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Abstract

Ever since its introduction in the 1950s, the maximum flow problem has been extensively
studied and became a central algorithmic tool with numerous applications. This problem,
denoted Max-Flow, asks to ship the largest possible amount of flow from a source node to a
sink node in a given edge-capacitated graph. Shortly after Max-Flow was introduced, Gomory
and Hu (1961) investigated the problem of computing the Max-Flow values between all pairs
of nodes in the same graph, called All-Pairs Max-Flow. Their seminal work established that
in the undirected setting All-Pairs Max-Flow can be solved using only n − 1 executions of
Max-Flow, where n denotes the number of nodes in the graph and m the number of edges;
moreover, these Max-Flow values and their corresponding minimum cuts could be stored in
a succinct data structure consisting of a tree on the same set of nodes as the input graph,
nowadays called a Gomory-Hu tree. Despite a lot of research aimed at extending this result
to directed graphs, it is still not known how to solve Max-Flow for all pairs faster than naively
solving it separately for each pair.

Our first set of results tackles this gap by showing that well-known time-complexity hy-
potheses must be broken in order to solve All-Pairs Max-Flow faster. We show for the directed
setting a conditional lower bound based on the 3OV hypothesis, which asserts that deciding
if n short 0− 1 vectors contain three vectors that are orthogonal to each other requires time
n3−o(1), and consequently on the Strong Exponential Time Hypothesis (SETH) which is per-
haps the most popular time-complexity hypothesis in the field. This bound is strongest for
sparse graphs, and we extend it to dense graphs by relying on another hypothesis regarding
the time it takes to decide if an input graph contains a 4-clique. Additionally, we extend the
3OV-hardness to undirected graphs with node capacities.

Our second set of results consists of new algorithms for All-Pairs Max-Flow. After the
breakthrough by Gomory and Hu, undirected graphs have resisted progress for many decades,
and all faster algorithms were by-products of faster algorithms for Max-Flow. This was recently
challenged with the introduction of a tree-packing approach by Bhalgat et al. (2007) for
the unit-capacity setting, resulting in an algorithm for Gomory-Hu trees with running time
Õ(mn), which can also be obtained by a more careful analysis of Karger and Levine’s (2002)
algorithm for Max-Flow.

This Õ(mn) running time is the best one could hope for using the half-century old Gomory-
Hu method. We overcome this obstacle by devising a new algorithm for Gomory-Hu trees
in unit-capacity graphs, which combines the Gomory-Hu and the tree-packing methods; it
runs in time Õ(m3/2n1/6), which is faster than Õ(mn) wheneverm ≤ Õ(n5/3), and with faster
Max-Flow algorithms it would be faster for all densities. We also show that unlike the directed
case, SETH is unlikely to preclude even a near-linear time Õ(m) algorithm for this problem!
This is achieved by designing a nondeterministic Õ(m) time algorithm for Gomory-Hu trees
in this setting, and applying the framework of Carmasino et al. (2016).

In our third and final set of results we consider the All-Pairs Max-Flow problem from the
perspective of data structures. Perhaps surprisingly, we show that data structures based on
Gomory-Hu trees are essentially optimal, in the sense that any data structure for minimum-
cut queries with near-linear preprocessing time and polylogarithmic (amortized) query time
can be used to construct a Gomory-Hu tree in near-linear time (which is still open), even if
the queries are restricted to a fixed source. The techniques used for this allows us to design
also new algorithms for the approximation case.
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Chapter 1

Introduction

The design of efficient algorithms has always been an intriguing and thriving area of research,
and many fundamental problems were successfully studied, for example maximum flow in a
network and matrix multiplication. However, the progress in designing fast algorithms for
many core problems has halted for a very long time. Hence, ideally we would seek a proof
that a problem with running time T (n) that has not been improved for decades, actually
requires time T (n)1−o(1), explaining the lack of progress. Unfortunately, such unconditional
lower bounds seem unlikely in most cases. For example, not even super-linear lower bounds
are known for SAT. Since classical NP-hardness techniques seem too coarse to show tight
conditional lower bounds, a new, more fine-grained approach was looked for. A recent line
of work that was initiated in order to address this hurdle, mimicks NP -hardness style lower
bounds in the following sense. First, select a few key problems that are conjectured to require
T (n)1−o(1) running time, and then use fine-grained reductions to derive hardness for other
problems. Our work further advances this area of research, in particular for the problem
of computing the maximum flow value between a given source-sink pair s, t, denoted Max-
Flow, between multiple pairs of nodes; when can it be done faster than computing Max-Flow
separately for each pair? when it can not?

Max-Flow is a fundamental problem in computer science. This classical problem and
its variations were studied extensively over the past decades and have become key algo-
rithmic tools with numerous applications, in theory and in practice. Moreover, techniques
developed for flow problems were generalized or adapted to other problems, see for exam-
ple [BJS10, AMO93, AHK12]. A summary of state-of-the-art Max-Flow algorithms follows,
for both the directed and the undirected versions. Throughout, n denotes the number of
nodes in a graph, m the number of edges, and U the maximum value of capacities, as-
sumed to be integers (although, we focus on polynomially-bounded capacities). For gen-
eral capacities, an algorithm by Lee and Sidford [LS14] has running time Õ(m

√
n logU),

while for small capacities, faster algorithms exist [Mad16, LS20a, LS20b] that run in time
O(min{m10/7U1/7,m11/8U1/4,m4/3U1/3}). If in addition the graph is undirected then an al-
gorithm by Karger and Levine [KL15] could be applied with running time Õ(m+ nv), where
v is the maximum flow value.

A very natural problem is to compute the maximum st-flow for multiple source-sink pairs
in the same graph G, where the problem of reporting Max-Flow for all

(n
2
)
source-sink pairs is

called All-Pairs Max-Flow. This multi-terminal problem, dating back to 1960 [May60, Chi60],
is the main focus of this thesis. The seminal work of Gomory and Hu [GH61] shows that
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in undirected graphs, All-Pairs Max-Flow requires at most n− 1 executions of Max-Flow (see
also [Gus90], where the n− 1 computations are all on the input graph), and a lot of research
aimed to extend this result to directed graphs, with several partial successes. However, for
general directed graphs it is still not known how to solve Max-Flow for multiple source-sink
pairs faster than solving it separately for each pair. In this thesis we consider both the directed
and the undirected cases, providing exciting new lower bounds (conditional hardness) and
upper bounds (algorithms) for All-Pairs Max-Flow.

1.1 Conditional Lower Bounds for the Directed Case

The first part of the thesis presents our new conditional lower bounds for All-Pairs Max-Flow
in directed graphs. Specifically, we provide evidence that computing the maximum flow value
between every pair of nodes in a directed graph with capacity bounded by U ≤ n cannot be
solved in time that is significantly faster (i.e., by a polynomial factor) than O(n3) even for
sparse graphs, namely m = O(n); in particular, it rules out an algorithm that runs (for all
m) significantly faster than O(n2m). Since a single maximum st-flow can be solved in time
Õ(m

√
n) [LS14], we conclude that conditionally, the all-pairs version requires time equivalent

to Ω̃(n3/2) computations of maximum st-flow, which strongly separates the directed case from
the undirected one. Moreover, if maximum st-flow can be solved in time Õ(m), then the time
of Ω̃(n2) computations is needed. This is in contrast to a conjecture of Lacki, Nussbaum,
Sankowski, and Wulff-Nilsen [LNSW12] that All-Pairs Max-Flow in general graphs can be
solved faster than the time of O(n2) computations of maximum st-flow.

Specifically, we show that in sparse graphsG = (V,E,w), if one can compute the maximum
st-flow from every s in an input set of sources S ⊆ V to every t in an input set of sinks T ⊆ V
in time O((|S||T |m)1−ε), for some |S|, |T | and a constant ε > 0, then a problem known
as MAX-CNF-SAT (maximum satisfiability of conjunctive normal form formulas) with n′

variables andm′ clauses can be solved in timem′O(1)2(1−δ)n′ for a constant δ(ε) > 0, a problem
for which not even 2n′/ poly(n′) algorithms are known1. Such running time for MAX-CNF-
SAT would in particular refute the Strong Exponential Time Hypothesis, abbreviated SETH
(see [IP01, Vas18]). Hence, we improve the lower bound of Abboud, Vassilevska-Williams,
and Yu [AWY18], who showed that for every fixed ε > 0 and |S| = |T | = O(

√
n), if the above

problem can be solved in time O(n3/2−ε), then some incomparable (and intuitively weaker)
conjecture is false. Furthermore, a larger lower bound than ours implies that the maximum
st-flow problem requires strictly super-linear time, which would be an amazing breakthrough.

In addition, we show that All-Pairs Max-Flow in unit-capacity networks with every edge-
density m = m(n), cannot be computed in time significantly faster than O(mn), even for
acyclic networks. The gap to the fastest known algorithm by Cheung, Lau, and Leung [CLL13]
is a factor of O(mω−1/n), and for directed acyclic graphs (DAGs) it is O(nω−2), where ω <
2.38 is the matrix multiplication exponent. Finally, we extend our lower bounds to the version
that asks only for the maximum-flow values below a given threshold (over all source-sink
pairs).

These results are presented in Section 2, and essentially replicate our published pa-
per [KT18b].

1It was later shown [ABDN18] that MAX-CNF-SAT can be reduced to 3OV. As our results hold also with
3OV as the hardness hypothesis, 3OV should be seen as our hardness hypothesis instead.
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1.2 Improved Lower Bounds for Unit-Capacity Directed Graphs

The conditional lower bounds for the unit-capacity setting presented in Section 1.1 leave a
big gap to the fastest known algorithms, and so we focus here on this setting. Specifically, for
directed graphs with unit edge/vertex capacities (hence Max-Flow corresponds to edge/vertex
connectivity), we deal with the k-bounded case, where the algorithm has to find all pairs with
Max-Flow value less than k, and report only those. The most basic case k = 1 is the Transitive
Closure (TC) problem, which can be solved in time O(mn) combinatorially (i.e. not using
fast matrix multiplication techniques), and in time O(nω) generally, where ω < 2.38 is the
matrix-multiplication exponent. These time bounds are conjectured to be optimal.

We present new algorithms and conditional lower bounds that advance the frontier for
k ∈ [n], as follows:

• The first super-cubic lower bound of nω−1−o(1)k2 time (which is meaningful for k ≥
Ω(
√
n)) under the 4-Clique conjecture, which holds even in the simplest case of DAGs

with unit vertex-capacities. It improves on the previous (SETH-based) lower bounds for
unit edge-capacities described in Section 1.1, even in the unbounded setting k = n. For
combinatorial algorithms, our reduction implies an n2−o(1)k2 conditional lower bound.
Thus, we identify new settings where the complexity of the problem is (conditionally)
higher than that of TC.

• An algorithm for unit vertex-capacities that runs in time O((nk)ω). This is only a factor
kω away from the bound for TC, and nearly matches it for all k = no(1).

Our first result arises from a novel reduction of a different structure than the SETH-based
constructions, while the second one adapts the network coding method of Cheung, Lau, and
Leung [CLL13] to vertex-capacitated digraphs. These results are presented in Section 3, and
essentially replicate the corresponding parts in our published paper [AGI+19].

1.3 New Results for Undirected Graphs

If Max-Flow can be solved in time T (m), then an O(n2) · T (m) is a trivial upper bound for
All-Pairs Max-Flow. But can we do better? For directed graphs, this time bound might be
optimal (e.g. see Section 1.1). In contrast, for undirected graphs with edge capacities, the
seminal algorithm of Gomory and Hu [GH61] runs in a much faster time O(n) · T (m), and
under the plausible assumption that Max-Flow can be solved in near-linear time Õ(m), this
half-century old algorithm yields an Õ(mn) bound. Gomory and Hu’s algorithm additionally
constructs a cut-equivalent tree, which is a tree on the same set of nodes as the input graph
such that every minimum st-cut in the tree is a minimum st-cut in the input graph. Several
other algorithms have been designed through the years for cut-equivalent tree construction,
including Õ(mn) time for unit-capacity edges (unconditionally), but none of them break the
O(mn) barrier. Meanwhile, no super-linear lower bound was shown for undirected graphs.

In the third part of the thesis, we present three different results about the time-complexity
of All-Pairs Max-Flow in undirected graphs.

• For node capacities, we design the first conditional lower bounds for All-Pairs Max-Flow,
giving an essentially optimal lower bound. Our lower bound is n3−o(1) conditioned on
the 3OV conjecture, which asserts that finding three vectors that are orthogonal to each
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other among a set of n vectors in {0, 1}d, for d ≥ ω(logn), requires n3−o(1) time, and
on SETH as a consequence.

• For edge capacities, our efforts to prove similar lower bounds have failed, but we have
discovered a surprising new algorithm that breaks the O(mn) barrier for graphs with
unit-capacity edges! Assuming T (m) = m1+o(1), our algorithm runs in time m3/2+o(1)

and outputs a cut-equivalent tree (similarly to the Gomory-Hu algorithm). Even with
current Max-Flow algorithms we improve state-of-the-art as long as m = O(n5/3−ε).

• Finally, we explain the lack of lower bounds by proving a non-reducibility result (i.e.,
that a reduction from SETH to constructing Gomory-Hu trees is unlikely). This result
is based on a new near-linear time Õ(m) non-deterministic algorithm for constructing
a cut-equivalent tree which may be of independent interest.

These results are presented in Section 4 and essentially replicate our published paper [AKT20b].

1.4 Optimality of Gomory-Hu Trees for Min-Cut Queries and
Fast Approximation Algorithms

Finally, we analyze the connection between data structures for minimum cut (Min-Cut)
queries and cut-equivalent trees for the undirected, edge-capacities setting. In a Min-Cut
data structure the input graph is preprocessed to quickly report a minimum-capacity cut
that separates a query pair of nodes s, t. The best data structure known for this problem
simply builds a cut-equivalent tree, discovered 60 years ago by Gomory and Hu [GH61], who
also showed how to construct it using n − 1 minimum st-cut computations. Using state-of-
the-art algorithms for minimum st-cut [LS14], one can construct the tree in time Õ(mn3/2),
which is also the preprocessing time of the data structure.

Our main result shows the following equivalence: Cut-equivalent trees can be constructed
in near-linear time if and only if there is a data structure for Min-Cut queries with near-linear
preprocessing time and polylogarithmic (amortized) query time, and even if the queries are
restricted to a fixed source. That is,cut-equivalent trees are an essentially optimal solution for
Min-Cut queries. This equivalence holds even for every minor-closed family of graphs, such
as bounded-treewidth graphs, for which a two-decade old data structure [ACZ98] implies the
first near-linear time construction of cut-equivalent trees.

Moreover, unlike all previous techniques for constructing cut-equivalent trees, ours is
robust to relying on approximation algorithms. In particular, using the almost-linear time
algorithm for (1 + ε)-approximate minimum st-cut [KLOS14] we can construct a (1 + ε)-
approximate flow-equivalent tree (which is a slightly weaker notion) in time n2+o(1). This
leads to the first (1 + ε)-approximation for All-Pairs Max-Flow that runs in time n2+o(1),
and matches the output size almost-optimally. These results are presented in Section 5 and
essentially replicate our published paper [AKT20a].
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Chapter 2

Conditional Lower Bounds for
All-Pairs Max-Flow in Directed
Graphs1

2.1 Introduction

The maximum flow problem is one of the most fundamental problems in combinatorial opti-
mization. This classic problem and its variations such as minimum-cost flow, integral flow,
and minimum-cost circulation, were studied extensively over the past decades, and have be-
come key algorithmic tools with numerous applications, in theory and in practice. Moreover,
techniques developed for flow problems were generalized or adapted to other problems, see for
example [BJS10, AMO93, AHK12]. The maximum st-flow problem, which we shall denote
Max-Flow, asks to ship the maximum amount of flow from a source node s to a sink node t in
a directed edge-capacitated graph G = (V,E,w), where throughout this chapter, we denote
n = |V | and m = |E|, and assume integer capacities bounded by U . After this problem
was introduced in 1954 by Harris and Ross (see [Sch02] for a historical account), Ford and
Fulkerson [FF56] devised the first algorithm for Max-Flow, which runs in time O((n+m)F ),
where F is the maximum value of a feasible flow. Ever since, a long line of generalizations
and improvements was studied, and the current fastest algorithm for Max-Flow with arbitrary
capacities is by Lee and Sidford [LS14], which takes O(m

√
n logU) time. For the case of small

capacities and sufficiently sparse graphs, faster algorithms are known [Mad16, LS20a, LS20b],
that run in time Õ(min{m10/7U1/7,m11/8U1/4,m4/3U1/3). Here and throughout this chapter,
Õ(f) denotes O(f logc f) for unspecified constant c > 0.

A very natural problem is to compute the maximum st-flow for multiple source-sink pairs
in the same graph G. The seminal work of Gomory and Hu [GH61] shows that in undirected
graphs, Max-Flow for all

(n
2
)
source-sink pairs requires at most n− 1 executions of Max-Flow

(see also [Gus90], where the n − 1 computations are all on the input graph), and a lot of
research aimed to extend this result to directed graphs, with several partial successes, see
details in Section 2.1.1. However, it is still not known how to solve Max-Flow for multiple
source-sink pairs faster than solving it separately for each pair, even in special cases like
a single source and all possible sinks. We shall consider the following problems involving

1This chapter is based on [KT18b].
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Directed Class Problem Running time Reference
No General All-Pairs (G-H Tree) (n− 1)T (n,m) [GH61]
No Unit-Capacity Networks All-Pairs (G-H Tree) Õ(mn) [KL15], [BHKP07]
No Genus bounded by g All-Pairs (G-H Tree) 2O(g2)n log3 n [BENW16]
Yes Sparse All-Pairs O(n2 + γ4 log γ) [ACZ98]
Yes Constant Treewidth All-Pairs O(n2) [ACZ98]
Yes Unit-Capacity Networks All-Pairs O(mω) [CLL13]
Yes Unit-Capacity DAGs Single-Source O(nω−1m) [CLL13]
Yes Planar Single-Source O(n log3 n) [LNSW12]

Table 2.1: Known algorithms for multiple-pairs Max-Flow. In this table, T (n,m) is the fastest
time to compute maximum st-flow in an undirected graph, ω is the matrix multiplication
exponent, and γ = γ(G) is a topological property of the input network that varies between
1 and Θ(n). In planar graphs, γ is the minimum number of faces required to cover all
the nodes (i.e., every node is adjacent to at least one such face) over all possible planar
embeddings [Fre95].

multiple source-sink pairs, where the goal is always to report the value of each flow (and not
an actual flow attaining it).

Definition 2.1.1. (All-Pairs Max-Flow) Given a directed edge-capacitated graph G = (V,E,w),
output, for every pair of nodes u, v ∈ V , the maximum flow that can be shipped in G from u
to v.

Definition 2.1.2. (ST-Max-Flow) Given a directed edge-capacitated graph G = (V,E,w) and
two subsets of nodes S, T ⊆ V , output, for every pair of nodes s ∈ S and t ∈ T , the maximum
flow that can be shipped in G from s to t.

Definition 2.1.3. (Global Max-Flow) Given a directed edge capacitated graph G = (V,E,w),
output the maximum among all pairs u, v ∈ V , of the maximum flow value that can be shipped
in G from u to v.

Definition 2.1.4. (Maximum Local Edge Connectivity) Given a directed graph G = (V,E),
output the maximum among all pairs u, v ∈ V , of the maximum number of edge-disjoint
uv-paths in G.

Note that in a graph with all edge capacities equal to 1, the problem of finding the
maximum local edge connectivity is equivalent to finding the global maximum flow.

2.1.1 Prior Work

We start with undirected graphs, where the All-Pairs Max-Flow values can be represented in
a very succint manner, called nowdays a Gomory-Hu tree [GH61]. In addition to being very
succint, it allows the flow values and the corresponding cuts (vertex partitions) to be quickly
retrieved. For a list of previous algorithms for multiple pairs maximum st-flow, see Table 2.1.
For directed graphs, no current algorithm computes the maximum flow between any k = ω(1)
given pairs of nodes faster than the time of O(k) separate Max-Flow computations. However,
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some results are known in special settings. It is possible to compute Max-Flow for O(n) pairs
in the time it takes for a single Max-Flow computation [HO94] and this result is used to find
a global minimum cut. However, these pairs cannot be specified in the input.

For directed planar graphs, there is an O(n log3 n) time algorithm for the Single-Source
Max-Flow problem [LNSW12], which immediately yields an O(n2 log3 n) time algorithm for
the All-Pairs version, that is much faster than the time of O(n2) computations of planar
Max-Flow, a problem that can be solved in time O(n logn) [BK09]. Based on these results,
it was conjectured in [LNSW12] that also in general graphs, All-Pairs Max-Flow can be solved
faster than the time required for computing O(n2) separate maximum st-flows.

Several hardness results are known for multiple-pairs variants of Max-Flow [AWY18]. For
ST-Max-Flow in sparse graphs (m = O(n)) and |S| = |T | = O(

√
n), there is an n3/2−o(1) lower

bound assuming at least one of the Strong Exponential Time Hypothesis (SETH), 3SUM, and
All-Pairs Shortest-Paths (APSP) conjectures is correct (for comprehensive surveys on them,
see [Vas15, Vas18]). In addition, they show that Single-Source Max-Flow on sparse graphs
requires n2−o(1) time, unless MAX-CNF-SAT can be solved in time 2(1−δ)n poly(m) for some
fixed δ > 0, and in particular SETH is false.

We will rely on SETH, a conjecture introduced by [IP01], and on some weaker assumption
related to its maximization version, MAX-CNF-SAT. In more detail, SETH states that for
every fixed ε > 0 there is an integer k ≥ 3 such that kSAT on n variables andm clauses cannot
be solved in time 2(1−ε)n poly(m), where poly(m) refers to O(mc) for unspecified constant c.
By the sparsification lemma [IPZ01], in order to refute SETH it can be assumed that the
number of clauses is O(n). The MAX-CNF-SAT problem asks for the maximum number of
clauses that can be satisfied in an input CNF formula. Most of our conditional lower bounds
are based on the assumption that for every fixed δ > 0, MAX-CNF-SAT cannot be solved
in time 2(1−δ)n poly(m), where currently even 2n/ poly(n) algorithms are not known for this
problem [AWY18]. Note that this is a weaker assumption than SETH, since a faster algorithm
for MAX-CNF-SAT would imply a faster algorithm for CNF-SAT and refute SETH. Different
assumptions regarding the hardness of CNF-SAT have been the basis for many lower bounds,
including for the running time of solving NP-hard problems exactly, parametrized complexity,
and problems in P. See the Introduction in [ABHS17] and the references therein.

2.1.2 Our Contribution

We present conditional running time lower bounds for both unit and general capacities net-
works. The proofs appear in sections 2.2 and 2.3, respectively, where the order reflects
increasing level of complication. All our lower bounds hold even when the input G is a DAG
and has a constant diameter, and in the case of general capacities, they can be easily modified
to apply also for graphs with constant maximum degree. In addition, for integer k ≥ 1 we
use [k] to denote the range {1, ..., k}.

Capacitated Networks Our main result is that for every set sizes |S| and |T |, the ST-
Max-Flow cannot be solved significantly faster than O(|S||T |m) (i.e., polynomially smaller
running time), unless a breakthrough in MAX-CNF-SAT is achieved, and consequently in
SETH.

Theorem 2.1.5. If for some fixed constants ε > 0, c1, c2 ∈ [0, 1], ST-Max-Flow on graphs
with n nodes, |S| = Õ(nc1), |T | = Õ(nc2), m = O(n) edges, and capacities in [n] can be solved

7



in time O((|S||T |m)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and O(n′)
clauses can be solved in time 2(1−δ)n′ poly(n′), and in particular SETH is false.

This result improves the aforementioned n3/2−o(1) lower bound of [AWY18], as for their
setting of |S| = |T | = O(

√
n) our lower bound is n2−o(1), although their lower bound is based

on an incomparable (and intuitively weaker) conjecture, that at least one of the SETH, 3SUM,
and APSP conjectures is correct. In fact, if there was a reduction from SETH that implied a
larger running time lower bound for ST-Max-Flow, then the (single-pair) Max-Flow problem
would require a strictly super-linear time under it, but such a reduction is not possible unless
the non-deterministic version of SETH (abbreviated NSETH) is false [CGI+16]. And anyway,
such a lower bound for Max-Flow would be an amazing breakthrough.

