , tj)

D(vj)
(1 + \delta) \leq rvj (1 + \delta) .(4.2)

Next, assume that Rj \geq (1 + \delta)rvj . Before the execution of the Create-Cluster

procedure for Vj , all the vertices in Sj belong to V\bot (as all of them are active).
Because Rj \geq rvj , vj will join Vj (by the definition of rvj). In particular, additional
vertices from Sj (if they exist) will join N . Using inequality (4.2), for every u \in Sj ,
dG(u, tj)/Du \leq rvj (1 + \delta) \leq Rj . Therefore every vertex from Sj joining N will also
join Vj . In such a way, since Sj is connected in V\bot , all the vertices of Sj will join Vj ,
as required.

Next, we analyze the probability that indeed Rj \geq (1 + \delta)rvj . Recall that Rj =
(1 + \delta)gj , where gj is distributed according to geometric distribution with parameter
Pt,t\prime . Conditioned on the event Rj \geq rvj , we have that

Pr [Rj \geq (1 + \delta)rvj | Rj \geq rvj]

= Pr
\bigl[
gj \geq log1+\delta ((1 + \delta)rvj) | gj \geq log1+\delta rvj

\bigr]

= Pr
\bigl[
gj \geq 1 + log1+\delta rvj | gj \geq log1+\delta rvj

\bigr]
= 1 - p .(4.3)

It remains to prove inequality (4.2). By the definition of D(Qj) and the triangle
inequality

L(Qj)
(4.1)

\leq cint\delta \cdot D(Qj) \leq cint\delta \cdot
\bigl(
D(vj) + L(Qj)

\bigr)

\leq 2cint\delta \cdot D(vj) \leq 2cint\delta \cdot dG(vj , tj) .(4.4)

Therefore, for every u \in Sj ,

dG(u, tj) \leq dG(vj , tj) + L(Qj)
(4.4)

\leq dG(v
j , tj) (1 + 2cint\delta) .

Similarly,

D(u) \geq D(vj) - L(Qj) \geq D(vj) (1 - 2cint\delta) .(4.5)

We conclude that

dG(u, tj)

D(u)
\leq dG(v

j , tj) (1 + 2cint\delta)

D(vj) (1 - 2cint\delta)
\leq dG(v

j , tj)

D(vj)
(1 + 3 \cdot 2cint\delta) =

dG(v
j , tj)

D(vj)
(1 + \delta) .

260 ARNOLD FILTSER

4.2. Bounding the number of failures. Next, we define a cost function

f : \BbbR | \scrQ |
+ \rightarrow \BbbR +. Intuitively, the cost function is simply a summation over the inter-

vals, where for each interval Q we add its length L(Q) for each time it was charged.
Formally, f(\{ xQ\} Q\in \scrQ) =

\sum
Q\in \scrQ xQ \cdot L+(Q) . Even though our goal will be to bound

f(\{ \~X(Q)\} Q\in \scrQ), we define f as a general function from \BbbR | \scrQ | in order to use it on other
variables as well. Note that the cost function f is linear and monotonically increas-
ing coordinatewise. In subsection 4.3 we show that the distance dM (t, t\prime) between t
and t\prime in the minor graph M can be bounded by log k \cdot f(\{ \~X(Q)\} Q\in \scrQ), the scaled
cost function applied on the charges. This section is devoted to proving the following
lemma.

Lemma 4.2. Pr[f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime)] \leq k - 3.

Using Claim 4.1, one can show that for every Q \in \scrQ , \BbbE [\~X(Q)] = O(1), and
moreover, w.h.p. \~X(Q) = O(log k) for all Q. However, we use a concentration bound
on all \{ \~X(Q)\} Q\in \scrQ simultaneously in order to provide a stronger upper bound.

4.2.1. Bounding by independent variables. In our journey to bound
f(\{ \~X(Q)\} Q\in \scrQ), the first step will be to replace \{ \~X(Q)\} Q\in \scrQ with independent random
variables. Consider the following process: a box B which contains coins of two types,
active and inactive. In the beginning, there is a single active coin. In each round,
we toss an active coin, which gets 0 (failure) with probability p, and 1 (success) with
probability 1 - p. If we get a 0, two additional active coins are added to the box. In
any case, the tossed coin becomes inactive. All the coin tosses throughout the process
are independent. The process terminates when no active coins remain. Let \{ BQ\} Q\in \scrQ
be a set of | \scrQ | independent boxes (here the box BQ resembles the interval Q). For the
box BQ, denote by Z(Q) the number of active coins, by Y (Q) the number of inactive

coins, and by \~Y (Q) the number of inactive coin at the end of the process.

Claim 4.3. For every \alpha \in \BbbR +,

Pr
\Bigl[
f
\Bigl(
\{ \~X(Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
\leq Pr

\Bigl[
f
\Bigl(
\{ \~Y (Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
.

Proof. The proof is done by coupling the two processes of Algorithm 3.1 and the
coin tosses. We execute Algorithm 3.1, which implicitly induces slices and detour
charges. Simultaneously, we will use Algorithm 3.1 to toss coins. Inductively, we will
maintain the invariant that \{ Y (Q)\} Q\in \scrQ and \{ Z(Q)\} Q\in \scrQ are no less than \{ X(Q)\} Q\in \scrQ
and \{ S(Q)\} Q\in \scrQ (respectively) coordinatewise.

In the beginning \{ X(Q)\} Q\in \scrQ = \{ Y (Q)\} Q\in \scrQ = \{ 0\} Q\in \scrQ and \{ S(Q)\} Q\in \scrQ =
\{ Z(Q)\} Q\in \scrQ = \{ 1\} Q\in \scrQ . Consider round j, where the cluster Vj is created for the
terminal tj . If Rj < rvj , then nothing happens, and the invariant holds. Else,
Rj \geq rvj , we will make a coin toss from the BQj

box. Let p\prime be the probability that
not all of Sj joins Vj . By Claim 4.1, p\prime \leq p. If indeed not all of Sj joins Vj , the toss

result is set to 0. Otherwise, with probability p - p\prime

1 - p\prime the toss is set to 0. Note that the

probability of 0 is exactly p\prime \cdot 1 + (1 - p\prime) \cdot p - p\prime

1 - p\prime = p.
Next we argue that the invariant is maintained in either case. If not all of Sj joins

Qj , then S(Qj) might increase by at most one, while the number of active coins ZQj

increases by exactly one. Otherwise, all of Sj joins Qj . In this case S(Qj) necessarily
decreases by at least one, while ZQj

might either decrease or increase by one. For the
charge parameter, X(Qj) might increase by at most one, while the number of inactive
coins Y (Qj) increases by exactly one. For every Q\prime \not = Qj , \scrS (Q\prime) and X(Q\prime) might

STEINER POINT REMOVAL WITH DISTORTION O(log k) 261

only decrease, while ZQ\prime and Y (Q\prime) stay unchanged. We conclude that the invariant
holds after the construction of the cluster Vj .

Intuitively speaking, creating a cluster for a terminal tj is a global processes that
can involve many slices in different terminals, the crux being that only the interval
Qj is charged, and only the slice Sj might get splitted. For all other intervals, charges
can only get erased and slices eliminated. The process of coin tosses in the boxes
imitates charge and slice counting, while ignoring the potential savings.

At the end of the algorithm (when no slices are left), we might still have some
active coins. In this case we will simply toss coins until no active coins remain (note
that this indeed happens with probability 1). Note that by doing so \{ Y (Q)\} Q\in \scrQ can

only grow coordinatewise. As the marginal distribution on \{ \~Y (Q)\} Q\in \scrQ is exactly
identical to the original one, the claim follows.

4.2.2. Replacing coins with exponential random variables. Our next step
is to replace each Y (Q) with exponential random variable. This replacement will
make the use of concentration bounds more convenient. Consider some box BQ. An
equivalent way to describe the probabilistic process in BQ is the following. Take a
single coin with failure probability p, and toss this coin until the number of successes
exceeds the number of failures. The total number of tosses is exactly \~Y (Q). Note
that \~Y (Q) is necessarily odd. Next we bound the probability that \~Y (Q) \geq 2m + 1
for m \geq 1. This is obviously upper bounded by the probability that in a series of
2m tosses we had at least m failures (as otherwise the process would have stopped

earlier). Let \chi i be an indicator for a failure in the ith toss, and \chi =
\sum 2m

i=1 \chi i. Note
that \BbbE [\chi] = 2m \cdot p. A bound on \chi follows by the Chernoff inequality.

Fact 1 (Chernoff inequality). Let X1, . . . , Xn be independent and identically
distributed (i.i.d.) indicator variables each with probability p. Set X =

\sum
iXi and

\mu = \BbbE [X] = np. Then for every \delta \leq 2e - 1, Pr [X \geq (1 + \delta)\mu] \leq exp(- \mu \delta 2/4).

Pr
\Bigl[
\~Y (Q) \geq 2m+ 1

\Bigr]
\leq Pr [\chi \geq m] = Pr

\biggl[
\chi \geq

\biggl(
1 +

\biggl(
1

2p
 - 1

\biggr) \biggr)
\BbbE [\chi]

\biggr]

\leq exp

\Biggl(
 - 2m \cdot p \cdot

\biggl(
1

2p
 - 1

\biggr) 2

/4

\Biggr)
= exp

\biggl(
 - 9

40
m

\biggr)

\leq exp

\biggl(
 - 1

5
m

\biggr)
.

We conclude that the distribution of \~Y (Q) is dominated by 1 + \sansE \sansx \sansp (10) (as for W \sim
\sansE \sansx \sansp (10), Pr [1 +W \geq 2m+ 1] = exp

\bigl(
 - m

5

\bigr)
). Let (\{ W (Q)\} Q\in \scrQ) be i.i.d. random

variables distributed according to \sansE \sansx \sansp (10); since all the boxes are independent and f
is linear and monotone coordinatewise, we conclude as follows.

Claim 4.4. For every \alpha \in \BbbR +,

Pr

\biggl[
f

\biggl(\Bigl\{
\~Y (Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq \alpha

\biggr]
\leq Pr

\Bigl[
f
\Bigl(
\{ 1\} Q\in \scrQ

\Bigr)
+ f

\Bigl(
\{ W (Q)\} Q\in \scrQ

\Bigr)
\geq \alpha

\Bigr]
.

Proof. Set \varphi = | \scrQ | . Let Q1, Q2, . . . , Q\varphi be some arbitrarily fixed ordering of the
intervals. For s \in [\varphi], set f\setminus \{ s\} (x1, . . . , xs - 1, xs+1, . . . , x\varphi) =

\sum
i\in [\varphi]\setminus \{ s\} xi \cdot L+(Qi).

When integrating over the appropriate measure space, it holds that

262 ARNOLD FILTSER

Pr
\Bigl[
f
\Bigl(
\~Y (Q1), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]

=

\int

\beta

Pr
\Bigl[
f\setminus \{ 1\}

\Bigl(
\~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
= \beta

\Bigr]

\cdot Pr
\Bigl[
\~Y (Q1) \cdot L+(Q1) \geq \alpha - \beta

\Bigr]
d\beta

\leq
\int

\beta

Pr
\Bigl[
f\setminus \{ 1\}

\Bigl(
\~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
= \beta

\Bigr]

\cdot Pr
\bigl[\bigl(
1 +W (Q1)

\bigr)
\cdot L+(Q1) \geq \alpha - \beta

\bigr]
d\beta

= Pr
\Bigl[
f
\Bigl(
1 +W (Q1), \~Y (Q2), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]

\leq Pr
\Bigl[
f
\Bigl(
1 +W (Q1), 1 +W (Q2), \~Y (Q3), . . . , \~Y (Q\varphi)

\Bigr)
\geq \alpha

\Bigr]

\leq \cdot \cdot \cdot \leq Pr
\bigl[
f
\bigl(
1 +W (Q1), . . . , 1 +W (Q\varphi)

\bigr)
\geq \alpha

\bigr]

= Pr
\bigl[
f (1, . . . , 1) + f

\bigl(
W (Q1), . . . ,W (Q\varphi)

\bigr)
\geq \alpha

\bigr]
.

4.2.3. Concentration. Set \Delta = dG(t, t
\prime). It holds that

\Delta \leq
\sum

Q\in \scrQ
L+(Q) \leq 2\Delta ,

as every edge in Pt,t\prime is counted at least once, and at most twice in this sum. In
particular f(\{ 1\} Q\in \scrQ) \leq 2\Delta . Recall that by our modification step, every edge in Pt,t\prime

is of weight at most cw \cdot \Delta . In particular, for everyQ \in \scrQ , L+(\scrQ) \leq L(\scrQ)+2cw \cdot \Delta . For
every vertex v on Pt,t\prime , it holds that D(v) \leq min \{ dG(v, t), dG(v, t\prime)\} \leq \Delta

2 . Therefore
for every Q \in \scrQ ,

L+(\scrQ) \leq L(\scrQ) + 2cw \cdot \Delta
(4.1)

\leq cint\delta \cdot D(Q) + 2cw \cdot \Delta \leq
\biggl(
cint\delta

2
+ 2cw

\biggr)
\cdot \Delta = cint\delta \cdot \Delta .

Let \~W (Q) \sim L+(Q) \cdot \sansE \sansx \sansp (10). In particular, \~W (Q) \sim \sansE \sansx \sansp (10 \cdot L+(Q)). Set
\~W =

\sum
Q\in \scrQ

\~W (Q). Then f(\{ W (Q)\} Q\in \scrQ) is distributed exactly as \~W . The maximal

mean among the \~W (Q)'s is \lambda M = maxQ\in \scrQ 10 \cdot L+(Q) \leq 10 \cdot cint\delta \cdot \Delta . The mean of
\~W is \mu =

\sum
Q\in \scrQ 10 \cdot L+(Q) \leq 20\Delta . Set ccon = 1

2 (con for concentration). Using
Claim 4.3, Claim 4.4, and Lemma 2.1, we conclude

Pr

\biggl[
f

\biggl(\Bigl\{
\~X(Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq (ccon + 42)\Delta

\biggr]

\leq Pr

\biggl[
f

\biggl(\Bigl\{
\~Y (Q)

\Bigr\}
Q\in \scrQ

\biggr)
\geq (ccon + 42)\Delta

\biggr]

\leq Pr
\Bigl[
f
\Bigl(
\{ W (Q)\} Q\in \scrQ

\Bigr)
\geq (ccon + 42)\Delta - f

\Bigl(
\{ 1\} Q\in \scrQ

\Bigr) \Bigr]

\leq Pr
\Bigl[
\~W \geq (ccon + 40)\Delta

\Bigr]

\leq exp

\biggl(
 - 1

2\lambda M
((ccon + 40)\Delta - 2\mu)

\biggr)

\leq exp

\biggl(
 - 1

2
\cdot 1

10cint\delta \Delta
\cdot ccon\Delta

\biggr)
= exp

\biggl(
 - ccon
20 \cdot cint\delta

\biggr)
= k - 3 .

Note that ccon \leq 1, thus Lemma 4.2 follows.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 263

4.3. Bounding the distortion. Denote by \scrE fBig the event that for some pair of
terminals t, t\prime , f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime).2 By Lemma 4.2 and the union bound,

Pr [\scrE fBig] \leq
\bigl(
k
2

\bigr)
\cdot k - 3 < 1

2k .
Let \scrE B be the event that for some j, Rj > cd, where cd = e2. Note that if \scrE B does

not hold, then every vertex v joins to a cluster Vj such that dG(v, tj) \leq cd \cdot D(v).

Claim 4.5. Pr[\scrE B] \leq 1
2k .

Proof. Let \scrE B
j be the event that Rj > cd. It holds that

Pr[\scrE B

j] = Pr[gj \geq log1+\delta cd] \leq (1 - p)log1+\delta cd - 1 \leq (1 - p) 2
\delta - 1 \leq 1

k3
,

where the second inequality holds as log1+\delta cd = ln cd
ln 1+\delta \geq 2

\delta . By the union bound,

Pr[\scrE B] \leq 1
k2 \leq 1

2k as required.

Lemma 4.6. Assuming \scrE B and \scrE fBig, for every pair of terminals t, t\prime , dM (t, t\prime) \leq
O(log k) \cdot dG(t, t\prime).

