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Abstract

Community detection is a major problem in the study of social networks. Infor-
mation regarding the creation process of the graph, which is temporal in nature, may
potentially be useful for algorithms trying to find communities. We wish to examine
if such temporal information can indeed be leveraged algorithmically and if so, how
much temporal information is needed to achieve improvement.

We model a community in a social network as a clique in a graph, and temporal
information as edge labels that describe the time in which the edge was added to the
graph. In our model, edges inside the community are added gradually, simulating a
community in which members are added one by one while edges outside the community
are added randomly (one can think of the community edges as signal and of other edges
as noise). In our setup, when no temporal information is available, finding the clique
requires solving the NP-hard Maximum-Clique problem or the Hidden Clique Problem.

We model access to the temporal information in two different ways, one is by
querying the time in which an edge was added, the second is by querying a step
and getting all the edges that were added to the graph at that step. For each access
method we design algorithms that can find the community, even if only limited portions
of the temporal information are available. Overall, we see that exploiting temporal
information allows polynomial time algorithm to the problem which otherwise have no
known efficient solutions.
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1 Introduction

1.1 Motivation - temporal information in social networks

Many graphs derived from real world problems develop over time, but many algorithmic
approaches for analyzing these graphs, rely only on the resulting graph and ignore the graphs’
creation process. The use of this additional information may provide crucial information for
solving problems on graphs and improving the time complexity of algorithms

In light of the growth of social networks, we focus on the problem of finding communities
in a social network, e.g., the graph of friendships in Facebook or Twitter and the World Wide
Web (as a generalized social network). We present two models of how a social network and a
community are constructed over time and explain how algorithms may exploit the temporal
information - the time at which edges (friendship in the social network) are introduced to the
network. We then design algorithms that find a community in such a network in different
settings. We model a social network by a graph and a community by a clique in a graph,
which we discuss next.

1.2 Maximum-Clique and Hidden Clique Problems

A clique in a graph G = (V,E) is a set of vertices such that every two are connected by
an edge. Let ω(G) denote the size of the largest clique in G. The problem of computing
ω(G) in an input graph G is called the Maximum-Clique problem and is NP-hard [Kar72].

The best approximation known for this problem is an O(n(log logn)2

log3 n
) approximation [Fei04].

In fact, for every fixed ε > 0 it is impossible to approximate ω(G) within a ratio of n1−ε in
polynomial time assuming NP does not have a polynomial time randomized algorithm (i.e.
NP 6=ZPP)[Hs99].

The hardness of approximating the Maximum-Clique problem in the worst case suggests
studying the average case. Let G(n, 1

2
) denote a random graph on n vertices such that each

possible edge appears independently with probability 1
2
. It is well known that in this model,

with probability tending to 1 as n tends to infinity, ω(G) = 2 log n+o(log∗ n) [GM75]. There
are a few polynomial algorithms that find with high probability a clique of size (1+o(1)) log n
in G(n, 1

2
) (e.g.[GM75] ), i.e. a clique of about half the size of the largest clique. There is no

known algorithm for finding in this G(n, 1
2
) a clique of size (1 + ε) log n for any fixed ε > 0,

which is an open question dating back to [Kar76].
A natural possible direction to attack these questions is looking at similar random models

but assure that the largest clique is larger than 2 log n. This intuition leads to another well
known and challenging problem - the Hidden Clique problem that was suggested by [Jer92]
and [Kuč95]. In this problem first a graph G is drawn from the distribution G(n, 1

2
), then a

set K of k nodes is chosen uniformly at random and every two nodes in K are connected by
an edge, making K a clique, the goal is to find the largest clique. We denote by G(n, 1

2
, k) the

resulting distribution of graphs. It is well known that for k � log n with high probability
the largest clique is exactly the planted clique K. For the case k ≥ Ω(

√
n) polynomial-

time algorithms with high success probabilities (taken over the input distribution) for the
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hidden clique problem are presented in [AKS98, AV11, DGGP14, DM13, FK00, FR10]. A

new approach to solve hidden clique for k ≤ n
1
2 , if a certain ”generalization of eigenvalue

computation” can be computed in polynomial time (even approximately) is suggested in
[FK08, BV09]. Along with [FK03, Jer92] that show that two possible approaches to the

problem fail for k = o(n
1
2 ),we get that k = Ω(n

1
2 ) seems like a natural barrier for the

problem.

1.3 Our model - clique with temporal information

We model the problem of finding a community in a social network, as finding a clique in a
graph. The edges of the graph are added over time (in discrete steps), information regarding
this process of construction is referred to as temporal information. In our models, edges
inside the community are added in an ordered fashion, simulating members joining the
community one by one (representing signal), while edges outside the community are added
in random steps (representing noise). The models are such that given no information about
the construction process (only the resulting network) the problem is either the (worst-case)
Maximum Clique problem or the (average-case) Hidden Clique problem.

Formally, we present three models, in all of them the graph G = (V,E) with |V | = n
has a clique of size k denoted by K = {w1, . . . , wk}, the graph is constructed over k discrete
steps such that in each step a node is added to the clique and edges are only added to the
graph.

When considering the graph without temporal information, we think of the result of the
construction process without the information regarding the step in which each edge was
added to it. For every pair u, v ∈ V we denote by τ(u, v) the step in which they were
connected (τ(u, v) = 0 if (u, v) /∈ E). Temporal information (regarding the construction of
G) is accessible in each model in one of two ways:

• Edge query - by querying the step in which a pair of nodes u, v ∈ E were connected
(the answer is 0 if (u, v) /∈ E).

• Snapshot query - by querying the set Et of all the edges in G that were added in step
1 ≤ t ≤ k.

Note that these two access methods provide the same information overall because given all
edge queries one can derive all the snapshots, and given all snapshots one can derive the
answer to any edge query.

We examine three models that differ in three parameters - the underlying graph G,
the construction process of the graph over time and the access method to the information.
Informally, the three models are:

• A worst-case graph with edge queries.

• A hidden clique graph with:

– edge queries.

– snapshot queries.
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1.4 Our results

In all three models we present polynomial time algorithms that find the clique K with high
probability. In fact, our algorithms use only a small portion of the temporal information.
We conclude that the availability of temporal information, even in limited form and amount,
yields a significant improvement in the computational complexity of finding a community in
a social network. Putting to work this concept of exploiting temporal information in real-
world social networks may be an interesting though more empirical future work. In light
of our theoretical results that even a small amount of temporal information suffices, it may
also be useful to quantify how much information is needed in such real networks.

1.4.1 The worst case model

In the worst case model, the only assumption we make regarding the graph G is that it has
at least one clique of size k, let K = {w1, . . . , wk} be one such clique. The construction
process (that is not available to the algorithm) of G is different inside K and outside it:

• For wi, wj ∈ K the edge (wi, wj) is added to the graph at step min{i, j}, this models
nodes that join the community in order w1, . . . , wk.

• For (u, v) ∈ E such that at least one of u, v is not in K, the step in which the edge
(u, v) is added to G is chosen uniformly at random from [k].

In this model, access to the information is via edge queries i.e. upon querying u, v we get
τ(u, v).

Finding a clique of size k in G (without further information) is NP-hard. One might
think that additional temporal information regarding the construction of the graph might not
suffice to find K with high probability. We show that this is not the case when k = Ω(log n).

Theorem 1.1. There exists a polynomial-time algorithm with the following guarantees:
Given as input k and a graph G that has a clique K of size k = Ω(log n) together with
time-stamps that are generated according to the above, with probability at least 1 − 2

n
over

the time-stamps the algorithm outputs K.

1.4.2 Hidden clique model

In the hidden clique model an input graph G = (V,E) with a community K = {w1, . . . wk}
is constructed over k steps. The set of edge E is composed of Et for 1 ≤ t ≤ k, where Et are
exactly the edges added at step t, i.e. E = ∪Et. Each Et consists of edges of two types that
simulate the different behavior inside K and outside it:

• Random edges: each pair of (distinct) vertices that has not been connected in any Et′

for t′ < t is connected in Et with probability p = 1 − (1
2
)
1
k independently of all other

events. Note that this includes also edges inside K.
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• Clique edges: edges between wt and any other wi ∈ K (that it is not connected to yet)
are added with probability 1, namely {(wt, wi) | i > t and ∀t′ < t (wt, wi) /∈ Et′}, this
models nodes that join the community in order w1, . . . , wk.

This constructions creates graphs that are taken from the distribution G(n, 1
2
, k).

We note that the distribution of time stamps in this model differs from its distribution
in the model for worst case graphs. We have made this change to test the idea of temporal
information on different models and make sure it is not sensitive to the specific model of
temporal information.

In this model of graph construction we use two ways for accessing the information - edge
queries and snapshot queries. In both ways of accessing the information we show that the
known barrier of k = Ω(n

1
2 ) can be broken, even when only part of the temporal information

is available.
In the edge query model we show that even if only part of the information is available

then a planted clique of polynomial size (i.e. k = nα where α > 0 is a constant) can be
found efficiently.

Theorem 1.2. Let c = 0.99 (although any constant 0 < c < 1 would work). Assuming
k = nα for constant 0 < α < 1

2
, there exists an efficient algorithm that gets G, k as input,

uses q = Θ(n2−cα) edge queries and with probability at least 1− 1
n

finds the hidden clique.

On the other hand, we show that assuming that the hidden clique problem does not have
a polynomial algorithm then log n edge queries do not suffice.

Theorem 1.3. Suppose there exists a randomized polynomial time algorithm A that gets
G as input and uses s = O(log n) adaptive edge queries to solve the hidden clique problem
in the edge queries model with high probability. Then there exists a probabilistic polynomial
time algorithm B that solves the hidden clique problem in the classic model (i.e. with no
edge queries) with at least the same probability.

In the snapshot model we show that even given only one snapshot the barrier of k = Ω(n
1
2 )

is broken and K can be found for k = Ω̃(n
1
3 ).

Theorem 1.4. Assume k ≥ cn
1
3 lnn for large enough constant c > 0 and fix a constant

0 < β < 1. For any t ≤ βk, given G and Et one can find K in polynomial time with high
probability.