The next theorem is an immediate corollary of Theorem 2.1.5, by assigning |S|, |T | = Θ(n).
Theorem 2.1.6. If for some fixed ε > 0, All-Pairs Max-Flow in graphs with n nodes, m = O(n)
edges, and capacities in [n] can be solved in time O((n2m)1−ε), then for some δ(ε) > 0, MAX-
CNF-SAT on n′ variables and O(n′) clauses can be solved in time 2(1−δ)n′ poly(n′), and in
particular SETH is false.

This conditional lower bound (see Figure 2.1) shows that All-Pairs Max-Flow requires time
that is equivalent to Ω(n3/2) computations of Max-Flow, which strongly separates the directed
case from the undirected one (where a Gomory-Hu tree can be constructed in the time of n−1
computations). If Max-Flow takes Õ(m) time, which is currently open but plausible, then
the running time of Ω̃(n2) computations of Max-Flow is needed. This is in contrast to the
aforementioned conjecture of Lacki, Nussbaum, Sankowski, and Wulf-Nilsen [LNSW12] that
All-Pairs Max-Flow in general graphs can be solved faster than the time of O(n2) computations
of maximum st-flow.

Unit-Capacity Networks For the case of unit-capacity networks, we show that for every
m = m(n), All-Pairs Max-Flow cannot be solved significantly faster than O(mn). Here we
introduce a new technique to design reductions from SETH to graphs with varying edge
densities, rather than the usual reductions that only deal with sparse graphs.
Theorem 2.1.7. If for some fixed ε > 0 and c ∈ [1, 2], All-Pairs Max-Flow in unit-capacity
graphs with n nodes and m = Θ(nc) edges can be solved in time O((mn1−ε)), then for
some δ(ε) > 0, MAX-CNF-SAT on n′ variables and O(n′) clauses can be solved in time
2(1−δ)n′ poly(n′), and in particular SETH is false.

Hence, a certain additional improvement to the O(mω) time algorithm of [CLL13] (and
similarly to the O(nωm) time for DAGs, where our lower bounds apply too) is not likely. We
now present conditional lower bounds for ST-Max-Flow, which are functions of |S| and |T |.
Theorem 2.1.8. If for some fixed constants ε > 0, c1, c2 ∈ [0, 1], ST-Max-Flow on unit-
capacity graphs with n nodes, |S| = Õ(nc1), |T | = Õ(nc2), and O((|S| + |T |)n) edges can be
solved in time O((|S||T |n)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′ poly(n′), and in particular SETH is false.

In addition, we present a conditional lower bound for computing the Maximum Local Edge
Connectivity of sparse graphs, which is the same as Global Max-Flow if all the capacities are
1, that is indeed the case in our reduction. The next result, proved in Section 2.5, was
obtained together with Bundit Laekhanukit and Rajesh Chitnis, and we thank them for their
permission to include it here.
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applies also to DAGs)

Capacitated Networks Unit-Capacity Networks

Figure 2.1: State of the art bounds for All-Pairs Max-Flow in directed networks. Conditional
lower bounds are depicted in dashed lines, and known algorithms in solid lines.

Theorem 2.1.9. If for some fixed ε > 0, the Maximum Local Edge Connectivity in graphs
with n nodes and Õ(n) edges can be found in time O(n2−ε), then for some δ(ε) > 0, MAX-
CNF-SAT on n′ variables and O(n′) clauses can be solved in time 2(1−δ)n′ poly(n′), and in
particular SETH is false.

Generalization to Bounded Cuts Finally, we show in Section 2.4 that our lower bounds
extend to the version that requires to output the maximum-flow value only for source-sink
pairs for which this value is at most some given threshold k.

Connection to the Orthogonal Vectors Problem Our techniques are based on parti-
tioning the variable set of CNF-SAT to sets of different sizes, and constructing graphs with
the property that certain pairs of nodes would have smaller maximum flow between them if
and only if they correspond to a satisfying assignment. This approach is inspired by results
of Williams [Wil05].

We remark that all of our theorems can also be proved assuming that for the appropriate
k ∈ {2, 3}, the k-Orthogonal Vectors (kOV) problem cannot be solved in time Õ(nk−ε) for a
fixed constant ε > 0, in what is called the kOV Hypothesis (see [Vas15, Vas18]). In the kOV
problem the input is k sets {Ui}i∈[k], each of n vectors from {0, 1}d, and the goal is to find k
vectors {ui}i∈[k], one from each set, such that u1 · ... · uk := ∑d

i=1
∏k
j=1 uj [i] = 0 (for k = 2 it

means that u1, u2 are orthogonal). An equivalent version of the problem has U1 = ... = Uk.
Solving kOV in time O(nkd) can be done easily by exhaustive search, while the fastest known
algorithm for the problem runs in time nk−1/Θ(log(d/ logn)) [AWY15, CW16]. Williams [Wil05]
proved that SETH implies the non-existence of an Õ(nk−ε)-time algorithm.
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2.2 Reduction to Multiple-Pairs Max-Flow with Unit Capacity
In this section we prove Theorems 2.1.7 and 2.1.8. We start with a general lemma which is
the heart of the proofs.

Lemma 2.2.1. Let a ∈ [0, 1] and b ∈ [0, 1 − a]. Then MAX-CNF-SAT on n variables and
m clauses {Ci}i∈[m] can be reduced to O(m) instances of ST-Max-Flow with |S| = 2an and
|T | = 2bn in graphs with Θ(2an + 2(1−a−b)nm+ 2bn) nodes, Θ((2an + 2bn) · 2(1−a−b)nm) edges,
and capacities in {0, 1}.

Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT,
a ∈ [0, 1], and b ∈ [0, 1− a], we split the variables into three sets U1, U2, and U3, where U1 is
of size an, U2 is of size (1−a−b)n, and U3 is of size bn, and enumerate all their 2an, 2(1−a−b)n,
and 2bn partial assignments (with respect to F ), respectively, when the objective is to find
a triple (α, β, γ) of assignments to U1, U2, and U3 respectively, that satisfies the maximal
number of clauses. We will have an instance Gp of ST-Max-Flow for each value p ∈ [m], in
which by one call to ST-Max-Flow we check if there exists a triple α, β, and γ that satisfies
at least p clauses, as follows.

We construct a graph Gp for every p ∈ [m] on N nodes V1 ∪ V2 ∪ V3, where V1 contains a
node α for every assignment α to U1, V2 contains 2m+ 1 + (p− 1) = 2m+ p nodes for every
assignment β to U2, that are βli and βri for every i ∈ [m], β′, and the set {β′i}i∈[p−1], and V3
contains a node γ for every assignment γ to U3. We use the notation α for nodes in V1 and
for assignments to U1, β for assignments to U2, and γ for nodes in V3 and assignments to
U3. However, it will be clear from the context. Now, we have to describe the edges in the
network. In order to simplify the reduction, we partition the edges into blue and red colors,
as follows.

For every α, β, and i ∈ [m], we add a blue edge from α to βli if both of α and β do not
satisfy the clause Ci (do not set any of the literals to true), and otherwise we add a red edge
from α to βri . We further add, for every β, γ, and i ∈ [m], a blue edge from βli to γ if γ does
not satisfy Ci. For every β, γ, and j ∈ [p − 1], we add a red edge from every β′j to every γ.
For every β and i ∈ [m], we add a red edge from βli to βri and from βri to β′, and finally for
every β and j ∈ [p− 1], we add a red edge from β′ to β′j , where all edges are of capacity 1.

The graph we built has 2an+ 2 ·2(1−a−b)nm+ 2(1−a−b)n+ 2(1−a−b)n(p−1) + 2bn = Θ(2an+
2(1−a−b)nm+2bn) nodes, 2an ·2(1−a−b)nm+2bn ·2(1−a−b)nm+2·2(1−a−b)nm+ (p−1)2(1−a−b)n+
2bn · (p − 1)2(1−a−b)n = Θ((2an + 2bn) · 2(1−a−b)nm) edges, with capacities in {0, 1} (see
Figure 2.2), and its construction time is asymptotically the same as the time it takes to
output its edge set.

For every α, β, and γ, we denote by Gα,β,γp the graph induced from Gp on the nodes

(α, β′, γ) ∪
( ⋃
y∈{l,r}
i∈[m]

βyi

)
∪
( ⋃
j∈[p−1]

β′j

)

We claim that for every α and γ, the maximum flow from α to γ can be bounded by
the sum, over all β, of the maximum flow between them in Gα,β,γp . This claim follow easily
because the intersection Gα,β1,γ

p ∩Gα,β2,γ
p for β1 6= β2 is exactly the source and the sink {α, γ},

no edge passes between these two graphs, and
(⋃

β G
α,β,γ
i

)
consists of all nodes that are both

reachable from α and γ is reachable from them.
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Figure 2.2: An illustration of part of the reduction. Here, U1, U2, and U3 have 2 assignments
each, α and α̃ to U1, β and β̃ to U2, and γ and γ̃ to U3. Blue edges are dashed. For simplicity,
only the edges of Gα,β,γ̃3 ∪Gα,β̃,γ̃3 are presented. In this illustration, α does not satisfy anything,
β satisfies C2 and C3, β̃ satisfies C1, and γ̃ satisfies C1. Note that the assignment comprised of
α, β, and γ̃ satisfies all the clauses, and indeed the maximum flow from α to γ is 2 ·3−1 = 5.

We now prove that if there is an assignment to F that satisfies at least p clauses then the
graph Gp we built has a triple α, β, γ with maximum flow from α to γ in Gα,β,γp at most m−1.
Since for every β̃, m is the number of outgoing edges from α in Gα,β̃,γp , m is also an upper
bound for the maximum flow from α to γ in it, and hence in Gp it is at most 2(1−a−b)nm− 1.
Otherwise, we will show that every triple α, β, γ has a maximum flow from α to γ in Gα,β,γp of
size at least m, and so in Gp it is at least 2(1−a−b)nm. Hence, by simply picking the maximal
j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at most 2(1−a−b)nm− 1, and
then by iterating over all assignments β to U2 with α and γ fixed as the assignments to U1
and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and U3,
respectively, that are induced from Φ. Since a blue path from αΦ through βΦ

l
i for some i ∈ [m]

to γΦ corresponds to αΦ, βΦ, and γΦ all do not satisfy Ci, in GαΦ,βΦ,γΦ
p there are at most

m− p (internally) disjoint blue paths from α to γ. As the only way to ship flow in GαΦ,βΦ,γΦ
p

that is not through a blue path is through the node β′Φ, and the total number of edges going
out of this node is p− 1, we conclude that the total maximum flow in GαΦ,βΦ,γΦ

p from αΦ to
βΦ is bounded by m− p+ (p− 1) = m− 1. Since for every β, the maximum amount of flow
that can be shipped in GαΦ,β,γΦ

p from αΦ to γΦ is at most m, summing over all β we get that
the total flow in Gp from αΦ to γΦ is bounded by (2(1−a−b)n−1)m+(m−1) ≤ 2(1−a−b)nm−1,
as required.

For the second direction, assume that every assignment to F satisfies at most p−1 clauses.
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In order to show that the maximum flow from every α to every γ is at least 2(1−a−b)nm, we
first fix α, β, and γ. Then, by passing flow in two phases we show that m units of flow
can be passed in Gα,β,γp from α to γ. As this argument applies for every β, we can add up
the respective flows without violating capacities, concluding the proof. By the assumption,
there exist m − (p − 1) = m − p + 1 i’s, such that α, β, and γ do not satisfy Ci, and
we denote a set with this amount of such i’s by Iβ. Each of these i’s induces a blue path
(α → βli → γ) from α to γ in Gα,β,γp , and so we ship a unit of flow through every one of
them according to Iβ, in what we call the first phase. In the second phase, we ship additional
m− (m− p+ 1) = p− 1 units in the following way. Let A1 := {i ∈ [m] \ Iβ : α 2 Ci ∧β 2 Ci},
and A2 := ([m] \ Iβ) \ A1 = {i ∈ [m] \ Iβ : α � Ci ∨ β � Ci}, where α � Ci denotes that the
assignment α satisfies Ci (as defined earlier), and α 2 Ci denotes that it does not satisfy Ci.
Let f : A1 ∪ A2 → [m − |Iβ|] be a bijective function such that the range of A1 is [|A1|] and
the range of A2 is [m− |Iβ|] \ [|A1|]. Clearly, there exists such bijection and it is easy to find
one. For every i ∈ A1 we ship flow through the path (α→ βli → βri → β′ → β′j → γ), and for
every i ∈ A2 through the path (α→ βri → β′ → β′j → γ), in both cases with j = f(i).

Since we defined the flow in paths, we only need to show that the capacity requirements
hold, and we start with blue edges. Indeed, edges of the form (α, βli) are used in the first
phase, with flow that is determined uniquely by β and i ∈ Iβ, and in the second phase
uniquely according to β and i ∈ [m]\Iβ, and so they cannot be used twice. Edges of the form
(βli, γ) are only used in the first phase, and their flow is uniquely determined according to β
and i ∈ Iβ, and so are good too. We now proceed to red edges, which were used only in the
second phase.

Edges of the forms (α, βri ), (βli, βri ) and (βri , β′) have flow that is uniquely determined by
β and i ∈ [m] \ Iβ, and so are not used more than once. Edges of the form (β′, β′j) have flow
that is uniquely determined by β and j = f(i) ∈ [p − 1], and since f is a bijection, every j
has at most one i such that f(i) = j, and so these edges are also used at most once. As a
byproduct, and since every edge of the form (β′j , γ) has only the edge (β′, β′j) as its source for
flow, edges of the form (β′j , γ) are also used at most once. Altogether, we have bounded the
total flow in all edges that were used in both phases, and so the capacity requirements follow,
which completes the proof of the second direction and of Lemma 2.2.1.

Proof of Theorem 2.1.7. We apply Lemma 2.2.1 in as follows. For every setting of a = b ∈
[1/3, 1/2] we get graphs G = (V,E,w) with |V | = Θ(2an) (|V | = Θ(2an)m if a = 1/3) and
|E| = 2(1−a)nm. Hence, |E| = O(|V |1/a−1) and so in order to get any c ∈ [1, 2] we can pick
a(= b) such that additionally c = 1/a− 1, and Theorem 2.1.7 follows.

Proof of Theorem 2.1.8. Here we apply Lemma 2.2.1 a bit differently. For every setting of
a, b ∈ [0, 1/2] such that 1 − a − b ≥ max(a, b) we get graphs G = (V,E,w) with |V | =
Θ(2(1−a−b)nm) and |E| = Θ((2an + 2bn)2(1−a−b)nm). Hence, in order to get any c1, c2 ∈ [0, 1],
we can pick a, b such that additionally c1 = a/(1 − a − b) and c2 = b/(1 − a − b), and thus
|S| = (|V |/m)c1 and |T | = (|V |/m)c2 , and so we get our lower bound for |E| = O((|S|+|T |)|V |)
and Theorem 2.1.8 follows.
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2.3 Reduction to Multiple-Pairs Max-Flow in Capacitated Net-
works

In this section we prove Theorems 2.1.5 and 2.1.6. We proceed to prove our main technical
lemma.

Lemma 2.3.1. Let a ∈ [0, 1] and b ∈ [0, 1− a]. Then MAX-CNF-SAT on n variables and m
clauses {Ci}i∈[m] can be reduced to O(m) instances of ST-Max-Flow with |S| = 2an and |T | =
2bn in graphs with N = Θ(2an+2(1−a−b)nm+2bn) nodes, O((2an+2(1−a−b)n+2bn)m) = O(N)
edges, and with capacities in [N ].

Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT,
a ∈ [0, 1], and b ∈ [0, 1− a], we begin similarly to before by splitting the variables into three
sets U1, U2, and U3 where U1 is of size an, U2 is of size (1 − a − b)n, and U3 is of size
bn, and enumerate all their 2an, 2(1−a−b)n, and 2bn partial assignments (with respect to F ),
respectively, when the objective is to find a triple (α, β, γ) of assignments to U1, U2, and U3,
that satisfy the maximal number of clauses. We will have an instance Gp of ST-Max-Flow
for each value p ∈ [m], in which by one call to ST-Max-Flow we check if there exists a triple
(α, β, γ) that satisfies at least p clauses, as follows.

We construct the graph Gp on N nodes V1 ∪ V2 ∪ V3 ∪A∪B ∪ {vB}, where V1 contains a
node α for every assignment α to U1, V2 contains 3m+ 1 nodes for every assignment β to U2,
that are βli, βci , βri , for every i ∈ [m], and β′, V3 contains a node γ for every assignment γ to
U3, A contains two nodes C�

i and C2
i for every clause Ci, and B contains a node Ci for every

clause Ci. We use the notation α for nodes in V1 and assignments to U1, β to assignments to
U2, γ for nodes in V3 and assignments to U3, and Ci for nodes in B and clauses. However, it
will be clear from the context. Now, we have to describe the edges in the network. In order
to simplify the reduction, we partition the edges into red and blue colors, as follows.

For every α and i ∈ [m] we add a red edge of capacity 2(1−a−b)n from α to C�
i if α � Ci,

and a blue edge of the same capacity from α to C2
i otherwise. We further add, for every β,

a red edge of capacity 1 from C�
i to βci , a blue edge of capacity 1 from C2

i to βli, a blue edge
of capacity 1 from βli to βri if β 2 Ci, a red edge of capacity 1 from βci to β′, and a blue edge
of capacity 1 from βri to Ci. For every β we add a red edge of capacity p− 1 from β′ to vB.
For every γ we add a red edge of capacity 2(1−a−b)n(p− 1) from vB to γ ∈ V3, and finally, for
every γ and i ∈ [m] we add a blue edge of capacity 2(1−a−b)n from Ci to γ if γ 2 Ci.

The graph we built has N = 2an + 2m + 2(1−a−b)n · 3m + 2(1−a−b)n + 1 + m + 2bn =
Θ(2an+2(1−a−b)n ·m+2bn) nodes, at most 2anm+2(1−a−b)n ·2m+2(1−a−b)n ·2m+2(1−a−b)nm+
2(1−a−b)n + 1 + 2(1−a−b)nm+ 2bnm = O((2an + 2(1−a−b)n + 2bn)m) edges, all of its capacities
are in [N ], and its construction time is O(Nm) (see Figure 2.3).

We proceed to prove that if there is an assignment to F that satisfies at least p clauses then
the graph Gp we built has a pair α, γ with maximum flow from α to γ at most 2(1−a−b)nm−1,
and otherwise, every α, γ has a maximum flow of size at least 2(1−a−b)nm. Hence, by simply
picking the maximal j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at most
2(1−a−b)nm− 1, and then by iterating over all assignments β to U2 with α and γ fixed as the
assignments to U1 and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and U3,
respectively, that are induced from Φ. We will show that there exists an (αΦ, γΦ) cut whose

13



α

γ̃

β′

βl
1

βc
1

α̃

γ

C�
1

C2
1

C�
2

C2
2

C�
3

C2
3

βr
1

βl
2

βc
2

βr
2

β̃l
1

β̃c
1

β̃r
1

β̃l
2

β̃c
2

β̃r
2

β̃l
3

β̃c
3

β̃r
3

βl
3

βc
3

βr
3

C1

C2

C3

β̃′

vB

p− 1 (= 2)

p
−
1
(=

2)

2
(1−a−b)n (=

2)

(p−
1) · 2 (1−

a−
b)n

(=
4)

2 (1−a−b)n
(= 2)

2 (1−
a−

b)n
(=

2)

2 (1−
a−

b)n
(=

2)

2(1−a−b)n (= 2)

Figure 2.3: An illustration of part of the reduction, with p = m. Here, U1, U2, and U3 have
2 assignments each; α and α̃ to U1, β and β̃ to U2, γ and γ̃ to U3. Bolder edges correspond
to edges of higher capacity (specified wherever they are bigger than 1), and blue edges are
dashed. For simplicity, only the edges relevant to α and γ̃ are presented. In this illustration,
α satisfies C3, β satisfies C1, β̃ satisfies C3, and γ̃ satisfies C2. Note that the assignment
comprised of α, β, and γ̃ satisfies all the clauses, and indeed the maximum flow from α to γ
is 2 · 3− 1 = 5.

capacity is at most 2(1−a−b)nm− 1, hence by the Min-Cut Max-Flow theorem, the maximum
flow from αΦ to γΦ is bounded by this number, concluding the proof of the first direction.
We define the cut in a way that for every β 6= βΦ, the cut will have m cut edges that are
contributed from nodes related to β, and nodes related to βΦ will be carefully added to either
side of the cut, so that they will contribute capacity of only m − 1 to the cut. This is done
by exploiting the fact that there are at most m− p blue paths from αΦ to γΦ through nodes
associated with βΦ. To be more precise, we define a suitable cut as follows.

S = {αΦ, β
′
Φ} ∪ {C�

i : αΦ � Ci} ∪ {C2
i : αΦ 2 Ci} ∪ {βΦ

c
i : i ∈ [m]} ∪ {Ci, βΦ

l
i, βΦ

r
i : γΦ � Ci}∪

{βΦ
l
i : γΦ 2 Ci ∧ βΦ � Ci}

Claim 2.3.2. The cut (S, V \ S) = (S, T ) has capacity 2(1−a−b)nm− 1.
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Proof of Claim. We will go over all the nodes in S, and count the total capacity leaving to
nodes in T for each of them. αΦ ∈ S and all nodes C�

i and C2
i that are adjacent to it are in

S too, hence it does not contribute anything. For every i ∈ [m], we have two cases for nodes
in A. If αΦ � Ci then C2

i ∈ T and hence C2
i does not contribute anything. However, C�

i has
2(1−a−b)n outgoing edges, where all except βΦ

c
i are in T . Hence, it contributes 2(1−a−b)n − 1

to the cut. Else, if αΦ 2 Ci then C�
i ∈ T and hence C�

i does not contribute anything. But
C2
i has 2(1−a−b)n outgoing edges, of which 2(1−a−b)n − 1 are cut edges as their targets are

in T , and the one incoming to βΦ
l
i is a cut edge if and only if βΦi 2 Ci and also γΦ 2 Ci

(equivalently, βΦ
l
i ∈ T ), and in our current case it means that Φ 2 Ci. Hence, for every

i ∈ [m], the nodes in {C�
i , C

2
i } contribute 2(1−a−b)n − 1 to the cut if Φ � Ci, and 2(1−a−b)n

otherwise. Since there are at most m−p clauses that are not satisfied by Φ, summing over all
i ∈ [m] would yield a total of at most p(2(1−a−b)n− 1) + (m− p)(2(1−a−b)n) = 2(1−a−b)nm− p
cut edges for vertices with origin in A.

For every β 6= βΦ, all nodes in V2 that are associated with β, vB, and γΦ, are in T and
hence will not contribute anything to the cut. However, the node βΦ

′ is always in S, with vB
its sole target, and hence the edge (βΦ

′, vB) is in the cut and βΦ
′ contributes an additional

amount of p− 1, to a current total of at most 2(1−a−b)nm− p+ (p− 1) = 2(1−a−b)nm− 1. In
addition, βΦ

′ is the only target of βΦ
c
i , and thus βΦ

c
i will not contribute to the cut.

We will show that the rest of the nodes, i.e., nodes in V2 that are of the forms βlΦ and
βlΦ, and the nodes in B, contribute nothing to the cut. For every i ∈ [m], βΦ

l
i ∈ S if and

only if either βΦ � Ci or γΦ � Ci, so we assume that. It always happens that βΦ
c
i ∈ S, and

βΦ
r
i ∈ T if and only if γΦ 2 Ci, but in such case, by our assumption it must be that βΦ � Ci,

which implies that the edge (βΦ
l
i, βΦ

r
i ) is not in the graph, thus the total contribution of βΦ

l
i

is zero. Continuing to nodes of the forms βΦ
r
i and Ci, it is easy to verify that the following

four statements are either all true or all false: βΦ
r
i ∈ S, γΦ � Ci, Ci ∈ S, and the edge (Ci, γΦ)

is not in the graph. In the case where they all false, in particular Ci and βΦ
r
i are in T and it

is clear that they do not contribute anything, so we will focus on the remaining case. Since
Ci is in S and is the only target of βΦ

r
i , βΦ

r
i will not increase the cut capacity. In addition,

since the edge (Ci, γΦ) is not in the graph, Ci does not increase the capacity of the cut either.
Altogether we have bounded the total capacity of the cut by 2(1−a−b)nm − 1, finishing the
proof of Claim 2.3.2.

Proceeding with the proof of Lemma 2.3.1, we now focus on the second direction. Assume
that every assignment to F satisfies at most p− 1 clauses. We remind that we need to prove
that the maximum flow from every α to every γ is at least 2(1−a−b)nm, and to do this we first
fix α and γ. By the assumption, for every β there exist m− (p− 1) = m− p+ 1 i’s, such that
α, β, and γ do not satisfy Ci, and we denote a set with this amount of such i’s by Iβ. Each
of these i’s induces a blue path (α→ C2

i → βli → βri → Ci → γ) from α to γ, and so we pass
a unit of flow through every one of them according to Iβ, and for all β, in what we call the
first phase. We note that so far, the flow sums up to 2(1−a−b)n(m − p + 1), and so we carry
on with shipping the second phase of flow through paths that are not entirely blue.