Proof. Fix some t, t\prime . By the end of Algorithm 3.1, all the vertices in Pt,t\prime =
\{ t = v0, . . . , v\gamma = t\prime \} are divided into consecutive detours3 \scrD \ell 1 , . . . ,\scrD \ell k\prime . The detour
\scrD \ell j was constructed at round \ell j by the terminal t\ell j . The detour \scrD \ell j was charged upon
the interval Q\ell j , which contains the vertex v\ell j . The leftmost vertex in \scrD \ell j is called
a\ell j , while the rightmost vertex is called b\ell j . In particular, for every 1 \leq j \leq k\prime - 1,
there is an edge in G between b\ell j and a\ell j+1 , and therefore there is an edge between
t\ell j to t\ell j+1 in the terminal-centered minor M . As t = v0 joins the cluster of itself,
necessarily t\ell 1 = t. Similarly t\ell k\prime = t\prime . See Figure 4.2 for an illustration. Using the
triangle inequality, we conclude

Pt,t′

t

t`2

t`3

t`4

t′

t`5

v`2

v`3
v`4

v`5

= t`1
t`6 =
v`6 == v`1

b`1a`2 a`3

a`4
a`5

a`6
b`2

b`3

= b`4

b`5

= a`1
b`6 =

Fig. 4.2. The vertices Pt,t\prime = v0 . . . v\gamma are divided into consecutive detours \scrD \ell 1 , . . . ,\scrD \ell 6 .
t\ell 1 , t\ell 2 , t\ell 3 , t\ell 4 , t\ell 5 , t\ell 6 is a path in the terminal-centered minor M of G (induced by V1, . . . , Vk).
The weight of the edge \{ t\ell j , t\ell j+1

\} in M is dG(t\ell j , t\ell j+1
), which is bounded by dG(t\ell j , v\ell j) +

dG(v\ell j , v\ell j+1
) + dG(v\ell j+1

, t\ell j+1
).

2We abuse notation here and use the same \{ \~X(Q)\} Q\in \scrQ for all terminals.
3Note that we consider only detours that inflict a charge by the end of the algorithm. Therefore

the detours are disjoint and every vertex in Pt,t\prime belongs to some detour.

264 ARNOLD FILTSER

dM (t, t\prime) \leq
k\prime - 1\sum

j=1

dG(t\ell j , t\ell j+1) \leq
k\prime - 1\sum

j=1

\bigl[
dG(t\ell j , v

\ell j) + dG(v
\ell j , v\ell j+1) + dG(v

\ell j+1 , t\ell j+1)
\bigr]

\leq
k\prime - 1\sum

j=1

dG(v
\ell j , v\ell j+1) + 2

k\prime \sum

j=1

dG(t\ell j , v
\ell j)

\leq dG(t, t\prime) + 2
k\prime \sum

j=1

cd \cdot D(v\ell j),

where the last inequality follows by our assumption \scrE B. By the definition of D(Q\ell j),
inequality (4.1) and the triangle inequality, D(v\ell j) \leq D(Q\ell j) + L(Q\ell j) \leq (1

cint\delta
+ 1)

L+(Q\ell j) \leq 2
cint\delta
\cdot L+(Q\ell j). Using the assumption \scrE fBig, we conclude

dM (t, t\prime) \leq dG(t, t\prime) + 2cd

k\prime \sum

i=1

2

cint\delta
\cdot L+(Q\ell i)(4.6)

= dG(t, t
\prime) +

4cd
cint\delta

\sum

Q\in \scrQ

\~X(Q) \cdot L+(Q)

= dG(t, t
\prime) +

4cd
cint\delta

\cdot f
\Bigl(
\{ \~X(Q)\} Q\in \scrQ

\Bigr)
= O (ln k) \cdot dG(t, t\prime) .

As Pr
\bigl[
\scrE B \wedge \scrE fBig

\bigr]
\geq 1 - (Pr [\scrE B] + Pr [\scrE fBig]) \geq 1 - 1

2k - 1
2k = 1 - 1

k , Theorem 3.1
follows.

5. Fast-Relaxed-Voronoi algorithm. In this section, we describe a slightly
modified version of the Relaxed-Voronoi algorithm. Then we will show how to
implement the modified algorithm in O(m log n) time.

Given two terminals ti, tj , and two clusters Vi, Vj \subseteq V s.t. ti (resp., tj) is the
unique terminal in Vi (resp., Vj), dG,Vi+Vj (ti, tj) denotes the length of the shortest
path between ti and tj in G[Vi \cup Vj] that uses exactly one crossing edge between Vi
and Vj . See Figure 5.1 for an illustration.

In order to allow fast implementation, and avoid costly shortest path computa-
tions, we will introduce several modifications:

\bullet In Algorithm 3.1, line 9, we will modify the edge weights in the induced
terminal-centered minor. The weight of the edge \{ ti, tj\} (if exists) will be
dG,Vi+Vj

(ti, tj) instead of dG(ti, tj).

1

2
1

10

3

t1 t2
V1

V2
3

7
b

c

t3

a

V3

Fig. 5.1. t1, t2, t3 are terminals. The different color areas describes the terminal partition.
The shortest path in G from t1 to t2 is t1, a, b, t2 and has length dG(t1, t2) = 10. Note that all the
vertices in this path are in V1 \cup V2. Nevertheless, the shortest path from t1 to t2 that uses only one
crossing edge from t1 to t2 is \{ t1, b, t2\} and has length dG,V1+V2 (t1, t2) = 12.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 265

Algorithm 5.1. M = Fast-Relaxed-Voronoi(G = (V,E,w),K = \{ t1, . . . , tk\}).
1: Set \delta = 1

20 ln k and p = 1
5 .

2: Set V\bot \leftarrow V \setminus K. // V\bot is the currently unclustered vertices.
3: for j from 1 to k do
4: Choose independently at random gj distributed according to \sansG \sanse \sanso (p).
5: Set Rj \leftarrow (1 + \delta)gj .
6: Set Vj \leftarrow Fast-Create-Cluster(G,V\bot , tj , Rj).
7: Remove all the vertices in Vj from V\bot .
8: end for
9: LetM be the minor ofG created by contracting all the internal edges in V1, . . . , Vk.

The weight of the edge \{ ti, tj\} (if it exists) is defined to be dG,Vi+Vj (ti, tj).
10: return M .

Algorithm 5.2. Vj = Fast-Create-Cluster(G = (V,E,w), V\bot , tj , Rj).

1: Set Vj \leftarrow \{ tj\} .
2: Set U \leftarrow \emptyset . // U is the set of vertices already denied from Vj.
3: Set N to be all the neighbors of tj in V\bot .
4: while N \not = \emptyset do
5: Let v \in N be the vertex with minimal dG[Vj\cup \{ v\}](v, tj).
6: Remove v from N .
7: if dG[Vj\cup \{ v\}](v, tj) \leq Rj \cdot D(v) then
8: Add v to Vj .
9: Add all the neighbors of v in V\bot \setminus U to N .

10: else
11: Add v to U .
12: end if
13: end while
14: return Vj .

\bullet In Algorithm 3.2, line 5, instead of extracting an arbitrary vertex v from N ,
we will extract the closest vertex v to tj in N w.r.t. the shortest path metric
induced by Vj \cup \{ v\} (i.e., v \in N with minimal dG[Vj\cup \{ v\}](v, tj), and note that
it is a different graph for each vertex).
Similarly, in line 7, instead of checking whether dG(v, tj) \leq Rj \cdot D(v), we will
check whether dG[Vj\cup \{ v\}](v, tj) \leq Rj \cdot D(v).

The pseudocode of the modified algorithm appears in Algorithms 5.1 and 5.2.

Theorem 5.1. With probability 1 - 1
k , for the minor graph M returned by Algo-

rithm 5.1, it holds that for every two terminals t, t\prime , dM (t, t\prime) \leq O (log k) \cdot dG(t, t\prime).
Moreover, executing Algorithm 5.1 takes O(m+min \{ m,nk\} \cdot log n) time.

We prove Theorem 5.1 in several steps. First, in subsection 5.1 we show that
Algorithm 5.1 indeed returns a terminal partition and that similarly to Algorithm 3.1,
the edge subdivision does not change the outcome of the algorithm. Then in subsec-
tion 5.2 we'll go through the analysis provided in section 4 and verify that it still goes
through for Algorithm 5.1 as well. Finally, in subsection 5.3 we describe an efficient
implementation of Algorithm 5.1.

266 ARNOLD FILTSER

5.1. Basic properties. Consider the Fast-Create-Cluster procedure (Al-
gorithm 5.2). This is a Dijkstra-like algorithm. For every vertex v, set \ell v =
dG[Vj\cup \{ v\}](v, tj). Note that for a vertex v, the value \ell v is decreasing throughout
the algorithm as the set Vj grows. Note also that \ell v is defined for all the vertices (but

simply has value \infty for vertices out of Vj \cup N). Denote by \^\ell v the value \ell v at the time
v is extracted from N at line 6 of Algorithm 5.2 (if such an occasion indeed occurs).

Claim 5.2. Consider the values \^\ell v of the vertices, extracted from N at line 6 of
Algorithm 5.2. Then these values are nondecreasing. That is, if v was extracted before
v\prime , then \^\ell v \leq \^\ell v\prime .

Moreover, after v is extracted, the value \ell v remains unchanged till the end of the
algorithm.

Proof. The proof of the first property is by induction on the execution of the
algorithm. Let v, v\prime be a pair of vertices such that v\prime was extracted from N right after
v. It will be enough to show that \^\ell v \leq \^\ell v\prime . Consider the time when v was extracted
from N . Let \~Vj denote the set Vj at that time. By minimality, for every u \in N ,
\^\ell v = dG[\~Vj\cup \{ v\}](v, tj) \leq dG[\~Vj\cup \{ u\}](u, tj). If the value \ell v\prime did not change, we already

have \^\ell v\prime = dG[\~Vj\cup \{ v\prime \}](v
\prime , tj) \geq \^\ell v (as necessarily v\prime \in N because it is extracted next).

Otherwise, if the value \ell v\prime decreased, then necessarily v joined Vj and the shortest

path from from tj to v\prime (in \~Vj \cup \{ v, v\prime \}) goes through v (as otherwise \ell v\prime would

not have changed). In particular, \^\ell v\prime = dG[\~Vj\cup \{ v,v\prime \}](tj , v
\prime) = dG[\~Vj\cup \{ v,v\prime \}](tj , v) +

dG[\~Vj\cup \{ v,v\prime \}](v, v
\prime) > \^\ell v.

For the second property (that after extraction, \ell v remains unchanged), seeking
contradiction, assume that \ell v is updated after some u is extracted from N and joined
Vj . This implies that the new shortest path from tj to v goes through u and thus is

of length greater than \^\ell u, a contradiction.

Now we are ready to show that Algorithm 5.1 indeed returns a terminal partition
(that is, reprove Lemma 3.2).

Lemma 5.3. The sets V1, . . . , Vk constructed by Algorithm 5.1 form a terminal
partition.

Proof. It is clear that the clusters V1, . . . , Vj are disjoint and that each cluster is
connected. It will be enough to argue that every vertex v \in V is clustered. Following
along the lines of the proof of Lemma 3.2, let tj be the closest terminal to v, and let
P = \{ tj = u0, u1, . . . , us = v\} be the shortest path from tj to v. Let ui\prime be the first
vertex from Pt,t\prime to be clustered during the algorithm (u0 = tj \in Vj , so at least one
vertex in Pt,t\prime is clustered). Let Vj\prime be the cluster ui\prime joins to. We argue by induction
on i \geq i\prime that ui also joins Vj\prime . This will imply that us = v joins Vj\prime and thus is
clustered.

Suppose ui joins Vj\prime . Denote by V i
j\prime the set Vj\prime right after ui joins it. As ui joins

Vj\prime , dG[V i
j\prime]
(ui, tj\prime) \leq Rj\prime \cdot D(ui). In particular, at that stage

\ell ui+1 = d
G
\Bigl[
V i
j\prime \cup \{ ui+1\}

\Bigr] (ui+1, tj\prime) \leq dG\Bigl[
V i
j\prime
\Bigr] (ui, tj\prime) + w (\{ ui, ui+1\})

\leq Rj\prime \cdot D(ui) + dG(ui, ui+1) \leq Rj\prime \cdot D(ui+1).

STEINER POINT REMOVAL WITH DISTORTION O(log k) 267

As at least one neighbor (ui) of ui+1 joins Vj\prime , ui+1 joins N at some stage of the

algorithm. In particular, by Claim 5.2, when ui+1 will be extracted from N , \^\ell ui+1
\leq

Rj\prime \cdot D(ui+1), and thus ui+1 will join Vj\prime as required.

We will use the modified graph \^G (with the subdivided edges) for the distortion
analysis. In order to prove validity, we will argue that Claim 3.3 still holds.

Claim 5.4. In Claim 3.3, if we replace Algorithm 3.1 with Algorithm 5.1, the
claim still holds.

Proof. We follow the lines of the proof of Claim 3.3. Let V1, . . . , Vk (resp.,
\~V1, . . . , \~Vk) be the terminal partition induced by Algorithm 5.1 on G (resp., \~G). We
argue that for all j, Vj = \~Vj \setminus \{ ve\} . As previously, this will imply that the terminal-
centered minors have the same edges set. As ve only subdivides the edge e, it will
also hold for all i, j that dG,Vi+Vj

(ti, tj) = dG, \~Vi+\~Vj
(ti, tj), and thus the edge weights

in both minors will also be identical. In particular, the claim will follow.
Suppose w.l.o.g. that v joins Vj while u is still unclustered. Denote by V \prime

j (resp.,
\~V \prime
j) the set Vj (resp., \~Vj) right after the clustering of v at the execution of Algo-

rithm 5.1 on G (resp., \~G). As previously, for all j\prime \prime < j, Vj\prime \prime = \~Vj\prime \prime , while V
\prime
j = \~V \prime

j .

Recall that \^\ell v = dG[V \prime
j](tj ,v)

(resp.,
\~\^\ell v) denotes the distance between tj to v at

the time of the extraction of v from N (resp. \~N). Note that \^\ell v =
\~\^\ell v. As v joins

Vj , necessarily \^\ell v \leq Rj \cdot D(v). In the rest of the proof we consider the following
cases:

\bullet \^\ell u > Rj \cdot D(v): In this case u will not join Vj . As ve has edges only to

v and u, ve has no impact on any other vertex. In particular, \^\ell u \leq \~\^\ell u.
Therefore \~Vj will be constructed in the same manner as Vj (up to maybe
containing ve). Note that all the other clusters will not be affected, as if
ve remained unclustered, it becomes a leaf. We conclude that for every j\prime ,
Vj\prime = \~Vj\prime \setminus \{ vu\} .

\bullet \^\ell u \leq Rj \cdot D(v): Recall that \omega is the weight of e. There are two subcases:

-- \^\ell u = \^\ell v + \omega . After v joins \~Vj , the label of ve is updated to \^\ell ve \leftarrow
\~\^\ell v + \omega

2 .
It holds that

\~\^\ell ve \leq \~\ell ve =
\~\^\ell v +

\omega

2
= \^\ell v +

\omega

2
=

1

2

\Bigl(
\^\ell v + \^\ell u

\Bigr)

\leq 1

2
\cdot Rj (D(v) +D(u)) \leq Rj \cdot D(ev) .

In particular, ve will join \~Vj , and \~\ell u will be updated to
\~\^\ell ve +

\omega
2 =

\~\^\ell v + \omega .
From this point on, the two algorithms will behave in the same way. In
particular, for every j\prime \prime \not = j, Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .

-- \^\ell u < \^\ell v + \omega . It holds that u joins Vj . However, the shortest path in Vj
from tj to u did not goes through v. Therefore, as ve did not affect any
vertex (other than v, u), the execution will proceed in the same way in
both algorithms, and u will join \~Vj . As each cluster is connected and all

the vertices are clustered, necessarily ve will join \~Vj as well. We conclude

that for every j\prime \prime \not = j, Vj\prime \prime = \~Vj\prime \prime while Vj \cup \{ ve\} = \~Vj .

268 ARNOLD FILTSER

5.2. Distortion analysis. We will follow the distortion analysis of Algo-
rithm 3.1 given in section 4. Consider two terminals t, t\prime . We will use the exact
same notation (the reader is referred to Appendix C in order to recall notation and
definitions). We start by reproving Claim 4.1.