The range of values of k for which K can be found in polynomial time in this model can
be further expanded. Given Ω(log n) snapshots, a clique of polynomial size (i.e. k = nα

where α > 0 is a constant) can be found.

Theorem 1.5. Assuming |K| = k = nα for a fixed α > 0, there exists an algorithm that

runs in nO( 1
α

) time and given {Et | t ∈ I} and I for any set I ⊆ [k] of size ≥ a lnn for

a ≥ c · 2 10
α

+2 and large enough constant c, finds K with probability at least 1 − 5r
n

(where
r = r(α, a) is a parameter to be determined later that does not depend on n).
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2 Worst-case graphs with random time stamps

2.1 The model

Let G = (V,E) be an arbitrary graph that has a clique of size k. Let K = {w1, . . . , wk} be
a clique of size k in G. Time-stamps are generated for the edges of the graph as follows:

• For an edge e = (wi, wj) let τ(e) = min{i, j}.

• For an edge e = (u, v) such that |{u, v} ∩ K| ≤ 1 choose τ(e) uniformly at random
from [k].

2.2 Uniqueness of K

We note that in this model, the labels of the edges inside K have a specific structure - for
every i ∈ [k], there are exactly k − i edges with the label i and they are all incident to the
same node wi, we call this structure a ”correct structure”. Here we show that with high
probability, there is no other set of nodes of size k that has a correct structure.

Claim 2.1. Assuming k = Ω(log n), with probability at least 1 − 1
n

, the only set of size k
that has a correct structure is K.

The assumption that k is large is necessary, and without it the theorem is not true. For
instance, for k = O(1) each clique of size k has a constant probability to have a correct
structure and so we expect to see many such sets besides K (for a graph G with many
k-cliques).

Proof of Claim 2.1. Let m = dlogk ne be the smallest integer such that km ≥ n.
Throughout this proof, whenever considering a set of nodes S, we assume that it is a

clique. Clearly, this is not the case for all sets of nodes (unless G = Kn) thus, the probability
to have a clique C 6= K of size k with a correct structure is at most the one presented here.

Consider a set S of nodes that forms a clique. Assume that S has 1 ≤ j ≤ k nodes outside
K and k − j nodes in common with K. We wish to bound the probability that this set has
an internal structure of time-stamps as K. The edges between the k− j nodes that are part
of K are labeled correctly, so we need to bound the probability that the other edges are
labeled to fit this. Denote by {wt1 , . . . , wtk−j} = S∩K and assume that t1 < t2 < · · · < tk−j.

We note that by looking at the labels of the subgraph of G induced by S \ K we can
determine the names of wt1 , . . . , wtk−j−2

, we will also know that τ(wtk−j−1
, wtk−j) = tk−j−1 so

we will know that one of wtk−j−1
, wtk−j is wtk−j−1

but we will not be able to determine which
of the two nodes is it since both options create the same time-stamps structure. So we need
to guess which one is wtk−j−1

and then we have j+1 names to give to the nodes {u}∪(S \K)
where u ∈ {wtk−j−1

, wtk−j} the node we guessed is not wk−t−1. After choosing a ”name” for
j nodes in S \K plus one node in K, there is exactly one label for each edge that will fit the
structure. So given a naming of the j + 1 nodes, the probability to get the desired structure

is ( 1
k
)j(k−j)+(j2).
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There are at most (j+1)! ways to give names to {u}∪(S\K) (after guessing u) and there
are 2 ways of guessing u, thus, the probability that a specific set S has a correct structure is

at most 2(j + 1)!( 1
k
)j(k−j)+(j2).

For a fixed j, there are
(
n−k
j

)
ways to choose the nodes of S \K, and there are

(
k
k−j

)
ways

to choose the nodes of S ∩K, so overall there are
(
n−k
j

)(
k
k−j

)
such possible sets S. Thus

Pr[∃v1, . . . vj that together with a subset of K form a correct structure]

≤
(
n− k
j

)(
k

k − j

)
2(j + 1)!(

1

k
)j(k−j)+(j2)

≤ nj

j!
kk−jj!k2(

1

k
)j(k−j)+(j2)

≤ kmj+k−j+2−j(k−j)−(j2)

= kk(1−j)+mj+2+ j
2

(j−1).

It suffices to show that the latter is at most k−2m ≤ n−2, thus it is enough to have

k(1− j) +mj + 2 +
j

2
(j − 1) ≤ −2m.

For j > 1, this is equivalent to

k ≥
2m+mj + 2 + j

2
(j − 1)

j − 1
= m+

3m+ 2

j − 1
+
j

2
,

which holds whenever k = Ω(log n) since in this case m = O( logn
log logn

) and j ≤ k.
For the case j = 1 we get

Pr[∃v1 that together with a subset of K form a correct structure] ≤ 2(n− k)k

kk−1
<

1

n2
.

Altogether

Pr[∃1 ≤ j ≤ k and {v1, . . . , vj} that together with a subset of K form a correct structure)

≤ k

n2
≤ 1

n
.

2.3 Finding the clique

Theorem 1.1. There exists an algorithm that gets as input k and a graph G that has a
clique K of size k = Ω(log n) together with time-stamps that are generated according to the
above. The algorithm finds K with probability at least 1− 2

n
over the time-stamps and runs

in time nO(m)(3m)! where m = dlogn ke.
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We note that the algorithm presented in this part uses graph properties such as adjacency
and time-stamps but does not use the names of the nodes themself hence the correctness
presented holds for any permutation of the nodes’ names.

Note: The probability of success is taken over the time-stamps, i.e. for every G the
algorithm succeeds with this probability.

Proof of Theorem 1.1. Note that m is the smallest integer such that km ≥ n.
For a tuple σ = (v1, . . . , v3m) ∈ V 3m define U(σ) = {u ∈ V | τ(v1, u) = 1, . . . , τ(v3m, u) =

3m}. We note that for a given tuple σ, it takes O(nm) time to find U(σ).

Claim 2.2. Pr[K = {w1, . . . , w3m} ∪ U(w1, . . . , w3m)] ≥ 1− 1
n2 .

Proof of Claim 2.2. By the construction of the labels in the graph, it is easy to see that K \
{w1, . . . , w3m} ⊆ U(w1, . . . , w3m). We now show that with high probability U(w1, . . . , w3m) =
K \ {w1, . . . , w3m}. For a node u ∈ V \K

Pr[u ∈ U(w1, . . . , w3m)] =
1

k3m
≤ 1

n3
.

By union bound we get that

Pr[∃u ∈ V \K s.t. u ∈ U(w1, . . . , w3m)]) ≤ 1

n2
.

So with high probability K = {w1, . . . , w3m} ∪ U(w1, . . . , w3m).

For a tuple σ = (v1, . . . , v3m) ∈ V 3m, we denote by Sσ = {v1, . . . , v3m} the set of nodes
that are in σ.

We now show that although (w1, . . . , w3m) is not given to us, we can find K by an
exhaustive search over all tuples of size 3m. The intuition is that for a tuple σ 6= (w1, . . . w3m),
even if the set Sσ ∪ U(σ) is a clique of size k, by Claim 2.1 with high probability it does
not have a correct structure and by Claim 2.2 S(w1,...w3m) ∪ U(w1, . . . w3m) = K with high
probability and so it can be identified.

Algorithm WorstCaseAlgorithm (V,E, k)

1: for every tuple σ = (v1, . . . , v3m) ∈ V 3m do
2: if {v1, . . . , v3m} ∪ U(σ) is a clique of size k that has a correct structure then
3: return {v1, . . . , v3m} ∪ U(σ)

4: return ∅

If the algorithm gets to the iteration in which σ = (w1, . . . w3m) then with probability
at least 1 − 1

n
it returns K since according to Claim 2.2 with high probability in this case

Sσ∪U(σ) = K (and K meets the condition of step 2) so the correct answer will be returned.
For the algorithm to fail at least one of the following events must happen:

1. {w1, . . . , w3m} ∪ U(w1, . . . , w3m) 6= K.

12



2. There exists σ 6= (w1, . . . , w3m) such that Sσ ∪ U(σ) is a clique of size k that has a
correct structure.

The probability that event 1 happens is according to Claim 2.2 at most 1
n2 .

Lemma 2.3. Pr[event 2 happens] ≤ 1
n

Proof of Lemma 2.3. There are two possible cases:

1. Sσ = {w1, . . . , w3m} and σ 6= (w1, . . . , w3m).

2. Sσ 6= {w1, . . . , w3m}.

We show that in both cases Sσ ∪ U(σ) 6= K and so by Theorem 2.1 with probability at
most 1

n
there is a tuple σ such that Sσ ∪ U(σ) has a correct structure.

In the first case, there exists 1 ≤ i ≤ 3m such that vi = wr 6= wi. For every j > 3m
τ(wj, vi) = r 6= i so K ∩ U(σ) = ∅ and Sσ ∪ U(σ) 6= K.

In the second case, there must exists vi ∈ Sσ such that vi /∈ {w1, . . . , w3m}. If vi /∈ K it
is obvious that Sσ ∪ U(σ) 6= K. Otherwise it must be that vi = wt for some t > 3m, then
for every j 6= i τ(vi, wj) 6= i so wj /∈ S(σ) and so Sσ ∪ U(σ) 6= K.

So the algorithm fails with probability at most 2
n
. It is easy to see that the running time

of this algorithm is nO(m)(3m)! this concludes the proof of Theorem 1.1.
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3 Hidden clique problem with edge queries

3.1 The model

A graph G = (V = [n], E) with a clique K = {w1, ..., wk} ⊆ V of size k = nα for some
constant 0 < α < 1 is constructed over k steps. At each step 1 ≤ t ≤ k an edge set Et is
added and E = ∪kt=1Et. The set Et consists of edges of two types:

• Random edges: each pair of (distinct) vertices that is not already connected in any

Et′ , t
′ < t, is connected in Et with probability p = 1− (1

2
)
1
k independently of all other

events. Note that this includes also edges inside K.

• Clique edges: edges between wt and all other vertices in K (to which wt is not already
connected) are added with probability 1, namely {(wt, wi)|i 6= t}.