We claim that for every β, we can pass an additional amount of m− (m− p+ 1) = p− 1
units through β′, which would add up to a total flow of 2(1−a−b)n(m−p+1)+2(1−a−b)n(p−1) =
2(1−a−b)nm, concluding the proof. Indeed, for every β, we ship flow in the following way. For
every i ∈ [m] \ Iβ, if α 2 Ci then send a unit through (α→ C2

i → βli → βci → β′ → vB → γ),
and otherwise send a unit through (α→ C�

i → βci → β′ → vB → γ).
Since we defined the flow in paths, we only need to show that the capacity constraints are
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satisfied, starting with edges of color blue. Edges of the forms (βli, βri ), (βri , Ci), and (Ci, γ)
are only used in the first phase, where the flow in the first two is uniquely determined by β
and i ∈ Iβ, and so at most 1 unit of flow is passed through them, and the flow in the latter
kind is determined by i ∈ Iβ, and the same i ∈ Iβ can have at most |{βri }β| = 2(1−a−b)n units
of flow passing in (Ci, γ), and so the flow in it is also bounded. The flow in edges of the form
(C2

i , β
l
i) in the first phase is uniquely determined by β and i ∈ Iβ, and in the second phase

uniquely according to β and i ∈ [m] \ Iβ, and so will not be used twice, and the flow in edges
of the form (α,C2

i ) is determined in the first phase by i ∈ Iβ and in the second phase by
i ∈ [m] \ Iβ, and so will be used at most ∑β|Iβ ∩{i}|+

∑
β|([m] \ Iβ)∩{i}| ≤ 2(1−a−b)n times.

We now proceed to prove that red edges too do not have more flow than their capacity,
and for this we only need to consider the second phase. Edges of the forms (C�

i , β
c
i ), (βli, βci ),

and (βci , β′) have flow that is uniquely determined by β and i ∈ [m] \ Iβ and so are not
used more than once, edges of the form (β′, vB) have flow that is determined by β and thus
have flow |{βci }i∈[m]\Iβ | = |[m] \ Iβ| = p − 1, and edges of the form (vB, γ) have flow of size
(p − 1)|{β′}β|2(1−a−b)n = (p − 1)2(1−a−b)n, and hence are properly bounded. Finally, edges
of the form (α,C�

i ) have flow that is determined by i ∈ [m] \ Iβ and so are used at most
|{βci }β| = 2(1−a−b)n times. Altogether, we have bounded the total flow in all the edges that
were used in both phases, and so the capacity requirements follow, which completes the proof
of the second direction and of Lemma 2.3.1.

Proof of Theorem 2.1.5. We apply Lemma 2.3.1 in the following way. For every setting of
a, b ∈ [0, 1/2] such that 1 − a − b ≥ max(a, b) we get graphs G = (V,E,w) with |V | =
Θ(2(1−a−b)nm) and |E| = Θ(2(1−a−b)nm) = O(|V |). Hence, in order to get any c1, c2 ∈ [0, 1],
we can pick a, b such that additionally c1 = a/(1 − a − b) and c2 = b/(1 − a − b), and thus
|S| = (|V |/m)c1 and |T | = (|V |/m)c2 , and so our claimed lower bound and Theorem 2.1.5
follow.

2.4 Generalization to Bounded Cuts
Our lower bounds extend to the version where we only care about vertex-pairs with maximum
flow bounded by a given k, which we refer to as kPMF.

Definition 2.4.1. (kPMF) Given a directed edge-capacitated graph G = (V,E,w) and an
integer k, for every pair of nodes u, v ∈ V where the maximum flow that can be shipped in G
from u to v is of size at most k, output this pair and its maximum flow value.

Theorem 2.4.2 (Generalization of Theorem 2.1.7). If for some fixed constants ε > 0 and
c ∈ [0, 1], kPMF in unit-capacity graphs with n nodes, k = Õ(nc), and m = O(kn) edges can
be solved in time O((n2k)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′ poly(n′), and in particular SETH is false.

Proof. We apply Lemma 2.2.1 as follows. For every setting of a = b ∈ [1/3, 1/2] we get graphs
G = (V,E,w) with |V | = Θ(2an) (|V | = Θ(2anm) if a = 1/3), and |E| = 2an · 2(1−2a)nm =
Θ(2(1−a)nm). The main idea is that the middle layer bound the flow from every α to every γ,
which are the only pairs that we need to find the maximum flow for. To be more precise, for
every α′ and γ′ we show a cut of capacity k = O(2(1−2a)nm) separating them, by considering

S = {α′} ∪ {βli : i ∈ [m], ∀β}.
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Clearly, the only outgoing edges from S are from α′ and from vertices of the form βli. α′

has an outgoing degree at most O(2(1−2a)nm), and for each β and i ∈ [m], vertices of the
form βli have a total outgoing degree at most 2. Hence, the total capacity of the cut is
bounded by k = O(2(1−2a)nm). The claimed range of k is attained because setting a = 1/2
yields k = O(m) = O(log|V |) ≤ O(nc), and letting a approach 1/3 yields k tending to
O(2n/3m) = O(|V |). Note that |E| = O(|V |k), and |V |2k = O((2an)2 · 2(1−2a)nm) = O(2nm),
and finally in order to get any c ∈ [0, 1] we can pick a(= b) such that additionally c = 1/a−2,
and Theorem 2.4.2 holds.

Theorem 2.4.3 (Generalization of Theorem 2.1.6). If for some fixed constants ε > 0 and
c ∈ [0, 1], kPMF in graphs with n nodes, k = Õ(nc), m = O(n) edges, and capacities in [n]
can be solved in time O((n2k)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables
and O(n′) clauses can be solved in time 2(1−δ)n′ poly(n′), and in particular SETH is false.

Proof. We apply Lemma 2.3.1 in a similar fashion to the application of Lemma 2.2.1 in the
proof of Theorem 2.4.2, where the choices of a and b are done in exactly the same way as
before, also allowing again a free choice of c ∈ [0, 1]. However, now |E| = O(|V |), and we
choose the cut as follows. For every α′ and γ′ we show a cut of capacity k = O(2(1−2a)nm)
separating them, by considering

S = {α′} ∪ {C�
i , C

2
i : i ∈ [m]} ∪ {βli, βci : i ∈ [m],∀β}.

Clearly, the only outgoing edges from S are of capacity 1, from α′ and from vertices of the
forms βli and βci . For each β and i ∈ [m], these vertices have a total of at most 2 edges going
out to the rest of the graph. Hence, the size of the cut is bounded by k = O(2(1−2a)nm), and
the range of k is similar to the proof of Theorem 2.4.2, and so Theorem 2.4.3 holds.

Known algorithms solve kPMF in directed graphs in time Õ(n2m ·min(k,
√
n)), which is

bigger than the lower bound in Theorem 2.4.3 by a factor that is roughly between
√
n and n

for sparse graphs, leaving a gap that is not too big even for relatively small values of k. This
running time can be achieved by O(n2) computations of either the aforementioned O(mk)
time algorithm of [FF56] (actually, a slightly modified version that halts when the total flow
exceeds k), or the Õ(m

√
n) time algorithm of [LS14].

It is interesting to note that in graphs that are undirected and with unit capacities, an
algorithm for kPMF with running time O(mk + n2) was shown in [BHKP07]. This shows
a separation between the directed and the undirected cases also for unit-capacity graphs,
roughly by a factor Ω(n2k/(mk+n2)) = Ω(min(k, n/k)), since our relevant conditional lower
bound is proved for m = O(kn). Their algorithm actually builds in time O(mk) a partial
Gomory-Hu tree that succinctly represents the values required by kPMF, and then it is easy
to extract all the relevant values in time O(n2), as required by our definition of kPMF. For
instance, when k = O(

√
n) and m = O(n3/2) their upper bound for the undirected and

unit-capacity case is O(n2), while our lower bound for the directed case is n2.5−o(1).

2.5 Global Max-Flow
Proof of Theorem 2.1.9. Given a CNF-formula F on n variables and m clauses {Ci}i∈[m] as
input for MAX-CNF-SAT, we split the variables into two sets U1 and U2 of size n/2 each

17



and enumerate all 2n/2 partial assignments (with respect to F ) to each of them, when the
objective is to find a pair (α, β) of assignments to U1 and U2 that satisfy the maximal number
of clauses. We construct a graph G = (V,E) such that V = L∪R∪C as follows. L contains a
node α for every assignment α to U1, R contains a node β for every assignment β to U2, and
C contains three nodes c0,0, c0,1, and c1,0 for every clause Ci. We use the notation α for nodes
in L and assignments to U1, β for nodes in R and assignments to U2. However, it will be clear
from the context. For every assignment α to U1 and clause Ci, we add an edge from α to c�,�
and c�,2 if α � Ci, and an edge from α to c2,� otherwise. Similarly, for every assignment β to
U2 and clause Ci, we add an edge from β to c�,� and c2,� if β � Ci, and an edge from β to c�,2
otherwise. This graph has N = n+n+ 3m = O(n) nodes and at most n · 2m+n · 2m = Õ(n)
edges. For every pair of assignments α and β and clause Ci there is exactly one path (of
length 2) from α to β through nodes associated with Ci if and only if both α � Ci and β � Ci,
and no paths through them otherwise. Hence, the number of edge disjoint paths from α to β
is exactly the number of clauses that are satisfied by both of the assignments α and β, and
so an algorithm for Maximum Local Edge Connectivity with running time Õ(n2−ε) implies an
algorithm for MAX-CNF-SAT with running time Õ((2n/2)2−ε) = Õ(2(1−ε/2)n), completing
the proof for δ(ε) = ε/2.

Acknowledgements We thank Rajesh Chitnis and Bundit Laekhanukit for some useful
conversations, and for their part in achieving the result on Global Max-Flow.
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Chapter 3

Faster Algorithms for All-Pairs
Bounded Min-Cuts in
Unit-Capacity Directed Graphs1

3.1 Introduction

Connectivity-related problems are some of the most well-studied problems in graph theory
and algorithms, and have been thoroughly investigated in the literature. Given a directed
graph G = (V,E) with n = |V | vertices and m = |E| edges, perhaps the most funda-
mental such problem is to compute a minimum st-cut, i.e., a set of edges E′ of minimum-
cardinality such that t is not reachable from s in G \ E′. This minimum st-cut problem is
well-known to be equivalent to maximum st-flow, as they have the exact same value [FF62].
Currently, the fastest algorithms for this problem run in time Õ(m

√
n logO(1) U) [LS14] and

Õ(min{m10/7U1/7,m11/8U1/4,m4/3U1/3}) (faster for sparse graphs) [Mad16, LS20a, LS20b],
where U is the maximum edge capacity (aka weight).2

The central problem of study in this chapter is All-Pairs Min-Cut (also known as All-
Pairs Max-Flow), where the input is a digraph G = (V,E) and the goal is to compute the
minimum st-cut value for all s, t ∈ V . All our graphs will have unit edge/vertex-capacities
(aka uncapacitated), in which case the value of the minimum st-cut is just the maximum
number of disjoint paths from s to t (aka edge/vertex connectivity), by [Men27]. We will
consider a few variants: vertex capacities vs. edge capacities,3 or a general digraph vs. a
directed acyclic graph (DAG). For all these variants, we will be interested in the k-bounded
version (aka bounded min-cuts, hence the title of the chapter) where the algorithm needs to
find which minimum st-cuts have value less than a given parameter k < n, and report only
those. Put differently, the goal is to compute, for every s, t ∈ V , the minimum between k and
the actual minimum st-cut value. Nonetheless, some of our results (the lower bounds) are of
interest even without this restriction.

The time complexity of these problems should be compared against the fundamental
1This chapter is based on [AGI+19].
2The notation Õ(·) hides polylogarithmic factors.
3The folklore reduction where each vertex v is replaced by two vertices connected by an edge vin → vout

shows that in all our problems, vertex capacities are no harder (and perhaps easier) than edge capacities.
Notice that this is only true for directed graphs.
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special case that lies at their core — the Transitive Closure problem (aka All-Pairs Reach-
ability), which is known to be time-equivalent to Boolean Matrix Multiplication, and in
some sense, to Triangle Detection [WW18]. This is the case k = 1, and it can be solved in
time O(min{mn, nω}), where ω < 2.38 is the matrix-multiplication exponent [CW90, LG14,
Vas12]; the latter term is asymptotically better for dense graphs, but it is not combinatorial.4
This time bound is conjectured to be optimal for Transitive Closure, which can be viewed
as a conditional lower bound for All-Pairs Min-Cut; but can we achieve this time bound
algorithmically, or is All-Pairs Min-Cut a harder problem?

The naive strategy for solving All-Pairs Min-Cut is to execute a minimum st-cut algorithm
O(n2) times, with total running time Õ(n2m10/7) [Mad16] or Õ(n2.5m) [LS14]. For not-too-
dense graphs, there is a faster randomized algorithm of Cheung, Lau, and Leung [CLL13]
that runs in time O(mω). For smaller k, some better bounds are known. First, observe that a
minimum st-cut can be found via k iterations of the Ford-Fulkerson algorithm [FF62] in time
O(km), which gives a total bound of O(n2mk). Another randomized algorithm of [CLL13]
runs in better time O(mnkω−1) but it works only in DAGs. Notice that the latter bound
matches the running time of Transitive Closure if the graphs are sparse enough. For the case
k = 2, Georgiadis et al. [GGI+17] achieved the same running time as Transitive Closure up
to sub-polynomial factor no(1) in all settings, by devising two deterministic algorithms, whose
running times are Õ(mn) and Õ(nω).

Other than the lower bound from Transitive Closure, the main previously known result is
from [KT18b], which showed that under the Strong Exponential Time Hypothesis (SETH),5
All-Pairs Min-Cut requires, up to sub-polynomial factors, time Ω(mn) in unit-capacity di-
graphs of any edge density, and even in the simpler case of (unit) vertex-capacities and of
DAGs. As a function of k their lower bound becomes Ω(n2−o(1)k) [KT18b]. Combining the
two, we have a conditional lower bound of (n2k + nω)1−o(1).

Related Work. There are many other results related to our problem, let us mention a
few. Other than DAGs, the problem has also been considered in the special cases of planar
digraphs [ACZ98, LNSW12], sparse digraphs and digraphs with bounded treewidth [ACZ98].

In undirected graphs, the problem was studied extensively following the seminal work of
Gomory and Hu [GH61] in 1961, which introduced a representation of All-Pairs Min-Cuts via
a weighted tree, commonly called a Gomory-Hu tree, and further showed how to compute it
using n− 1 executions of maximum st-flow. Bhalgat et al. [BHKP07] designed an algorithm
that computes a Gomory-Hu tree in unit-capacity undirected graphs in Õ(mn) time, and this
upper bound was recently improved [AKT20b]. The case of bounded min-cuts (small k) in
undirected graphs was studied by Hariharan et al. [HKP07], motivated in part by applications
in practical scenarios. The fastest running time for this problem is Õ(mk) [Pan16], achieved
by combining results from [HKP07] and [BHKP07]. On the negative side, there is an n3−o(1)

lower bound for All-Pairs Min-Cut in sparse capacitated digraphs [KT18b], and very recently,
a similar lower bound was shown for undirected graphs with vertex capacities [AKT20b].

4Combinatorial is an informal term to describe algorithms that do not rely on fast matrix-multiplication
algorithms, which are infamous for being impractical. See [AW14, ABW18] for further discussions.

5These lower bounds hold even under the weaker assumption that the 3-Orthogonal Vectors problem requires
n3−o(1) time.
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3.1.1 Our Contribution

The goal of this work is to reduce the gaps in our understanding of the All-Pairs Min-Cut
problem (see Table 3.1 for a list of known and new results). In particular, we are motivated
by three high-level questions. First, how large can k be while keeping the time complexity
the same as Transitive Closure? Second, could the problem be solved in cubic time (or faster)
in all settings? Currently no Ω(n3+ε) lower bound is known even in the hardest settings of
the problem (capacitated, dense, general graphs). And third, can the actual cuts (witnesses)
be reported in the same amount of time it takes to only report their values? Some of the
previous techniques, such as those of [CLL13], cannot do that.

A New Algorithm. Our first result is a randomized algorithm that solves the k-
bounded version of All-Pairs Min-Cut in a digraph with unit vertex-capacities in timeO((nk)ω).
This upper bound is only a factor kω away from that of Transitive Closure, and thus matches
it up to polynomial factors for any k = no(1). Moreover, any poly(n)-factor improvement
over our upper bound would imply a breakthrough for Transitive Closure (and many other
problems). Our algorithm builds on the network-coding method of [CLL13], and in effect
adapts this method to the easier setting of vertex capacities, to achieve a better running
time than what is known for unit edge-capacities. This algorithm is actually more general:
Given a digraph G = (V,E) with unit vertex-capacities, two subsets S, T ⊆ V and k > 0, it
computes for all s ∈ S, t ∈ T the minimum st-cut value if this value is less than k, all in time
O((n+ (|S|+ |T |)k)ω + |S||T |kω). We overview these results in Section 3.3, with full details
in Section 3.5.

New Lower Bounds. Finally, we present conditional lower bounds for our problem,
the k-bounded version of All-Pairs Min-Cut. As a result, we identify new settings where the
problem is harder than Transitive Closure, and provide the first evidence that the problem
cannot be solved in cubic time. Technically, the main novelty here is a reduction from the
4-Clique problem. It implies lower bounds that apply to the basic setting of DAGs with unit
vertex-capacities, and therefore immediately apply also to more general settings, such as edge
capacities, capacitated inputs, and general digraphs, and they in fact improve over previous
lower bounds [AWY18, KT18b] in all these settings.6 We prove the following theorem in
Section 3.4.

Theorem 3.1.1. If for some fixed ε > 0 and any k ∈ [n1/2, n], the k-bounded version of All-
Pairs Min-Cut can be solved on DAGs with unit vertex-capacities in time O((nω−1k2)1−ε),
then 4-Clique can be solved in time O(nω+1−δ) for some δ = δ(ε) > 0.

Moreover, if for some fixed ε > 0 and any k ∈ [n1/2, n] that version of All-Pairs Min-Cut
can be solved combinatorially in time O((n2k2)1−ε), then 4-Clique can be solved combinatori-
ally in time O(n4−δ) for some δ = δ(ε) > 0.

To appreciate the new bounds, consider first the case k = n, which is equivalent to
not restricting k. The previous lower bound, under SETH, is n3−o(1) and ours is larger
by a factor of nω−2. For combinatorial algorithms, our lower bound is n4−o(1), which is
essentially the largest possible lower bound one can prove without a major breakthrough

6It is unclear if our new reduction can be combined with the ideas in [AKT20b] to improve the lower bounds
in the seemingly easier case of undirected graphs with vertex capacities.
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in fine-grained complexity. This is because the naive algorithm for All-Pairs Min-Cuts is
to invoke an algorithm for Max-Flow O(n2) times, hence a lower bound larger than Ω(n4)
for our problem would imply the first non-trivial lower bound for minimum st-cut. The
latter is perhaps the biggest open question in fine-grained complexity, and in fact many
experts believe that near-linear time algorithms for minimum st-cut do exist, and can even
be considered “combinatorial” in the sense that they do not involve the infamous inefficiencies
of fast matrix multiplication. If such algorithms for minimum st-cut do exist, then our lower
bound is tight.

Our lower bound shows that as k exceeds n1/2−o(1), the time complexity of k-bounded of
All-Pairs Min-Cut exceeds that of Transitive Closure by polynomial factors. The lower bound
is super-cubic whenever k ≥ n2−ω/2+ε.

Time Input Output Reference
O(mn), Õ(nω) deterministic digraphs cuts, only k = 2 [GGI+17]
O(n2mk) deterministic digraphs cuts [FF62]
O(mω) randomized digraphs cut values [CLL13]
O(mnkω−1) randomized digraphs cut values [CLL13]
O((nk)ω) randomized, vertex cap. digraphs cut values Theorem 3.5.2
2O(k2)mn deterministic DAGs cuts [AGI+19]
(k logn)4k+o(k) · nω deterministic DAGs cuts [AGI+19]
(mn+ nω)1−o(1) based on Trans. Closure DAGs cut values
n2−o(1)k based on SETH DAGs cut values [KT18b]
nω−1−o(1))k2 based on 4-Clique DAGs cut values Theorem 3.1.1

Table 3.1: Summary of new and known results. Unless mentioned otherwise, all upper and
lower bounds hold both for unit edge-capacities and for unit vertex capacitities.

3.2 Preliminaries

We start with some terminology and well-known results on graphs and cuts. Next we will
briefly introduce the main algebraic tools that will be used throughout the chapter. We note
that although we are interested in solving the k-bounded All-Pairs Min-Cut problem, where
we wish to find the all-pairs min-cuts of size at most k − 1, for the sake of using simpler
notation we compute the min-cuts of size at most k (instead of less than k) solving this way
the (k + 1)-bounded All-Pairs Min-Cut problem.

Directed graphs. The input of our problem consists of an integer k ≥ 1 and a directed
graph, digraph for short, G = (V,E) with n := |V | vertices and m := |E| edges. All our
results extend to multi-digraphs, where each pair of vertices can be connected with multiple
(parallel) edges. For parallel edges, we always refer to each edge individually, as if each edge
had a unique identifier. So whenever we refer to a set of edges, we refer to the set of their
unique identifiers, i.e., without collapsing parallel edges, like in a multi-set.
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Flows and cuts. We follow the notation used by Ford and Fulkerson [FF62]. Let G =
(V,E) be a digraph, where each edge e has a nonnegative capacity c(e). For a pair of vertices
s and t, an st-flow of G is a function f on E such that 0 ≤ f(e) ≤ c(e), and for every vertex
v 6= s, t the incoming flow is equal to outgoing flow, i.e.,∑(u,v)∈E f(u, v) = ∑

(v,u)∈E f(v, u). If
G has vertex capacities as well, then f must also satisfy ∑(u,v)∈E f(u, v) ≤ c(v) for every v 6=
s, t, where c(v) is the capacity of v. The value of the flow is defined as |f | = ∑

(s,v)∈E f(s, v).

3.3 Overview of Our Algorithmic Approach

In the framework of [CLL13] edges are encoded as vectors, so that the vector of each edge
e = (u, v) is a randomized linear combination of the vectors correspond to edges incoming to
u, the source of e. One can compute all these vectors for the whole graph, simultaneously,
using some matrix manipulations. The bottleneck is that one has to invert a certain m×m
matrix with an entry for each pair of edges. Just reading the matrix that is output by the
inversion requires Ω(m2) time, since most entries in the inverted matrix are expected to be
nonzero even if the graph is sparse.

To overcome this barrier, while using the same framework, we define the encoding vectors
on the nodes rather than the edges. We show that this is sufficient for the vertex-capacitated
setting. Then, instead of inverting a large matrix, we need to compute the rank of certain
submatrices which becomes the new bottleneck. When k is small enough, this turns out to
lead to a significant speed up compared to the running time in [CLL13].

3.4 Reducing 4-Clique to All-Pairs Min-Cut

In this section we prove Theorem 3.1.1 by showing new reductions from the 4-Clique problem
to k-bounded All-Pairs Min-Cut with unit vertex-capacities. These reductions yield condi-
tional lower bounds that are much higher than previous ones, which are based on SETH, in
addition to always producing DAGs. Throughout this section, we will often use the term
nodes for vertices.

Definition 3.4.1 (The 4-Clique Problem). Given a 4-partite graph G, where V (G) = A ∪
B ∪C ∪D with |A| = |B| = |C| = |D| = n, decide whether there are four nodes a ∈ A, b ∈ B,
c ∈ C, d ∈ D that form a clique.

This problem is equivalent to the standard formulation of 4-Clique (without the restriction
to 4-partite graphs). The currently known running times are O(nω+1) using matrix multiplica-
tion [EG04], and O(n4/ polylogn) combinatorially [Yu18]. The k-Clique Conjecture [ABW18]
hypothesizes that current clique algorithms are optimal. Usually when the k-Clique Conjec-
ture is used, it is enough to assume that the current algorithms are optimal for every k that
is a multiple of 3, where the known running times are O(nωk/3) [NP85] and O(nk/polylogn)
combinatorially [Vas09], see e.g. [ABBK17, ABW18, BW17, Cha15, LWW18]. However, we
will need the stronger assumption that one cannot improve the current algorithms for k = 4
by any polynomial factor. This stronger form was previously used by Bringmann, Grønlund,
and Larsen [BGL17].
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3.4.1 Reduction to the Unbounded Case

We start with a reduction to the unbounded case (equivalent to k = n), that is, we reduce
to All-Pairs Min-Cut with unit node-capacities (abbreviated APMVC, for All-Pairs Minimum
Vertex-Cut). Later (in Section 3.4.1) we will enhance the construction in order to bound k.