Claim 5.5. During the execution of Algorithm 5.1, assuming Rj \geq rvj , all of Sj

joins Vj with probability at least 1 - p.

Proof. Denote Sj = \{ uj - q\prime , . . . , uj , . . . , uj+q\} \subseteq Qj \subseteq Pt,t\prime where vj = uj .
Denote by V \prime

j the cluster Vj right after uj joins. As uj joined, necessarily
dG[V \prime

j
\cup \{ uj\}](uj ,tj)

D(uj)
\leq rvj \leq Rj . We will denote by \=Vj the cluster Vj at the end of

the algorithm. Following inequality (4.3), with probability 1 - p, Rj \geq (1+ \delta)rvj . We
will show that if this event indeed occurs, then Sj \subseteq \=Vj .

We argue by induction on i that uj+i \in \=Vj . The proof that uj - i \in \=Vj is sym-
metric. Assume that \{ ui, ui+1, . . . , uj+i - 1\} \subseteq \=Vj . Following inequalities (4.4) and
(4.5), L(Qj) \leq 2cint\delta \cdot D(vj) and D(uj+i) \geq D(vj) (1 - 2cint\delta). As ui+j - 1 \in \=Vj ,
uj+i necessarily joins N at some stage. In particular, at the time uj+i was extracted
from N ,

\^\ell uj+i
= dG[\=Vj\cup \{ uj+i\}](tj , uj+i) \leq dG[V \prime

j]
(tj , v

j) + L(Qj) \leq dG[V \prime
j]
(tj , v

j) (1 + 2cint\delta) ,

where the first equality follows by Claim 5.2, as \^\ell uj+i
remains unchanged after ex-

traction. We conclude that

\^\ell uj+i

D(uj+i)
\leq
dG[V \prime

j]
(tj , v

j) (1 + 2cint\delta)

D(vj) (1 - 2cint\delta)
\leq
dG[V \prime

j]
(tj , v

j)

D(vj)
(1 + 3 \cdot 2cint\delta) \leq (1 + \delta)Rj .

We conclude that uj+i joins Vj as required.

In subsection 4.2 we defined charge function f(\{ xQ\} Q\in \scrQ) =
\sum

Q\in \scrQ X(Q)\cdot L+(Q),
and in Lemma 4.2 we upper bounded its value (w.h.p.). In that analysis we ex-
ploit only Claim 4.1. Replacing it with Claim 5.5, the analysis still hold. That
is, Pr[f(\{ \~X(Q)\} Q\in \scrQ) \geq 43 \cdot dG(t, t\prime)] \leq k - 3. Denote by \scrE fBig the event that for

some pair of terminals t, t\prime , f(\~X(Q1), . . . , \~X(Q\varphi)) \geq 43 \cdot dG(t, t\prime) . As previously, by
union bound Pr [\scrE fBig] < 1

2k . Denote by \scrE B the event that for some j, Rj > cd. By

Claim 4.5, Pr[\scrE B] \leq 1
2k . We argue that assuming \scrE B and \scrE fBig (which happens with

probability 1 - 1
k), the distance between every pair of terminals t, t\prime in the minor

returned by Algorithm 5.1 bounded by O(log k) \cdot dG(v, u). This will conclude the
proof of the distortion argument in Theorem 5.1. Recall that in contrast to Algo-
rithm 3.1, the weight of the edge \{ ti, tj\} (if it exists) is dG,Vi+Vj (ti, tj) rather than
dG(ti, tj); this will force some changes to our analysis. Recall the notation we used
in Lemma 4.6: the path Pt,t\prime is divided into consecutive detours \scrD \ell 1 , . . . ,\scrD \ell k\prime . The
leftmost (resp., rightmost) vertex in \scrD \ell j is denoted by a\ell j (resp., b\ell j). Both a\ell j , b\ell j
belong to V\ell j , the cluster of t\ell j . In particular, the graph G contains an edge between
b\ell j to a\ell j+1 . Recall also that t\ell 1 = t and t\ell \prime k = t\prime (as each terminal covers itself). It
holds that

STEINER POINT REMOVAL WITH DISTORTION O(log k) 269

dM (t, t\prime) \leq
k\prime - 1\sum

j=1

dG,V\ell j
+V\ell j+1

(t\ell j , t\ell j+1
)

\leq
k\prime - 1\sum

j=1

\Bigl[
dG[V\ell j]

(t\ell j , b\ell j) + dG(b\ell j , a\ell j+1
) + dG[V\ell j+1]

(a\ell j+1
, t\ell j+1

)
\Bigr]

\leq cd \cdot
k\prime - 1\sum

j=1

\bigl[
dG(t\ell j , b\ell j) + dG(b\ell j , a\ell j+1

) + dG(a\ell j+1
, t\ell j+1

)
\bigr]

\leq cd \cdot
k\prime - 1\sum

j=1

\bigl[
dG(t\ell j , v

\ell j) + dG(v
\ell j , b\ell j) + dG(b\ell j , a\ell j+1

)

+ dG(a\ell j+1 , v
\ell j+1) + dG(v

\ell j+1 , t\ell j+1)
\bigr]

\leq cd \cdot

\left(

k\prime - 1\sum

j=1

dG(v
\ell j , v\ell j+1) + 2

k\prime \sum

j=1

dG(t\ell j , v
\ell j)

\right)

\leq cd \cdot

\left(
 dG(t, t\prime) + 2cd \cdot

k\prime \sum

j=1

D(v\ell j)

\right)

= O (ln k) \cdot dG(t, t\prime) .

The third inequality follows by our assumption \scrE B, as for every index j and vertex
v \in Vj , it holds that dG[Vj](tj , v) \leq cd \cdot D(v) \leq cd \cdot dG(tj , v). The fifth inequality follows

as all v\ell j , b\ell j , a\ell j+1
, v\ell j+1 lie on the same shortest path Pt,t\prime . The sixth inequality

follows by \scrE B as dG(t\ell j , v
\ell j) \leq dG[V\ell j]

(t\ell j , v
\ell j) \leq cd \cdot D(v\ell j). The equality follows by

inequality (4.6) and \scrE fBig.

5.3. Runtime. For the implementation of Algorithm 5.1 and the
Fast-Create-Cluster procedure we will use two basic data structures. The
first one is a binary array to determine set membership of the vertices. It is folklore
(see, for example, [1]) that an array could be initialized in constant time to be the
all 0 array (that is, the empty set). Changing entry (that is, adding or deleting an
element) also takes constant time. The second data structure is the Fibonacci heap
(see [22]). Here each element has a key (some real number), and we can add a new
element or decrease the value of the key in constant time. Finding the minimal
element in the heap and deleting it takes O(log h) time (assuming there are currently
h elements in the heap).

Before the execution of Algorithm 5.1, we compute the values D(v) for all v \in V .
This is done using an auxiliary graph G\prime where we add new vertex s with edges of
weight 0 to all the terminals. Note that for every vertex v, the distance from s exactly
equals D(v). Thus we can simply run the Dijkstra algorithm from s to determine D(v)
for all v \in V . The runtime is O(m+ n log n) (see [22]).

Next we give a detailed implementation of the Fast-Create-Cluster procedure.
The sets Vj , U , and V\bot are stored using the arrays described above (V\bot will be a
global variable). The set N will be stored using the Fibonacci heap, where the key
value of v \in N will be \ell v (i.e., dG[Vj\cup \{ v\}](v, tj)). Denote by \scrN j all the elements that
belong to N at any stage of the execution of the Fast-Create-Cluster procedure
(which created Vj). Let mj denote the number of edges incident on vertices of Vj .

270 ARNOLD FILTSER

Each iteration of the while loop starts by deleting an element v with minimal key
(of value \^\ell v) from N (O(log | \scrN j |) time). Then we examine whether to add v to Vj
(in O(1) time). If v is rejected, we add v to U (in O(1) time). Otherwise, v is
added to Vj . In the latter case we go over each neighbor u of v. If u \in U we do
nothing. If u \in N , its key \ell u is updated to be min\{ \ell u, \ell v + w(\{ v, u\})\} . Finally, if
u \in V\bot \setminus (U \cup N), then u is added to N with the key \ell u \leftarrow \ell v + w(\{ v, u\}). It is easy
to verify that all the keys are indeed maintained with the correct values. Note that
all this processing for u takes only O(1) time. In particular, processing all neighbors
throughout the Fast-Create-Cluster procedure takes O(mj) time. All the deletion
of elements from the heap N takes O(| \scrN j | log | \scrN j |) time.

Next we bound the total cost of the k calls to the Fast-Create-Cluster proce-
dure. | \scrN j | can be bounded from above by both mj and n. Moreover,

\sum
j mj \leq 2m,

as every edge is incident on only two vertices. We provide two upper bounds on the
running time:

O(n) +
k\sum

j=1

O(mj + | \scrN j | log | \scrN j |) \leq O

\left(
 m+

k\sum

j=1

mj log n

\right)
 = O(m log n) ,

O(n) +
k\sum

j=1

O(mj + | \scrN j | log | \scrN j |) \leq O

\left(
 m+

k\sum

j=1

n log n

\right)
 = O(m+ nk log n) .

Thus the total running time of these k calls is bounded by O(m + min \{ m,nk\} \cdot
log n). Finally we bound the total runtime of Algorithm 5.1 without the calls to the
Create-Cluster. It is straightforward that up line 9, where we create the minor M
given the clusters, all computations took O(n) time.4 Using Claim 5.2, by the end of

the for loop in Algorithm 5.1, for every j and v \in Vj it holds that \^\ell v = dG[Vj](tj , v). In
order to create the minor graph M , we go over all the edges iteratively, for every edge
\{ v, u\} \in E, such that v \in Vj , u \in Vi, and i \not = j. We add an edge \{ ti, tj\} to M (if it
does not exist already). The weight of the edge updated to be the minimum between

the current weight (\infty if it does not exist yet) and \^\ell v +w(\{ v, u\})+ \^\ell u (the keys at the
time of extraction from N). It is straightforward that by the end of this procedure
we will indeed compute the minor M , and each edge \{ ti, tj\} in M will have weight
dG,Vi+Vj

(ti, tj). This iterative process takes O(m) time. Theorem 5.1 now follows.

6. Lower bounds on the performance of the algorithms. Chan et al. [9]
gave a lower bound of 8 for the distortion in the SPR problem. This lower bound has
not been improved since. This section is dedicated to lower bounding the performance
of the various algorithms which were suggested for the problem. That is, while we
do not provide better lower bounds for the SPR problem itself, we are able to lower
bound the performance of the algorithms used so far.

In subsection 6.1 we prove that our analysis of the Relaxed-Voronoi algorithm
(Algorithms 3.1 and 5.1) is asymptotically tight. That is, there is a graph family
on which the achieved distortion is \Theta (log k). Next, in subsection 6.2, we provide a
lower bound on the performance of the Ball-growing algorithm studied by [27, 11,
20]. Specifically, we provide (the same) graph family on which the Ball-growing

algorithm incurs \Omega (
\surd
log k) distortion. Recall that in [20], the author proved that the

Ball-growing algorithm finds a minor with distortion O(log k). That is, while the

4In fact, the sampling of g1, . . . , gk takes O(k) time only w.h.p. But we will ignore this issue.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 271

analysis of the Ball-growing algorithm still might be improved, it cannot be pushed
further than \Omega (

\surd
log k).

First, we show that the expected distortion incurred by the minor returned by
the algorithms is large. Then, we deduce that with constant probability the (usual
worst-case) distortion is also large. Formally, both algorithms are randomized and
thus can be viewed as producing a distribution \scrD over graph minors. Given such

distribution \scrD , the expected distortion of the pair t, t\prime is \BbbE M\sim \scrD
\bigl[dM (t,t\prime)
dG(t,t\prime)

\bigr]
. The overall

expected distortion is the maximal expected distortion among all terminal pairs.
A final remark. Both algorithms used an arbitrary order over the terminals, in

contrast to similar algorithms for other problems [8, 19] which consider a random
order. Our lower bounds will still hold even if one replaces the arbitrary order with a
random one.

6.1. Lower bound on the performance of the Relaxed-Voronoi algo-
rithm. The following theorem provides a lower bound on the expected distortion
incurred by Algorithm 3.1. The graphs which we will use for the lower bound are
trees. As both Algorithm 3.1 and Algorithm 5.1 are identical where the input graph
is a tree, the lower bound will also hold on Algorithm 5.1.

Theorem 6.1. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal set
K of size k such that the expected distortion of the minor returned by Algorithm 3.1
is \Omega (log k).

Proof. We will assume that k is large enough, as otherwise 1 = \Omega (log k) and
hence every graph with k terminals provides a valid lower bound. Let Gk be the
graph described in Figure 1.1 with parameter \epsilon = 14\delta = \Theta (1

log k). Let Xj be an
indicator for the event vj \in Vj , that is, tj covers vj . For Xj to occur, it is enough
that for every i \not = j, dG(ti, vj) > Ri \cdot D(vj). That is, Ri < 1 + | i - j| \cdot \epsilon . By the
definition of Ri,

Pr [Ri \geq 1 + | i - j| \epsilon] = Pr
\bigl[
gi \geq log1+\delta (1 + | i - j| \epsilon)

\bigr]
= (1 - p)\lceil log1+\delta (1+| i - j| \epsilon) - 1\rceil .

For i such that | i - j| < 1
\epsilon , it holds that log1+\delta (1 + | i - j| \epsilon) = ln(1+| i - j| \epsilon)

ln(1+\delta) \geq | i - j| \epsilon /2
\delta ,

while for i such that | i - j| \geq 1
\epsilon , log1+\delta (1 + | i - j| \epsilon) \geq ln 2

ln 1+\delta \geq 1
2\delta . We conclude

Pr [Xi] \geq Pr [\forall j \not =i (Rj < 1 + | i - j| \epsilon)]
\geq 1 -

\sum

j \not =i

Pr [Rj \geq 1 + | i - j| \epsilon]

\geq 1 - 2

\lfloor 1
\epsilon \rfloor \sum

i=1

\Bigl(
(1 - p)

i\epsilon /2
\delta - 1

\Bigr)
 - k (1 - p) 1

2\delta - 1
.

Now,
\sum \lfloor 1

\epsilon \rfloor
i=1 (1 - p)

i\epsilon /2
\delta \leq \sum \infty

i=1((1 - p)
7
)i \leq \sum \infty

i=1
1
4i = 1

4
1

1 - 1
4

= 1
3 , while

k (1 - p) 1
2\delta = k

\bigl(
4
5

\bigr) 10 ln k
= k1 - 10 ln 5

4 \leq 1
k . In particular Pr [Xi] \geq 1 - (1 - p) - 1 \cdot \bigl(

2 \cdot 13 + 1
k

\bigr)
= \Omega (1).

Set X =
\sum k - 1

i=2 Xi. By linearity of expectation, \BbbE [X] = \Omega (k). Note that the
distance from t1 to tk in the minor graph Mk equals 2+ (k - 1) \epsilon +2X. We conclude

\BbbE
\biggl[
dMk

(t1, tm)

dGk
(t1, tm)

\biggr]
=

2 + (k - 1) \epsilon + 2\BbbE [X]

2 + (k - 1) \epsilon
=

\Omega (k)

O(k\epsilon)
= \Omega

\biggl(
1

\epsilon

\biggr)
= \Omega (log k) .

272 ARNOLD FILTSER

Corollary 6.2. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal
set K of size k such that with constant probability, the distortion incurred by the minor
returned by Algorithm 3.1 is \Omega (log k).

Proof. We will use the graph and notation from the proof of Theorem 6.1. Set

\mu = \BbbE [dMk
(t1,tm)

dGk
(t1,tm)] = \Omega (log k). Note the largest possible distortion is 2k - 2+(k - 1)\epsilon

2+(k - 1)\epsilon = c\cdot \mu
for some constant c \geq 1 (this distortion occurred exactly when each vertex vj belongs

to Vj). Denote by \chi the event that
dMk

(t1,tm)

dGk
(t1,tm) \geq 1

2\mu . Then

\mu = \BbbE
\biggl[
dMk

(t1, tm)

dGk
(t1, tm)

\biggr]
\leq Pr [\chi] \cdot c\mu + (1 - Pr [\chi]) \cdot 1

2
\mu ,

therefore

Pr [\chi] \geq 1 - 1
2

c - 1
2

\geq 1

2c
= \Omega (1) .