For (u, v) ∈ E we denote by τ(u, v) the step in which the edge was added to G. If
(u, v) /∈ E we define τ(u, v) = 0. In this section we consider the edge query method for
accessing the temporal information, i.e. the algorithm query τ(u, v) for a pair of nodes
u, v ∈ E.

The above construction of G with the same temporal information (edge labels) will also
be used in section 4, but there the temporal information is accessed via snapshots. We stress
that these two access methods provide the same information overall, because given all edge
queries one knows all the snapshots, and given all snapshots one knows the answer to any
edge query. Our algorithms use only part of the temporal information, hence our results in
theses sections are not equivalent.

3.2 Preliminary observations

Lemma 3.1. p = Θ( 1
k
), to be exact ln 2

k+ln 2
≤ p ≤ ln 2

k
.

Proof of Lemma 3.1. We first show that p = O( 1
k
), we note that1 (1 + − ln 2

k
)k ≤ e− ln 2 and

so 1− ( 1
eln 2 )

1
k ≤ 1− ((1 + − ln 2

k
)k)

1
k and

p = 1− (
1

2
)
1
k = 1− (

1

eln 2
)
1
k ≤ 1− ((1− ln 2

k
)k)

1
k =

ln 2

k
.

So indeed p = O( 1
k
).

We now show that p = Ω( 1
k
). First note that eln 2 ≥ (1 + ln 2

k
)k, from this we have

( 1
eln 2 )

1
k ≤ ((1 + ln 2

k
)−k)

1
k and

p = 1− (
1

2
)
1
k = 1− (

1

eln 2
)
1
k ≥ 1− ((1 +

ln 2

k
)−k)

1
k =

ln 2

k + ln 2
.

So indeed p = Ω( 1
k
) and from the proof we can see that ln 2

k+ln 2
≤ p ≤ ln 2

k
.

1For x ∈ R we have 1 + x ≤ ex we take x = − ln 2
k and raise it to power k > 0.
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Lemma 3.2. Outside the clique K, the graph looks like G(n, 1
2
).

Proof of Lemma 3.2. For v 6= u such that u /∈ K it holds that

Pr[(u, v) ∈ E] = Pr[∃1 ≤ t ≤ k s.t. (u, v) ∈ Et]

= 1− Pr[∀1 ≤ t ≤ k s.t. (u, v) /∈ Et] = 1− (1− p)k =
1

2
.

Moreover, this event is independent of all other edges, therefore outside K, the graph
looks like G(n, 1

2
).

Note that by Lemma 3.2, the resulting graph without the edge labels is an instance of
the hidden clique problem with parameters (G, 1

2
, nα), recall that for α < 1

2
there are no

known polynomial algorithm to this problem. Since there are efficient algorithms that find
K with high probability without additional information when α ≥ 1

2
, we focus on the case

that α < 1
2
.

3.3 Upper bound

We show that even without full temporal information the clique K can be found with high
probability in polynomial time. In this section we think of K as built from three sets of
nodes according to the order in which they are added to the graph K = K1/3 ∪K2/3 ∪K3/3

where Ki/3 = {w (i−1)k
3

+1
, . . . , w ik

3
} for 1 ≤ i ≤ 3.

Theorem 1.2. Let c = 0.99 (although any constant 0 < c < 1 would work). Assuming
0 < α ≤ 1

2
is a constant, there exists an efficient algorithm that gets G, k as input, uses

q = Θ(n2−cα) edge queries and finds the hidden clique with probability at least 1− 1
n

.

Proof of Theorem 1.2. Let m′ be the unique integer such that 1
α
− 2 < m′ ≤ 1

α
− 1.

We present algorithm Pick(G,α). It uses procedure Test that will be described later.
Algorithm Pick first finds (using procedure Test) a set Q (line 7) which is with high
probability a random subset of K2/3 together with the names of the nodes of Q. The
algorithm then proceeds to find all the nodes that are connected to all of Q with edges that
are labeled by the name of the node from Q (line 18), this set is Γ∩(Q). Since the nodes
are added to K one by one, we expect that many nodes of K3/3 will be in Γ∩(Q), and since
edges from nodes in K to nodes outside K have random labels, we do not expect to have
any node from V \K in Γ∩(Q); we conclude that Γ∩(Q) ⊆ K. Since edges outside K appear
with probability 1

2
, expanding Γ∩(Q) (line 19) with nodes that are connected to all of Γ∩(Q)

assures that nodes outside K are very unlikely to be added, on the other hand all the nodes
of K will be added and so we expect that the set obtained from this process will be with
high probability K.
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Algorithm Pick (G,α)

1: denote s = s(n) = n1−cα (c is the constant from Theorem 1.2 ).

2: choose uniformly and independently at random with repetitions Ŝ = {v1, . . . , vs} ⊆ V

(Ŝ is a multi-set).
3: for every j = 1, . . . , s do
4: set βj ← empty − list
5: Q← ∅
6: i← 0
7: while i ≤

(
s
m′

)
and |Q| < B do

8: let Ri = {vi1 , . . . , vim′} be the i-th subset of {v1, . . . , vs} of size m′, according to some
fixed order.

9: let (ti1, . . . , t
i
m′)← Test(G,Ri) . tij corresponds to the node vij

10: if for every j ∈ [m′] tij 6= 0 then
11: Q← Q ∪Ri

12: for every vij ∈ Ri do
13: add tj to βij

14: i← i+ 1

15: if |Q| ≥ 4
α
then

16: for every i = 1, . . . , s do
17: tvi ← the mode (the value that appears most often) of βi (set 0 if βi is empty).

18: Γ∩(Q)←
⋂
vi∈Q Γtvi (vi) where Γtvi (vi) = {u ∈ Γ(v)|τ(u, vi) = tvi}

19: C ← {u /∈ Γ∩(Q) | u is connected to all the nodes in Γ∩(Q)}
20: return C ∪ Γ∩(Q)
21: else(|Q| < 4

α
)

22: return ∅

Note that algorithm Pick(G,α) uses only time-stamps and adjacency relations. Let
(tS1 , . . . , t

S
m′) be the output of Test(G,S), we assume that procedure Test(G,S) has the

following properties:

1. It runs in polynomial time (assuming an edge query is an O(1) operation).

2. It uses only time-stamps and adjacency relations.

3. In every invocation, the algorithm queries only edges adjacent to nodes in S.

4. If S = {wt1 , . . . , wtm′} ⊆ K2/3 then with probability at least 1− 1
nr

(for an arbitrarily
large but fixed r > 1) (tS1 , . . . , t

S
m′) = (t1, . . . , tm′).

5. Else (i.e. if S ∩ (K \K2/3) 6= ∅) then with probability at least 1− 1
nr

(for an arbitrarily
large but fixes r > 1) (tS1 , . . . , t

S
m′) = (0, . . . , 0).

We later show a procedure that meets these conditions (see section 3.3.6).
We now show that with probability at least 1− 1

n
algorithm Pick(G,α) returns K.
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3.3.1 Analysis of steps 7-14 - construction of Q

Claim 3.3. With probability at least 1− 1
n2 the set Q computed in step 6 satisfies Q ⊆ K2/3

and |Q| ≥ 4
α

.

Proof of Claim 3.3. For every i ∈ [k
3

+1, 2k
3

] we denote by Xi the random variable indicating

if wi was chosen to be part of Ŝ (we note that with some small probability, the same node
can be chosen more than once). Let X =

∑
wi∈K2/3 Xi the number of nodes from K2/3 that

were chosen in total.

Pr[Xi = 0] = (1− 1

n
)s = (1− 1

n
)n

1−cα ≤ 1− 1

n(1−c)α .

So

E[X] =
k

3
Pr[Xi = 1] ≥ ncα

3
.

Taking now δ = 1
2

and using Chernoff bound we get:

Pr[X <
4

α
) ≤ Pr[X <

1

2
E[X]] ≤ exp(−n

cα

24
) = exp(−Θ(ncα)).

We get that this probability is ≤ 1
nr

for an arbitrary fixed r = Θ(1), in particular for r = 2.
So with probability at least 1− 1

n2 , in step 7 we check at least one set Ri of size 4
α

of nodes
from K2/3. From property 4 of the procedure Test(G,S), we know that with probability
at least 1 − 1

n3 , for all the nodes in Ri the procedure returns the correct time-stamp in
which they ”act” and for all other nodes the procedure returns 0. So with probability at
least ≥ 1 − 1

n2 , the set Q computed in step 7 satisfies Q ⊆ K2/3 and |Q| ≥ 4
α

, moreover,
Q ⊆ (∪sj=1{vj}) ∩K2/3.

We note that |Q| < 5
α

, since in every iteration of the loop at step 6 at most m′ < 1
α

nodes
are added to Q and at the beginning of every iteration |Q| < 4

α
.

3.3.2 Analysis of steps 16-18 - construction of Γ∩

We note that the edges and their labels were used by algorithm Test in order to build the
set Q and so we cannot assume that the labels of the edges that are adjacent to Γ∩(Q)
as used in step 18 are distributed according to the distribution induced by the model. To
overcome this problem we look at an ”idealized” construction of the set Q and note that
with high probability the two constructions coincide.

Let R ⊆ V be a multiset of size s that is chosen uniformly at random, possibly with
repetitions, and let R′ = R ∩K2/3. Let R′1, . . . R

′
l be all the subsets of R′ of size m′ ordered

according to the fixed order (e.g. lexicographic) used by the algorithm at step 8. Let d be
the smallest number such that |

⋃d
i=1R

′
i| ≥ 4

α
where the union is without repetitions, and let

Q̂ =
⋃d
i=1 R

′
i = {wt1 , . . . , wtq}. Note that 4

α
≤ q ≤ 5

α
. We note that according to the analysis

of step 7 and assumptions regarding procedure Test(G,S), with high probability the set Q

computed by the algorithm is equal to Q̂. From this point we consider this is indeed the case
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(Q = Q̂) and analyze Γ∩(Q̂) instead of Γ∩(Q) as defined in the algorithm. The key aspect

in this analysis is that Q̂ is defined without looking at time-stamps of edges.
For a node wl ∈ K3/3 and for every 1 ≤ j ≤ q we first note that (wl, wtj) ∈ E (since

wl, wtj ∈ K) and
Pr[wl ∈ Γtj(wtj)] = (1− p)tj−1 ≥ 0.6.