Lemma 3.4.2. Suppose APMVC on n-node DAGs with unit node-capacities can be solved
in time T (n). Then 4-Clique on n-node graphs can be solved in time O(T (n) + MM(n, n)),
where MM(n, n) is the time to multiply two matrices from {0, 1}n×n.

To illustrate the usage of this lemma, observe that an O(n3.99)-time combinatorial al-
gorithm for APMVC would imply a combinatorial algorithm with similar running time for
4-Clique.

Proof. Given a 4-partite graph G as input for the 4-Clique problem, the graph H is con-
structed as follows. The node set of H is the same as G, and we abuse notation and refer also
to V (H) as if it is partitioned into A,B,C, and D. Thinking of A as the set of sources and
D as the set of sinks, the proof will focus on the number of node-disjoint paths from nodes
a ∈ A to nodes d ∈ D. The edges of H are defined in a more special way, see also Figure 3.1
for illustration.

A

B

C

D

Figure 3.1: An illustration of H in the reduction. Solid lines between nodes represent the
existence of an edge in the input graph G, and dashed lines represent the lack thereof.

• (A to B) For every a ∈ A, b ∈ B such that {a, b} ∈ E(G), add to E(H) a directed edge
(a, b).

• (B to C) For every b ∈ B, c ∈ C such that {b, c} ∈ E(G), add to E(H) a directed edge
(b, c).

• (C to D) For every c ∈ C, d ∈ D such that {c, d} ∈ E(G), add to E(H) a directed edge
(c, d).

The definition of the edges of H will continue shortly. So far, edges in H correspond to
edges in G, and there is a (directed) path a→ b→ c→ d if and only if the three (undirected)
edges {a, b}, {b, c}, {c, d} exist in G. In the rest of the construction, our goal is to make this
3-hop path contribute to the final a→ d flow if and only if (a, b, c, d) is a 4-clique in G (i.e.,
all six edges exist, not only those three). Towards this end, additional edges are introduced,
that make this 3-hop path useless in case {a, c} or {b, d} are not also edges in G. This allows
“checking” for five of the six edges in the clique, rather than just three. The sixth edge is
easy to “check”.
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• (A to C) For every a ∈ A, c ∈ C such that {a, c} /∈ E(G), add to E(H) a directed edge
(a, c).

• (B to D) For every b ∈ B, d ∈ D such that {b, d} /∈ E(G) in G, add to E(H) a directed
edge (b, d).

This completes the construction of H. Note that these additional edges imply that there
is a path a→ b→ d in H iff {a, b} ∈ E(G) and {b, d} /∈ E(G), and similarly, there is a path
a → c → d in H iff {a, c} /∈ E(G) and {c, d} ∈ E(G). Let us introduce notations to capture
these paths. For nodes a ∈ A, d ∈ D denote:

B′a,d = {b ∈ B | {a, b} ∈ E(G) and {b, d} /∈ E(G) } ,
C ′a,d = {c ∈ C | {a, c} /∈ E(G) and {c, d} ∈ E(G) } .

We now argue that if an APMVC algorithm is run on H, enough information is received to
be able to solve 4-Clique on G by spending only an additional post-processing stage of O(n3)
time.

Claim 3.4.3. Let a ∈ A, d ∈ D be nodes with {a, d} ∈ E(G). If the edge {a, d} does not
participate in a 4-clique in G, then the node connectivity from a to d in H, denoted NC(a, d),
is exactly

NC(a, d) = |B′a,d|+ |C ′a,d|,

and otherwise NC(a, d) is strictly larger.

Proof of Claim 3.4.3. We start by observing that all paths from a to d in H have either two
or three hops.

Assume now that there is a 4-clique (a, b∗, c∗, d) in G, and let us exhibit a set P of node-
disjoint paths from a to d of size |B′a,d|+ |C ′a,d|+1. For all nodes b ∈ B′a,d, add to P the 2-hop
path a → b → d. For all nodes c ∈ C ′a,d, add to P the 2-hop path a → c → d. So far, all
these paths are clearly node-disjoint. Then, add the 3-hop path a→ b∗ → c∗ → d to P . This
path is node-disjoint from the rest because b∗ /∈ B′a,d (because {b∗, d} ∈ E(G)) and c∗ /∈ C ′a,d
(because {a, c∗} ∈ E(G)).

Next, assume that no nodes b ∈ B, c ∈ C complete a 4-clique with a, d. Then for every
set P of node-disjoint paths from a to d, there is a set P ′ of 2-hop node-disjoint paths from a
to d that has the same size. To see this, let a→ b→ c→ d be some 3-hop path in P . Since
(a, b, c, d) is not a 4-clique in G and {a, d}, {a, b}, {b, c}, {c, d} are edges in G, we conclude
that either {a, c} /∈ E(G) or {b, d} /∈ E(G). If {a, c} /∈ E(G) then a→ c is an edge in H and
the 3-hop path can be replaced with the 2-hop path a → c → d (by skipping b) and one is
remained with a set of node-disjoint paths of the same size. Similarly, if {b, d} /∈ E(G) then
b → d is an edge in H and the 3-hop path can be replaced with the 2-hop path a → b → d.
This can be done for all 3-hop paths and result in P ′. Finally, note that the number of 2-hop
paths from a to d is exactly |B′a,d|+ |C ′a,d|, and this completes the proof of Claim 3.4.3.

Computing the estimates. To complete the reduction, observe that the values |B′a,d|+
|C ′a,d| can be computed for all pairs a ∈ A, d ∈ D using two matrix multiplications. To
compute the |B′a,d| values, multiply the two matrices M,M ′ which have entries from {0, 1},
with Ma,b = 1 iff {a, b} ∈ E(G)∩A×B and M ′b,d = 1 iff {b, d} /∈ E(G)∩B×D. Observe that
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|B′a,d| is exactly (M ·M ′)a,d. To compute |C ′a,d|, multiply M,M ′ over {0, 1} where Ma,c = 1
iff {a, c} /∈ E(G) ∩A× C and M ′c,d = 1 iff {c, d} ∈ E(G) ∩ C ×D.

After having these estimates and computing APMVC on H, it can be decided whether G
contains a 4-clique in O(n2) time as follows. Go through all edges {a, d} ∈ E(G)∩A×D and
decide whether the edge participates in a 4-clique by comparing |B′a,d| + |C ′a,d| to the node
connectivityNC(a, d) inH. By the above claim, an edge {a, d} withNC(a, d) > |B′a,d|+|C ′a,d|
is found if and only if there is a 4-clique in G. The total running time is O(T (n) +MM(n)),
which completes the proof of Lemma 3.4.2.

3.4.2 Reduction to the k-Bounded Case

Next, we exploit a certain versatility of the reduction and adapt it to ask only about min-cut
values (aka node connectivities) that are smaller than k. In other words, we will reduce to
the k-bounded version of All-Pairs Min-Cut with unit node-capacities (abbreviated kAPMVC,
for k-bounded All-Pairs Minimum Vertex-Cut). Our lower bound improves on the Ω(nω)
conjectured lower bound for Transitive Closure as long as k = ω(n1/2).

Lemma 3.4.4. Suppose kAPMVC on n-node DAGs with unit node-capacities can be solved in
time T (n, k). Then 4-Clique on n-node graphs can be solved in time O(n2

k2 ·T (n, k)+MM(n)),
where MM(n, n) is the time to multiply two matrices from {0, 1}n×n.

Proof of Lemma 3.4.4. Given a 4-partite graph G as in the definition of the 4-Clique problem,
O(n2/k2) graphs H are constructed in a way that is similar to the previous reduction, and
an algorithm for kAPMVC is called on each of these graphs. Assume w.l.o.g. that k divides n
and partition the sets A,D arbitrarily to sets A1, . . . , An/k and D1, . . . , Dn/k of size k each.
For each pair of integers i, j ∈ [n/k], generate one graph Hij by restricting the attention to
the nodes of G in Ai, B,C,Dj and looking for a 4-clique only there.

Let us fix a pair i, j ∈ [n/k] and describe the construction of Hij . To simplify the
description, let us omit the subscripts i, j, referring to this graph as H, and think of G as
having four parts A,B,C,D, where A and D are in fact Ai, Dj and are therefore smaller:
|A| = |D| = k and |B| = |C| = n.

The nodes in H are partitioned into four sets A′, B,C,D′, where the sets B,C are the
same as in G. For the nodes in A,D in G, multiple copies are created in H. For all integers
x ∈ [n/k] and node a ∈ A in G, add a node ax to A′ in H. Similarly, for all x ∈ [n/k] and
node d ∈ D, add a node ax to A′. Note that H contains O(n) nodes.

To define the edges, partition the nodes in B and C arbitrarily to sets B1, . . . , Bn/k and
C1, . . . , Cn/k of size k. Now, the edges are defined in a similar way to the previous proof,
except each ax is connected only to nodes in Bx, and each dy is connected only to nodes in
Cy. More formally:

• (A to B) For every ax ∈ A′, b ∈ Bx such that {a, b} ∈ E(G), add to E(H) a directed
edge (ax, b).

• (B to C) For every b ∈ B, c ∈ C such that {b, c} ∈ E(G), add to E(H) a directed edge
(b, c).

• (C to D) For every c ∈ Cy, dy ∈ D′ such that {c, d} ∈ E(G), add to E(H) a directed
edge (c, dy).
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• (A to C) For every ax ∈ A′, c ∈ C such that {a, c} /∈ E(G), add to E(H) a directed
edge (ax, c).

• (B to D) For every b ∈ B, dy ∈ D′ such that {b, d} /∈ E(G), add to E(H) a directed
edge (b, dy).

This completes the construction of H. The arguments for correctness follow the same
lines as in the previous proof. For nodes ax ∈ A′, dy ∈ D′ denote:

B′ax,dy = {b ∈ Bx | {a, b} ∈ E(G) and {b, d} /∈ E(G) } ,
C ′ax,dy = {c ∈ Cy | {a, c} /∈ E(G) and {c, d} ∈ E(G) } .

Claim 3.4.5. Let ax ∈ A′, dy ∈ D′ be nodes with {a, d} ∈ E(G). If the edge {a, d} does not
participate in a 4-clique in G together with any nodes in Bx ∪Cy, then the node connectivity
from ax to dy in H, denoted NC(ax, dy), is exactly

NC(ax, dy) = |B′ax,dy |+ |C
′
ax,dy |

and otherwise NC(ax, dy) is strictly larger.

Proof of Claim 3.4.5. The proof is very similar to the one in the previous reduction.
We start by observing that all paths from ax to dy in H can have either two or three hops.
For the first direction, assuming that there is a 4-clique (a, b∗, c∗, d) in G with b∗ ∈ Bx, c∗ ∈

Cy, we show a set P of node-disjoint paths from ax to dy of size |B′ax,dy | + |C
′
ax,dy
| + 1. For

all nodes b ∈ B′ax,dy , add the 2-hop path ax → b→ dy to P . For all nodes c ∈ C ′ax,dy , add the
2-hop path ax → c → dy to P . So far, all these paths are clearly node-disjoint. Then, add
the 3-hop path ax → b∗ → c∗ → dy to P . This path is node-disjoint from the rest because
b∗ /∈ B′ax,dy (because {b∗, d} ∈ E(G)) and c∗ /∈ C ′ax,dy (because {a, c∗} ∈ E(G)).

For the second direction, assume that there do not exist nodes b ∈ Bx, c ∈ Cy that
complete a 4-clique with a, d. In this case, for every set P of node-disjoint paths from ax to
dy, there is a set P ′ of 2-hop node-disjoint paths from ax to dy that has the same size. To
see this, let ax → b → c → dy be some 3-hop path in P . Since (a, b, c, d) is not a 4-clique
in G and {a, d}, {a, b}, {b, c}, {c, d} are edges in G, it follows that either {a, c} /∈ E(G) or
{b, d} /∈ E(G). If {a, c} /∈ E(G) then ax → c is an edge in H and the 3-hop path can be
replaced with the 2-hop path ax → c→ dy (by skipping b) and one is remained with a set of
node-disjoint paths of the same size. Similarly, if {b, d} /∈ E(G) then b→ dy is an edge in H
and the 3-hop path can be replaced with the 2-hop path ax → b→ dy. This can be done for
all 3-hop paths and result in P ′. Finally, note that the number of 2-hop paths from ax to dy
is exactly |B′ax,dy |+ |C

′
ax,dy
|, and this completes the proof of Claim 3.4.5.

This claim implies that in order to determine whether a pair a ∈ A, d ∈ D partici-
pate in a 4-clique in G is it is enough to check whether ∑x,y∈[n/k]NC(ax, dy) is equal to∑
x,y∈[n/k] |B′ax,dy | + |C

′
ax,dy
|. Note that the latter is equal to |B′a,d| + |C ′a,d| according to the

notation in the previous reduction:

B′a,d = {b ∈ B | {a, b} ∈ E(G) and {b, d} /∈ E(G) } ,
C ′a,d = {c ∈ C | {a, c} /∈ E(G) and {c, d} ∈ E(G) } .
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Computing the estimates To complete the reduction, observe that the values |B′a,d|+
|C ′a,d| can be computed for all pairs a ∈ A, d ∈ D (for all sub-instances i, j) using two matrix
products, just like in the previous reduction.

After having these estimates and computing APMVC on H, it can be decided whether
G contains a 4-clique in O(k2 · n/k) time, for each sub-instance i, j, as follows. Go through
all edges {a, d} ∈ E(G) ∩ Ai ×Dj and check whether the edge participates in a 4-clique by
comparing this value |B′a,d| + |C ′a,d| to the node connectivities ∑x,y∈[n/k]NC(ax, dy) in H.
By the above claim, one can find an edge {a, d} with ∑x,y∈[n/k]NC(ax, dy) > |B′a,d|+ |C ′a,d|
if and only if there is a 4-clique in G. The total running time is O(n2

k2 · T (n, k) + MM(n)),
which completes the proof of Lemma 3.4.4.

Proof of Theorem 3.1.1. Assume there is an algorithm that solves kAPMVC in timeO((nω−1k2)1−ε).
Then by Lemma 3.4.4 there is an algorithm that solves 4-Clique in time = O(n2

k2 ·(nω−1k2)1−ε+
MM(n)) ≤ O(nω+1−ε′), for some ε′ > 0. The bound for combinatorial algorithms is achieved
similarly.

3.5 Randomized Algorithms for General Digraphs
In this section we develop faster randomized algorithms for the following problems. Given a
digraph G = (V,E) with unit vertex-capacities, two subsets S, T ⊆ V and parameter k > 0,
find all s ∈ S, t ∈ T for which the minimum st-cut value is less than k and report their
min-cut value. This problem is called kSTMVC, and if S = T = V , it is called kAPMVC. This
is done by showing that the framework of Cheung et al. [CLL13] can be applied faster to unit
vertex-capacitated graphs. Before providing our new algorithmic results (in Theorem 3.5.2
and Corollary 3.5.3), we first give some background on network coding (see [CLL13] for a
more comprehensive treatment).

The Network-Coding Approach. Network coding is a novel method for transmitting
information in a network. As shown in a fundamental result [ACLY00], if the edge connectivity
from the source s to each sink ti is ≥ k, then k units of information can be shipped to all
sinks simultaneously by performing encoding and decoding at the vertices. This can be seen
as a max-information-flow min-cut theorem for multicasting, for which an elegant algebraic
framework has been developed for constructing efficient network coding schemes [LYC03,
KM03]. These techniques were used in [CLL13] to compute edge connectivities, and below
we briefly recap their method and notation.

Given a vertex s from which we need to compute the maximum flow to all other vertices
in G, define the following matrices over a field F.

• Fd×m is a matrix whose m columns are d-dimensional global encoding vectors of the
edges, with d = degoutG (s).

• Km×m is a matrix whose entry (e1, e2) corresponds to the local encoding coefficient
ke1,e2 which is set to a random value from the field |F| = O(mc) if e1’s head is e2’s tail,
and to zero otherwise.

• Hd×m is a matrix whose columns are (−→e1 , . . . ,
−→ed ,
−→0 , . . . ,−→0 ) (−→ei is in the column corre-

sponding to ei) where the column vector −→ei is the ith standard basis vector and e1, . . . , ed
are the edges outgoing of s.
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The global encoding vectors F are defined such that F = FK + H, and then by simple
manipulations the equation F = H(I −K)−1 is achieved (so multiplying by H simply picks
rows of (I −K)−1 that correspond to the edges outgoing of s). The algorithm utilizes this by
first computing (I−K)−1 in time O(mω), and then for every source s and sink t computing the
rank of the submatrix corresponding to rows δout(s) and columns δin(t) in time O(m2nω−2),
and the overall time is O(mω) since m ≥ n. Notice that even if we only care about the
maximum flow between given sets of sources and targets S, T , the bottleneck is that the
matrix (I − K) has m2 entries, potentially most are non-zeroes, which must be read to
compute (I −K)−1.

Our Algorithmic Results.

Lemma 3.5.1. kSTMVC can be solved in randomized time O
(
nω +∑

s∈S
∑
t∈T degoutG (s)

deginG (t)ω−1
)
, where degoutG (u) and deginG (u) denote the out-degree and the in-degree, respec-

tively, of vertex u in the input graph G.

Proof. We consider global encoding vectors in the vertices rather than in the edges in the
natural way, namely, the coefficients are non-zero for every pair of adjacent vertices (rather
than adjacent edges), and for a source s and a sink t we compute the rank of the submatrix of
(I −K)−1 whose rows correspond to the vertices Nout(s) and columns correspond to N in(t).
The running time is dominated by inverting the matrix (I−K)n×n and computing the rank of
the relevant submatrices, that is O(nω +∑s∈S

∑
t∈T degG(s) degG(t)ω−1), as required. Notice

that by considering vertices rather than edges, the bottleneck moves from computing (I−K)−1

to computing the rank of the relevant submatrices.
To prove the correctness, we argue that Theorem 2.1 from [CLL13] holds also here (ad-

justed to node capacities). Part 1 in their proof clearly holds also here, so we focus on the
second part, which in [CLL13] shows that the edge connectivity from s to t, denoted λs,t, is
equal to the rank of the matrix Ms,t of size degG(s)×degG(t) comprising of the global encod-
ing vectors on the edges incoming to t as its columns. Here, we denote the vertex connectivity
from s to t by κs,t, and the corresponding matrix Mvertices

s,t , and we show that their proof
can be adjusted to show rank(Mvertices

s,t ) = κs,t, as required. First, rank(Mvertices
s,t ) ≤ κs,t

as instead of considering an edge-cut (S, T ) and claiming that the global encoding vector on
each incoming edge of t is a linear combination of the global encoding vectors of the edges
in (S, T ), we consider a node-cut (Svertices, Cvertices, T vertices), and similarly claim that the
global encoding vectors on each vertex with an edge to t is a linear combination of the global
encoding vectors in Cvertices, and the rest of the proof follows. For the second part, we ar-
gue that rank(Mvertices

s,t ) ≥ κs,t. The main proof idea from [CLL13] that the rank does not
increase if we restrict our attention to a subgraph holds here too, only that we use vertex
disjoint paths as the subgraph to establish the rank.

Theorem 3.5.2. kSTMVC can be solved in randomized time O
((
n + ((|S| + |T |)k)

)ω +

|S||T |kω
)
.

Proof. In order to use Lemma 3.5.1 to prove Theorem 3.5.2, we need to decrease the degree
of sources S and sinks T . Thus, for every source s we add a layer of k vertices Ls and connect
s to all the vertices in Ls which in turn are connected by a complete directed bipartite graph
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to the set of vertices Nout(s), directed away from Ls. Similarly, for every sink t ∈ T we add
a layer of k vertices Lt and connect to t all the vertices in Lt, which in turn are connected
by a complete directed bipartite graph from the set of vertices N in(t), directed away from
N in(t). Note that all flows of size ≤ k−1 are preserved, and flows of size ≥ k become k. This
incurs an additive term (|S| + |T |)k in the dimension of the matrix inverted, and altogether
we achieve a running time of O((n+ (|S|+ |T |)k)ω + |S||T |kω), as required.

As an immediate corollary we have the following.

Corollary 3.5.3. kAPMVC can be solved in randomized time O((nk)ω).
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Chapter 4

New Algorithms and Lower Bounds
for All-Pairs Max-Flow in
Unit-Capacity Undirected Graphs1

4.1 Introduction

In the maximum st-flow problem (abbreviated Max-Flow), the goal is to compute the maxi-
mum value of a feasible flow between a given pair of nodes s, t (sometimes called terminals) in
an input graph. 2 Determining the time complexity of this problem is one of the most promi-
nent open questions in fine-grained complexity and algorithms. The best running time known
for directed (or undirected) graphs with n nodes, m edges, and largest integer capacity U is
Õ(min{m10/7U1/7, m11/8U1/4,m4/3U1/3,m

√
n logU}) [Mad16, LS20a, LS20b, LS14], where

throughout Õ(f) hides logarithmic factors and stands for O(f logO(1) f). To date, there is no
Ω(m1+ε) lower bound for this problem, even when utilizing one of the popular conjectures of
fine-grained complexity, such as the Strong Exponential-Time Hypothesis (SETH) of [IP01].
3 This gap is regularly debated among experts, and a common belief is that such a lower
bound is not possible, since a near-linear-time algorithm exists but is not yet known. There
is also a formal barrier for basing a lower bound for Max-Flow on SETH, as it would refute
the so-called Non-deterministic SETH (NSETH) [CGI+16]. We will henceforth assume that
Max-Flow can be solved in timem1+o(1), and investigate some of the most important questions
that remain open under this favorable assumption. (None of our results need this assumption;
it only serves for highlighting their significance.)

Perhaps the most natural next-step after the s, t version is the “all-pairs” version (abbre-
viated All-Pairs Max-Flow), where the goal is to solve Max-Flow for all pairs of nodes in the
graph. This multi-terminal problem, dating back to 1960 [May60, Chi60], is the main focus
of our work:

What is the time complexity of computing Max-Flow between all pairs of nodes?

1This chapter is based on [AKT20b].
2Throughout, we focus on computing the value of the flow (rather than an actual flow), which is equal to

the value of the minimum st-cut by the famous max-flow/min-cut theorem [FF56].
3SETH asserts that for every fixed ε > 0 there is an integer k ≥ 3, such that kSAT on n variables and m

clauses cannot be solved in time 2(1−ε)nmO(1).
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We will discuss a few natural settings, e.g., directed vs. undirected, or node capacities vs.
edge capacities, in which the answer to this question may vary. A trivial strategy for solving
this problem (in any setting) is to invoke a T (m)-time algorithm for the s, t version O(n2)
times, giving a total time bound of O(n2) · T (m), which is n2 ·m1+o(1) under our favorable
assumption. But one would hope to do much better, as this all-pairs version arises in countless
applications, such as a graph-clustering approach for image segmentation [WL93].

In undirected edge-capacitated graphs, a seminal paper of Gomory and Hu [GH61] showed
in 1961 how to solve All-Pairs Max-Flow using only n−1 calls to a Max-Flow algorithm, rather
than O(n2) calls, yielding an upper bound O(n) · T (m). (See also [Gus90] for a different
algorithm where all the n− 1 calls can be executed on the original graph.) This time bound
has improved over the years, following the improvements in algorithms for Max-Flow, and
under our assumption it would ultimately be n · m1+o(1). Even more surprisingly, Gomory
and Hu showed that all the n2 answers can be represented using a single tree, which can
be constructed in the same time bound. Formally, A cut-equivalent tree to a graph G is an
edge-capacitated tree T on the same set of nodes, with the property that for every pair of
nodes s, t, every minimum st-cut in T yields a bipartition of the nodes which is a minimum
st-cut in G, and of the same value as in T . 4 See also [GT01] for an experimental study,
and the Encyclopedia of Algorithms [Pan16] for more background. The only algorithm that
constructs a cut-equivalent tree without making Ω(n) calls to a Max-Flow algorithm was
designed by Bhalgat, Hariharan, Kavitha, and Panigrahi [BHKP07]. It runs in time Õ(mn)
in unit-capacity graphs (or equivalently, if all edges have the same capacity), and utilizes
a tree-packing approach that was developed in [CH03, HKP07], inspired by classical results
of [Gab95] and [Edm70]. However, if Max-Flow can indeed be computed in near-linear time,
then none of the later algorithms beat by a polynomial factor the time bound n ·m1+o(1) of
Gomory and Hu’s half-century old algorithm.