Therefore, with constaint probability, the distortion is at least 1
2\mu = \Omega (log k).

6.2. Lower bound on the performance of the Ball-Growing algorithm.
In this subsection we provide a lower bound on the performance of the Ball-Growing
algorithm. For completeness, we give in Appendix B a full description of the
Ball-Growing algorithm as it appeared in [20]. In particular, we will use the no-
tation defined there. The Ball-Growing as described in [20] also had a modification
step. As our lower bound example is a tree, this modification has no impact on the
minor returned by the algorithm, and thus we can ignore it. Formally, a claim similar
to Claim 3.3 can be proven.

Theorem 6.3. Fix some k \in \BbbN . There is a graph G = (V,E,w) with termi-
nal set K of size k such that the expected distortion of the minor returned by the
Ball-Growing algorithm is \Omega (

\surd
log k).

Proof. We will use the graph described in Figure 1.1 with modified parameters:
the weight of an edge between terminal to Steiner vertex will be 2 - \epsilon , while the weight
of an edge between two Steiner vertices will be 2\epsilon for \epsilon to be specified later. Note that
the Ball-Growing algorithm assumes that the minimal distance between a terminal
to a Steiner vertex in the input graph is exactly 1. In order to satisfy this condition
we will add an additional Steiner vertex as a leaf connected to t1 via an edge of unit
weight. Note that this new vertex has no impact on the resulting minor whatsoever
and therefore can be completely ignored.

As previously, we denote by Xj the indicator for the event vj \in Vj . Following the
analysis of Theorem 6.3, if we prove that Pr[Xj] = \Omega (1) (for arbitrary j) it will imply
expected distortion of \Omega (1\epsilon).

Let \scrR j be equal to Rj (the magnitude of tj) at the end of the m = logr 3 - 1
round. For simplicity we will assume that m is an integer; otherwise the analysis will
go through after slight modification of the parameters. Recall that \scrR j =

\sum m
\ell =0 q

\ell
j

where q\ell j is distributed according to Exp(D \cdot r\ell). Here r = 1 + \delta
ln k , \delta =

1
20 , D = \delta

ln k ,

and all the q\ell j are independent. It holds that

STEINER POINT REMOVAL WITH DISTORTION O(log k) 273

\BbbE [\scrR j] =
m\sum

\ell =0

D \cdot r\ell = D \cdot r
m+1 - 1

r - 1
= 2 ,

\BbbV [\scrR j] = \BbbV

\Biggl[
m\sum

\ell =0

q\ell j

\Biggr]
=

m\sum

\ell =0

\BbbV
\bigl[
q\ell j
\bigr]
=

m\sum

\ell =0

\bigl(
D \cdot r\ell

\bigr) 2

= D2 \cdot r
2(m+1) - 1

r2 - 1
=

\biggl(
\delta

ln k

\biggr) 2

\cdot 9 - 1

2 \cdot \delta
ln k +

\bigl(
\delta

ln k

\bigr) 2 \leq 4 \cdot \delta

ln k
= O

\biggl(
1

ln k

\biggr)
,

where we used linearity of expectation and independence. In order that Xj will occur,
it is enough that \scrR j \geq d(tj , vj), while for every j\prime \not = j, \scrR j < d(tj\prime , vj). Using the
Chebyshev inequality,

Pr [\scrR j \geq d(tj , vj)] = Pr [\scrR j \geq 2 - \epsilon] \geq Pr [| \scrR j - \BbbE [\scrR j]| < \epsilon] \geq 1 - \BbbV [\scrR]
\epsilon 2

,

Pr [\scrR j\prime \geq d(tj\prime , vj)] \leq Pr [| \scrR j\prime - \BbbE [\scrR j\prime]| \geq (2 | j - j\prime | - 1) \epsilon] \leq \BbbV [\scrR]
(2 | j - j\prime | - 1)

2 \cdot \epsilon 2
.

By the union bound, the probability that for some j\prime \not = j, \scrR j\prime \geq d(tj\prime , vj) is bounded
by

\sum

j \not =j\prime

Pr [\scrR j\prime \geq d(tj\prime , vj)] <
\BbbV [\scrR]
\epsilon 2
\cdot 2 \cdot

\infty \sum

i=1

1

i2
=

\BbbV [\scrR]
\epsilon 2
\cdot \pi

2

3
.

We conclude

Pr [Xj] \geq Pr [\scrR j\prime \geq d(tj\prime , vj)] \cdot

\left(
 1 -

\sum

j \not =j\prime

Pr [\scrR j\prime \geq d(tj\prime , vj)]

\right)

\geq
\biggl(
1 - \BbbV [\scrR]

\epsilon 2

\biggr) \biggl(
1 - \BbbV [\scrR]

\epsilon 2
\cdot \pi

2

3

\biggr)
= 1 - O

\biggl(
1

\epsilon 2 ln k

\biggr)
= \Omega (1)

for \epsilon = \Theta (1\surd
log k

). The theorem now follows.

Following the lines of the proof of Corollary 6.2, we conclude as follows.

Corollary 6.4. Fix some k \in \BbbN . There is a graph G = (V,E,w) with terminal
set K of size k such that with constant probability, the distortion of the minor returned
by the Ball-Growing algorithm is \Omega (

\surd
log k)

Remark 6.5. Theorem 6.3 can also be proved using concentration bounds. How-
ever, the lower bound remains \Omega (

\surd
log k) so we provided the more basic proof using

the Chebyshev inequality. Nevertheless, the curious reader can find the required con-
centration bounds for such a proof in Appendix A.

7. Discussion. In this paper we proved an O(log k) upper bound for the SPR
problem, improving the previous O(log2 k) upper bound by [11]. The lower bound
is still only 8 [9]. Closing this gap remains an intriguing open problem. Both the
Relaxed-Voronoi and Ball-growing algorithms proceed by creating random termi-
nal partitions. These partitions are determined using random parameters, which are
chosen with no consideration whatsoever of the input graph G. In contrast, the opti-
mal tree algorithm of [24] is a deterministic recursive algorithm which make decisions

274 ARNOLD FILTSER

after considering the tree structure at hand. It seems that the input-oblivious ap-
proach of the Relaxed-Voronoi and Ball-growing algorithms is doomed for failure,
and in fact, both these algorithms already fail to achieve constant distortion on a
simple tree example. As a conclusion, input-sensitive approaches seem to be more
promising for future attempts to resolve the SPR problem.

In a follow-up paper with Krauthgamer and Trabelsi [21], we used the
Relaxed-Voronoi algorithm in order to re-prove Gupta's [24] upper bound of 8.
Formally, let r \in V be an arbitrary vertex and order the terminals w.r.t. their
distances from r (that is, d(t1, r) \leq d(t2, r) \leq . . . d(tk, r)). Surprisingly, given a tree,
if we run the Relaxed-Voronoi algorithm w.r.t. the order specified above (instead
of an arbitrary order), and all magnitudes Rj are exactly 3, we will get a tree mi-
nor with distortion at most 8. This example demonstrates that one can use the
Relaxed-Voronoi algorithm also in an input-sensitive manner in order to achieve
optimal results.

We would like to emphasize two additional open problems:
\bullet Expected distortion: Currently the state of the art for usual (worst-case)

distortion and expected distortion for the SPR problem is the same. Both
have O(log k) upper bound and \Omega (1) lower bound. There are cases where
much better results can be achieved for expected distortion (e.g., embedding
a graph into a tree must incur distortion \Omega (n), while a distribution over
embeddings into trees can have expected distortion O(log n) [19]). What are
the right bounds for expected distortion in the SPR problem?

\bullet Special graph families: Basu and Gupta [5] showed that constant distortion
for the SPR problem can be achieved on outer-planar graphs. It will be very
interesting to achieve better upper bounds for planar graphs, and more gen-
erally for minor-free graphs, bounded treewidth graphs, etc. In the expected
distortion regime, an O(1) upper bound is already known [17] for minor-free
graphs. Possibly one can use the Relaxed-Voronoi algorithm with a clever
choice of order and magnitudes in order to achieve such results.

Appendix A. Concentration bounds for sum of exponential distribu-
tions.

Lemma A.1. Suppose X1, . . . , Xn's are independent random variables, where each
Xi is distributed according to \sansE \sansx \sansp (\lambda i). Let X =

\sum
iXi and \lambda M = maxi \lambda i. Set

\mu = \BbbE [X] =
\sum

i \lambda i.
For 0 < t \leq 1

2\lambda M
, and \alpha \geq 2t\lambda M ,

Pr [X \geq (1 + \alpha)\mu] \leq exp (- t\mu \cdot (\alpha - 2t\lambda M)) ,

Pr [X \leq (1 - \alpha)\mu] \leq exp (- t\mu (\alpha - t\lambda M)) .

Proof. For each Xi, the moment generating function w.r.t. t equals

\BbbE
\bigl[
etXi

\bigr]
=

1

1 - t\lambda i
= 1 + t\lambda i

\left(
 \sum

\ell \geq 0

(t\lambda i)
\ell

\right)
 \leq 1 + t\lambda i (1 + 2t\lambda i) \leq et\lambda i(1+2t\lambda i).

Using the Markov inequality,

STEINER POINT REMOVAL WITH DISTORTION O(log k) 275

Pr [X \geq (1 + \alpha)\mu] = Pr
\Bigl[
etX \geq et(1+\alpha)\mu

\Bigr]

\leq \BbbE
\bigl[
etX
\bigr]
\cdot e - t(1+\alpha)\mu

= e - t(1+\alpha)
\sum

\ell \lambda \ell \cdot
\prod

\ell

\BbbE
\bigl[
etX\ell

\bigr]

\leq e - (1+\alpha)
\sum

\ell t\lambda \ell \cdot e
\sum

\ell t\lambda \ell (1+2t\lambda \ell)

= e
\sum

\ell (t\lambda \ell \cdot (2t\lambda \ell - \alpha))

\leq e(
\sum

\ell t\lambda \ell)\cdot (2t\lambda M - \alpha) = e - t\mu \cdot (\alpha - 2t\lambda M),

where in the second equality we use the fact that \{ Xi\} i are independent.
For the second inequality, it holds that

\BbbE
\bigl[
e - tXi

\bigr]
=

1

1 + t\lambda i
=
\sum

\ell \geq 0

(- 1)\ell (t\lambda i)\ell \leq 1 - t\lambda i (1 - t\lambda i) \leq e - t\lambda i(1 - t\lambda i) .

Therefore,

Pr [X \leq (1 - \alpha)\mu] = Pr
\Bigl[
e - tX \geq e - t(1 - \alpha)\mu

\Bigr]

\leq \BbbE
\bigl[
e - tX

\bigr]
/e - t(1 - \alpha)\mu

= et(1 - \alpha)\mu \cdot \Pi \ell \BbbE
\bigl[
e - tX\ell

\bigr]

\leq e(1 - \alpha)
\sum

\ell t\lambda \ell \cdot e -
\sum

\ell t\lambda \ell (1 - t\lambda \ell)

= e -
\sum

\ell t\lambda \ell (\alpha - t\lambda \ell)

\leq e - t\mu (\alpha - t\lambda M) .

We derive the following corollary.

Corollary A.2. Suppose X1, . . . , Xn are independent random variables, where
Xi \sim \sansE \sansx \sansp (\lambda i). Let X =

\sum
iXi and \lambda M = maxi \lambda i. Set \mu = \BbbE [X] =

\sum
i \lambda i. Then,

For \alpha \leq 2 : Pr [X \geq (1 + \alpha)\mu] \leq exp

\biggl(
 - \alpha

2\mu

8\lambda M

\biggr)
,

For \alpha \leq 1 : Pr [X \leq (1 - \alpha)\mu] \leq exp

\biggl(
 - \alpha

2\mu

4\lambda M

\biggr)
.

For the first inequality we choose the parameter t = \alpha
2 \cdot 1

2\lambda M
, while for the second

inequality we choose the parameter t = \alpha \cdot 1
2\lambda M

.

Appendix B. The Ball-Growing algorithm. The Ball-Growing algorithm
assumes w.l.o.g. that the minimal distance between a terminal to a Steiner vertex in
the input graph is exactly 1. Throughout the execution of the algorithm each terminal
tj is associated with a radius Rj and cluster Vj \subset V . The algorithm iteratively grows
clusters V1, . . . , Vk around the terminals. Once some vertex v joins some cluster Vj , it
will stay there. When all the vertices are clustered, the algorithm terminates. Initially
the cluster Vj contains only the terminal tj , while Rj equals 0. The algorithm will
have rounds, where each round consist of k steps. In step j of round \ell , the algorithm
samples a number q\ell j according to distribution \sansE \sansx \sansp (D \cdot r\ell) (note that the mean of
the distribution grows by a factor of r in each round). The radius Rj grows by
q\ell j . We consider the graph induced by the unclustered vertices V\bot union Vj . Every
unclustered vertex of distance at most Rj from tj in G[V\bot \cup Vj] joins Vj .

276 ARNOLD FILTSER

Algorithm B.1. M = Ball-Growing(G = (V,E), w,K = \{ t1, . . . , tk\}).
1: Set r \leftarrow 1 + \delta / ln k, where \delta = 1/20.
2: Set D \leftarrow \delta

ln k .
3: For each j \in [k], set Vj \leftarrow \{ tj\} , and set Rj \leftarrow 0.
4: Set V\bot \leftarrow V \setminus

\bigl(
\cup kj=1Vj

\bigr)
.

5: Set \ell \leftarrow 0.
6: while

\bigl(
\cup kj=1Vj

\bigr)
\not = V do

7: for j from 1 to k do
8: Choose independently at random q\ell j distributed according to \sansE \sansx \sansp (D \cdot r\ell).
9: Set Rj \leftarrow Rj + q\ell j .

10: Set Vj \leftarrow BG[V\bot \cup Vj](tj , Rj). . // This is the same as
Vj \leftarrow Vj \cup BG[V\bot \cup Vj](tj , Rj).

11: Set V\bot \leftarrow V \setminus
\bigl(
\cup kj=1Vj

\bigr)
.

12: end for
13: \ell \leftarrow \ell + 1.
14: end while
15: return the terminal-centered minor M of G induced by V1, . . . , Vk.

Appendix C. Index.

Preliminaries.
dG: shortest path metric in G.
G[A]: graph induced by A.
K = \{ t1, . . . , tk\} : set of terminals.
D(v) = mint\in K dG(v, t).
Terminal partition: partition \{ V1, . . . , Vk\} of

V , s.t. for every i, ti \in Vi and Vi is con-
nected.

Induced minor: given terminal partition
\{ V1, . . . , Vk\} , the induced minor ob-
tained by contracting each Vi into the
super vertex ti. The weight of the edge
\{ ti, tj\} (if it exists) set to be dG(ti, tj).

Distortion of induced minor: maxi,j
dM (ti,tj)

dG(ti,tj)
.

\sansG \sanse \sanso (p): geometric distribution with parameter \lambda .
\sansE \sansx \sansp (\lambda): exponential distribution with parameter

p.

Modification. Every edge on Pt,t\prime has
weight at most cw \cdot dG(t, t\prime).

Constants.
p = 1

5
: parameter of the geometric distribution.

\delta = 1
20\cdot ln k

: jumps in Rj are of magnitude 1+ \delta .

cw = \delta
24

.

c\bfi \bfn \bft = 1
6
: governs the size of interval in the par-
tition \scrQ of Pt,t\prime .

ccon = 1
2
: used to bound the variation of the
charge function from its expectation.

cd = e2: bound on the maximal size of Rj .

Events.
\scrE fBig: denotes that for some pair of terminals

t, t\prime , f(\{ X(Q)\} Q\in \scrQ \geq 43 \cdot dG(t, t\prime).
\scrE B: denotes that there exist j such that Rj >

cd.

Notation.
Vj : cluster of tj .
Rj : magnitude of the cluster of tj .

V\bot : set of unclustered (uncovered) vertices.
Pt,t\prime = \{ t = v0, . . . , v\gamma = t\prime \} : shortest path from

t to t\prime .
L(\{ va, va+1, . . . , vb\}) = dG(va, vb): internal

length.
L+(\{ va, va+1, . . . , vb\}) = dG(va - 1, vb+1): ex-

ternal length.
\scrQ : partition of Pt,t\prime into intervals Q.
aj : the leftmost active vertex covered by tj .
bj : the rightmost active vertex covered by tj .