The inequality is due to tj ∈ [k
3

+ 1, 2k
3

]. Denote by Zl the random variable indicating if

wl ∈ Γ∩(Q̂) and by Z =
∑

wl∈K3/3 Zl the number of nodes from K3/3 that are in Γ∩(Q̂). We
get:

Pr[Zl = 1] = Pr[∀j ∈ [q], τ(wl, wtj) = tj] =

4
α∏
j=1

(1− p)tj−1 ≥ 0.6q.

E[Z] ≥ 0.6q
k

3
.

We note that Z 2k
3

+1, . . . , Zk are independent, so we can use Hoeffding’s inequality. Taking

t =
√

kr lnn
6

for r = Θ(1):

Pr[|Z − E([Z]| ≥ t] ≤ 2 exp(−6t2

k
) ≤ 1

nr

We note that since r = Θ(1),

E[Z]− t ≥ 0.6q
k

3
− t ≥ k

2
16
α

.

Taking r = 2 we get that with probability at least 1− 1
n2 , Z ≥ k

2
4
α

, i.e. the set Γ∩(Q) in the

algorithm, contains a constant fraction of K.
On the other hand, for a node u /∈ K we have:

Pr[u ∈ Γ∩] =

q∏
j=1

Pr[τ(u,wtj) = tj] =

q∏
j=1

(1− p)tj−1p ≤ pq ≤ p
4
α ≤ (

ln 2

nα
)

4
α .

Using a union bound over all u /∈ K, we get that (for large enough values of n)

Pr[∃u /∈ K such that u ∈ Γ∩] ≤ n(
ln 2

nα
)

4
α =

(ln 2)
4
α

n3
≤ 1

n2
.

3.3.3 Analysis of steps 19-20- constriction of C

We note that the edges and their labels were used by algorithm Test in order to build the
set Q, and so the set Γ∩(Q) is not random and we can not assume that the edges adjacent
to Γ∩(Q) are random and that each edge appear with probability exactly 1

2
.

To overcome this problem we look at the set Q′ = Ŝ ∩K2/3 and we denote by wr1 , . . . , wrq′
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the nodes of Q′ and assume (for the purpose on this proof) that r1, . . . , rq′ are known. We

note that since Ŝ is chosen uniformly at random, the set Q′ is a set that is chosen uniformly
at random from K2/3 and we did not look at it’s outgoing edges.

For R ⊆ Q such that 4
α
≤ |R| ≤ 5

α
we look at Γ∩(R). From the analysis of steps 16-18 we

know that for a fixed R with high probability Γ∩(R) ⊆ K and |Γ∩(R)| ≥ k

2
16
α

. We note that

since Ŝ is chosen uniformly at random, the sets Q′, R are chosen uniformly at random from
K2/3 and so Γ∩(R) is a set in K which is independent of edges outside of K. The probability

for a node u /∈ K to connect to all of Γ∩(R) is at most (1
2
)|Γ∩(R)| ≤ (1

2
)

k

2
16
α ≤ 1

n3 , so with
probability at least 1 − 1

n2 no node outside K is connected to all of Γ∩(R). On the other
hand every u ∈ K is connected to all the nodes in Γ′∩.
Since Test(G,Q) returns the right answer with high probability, we get that with high
probability Q ⊆ Q′ i.e. Q = R for some R ⊆ Q′ and Γ∩(Q) = Γ∩(R), so from the above
analysis, we get that exactly the nodes of K will be added to C.

3.3.4 Success probability

For the algorithm to fail at least one of the following must happen:

• Less than 4
α

distinct nodes from K2/3 are chosen to Ŝ.

• Procedure Test(G,Q) returns a wrong value (in any of its
(
s
m′

)
invocations).

• The set Γ∩(Q) is not a constant fraction of K (i.e. |Γ∩(Q̃)| < k

2
16
α

).

• There exists a node v /∈ K such that v ∈ Γ∩(Q).

• Q * Q′.

• There exists a node v /∈ K such that v ∈ C.

Each of these events happens with probability at most 1
n2 , so overall the algorithm succeeds

with probability at least 1− 1
n

.

3.3.5 Number of queries and running time

Algorithm Test uses queries exactly to all the neighbors of Ŝ. Each node has at most
n − 1 neighbors, there are s nodes so in total s(n − 1) = Θ(n2−cα) queries are needed. We
note that in order to not query edges more then once (and thus using more queries), one
can implement a global data structure that saves all answers from past queries (this data
structure will be used by Pick).

Denoting TTest the runtime of Test(G,Q), it is easy to see that the runtime of Pick(G,α)
is O(sm

′
TTest), we assume that TTest is polynomial so for constant α the runtime is polyno-

mial.
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3.3.6 Procedure Test(G,Q)

We describe now the procedure Test(G,Q). The procedure can distinguish whether the
given set of nodes Q is in K or is outside (or only partly in) K by looking at the frequencies
that some time-stamps appear in edges adjacent to the nodes of Q. The procedure gets G
and a set Q = {v1, . . . , vM} ⊆ V of size M (to be chosen later by Claim 3.4) and returns a
vector of M values (tQ1 , . . . , t

Q
M). The procedure Test uses a function d that is defined on

sets of nodes of size M , as described below in Claim 3.4, and is computable in polynomial
time. The procedure counts for every set S = {t1, . . . , tM} how many nodes u ∈ V are there
such that for every i ∈ [M ] they are connected to vi by an edge with time-stamp ti (steps
2-3). Intuitively if Q ⊆ K and {t1, . . . , tM} are exactly the nodes’ names (i.e. vi = wti) then
there are many such nodes u (nodes in the clique) and in other cases there will be only few
such nodes. The parameter d represents a threshold of the described number, i.e. pairs of
sets Q,S for which the number of such nodes u is larger than d is likely to be such that
Q ⊆ K and that the names of the nodes are according to S and otherwise the names are
not according to S or the set is not a subset of K.

Algorithm Test (G,Q)

1: query τ(vl, u) for every vl ∈ Q and u ∈ V \Q (if u, v are not connected then τ(u, v) = 0)
2: for every set S = {t1, . . . , tM} ⊆ [k] do
3: let bQ(S) = |{u ∈ V \Q | ∀1 ≤ l ≤M, τ(vl, u) = tl}|
4: let SQ = arg maxS⊆[k]{bQ(S)}
5: if bQ(SQ) ≥ d(SQ) then
6: return SQ = (t1, . . . , tM)
7: else
8: return (0, . . . , 0)

Note that procedure Test(G,S) uses only time-stamps and adjacency relations. We
define the following variables for the analysis of the procedure. For nodes u, v ∈ V let Y t

v (u)
be a random variable indicating if τ(u, v) = t. For a set of nodes Q = {v1, . . . , vM} (all
distinct), a corresponding set of time-stamps S = {t1, . . . , tM} (all distinct) and a node
u /∈ Q, we define the random variable Y S

Q (u) indicating if τ(u, vi) = ti for every 1 ≤ i ≤ M

(if the edge does not exists then we assume τ(u, vi) = 0). Observe that Y S
Q (u) =

∏M
i=1 Y

ti
vi

(u)
and from the independence of the edge labels,

Pr[Y S
Q (u) = 1] =

M∏
i=1

Pr[Y ti
vi

(u) = 1].

This equality is correct for both cases u ∈ K and u /∈ K, each case has to be verified (via an
easy calculation) separately. The probability distributions for the variables Y t

v (u) and Y S
Q (u)

appear in Appendix A.
We now look at the random variable Y S

Q =
∑

u∈V Y
S
Q (u). We define 4 basic types of pairs

〈Q,S〉 where S = {t1, . . . , tM}:
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1. Q = {wt1 , . . . , wtM} ⊆ K.

2. Q = {v1, . . . , vM} ⊆ V \K.

3. Q = {wi1 , . . . , wiM} ⊆ K such that ∀l ∈ [M ] tl < il

4. Q = {wi1 , . . . , wiM} ⊆ K such that ∀l ∈ [M ] tl > il

We note that if u /∈ K then Y S
Q (u) distribution is the same for all 〈Q,S〉 are of different

type. The effect of the different types appear only for u ∈ K.
From these basic types, we can build composite types of pairs 〈Q,S〉. Each pair 〈Q,S〉

can be broken into disjoint pairs 〈Q′i, S ′i〉 of type i for 1 ≤ i ≤ 4 such that |Q′i| = |S ′i| = mi.
For the sake of analysis, we assume WLOG that Q = {v1, . . . , vM} such that v1, . . . , vm1 ∈
Q′1, vm1+1, . . . , vm1+m2 ∈ Q′2, vm1+m2+1, . . . , vm1+m2+m3 ∈ Q′3, vm1+m2+m3+1, . . . , vm ∈ Q′4.
This random variable can be written as:

Y S
Q =

∑
u∈V

Y S
Q (u) =

∑
u∈V

4∏
i=1

Y
S′i
Q′i

(u).

We note that if m4 > 0 the random variable ”behaves” exactly as if m4 = M (since it can
not connect to nodes in K with the right time-stamp), i.e. Y S

Q (u) = 0. So from now on we
identify sets such that m4 > 0 with sets of the form m4 = M , and assume that composite
sets are broken into only the first three types.

Claim 3.4. Let S = {t1, . . . , tM} ⊆ {k3 + 1, . . . , 2k
3
} and M be the largest integer such that

M ≤ 1
α
− 1, there exists a computable d = d(S) = such that with probability at least 1 − 1

nr

for an arbitrarily large but fixed r:

• Y S
{wt1 ,...,wtM }

> d and

• Y S
Q < d for every Q ⊆ V , |Q| = M such that Q 6= {wt1 , . . . , wtM}.