The time complexity of All-Pairs Max-Flow becomes higher in settings where Gomory and
Hu’s “tree structure” [GH61] does not hold. For instance, in node-capacitated graphs (where
the flow is constrained at intermediate nodes, 5 rather than edges) flow-equivalent trees are
impossible, since there could actually exist Ω(n2) different maximum-flow values in a single
graph [HL07] (see therein also an interesting exposition of certain false claims made earlier).
Directed edges make the all-pairs problem even harder; in fact, in this case node capacities
and edge capacities are equivalent, and thus this setting does not admit flow-equivalent trees,
see [May62, Jel63, HL07]. In the last decade, different algorithms were proposed to beat the
trivial O(n2) ·T (m) time bound in these harder cases. The known bound for general graphs is
O(mω), due to Cheung, Lau, and Leung [CLL13], where ω < 2.38 is the matrix multiplication
exponent. A related version, which is obviously no harder than All-Pairs Max-Flow, is to ask
(among all pairs of nodes) only for flow values that are at most k, assuming unit node-
capacities; for example, the case k = 1 is the transitive closure problem (reachability). For
k = 2, an Õ(nω)-time algorithm was shown in [GGI+17], and very recently a similar bound was

4Notice that a minimum st-cut in T consists of a single edge that has minimum capacity along the unique
st-path in T , and removing this edge disconnects T to two connected components. A flow-equivalent tree has
the weaker property that for every pair of nodes s, t, the maximum st-flow value in T equals that in G. The key
difference is that flow-equivalence maintains only the values of the flows (and thus also of the corresponding
cuts).

5Granot and Hassin [GH86] considered a related but different notion of minimum st-cuts with node capac-
ities, where the flow is constrained also by the capacities of the source and sink (in addition to intermediate
nodes), and so an equivalent tree exists and can be computed. This makes the problem much easier.
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achieved for all k = O(1) [AGI+19]. The aforementioned papers [CLL13, GGI+17, AGI+19]
also present improved algorithms for acyclic graphs (DAGs). In addition, essentially optimal
Õ(n2)-time algorithms were found for All-Pairs Max-Flow in certain graph families, including
small treewidth [ACZ98], planar graphs [LNSW12], and surface-embedded graphs [BENW16].

The framework of fine-grained complexity has been applied to the all-pairs problem in
a few recent papers, although its success has been limited to the directed case. Abboud,
Vassilevska-Williams, and Yu [AWY18] proved SETH-based lower bounds for some multi-
terminal variants of Max-Flow, such as the single-source all-sinks version, but not all-pairs.
Krauthgamer and Trabelsi [KT18b] proved that All-Pairs Max-Flow cannot be solved in time
O(n3−ε), for any fixed ε > 0, unless SETH is false, even in the sparse regimem = n1+o(1). This
holds also for unit-capacity graphs, and it essentially settles the complexity of the problem for
directed sparse graphs, showing that the O(n2) ·T (m) upper bound is optimal if one assumes
that T (m) = m1+o(1). Recently, Abboud et al. [AGI+19] proved a conditional lower bound
that is even higher for dense graphs, showing that an O(nω+1−ε)-time algorithm would refute
the 4-Clique conjecture. However, no non-trivial lower bound is known for undirected graphs.

4.1.1 The Challenge of Lower Bounds in Undirected Graphs

Let us briefly explain the difficulty in obtaining lower bounds for undirected graphs. Con-
sider the following folklore reduction from Boolean Matrix Multiplication (BMM) to All-Pairs
Reachability in directed graphs (the aforementioned special case of All-Pairs Max-Flow with
k = 1). In BMM the input is two n×n boolean matrices P and Q, and the goal is to compute
the product matrix R given by

R(a, c) := ∨nb=1
(
P (a, b) ∧Q(b, c)

)
, ∀a, c ∈ [n].

Computing R can be reduced to All-Pairs Reachability as follows. Construct a graph with three
layers A,B,C with n nodes each, where the edges are directed A → B → C and represent
the two matrices: a ∈ A is connected to b ∈ B iff P (a, b) = 1; and b ∈ B is connected to
c ∈ C iff Q(b, c) = 1. It is easy to see that R(a, c) = 1 iff node a ∈ A can reach node c ∈ C
(via a two-hop path).

This simple reduction shows an nω−o(1) lower bound for All-Pairs Reachability in dense
directed graphs assuming the BMM conjecture (see [AW14]), which states that any combina-
torial algorithm (i.e. one that does not use fast matrix multiplication techniques) that solves
BMM requires n3−o(1) time. Higher lower bounds can be proved by more involved reductions
that utilize the extra power of flow over reachability, e.g., an n3−o(1) lower bound in sparse
directed graphs assuming SETH [KT18b]. Nevertheless, this simple reduction illustrates the
main difficulty in adapting such reductions to undirected graphs.

Consider the same construction but with undirected edges (i.e., without the edge orienta-
tions). The main issue is that paths from A to C can now have more than two hops – they
can crisscross between two adjacent layers before moving on to the next one. Indeed, it is easy
to construct examples in which the product R(a, c) = 0 but there is a path from a to c (with
more than two hops). Even if we try to use the extra power of flow, giving us information
about the number of paths rather than just the existence of a path, it is still unclear how to
distinguish flow that uses a two-hop path (YES case) from flow that uses only longer paths
(NO case).

A main technical novelty of this work is a trick to overcome this issue. The high-level
idea is to design large gaps between the capacities of nodes in different layers in order to
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incentivize flow to move to the “next layer”. Let us exhibit how this trick applies to the simple
reduction above. Remove the edge orientations from our three-layer graph, and introduce node
capacities, letting all nodes in B, the middle layer, have capacity 2n, and all nodes in A∪C,
the other two layers, have capacity 1. Now, consider the maximum flow from a ∈ A to c ∈ C.
If R(a, c) = 1 then there is a two-hop path through some b ∈ B, which can carry 2n units of
flow, hence the maximum-flow value is at least 2n. On the other hand, if R(a, c) = 0 then
every path from a to c must have at least four hops, and a maximum flow must be composed
of such paths. Any such path must pass through at least one node in A ∪ C \ {a, c}, whose
capacity is only 1, hence the maximum flow is bounded by |A ∪ C \ {a, c}| = 2n − 2. This
proves the same nω−o(1) lower bound as before, but now for undirected graphs with node
capacities. We note that the argument for undirected graphs can be simplified a bit if we
allow nodes of capacity 0. In Section 4.4 we utilize this trick in a more elaborate way to prove
stronger lower bounds.

4.1.2 Our Results

Our main negative result is the first (conditional) lower bound for All-Pairs Max-Flow that
holds in undirected graphs. For sparse, node-capacitated graphs we are able to match the
lower bound n3−o(1) that was previously known only for directed graphs [KT18b], and it also
matches the hypothetical upper bound n3+o(1).

Theorem 4.1.1. Assuming SETH, no algorithm can solve All-Pairs Max-Flow in undirected
graphs on n nodes and O(n) edges with node capacities in [n2] in time O(n3−ε) for some fixed
ε > 0.

Our lower bound holds even under assumptions that are weaker than SETH (see Sec-
tion 4.4), as we reduce from the 3-Orthogonal-Vectors (3OV) problem. At a high level, it
combines the trick described above for overcoming the challenge in undirected graphs, with
the previous reduction of [KT18b] from 3OV to the directed case. However, both of these in-
gredients have their own subtleties and fitting them together requires adapting and tweaking
them very carefully.

Following our Theorem 4.1.1, the largest remaining gap in our understanding of All-Pairs
Max-Flow concerns the most basic and fundamental setting: undirected graphs with edge
capacities. What is the time complexity of computing a cut-equivalent tree? The upper
bound has essentially been stuck at n ·m1+o(1) for more than half a century, while we cannot
even rule out a near-linear m1+o(1) running time. To our great surprise, after a series of failed
attempts at proving any lower bound, we have noticed a simple way to design a new algorithm
for computing cut-equivalent trees for graphs with unit capacities, breaking the longstanding
mn barrier!

Theorem 4.1.2. There is an algorithm that, given an undirected graph G with n nodes and
m edges (and unit edge-capacities) and parameter 1 ≤ d ≤ n, constructs a cut-equivalent tree
in time Õ(md + Φ(m,n, d)), where Φ(m,n, d) = max

{∑m/d
i=1 T (m,n, Fi) : F1, . . . , Fm/d ≥

0,∑m/d
i=1 Fi ≤ 2m

}
and T (m,n, F ) is the time bound for Max-Flow on instances where whose

flow value is at most a F .

Using the current bound on T (m,n, F ) we achieve running time Õ(m3/2n1/6), and under
the plausible hypothesis that T (m,n) = m1+o(1) our time bound becomes m3/2+o(1). In
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the regime of sparse graphs where m = Õ(n) the previous best algorithm of Bhalgat et al.
[BHKP07] had running time Õ(n2), whereas we achieve Õ(n5/3), or conditionally n3/2+o(1).
In fact, we improve on their upper bound as long as m = O(n5/3−ε). Clearly, this also leads
to improved bounds for All-Pairs Max-Flow (with unit edge-capacities), for which the best
strategy known is to compute the tree and then extract the answers in time O(n2).

The main open question remains: Can we prove any super-linear lower bounds for the
edge-capacitated case in undirected graphs? Is there an m1+ε lower bound under SETH for
constructing a cut-equivalent tree? Perhaps surprisingly, we prove a strong barrier for the
possibility of such a result.

We follow the non-reducibility framework of Carmosino et al. [CGI+16]. Intuitively, if
problem A is conjectured to remain hard for nondeterministic algorithms while problem B
is known to become significantly easier for such algorithms, then we should not expect a
reduction from A to B to exist. Such a reduction would allow the nondeterministic speedups
for problem B to carry over to A. To formalize this connection, Carmosino et al. introduce
NSETH: the hypothesis that SETH holds against co-nondeterministic algorithms. NSETH is
plausible because it is not clear how a powerful prover could convince a sub-2n-time verifier
that a given CNF formula is not satisfiable. Moreover, it is known that refuting NSETH
requires new techniques since it implies new circuit lower bounds. Then, Carmosino et al.
exhibited nondeterministic (and co-nondeterministic) speedups for problems such as 3-SUM
and Max-Flow (using LP duality), showing that a reduction from SAT to these problems
would refute NSETH.

Our final result builds on Theorem 4.1.2 to design a near-linear time 6 nondeterministic
algorithm for constructing a cut-equivalent tree. This algorithm can perform nondetermin-
istic choices and in the end, outputs either a correct cut-equivalent tree or “don’t know”
(i.e., aborts), however we are guaranteed that for every input graph there is at least one
sequence of nondeterministic choices that leads to a correct output. Our result could have
applications in computation-delegation settings and may be of interest in other contexts. In
particular, since our nondeterministic witness can be constructed deterministically efficiently,
namely, in polynomial but super-linear time, it provides a potentially interesting certifying
algorithm [MMNS11, ABMR11] (see [Kün18] for a recent paper with a further discussion of
the connections to fine-grained complexity). Our final non-reducibility result is as follows.

Theorem 4.1.3. If for some ε > 0 there is a deterministic fine-grained reduction proving
an Ω(m1+ε) lower bound under SETH for constructing a cut-equivalent tree of an undirected
unit edge-capacitated graph on m edges, then NSETH is false.

Our result (and this framework for non-reducibility) does not address the possibility of
proving a SETH based lower bound with a randomized fine-grained reduction. This is because
NSETH does not remain plausible when faced against randomization (see [CGI+16, Wil16]).
That said, we are not aware of any examples where this barrier has been successfully bypassed
with randomization.

Roadmap. Our main algorithm is described in the Section 4.2. The nondeterministic al-
gorithm and non-reducibility result are presented in Section 4.3. We then present our lower
bounds in Section 4.4. The last section discusses open questions.

6We say that a time bound T (n) is near-linear if it is bounded by O(n logc n) for some constant c > 0.
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4.2 Algorithm for a Cut-Equivalent Tree

The basic strategy in our algorithm for unit edge-capacities is to handle separately nodes
whose connectivity (to other nodes) is high from those whose connectivity is low. The moti-
vation comes from the simple observation that the degree of a node is an upper bound on the
maximum flow from this node to any other node in the graph. Specifically, our algorithm has
two stages. The first stage uses one method (of partial trees [HKP07, BHKP07]), to compute
the parts of the tree that correspond to small connectivities, and the second stage uses an-
other method (the classical Gomory-Hu algorithm [GH61]) to complete it to a cut-equivalent
tree (see Figure 4.1). Let us briefly review these two methods.

The Gomory-Hu algorithm. This algorithm constructs a cut-equivalent tree T in itera-
tions. Initially, T is a single node associated with V (the node set of G), and the execution
maintains the invariant that T is a tree; each tree node i is a super-node, which means that it
is associated with a subset Vi ⊆ V ; and these super-nodes form a partition V = V1 t · · · t Vl.
At each iteration, the algorithm picks arbitrarily two graph nodes s, t that lie in the same tree
super-node i, i.e., s, t ∈ Vi. The algorithm then constructs from G an auxiliary graph G′ by
merging nodes that lie in the same connected component of T \ {i} and invokes a Max-Flow
algorithm to compute in this G′ a minimum st-cut, denoted C ′. (For example, if the current
tree is a path on super-nodes 1, . . . , l, then G′ is obtained from G by merging V1 ∪ · · · ∪ Vi−1
into one node and Vi+1 ∪ · · · ∪ Vl into another node.) The submodularity of cuts ensures that
this cut is also a minimum st-cut in the original graph G, and it clearly induces a partition
Vi = S t T with s ∈ S and t ∈ T . The algorithm then modifies T by splitting super-node i
into two super-nodes, one associated with S and one with T , that are connected by an edge
whose weight is the value of the cut C ′, and further connecting each neighbor of i in T to
either S or T (viewed as super-nodes), depending on its side in the minimum st-cut C ′ (more
precisely, neighbor j is connected to the side containing Vj).

𝑉𝑖 

𝑡 

𝑠 𝑠 

𝑡 
Minimum-Cut  

between 𝑠 and 𝑡 

𝑆 

𝑇 

Figure 4.1: An illustration of the construction of T . Left: T right before the partition of
the super-node Vi. Middle: after the partitioning of Vi Right: T as it unfolds after the
Gomory-Hu algorithm finishes.

The algorithm performs these iterations until all super-nodes are singletons, and then T
is a weighted tree with effectively the same node set as G. It can be shown [GH61] that for
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every s, t ∈ V , the minimum st-cut in T , viewed as a bipartition of V , is also a minimum
st-cut in G, and of the same cut value. We stress that this property holds regardless of the
choice made at each step of two nodes s 6= t ∈ Vi.

Partial Tree. A k-partial tree, formally defined below, can also be thought of as the re-
sult of contracting all edges of weight greater than k in a cut-equivalent tree of G. Such
a tree can obviously be constructed using the Gomory-Hu algorithm, but as stated below
(in Lemma 4.2.2), faster algorithms were designed in [HKP07, BHKP07], see also [Pan16,
Theorem 3]. We show below (in Lemma 4.2.3) that such a tree can be obtained also by a
truncated execution of the Gomory-Hu algorithm, and finally we use this simple but crucial
fact to prove our main theorem.

Definition 4.2.1 (k-Partial Tree [HKP07]). A k-partial tree of a graph G = (V,E) is a
weighted tree on l ≤ |V | super-nodes constituting a partition V = V1 t · · · t Vl, with the
following property: For every two nodes s, t ∈ V whose minimum-cut value in G is at most
k, s and t lie in different super-nodes s ∈ S and t ∈ T , such that the minimum ST -cut in the
tree defines a bipartition of V which is a minimum st-cut in G and has the same value.

Lemma 4.2.2 ([BHKP07]). There is an algorithm that given an undirected graph with n
nodes and m edges with unit edge-capacities and an integer k ∈ [n], constructs a k-partial tree
in time Õ(mk).

Lemma 4.2.3. Given a k-partial tree Tlow of a graph G = (V,E), there is a truncated
execution of the Gomory-Hu algorithm that produces Tlow (i.e., its auxiliary tree T becomes
Tlow).

Proof. Consider an execution of the Gomory-Hu algorithm with the following choices. At
each iteration, pick any two nodes s, t ∈ V that lie in the same super-node i of the current
tree T (hence they are a feasible choice in a Gomory-Hu execution) but furthermore lie in
different super-nodes of Tlow, as long as such s, t exist. Then split super-node i of T using
the minimum st-cut induced by Tlow (rather than an arbitrary minimum st-cut). As this
cut corresponds to an edge in Tlow, it cannot split any super-node of Tlow, which implies,
by an inductive argument, that the super-nodes of Tlow are subsets of the super-nodes of T ,
and thus our chosen cut is a feasible choice for a Gomory-Hu execution. In order to claim
that T will have the same tree structure as Tlow, we also use the following simple inductive
argument. Each pair A,B of super-nodes of T connected with an edge of capacity c has a
pair A′ ⊆ A,B′ ⊆ B of super-nodes of Tlow with an edge of capacity c between A′ and B′ in
Tlow. Notice also that a pair s, t as required above can be chosen as long as T is not equal
to Tlow, and hence, together with the two inductive claims above, the Gomory-Hu execution
continues until T becomes exactly Tlow.

We are now ready to prove our main theorem.

Proof of Theorem 4.1.2. LetG = (V,E) be an input undirected graph with unit edge-capacities,
and denote by Vlow all the nodes in G whose degrees are at most the chosen parameter d ∈ [n],
and by Vhigh = V \ Vlow the nodes whose degrees are greater than d.

First use Lemma 4.2.2 to construct a d-partial tree Tlow, and treat it as the auxiliary tree
computed by a truncated execution of the Gomory-Hu algorithm. Then continue a Gomory-
Hu execution (using this tree) to complete the construction of a cut-equivalent tree. Note
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that every node in Vlow is in a singleton super-node of Tlow, since its minimum cut value to
any other node is at most d; thus a super-node Vi in Tlow has more than one node if and
only if it contains only nodes in Vhigh. Moreover, by the properties of Tlow, two nodes have
minimum-cut value greater than d if and only if they are in the same super-node Vi. Since by
Lemma 4.2.3 there exists a truncated Gomory-Hu execution that produces Tlow, a Gomory-
Hu execution starting with Tlow as the auxiliary tree will result in a cut-equivalent tree and
the correctness follows. The running time bound follows as the first step of constructing Tlow
takes Õ(md) time, and the second step of the Gomory-Hu execution takes |Vhigh| invocations
of Max-Flow, that is running time ∑m/d

i=1 T (m,n, Fi). Finally, we will use the following known
claim regarding a bound on the total sum of capacities of cut-equivalent trees.

Claim 4.2.4 (From Lemma 4 in [BHKP07]). Let G be a unit edge-capacity graph G and T
its cut-equivalent tree. Then the sum of capacities over all edges of T is bounded by 2m.

Now, since every invocation of maximum st-flow with value Fi in our algorithm determines
a unique edge with capacity Fi in the final cut-equivalent tree, and by Claim 4.2.4 the sum
of the capacities over all the edges of the cut-equivalent tree satisfies ∑m/d

i=1 Fi ≤ 2m, it holds
that the total time spent on them/d invocations of Max-Flow is bounded by Φ(m,n, d). Thus,
the proof of Theorem 4.1.2 is concluded.

We use the T (m,n, F ) = Õ(m + m3/4n1/4F 1/2) time algorithm by [ST18] to optimize
our running time. By the concavity of F 1/2, the maximum of ∑m/d

i=1 T (m,n, Fi) is attained
when all Fi = d. By setting d =

√
mn1/6 we get ∑√m/n1/6

i=1 (m + m3/4n1/4m1/4n1/12) =∑√m/n1/6

i=1 mn1/3 = m3/2n1/6, which is faster than the known Õ(mn)-time algorithm of [BHKP07]
whenever m ∈ [n, n5/3].

Finally, relying on a hypothetical m1+o(1)-time algorithm for Max-Flow, we could set
d =
√
m to get a total running time of m1+o(1) ·m/

√
m+ Õ(m ·

√
m) ≤ m3/2+o(1), as claimed

immediately after Theorem 4.1.2.

4.3 Near-Linear Nondeterministic Algorithm for Cut-Equivalent
Tree

As no conditional lower bounds are known for the problem of constructing a cut-equivalent
tree, one potentially promising approach is to design a reduction from SAT to prove that
running time n1+δ−o(1), for a fixed δ > 0, is not possible assuming SETH. However, in this
section we show that the existence of such a reduction (at least in the case of unit edge-
capacities) would refute NSETH. This proves our Theorem 4.1.3.

Our main technical result in this section (Theorem 4.3.2) is a fast nondeterministic al-
gorithm for constructing a cut-equivalent tree (the meaning of this notion will be formalized
shortly). We then reach the conclusion about NSETH by following an argument first made
in [CGI+16], however we have to rewrite their argument (rather than use their definitions
and results directly), in order to adapt it from decision problems or functions (where each
input has exactly one output) to total search problems, since every graph has at least one
cut-equivalent tree (see Section 4.3.2).

Generally speaking, a search problem P is a binary relation, and we say that S is a solution
to instance x iff (x, S) ∈ P . Let SOL(x) = {S : (x, S) ∈ P} denote the set of solutions for
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instance x. We say that P is a total search problem 7 if every instance x has at least one
solution, i.e., SOL(x) 6= ∅. Let ⊥ be the “don’t know” symbol and assume that ⊥ /∈ SOL(x)
for all x. For example, in our problem of constructing a cut-equivalent tree, x is a graph and
SOL(x) is the set of all cut-equivalent trees for x.

Definition 4.3.1 (Nondeterministic complexity of a total search problem). We say that a
total search problem P has nondeterministic time complexity T (n) if there is a deterministic
Turing Machine M such that for every instance x of P with size |x| = n:

1. ∀g,THALT(M(x, g)) ≤ T (n), i.e., the time complexity of M on input x with guess g is
bounded by T (n);

2. ∃g,M(x, g) ∈ SOL(x), i.e., at least one guess leads M to output a solution;

3. ∀g,M(x, g) ∈ {⊥} ∪ SOL(X), i.e., every guess leads M to output either a solution or
“don’t know”.

Note that the time bound in item 1 does not depend on g, which is useful for our purpose.

We can now state the main technical result of this section. We prove it in Section 4.3.1,
and then use it in Section 4.3.2 to prove Theorem 4.1.3.

Theorem 4.3.2. The nondeterministic complexity of constructing a cut-equivalent tree for
an input graph with unit edge-capacities is Õ(m), where m is the number edges in the graph.

This algorithm employs the Gomory-Hu algorithm in a very specific manner, where the
vertices chosen at each iteration are “centroids” (see below). The same choice was previously
used by Anari and Vazirani [AV18] in the context of parallel algorithms (for planar edge-
capacitated graphs), to achieve a logarithmic recursion depth, which is key for parallel time.
However, since our goal is different (we want near-linear total time) we have to worry about
additional issues, besides the depth of the recursion. Many auxiliary graphs must be handled
throughout the execution of the algorithm, and for each one we need to verify multiple
minimum cuts. This is done by guessing cuts and flows, and the main challenge is to argue
that the total size of all these objects (the auxiliary graphs, and the cuts and flows within
them) is only Õ(m). Towards overcoming this challenge, we show a basic structural result
about cut-equivalent trees (see Claim 4.3.9 below) which may have other applications. Prior
to our work, it seemed unlikely that the Gomory-Hu approach could come close to near-linear
time, even if Max-Flow could be computed in linear time, since a Max-Flow computation is
executed many times in many auxiliary graphs. However, our analysis shows that the total
size of all these auxiliary graphs can be near-linear (if the right vertices are chosen at each
iteration), giving hope that this approach may still achieve the desired upper bound.

4.3.1 The Nondeterministic Algorithm

We now prove Theorem 4.3.2. Let G = (V,E) be the input graph, and let n = |V | and
m = |E|.

7In some of the previous literature it is called a total function, although it is actually a relation rather than
a function.
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Overview. At a high level, the nondeterministic algorithm first guesses nondeterministically
a cut-equivalent tree T ∗, and then verifies it by a (nondeterministic) process that resembles an
execution of the Gomory-Hu algorithm that produces T ∗. Similarly to the actual Gomory-Hu
algorithm, our verification process is iterative and maintains a tree T of super-nodes, which
means, as described in Section 4.2, that every tree node i is associated with Vi ⊆ V , and
these super-nodes form a partition V = V1t· · ·tVl. This tree T is initialized to have a single
super-node corresponding to V and then modified at each iteration, hence we shall call it the
intermediate tree. If all guesses work well, then eventually every super-node is a singleton and
the tree T corresponds to T ∗. Otherwise (some step in the verification fails), the algorithm
outputs ⊥.