\scrD j = \{ aj , . . . , bj\} : detour created by terminal
tj .

Slice maximal subinterval (of some Q) of active
vertices.

rv : minimal choice of Rj such that v joins Vj .
vj : vertex with the minimal rv (among active

vertices).
Qj : interval containing vj .
Sj : slice containing vj .
f(\{ xQ\} Q\in \scrQ): =

\sum
Q\in \scrQ xQ \cdot L+(Q), charge

function.
BQ: a coin box which resembles the interval Q.
dG,Vi+Vj

(ti, tj): the weight of the shortest path
in G between t1 and t2 that uses only
vertices from Vi \cup Vj and only a single
crossing edge between Vi to Vj .

Counters.
\scrS (Q): (current) number of slices in interval Q.
X(Q): number of detours the interval Q is (cur-

rently) charged for.
\~X(Q): number of detours the interval Q is

charged for by the end of Algorithm 3.1.
Z(Q): number of active coins in BQ. Each coin

is active when added to the box.
Y (Q): number of inactive coins in BQ. A coin

becomes inactive after tossing.
\~Y (Q): number of inactive coins in BQ by the

end of the process.

STEINER POINT REMOVAL WITH DISTORTION O(log k) 277

Acknowledgment. The author would like to thank his advisors Ofer Neiman,
for fruitful discussions, and Robert Krauthgamer, for useful comments.

REFERENCES

[1] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Boston, MA, 1974.

[2] A. Andoni, A. Gupta, and R. Krauthgamer, Towards (1+\epsilon)-approximate flow sparsifiers, in
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Portland,
OR, 2014, pp. 279--293, https://doi.org/10.1137/1.9781611973402.20.

[3] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Burling-
ton, VT, 1996, pp. 184--193, https://doi.org/10.1109/SFCS.1996.548477.

[4] Y. Bartal, A. Filtser, and O. Neiman, On notions of distortion and an almost minimum
spanning tree with constant average distortion, in Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, Arlington, VA, 2016, pp. 873--882, https://doi.
org/10.1137/1.9781611974331.ch62.

[5] A. Basu and A. Gupta, Steiner Point Removal in Graph Metrics, manuscript, http://www.
math.ucdavis.edu/\sim abasu/papers/SPR.pdf (2008).

[6] J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, SIAM J.
Comput., 41 (2012), pp. 1704--1721, https://doi.org/10.1137/090772873.

[7] A. A. Bencz\'ur and D. R. Karger, Approximating s-t minimum cuts in \~O(n2) time, in Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia,
PA, 1996, pp. 47--55, https://doi.org/10.1145/237814.237827.

[8] G. C\u alinescu, H. J. Karloff, and Y. Rabani, Approximation algorithms for the 0-extension
problem, SIAM J. Comput., 34 (2004), pp. 358--372.

[9] T.-H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the Steiner
point removal problem on trees, in Proceedings of the 9th International Conference on
Approximation Algorithms for Combinatorial Optimization Problems, and 10th Inter-
national Conference on Randomization and Computation, Springer-Verlag, Berlin, 2006,
pp. 70--81, https://doi.org/10.1007/11830924 9.

[10] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding
algorithms, in Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science, Las Vegas, NV, 2010, pp. 265--274, https://doi.org/10.1109/FOCS.2010.32.

[11] Y. K. Cheung, Steiner point removal---distant terminals don't (really) bother, in Proceedings
of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA,
2018, pp. 1353--1360.

[12] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal
distances approximately---lower and upper bounds, in 43rd International Colloquium on
Automata, Languages, and Programming, Rome, Italy, 2016, pp. 131:1--131:14, https:
//doi.org/10.4230/LIPIcs.ICALP.2016.131.

[13] J. Chuzhoy, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th Symposium
on Theory of Computing Conference, New York, 2012, pp. 673--688, https://doi.org/10.
1145/2213977.2214039.

[14] D. Coppersmith and M. Elkin, Sparse source-wise and pair-wise distance preservers, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, PA, 2005, pp. 660--669, http://dl.acm.org/citation.cfm?id=1070432.1070524.

[15] M. Elkin, A. Filtser, and O. Neiman, Prioritized metric structures and embedding, in Pro-
ceedings of the 47th Annual ACM on Symposium on Theory of Computing, Portland, OR,
2015, pp. 489--498, https://doi.org/10.1145/2746539.2746623.

[16] M. Elkin, A. Filtser, and O. Neiman, Terminal embeddings, Theoret. Comput. Sci., 697
(2017), pp. 1--36, https://doi.org/10.1016/j.tcs.2017.06.021.

[17] M. Englert, A. Gupta, R. Krauthgamer, H. R\"acke, I. Talgam-Cohen, and K. Talwar,
Vertex sparsifiers: New results from old techniques, SIAM J. Comput., 43 (2014), pp. 1239--
1262, https://doi.org/10.1137/130908440.

[18] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, An improved approximation
algorithm for the 0-extension problem, in Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 257--265, http://dl.acm.
org/citation.cfm?id=644108.644153.

[19] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485--497, https://doi.org/
10.1016/j.jcss.2004.04.011.

278 ARNOLD FILTSER

[20] A. Filtser, Steiner point removal with distortion O(log k), in Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 2018, pp. 1361--1373,
https://doi.org/10.1137/1.9781611975031.90.

[21] A. Filtser, R. Krauthgamer, and O. Trabelsi, Relaxed voronoi: A simple framework
for terminal-clustering problems, in Proceedings of the 2nd Symposium on Simplicity in
Algorithms, San Diego, CA, 2019, pp. 10:1--10:14, https://doi.org/10.4230/OASIcs.SOSA.
2019.10.

[22] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596--615, https://doi.org/10.1145/28869.
28874.

[23] G. Goranci, M. Henzinger, and P. Peng, Improved guarantees for vertex sparsification in
planar graphs, in Proceedings of the 25th Annual European Symposium on Algorithms,
Vienna, Austria, 2017, pp. 44:1--44:14, https://doi.org/10.4230/LIPIcs.ESA.2017.44.

[24] A. Gupta, Steiner points in tree metrics don't (really) help, in Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, 2001, pp. 220--227,
http://dl.acm.org/citation.cfm?id=365411.365448.

[25] A. Gupta, V. Nagarajan, and R. Ravi, An improved approximation algorithm for require-
ment cut, Oper. Res. Lett., 38 (2010), pp. 322--325.

[26] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to remove
Steiner points, in Proceedings of SODA, 2014, pp. 1029--1040.

[27] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to re-
move Steiner points, SIAM J. Comput., 44 (2015), pp. 975--995, https://doi.org/10.1137/
140951382.

[28] T. Kavitha and N. M. Varma, Small stretch pairwise spanners, in Automata, Languages, and
Programming Part I, Lecture Notes in Comput. Sci. 7965, Springer-Verlag, Berlin, 2013,
pp. 601--612, https://doi.org/10.1007/978-3-642-39206-1 51.

[29] R. Krauthgamer, H. L. Nguyen, and T. Zondiner, Preserving terminal distances using mi-
nors, SIAM J. Discrete Math., 28 (2014), pp. 127--141, https://doi.org/10.1137/120888843.

[30] R. Krauthgamer and I. Rika, Mimicking networks and succinct representations of terminal
cuts, in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, 2013, pp. 1789--1799, https://doi.org/10.1137/1.9781611973105.128.

[31] R. Krauthgamer and I. Rika, Refined Vertex Sparsifiers of Planar Graphs, CoRR
abs/1702.05951, 2017.

[32] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings
of the 42nd ACM Symposium on Theory of Computing, Cambridge, MA, 2010, pp. 47--56,
https://doi.org/10.1145/1806689.1806698.

[33] N. Linial and M. E. Saks, Decomposing graphs into regions of small diameter, in Proceed-
ings of the 2nd Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, 1991, pp. 320--330, http://dl.acm.org/citation.cfm?id=127787.127848.

[34] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and Lip-
schitz extendability, in Proceedings of the 51th Annual IEEE Symposium on Foundations
of Computer Science, Las Vegas, NV, 2010, pp. 255--264, https://doi.org/10.1109/FOCS.
2010.31.

[35] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, Improved parallel algorithms for spanners
and hopsets, in Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, Portland, OR, 2015, pp. 192--201, https://doi.org/10.1145/2755573.
2755574.

[36] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size, in Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science, Atlanta, GA, 2009, pp. 3--12, https://doi.org/10.1109/FOCS.
2009.28.

[37] D. Peleg and A. A. Sch\"affer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99--116,
https://doi.org/10.1002/jgt.3190130114.

[38] L. Roditty, M. Thorup, and U. Zwick, Deterministic constructions of approximate dis-
tance oracles and spanners, in Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 3580, Springer-Verlag, Berlin, 2005, pp. 261--272, https://doi.org/10.1007/
11523468 22.

[39] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1--24, https:
//doi.org/10.1145/1044731.1044732.

Part V

Sparsification of Two-Variable Valued CSPs

98

SIAM J. DISCRETE MATH. c© 2017 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 1263–1276

SPARSIFICATION OF TWO-VARIABLE VALUED CONSTRAINT
SATISFACTION PROBLEMS∗

ARNOLD FILTSER† AND ROBERT KRAUTHGAMER‡

Abstract. A valued constraint satisfaction problem (VCSP) instance (V,Π, w) is a set of vari-
ables V with a set of constraints Π weighted by w. Given a VCSP instance, we are interested in a
reweighted subinstance (V,Π′ ⊂ Π, w′) that preserves the value of the given instance (under every
assignment to the variables) within factor 1 ± ε. A well-studied special case is cut sparsification in
graphs, which has found various applications. We show that a VCSP instance consisting of a single
boolean predicate P (x, y) (e.g., for cut, P = XOR) can be sparsified into O(|V |/ε2) constraints iff the
number of inputs that satisfy P is anything but one (i.e., |P−1(1)| 6= 1). Furthermore, this sparsity
bound is tight unless P is a relatively trivial predicate. We conclude that also systems of 2SAT (or
2LIN) constraints can be sparsified.

Key words. valued constraint satisfaction problem, cut sparsification, boolean predicates,
MAX-CSP

AMS subject classifications. 68Q25, 68W25

DOI. 10.1137/15M1046186

1. Introduction. The seminal work of Benczúr and Karger [4] showed that
every edge-weighted undirected graph G = (V,E,w) admits cut sparsification within
factor (1+ε) using O(ε−2n log n) edges, where we denote throughout n = |V |. To state
it more precisely, assume that edge weights are always non negative and let CutG(S)
denote the total weight of edges in G that have exactly one endpoint in S. Then for
every such G and ε ∈ (0, 1), there is a reweighted subgraph Gε = (V,Eε ⊆ E,wε) with
|Eε| ≤ O(ε−2n log n) edges such that

(1) ∀S ⊂ V, CutGε(S) ∈ (1± ε) · CutG(S),

and moreover, such Gε can be computed efficiently.
This sparsification methodology turned out to be very influential. The original

motivation was to speed up algorithms for cut problems—one can compute a cut
sparsifier of the input graph and then solve an optimization problem on the sparsifier—
and indeed this has been a tremendously effective approach; see, e.g., [4, 5, 10, 14, 12].
Another application of this remarkable notion is to reduce space requirements, either
when storing the graph or in streaming algorithms [1]. In fact, followup work offered
several refinements, improvements, and extensions (such as to spectral sparsification
or to cuts in hypergraphs, which in turn have more applications); see, e.g., [16, 17, 15,
7, 8, 9, 13, 3, 11]. The current bound for cut sparsification is O(n/ε2) edges, proved
by Batson, Spielman, and Srivastava [3], and it is known to be tight [2].

We study the analogous problem of sparsifying constraint satisfaction problems
(CSPs), which was raised in [11, section 4] and goes as follows. Given a set of

∗Received by the editors October 30, 2015; accepted for publication (in revised form) January 27,
2017; published electronically June 22, 2017. A preliminary version is available at arXiv:1509.01844.

http://www.siam.org/journals/sidma/31-2/M104618.html
Funding: The first author was partially supported by the Lynn and William Frankel Center for

Computer Sciences. The second author’s work was supported in part by Israel Science Foundation
grant 897/13 and US-Israel BSF grant 2010418.
†Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (arnoldf@cs.bgu.ac.il).
‡Weizmann Institute of Science, Rehovot 76100, Israel (robert.krauthgamer@weizmann.ac.il).

1263

1264 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

constraints on n variables, the goal is to construct a sparse subinstance that has
approximately the same value as the original instance under every possible assign-
ment ; see section 2 for a formal definition. Such sparsification of CSPs can be used
to reduce storage space and running time of many algorithms.

We restrict our attention to two-variable constraints (i.e., of arity 2) over boolean
domain (i.e., alphabet of size 2). To simplify matters even further we shall start with
the case where all the constraints use the same predicate P : {0, 1}2 → {0, 1}. This
restricted case of CSP sparsification already generalizes cut sparsification—simply
represent every vertex v ∈ V by a variable xv and every edge (v, u) ∈ E by the
constraint xv 6= xu.

Observe that such CSPs also capture other interesting graph problems, such as
the uncut edges (using the predicate xv = xu), covered edges (using the predicate
xv ∨ xu), or directed-cut edges (using the predicate xv ∧ ¬xu). Even though these
graph problems are well-known and extensively studied, we are not aware of any
sparsification results for them, and at a first glance such sparsification may even seem
surprising, because these problems do not have the combinatorial structure exploited
by [4] (a bound on the number of approximately minimum cuts) or the linear-algebraic
description used by [15, 3] (as quadratic forms over Laplacian matrices).

Results. For CSPs consisting of a single predicate P : {0, 1}2 → {0, 1}, we show in
Theorem 3.7 that a (1+ε)-sparsifier of size O(n/ε2) always exists iff |P−1(1)| 6= 1 (i.e.,
P has 0, 2, 3, or 4 satisfying inputs). Observe that the latter condition includes the
two graphical examples above uncut edges and covered edges but excludes directed-
cut edges. We further show in Theorem 4.1 that our sparsity bound above is tight,
except for some relatively trivial predicates P . We then build on our sparsification
result in section 5 to obtain (1 + ε)-sparsifiers for other CSPs, including 2SAT (which
uses four predicate types) and 2LIN (which uses two predicate types).

Finally, we explore future directions, such as more general predicates and a gen-
eralization of the sparsification paradigm to sketching schemes. In particular, we see
that the above dichotomy according to number of satisfying inputs to the predicate
extends to sketching.

2. Two-variable boolean predicates and digraphs. A predicate is a function
P : {0, 1}2 → {0, 1} (recall we restrict ourselves throughout to two variables and
a boolean domain). Given a set of variables V , a constraint 〈(v, u),P〉 consists of
a predicate P and an ordered pair (v, u) of variables from V . For an assignment
A : V → {0, 1}, we say that A satisfies the constraint whenever P(A(v), A(u)) = 1.
A valued constraint satisfaction problem (VCSP) instance I is a triple (V,Π, w),
where V is a set of variables, Π is a set of constraints over V (each of the form
πi = 〈(vi, ui), pi〉), and w : Π→ R+ is a weight function. The value of an assignment
A : V → {0, 1} is the total weight of the satisfied constraints, i.e.,

ValI (A) :=
∑

πi∈Π

w(πi) · pi(A(vi), A(ui)).

For ε ∈ (0, 1), an ε-sparsifier of I is a (reweighted) subinstance Iε = (V,Πε ⊆ Π, wε)
where

∀A : V → {0, 1}, ValIε(A) ∈ (1± ε) ·ValI(A).

The goal is to minimize the number of constraints, i.e., |Πε|. There are 16 different
predicates P : {0, 1}2 → {0, 1}, which are listed in Table 1 with names for easy
reference.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1265

Table 1
All possible predicates P : {0, 1}2 → {0, 1}, where blank cells denote value 0. Predicates

0x, x0, x1, 1x are determined by a single variable. Predicates 01,Dicut, 10, 01 are satisfied by a single
assignment or all but a single one.

x1 x2 ~0 nOr 01 0x Dicut x0 Cut nAnd And unCut x1 10 1x 01 Or ~1

0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

We first focus on the case where all the constraints in Π use the same predicate
P1, in which case we can represent the VCSP I by an edge-weighted digraph GI =
(V,E,w). Each variable in V is represented by a vertex, and each constraint over the
pair (v, u) will be represented by a directed edge from v to u, with the same weight as
the constraint (formally, E = {(v, u) | (〈v, u〉,P) ∈ Π}, and abusing notation set edge
weights w(v, u) = w(〈(v, u), P 〉)). This transformation preserves all the information
about the VCSP and allows us to make reductions between VCSPs with different
predicates P as their sole predicate.