Proof of Claim 3.4. Fix some S = {t1, . . . , tM} ⊆ {k3+1, . . . , 2k
3
} and letQ1 = {wt1 , . . . , wtM}

and Qi, |Qi| = M for 2 ≤ i ≤ 4 be any fixed set such that 〈Qi, S〉 is a pair of type i. Let
Q5 be a set such that 〈Q5, S〉 is of a composite type (at least two of m1,m2,m3 are greater
than 0). We denote by µi = E(Y S

Qi
) for i ∈ [5].

Lemma 3.5. µ4, µ3, µ2 ≤ µ5 ≤ µ1.

We prove Lemma 3.5 in Appendix A.
Since Lemma 3.5 is true for any 5 sets (of the proper types) it’s also true for

Q′5 = Q′5(S) = arg max
Q5 is composite with respect to S

{E(Y S
Q5

)}

Let µ′5 = E(Y S
Q′5

). We denote by δi = µ1 − µi for 2 ≤ i ≤ 5 and δ′5 = µ1 − µ′i, and let di =
µ1+µi

2
= µi + δi

2
and d′5 =

µ1+µ′5
2

= µ5 +
δ′5
2

. From Lemma 3.5 we get that d2, d3, d4 ≤ d5 ≤ d′5.
We will see:
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• Pr[Y S
Q1
≥ d′5] ≥ 1− 1

nr′
(for an arbitrary fixed r′ = Θ(1)).

• For every Q 6= Q1, Pr[Y S
Q ≤ d′5] ≥ 1− 1

nr′
(for an arbitrary fixed r′ = Θ(1)).

Since there are at most nM sets Q 6= Q1 and M = Θ( 1
α

), taking r′ = M + r we get that with
probability at least 1− 1

r
for all Q 6= Q1 it holds that Y S

Q ≤ d′5 and so d′5 has the separating
property needed, i.e. with high probability:

• Y S
Q1
> d′5

• Y S
Q < d′5 for every Q ⊆ V , |Q| = M such that Q 6= Q1.

We show that d′5 is computable in polynomial time. For a set S ⊆ {k
3

+ 1, . . . , 2k
3
} we

denote by ρ = ρ(S) = max{ti ∈ S} and get:

µ1 = E(Y S
Q1

) = (n− k)(1− p)
∑<
l=1 ti−MpM + (k − ρ)(1− p)

∑<
l=1 ti−M ,

µ5 = E(Y S
Q5

) = (n− k)(1− p)
∑M
l=1 tl−MpM + (k − ρ− 1 + p−I{m3>0})(1− p)

∑M
l=1 tl−Mpm2+m3 .

Where I{m3>0} = 1 if m3 > 0 and I{m3>0} = 0 otherwise (a detailed explanation of the
computation of µ5 appears in Appendix A). In order to maximize µ5 we need to minimize
the power in the expression pm2+m3 , we know that it must be at least 1 (otherwise the set
will be of type 1 and not composite), so we take m2 + m3 = 1, we note that the option of
m2 = 0,m3 = 1 is better since in this case we get

k − ρ− 1 + p−Im3>0 = k − ρ− 1 +
1

p
.

So we see that:

d′5 =
2(n− k)(1− p)

∑M
i=1 ti−mpM + (k − ρ)(1− p)

∑M
i=1 ti−M + (k − ρ− 1 + 1

p
)(1− p)

∑M
i=1 ti−mp

2

This is indeed computable in polynomial time. We turn to show that with high probability
Y S
Q1

> d′5 and Y S
Q < d′5 for every Q ⊆ V , |Q| = M such that Q 6= Q1. Taking ε1 = δ5

2µ1
=

µ1−µ5
2µ1

< 1, and using Chernoff bound:

Pr[Y S
Q1
≤ d′5] ≤ Pr[Y S

Q1
≤ (1− ε1)µ1] ≤ exp(−ε

2
1µ1

2
) = exp(− δ2

5

8µ1

)

≤ exp(−
k2(1

2
)
2M
3

256npM
) = exp(−Θ(n(M+2)α−1)).

The last inequality is due to:

• µ1 ≤ (k+ npM)(1− p)
∑M
l=1 ti−M and since M < 1

α
− 1 we have k < npM so µ1 ≤ 2npM .

• δ5 ≥ k
4
(1− p)

∑M
l=1 ti−M ≥ k

4
(1

2
)
2M
3 .
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Since M > 1
α
− 2 is a constant, for every α < 1

2
the above probability is exp(−Θ(nβ)) for

some constant β so, this probability is ≤ 1
nr′

for an arbitrary fixed r′ = Θ(1).

Taking ε5 = δ5
2µ5

and using Chernoff bound:

Pr[Y S
Q5
≥ d′5] ≤ Pr[Y S

Q5
≥ (1 + ε5)µ5] ≤ exp(−ε

2
5µ5

3
) = exp(− δ2

5

12µ5

)

≤ exp(−
k2(1

2
)
2M
3

384npM
) = exp(−Θ(n(M+2)α−1)).

The last inequality is due to:

• µ5 ≤ µ1 ≤ 2npM since M ≤ 1
α
− 1.

• δ5 ≥ k
4
(1− p)

∑M
l=1 ti−M ≥ k

4
(1

2
)
2M
3 .

As before, this probability is ≤ 1
nr′

for an arbitrary fixed r′ = Θ(1).
We note that Q2, Q3, Q4 are stochastically dominated by Q5 hence the same tail bound

applies for Pr[Y S
Qi
≥ d5] for every 2 ≤ i ≤ 4.

Claim 3.6. Denoting (tQ1 , . . . , t
Q
M) ← Test(G,Q), procedure Test(G,Q) satisfies the fol-

lowing properties:

1. It runs in polynomial time (assuming an edge query is an O(1) operation).

2. It uses only time-stamps and adjacency relations.

3. In every invocation, the algorithm queries only edges adjacent to nodes in S.

4. If Q = {wt1 , . . . , wtM} ⊆ K2/3 then with probability at least 1 − 1
nr

(for an arbitrarily

large but fixed r > 1) for every l ∈ [M ] it holds that tQl = tl.

5. else, i.e. if Q ∩K \K2/3 6= ∅, with probability at least 1− 1
nr

(for an arbitrarily large

but fixed r > 1) for every l ∈ [M ] it holds that tQl = 0.

Proof of Claim 3.6. Let us analyze the running time: In step 1, there are at most |Q|n =
Mn = O(n) queries, each takes O(1) time. In step 2, we compute

(
k
M

)
= O(nαM) sets bQ(S),

each set is compute in O(n) time. From Theorem 3.4, we know that for every S ⊆ [k] the
value d(SQ) is computable in polynomial time. So the entire algorithm takes polynomial
time.

Properties 2, 3 are clear from the algorithm itself. Properties 4, 5 follow directly from
Theorem 3.4.
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3.4 Lower bound

Here we refer to our model (with time-stamps) of the hidden clique problem as the temporal
model and to the model without time-stamp as the classical model. We start by proving a
lower bound for deterministic algorithms we then extend this to randomized algorithm

Theorem 3.7. Suppose there exists a deterministic polynomial time algorithm A that gets
G as input and uses s = O(log n) adaptive edge queries to solve the hidden clique problem
in the edge queries model with high probability. Then there exists a probabilistic polynomial
time algorithm B that solves the hidden clique problem in the classic model (i.e. with no
edge queries) with at least the same probability.

We first clarify the meaning of an algorithm that uses ”deterministic adaptive edge
queries”. By this we mean that the choice of the i-th edge to be queried may depend
on the answers of the queries done before, but it is deterministic, i.e. if we execute the
algorithm more than once and get the same answers to the first i− 1 queries, the i-th edge
to be queried will be the same in all the executions (with probability 1). So algorithm A has
WLOG the following form:

Algorithm A(G)

1: PrevQueries← empty − stack
2: for i = 1, . . . ,m do
3: ei ← A∗(G,PrevQueies, i)
4: query edge ei and denote by ti the answer
5: push(PrevQueries, (ei, ti))

6: return A′(G,PrevQueries)

Here A∗ and A′ are deterministic polynomial time that do not make any queries, and with
high probability (that is taken only over the input graph and its time-stamps)A′(G,PrevQueries) =
K when PrevQueries is generated properly. We assume WLOG that no edge is queried more
than one.

Proof of Theorem 3.7. We denote by Q the distribution of time-stamps for an edge that at
least one of its end nodes is outside K, and by Q̂t′ the distribution of time-stamps for an
edge that both of its end nodes are in K and the endpoint that is added to K first, is added
at step t′. We note that both distributions are samplable in polynomial time. From here on,
we refer to the time in which a node in the clique acts as its name, nodes that are outside
the clique are all named 0.

We start by explaining the general scheme of algorithm B. The algorithm traverse
through all root-leaf paths using a DFS, in a quadtree (a tree in which each node has exactly
four children) with m+1 levels (starting at level 0). At level i > 0 the algorithm executes A∗

with input the graph G, the edges queried so far with the time-stamps generated for them
(in the current path from the root) and i - the number of the step. Let e = (u, v) be the
edge returned by A∗ at a certain node in level i. Since we don’t know if u, v are both inside
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the clique, both outside it or one is in the clique and the other is outside, we check all four
options.Each child in the tree represent one of these four options:

1. Both nodes are inside the clique. If any of the nodes was already a part of a queried
edge we need to be consistent with the name given to it before. In particular, if any
of the nodes was named before we must keep that name. On the other hand, if a node
was decided previously to be outside the clique we can’t be consistent and the search
in that subtree is stopped. If a node has not been decided yet, assign it a random name
that was not used for nodes in this path, denote the names by Name(u), Name(v).
This is done in the procedure GenerateNamesClique(G,C, u, v) described below.

2. Both nodes are outside the clique. First make sure that both nodes were not decided
before to be in the clique. If one of the nodes was decided to be in the clique we can’t be
consistent and the search in that subtree is stopped. Otherwise, give both the name 0.
This is done in the procedure GenerateNamesNotClique(G,C, u, v) described below.

3. One node is inside the clique and the other is outside the clique. Generally there are
two sub-cases, the first is if u is decided to be in the clique and v is decided to be outside
the clique, in the second the decisions are swapped. In the algorithm the sub-cases are
treated separately. Here we describe only the first, the second is treated analogously.
If u was decided before to be outside the clique or v was decided to be in the clique
we can’t be consistent and the search in that subtree is stopped. If u was already
assigned a name keep this assignment, otherwise assign it a random name that was
not used for nodes in this path. Give v the name 0. This is done in the procedure
GenerateNamesMixed(G,C, u, v) described below.