In a true Gomory-Hu execution, every iteration partitions some super-node into exactly
two super-nodes connected by an edge (say Vi = S t T ). In contrast, every iteration of our
verification process partitions some super-node into multiple super-nodes that form a star
topology, whose center is a singleton (say Vi = {w} t Vi,1 t · · · t Vi,d, where super-node {w}
has edges to all super-nodes Vi,1, . . . , Vi,d). We call this an expansion step (see Figure 4.2),
and the node in the center of the star (i.e., w) the expanded node. These expansion steps will
be determined from the guess T ∗. For example, in the extreme case that T ∗ itself is a star,
our verification process will take only one expansion step instead of |V |−1 Gomory-Hu steps.

𝑐𝑗 

𝑈1 

𝑈2 

𝑈3 

𝑈4 
𝑐𝑗  

𝑈5 

𝑉    𝑐𝑗
∗  T 

Figure 4.2: An illustration of the verification of a guessed tree T ∗. Left: the intermediate
tree T right before an expansion step of the node cj in the super-node V (T ∗cj ). Middle: after
the expansion step (of cj , in the dashed circle) where U1, ..., U4 are cj ’s neighbors in T (j+1)

such that ⋃4
i=1 Ui ∪ {cj} = V (T ∗cj ). Right: the guessed cut-equivalent tree T ∗.

To prove that our algorithm is correct, we will show that every expansion step corresponds
to a valid sequence of steps in the Gomory-Hu algorithm. As the latter relies on minimum-
cut computations in some auxiliary graph G′, also our verification will need minimum-cut
computations, which can be easily performed in nondeterministic linear time. However, this
will not achieve overall running time Õ(m), because in some scenarios (e.g., in the above
example where T ∗ is a star), most of the |V | − 1 minimum-cut computations are performed
on an auxiliary graph G′ of size that is comparable to G, i.e., Ω(m). We overcome this
obstacle using two ideas. First, we compute simultaneously all the minimum-cuts of the same
expansion step in nondeterministic time that is linear in the size of G′. Second, we design a
specific sequence of expansion steps such that the total size of all auxiliary graphs G′ is Õ(m).
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Detailed Algorithm. The algorithm first guesses nondeterministically an edge-capacitated
tree T ∗, and then verifies, as explained below, that it is a cut-equivalent tree. Here, verification
means that upon the failure of any step, e.g., verifying some equality (say between the cut
and flow values), the algorithm terminates with output ⊥. (By the same reasoning, we may
assume that all guesses are proper, e.g., a guessed tree is indeed a tree). The verification
process starts by picking a sequence of nodes c0, c1, c2, . . . using the guess T ∗, as follows.
Recall that a centroid of a tree is a node whose removal disconnects the tree into connected
components (subtrees), each containing at most half the nodes in the tree. It is well-known
that in every tree, a centroid exists and can be found in linear time. In a recursive centroid
decomposition of a tree, one finds a centroid of the given tree, removes it and then repeats
the process recursively in every connected component, until all remaining components are
singletons (have size one). Our verification process computes this decomposition for the guess
T ∗, which takes time O(n logn). For each recursion depth i ≥ 0 (where clearly i ≤ logn),
denote the set of centroids computed at depth i by Di ⊂ V . For example, D0 contains exactly
one centroid, of the entire T ∗. Now let c0, c1, c2, . . . be the centroids in this decomposition
in order of increasing depth, i.e., starting with the one centroid c0 ∈ D0, followed by the
centroids from D1 (ordered arbitrarily), and so forth. Let T ∗cj be the subtree of T ∗ in which
the centroid cj was computed; for example T ∗c0 = T ∗.

Observation 4.3.3. For every two centroids from the same depth, namely, cj 6= cj′ ∈ Di,
the corresponding subtrees T ∗cj and T ∗cj′ are node disjoint.

The verification process now initializes a tree T , called the intermediate tree, to consist
of a single super-node associated with V , and then performs on it expansion steps for nodes
c0, c1, c2, . . . (in this order) as explained below.

We now explain how to perform an expansion step for node cj . Recall that cj is a centroid
of the subtree T ∗cj , therefore it defines a partition V (T ∗cj ) = {cj}tU1t· · ·tUd, where U1, . . . , Ud
are the connected components after removing cj . Notice that d = degT ∗cj (cj) ≤ degT ∗(cj), and
that each Uk, k ∈ [d], contains exactly one node uk ∈ Uk that is a neighbor of cj in T ∗cj . The
expansion step replaces the super-node V (T ∗cj ) in T with d+ 1 super-nodes {cj}, U1, . . . , Ud.
(We slightly abuse notation and use a subset of nodes like V (T ∗cj ) also to refer to the super-
node in T associated with this subset.) These d+ 1 new super-nodes are connected by a star
topology, where the singleton {cj} at the center and each newly-added edge ({cj}, Uk) is set
to the same capacity as the edge (cj , uk) in the guess T ∗. In addition, every edge that was
incident to super-node V (T ∗cj ), say (V (T ∗cj ),W ), is modified to an edge (U,W ), where U is one
of the new super-nodes {cj}, U1, . . . , Ud, chosen according to the edge in T ∗ that was used to
set a capacity for (V (T ∗cj ),W ). (We will explain how the algorithm verifies the correctness of
these edge weights shortly.)

It is easy to verify that the modifications to T (due to expansion steps) maintain the
following property: Every super-node U in T induces a subtree of T ∗, i.e., the induced
subgraph T ∗[U ] is connected. Moreover, eventually every super-node will be a singleton, and
the intermediate tree will exactly match the guess T ∗. When we need disambiguation, we
may use T (j) to denote the tree’s state before the expansion step for cj . For example, T (0) is
the initial tree with a single super-node V .

Informally, the verification algorithm still has to check that the capacities of the newly-
added tree edges correctly represent minimum-cut values. To this end, the algorithm now
constructs an auxiliary graph G′j just as in the Gomory-Hu algorithm (see Section 4.2).
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Specifically, G′j is constructed by taking G, and then for each connected component of T (j) \
{V (T ∗cj )} (i.e., after removing super-node V (T ∗cj ) from T (j)), merging the nodes in (all the
super-nodes in) this component into a single node. Our analysis shows (in Claim 4.3.6) that
for all s, t ∈ V (T ∗cj ), every minimum st-cut in the auxiliary graph G′j is also a minimum st-cut
in G. In addition, all the auxiliary graphs of a single depth q can be constructed in near-linear
time (Lemma 4.3.10).

Observe that each neighbor uk of cj in T ∗cj defines a (cj , uk)-cut in the auxiliary graph G′j ,
given by the two connected components of T ∗ \ {(cj , uk)}. The algorithm evaluates for each
uk the capacity of this cut in G′j , and verifies that it is equal to the capacity of the newly-
added edge ({cj}, Uk) (set to be the same as of edge (cj , uk) in T ∗). In fact, all these cuts
evaluations are performed not sequentially but rather simultaneously for all k ∈ [d], as follows.
The key observation is that if we denote each aforementioned (cj , uk)-cut by (V (G′j)\C ′k, C ′k),
where uk ∈ C ′k, then {cj}, C ′1, . . . , C ′d are disjoint subsets of V (G′j). One can clearly evaluate
the capacity of all these d cuts in a single pass over the edges of G′j , and since each edge
contributes to at most two cuts (by the disjointness), this entire pass takes only linear time
O(|E(G′j)|).

Next, to verify that each (cj , uk)-cut exhibited above, namely, each (V (G′j) \ C ′k, C ′k), is
actually a minimum (cj , uk)-cut in G′j , the algorithm finds a flow whose value is equal to the
cut capacity. In order to perform this task simultaneously for all k ∈ [d], our verification
algorithm employs a known result about disjoint trees, as a witness for maximum-flow values
in a graph with unit edge-capacities (strictly speaking, this witness provides lower bounds
on maximum-flow values). In the following theorem, a directed tree rooted at r is a directed
graph arising from an undirected tree all of whose edges are then directed away from r. This
is equivalent to an arborescence (having exactly one path from r to every node other than r),
however we will not require that it spans all the graph nodes. In the following, Max-FlowG(s, t)
is the maximum st-flow value in a graph G.

Lemma 4.3.4. Given an undirected multigraph H = (VH , EH), a root node r ∈ VH , and a
function λ : VH → [|EH |], it is possible to nondeterministically verify in time Õ(|EH |) that

∀v ∈ VH \ {r}, Max-FlowH(r, v) ≥ λ(v). (4.1)

Here, nondeterministic verification means that if (4.1) holds then there exists a guess that
leads to output “yes”; and if (4.1) does not hold then every guess leads to output “no”.

Proof. We use the following theorem known from [BFJ95, Theorem 2.7], in its variation
from [CH03] as the Tree Packing Theorem.

Theorem 4.3.5. Let He be an Eulerian directed graph, and re be a node in He. Then there
exist maxv 6=re{Max-FlowHe(re, v)} edge-disjoint directed trees rooted at re, such that each node
v ∈ He appears in exactly Max-FlowHe(re, v) trees.

Given the undirected multigraph H, first subdivide each edge into two edges with a new
node in between them, then orient each edge in both directions 8 to obtain an Eulerian
directed graph He. Observe that the minimum-cut values between pairs of original nodes in
He are the same as in H. Now find all maximum-flow lower-bound values from r in He by
guessing |VH | edge-disjoint trees and then counting occurrences of each node in those trees.

8The subdivision and orientation are used to transform the undirected multigraph to a directed graph.
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By Theorem 4.3.5, these counts correspond to maximum-flow lower-bound values from r.
And so if the guessed trees support the values given by λ, then answer “yes", and otherwise
answer “no". Note that the conversion to directed Eulerian graph multiplied the amount of
edges by 2, and so the running time is still near linear.

The verification algorithm then applies Lemma 4.3.4 to G′j with cj as the root, and verifies
in time Õ(|E(G′j)|) that the maximum-flow from cj to each uk is at least the capacity of the
(cj , uk)-cut exhibited above (in turn verified to be equal to the capacity of edge (cj , uk) in
T ∗).

Correctness. We begin by claiming that if the guessed tree T ∗ is a correct cut-equivalent
tree of G, then our algorithm outputs T ∗; we discuss the complement case afterwards. Since
T ∗ is a cut-equivalent tree, every verification step of an expansion will not fail and so the
algorithm will not terminate prematurely, and output T ∗, as required.

Next, we show that if T ∗ is not a cut equivalent tree, then our algorithm will not succeed.
This is proved mainly by the claim below, that an intermediate tree attained by expansion
steps can be attained also by a sequence of Gomory-Hu steps.

Claim 4.3.6. Suppose there is a sequence of Gomory-Hu steps producing tree T (j), and that
an expansion step is performed to produce T (j+1). Then there is a sequence of Gomory-Hu
steps that simulates also this expansion step and produces T (j+1).

Proof. Assume there is a truncated execution of the Gomory-Hu algorithm that produces
T (j). We describe a sequence of Gomory-Hu algorithm’s steps starting with T (j) that produces
T (j+1). Recall that U1, ..., Ud are {cj}’s neighbors in T (j+1) such that ⋃di=1 Ui∪{cj} = V (T ∗cj ),
and u1, ..., ud are the nodes by which the capacities of the edges ({cj}, Uk), k ∈ [d], were
chosen.

The Gomory-Hu steps are as follows, where we denote by T the intermediate tree along
the execution. Starting with T = T (j), for k = 1, ..., d, the Gomory-Hu execution picks the
pair cj , uk from the super-node containing it in T as the pair s, t in the Gomory-Hu algorithm
description (see the description in Section 4.2), and the given minimum-cut value between
them is asserted. Then, for the partitioning of this super-node in T , the execution picks the
minimum-cut between cj , uk as in T ∗ (which is a minimum cut also in the corresponding
auxiliary graph) and modifies the intermediate tree accordingly. Note that the last expansion
step was assumed to be successful (i.e., verified correctly), thus all the cuts chosen for the
partitioning are minimum-cuts.

Now, assume for the contrary that T ∗ is not a cut-equivalent tree of G and our algorithm
still produces it. As a consequence of Claim 4.3.6, there is a sequence of Gomory-Hu steps
attaining T ∗, contradicting the proof of correctness of the Gomory-Hu algorithm (which
cannot produce T ∗). Thus, it is impossible that our algorithm finishes and produces T ∗, and
so in one of the minimum-cut verifications after an expansion step, the cut witness inspired
from T ∗ would not be correct, or there would not be a set of directed trees to testify that the
corresponding cuts are minimal. This completes the proof of correctness.

Running Time. Observe that the running time of a single expansion step, i.e., verifying
its corresponding minimum cuts by evaluating cuts and flows, is near-linear in the size of the
auxiliary graph. Thus, we only have to show that the total size of all the auxiliary graphs
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(over all the expansions) is near-linear in m. We prove in Lemma 4.3.7 below an O(m) bound
for a single depth q, and since the depth of the decomposition is O(logn), we immediately
conclude in Corollary 4.3.8 that the total size of all auxiliary graphs over all depths is Õ(m).

Lemma 4.3.7. Let Dq = {cj1 , . . . , cj2} contain the centroids at depth q. Then the total size
of G′j1 , . . . , G

′
j2 is at most O(m).

Corollary 4.3.8. The total size of all auxiliary graphs (over all depths) is Õ(m).

Proof of Lemma 4.3.7. Let us count for each edge uv ∈ E(G) in how many auxiliary graphs of
depth q it appears. This quantity turns out to be at most 2+(distT (u, v)−1), where distT (u, v)
is the hop-distance, i.e., the minimum number of edges (ignoring weights or capacities) in a
path between u and v in the tree T . The summand 2 comes from edges uv such that either u
or v belong to V (Tcj ) for some auxiliary graph G′j . Clearly, every such edge is in at most two
auxiliary graphs at depth q, because there is at most one index j′ ∈ Dq where u ∈ V (Tcj′ )
and at most one index j′′ ∈ Dq where v ∈ V (Tcj′′ ). The summand distT (u, v) − 1 bounds
the other appearances of edge uv, i.e., when neither u nor v belongs to some V (Tcj ), and is
proved in the claim below. While our graph has unit capacities, the claim holds for general
capacities.

Claim 4.3.9. For every cut-equivalent tree T of a graph G with edge capacities cG : E → R+,∑
uv∈E(G)

cG(u, v) · distT (u, v) ≤ 2
∑

uv∈E(G)
cG(u, v).

Proof. We first show that ∑uv∈EG cG(u, v) · distT (u, v) = ∑
e∈ET cT (e), where cT (·) denotes

edge capacity in T . Recalling that T is a cut-equivalent tree, each cT (e) is the value of a
certain cut in G, hence we can evaluate the right-hand side differently, by summing over
the graph edges uv ∈ E(G) and counting for each edge in how many such cuts it appears.
Moreover, the count for each graph edge uv ∈ E(G) is exactly distT (u, v) contributions of
cG(u, v), giving altogether the left-hand side.

Second, we show that∑uv∈E(T ) cT (u, v) ≤ 2∑uv∈E(G) cG(u, v) (see also Lemma 4 in [BHKP07]).
To see this, observe that cT (u, v) ≤ min{degcG(u),degcG(v)} where degcG(u) is the total ca-
pacity of edges incident to u. Now fix a root vertex in T , and bound each tree edge by
cT (u, v) ≤ degcG(v), where v is the child of u (i.e., farther from the root) in T . Summing this
bound over all the tree edges and observing that the corresponding vertices v are all distinct
proves the desired inequality, and the claim follows.

To complete the proof of Lemma 4.3.7, recall that by Observation 4.3.3 the super-nodes
V (Tcj1 ), . . . , V (Tcj2 ) of the same depth q are pairwise disjoint. Thus, an edge uv appears in
at most distT ∗(u, v) − 1 auxiliary graphs of depth q, which totals to O(m) for all the edges
in this depth according to the unit edge-capacity special case of the above Claim 4.3.9. This
concludes Lemma 4.3.7.

Next, we bound the time it takes to construct all the auxiliary graphs.

Lemma 4.3.10. The total time it takes to construct the auxiliary graphs for all the expansions
in the centroid decomposition is Õ(m).
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Proof. Let cj be a node that is expanded at some depth q ≥ 1, and let cj,1, . . . , cj,d be the
expanded nodes in U1, . . . , Ud, respectively at depth q + 1 (or just ⊥ for singletons).

Note that G′j,1, . . . , G′j,d (whichever exist) can all be constructed in total time that is linear
in the size of G′j .

Thus, the total time it takes to construct the auxiliary graphs at a single depth q is linear
in the size of the auxiliary graphs in the parent depth. Since the auxiliary graph at depth 0
(i.e., the entire graph) can trivially be constructed in O(m) time and is linear in the input
size, it follows by Corollary 4.3.8 that the total construction time of the auxiliary graphs for
all depths takes at most Õ(m) time.

4.3.2 Reduction from a Decision Problem to a total search problem

Let us start with the formal statement of NSETH.

Hypothesis 4.3.11 (Nondeterministic Strong Exponential-Time Hypothesis (NSETH)). For
every ε > 0 there exists k = k(ε) such that k-TAUT (the language of all k-DNF formulas that
are tautologies) is not in NTIME(2n(1−ε)).

Note that deciding if a k-DNF formula is a tautology is equivalent to deciding if a k-
CNF formula is satisfiable, thus the above hypothesis could be stated also using k-CNF
appropriately. Next, we define (deterministic) fine-grained reductions from a decision problem
to a total search problem. Note that these are Turing reductions.

Definition 4.3.12 (Fine-Grained Reduction from a Decision Problem to a total search prob-
lem). Let L be a language and P be a total search problem, and let TL(·) and TP (·) be time
bounds. We say that (L, TL) admits a fine-grained reduction to (P, TP ) if for all ε > 0 there is
a γ > 0 and a deterministic Turing machine MP (with an access to an oracle that generates
a solution to every instance of P ) such that:

1. MP decides L correctly on all inputs when given a correct oracle for P .

2. Let Q̃(MP , x) denote the set of oracle queries made by MP on input x of length n.
Then the query lengths obey the bound

∀x, THALT(MP , |x|) +
∑

q∈Q̃(M,x)

(TP (|q|))1−ε ≤ (TL(n))1−γ ,

where THALT(MP , |x|) is the maximal time MP runs on inputs of size |x|.

We are now ready to prove the non-reducibility result under NSETH for total search
problems with small nondeterministic complexity. The proof arguments are similar to those
of Carmosino et al. [CGI+16].

Theorem 4.3.13. Suppose P is a total search problem with nondeterministic time complexity
T (m). If for some δ > 0 there is a deterministic fine-grained reduction from k-SAT with time-
bound 2n to P with time bound T (m)1+δ, i.e., from (k-SAT, 2n) to (P, T (m)1+δ), then NSETH
is false.
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Proof. We will use the assumption of the theorem to describe a nondeterministic algorithm for
k-TAUT that refutes NSETH. Let φ be an instance of k-TAUT, and note that φ ∈ k-TAUT
iff ¬φ /∈ k-SAT. Our nondeterministic algorithm A first computes the CNF formula ¬φ, then
simulates the assumed reduction M1 from k-SAT to P on ¬φ, and eventually outputs the
negation of the simulation’s answer, or Reject if the simulation returns ⊥.

Let M2 be the Turing Machine showing that P has nondeterministic time complexity
T (m). Whenever the reduction M1 produces a query to P , our algorithm A executes M2 on
this query with some guess string g. Let gi be the guess string used for the ith query to P
made by M1. If any of the executions of M2 throughout the simulation outputs ⊥, then A
stops and outputs Reject. Otherwise (all executions output valid answers), the simulation
continues until M1 terminates. At this point, the output of M1 must be correct, and our
algorithm A outputs the opposite answer.

Let us argue about the correctness of our algorithm. First, it only outputs Accept if the
guesses and all answers to the P -queries were correct and then M1 rejected, meaning that
¬φ /∈ k-SAT i.e., φ ∈ k-TAUT. Second, for every yes-instance φ ∈ k-TAUT there is at least
one sequence of guesses g1, g2, . . . that makes A output Accept, due to the correctness of the
reduction M1 and the fact that M2 nondeterministically computes P correctly. Finally, the
running time of A can be upper bounded by

THALT(M1) +
∑

q∈Q̃(M1,x)

T (|q|) ≤ THALT(M1) +
∑

q∈Q̃(M1,x)

T (|q|)(1+δ)(1−ε) ≤ (2n)1−γ

for 0 < ε < δ where the last inequality is due to the reduction from k-SAT to P , THALT(M1)
is the time of operations done by M1, Q̃(M1, x) is the queries made by M1 to the P -oracle
on an input x, and the last inequality follows for some γ(ε) > 0 because M1 is a correct
fine-grained reduction. Thus, A refutes NSETH.

Since the construction of a cut-equivalent tree is a total search problem, and by Theo-
rem 4.1.2 its nondeterministic complexity is Õ(m), applying Theorem 4.3.13 implies that any
deterministic reduction from SETH to the construction of a cut-equivalent tree that implies
a lower bound of Ω(m1+δ), for some δ > 0, would refute NSETH, concluding Theorem 4.1.3.

4.4 Conditional Lower Bound for All-Pairs Max-Flow

In this section we prove a conditional lower bound for All-Pairs Max-Flow in undirected graphs
with node capacities. Our construction is inspired by the one in [KT18b], which was designed
for directed graphs with edge capacities, but we adapts it using our new trick described in
the introduction. In fact, readers familiar with the reduction in [KT18b] may notice that we
had to tweak it a little, making it simpler in certain ways but more complicated in others.
This was necessary in order to apply our new trick successfully to it.

The starting point for our reduction is the 3OV problem.

Definition 4.4.1 (3OV). Given three sets U1, U2, U3 ⊆ {0, 1}d containing n binary vectors
each, over dimension d, decide if there is a triple (α, β, γ) of vectors in U1 × U2 × U3, whose
dot product is 0. That is, a triple for which for all i ∈ [d] at least one of α[i], β[i], γ[i] is equal
to 0.
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An adaptation of the reduction by Williams [Wil05] shows that 3OV cannot be solved in
O(n3−ε) time for any ε > 0 and d = ω(logn), unless SETH is false (see [ABW15]). For us,
it suffices to assume the milder conjecture that 3OV cannot be solved in O(n3−ε) time when
d = nδ, for all ε, δ > 0. Refuting this conjecture has important implications beyond refuting
SETH [GIKW17, ABDN18], e.g. it refutes the Weighted Clique Conjecture.

The high level structure of the reduction is the following: create three layers of nodes
that correspond to the three sets of vectors, with additional two layers in between them that
correspond to the coordinates. These additional layers help keep the number of edges small
by avoiding direct edges between pairs of vectors. Among other things, we utilize the trick
described in the introduction and set the capacity of the nodes in the leftmost and rightmost
sides to be 1, while making the other capacities much larger. This way a flow would not gain
too much from crisscrossing through these nodes. Formally, we prove the following.

Lemma 4.4.2. 3OV over vector sets of size n and dimension d can be reduced to All-Pairs
Max-Flow in undirected graphs with Θ(n · d) nodes, Θ(n · d) edges, and node capacities in
[2n2d].

Since, as explained earlier, the 3OV conjecture is a consequence of SETH, then Theo-
rem 4.1.1 immediately follows from Lemma 4.4.2, which is proved below.

Proof of Lemma 4.4.2. Given a 3OV instance F we construct a graph G with maximum flow
size between some pair (among a certain set of pairs) bounded by a certain amount if and
only if F is a yes instance. For simplicity, we first provide a construction that has some of
the edges directed (only where we will specifically mention that), and then we show how to
avoid these directions. In addition, some of the edges will be capacitated as well, however the
amount of such edges is small enough so that subdividing them with appropriate capacitated
nodes will work too without a significant change to the size of the constructed graph.

An Intermediate Construction with Few Directed Edges. To simplify the exposition,
we start with a construction of a graph G′ in which most of the edges are undirected, but
some are still directed (see Figure 4.3).

Our final graph G will be very similar to G′. It will have the same nodes and edges except
that all edges will be undirected and the capacities on the nodes will be a little different.

We construct the graph G′ on N nodes V1∪V2∪V3∪A∪B ∪{vB}. The layer V1 contains
a node α of capacity 1 for every vector α ∈ U1. V2 contains d + 1 nodes for every vector
β ∈ U2: d nodes of capacity 1 denoted by βi for every i ∈ [d], plus a node denoted by β′ of
capacity d− 1. V3 contains a node γ of capacity 1 for every vector γ in U3. The intermediate
layer A contains 2d nodes: two nodes C0

i and C1
i of capacity n for every coordinate i ∈ [d].