Given a digraph G, a predicate P and a subset S ⊆ V , define

PG(S) :=
∑

(v,u)∈E
P(1S(v),1S(u)) · w((v, u)),

where 1S denotes the indicator function. For example, applying this definition to the
cut predicate Cut : (x, y)→ 1{x 6=y}, we have

CutG(S) =
∑

(v,u)∈E
Cut(1S(v),1S(u)) · w((v, u)) =

∑

(v,u)∈E
|1S(v)− 1S(u)| · w((v, u)),

which is just the total weight of the edges crossing the cut S. This matches the
definition we gave in the introduction, except for the technical subtlety that G is now
a directed graph, which makes no difference for symmetric predicates like Cut. We
shall assume henceforth that G is directed.

We shall say that a subinstance Gε is an ε-P-sparsifier of G if

∀S ⊆ V, PGε(S) ∈ (1± ε) · PG(S).

Observe that given an assignment A for the variables V , we can set SA := {u |
A(u) = 1}. It then holds that ValI(A) = PGI (SA), where GI is the appropriate di-
graph for the VCSP. As there exists a bijection between such VCSPs and digraphs, we
conclude as follows.

Observation 2.1. The existence of an ε-P-sparsifier Gε = (V,Eε, wε) for GI im-
plies the existence of an ε-sparsifier Iε for I with |Eε| constraints.

Note that the converse is true as well, i.e., an ε-sparsifier for I implies the existence
of an ε-P-sparsifier for GI of size |Πε|. From now on, we focus on finding an ε-P-
sparsifier for an arbitrary digraph G (for different choices of the predicate P).

1The collection of predicates used in a VCSP is sometimes called its signature. In this paper we
mainly deal with VCSPs whose signature is of size one.

1266 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

3. A single predicate. In this section we go over all the predicates P : {0, 1}2 →
{0, 1} and classify them into sparsifiable and nonsparsifiable predicates; see
Theorems 3.5, 3.6, and 3.7. For simplicity, we state our sparsification results as
existential, but in fact all these sparsifiers can be computed in polynomial time.

Our main technique is a graph transformation, which is well-known but apparently
only in very different contexts. On the face of it, it is not clear which predicates other
than Cut do admit nontrivial sparsification. For example, the uncut edges in a graph
do not satisfy a key property of cuts that was used in [4] for cut-sparsification (namely,
a polynomial bound on the number of near-minimum cuts in a graph), and it is not
clear a priori which edges must be included in every sparsifier (again in analogy
with cuts, where all bridge edges must be retained), These deficiencies suggest that
the edge-sampling approach, which is very effective for cuts [4, 15, 8], would fail
for other predicates and may further be viewed as evidence for the impossibility of
sparsification. Thus, we were surprised to find out that different predicates can all
be analyzed using one simple graph transformation, which appears easy in retrospect
and provides a unifying explanation.

In our classification, we appeal to two basic predicates, the first of which is Cut,
which is already known to be sparsifiable.

Theorem 3.1 (see [3]). For every digraph G and parameter ε ∈ (0, 1), there is
an ε-Cut-sparsifier for G with O

(
|V |/ε2

)
edges.

Our second basic predicate is the predicate And, which behaves significantly dif-
ferently. We call a digraph G = (V,E) strongly asymmetric if for every (v, u) ∈ E it
holds that (u, v) /∈ E.

Theorem 3.2. For every strongly asymmetric digraph G = (V,E,w) with strictly
positive weights and ε ∈ (0, 1), every ε-And-sparsifier Gε = (V,Eε, wε) must satisfy
Eε = E.

Proof. Let Gε = (V,Eε, wε) be such a sparsifier, i.e., for every S ⊆ V it holds
that AndGε(S) ∈ (1 ± ε) · AndG(S). Then for every e = (v, u) ∈ E we must have
(v, u) ∈ Eε, as otherwise for the set S = {v, u} it will hold that AndGε({v, u}) = 0
while AndG({v, u}) = w(e) > 0, a contradiction.

Remark 3.3. For every digraph (which is not necessarily strongly asymmetric),
the same proof shows that |Eε| ≥ 1

2 |E|.
Remark 3.4. Our definition of an ε-P-sparsifier requires Gε to be a subgraph of

G, but we can state Theorem 3.2 in a more general way: For every digraph Gε =
(V,Eε, wε) (not necessarily a subgraph) such that every S ⊆ V satisfies AndGε(S) ∈
(1± ε) · AndG(S) necessarily Eε agrees with E up to the directions of the edges.

Next, we show that every other predicate is similar either to Cut or to And in terms
of sparsifability. We describe a reduction that will be useful to show both sparsifability
and nonsparsifability. (This reduction is based on a well-known transformation of
a given graph, called the “bipartite double cover” (see, e.g., [6]), although we are
not aware of its use in the same way.) Let γ be a function that maps a digraph
G = (V,E,w) where V = {v1, v2, . . . , vn} to a digraph γ(G) = (V γ , Eγ , wγ) where
V γ = {v−n, . . . , v−1, v1, . . . , vn}, Eγ = {(vi, v−j) | (vi, vj) ∈ E}, wγ((vi, v−j)) =
w((vi, vj)). For every subset S ⊆ V , we introduce the notation −S := {v−i | vi ∈ S},
S̄ := {vi | vi ∈ V \ S} and −S̄ := {v−i | vi ∈ V \ S}. Figure 1 illustrates the effect of
γ on an arbitrary set S.

Theorem 3.5. For every digraph G = (V,E,w) and ε ∈ (0, 1) there
is a subdigraph Gε with O(|V |/ε2) edges such that for every predicate P ∈

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1267

S

S

S −S

S −S

G γ(G)

1

2

34

1

2

3

4

Fig. 1. The mapping γ applied on G and its effect on an arbitrary S ⊆ V . For example,
an edge from vi ∈ S to vj ∈ S̄ is represented by an arrow of type 3 and becomes in γ(G) an
edge from vi ∈ S to v−j ∈ −S̄.

{Cut, unCut,Or, nAnd, 10, 01, x0, x1, 0x, 1x,~1,~0}, the digraph Gε is an ε-P-sparsifier of
G. (Note that Gε does not depend on P.)

Proof. Given G and ε, first construct γ(G) as above. Next, apply Theorem 3.1
to obtain for γ(G) a cut sparsifier γ(G)ε = (V γ , Eγε ⊆ Eε, wγε), which contains
O(|V γ |/ε2) = O(|V |/ε2) edges. Now construct a digraph Gε = (V,Eε, wε) where
Eε = {(vi, vj) | (vi, v−j) ∈ Eγε } and wε(vi, vj) = wγε (vi, v−j). Observe that γ(Gε) =
γ(G)ε, i.e., if we apply γ on Gε we get exactly γ(G)ε.

Now suppose that for a predicate P, there is a function fP : 2V → 2V
γ

such that
for every digraph H on the vertex set V , it holds that

∀S ⊂ V, PH(S) = Cutγ(H)(fP (S)).(2)

Then we could apply (2) twice, first to Gε and then to G, and obtain that

∀S ⊂ V, PGε(S) = Cutγ(G)ε(fP (S)) ∈ (1± ε) · Cutγ(G)(fP (S)) = (1± ε) · PG(S).

Hence, the existence of such a function fP implies that Gε is an ε-P-sparsifier. And
indeed, we can show such fP for some predicates P, as follows:

• funCut(S) = S ∪ −S̄;

• fCut(S) = S ∪ −S;

• f0x(S) = S̄;

• fx0(S) = −S̄;

• fx1(S) = −S;

• f1x(S) = S;

• f~1(S) = S ∪ S̄; and

• f~0(S) = ∅.
To verify that funCut(S) = S ∪ −S̄ satisfies Equation 2, i.e., that unCutH(S) =
Cutγ(H)(S ∪ S̄), observe that both sides consist exactly of the edges of types 1 and
2 in Figure 1. The other predicates can be easily verified similarly, which completes
the proof for all P ∈ {Cut, unCut, 0x, x0, x1, 1x,~1,~0}.

To show that Gε is a sparsifier also for predicates P ∈ {Or, nAnd, 10, 01} we need
a slightly more general argument. Suppose that for a predicate P, there are functions
f1
P , f

2
P , f

3
P : 2V → 2V

γ

such that for every digraph H on the vertex set V ,

PH(S) = 1
2

[
Cutγ(H)(f

1
P (S)) + Cutγ(H)(f

2
P (S)) + Cutγ(H)(f

3
P (S))

]
.(3)

1268 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

Then we could apply (3) twice, first to Gε and then to G, and obtain that

PGε (S) = 1
2

[
Cutγ(G)ε(f

1
P (S)) + Cutγ(G)ε(f

2
P (S)) + Cutγ(G)ε(f

3
P (S))

]

∈ (1± ε) · 1
2

[
Cutγ(G)(f

1
P (S)) + Cutγ(G)(f

2
P (S)) + Cutγ(G)(f

3
P (S))

]

= (1± ε) · PG(S).

Hence, the existence of three such functions will imply that Gε is an ε-P-sparsifier.
And indeed, we let

• f1
Or(S) = S, f2

Or(S) = −S, f3
Or(S) = S ∪ −S;

• f1
nAnd(S) = S̄, f2

nAnd(S) = −S̄, f3
nAnd(S) = S̄ ∪ −S̄;

• f1
10

(S) = S̄, f2
10

(S) = −S, f3
10

(S) = S̄ ∪ −S; and

• f1
01

(S) = S, f2
01

(S) = −S̄, f3
01

(S) = S ∪ −S̄.

To verify that f1
Or, f

2
Or, f

3
Or satisfies (3), observe that both sides consist exactly of the

edges of types 1, 3, 4 in Figure 1. The other predicates can be easily verified similarly,
which completes the proof for all P ∈ {Or, nAnd, 10, 01}.

Next, we use γ for a reduction from And to all the remaining predicates. In
particular it will imply their “resistance to sparsification.”

Theorem 3.6. Given parameters n and m ≤
(
n
2

)
, there is a digraph G = (V,E,w)

with 2n vertices and m edges such that for every ε ∈ (0, 1) and every predicate P ∈
{nOr, 01,Dicut,And}, for every ε-P-sparsifier Gε = (V,Eε, wε) of G it holds that that
Eε = E. (Note that G does not depend on P.)

Proof. Let G = (V,E,w) be an arbitrary strongly asymmetric digraph with n
vertices, m edges, and strictly positive weights. Let γ(G) be the digraph constructed
by our reduction. Note that γ(G) consist of 2n vertices and m edges. γ(G) will be
the digraph for which we will prove the theorem.

Fix some predicate P. Let γ(G)ε = (V γ , Eγε ⊆ Eε, wγε) be some ε-P-sparsifier for
γ(G). Let Gε = (V,Eε, wε) be a digraph where Eε = {(vi, vj) | (vi, v−j) ∈ Eγε } and
wε ((vi, vj)) = wγε ((vi, v−j)). Note that γ(Gε) = γ(G)ε.

Now suppose that there is a function fP : 2V → 2V
γ

such that for every digraph
H on the vertex set V , it holds that

∀S ⊂ V, AndH (S) = Pγ(H) (fP (S)) .(4)

Then we could apply (4) twice, first to Gε and then to G, and obtain that

∀S ⊂ V, AndGε(S) = Pγ(G)ε(fP (S)) ∈ (1± ε) · Pγ(G)(fP (S)) = (1± ε) · AndG(S).

Hence, assuming such a function f exists, Gε is an ε-And-sparsifier for G. According
to Theorem 3.2, necessarily Eε = E, and in particular Eγε = Eγ .

Hence, the existence of such functions fP for all P ∈ {nOr, 01,Dicut,And} will
imply our theorem. And indeed, we let

• fAnd(S) = S ∪ −S;
• fnOr(S) = S̄ ∪ −S̄;
• fDicut(S) = S ∪ −S̄; and
• f01(S) = S̄ ∪ −S.

To verify that fDicut(S) = S ∪ −S̄ satisfies (4), observe that both sides consist
exactly of the edges of type 1 in Figure 1. The other predicates can be easily verified
similarly.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1269

We conclude our main theorem, which basically puts together Theorems 3.5
and 3.6.

Theorem 3.7. Let P be a binary predicate, and let ε ∈ (0, 1) be some parameter.
• If P has a single “1” in its truth table, then there exist a VCSP I = (V,Π, w)

with a single predicate P such that every ε-P-sparsifier of I will have Ω(|V |2)
constraints.

• If P does not has a single “1” in its truth table, then for every VCSP I =
(V,Π, w) with single predicate P, there exists an ε-P-sparsifier with O

(
|V |/ε2

)

constraints.

4. Lower bounds (for a single predicate). In this section we will show
that Theorem 3.5 is tight. More precisely, we will show that for every P ∈
{Cut, unCut,Or, nAnd, 10, 01}, there exists an n-vertex graph G such that every ε-
P-sparsifier Gε of G must contain Ω(n/ε2) edges.2 The first step was done by [2], who
showed that Theorem 3.1 is tight, i.e., for every n and ε ∈ (1/

√
n, 1), there exists an

n-vertex graph G such that every ε-Cut-sparsifier Gε of G must contain Ω(n/ε2) edges.
Using our reduction γ in a similar manner to Theorem 3.5, this lower bound can be
extended to unCut based on the fact that CutG(S) = unCutγ(G)

(
S ∪ −S̄

)
. However,

γ fails to extend the lower bound to predicates with three 1’s in their truth table. To
this end, we will define sketching schemes, a variation of sparsification where the goal
is to maintain the approximate value of every assignment using a small data structure,
possibly without any combinatorial structure; see the definition below. We will use a
lower bound on the sketch-size of Cut from [2] to prove the lower bound on the number
of edges in a sparsifier (and also on the sketch-size) for Or. The extension to other
predicates with three 1’s in their truth table is straightforward using γ. Sketching
is interesting on its own, and we have further discussion and lower bounds regarding
sketching in section 6.3.

Formally, a sketching scheme (or a sketch in short) is a pair of algorithms (sk, est).
Given a weighted digraph G = (V,E,w) and a predicate P, algorithm sk returns a
string skG (intuitively, a short encoding of the instance). Given skI and a subset S ⊆
V , algorithm est returns a value (without looking at G) that estimates PG(S). We say
that it is an ε-P-sketching-scheme if for every digraph G, and for every subset S ⊆ V ,
est(skG, S) ∈ (1± ε) · PG(S). The sketch-size is maxG | skG |, the maximum length of
the encoding string over all the digraphs with n variables, often measured in bits. sk
might be probabilistic algorithm, but for our purposes it is enough to think only about
the deterministic case. Note that an algorithm for constructing ε-sparsifiers always
provides an ε-sketching-scheme, where the sketch-size is asymptotically equal to the
number of constraints in the constructed sparsifiers when measured in machine words
(and up to logarithmic factors when measured in bits). Sparsification is advantageous
over general sketching as it preserves the combinatorial structure of the problem.
Nevertheless, one may be interested in constructing sketches as they may potentially
require significantly smaller storage.

Theorem 4.1. Fix a predicate P ∈ {Cut, unCut,Or, nAnd, 10}, an integer n, and
ε ∈ (1/

√
n, 1). The sketch-size of every ε-P-sketching-scheme on n variables is

Ω(n/ε2). Moreover, there is an n-vertex digraph G, such that every ε-P-sparsifier
of G has Ω(n/ε2) edges.

2The other predicates {x0, x1, 0x, 1x,~1,~0} are kind of trivial in the sense of sparsification. ~0
sparsified by the empty graph. ~1 can be sparsified using a single edge. {x0, x1, 0x, 1x} could be
sparsified using n edges.