After deciding which option and generating the names (assuming we can be consistent)
we can create a time-stamp for the edge according to its type (outside the clique according to

the distribution Q and inside the clique according to Q̂min{Name(u),Name(v)}). This generated
data is then added to PrevQueries (with the edge that it labels), to be used in the next
iteration of the algorithm. When reaching a leaf we use all data generated so far as input
to A′ and check if the output is indeed the clique, if so we return it, otherwise we continue
to the next root-leaf path. If after scanning all the root-leaf paths in the tree the clique was
not found we return ”failure” and stop.

We turn now to a formal description of algorithm B that uses three procedures (that
were described before):
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Algorithm B

1: let T̂ be full quadtree (i.e. each node of the tree has exactly 4 children) with m+1 levels
(starting at level 0).

2: initialize an empty stack PrevQueries.
3: initialize an array Name indexed by all the nodes of G to have −1 in each cell.
4: for every node y in T according to a DFS order do
5: if y is at level i > 0 of the tree and is entered for the first time then
6: e(y)← A∗(G,PrevQueries, i) and denote e(y) = (u0(y), u1(y))
7: if y is the first child of y′ (we assume that u0(y), u1(y) are in the clique) then
8: GenerateNamesClique(G,Name, u0(y), u1(y))
9: if the procedure returned ”failure” then

10: stop scanning the subtree of y
11: else
12: choose t′(e(y)) according to the distribution Q̂min{Name(u0(y)),Name(u1(y))}

13: else
14: if y is the second child of y′ (we assume that u0(y), u1(y) are not in the clique)

then
15: GenerateNamesNotClique(G,Name, u0(y), u1(y))
16: if the procedure returned ”failure” then
17: stop scanning the subtree of y

18: else if y is the third child of y′ (we assume that u0(y) is in the clique and
u1(y) is not in the clique) then

19: GenerateNamesMixed(G,Name, u0(y), u1(y))
20: if the procedure returned ”failure” then
21: stop scanning the subtree of y

22: else if If y is the fourth child of y′ (we assume that u0(y) is not in the clique
and u1(y) is in the clique) then

23: GenerateNamesMixed(G,Name, u1(y), u0(y))
24: if the procedure returned ”failure” then
25: stop scanning the subtree of y

26: push(PrevQueries, (e(y), t′(e(y))))
27: if y is a leaf (i.e. i=m) then
28: if M = A′(G,PrevQueries) is a clique of size nα then
29: return M
30: else if y is left for the last time (i.e. the search in the subtree of y is finished) then
31: pop(PrevQueries)
32: for r ∈ {0, 1} do
33: if ur(y) dose not appear in any edge that is in PrevQueries then
34: Set Name(ur(y)) = −1

35: return failure
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We describe the three procedures:

Algorithm GenerateNamesClique(G,C, u, v)

if C(u) = 0 or C(v) = 0 then
return failure

for σ ∈ {u, v} do
if C(σ) = −1 then

set C(σ) to a uniformly random value from [nα] that does not appear in C

Algorithm GenerateNamesNotClique(G,C, u, v)

if C(u) > 0 or C(v) > 0 then
return failure

for σ ∈ {u, v} do
set C(σ) = 0

Algorithm GenerateNamesMixed(G,C, u, v)

if C(u) = 0 or C(v) > 0 then
return failure

if C(u) = −1 then
set C(u) to a uniformly random value from [nα] that does not appear in C

set C(v) = 0

We first note that algorithm B runs in polynomial time. The tree T̂ has O(4m) =
O(2O(logn)) = nO(1) root-leaf paths, for each such path a polynomial amount of work is done.

Notice that the success probability of algorithm A is taken over the input graph (i.e.
which random edges appear and which set is chosen to be the clique), the distribution of
time-stamps of edges (given the graph). The success probability of algorithm B is taken over
the input graph and the randomization used in it (B’s coin-tosses).

The names of nodes and the time-stamps that are given with the graph are called in this
proof the real names and time-stamps (respectively).

We turn to prove the correctness of this algorithm. We do so by induction over the
number of iteration (query). We show that there exists a path in which the generated names
and time-stamps are distributed exactly as the real names and time-stamps and so when
computing A′ at the leaf at the end of this path, the success probability is the same as the
success probability of algorithm A.

Base case: For i = 1, the edge must be of one of the types and so going to the corre-
sponding child in the tree is a correct path. The time-stamp distributions:

• If the edge is outside the clique, in the corresponding path in the tree we generate the
time-stamp according to Q which is the right distribution.
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• If the edge is inside the clique then since each node in the clique is as likely as any
other node to have any name and since we generate the names at random and without
repetitions we generate the names according to the real distributions. Since the names
are generated correctly, we use a correct distribution to generate the time-stamp.

Inductive step: Assume that we have a path of length i < m in which the choices that were
made are correct (for all nodes that were involved in a query we guessed correctly if they
are in the clique or not) and the names and time-stamps were, so far, generated according
to the real distribution, we show that we can continue this path.

The new edge that is queried must be again one of the 4 types so going to the correspond-
ing child in the tree will yield a correct path. We note that for every two paths that have a
common segment, the algorithm uses the same names and time-stamps all along it, this way
we make sure that all four possibilities for a specific edge are indeed checked. Looking at
the names given to the nodes of the edge, since we assume that we are in the correct child,
names from the correct range are given (i.e. 0 to nodes outside the clique and a new name
from [nα] to nodes inside the clique). As to the distribution of names of nodes in the clique,
since the names are chosen uniformly at random each assignment for all the nodes involved is
equally likely to be chosen by the algorithm as the real distribution. Since the names of the
nodes are distributed according to the real distributions of name, the distributions according
to which the time-stamps are generated are also compatible with the real distributions.

We notice that the algorithm keeps consistency with past choices of names, so if a node is
involves in more than one queried edge in the distributions used to generate the time-stamps
for all these edges we use the same name for that node, as should be. So we get that the
time-stamps generated are distributed as in the real time-stamps.

From the above, there exists a root-leaf path such that all time-stamps needed along it
are generated in a distribution identical to the real distribution of time-stamps and so when
executing A′ with the data generated along this path the success probability is as in the case
that A′ is executed on real data.

We get that the total success probability of algorithm B is at least as high as the success
probability of algorithm A, since we have at least one path in which the probability is the
same and other paths can not decrease the success probability because each possible answer
is checked (and if it is not the clique we continue to the next path).

3.4.1 Extension to randomized algorithms

We now extend this proof for the randomized algorithms

Theorem 1.3. Suppose there exists a randomized polynomial time algorithm Arand that gets
G as input and uses s = O(log n) adaptive edge queries to solve the hidden clique problem
in the edge queries model with high probability. Then there exists a probabilistic polynomial
time algorithm Brand that solves the hidden clique problem in the classic model (i.e. with no
edge queries) with at least the same probability.

We clarify the meaning of ”randomized algorithm that uses adaptive edge queries”. By
this we mean that the choice of the i-th edge to be queried may depend on the answers of
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the queries done before as well as on random coin tosses it makes. So algorithm Arand has
WLOG the following form:

Algorithm Arand
1: PrevQueries← empty − stack
2: for i = 1, dots,m do
3: ei ← A∗rand(G,PrevQueries, i)
4: query edge ei and denote by ti the answer
5: push(PrevQueries, (ei, ti))

6: return A′rand(G,PrevQueries)

Here A∗rand and A′rand are probabilistic polynomial time algorithm that do not make any
queries, and with high probability (taken only over the input graph, its time-stamps and
the random coins used) A′rand(G,PrevQueries, Randomness) = K when PrevQueries is
generated properly.

Proof sketch of Theorem 1.3. Algorithm Brand is exactly the same as in the deterministic
case and the correctness is as before, we note that if we guess all the types of the edges
correctly then all the data used in all the execution is distributed at the real graphs and
the randomness used by the algorithm is also the same. So the total success probability
of algorithm Brand is, as before, at least as high as the success probability of algorithm
Arand.
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4 Hidden clique problem in snapshots model

In this section, the graph G, the clique K = {w1, . . . , wk} and the time-stamps of the edges
are generated and distributed exactly as in section 3. Specifically the graph is constructed
over k discrete steps, at each step 1 ≤ t ≤ k the node wi of the clique connects to all other
nodes of the clique (that it is not already connected to) and any pair of nodes u, v ∈ v

that are not connected already are connected with probability p = 1 − (1
2
)
1
k = 1 − Θ( 1

k
)

independently of all other events. We denote by τ(u, v) the step in which the nodes u, v were
connected (τ(u, v) = 0 if (u, v) /∈ E) and by Et the set of edges that were added to G at step
t.

The difference from section 3 is that now we use the snapshot query method for accessing
the temporal information, i.e. a single query provides the set Et of all edges in G that were
added in step 1 ≤ t ≤ k.

Recall that by Lemma 3.2, the resulting graph without the edge labels is an instance
of the hidden clique problem with parameters (G, 1

2
, nα). For constant α < 1

2
there are no

known polynomial algorithm to this problem. Since there are efficient algorithms that find
K with high probability (without the temporal information) when α ≥ 1

2
, we focus on the

case that α < 1
2
.

In section 4.1 we show that even one snapshot may provide enough information for
finding K, under the conditions that the clique is relatively large (i.e. k = Ω̃(n

1
3 )) and that

the snapshot given is not of a too close to the last step k. In section 4.2 we show that given a
logarithmic number of snapshot any polynomial size K can be found with high probability.

4.1 Algorithm that uses one query

Theorem 1.4. Assume k ≥ cn
1
3 lnn for large enough constant c > 0 and fix a constant

0 < β < 1. Then for any t ≤ βk, given G and Et one can find K in polynomial time with
high probability.