The other intermediate layer B contains a node Ci of capacity n for every coordinate i ∈ [d].
Finally, the auxiliary node vB has capacity n(d− 1). With a slight abuse of notation, we will
use the following symbols in the following ways: α will be either a node in V1 or a vector in
U1; β will be a vector in U2; γ will be either a node in V3 or a vector in U3; and Ci will be
either a node in B or a coordinate in [d]. The usage will be clear from context.

The edges of the network will be defined as follows. First, we describe the edges that
depend on the given 3OV instance.

• For every α and i ∈ [d], we add a directed edge from α to C0
i if α[i] = 0, and a directed

edge from α to C1
i if α[i] = 1.
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Figure 4.3: An illustration of part of the reduction. Here, U1, U2, and U3 have two vectors
each; α and α̃ in U1, β and β̃ in U2, γ and γ̃ in U3. Bolder nodes correspond to nodes of
higher capacity, and dashed edges are conditional on the input instance. For simplicity, we
omit the edges not relevant to α and γ̃, and also the edges from nodes in {C0

i }i∈[3] to nodes
in {β′, β̃′}. In this illustration, α = 110, β = 101, β̃ = 001, and γ̃ = 101. Note that the triple
α, β̃, and γ̃ has an inner product 0, and indeed the maximum flow from α to γ̃ is 2 ·3−1 = 5.

• For every β, we add an (undirected) edge from βi to Ci if β[i] = 1.

• For every γ and i ∈ [d], we add an (undirected) edge from Ci to γ if γ[i] = 1.

Moreover, there will be some (undirected) edges that are independent of the vectors. For
every β, we have an edge of capacity 1 from C0

i to β′, and an edge of capacity 1 from C1
i to

βi. Also, for every β, we have an edge from βi to β′, and an edge from β′ to vB. Finally, for
every γ, we have an edge from vB to γ ∈ V3. (Unless specified otherwise, these edges have no
capacity constraints.)

The graph built has N = n + 2d + n · d + n + 1 + d + n = Θ(nd) nodes, at most O(nd)
edges, all of its capacities are in [N ], and its construction time is O(nd).

The following two claims prove the correctness of this intermediate reduction.

Claim 4.4.3. If every triple of vectors in (U1, U2, U3) has inner product at least 1, then for
all pairs α ∈ V1, γ ∈ V3 the maximum-flow in G′ is at least n · d.
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Proof. Assume that every triple of vectors in (U1, U2, U3) has inner product at least 1, and
fix some α and γ. We will explain how to send n · d units of flow from α to γ in G′. By the
assumption, for every β there exist an i ∈ [d] such that α[i] = β[i] = γ[i] = 1, and denote
this index by iβ. Each iβ induces a path (α → C1

iβ
→ βiβ → Ciβ → γ) from α to γ, and so

we pass a single unit of flow through every one of them, in what we call the first phase. Note
that so far, the flow sums up to n, and we carry on with describing the second phase of flow
through nodes of the form β′.

We claim that for every β, an additional amount of (d − 1) units can pass through β′,
which would add up to a total flow of n(d − 1) + n = nd, concluding the proof. Indeed, for
every β, we send flow in the following way. For every i ∈ [d] \ iβ, if α[i] = 1 then we send a
single unit through (α → C1

i → βi → β′ → vB → γ), and otherwise we send a unit of flow
through (α→ C0

i → β′ → vB → γ).
Since we defined the flow in paths, we only need to show that the capacity constraints are

satisfied. Nodes of the form Ci are only used in the first phase, and the flow through them
equals n in total, and so their flow is within the capacity. The node vB is only used in the
second phase and has n(d− 1) units of flow passing through it, just as its capacity. For every
β and i = iβ, we pass in the first phase a single unit of flow through βi. For every β and
i 6= iβ, we transfer in the second phase a unit of flow through βi if and only if α[i] = 1, thus it
is bounded. For every β′, we pass in the second phase exactly (d−1) units of flow through β′,
preserving its capacity. For every Cji ∈ N(α), where for a node x we denote by N(x) the set
of nodes adjacent to x, with i ∈ [d] and j ∈ {0, 1}, we pass a total of n units of flow to nodes
in V2, one unit on each edge, thus the capacities are preserved, concluding the proof.

Claim 4.4.4. If there is a triple of vectors (αΦ, βΦ, γΦ) ∈ (U1, U2, U3) whose inner product
is 0, then the maximum-flow in G′ from αΦ ∈ V1 to γΦ ∈ V3 is at most nd− 1.

Proof. Assume for contradiction that there exists such a flow of value at least nd, and denote
it by f . Let f = {p1, ..., p|f |} be a description of f as a (multi-)set of paths of single units of
flow. By our construction, the total capacity of all nodes in N(αΦ) sums up to nd exactly.
Therefore, f must have all of the nodes in N(αΦ) saturated.

Consider a node Cji ∈ N(αΦ) for some i ∈ [d] and j ∈ {0, 1}. Note that Cji is saturated
in f while its capacity is n and it has exactly n edges adjacent to it (excluding the edges
incoming from V1) of capacity 1 each. Therefore, we get that every node in N(Cji ) \ V1 must
receive a single unit of flow from Cji in f . Hence, every β-cloud, which we define as all the
nodes that are associated with a β, must have exactly d flow paths in f for which it is the
first β-cloud that they pass through. We call this a first passing of a path through a β-cloud.
In particular, for every β and for every i ∈ [d] such that αΦ[i] = 1 there must be a path pβ,i
in f whose prefix is (αΦ, C

1
i , βi, ...).

Our main claim is that the βΦ-cloud can only have up to d − 1 flow paths that are first
passing through it. Clearly, if there are more, then at least one of them does not pass through
βΦ
′ (whose capacity is only d − 1), so name this path p′. We will argue that this path must

be in conflict with one of the pβ,i paths described above.
For some i ∈ [d] the prefix of p′ must be (αΦ, C

1
i , βΦi , Ci, ...), since this is the only way it

can avoid the node βΦ
′. This can only happen for an i ∈ [d] for which α[i] = β[i] = 1, or else

those edges will not exist in G. But since (αΦ, βΦ, γΦ) is a triple whose inner product is 0, it
must be that γΦ[i] = 0 and so the edge {Ci, γ} is not in the graph. Hence, after Ci this path
can only go to a node β̃i for some β̃, and the (longer) prefix of p′ must be (αΦ, C

1
i , βi, Ci, β̃i, ...).
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Note that this is the same index i, and we know that αΦ[i] = 1. Therefore, by the above, we
know that there is another path pβ̃,i in f that has β̃i as the third node on the path. (That
is, there is already a path that is first-passing through β̃i.) This is a contradiction to the fact
that the capacity of β̃i is 1.

The Final Construction. The main issue with avoiding the directions on the edges be-
tween nodes in V1 and A, is that additional α’s might participate in the flow as well, potentially
allowing one additional unit of flow to pass through. As described in the introduction, the
solution is to multiply the capacities of all nodes that are not in V1 ∪ V3 by 2n. This is how
we get our final graph G from G′. In the following we show how this modification concludes
the proof of Lemma 4.4.2.

Claim 4.4.5. If every triple of vectors in (U1, U2, U3) has inner product at least 1, then for
all pairs α ∈ V1, γ ∈ V3 the maximum-flow in G is at least 2n2d.

Proof. Since the flow that was defined in Claim 4.4.3 does not touch nodes in V1 ∪ V3, con-
sidering the same flow in G but multiplied by 2n, we get a new flow that is of size nd · (2n),
concluding the proof.

Claim 4.4.6. If there is a triple of vectors (αΦ, βΦ, γΦ) ∈ (U1, U2, U3) whose inner product
is 0, then the maximum-flow in G from αΦ ∈ V1 to γΦ ∈ V3 is at most 2n2d− 1.

Proof. Let f be the maximum flow from αΦ to γΦ in G. The paths in f can be divided
into two kinds: paths that pass through nodes in (V1 ∪ V3) \ {αΦ, γΦ}, and paths that do
not. The total contribution of paths of the first kind can be upper bounded by the size of
(V1 ∪ V3) \ {αΦ, γΦ}, which is 2n − 2, since the capacity of all nodes in this set is 1. On the
other hand, paths from the second kind must obey the directions of the directed edges in
G′ and can therefore be used in G′, except that in G their multiplicity (the amount of flow
we push through them) can be larger by a factor of 2n. Therefore, we can upper bound the
total contribution of paths of the second kind by 2n times the maximum flow in G′, which
is (nd − 1)(2n). Thus, the overall flow is at most (nd − 1)(2n) + 2n − 2 = 2n2d − 2, which
proves Claim 4.4.6.

Since we showed a gap of at least one unit of flow between the yes and the no instances,
the proof of Lemma 4.4.2 is concluded.

4.5 Open Problems

Many gaps and open questions around the complexity of maximum flow remain after this work.
We highlight a few for which our intuitions may have changed following our discoveries.

• Can we break the O(mn) barrier also when the graphs have arbitrary (polynomial)
capacities? Our result gives hope that this may be possible.

• Can we reduce the directed case to the undirected, node-capacitated case? Because of
our lower bound, it is likely that both of these cases will end up having the same time
complexity, and so such a reduction may be possible.
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• Can we generalize the nondeterministic algorithm to arbitrary edge capacities? Notice
that one obstacle for achieving that goal is finding lower bounds witnesses for flows from
a certain source to other nodes.

• Can we prove any conditional lower bound for All-Pairs Max-Flow in undirected graphs
with edge capacities? This is obviously the most important and intriguing open question
in this context. Our new deterministic and nondeterministic upper bounds make this
task more challenging than previously thought.
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Chapter 5

Cut-Equivalent Trees are Optimal
for Min-Cut Queries1

5.1 Introduction

Minimum st-cut queries, or Min-Cut queries for short, are ubiquitous: Given a pair of nodes
s, t in a graph G we ask for the minimum cut that separates them. Countless papers study
their algorithmic complexity from various angles and in multiple contexts. Unless stated
otherwise, we are in the standard setting of an undirected graph G = (V,E, c) with n = |V |
nodes and m = |E| weighted edges, where the weights (aka capacities) are polynomially
bounded, i.e., c : E → {1, . . . , U} for U = poly(n). While a Min-Cut query asks for the set
of edges of the minimum cut, a Max-Flow query only asks for its weight. 2 A single Min-Cut
or Max-Flow query can be answered in time Õ(m

√
n) [LS14], 3 and there is optimism among

the experts that near-linear time, meaning Õ(m), can be achieved.
In the data structure (or online) setting, we would like to preprocess the graph once and

then quickly answer queries. There are two naive strategies for this. We can either skip the
preprocessing and use an offline algorithm for each query, making the query time at least
Ω(m). Or we can precompute the answers to all possible O(n2) queries, making the query
time O(1), at the cost of increasing the time and space complexity to Ω(n3) or worse.

Half a century ago, Gomory and Hu gave a remarkable solution [GH61]. By using an
algorithm for a single Min-Cut query n − 1 times, they can compute a cut-equivalent tree
(aka Gomory-Hu tree) of the original graph G. This is a tree on the same set of nodes as
G, with the strong property that for every pair of nodes s, t ∈ V , their minimum cut in the
tree is also their minimum cut in the graph. 4 This essentially reduces the problem from
arbitrary graphs to trees, for which queries are much easier — the minimum st-cut is attained
by cutting a single edge, the edge of minimum weight along the unique st-path, which can be
reported in logarithmic time. 5 Cut-equivalent trees have other attractive properties beyond
making queries faster, as they also provide a deep structural understanding of the graph by

1This chapter is based on [AKT20a].
2This terminology is common in the literature, although some recent papers [BSW15, BENW16] use other

names.
3The notation Õ(·) hides poly log n factors (and also poly log U factors in our case of U = poly(n)).
4If G has a unique minimum st-cut then the reverse direction clearly holds as well.
5This immediately answers Max-Flow queries in logarithmic time. For Min-Cut queries extra work is

required to output the edges in amortized logarithmic time; one simple way for doing it is shown in Section 5.4.
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compressing all its minimum cut information into O(n) machine words, and in particular
they give a data structure which is space-optimal, as Ω(n) words are clearly necessary. Let
us clarify that a cut-equivalent tree guarantees that for all s, t ∈ V , every edge est that has
minimum weight along the tree’s unique st-path, not only has the same weight as a minimum
st-cut in G, but this edge also bipartitions the nodes into V = S t T (the two connected
components when est is removed from the tree), such that (S, T ) is a minimum cut in the
graph G. Without this additional property we would only have a weaker notion called a
flow-equivalent tree.

Gomory and Hu’s solution ticks all the boxes, except for the preprocessing time. Us-
ing current offline algorithms for each query [LS14], the total time for computing the tree
is Õ(mn3/2), and no matter how much the offline upper bound is improved, this strategy
has a barrier of Ω(mn). While this barrier was not attained (let alone broken) for general
inputs, there has been substantial progress on special cases of the problem. If the largest
weight U is small, one can use offline algorithms [Mad16, LS20a, LS20b] that run in time
Õ(min{m10/7U1/7,m11/8U1/4,m4/3U1/3}) to get even closer to the barrier. In the unweighted
case (i.e., unit-capacity U = 1), Bhalgat, Hariharan, Kavitha, and Panigrahi [BHKP07] (see
also [KL15]) achieved the bound Õ(mn) without relying on a fast offline algorithm, and this
barrier was partially broken recently with a time bound of Õ(m3/2n1/6) [AKT20b]. Near-linear
time algorithms were successfully designed for planar graphs [BSW15] and surface-embedded
graphs [BENW16]. See also [GT01] for an experimental study, and the Encyclopedia of
Algorithms [Pan16] for more background.

Meanwhile, on the hardness side, the only related lower bounds are for the online problem
in the harder settings of directed graphs [AWY18, KT18b, AGI+19] or undirected graphs
with node weights [AKT20b], where Gomory-Hu trees cannot even exist, because the Ω(n2)
minimum cuts might all be different [HL07]. However, no nontrivial lower bound, i.e., of time
Ω(m1+ε), is known for computing cut-equivalent trees, and there is even a barrier for proving
such a lower bound under the popular Strong Exponential-Time Hypothesis (SETH) at least
in the case of unweighted graphs, due to the existence of a near-linear time nondeterministic
algorithm [AKT20b]. Thus, the following central question remains open.

Open Question 1. Can one compute a cut-equivalent tree of a graph in near-linear time?

A seemingly easier question is to design a data structure with near-linear time preprocess-
ing that can answer queries in near-constant (which means Õ(1), i.e., polylogarithmic) time.
We should clarify that we are interested in near-constant amortized time; that is, if the output
minimum st-cut has ks,t edges then it is reported in time Õ(ks,t). Building cut-equivalent
trees is one approach, but since they are so structured they might be limiting the space of
algorithms severely.

Open Question 2. Can one preprocess a graph in near-linear time to answer Min-Cut
queries in near-constant amortized time?

An even simpler question is the single-source version, where the data structure answers
only queries s, t ∈ V where s is a fixed source (i.e., known at preprocessing stage) and t can
be any target node. This restriction seems substantial, as the number of possible queries
goes down from O(n2) to O(n), and in several contexts the known single-source algorithms
are much faster than the all-pairs ones. One such context is shortest-path queries, where
single-source is solved in near-linear time via Dijkstra’s algorithm, while the all-pairs problem
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is conjectured to be cubic. Another context is Max-Flow queries in directed graphs(digraphs),
where single-source is trivially solved by n−1 applications of Max-Flow, while based on some
conjectures, all-pairs requires at least Ω(n3/2) such applications [KT18b, AGI+19]. Single-
source Max-Flow queries is currently faster than all-pairs also in the special case of unit-
capacity DAGs [CLL13]. However, this is still open for undirected Min-Cut queries.

Open Question 3. Can one preprocess a graph in near-linear time to answer Min-Cut
queries from a single source s to any target t ∈ V in near-constant amortized time?

It is natural to suspect that each of these questions is strictly easier than the preceding one.
The case of bounded-treewidth graphs gives one point of evidence since a positive solution to
Question 2 (and thus 3) was found over two decades ago [ACZ98], but Question 1 remained
open to this day.

5.1.1 Our Results

Our first main contribution is to prove that all three open questions above are equivalent. We
can extract a cut-equivalent tree from any data structure, even if it only answers single-source
queries, without increasing the construction time by more than logarithmic factors. Thus,
the appealingly simple trees are near-optimal as data structures for Min-Cut queries in all
efficiency parameters; we find this conclusion quite remarkable.

Informal Theorem 1. Cut-equivalent trees can be constructed in near-linear time if and
only if there is a data structure with near-linear time preprocessing and Õ(1) amortized time
for Min-Cut queries, and even if the queries are restricted to a fixed source.

The main new link that we establish in this chapter is to reduce Question 1 to Question 3,
by essentially designing an entirely new algorithm for constructing cut-equivalent trees. The
precise statement is given in Theorem 5.3.1. The two other links required for the equiva-
lence are from Question 3 to Question 2, which holds by definition, and from Question 2 to
Question 1. The latter link is to be expected, and was shown before in specific settings; for
completeness, we give a simple proof via 2D range-reporting in Theorem 5.4.1. Thus, we get
the reduction from all-pairs to single-source indirectly by going through the trees, and we are
not aware of another way to prove this counter-intuitive link.

Notably, our result holds not only for general graphs but also for every graph family
closed under minors. It is particularly useful for bounded-treewidth graphs, for which the two-
decades-old results of Arikati, Chaudhuri, and Zaroliagis [ACZ98] now imply the construction
of a cut-equivalent tree in near-linear time, as stated below. We do not see an alternative
way to compute a cut-equivalent tree, e.g., using directly the techniques of [ACZ98], where
parts of the graph G are replaced by constant-size mimicking networks [HKNR98].

Corollary 5.1.1 (see Corollary 5.3.2). A cut-equivalent tree for a bounded-treewidth graph
G can be constructed in randomized time Õ(m).

In planar graphs, combining our reduction with the single-source algorithm of [LNSW12]
gives an alternative to the all-pairs algorithm of [BSW15] that used a very different technique.
6

6The conference paper of [BSW15] appeared in FOCS 2010, before [LNSW12] appeared in FOCS 2012.
While the latter solves an easier task (single-source), it does so for the harder setting of directed planar graphs.
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To evaluate our results, consider how much other existing techniques for constructing
cut-equivalent trees would benefit from a (hypothetical) data structure for Min-Cut queries.
The classical Gomory-Hu algorithm would have two main issues. First, it modifies the graph
(merging some nodes) after each Min-Cut query, hence preprocessing a single graph (or a few
ones) cannot answer all the n− 1 queries. This issue was alleviated by Gusfield [Gus90], who
modified the Gomory-Hu algorithm so that all the n − 1 queries are made on the original
graph G. A second issue is that the answer to each query might have Ω(m) edges, hence
the total time Ω(mn) would far exceed Õ(m). Optimistically, a more careful analysis could
give an upper bound of O(φ), where φ is the total number of edges (in the original graph) in
the n− 1 cuts corresponding to the final tree’s edges. Clearly, any such algorithm that does
not merge edges must take Ω(φ) time. Still, in weighted graphs φ could be Ω(mn), and even
bounded-treewidth graphs could have φ = Ω(n2) even though m = O(n) (e.g., a path with
an extra node connected to all others). Therefore, our approach, which is very different from
Gusfield’s, shaves a factor of n. Notably, our result does not apply if the data structure is
available only for unweighted graphs, because we need to perturb the edge weights to make
all minimum cuts unique; but in this unweighted setting φ = O(m) [BHKP07, Lemma 5],
hence it is plausible that other techniques, e.g. [Gus90, KL15], would be capable of showing
the equivalence.

It is worth mentioning in this context a somewhat restricted form of the equivalence in
unweighted graphs. In this case, the known Õ(mn) time algorithm [BHKP07] for constructing
a cut-equivalent tree actually runs in time Õ(φ · c) where c = maxu,v∈V Max-Flow(u, v) is
at most n in unweighted graphs, utilizes a tree-packing approach [Gab95, Edm70] to find
minimal Min-Cuts between a single source and multiple targets, meaning that the side not
containing the source is minimal with respect to containment. Their method crucially relies on
this minimality property to bypass the well-known barrier of uncrossing multiple cuts found
in the same graph (which could be an auxiliary graph or the input G). This tree-packing
approach is the basis of a few algorithms for cut-equivalent trees [CH03, HKP07, AKT20b],
and it does not seem useful for weighted graphs.

While the equivalence for flows is incomparable to that for cuts, our techniques are robust
enough to prove it. In particular, we show that Õ(n) Max-Flow queries are sufficient to
construct a flow-equivalent tree. Currently, this relaxation (flow-equivalent instead of cut-
equivalent tree) is not known to make the problem easier in any setting, although Max-Flow
queries could potentially be computed faster than Min-Cut queries. Our proof follows from
a lemma that an n-point ultrametric can be reconstructed from Õ(n) distance queries, under
the assumption that it contains at least (and thus exactly) n − 1 distinct distances (see
Theorem 5.5.3). Interestingly, it is easy to show that without this extra assumption, Ω(n2)
queries are needed. To our knowledge, this is the first efficient construction of flow-equivalent
trees only from Max-Flow queries (without looking at the cuts themselves). A well-known
non-efficient construction (see [GH61]) is to make Max-Flow queries for all O(n2) pairs, view
it as a complete graph with edge weights, and take a maximum-weight spanning tree.

Informal Theorem 2 (see Theorem 5.5.1). Flow-equivalent trees can be constructed in near-
linear time if and only if there is a data structure with near-linear time preprocessing and
Õ(1) time for Max-Flow queries.

(1+ε)-Approximations Our first result offers a quantitative improvement over the Gomory-
Hu reduction from cut-equivalent trees to Min-Cut queries. It turns out that our technique
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also gives a qualitative improvement. A well-known open question among the experts, see
e.g. [Pan16], is to utilize approximate Min-Cut queries (to construct an approximate cut-
equivalent tree). An obvious candidate is an algorithm of Kelner et al. [KLOS14] for the
offline setting (i.e., a single query), that achieves (1 + ε)-approximation and runs in near-
linear time. It beats the time-bound of all known exact algorithms, however no one has
managed to utilize it for the online setting, or for constructing equivalent trees. It is not
difficult to come up with counter-examples (see Section 5.2.1) that show that following the
Gomory-Hu algorithm but using at each iteration a (1 + ε)-approximate (instead of exact)
minimum cut, results with a tree whose quality (approximation of the graph’s cut values)
is arbitrarily large. Our second main contribution is an efficient reduction from approxi-
mate equivalent trees to approximate Min-Cut queries. Previously, no such reductions were
known (the aforementioned maximum-weight spanning tree would again give a non-efficient
solution).

Informal Theorem 3 (see Theorem 5.2.1). Assume there is an oracle that can answer Min-
Cut queries within (1 + ε)-approximation. Then one can compute, using Õ(n) queries to the
oracle and an additional processing in time Õ(n2):

1. a (1 + ε)-approximate flow-equivalent tree; and
2. a tree-like data structure that stores Õ(n) cuts and can answer a Min-Cut query in time

Õ(1) and with approximation 1 + ε by reporting (a pointer to) one of these stored cuts.

For unweighted graphs, we can improve the Õ(n2) term to Õ(m) which could be significant.
While it may not be obvious why our new data structure is better than the oracle we start
with, there are a few benefits (see Section 5.2.2). Most importantly, since it only uses Õ(n)
queries, we can combine our reduction with the algorithm of Kelner et al. [KLOS14] (even
though it is for the offline problem, we essentially plug it into our reduction), and obtain
three new approximate algorithms that are faster than state-of-the-art exact algorithms! We
discuss these results next.

Corollary 5.1.2 (Section 5.2.2). Given a capacitated graph G on n nodes, one can construct
a (1 + ε)-approximate flow equivalent tree of G in randomized time ε−4 · n2+o(1).

It follows that the All-Pairs Max-Flow problem in undirected graphs can be solved within
(1 + ε)-approximation in time n2+o(1), which is optimal up to sub-polynomial factors since
the output size is Ω(n2). This problem is also well-studied in directed graphs [May62, Jel63,
HL07, LNSW12, CLL13, GGI+17], where it is known that exact solution in sub-cubic time is
conditionally impossible [KT18b, AGI+19], but it is open for approximated solutions.

Corollary 5.1.3 (Section 5.2.2). Given a capacitated graph G on n nodes, one can construct
in ε−4 · n2+o(1) randomized time, a data structure of size Õ(n2), that stores a set C of Õ(n)
cuts, and can answer a Min-Cut query in time Õ(1) and with approximation 1+ε by reporting
a cut from C.