1270 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

Proof. We follow the line-of-proof of Theorems 2.3 and 2.4 in [2]. Specifically,
they show that the sketch-size of every ε-Cut-sketching-scheme is Ω(n/ε2) bits, by
proving that a certain family F of n-vertex graphs is hard to sketch and consequently
to sparsify. By similar arguments to Theorem 3.5, this lower bound easily extends
to unCut. Indeed, recall that CutG(S) = unCutγ(G)

(
S ∪ −S̄

)
, and thus a ε-unCut-

sparsifier (or sketch) for γ(G) yields an ε-Cut-sparsifier (or sketch) for G with the
same number of edges (size).

Once we prove the lower bound for predicate Or, a reduction from Or using γ will
extend it also to nAnd, 10 and 01, because

(5) OrG(S) = nAndγ(G)(S̄ ∪ −S̄) = 01γ(G)(S ∪ −S̄) = 10γ(G)(S̄ ∪ −S).

We will thus focus on the predicate Or. As it is a symmetric predicate, we can work
with graphs rather then digraphs. The main observation in our proof is that for every
undirected graph G = (V,E,w), if degG(v) denotes the degree of vertex v, then

(6) ∀S ⊂ V, CutG(S) = 2 · OrG(S)−
∑

v∈S
degG(v).

The graph family F consists of graphs G constructed as follows. Let s1, . . . , sn/2 ∈
{0, 1}1/ε2 be balanced 1/ε2 bit-strings (i.e., each si has normalized Hamming weight
exactly 1/2), and let the graph G be a disjoint union of the graphs {Gj | j ∈ [ε2n/2]},
where each Gj is a bipartite graph, whose two sides, each of size 1/ε2, are denoted
L(Gj) and R(Gj). The edges of G are determined by s1, . . . , sn/2, where each bit
string si is indicates the adjacency between vertex i ∈ ∪jL(Gj) and the vertices in
the respective R(Gj). They further observe (in the proof of [2, Theorem 2.4]) that
the lower bound holds even if the sketching scheme is relaxed as follows:

1. The estimation is required only for cut queries contained in a single Gj ,
namely, cut queries S ∪ T , where S ⊂ L(Gj) and T ⊂ R(Gj) for the same j.

2. The estimation achieves additive error µ/ε3, where µ = 10−4 (instead of
multiplicative error 1± ε).

To prove a sketch-size lower bound for a (µε)-Or-sketching-scheme (skOr, estOr),
we assume it has sketch-size s = s(n, ε) bits and use it to construct a Cut-sketching-
scheme (skCut, estCut) that achieves the estimation properties 1 and 2 on graphs of
the aforementioned form and has sketch-size s + 2n log(1/ε) bits. Then by [2], this
sketch-size must be Ω(n/ε2), and we conclude that s = Ω(n/ε2) as required.

Given a graph G ∈ F , let skCut
G be a concatenation of skOr

G and a list of all vertex
degrees in G. The degrees in G are bounded by 1/ε2, hence the size of skCut

G is
indeed s+ 2n log(1/ε) bits. Given a cut query S ∪T contained in some Gj , define the
estimation algorithm (which we now construct for Cut) to be

(7) estCut(skCut
G , S ∪ T) := 2 · estOr(skOr

G , S ∪ T)−
∑

v∈S∪T
degG(v).

Let us analyze the error of this estimate. First, observe that as in each Gj there
are precisely 1

2ε4 edges, OrG(S ∪ T) ≤ 1
2ε4 , and thus

estOr(skOr
G , S ∪ T) ∈ (1± µε) · OrG(S ∪ T) ⊆ OrG(S ∪ T)± µ

2ε3
.

Plugging this estimate into (7) and then recalling our initial observation (6), we obtain
as desired

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1271

estCut(skCut
G , S ∪ T) ∈ 2 · OrG(S ∪ T)± µ

ε3
−

∑

v∈S∪T
degG(v)

= CutG(S ∪ T)± µ

ε3
.

To prove a lower bound on the size of an Or-sparsifier, we follow the argument
in [2, Theorem 2.4], which shows that given an ε-Cut-sparsifier Gε with s = s(n, ε)
edges for a graph G ∈ F , there is a Cut-sparsifier Gµ of Gε, with additive error
µ/2ε3, such that Gµ has only integer weights and henceforth can be encoded using
O(s(µ−2 + log(ε−2n/s))) bits. In fact, there is nothing special here about Cut. The
same proof will work (with the same properties) for predicate Or, assuming a sparsifier
is required to be a subgraph (to remove this restriction, just erase all the edges between
Gj to Gi for i 6= j, which adds only a small additive error).

Now suppose that every graph G of the form specified above admits a µ
2 ε-Or-

sparsifier Gε with s edges. Then as explained above (about repeating the argument
of [2]) there is a graph Gµ that sparsifies Gε with additive error µ/2ε3 and can be
encoded by a string IG of size O(s log(ε−2n/s)) bits (recall that µ is a constant). Use
it to construct a Cut-sketching-scheme with additive error µ/ε3 as follows. Given the
graph G, set skCut

G to be the concatenation of IG and a list of the degrees of all the
vertices in G. Then |IG| = O(s log(ε−2n/s)) + 2n log(1/ε). For a cut query S ∪ T
contained in some Gj , define the estimation algorithm (using the Or sparsifier) to be

estCut(skCut
G , S ∪ T) := 2 · OrGµ(S ∪ T)−

∑

v∈S∪T
degG(v).

Then we can again analyze it by plugging the above error bounds and then using (6),

estCut(skCut
G , S ∪ T) ∈ 2 · OrGε(S ∪ T)± µ

2ε3
−

∑

v∈S∪T
degG(v)

∈ 2 · OrG(S ∪ T)± µ

ε3
−

∑

v∈S∪T
degG(v)

= CutG(S ∪ T)± µ

ε3
.

By [2], the sketch-size must be |IG| = Ω(n/ε2), hence s = Ω(n/ε2) (for at least one
graph G ∈ F) as required.

5. Multiple predicates and applications. In this section we extend
Theorem 3.5 to VCSPs using multiple types of predicates. In particular, we prove
sparsifability for some classical problems. Again, our sparsification results are stated
as existential bounds, but these sparsifiers can actually be computed in polynomial
time.

Theorem 5.1. For every ε ∈ (0, 1) and a VCSP (V,Π, w) whose constraints
〈(v, u) ,P〉 ∈ Π all satisfy P /∈ {nOr, 01,Dicut,And}, there exists an ε-sparsifier for
I with O(|V |/ε2) constraints.

This bound is tight, according to Theorem 4.1. We prove it by a straightfor-
ward application of Theorem 3.5. Partition I to disjoint VCSPs according to the
predicates in the constraints, and then for each sub-VCSP find an ε-sparsifier using
Theorem 3.5. The union of this sparsifiers is an ε-sparsifier for I. A formal proof
follows.

1272 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

Proof of Theorem 5.1. For each predicate P, let ΠP = {π ∈ Π | π = 〈(v, u) ,P〉}.
Note that {ΠP } forms a partition of Π. For each P, let IP = (V,ΠP , wP), where
wP is the restriction of w to ΠP . Let IPε = (V,ΠP

ε , w
P
ε) be an ε-P-sparsifier for

IP with |ΠP
ε | = O(|V |/ε2) constraints according to Theorem 3.5 (recall that P /∈

{nOr, 01,Dicut,And}). Set Iε = (V,Πε, wε), Πε =
⋃
P ΠP

ε and wε =
⋃
P w

P
ε . For every

assignment A,

ValIε(A) =
∑

πi∈Πε

wε (πi) · pi (A(vi), A(ui))

=
∑

P

∑

πi∈ΠPε

wPε (πi) · P (A(vi), A(ui))

∈ (1± ε) ·
∑

P

∑

πi∈ΠP

wP (πi) · P (A(vi), A(ui))

= (1± ε) ·
∑

πi∈Π

w (πi) · pi (A(vi), A(ui))

= (1± ε) ·ValI(A),

and note that indeed |Πε| ≤ O
(
n/ε2

)
.

2SAT (boolean satisfiability problem over constraints with two variables) can
be viewed as a VCSP which uses only the predicates Or, nAnd, 10, and 01. By
Theorem 5.1, for every 2SAT formula Φ over n variables, and for every ε ∈ (0, 1),
there is a sub-formula Φε with O(n/ε2) clauses, such that Φ and Φε have the same
value for every assignment up to factor 1 + ε.3

2LIN is a system of linear equations (modulo 2), where each equation contains
two variables and has a nonnegative weight. Notice that the equation x + y = 1 is
a constraint using the Cut predicate, while the equation x + y = 0 is a constraint
using the unCut predicate. By Theorem 5.1, if n denotes the number of variables,
then for every ε ∈ (0, 1) we can construct a sparsifier with only O(n/ε2) equations
(i.e., a reweighted subset of equations, such that on every assignment it agrees with
the original system up to factor 1 + ε).

We note that by our lower bound (Theorem 4.1), there are instances of 2SAT
(2LIN) for which every ε-sparsifier must contain Ω(n/ε2) clauses (equations).

6. Further directions. Based on the past experience of cut sparsification in
graphs—which has been extremely successful in terms of techniques, applications,
extensions, and mathematical connections—we expect VCSP sparsification to have
many benefits. A challenging direction is to identify which predicates admit sparsifi-
cation, and our results make the first strides in this direction.

We now discuss potential extensions to our results in the previous sections (which
characterize two-variable predicates over a boolean alphabet). We first consider pred-
icates with more variables, and in particular show sparsification for k-SAT formulas,
in section 6.1. We then consider predicates with large alphabets in section 6.2, show-
ing in particular a sparsifier construction for k-Cut and that linear equations (modulo
k ≥ 3) are not sparsifiable. We also consider sketching schemes; notably we discuss
a looser sketching model called for-each in section 6.3. Finally, we study spectral
sparsification for unCut, a notion that preserves some algebraic properties in addition
to the “uncuts” in section 6.4.

3We use here the version of 2SAT where each clause has weight and every assignment has value,
rather than the version when we only ask whether there is an assignment that satisfies all the clauses.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1273

6.1. Predicates over more variables and k-SAT. It is natural to ask for the
best bounds on the size of ε-P-sparsifiers for different predicates P : {0, 1}k → {0, 1}.
A first step toward answering this question was already done by [11].

Theorem 6.1 (see [11]). For every hypergraph H = (V,E,w) with hyperedges
containing at most r vertices, and ε ∈ (0, 1), there is a reweighted subhypergraph Hε

with O(n(r + log n)/ε2) hyperedges such that

∀S ⊆ V, CutHε(S) ∈ (1± ε) · CutH(S).

Here we say that a hyperedge e is cut by S if S ∩ e /∈ {∅, e} (i.e., not all the
vertices in e are in the same side). Observe that Cut is equivalent to the predicate
NAE (not all equal). In particular Theorem 6.1 implies that for every VCSP using
only NAE, there is an ε-sparsifier with O(n(r + log n)/ε2) constraints.

A k-SAT is essentially a VCSP that uses only predicates with a single 0 in
their truth table. Kogan and Krauthgamer [11] use Theorem 6.1 to construct an
ε-sketching-scheme with sketch-size Õ(nk/ε2) for k-SAT formulas (i.e., only for VC-
SPs of this particular form). We observe that their sketching scheme can be further
used to construct an ε-sparsfier, as follows.

First, recall how the sketching scheme of [11] works. Given a k-SAT formula
Φ = (V, C, w) (variables, clauses, weight over C), construct a hypergraph H on vertex
set V ∪−V ∪ {f}. We associate the literal vi with vertex vi, associate the literal ¬vi
with vertex v−i, and use f to represent the “false.” Each clause becomes a hyper-
edge consisting of f and (the vertices associated with) the literals in C (for example,
v5 ∨ ¬v7 ∨ v12 becomes {f, v5, v−7, v12}). Observe that given a truth assignment
A : V → {0, 1}, if we define SA := {u | A(u) = 0}, then ValΦ(A) = CutH(SA ∪ {f}),
and using Theorem 6.1 this provides a sketching scheme. Moreover, given an ε-Cut-
sparsifier Hε for H, let Φε be the formula which has only the clauses associated with
edges that “survived” the sparsification, with the same weight. Notice that for every
assignment A,

ValΦε(A) = CutHε(SA ∪ {f}) ∈ (1± ε) · CutH(SA ∪ {f}) = (1± ε) ·ValΦ(A).

Theorem 6.2. Given k-SAT formula Φ over n variables and parameter ε ∈ (0, 1),
there is an ε-sparsifier subformula φε with O(n(k + log n)/ε2) clauses.

In contrast, we are not aware of any nontrivial sparsification result for the par-
ity predicate (on k ≥ 3 boolean variables), and this remains an interesting open
problem.

6.2. Predicates over larger alphabets. Our results deal only with predicates
that get two input values in {0, 1}. A natural generalization is to sparsify a VCSP
that uses a predicate over an alphabet of size k, i.e., P : [k]× [k]→ {0, 1}, where [k] :=
{0, 1, . . . , k−1}. One predicate that we can easily sparsify is NE (not-equal), which is
satisfied if the two constrained variables are assigned different values. Indeed, in the
graphs language, this is called a k-Cut, where the value of a partition (S0, . . . , Sk−1) of
the vertices is the total weight of all edges with endpoints in different parts. It turns

1274 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

out that the ε-Cut-sparsifier is in particular an ε-k-Cut-sparsifier, using the following
well-known double-counting argument:

k-CutGε (S0, . . . , Sk−1) =
1

2
·
[
CutGε

(
S0, S0

)
+ · · ·+ CutGε

(
Sk−1, Sk−1

)]

∈ (1± ε) · 1

2
·
[
CutG

(
S0, S0

)
+ · · ·+ CutG

(
Sk−1, Sk−1

)]

= (1± ε) · k-CutG (S0, . . . , Sk−1).

In contrast, linear equation predicates are nonsparsifiable for alphabet [k] of size
k ≥ 3. Specifically, for a ∈ [k], let the predicate Suma be satisfied by x, y ∈ [k]
iff x + y = a (mod k). Then for every positively weighted digraph G = (V,E,w),
and every ε ∈ (0, 1), a ∈ [k], every Suma-ε-sparsifier Gε = (V,Eε, wε) of G must
have E = Eε. The argument is similar to the proof of Theorem 3.2. Assume for
contradiction there exist e ∈ E \ Eε. Choose x, y, z ∈ [k] that satisfy x + y = a,
however the three sums z + x, z + y, z + z are all not equal to a (modulo k); this is
clearly possible for k ≥ 4 and easily verified by case analysis for k = 3. Consider an
assignment where the endpoints of e have values x and y, respectively, and all other
vertices have value z. Under this assignment, the value of G is w(e) > 0, while the
value of Gε is zero, a contradiction.

6.3. Sketching. In Theorem 4.1 we showed that for every predicate P ∈
{Cut, unCut,Or, nAnd, 10}, the sketch-size of every ε-P-sketching-scheme is Ω(n/ε2).

Let us now address predicates with a single 1 in their truth table. In the spirit
of the proof of Theorem 3.2, given encoding skG by an ε-And-sketching-scheme we

can completely restore the graph G. As there are 2(n2) different graphs, the sketch-
size of every ε-And-sketching-scheme is at least Ω(n2) bits. Imitating the proof of
Theorem 3.6, we can extend this lower bound to Dicut, 01, and 10.

For-each sketches. In order to reduce storage space of a sketch, one might weaken
the requirements even further and allow the sketch to give a good approximation only
with high probability. A for-each sketching scheme is a pair of algorithms (sk, est);
algorithm sk is a randomized algorithm that given a graph G returns a string skG,
whose distribution we denote by DG; algorithm est is given such a string skG and a
subset S ⊆ V and returns (deterministically) a value est(skG, S). We say that it is
an (ε, δ)-P-sketching-scheme if

∀G = (V,E,w),∀S ⊆ V, Pr
skG∈DG

[est(skG, S) ∈ (1± ε) · PG (S)] ≥ 1− δ .

In [2], it was showed that if we consider n-vertex graphs with weights only in the
range [1,W], then there is an (ε, 1/poly(n))-Cut-sketching-scheme with sketch-size
Õ
(
nε−1 · log logW

)
bits. Imitating Theorem 3.5, we can construct (ε, 1/poly(n))-

P-sketching-scheme with the same sketch-size for every predicate P whose truth ta-
ble does not have a single 1 (and weights restricted to the range [1,W]). A nearly
matching lower bound by [2] shows that for every ε ∈ (2/n, 1/2), every (ε, 1/10)-Cut-
sketching-scheme must have sketch-size Ω(n/ε). Using γ, this lower bound can be
extended to unCut. This technique does not work for predicates with three 1’s in
their truth table. Fortunately, we can duplicate the proof of [2] while replacing Cut
by Or and using the fact that for every two vertices v, u in the graph G, it holds that
Or({v}) + Or({u})−Or({v, u}) = 1{{u,v}∈E}. We omit the details of this straightfor-
ward argument. A reduction from Or using γ and (5) will extend the lower bound
also to nAnd,10 and 01.