Proof of Theorem 1.4. We present algorithm OnePoint that gets G and Et for some t ≤ βk
and returns K with high probability. The algorithm iterates over all nodes u, for each node
we look at Hu the subgraph of G (with edges from all steps) induced by the neighbors of u
in Et and we look for a hidden clique in it. If a clique Cu is found we try to expand it by
adding each node from V \ V (Hu) that is connected to all of Cu. If during this process a
clique of size k is found we return it and stop.

The idea is that when u = wt, Hu will have a large clique in it that with high probability
will be a constant fraction of K, and so expanding it as suggested will yield K.
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Algorithm OnePoint (G,Et)

1: for every u ∈ V do
2: let Γt(u) be the neighbors of u in Et and let Hu = G[Γt(u)] the subgraph of G induced

by Γt(u)
3: find a hidden clique in Hu using any of the known algorithms (for α ≥ 1

2
) and let Cu

be it’s output
4: Ku ← Cu
5: for every v ∈ V \ Γt(u) do
6: if v is connected to all of Cu then
7: Ku ← Ku ∪ {v}
8: if Ku is a clique of size k then
9: return Ku

10: return ∅

Note that for every u ∈ V Hu includes edges from all of E, not only from Et.
We now focus on the iteration of loop 1 in which u = wt.

Claim 4.1. G[Γt(wt)] is an instance of the hidden clique problem, and with probability at
least 1− 1

n
, it has parameters (M, 1

2
, Q), with Q = Ω(

√
M) and so can be solved in polynomial

time with high probability. Moreover, the hidden clique in G[Γt(wt)] is K ∩ Γt(wt) and with
high probability its size is Θ(k).

Proof of Claim 4.1. We denote by ∆t(v) the number of edges adjacent to v that first appear
at time t i.e. ∆t(v) = |{u ∈ V |τ(u, v) = t}|. Taking s =

√
n lnn and using Hoeffding’s

inequality we get

Pr(∆t(wt)− E(∆t(wt)) > s) ≤ exp(− 2s2

n− t
) = exp(−2n lnn

n− t
) ≤ exp(−2 lnn) =

1

n2
.

So with high probability the number of nodes in H is at most (we use the fact that 3
√
n ≤

k ≤
√
n and that there exists a constant 0 < β < 1 such that t ≤ βk)

M ≤ E[∆t(wt)] + s = (1− p)t−1(k − t+ p(n− k)) +
√
n lnn

≤
√
n− t+

ln 2
3
√
n

(n− 3
√
n) +

√
n lnn = O(n

2
3 ).

Let Kt = K∩Γt(wt), for t+1 ≤ i ≤ k let Xi be the random variable indicating if wi ∈ Γt(wt)
(i.e. if wi ∈ Kt) and X =

∑k
i=t+1 Xi be the size of Kt. Then

Pr[Xi = 1] = (1− p)t−1

and
E[X] = (1− p)t−1(k − t− 1).
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Using Chernoff bound

Pr[X <
1

2
E[X]] ≤ exp(−k − t− 1

8
) = exp(−Θ(k)).

So with high probability G[Γt(wt)] has a clique of size at least 1
2
E[X] = (1−p)t

2
(k − t − 1) =

Θ(k) = Ω(
√
M). Since outside of K each edge appears with probability 1

2
we get that

also in G[Γt(wt)], each edge outside the clique K appears with probability 1
2
. And so with

probability ≥ 1 − 1
n
, G[Γt(wt)], is an instance of the hidden clique problem and has the

required parameters.
Let C̃t be the largest clique in G[Γt(wt)], we will show that Kt = C̃t. Since with high

probability there is no clique of size Θ(k) in G outside K it must be that Kt ⊆ C̃t. We note
that in the construction of G[Γt(wt)] we did not expose at its internal edges (we only used
the fact that the nodes are connected to wt with edge labeled t) and so as in G a node u /∈ K
is connected to all of Kt with probability

(
1

2
)|K

t| = (
1

2
)Θ(k) ≤ 1

n4
.

By a union bound, the probability that exists u /∈ K such that u is connected to all of Kt

is at most 1
n3 . For a node to be part of C̃t it must connect to all of Kt and so with high

probability there are no nodes from V \K in C̃t. So we conclude that with high probability
the hidden clique of G[Γt(wt)] is Kt = K ∩ Γt(wt) and we showed that |Kt| = Θ(k).

Edges between nodes in Hwt (as defined in the algorithm) and nodes from V \(K∪Γt(wt))
were not exposed by the construction of Hwt and of Cwt (line 3) and so we can still think
of these edges as random and that each appears with probability 1

2
. So for a fixed node

v ∈ V \ (K ∪ Γt(wt))

Pr[v is connected to all of Cwt ] = (
1

2
)|C(wt) = (

1

2
)Θ(k) ≤ 1

n4
.

Thus

Pr[∃v ∈ V \ (K ∪ Γt(wt)) that is connected to all of Cwt ] ≤
1

n3
.

On the other hand, every w ∈ K \ Γt(wt) is connected to all of Cwt since Cwt ⊆ K.
moreover by Claim 4.1 Kwt = (K \Γt(wt))∪C(wt) = K, and so if the algorithm gets to this
iteration (i.e. when u = wt) the algorithm will output K as needed. In any other iteration,
if a clique of size k is found then with high probability it must be K since there are no other
cliques of size k in G, and if no clique is found the algorithm simply moves on to the next
iteration.

For algorithm OnePoint to fail at least one of the following must happen:

• The induced subgraph Hwt does not have the parameters (M, 1
2
, Q) with Q = Ω(

√
M).

• There exists v /∈ K such that v ∈ C̃t (where C̃t is the hidden clique in Hwt).
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• The algorithm for finding the hidden clique in H(wt) in step 3 fails.

• For u = wt, the completion in step 5 of Hu fails.

Each of these events happens with probability at most 1
n
, so overall the algorithm succeeds

with probability at least 1− 4
n
. This conclude the proof of Theorem 1.4.

4.2 Algorithm that uses many queries

We now show that given more temporal information, a logarithmic number of snapshots, the
clique can be found if its size is polynomial (i.e. for every constant α > 0).

Theorem 1.5. Assuming α > 0 is fixed, there exists an algorithm that given {Et | t ∈ I} and

I for any set I ⊆ [k] of size ≥ a lnn for any constant a ≥ c ·2 10
α

+2 (for large enough constant
c) finds K with probability at least 1− 5r

n
(r = r(α, a) is a parameter to be determined later

that does not depend on n), the algorithm runs in nO( 1
α

) time.

Proof of Theorem 1.5. Let b = 15
2α

and c is a constant to be determined later. We present
algorithm AnySteps that gets as input G, {Et}t∈I and I and with high probability returns
K. The algorithm partitions the graph to r (a constant to be chosen later) subgraphs
G1, . . . Gr. For each i ∈ [r] the algorithm finds Mi which is supposed to be a large fraction of
K ∩Gi by using Expand (line 4). These fractions of K are used to find all of K as follows.
For every Gi look at a (non empty) Mj (for j 6= i), denote by Qi all the nodes in Gi that are
connected to all of Mj (line 6). The algorithm return the union of all sets Qi. The intuition
is that if Mi is a large enough fraction of K then with high probability only nodes from K
will connect to it and so Qi = Gi ∩K.

The algorithm uses procedure Expand that gets as input Gi a subgraph of G, {Et}t∈I ,
I and a threshold N . The procedure iterates over all sets of nodes S that form in G a clique
of constant size b. The procedure tries to expand each such clique by looking for each t ∈ I
for a node u that connects to at least 0.4 fraction of S in Et. If there are enough such nodes,
i.e. at the end of the process, M the expanded set has at least N nodes, the result M is
returned. The intuition is that if S is the subset of K of size b of nodes with the largest
indexes in Gi, with high probability wt will connect to a constant fraction of S in Et and
with high probability will be the only such node and so it will be added to M and if |I| > N
then |M | > N . So a large fraction of K ∩Gi will be returned.
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Algorithm AnySteps (G, {Et}t∈I , I)

1: for every node v ∈ V do
2: choose uniformly and independently at random σ(v) ∈ {1, . . . , r}, denote by Vi =
{v ∈ V |σ(v) = i}, Gi = G[Vi] and Ki = K ∩ Vi

3: for i = 1, . . . , r do
4: Mi ← Expand(Gi, I, c lnn)

5: for i = 1, . . . , r do
6: choose j 6= i such that Mj 6= ∅ and set Qi = {v ∈ Vi | v connects to all of Mj in G},

if there is no such j set Qi = ∅
7: Q←

⋃r
i=1Qi

8: return Q

Algorithm Expand (G, {Et}t∈I , I, N)

1: for every S ⊆ V , |S| = b that is a clique in G do
2: set M ← S
3: for every t ∈ I do
4: if ∃u ∈ V that is connected to at least 0.4 fraction of S in Et then
5: M ←M ∪ {u}, if there is more than one, choose one arbitrarily

6: if |M | ≥ N then
7: return M
8: return ∅

It is easy to verify that the algorithm runs in nb+O(1) ≤ nO( 1
α

) time which is polynomial
assuming α > 0 is a constant.

Let Ii = {j ∈ I|wj ∈ Vi}, E[|Ii|] = a lnn
r

, taking ρ =
√
a lnn, by Hoeffding’s inequality

Pr[||Ii| − E[|Ii|]| ≥ ρ] ≤ 1

n2
. (1)

We denote by Îi ⊆ Ii the set of b largest indices in Ii (note that b is a constant so by taking
r ≤ 1

2

√
a and by 1, with high probability |Ii| ≥

√
a lnn� 15

2α
= b). From now on we assume

that for every 1 ≤ i ≤ r ||Ii|−E[|Ii|]| ≥ ρ, note this indeed happens with probability ≥ 1− r
n2

We denote by Li ⊆ Ki the b nodes of the clique that are in Gi with largest indexes, and
by K̂i = {wj ∈ K|j ∈ Ii} nodes of the clique that are in Gi that we have information on the
step in which they act (i.e. connect to all other nodes in the clique).