SPARSIFICATION OF TWO-VARIABLE VALUED CSPs 1275

Given a sketch skG (i.e., one sample from distribution DG) which encodes an (ε, δ)-
And-sketching-scheme, one can reconstruct every edge of G (every bit of the adjacency
matrix) with constant probability. Standard information-theoretical arguments (in-
dexing problem) imply that the sketch-size of every (ε, δ)-And-sketching-scheme is
Ω(n2) bits. Using γ we can extend this lower bound to Dicut, 01 and 10.

6.4. unCut spectral sparsifiers. Given an undirected n-vertex graph G =
(V,E,w), the Laplacian matrix is defined as LG = DG − AG, where AG is the adja-
cency matrix (i.e., Ai,j = wi,j = w({vi, vj})) and DG is a diagonal matrix of degrees
(i.e., Di,i =

∑
j 6=i wi,j and for i 6= j, Di,j = 0). For every x ∈ Rn it holds that

xtLGx =
∑
{vi,vj}∈E wi,j · (xi − xj)

2
. In particular, for 1S the indicator vector of

some subset S ⊆ V it holds that 1tSLG1S = CutG(S). A subgraph H of G is called
an ε-spectral -sparsifier of G if

∀x ∈ Rn, xtLHx ∈ (1± ε) · xtLGx .

Note that an ε-spectral-sparsifier is in particular an ε-Cut-sparsifier. Nonetheless,
spectral sparsifiers preserve additional properties such as the eigenvalues of the Lapla-
cian matrix (approximately). Batson, Spielman, and Srivastava [3] showed that every
graph admits an ε-spectral-sparsifier with O(n/ε2) edges.

Definition 6.3. Given a graph G, we call UG = (DG +AG) the negated Lapla-
cian of G. Given a subset S ⊆ V , let φS ∈ Rn be a vector such that φS,i = 1 if vi ∈ S
and φS,i = −1 otherwise.

One can verify that for arbitrary x ∈ Rn,

xtUGx =
∑

i<j

wi,j · (xi + xj)
2
.

In particular, for every subset S ⊆ V , it holds that

φtSUGφS = 4 · unCutG(S) .

Next, we will show how we can use UG to construct an unCut-sparsifier Gε (in
an alternative way to Theorem 3.5) such that UGε has (approximately) the same
eigenvalues as UG. A matrix M ∈ Rn×n is called balanced symmetric diagonally
dominant (BSDD) if M = M t and for every index i, Mi,i =

∑
j 6=i |Mi,j |. Note that

LG and UG are both BSDD. A matrix M ′ is governed by M if whenever M ′i,j 6= 0,
also Mi,j 6= 0 and has the same sign. Note that if H is a subgraph of G, then UH is
governed by UG. A matrix M ′ is called an ε-spectral-sparsifier of M if M ′ is governed
by M and

∀x ∈ Rn, xtM ′x ∈ (1± ε) · xtMx .

The following was implicitly shown in [2].

Theorem 6.4 (see [2]). Given BSDD matrix M ∈ Rn×n and parameter ε ∈
(0, 1), there is an ε-spectral-sparsifier M ′ for M , where M ′ is BSDD matrix with
O(n/ε2) nonzero entries.

Fix a graph G and parameter ε; according to Theorem 6.4, there is a BSDD
balanced matrix H with O(n/ε2) nonzero entries, which is a ε-spectral-sparsifier for
UG. Moreover, H is governed by UG. These properties define a graph Gε such that
UGε = H. In particular Gε is an ε-unCut-sparsifier of G with O(n/ε2) edges.

1276 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

REFERENCES

[1] K. J. Ahn and S. Guha, Graph sparsification in the semi-streaming model, in 36th In-
ternational Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 5556, Springer-Verlag, Berlin, 2009, pp. 328–338, https://doi.org/10.1007/
978-3-642-02930-1 27.

[2] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and Q. Zhang, On
sketching quadratic forms, in Proceedings of ITCS’16, ACM, 2016, pp. 311–319, https:
//doi.org/10.1145/2840728.2840753.

[3] J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, SIAM
Rev., 56 (2014), pp. 315–334, https://doi.org/10.1137/130949117.

[4] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time, in
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, ACM, 1996,
pp. 47–55, https://doi.org/10.1145/237814.237827.

[5] A. A. Benczúr and D. R. Karger, Randomized Approximation Schemes for Cuts and Flows
in Capacitated Graphs, CoRR cs.DS/0207078, https://arXiv.org/abs/cs/0207078, 2002.

[6] R. A. Brualdi, F. Harary, and Z. Miller, Bigraphs versus digraphs via matrices, J. Graph
Theory, 4 (1980), pp. 51–73, https://doi.org/10.1002/jgt.3190040107.

[7] M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato, Sparse Sums of Positive Semidef-
inite Matrices, CoRR abs/1107.0088, https://arXiv.org/abs/1107.0088, 2011.

[8] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi, A general framework for
graph sparsification, in Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, ACM, 2011, pp. 71–80, https://doi.org/10.1145/1993636.1993647.

[9] M. Kapralov and R. Panigrahy, Spectral sparsification via random spanners, in Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference, ACM, 2012, pp.
393–398, https://doi.org/10.1145/2090236.2090267.

[10] D. R. Karger and M. S. Levine, Random sampling in residual graphs, in Proceedings of the
Symposium on Theory of Computing, 2002, pp. 63–66.

[11] D. Kogan and R. Krauthgamer, Sketching cuts in graphs and hypergraphs, in Proceedings of
the Conference on Innovations in Theoretical Computer Science, ACM, 2015, pp. 367–376,
https://doi.org/10.1145/2688073.2688093.

[12] A. Madry, Fast approximation algorithms for cut-based problems in undirected graphs, in
Proceedings of the Symposium on Foundations of Computer Science, IEEE, 2010, pp. 245–
254.

[13] I. Newman and Y. Rabinovich, On multiplicative λ-approximations and some geometric ap-
plications, SIAM J. Comput., 42 (2013), pp. 855–883, https://doi.org/10.1137/100801809.

[14] J. Sherman, Breaking the multicommodity flow barrier for O(
√

logn)-approximations to spars-
est cut, in Proceedings of the Symposium on Foundations of Computer Science, 2009,
pp. 363–372.

[15] D. A. Spielman and N. Srivastava, Graph sparsification by effective resistances, SIAM J.
Comput., 40 (2011), pp. 1913–1926, https://doi.org/10.1137/080734029.

[16] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, in Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing, ACM, 2004, pp. 81–90, https://doi.org/10.1145/1007352.
1007372.

[17] D. A. Spielman and S.-H. Teng, Spectral sparsification of graphs, SIAM J. Comput., 40
(2011), pp. 981–1025, https://doi.org/10.1137/08074489X.

ערך מקבל פרדיקט עליהן ההשמות מס' שאם מראים אנחנו לדילול. ניתנים

פרדיקטים O(n/ε2) בעזרת אותו ולייצג אותו לדלל ניתן אז ,1 אינה אמת

אז אמת, ערך שמקבל אחת השמה בדיוק שיש במקרה מחדש. ממושקלים

האפשריים. פרדיקרטים O(n2) ה בכל להשתמש וצריך לדלל ניתן לא

המושגים ש2 מראים אנחנו קבוע. ממוצע עיוות לנו יש ובפרט טובה היא

וההפך. מידה, קנה שיכוני גורר תעדוף שיכוני של קיום כלומר שקולים. האלה

הגרף של פורש עץ ובונים זו בשקילות משתמשים אנחנו ממושקל, גרף בהינתן

וכן ביותר, הקל הפורש העץ משקל פעמים 1 + ρ היותר לכל משקלו אשר

מראש. שנבחר ρ ∈ (0, 1) פרמטר לכל וזאת , O(1
ρ
) הינו בו הממוצע העיוות

בהינתן שטיינר. נקודות מחיקת בעיית את לחקור פונים אנו מכן לאחר

בגודל K ⊆ V טרמינלים של קבוצה ותת G = (V,E,w) ממושקל גרף

אשר כקודקודיו, הטרמינלים עם G של M מינור למצוא היא המטרה .k

השאלה כלשהו. עיוות כדי עד הטרמינלים, בין המרחקים כל את משמר

להעשיר ניתן שטיינר קודקודי הוספת ידי על האם היא ברקע, כאן שנשאלת

לבחון ניתן דוגמא בתור מסויימת. משפחה של הגיאומטריה את משמעותית

הגיאומטריות כל הינה ראשונה משפחה גיאומטריות. של משפחות 2 בין

הינה שניה משפחה .k בגודל מישורים בגרף קודקודים k ידי על הנוצרות

שנרצה ככל גדול מספר בעלי מישוריים מגרפים המתקבלות הגיאומטריות כל

טרמינלים. k בין המרחקים על רק מסתכלים אנחנו כאשר קודקודים, של

לגרף השניה מהמשפחה הגרף כל לשכן שניתן או שונות הללו המשפחות האם

נקודות מחיקת לבעיית שלנו התרומה קבוע? עיוות עם הראשונה במשפחה

הקודם החסם את משפר אשר O(log k) של חדש עליות חסם הינה שטיינר

הטוב החסם גם הוא אך כלליים, לגרפים תופס שלנו החסם . O(log2 k) של

ביותר הטוב החסם הינו O(log k) בפרט מישוריים. לגרפים היודע ביותר

משפחות. של הגיאומטרי העושר על לשאלה הידוע

על מפורסמת בעבודה דילול. על מדבר בתזה שמופיע האחרון הנושא

בגודל מדלל לו לבנות ניתן קודקודים, n על גרף שבהינתן מראים חתכים,

מכלילים אנחנו . 1 ± ε כדי עד החתכים ערכי את משמר אשר O(n/ε2)

בתור פרדיקט מגדירים אנחנו לחתכים. מעבר נוספים לפרדיקטים זו תוצאה

פרדיקטים אוסף הינו אילוצים תוכנית של מופע {0, 1} ל משתנים מ2 פונקציה

של המשקלים סכום הינה ההשמה של המשקל השמה, בהינתן ממושקל.

את לדלל היא המטרה אילוצים, תוכנית בהינתן המסופקים. הפרדיקטים

ישמר ההשמות כל של המשקל אך קטן, יהיה הפרדיקטים שמס' כך התוכנית

פרדיקטנים איזה של קטלוג הינה כאן המרכזית התוצאה . 1 ± ε כדי עד

תקציר

בקירוב. מרחקים משמרת אשר מטריים, מרחבים שני בין פונקציה זוהי שיכון

תכונות בעל או פשוט, הינו משכנים אליו המארח המרחב קרובות לעיתים

להצלחה זכתה אשר אלגוריתמית שיטה זוהי שיכונים אחרות. מועילות

אונליין, אלגוריתמי קירוב, לאלגוריתמי שימושים לה נמצאו בפרט מרובה.

משמעותית. מגבלה יש הקלאסיים בשיכונים ועוד. מבוזרים אלגוריתמים

תלוי כלל בדרך מרחקים, לשמר מצליחים אנחנו כמה עד דהיינו העיוות,

לנו יש אם לדוגמא לשכן. מעוניינים אנו אותו במרחב הנקודות במספר

איכות אחרות, במילים . O(log n) יהיה העיוות רבים במקרים נקודות, n

שיתכן בעוד ביותר, הגרוע הנקודות זוג של הביצועיים לפי נמדדת השיכון

בהרבה. טוב הטיפוסי שהעיוות

מגדירים אנחנו העיוות. מושג של יותר מעודנים מדדים חוקרים אנחנו

הנקודות על סדר מקבלים אנחנו המטרי למרחב בנוסף כאן, תיעדוף. שיכוני

את הכוללים שמרחקים כך שיכון למצוא היא המטרה , X = {x1, . . . , xn}
שאנו פי על אף . n הכולל המרחב בגודל ולא jב תלוי יהיה xj הנקודה

את נמדוד אם גם המקרים, ברוב העיוות, על יותר חזקה הבטחה דורשים

השיכונים של הביצועים ביותר, הגרוע הזוג של למדד ביחס שלנו השיכונים

תוצאות למספר כדגומא הקלאסיים. מהשיכונים פחות לא טובים שלנו

אוקלידי למרחב משתכן נקודות n עם מטרי מרחב שכל הראנו שהוכחנו,

על חסום יהיה {xi, xj} הזוג על העיוות כלומר, . O(log j) תעדוף עיוות עם

לתוך מטרי מרחב של שיכון היא נוספת דוגמא . O(log(max{i, j})) ידי

. O(log j) עיוות תוחלת עם דומיננטיים עצים של התפלגות

אנו כאן מידה. קנה שיכון נקרא מתעניינים אנו בו נוסף מעודן מדד

לחלק אולי פרט הזוגות, כל של העיוות , ε ∈ (0, 1) פרמטר שלכל דורשים

שיכון .(ε הפרמטר של (כפונקציה טובה עיוות מהבטחת יהנו ε בגודל יחסי

תעדוף שיכוני ראשוני, ממבט קבוע. ממוצע עיוות בפרט גורר מידה קנה

לבחור אפשרות לנו יש תעדוף בשיכוני ביותר. שונים נראה מידה קנה ושיכוני

יכולה הטיפוסית ההתנהגות אך מאד, קטן מעיוות שיהנו נקודות של קבוצה

שליטה שום לנו אין מידה קנה בשיכוני זאת, לעומת גרועה. די הכל בסך להיות

הטיפוסית ההתנהגות אך העיוות, על טובה מהבטחה יענו זוגות איזה לגבי

בזאת: מצהיר למטה, החתום פילצר ארנולד אני,

המנחים. מאת שקיבלתי ההדרכה עזרת להוציא בעצמי, חיבורי את חיברתי •

מחקר. תלמיד היותי מתקופת מחקרי פרי הינו זו בעבודה הנכלל המדעי החומר •

בפירוט: אחרים. עם פעולה שיתוף פרי שהוא מקורי חומר נכלל זאת מחקר בעובדת •
ניימן. ועופר אלקין מיכאל עם בשיתוף נעשו 1 בפרק התוצאות

קראוטגמר. רוברט עם בשיתוף נעשו 3 בפרק התוצאות

ניימן. ועופר ברטל יאיר עם בשיתוף נעשו 4 בפרק תוצאות

חתימה שם תאריך

26-Mar-2019רצליפ דלונרא

בהדרכת נעשתה העבודה

קראוטגמר רוברט פרופסור ו ניימן עופר פרופסור

המחשב למדעי במחלקה

הטבע למדעי בפקולטה

בנגב גוריון בן אוניברסיטת

לפילוסופיה" "דוקטור תואר לקבלת הדרישות של חלקי מילוי לשם מחקר

העיוות מושג של עידונים על
מטריקות בשיכוני

מאת

פילצר ארנולד

בנגב גוריון בן אוניברסיטת לסינאט הוגש

ידי: על אושר

פרופסור

קראוטגמר רוברט

מנחה

פרופסור

ניימן עופר

מנחה

2019 מרץ תשע"ט ב' אדר

שבע באר

בנגב גוריון בן אוניברסיטת

לפילוסופיה" "דוקטור תואר לקבלת הדרישות של חלקי מילוי לשם מחקר

העיוות מושג של עידונים על
מטריקות בשיכוני

מאת

פילצר ארנולד

בנגב גוריון בן אוניברסיטת לסינאט הוגש

2019 מרץ תשע"ט ב' אדר

שבע באר

	I Introduction, Results and Discussion
	Introduction
	Refined Notions of Embeddings
	Related Work

	Results
	Results Presented in this Thesis
	Results: Related, Published During the PhD, but do not appear in the Thesis

	Summary, Discussion and Open Problems

	II Prioritized Metric Structures and Embedding
	III On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion
	IV Steiner Point Removal with distortion O(log k), using the Relaxed-Voronoi algorithm
	V Sparsification of Two-Variable Valued CSPs