The sets Mi

For each 1 ≤ i ≤ r we analyze the execution of Expand (Gi, I, c lnn), denoting by Si the
set S in this execution and analyzing the iteration of the outer loop of the procedure where
Si = Li. For v ∈ Vi \Ki and t ∈ I
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Pr[v is connected to at least 0.4 fraction of S in E(Gi)t] ≤

≤
b∑

l=0.4b

∑
R⊆Si,|R|=l

Pr[v is connected exactly to R in E(Gi)t]

≤
b∑

l=0.4b

bl((1− p)t−1p)l(1− (1− p)t−1p)b−l

≤
b∑

l=0.4b

bl(
p

2
)l

≤ bb+1(
p

2
)0.4b

≤ bb+1(
ln 2

2nα
)

3
α

≤ bb+1

n3
.

Using a union bound we get that with probability ≥ 1 − 1
n

no node v ∈ Vi \Ki will be
added to Mi in step 4 in Expand (Gi, I, c lnn).

We call a time step t ”good in part i” if wt ∈ K̂i and wt is connected to at least 0.4b
nodes of Si in E(Gi)t. We let Zi(t) be the random variable indicating if step t is good in
part i, and Zi =

∑
t∈I Zi(t) the number of good steps in part i out of the

a lnn− |Ii| ≥ a lnn− (
a

r
−
√
a) lnn ≥ (a−

√
a) lnn

steps for which we have information, where the inequality happens due to our assumption
that ||Ii| − E[|Ii|]| ≤ ρ and r ≤ 1

2

√
a . For every t < l such that wt, wl ∈ Vi we have

Pr((wt, wl) ∈ E(Gi)t) = (1− p)t−1, we look at three cases:

• 1
2
≤ (1− p)t−1 ≤ 3

4
:

Pr[Zi(t) = 1] = Pr[wt ∈ K̂i]
b∑

j=0.4b

(
b

j

)
(1− p)(t−1)j(1− (1− p)t−1)b−j

≥ 1

r

b∑
j=0.4b

(
b

j

)
(
1

2
)j(

1

4
)b−j ≥ 1

r
(
1

2
)b.

• 3
4
< (1− p)t−1 ≤ 1− p:

Pr[Zi(t) = 1] = Pr[wt ∈ K̂i]
b∑

j=0.4b

(
b

j

)
(1− p)(t−1)j(1− (1− p)t−1)b−j

≥ 1

r

b∑
j=0.4b

(
b

j

)
(
3

4
)jpb−j ≥ 1

r
(
3

4
)b.
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• (1− p)t−1 = 1 i.e. t = 1:

Pr[Zi(1) = 1] = Pr[w1 ∈ K̂i] =
1

r
.

So E[Zi] ≥ (1
2
)b a−

√
a

r
lnn. Using Chernoff bound, and taking c = a−

√
a

2b+1r
:

Pr[Zi ≤ c lnn] = Pr[Zi ≤
1

2
E[Zi]] ≤ exp(−

1
4
(1

2
)b a−

√
a

r
lnn

2
)) = n−

a−
√
a

2b+3r .

As long as r ≤ a−
√
a

2b+3 we get that the above probability is ≤ 1
n
.

So with probability at least 1 − 1
n

at the beginning of step 6 of Expand, |Mi| ≥ c lnn
(for a fixed i). So, under all the above assumptions and using a union bound

Pr[∃1 ≤ i < j ≤ r, |Mj|, |Mi| < c lnn] = 1− 1

nr
− r

nr−1
(1− 1

n
) ≥ 1− 2

n
.

Note that all the sets Mi are subsets of the clique K, since with high probability, no node
v ∈ Vi \Ki is added to Mi.

The set Q

Assume that in order to build Qi, the algorithm chose j 6= i such that the first part of the
algorithm succeeds in part j, i.e. |Mj| ≥ c lnn (and so w.h.p Mj is part of the hidden clique
K). We note that the cross-edges (the edges between two different parts) are independent
of each other and of the choice of i, j and so, for wl ∈ Vi, wl is a neighbor of c lnn nodes of
Mj in the graph G, and so wl ∈ Qi. On the other hand, for v ∈ Vi \Ki, the expected degree
of v towards any fixed set of size c lnn is c

2
lnn, using Hoeffding’s inequality the probability

that v have a degree of lnn relatively to Mj is ≤ 1
n2 . So with probability ≥ 1− 1

n
, no node

that is not part of the clique will be added to Qi and so we get that with this probability
Q = K.

In total the probability of success is at least 1 − 5r
n

, we can simply take r = 2. Besides
requiring r > 1 in order to have crossover edges there is no lower bound on the value of r.
This completes the proof of Theorem 1.5.
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A Additional proofs for section 3

We begin by analyzing the random variables presented in section 3.
For the random variable Y t

v we have:

• For u, v ∈ V such that at least one of them is outside K:

Pr[Y t
v (u) = 1] = (1− p)t−1p

• For wi, wj ∈ K such that i < t:

Pr[Y t
wi

(wj) = 1] = 0

• For wi, wj ∈ K such that i, j > t:

Pr[Y t
wi

(wj) = 1] = (1− p)t−1p

• For wi ∈ K such that i > t:

Pr[Y t
wi

(wt) = 1] = (1− p)t

• For wi ∈ K such that i < t:
Pr[Y t

wi
(wt) = 1] = 0

• For u /∈ K:
Pr[Y t

u(wt) = 1] = (1− p)tp

For the random variable Y S
Q (u) we have:

• For u /∈ K Pr[Y S
Q (u) = 1] = (1− p)

∑m
i=1 ti−mpm.

• For u = wj ∈ K and Q = {wi1 , . . . , wim}, if exists 1 ≤ l ≤ m such that tl > il then
Pr[Y S

Q (u) = 1] = 0.

• For u = wj ∈ K, if j < max{t1, . . . , tm} then Pr[Y S
Q (u) = 1] = 0.

• For u = wj ∈ K, if j > max{t1, . . . , tm} then

Pr[Y S
Q (u) = 1] = (1− p)

∑m
l=1 tl−mpm−m

′

Where m′ = |{1 ≤ l ≤ m | vl = wtl}| ∈ {0, . . . ,m}.

• For u = wj ∈ K, if exists 1 ≤ l ≤ m such that j = tl then

Pr[Y S
Q (u) = 1] = (1− p)

∑
l=1mtl−mpm−m

′−1

Where again m′ = |{1 ≤ l ≤ m | vl = wtl}| ∈ {0, . . . ,m− 1}.
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Proof of Lemma 3.5. We first calculate the different expectations:

µ1 = E[Y S
Q1

] = (n− k)(1− p)
∑M
l=1 ti−mpM + (k − ρ)(1− p)

∑m
l=1 ti−M .

µ2 = E[Y S
Q2

] = (n−m)(1− p)
∑M
l=1 ti−mpM .

µ3 = E[Y S
Q3

] = (n− k)(1− p)
∑M
l=1 ti−mpM + (k − ρ− 1)(1− p)

∑M
l=1 ti−MpM + (1− p)

∑M
l=1 ti−MpM−1

= (n− ρ− 1 +
1

p
)(1− p)

∑M
l=1 ti−mpM .

µ4 = E[Y S
Q4

] = (n− k)(1− p)
∑M
l=1 ti−MpM .

E[Y S
Q5

] =
∑
u∈V

E[
3∏
i=1

Y Si
Qi

(u)] =
∑
u∈V

3∏
i=1

E[Y Si
Qi

(u)]

= (n− k)(1− p)
∑M
l=1 tl−MpM +

∑
wj∈K,j<ρ

(1− p)
∑m2
l=m1+1 tl−m2pm2 · I{m2=M}+

+
∑

wj∈k,j>ρ+1

(1− p)
∑M
l=1 tl−Mpm2+m3 + (1− p)

∑M
l=1 tl−Mpm2+m3−I{m3>0}

= (n− k)(1− p)
∑M
l=1 tl−MpM + (ρ− 1)(1− p)

∑m2
l=m1+1 tl−m2pm2 · I{m2=M}+

+ (k − ρ− 1 + p−I{m3>0})(1− p)
∑M
l=1 tl−Mpm1+m3 .

Where:

• I{m2=M} = 1 if m2 = M and Im2=M = 0 otherwise.

• I{m3>0} = 1 if m3 > 0 and Im3=0 = 0 otherwise.

We consider a composite set, i.e. at least 2 of m1, m2, m3 are larger than 0 we get:

µ5 = E[Y S
Q ] = (n− k)(1− p)

∑m
l=1 tl−mpm + (k − ρ− 1 + p−Im3>0)(1− p)

∑m
l=1 tl−mpm2+m3

It’s easy to see that since m = Θ(1) and ρ = Θ(k) µ3, µ4 ≤ µ2 so we need to show
µ2 ≤ µ5 ≤ µ1:

• To show that µ5 ≤ µ1 we look at the difference and see if it’s grater than 0:

µ1 − µ5 = (k − ρ)(1− p)
∑m
l=1 tl−m − (k − ρ− 1 + p−Im3>0)(1− p)

∑m
l=1 tl−mpm2+m3 ≥ 0

k − ρ ≥ (k − ρ− 1 + p−Im3>0)pm2+m3

The left hand side is Θ(k) while the right hand side is Θ(k1−m2−m3), since we know
that at least one of m2,m3 is grater than 1 we get that the right hand side is smaller,
thus the inequality follows.
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• To show that µ2 ≤ µ5 we look at the difference and see if it’s grater than 0:

µ5− µ2 = (k− ρ− 1 + p−Im3>0)(1− p)
∑m
l=1 tl−mpm2+m3 − (k−m)(1− p)

∑m
l=1 tl−mpm ≥ 0

(k − ρ− 1 + p−Im3>0)pm2+m3 ≥ (k −m)pm

The left hand side is Θ(k1−m2−m3) and the right hand side is Θ(k1−m). So if m2 +m3 <
m the inequality follows. If m2 +m3 = m, and since we are assuming that at least two
of m1,m2,m3 are grater than 0 we know that m3 > 0, we can further simplify and get:

m ≥ ρ+ 1− 1

p

Since ln 2
k+ln 2

≤ p ≤ ln 2
k

and k
3

+ 1 ≤ ρ ≤ 2k
3

, the inequality follows also in this case.
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