Altogether, we provide for all three problems above (flow-equivalent tree, All-Pairs Max-
Flow, and data structure for Max-Flow) randomized algorithms that run in time n2+o(1).
Previously, the best approximation algorithm known for these three problems was to sparsify
G into m′ = Õ(ε−2n) edges in randomized time Õ(m) using [BK15b] (or its generalizations),
and then execute on the sparsifier the Gomory-Hu algorithm, which takes time Õ(n ·m′

√
n) =
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Õ(ε−2n2.5). The best exact algorithms previously known for these problems was essentially
to compute a cut-equivalent tree runs in time O(mn1.5). An alternative way to approximate
Max-Flow queries without the Gomory-Hu algorithm is to use Räcke’s approach of a cut-
sparsifier tree [Räc02]. This is a much stronger requirement (it approximates all cuts of G)
and can only give polylogarithmic approximation factors. Its fastest version runs in near-
linear time m1+o(1) and achieves approximation factor O(log4 n) [RST14].

Unfortunately, we could not prove the same results for (1 + ε)-cut-equivalent trees and
more new ideas are required; in Section 5.2.1 we show an example where our approach fails.
Interestingly, this is the first setting where we see different time bounds showing that the
extra requirements of cuts indeed make the equivalent trees harder to construct.

Besides the inherent interest in the equivalence result and its applications, we believe that
our results make progress towards the longstanding goal of designing optimal algorithms for
cut-equivalent trees. It is likely that such algorithms will be achieved via a fast algorithm for
online queries, as was the case for bounded-treewidth graphs.

5.1.2 Preliminaries

AMin-Cut data structure for a graph family F is a data structure that after preprocessing of a
capacitated graphG ∈ F in time tp(m), can answer Min-Cut queries for any two nodes s, t ∈ V
in amortized query time (or output sensitive time) tmc(kst), where kst denotes the output size
(number of edges in this cut). This means that the actual query time is O(kst · tmc(kst)). A
(1 + ε)-approximate Min-Cut data structure is defined similarly but for (1 + ε)-approximate
minimum st-cut whose total capacity is at most (1 + ε) times that of the minimum st-cut
in G. We denote by Max-FlowG(s, t) the value of the minimum-cut between s and t, and we
might omit the graph G subscript when it is clear from the context. Throughout, we restrict
our attention to connected graphs and thus assume that m ≥ n − 1, and additionally we
assume that the edge-capacities are integers (by scaling).

5.2 Our Approximation Algorithms

In this section we present our approximation algorithms, but first we give a high level overview
of them.

5.2.1 Overview

Here we discuss the obstacles to speeding up Gomory-Hu’s approach, and why plugging in
approximate Min-Cut queries fails to produce an approximate cut-equivalent tree. To explain
how our approach overcomes these issues, we present the key ingredients in our approximation
algorithm from Section 5.2.2. This overview also prepares the reader for Section 5.3, which
is the most complicated part of this chapter and proves our main result (Theorem 5.3.1).

Overview of the Gomory-Hu method Start with all nodes forming one super-node
V . Then, pick an arbitrary pair of nodes s, t from the super-node, find a minimum st-cut
(S, V \ S), and split the super-node into two super-nodes S and V \ S. Then connect the
two new super-nodes by an edge of weight w(S, V \ S), and recurse on each of them. In
each recursive call (which we also view as an iteration), say on a super-node V ′, the Min-Cut
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query is performed on an auxiliary graph GV ′ that is obtained from G by contracting every
super-node other than V ′. These contractions prevent the other super-nodes from being split
by the cut, which is crucial for the consistency of the constructed tree, and by a key lemma
about uncrossing cuts (proved using submodularity of cuts), these contractions (viewed as
imposing restrictions on the feasible cuts in GV ′) do not increase the value of the minimum
st-cut. The cut found in GV ′ is then used to split V ′ into two new super-nodes, and every
edge that was incident to V ′ is “rewired” to exactly one of the new super-nodes. The process
stops when every super-node contains a single node, which takes exactly n− 1 iterations and
results in a tree on n super-nodes, giving us a tree on V .

Why Gomory-Hu fails when using approximations There are two well-known issues
(see [Pan16]) for employing this approach using approximate (rather than exact) Min-Cut
queries, even if the approximation factor is as good as 1 + ε. The first issue is that errors
of this sort multiply, and thus a (1 + ε)-factor at each iteration accumulates in the final tree
to (1 + ε)d, where d is the depth of the recursion. The second issue is even more dramatic;
without the uncrossing-cuts property, the error could increase faster than multiplying and
might be unbounded even after a single iteration. The reason is that when we find in super-
node V ′ a cut (S, V ′ \ S) that is (approximately) optimal for a pair s, t ∈ V ′, we essentially
assume that for all pairs s′ ∈ S, t′ ∈ V \S there is an (approximately) optimal cut that splits
at most one of S and V ′ \ S (not both). While true for exact optimality, it completely fails
in the approximate case, and there are simple examples, see e.g. Figure 5.1, where allowing
(1 + ε)-approximation in the very first iteration makes the error of the final tree unboundedly
large. We will refer to this issue as the main issue.
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Figure 5.1: An example of the main issue with using (1+ε)-approximate minimum cuts in the
Gomory-Hu algorithm. The input graph G is at the top left; the intermediate trees are at the
bottom, from left to right; and the auxiliary graphs GV ′ are at the top. Each iteration uses a
(1+ε) Min-Cut for the node pair shown in bold. In the input graph Max-Flow-Value(b, c) = 2
but in the tree it is Ω(U); thus the error can be as bad as poly(n).
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Our strategy Our approach is different and simultaneously resolves both issues for flow-
equivalent trees; for cut-equivalent trees, as we show below, the first issue remains (but not
the second).

Our main insight is to identify a property of the cut (S, V ′ \ S), that is sufficient to
resolve the main issue: This property is stronger than being a minimum st-cut, and requires
that for all pairs s′ ∈ S, t′ ∈ V ′ \ S, this same cut is an (approximate) minimum s′t′-cut,
i.e., it works for them as well. Thus, the error for every pair s′, t′ from this split of V ′ is
bounded by (1 +ε)-factor, and we can recursively deal with pairs inside the same super-node.
While this property may seem too strong, notice that it holds whenever (S, V ′ \ S) is an
(approximate) global minimum cut (i.e., achieves the minimum over all pairs s′, t′ ∈ V ′).
While our algorithm builds on this intuition, it does not compute a global minimum cut at
each iteration, but rather employs a more complicated strategy that it is substantially more
efficient. For example, its recursion depth is bounded by O(logn), which is important to
bound the overall running time, and also to control the approximation factor.

Bounding the depth of the recursion The foremost idea is that the recursion depth
should be bounded by O(logn). This does not happen in the Gomory-Hu algorithm, nor
in the aforementioned strategy of using an (approximate) global minimum cut, where splits
could be unbalanced and recursion depth might be Ω(n). Assuming – by way of wishful
thinking – that the total time spent in all recursive calls of the same level is Õ(m), 7 the
challenge is to dictate how to (quickly) choose cuts so that the recursion depth is small.

Instead of insisting on a balanced cut, we partition the super-node V ′ into multiple sets
at once, which can be viewed as performing a batch of consecutive Gomory-Hu iterations at
the cost of one iteration (up to logarithmic factors). This approach was previously used in a
few other algorithmic settings, however, none of their methods is applicable in our context.
8 Before explaining how our algorithm computes a partition, let us explain which properties
it needs to satisfy. A partition of super-node V ′ into r sets S1, . . . , Sr (that will be processed
recursively) should satisfy the following strong property:

(*) For every pair s′ ∈ Si, t
′ ∈ Sj for i 6= j, at least one of (Si, V ′ \ Si) or (Sj , V ′ \ Sj)

corresponds in GV ′ to a (1 + ε)-approximate minimum s′t′-cut.

(We will actually allow an exception of one set S0 that does not satisfy this property, and
must be handled in a special way; this is the set V ′′big in Section 5.2.3.) In addition, the sizes
of these sets should be bounded by |V ′|/2 (with the exception of the set S0, which is bounded
by 3

4 |V
′|) which guarantees recursion depth O(logn), unlike a global minimum cut.

Our algorithm to partition V ′ picks a pivot node p ∈ V ′ and queries a data structure
built for GV ′ for an (approximate) minimum cut between p and every other node u ∈ V ′; let
Su ⊂ V ′ be the side of u in the returned cut. To form a partition out of these |V ′| − 1 sets

7One moral justification is that super-nodes V ′ of the same recursion level are disjoint, as they form a
partition of V . However, the real challenge is to process their auxiliary graphs GV ′ . This may be possible
in the special case where G is unweighted, becuase the total size (number of edges) of these auxiliary graphs
(from one level) is O(m) [BHKP07, BCH+08, KL15, AKT20b], but for a general graph G the total size of
these auxiliary graphs might easily exceed Õ(m).

8This approach was used in three different algorithmic settings: (1) in the special case of an unweighted
graph G [BHKP07, BCH+08]; (2) in parallel algorithms [AV18], which can compute in parallel polynomially-
many cuts (e.g., for all s′, t′ ∈ V ′) to find a partition; or (3) in non-deterministic algorithms [AKT20b], which
can “guess” a good partition but have to verify it quickly (achieved in [AKT20b] for an unweighted graph G).
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Su, reassign each node u to a set Su′ that contains u, which naturally defines a partition (by
grouping nodes reassigned to the same Su′). The reassignment process is elaborate and subtle
(see Section 5.2.3), aiming to preserve property (*) while reassigning nodes only to sets Su′
of size at most |V ′|/2.

Choosing effective pivots The above technique is not sufficient for bounding the depth
of the recursion, because a poorly chosen pivot p might result in many unbalanced cuts (sets
Su of size larger than 3

4 |V
′|), in which case this pivot is ineffective. Our next idea is that for

a randomly chosen pivot p ∈ V ′ this will not happen with high probability. 9 We analyze
the performance of a random pivot using a simple lemma about tournaments that works as
follows (see Lemma 5.2.4 and Corollary 5.2.5 for details). Assume for now that the Min-Cut
data structure is deterministic (we show how to lift this assumption in Section 5.2.5), then
every query {x, y} (described as an unordered pair) is answered with some cut (Sx, Sy), and
obviously |Sx| ≤ |V ′|/2 or |Sy| ≤ |V ′|/2 (or both). It follows by symmetry that a query for
{u, p} has a chance of at least 1/2 of having |Su| ≤ |V ′|/2, in which case we say that node u is
“good” (in Section 5.2.2 we call these Vsmall). But we need a stronger property, that at least
1/4 of the nodes in V ′ are good in this sense; we thus define on the nodes V ′ a tournament,
with an edge directed from x to y whenever |Sx| ≤ |Sy|, and prove that most nodes have a
large out-degree, and will thus be effective pivots.

With constant probability, such an effective pivot is chosen, hence the number of nodes
that are not good is bounded by 3

4 |V
′|, and we must handle them with a separate recursive

call (this is the problematic set V ′′big in Section 5.2.3). A related but different issue that arises
in Section 5.3.5 is that we cannot afford a Min-Cut query from p to all other u ∈ V ′. To
handle this we utilize the mentioned tournament properties by making Min-Cut queries from
a random pivot p to only a small sample of targets.

Using dynamic-connectivity algorithms Even if the recursion depth is bounded by
O(logn), it is not clear how to execute the entire algorithm in near-linear time, as each
iteration computes |V ′| − 1 cuts followed by a reassignment process. A straightforward im-
plementation could require quadratic time Ω(n2) even in the first iteration (on super-node
V ), which appears to be necessary because in some instances the total size of all good sets
Su (where |Su| ≤ n/2) is indeed Ω(n2). For unweighted graphs, however, the total number
of edges in these cuts (all minimum cuts from a fixed source to all targets) can be bounded
by O(m) (see Lemma 4 in [BHKP07], and Lemma 5.2.8 ahead), and indeed in this case our
entire algorithm can be executed in time Õ(m). The key is to only spend time proportional
to the number of edges in each cut, rather than to the number of nodes |Su|. In unweighted
graphs, and also in the “capacitated auxiliary graphs” that we construct in Section 5.3, the
total number of nodes and edges our algorithm observes is bounded by Õ(m).

The reassignment process poses an additional challenge. For example, can one decide
whether u ∈ Su′ in time that is proportional to the number of edges (rather than nodes)
in the cut Su′ (more precisely, the reported cut between p and u′ in GV ′)? Our solution
utilizes an efficient dynamic-connectivity algorithm (we use a simple modification of [HK95],
see Section 5.2.4), that preprocesses a graph in near-linear time, and support edge updates

9A random pivot was previously used in [BCH+08] in the special case of an unweighted graph G, and their
proof relies heavily on this restriction. Moreover, the cuts Su in their algorithm form a laminar family, hence
their reassignment process is straightforward.
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and connectivity queries in polylogarithmic time — we simply delete the edges of the cut Sv
and then ask if u and u′ are connected.

5.2.2 Approximate Min-Cut Queries and Flow-Equivalent Trees

In this section we present our results for using approximate Min-Cut queries that were pre-
sented in Section 5.1 and a technical overview for them was given in Section 5.2.1.

We prove the following theorems, which formalize Informal Theorem 3 and give Corollar-
ies 5.1.2 and 5.1.3 from Section 5.1.

Theorem 5.2.1. There is a randomized algorithm such that given a capacitated graph G =
(V,E, c) on n nodes, m edges, and using Õ(n) queries to a deterministic (1 + ε)-approximate
Min-Cut data structure for G with a running time tp and amortized time tmc, can with high
probability:

• construct in time O(tp(n)) + Õ(n2) a (1 + ε)-approximate flow-equivalent tree T of G,
and

• construct in time O(tp(n)) + Õ(n2) a data structure D of size Õ(n2) that stores a set C
of Õ(n) cuts, such that given a queried pair s, t ∈ V returns in time Õ(1) a pointer to
a cut in C that is a (1 + ε)-approximate minimum st-cut.

While the significance of the first item of the theorem is clear (the flow-equivalent tree)
let us say a few words about why the second item is interesting compared to the assumption.
The first benefit of our data structure is that it only stores Õ(n) cuts and therefore it will
only have Õ(n) different answers to the

(n
2
)
possible queries it can receive. This makes it

more similar to a cut-equivalent tree. Second, the space complexity of our data structure is
upper bounded by Õ(n2) in weighted or Õ(m) in unweighted graphs (see Section 5.2.4), while
the oracle could have used larger space; thus we could save space without incurring loss to
the preprocessing and query times by more than log factors. The third benefit is that it only
uses Õ(n) queries to the assumed oracle, which allows us to obtain consequences even from
an oracle with larger query times and even from offline algorithms. If rather than a (1 + ε)
Min-Cut data structure we have an offline (1 + ε)-approximate minimum st-cut algorithm
such as [KLOS14], by simply computing it every time there is a query, we get the following
theorem.

Theorem 5.2.2. If in Theorem 5.2.1 instead of a (1+ε)-approximate Min-Cut data structure
we have an offline (1 + ε)-approximation algorithm with running time toffline(m), the time
bounds for constructing P and D become Õ(n · toffline(n)).

We also remark that the above theorems only deal with deterministic data structures and
algorithms. The reason will be clarified during the proof. However, this restriction can be
removed and we explain how to generalize the theorem to randomized ones in Section 5.2.5.

To conclude Corollaries 5.1.2 and 5.1.3 from Section 5.1, given a graph we begin by apply-
ing a sparsification due to Benczur and Karger [BK15a], where a near-linear-time construction
transforms any graph on n nodes into an O(n logn/ε2)-edge graph on the same set of nodes
whose cuts (1+ε)-approximate the values in the original graph. This incurs a (1+ε) approx-
imation factor to the result. By utilizing a (1 + ε)-approximate minimum st-cut algorithm
for general capacities by [KLOS14] with toffline(m) = m1+o(1)/ε2 we get the n2+o(1)/ε4 upper
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bound for constructing (1 + ε)-approximate flow-equivalent trees and the tree-like data struc-
ture. The main previously known method for constructing a data structure that can answer
(1 + ε)-approximate minimum st-cuts is to construct an exact cut equivalent tree of a sparsi-
fication of the input graph using, e.g., Benczur-Karger [BK15b]. For general capacities, this
gives a total running time of Õ(n5/2). For unit-capacities, since this sparsification introduces
edge weights, it is not clear how to do anything better for the approximation version than
the exact bounds.

In the unit-capacity case, using the same techniques as in Theorem 5.2.1 (but with extra
care), our bounds are better: we replace the Õ(n2) term with Õ(m). While we do not
currently have an application for this improved bound, it will be significant in the likely event
that a (1 + ε)-approximate Min-Cut data structure can be designed for sparse unweighted
graphs that will have near-linear or even O(n1.5−δ) preprocessing time. Then, our improved
theorem would give an approximate flow-equivalent tree construction that improves on the
n1.5 barrier that currently exists for exact [AKT20b]. We remark that, since the results of
this section do not use any edge contractions and only ask queries about the original graph,
they hold for any graph family even if it is not minor-closed. This is important since the
family of sparse graphs is not minor closed. This is discussed in Section 5.2.4.

5.2.3 Our Tree-Like Data Structure

We start by proving the second item in Theorem 5.2.1 and then show how it gives the
construction of approximate flow-equivalent tree in a simple way.

Let G be the input graph with node set V , we will show how to construct a data structure
D that utilizes a tree structure T , and we will also construct a graph H which we will call
flow-emulator on the same node set V that will only be used for our flow-equivalent tree
construction. We assume we are given an arbitrary data structure for answering (1 + ε)-
approximate Min-Cut queries, and give a new data structure or flow-equivalent tree with
error (1 + ε)2. Thus, to get the theorem we could use a data structure with parameter
ε′ = ε/3.

Preprocessing To construct our data structure we recursively perform expansion opera-
tions. Each such operation takes a subset V ′ ⊂ V and partitions it into a few sets Si ⊆ V ′

on which the operation will be applied recursively until they have size 1 (V ′ can be thought
of as a super-node as in Gomory-Hu but here we do not have auxiliary graphs and contrac-
tions). The partition Si will (almost) satisfy the strong property (*) that we discussed in
Section 5.2.1. In the beginning we apply the expansion on V ′ := V . It will be helpful to
maintain the recursion-tree T that has a node tV ′ for each expansion operation that stores
V ′ as well as some auxiliary information such as cuts and a mapping from each node v ∈ V ′
to a cut Sf(v). To perform a query on a pair u, v we will go to the recursion-node in T that
separated them, i.e. the last V ′ that contains both of them, and we will return one of the
cuts stored in that node.

We will prove that, because of how we build the partition, the depth of the recursion
will be O(logn). For each level of the recursion, the expansion operations are performed on
disjoint subsets V ′i . All the work that goes into the expansion operations in one level can
be done in O(n2) time in a straightforward way. In unweighted graphs, it can even be done
in Õ(m) time by adapting known dynamic connectivity algorithms; this will be discussed in
Section 5.2.4.
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The expansion operation on a subset V ′ ⊆ V (it is helpful to think of the case V ′ = V ):

1. Pick a pivot node p ∈ V ′ uniformly at random.

2. For every node u ∈ V ′ \ {p} ask a (1 + ε)-approximate Min-Cut query for the pair u, p
to get a cut (V \ Su, Su) where u ∈ Su and p ∈ V \ Su. Compute the value of the cut
and denote it by c(Su). Moreover, compute the intersection of the side of u with V ′,
that is Su ∩ V ′, and denote this set by S′u.

3. Treat the cut values as being all different by breaking ties arbitrarily and consistently.
One way is to redefine the value c(S) of the cut S to be c(S) + i/n2 if S was the answer
to the ith Min-Cut query we performed. From now on assume that all c(S) values are
unique.

4. We would like to use the sets S′u for each u ∈ V ′ to partition V ′, but these sets can be
intersecting in arbitrary ways and moving nodes around could hurt our property (*).
The following is a carefully designed reassignment process that makes it work. There
are three main criteria when reassigning nodes to cuts. First, we can only assign a node
v to a cut Su whose value is within (1 + ε) of the best cut separating v and p; this is
necessary to satisfy property (*). Second, we want to prioritize assigning v to a cut Su
separating it from p with good value that also has small cardinality S′u; this will make
sure the sets are getting smaller with each recursive step and upper bound the depth
of the recursion by O(logn). And third, a subtle but crucial criterion for satisfying
property (*) is that we may not assign two nodes u, v to two different sets unless we
have evidence for doing so in the form of a cut S with good value that separates one but
not the other from p (and therefore separates them). While each of these criteria is easy
to satisfy on its own, getting all of them requires the following complicated process.

We define a reassignment function f : V ′ → V ′∪{⊥} such that for every node u ∈ V ′\{p}
with cut (V \Su, Su), we reassign u to v, denoted f(u) = v with the cut (V \Sf(u), Sf(u))
as follows. Denote by Vsmall, V ′small two initially identical sets, each containing all nodes
u such that |S′u| ≤ n′/2, where |V ′| = n′, and denote by Vbig, V ′big, V ′′big three sets that
are initially all equal to V ′ \ Vsmall. As a preparation for defining f we need another
function g that reassigns nodes in Vbig to the best cut corresponding to another node
in Vbig that separates them from p. Sort Vbig by c(Su), and for all u ∈ Vbig from low
c(Su) to high and for every node v ∈ S′u ∩ V ′big, set g(v) = u and then remove v from
V ′big. Sort Vsmall by c(Su), and for all u ∈ Vsmall from low c(Su) to high and for every
node v ∈ S′u ∩ V ′small, set f(v) = u and then remove v from V ′small. For every node
v ∈ S′u ∩ V ′′big, if c(Su) ≤ (1 + ε)c(Sg(v)) then set f(v) = u and then remove v from V ′′big.
Finally, set f(v) = ⊥ for every node v for which f was not assigned a value (including
p).

To get the partition, let IM(f) be the image of f (excluding ⊥) and for each i ∈ IM(f)
let f−1(i) be the set of all nodes u that were reassigned by f to the cut Sf(i). Notice
that the nodes in V ′′big, which includes p, were not assigned to any set. Thus, we get
the partition of V ′ into V ′′big and each set in {f−1(i)}i∈IM(f). The latter sets satisfy
the property (*) but V ′′big may not (because it does not correspond to an approximate
minimum cut) and therefore it will be handled separately next.
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5. If |Vsmall| < n′/4 then p is a failed pivot. In this case, re-start the expansion operation
at step 1 and continue to choose new pivots until |Vsmall| ≥ n′/4. We will prove that
we will only do O(logn) repetitions with high probability.

6. Finally, we recursively compute the expansion operation on each of the sets of the par-
tition. Let us describe what we store at the recursion node tV ′ corresponding to the
just-completed expansion operation on V ′ with (successful) pivot p. Simultaneously,
we describe what we add to the flow-emulator graph H (that will be used in for con-
structing a flow-equivalent tree in unweighted graphs more efficiently in Section 5.2.4)
which initially has no edges, but gets |V ′| − 1 new weighted edges with each expansion
operation. If |V ′| = 1 we do nothing, so assume that |V ′| ≥ 2. We store |V ′| − 1 cuts in
tV ′ : For each node v ∈ V ′′big that is not p we store the cut Sg(v) and we also add an edge
between p and v in the flow-emulator graph H with weight (1+ε)c(Sg(v)). And for each
node u in one of the other sets of the partition {f−1(i)}i∈IM(f) we store the cut it was
reassigned to Sf(u) and we also add an edge {v, p} of weight (1 + ε)c(Sf(u)) to H. If
any of these edges already exists in H (which could happen for the nodes v ∈ V ′′big) then
we simply do nothing and keep the previous edge. We also keep an array of pointers
from each node to its corresponding cut and also the value of the cut, call this array
A. Moreover, we store for each node of V ′ the name of the set in the partition that it
belongs to, in an array B.

Queries To answer a query for a pair u, v we go to the recursion level that separated them,
corresponding to some node tV ′ in T and output a pointer to one of the two corresponding
cuts Su or Sv; choose the cut among the two that separates u and v (we prove that at least
one of the two cuts does) and has smaller capacity. To find out which recursive node separates
u and v we can simply start from the root and continue going down (with the help of array
B) to the nodes that contain both of them until we reach V ′. The query time will depend on
the depth of the recursion which we will show to be logarithmic.

Correctness The next claim proves that the cuts our data structure returns are approxi-
mately optimal. The main idea is to prove that the partition we get at each expansion step
satisfies the property (*) discussed in Section 5.2.1, except for the set V ′′big which has to be
treated separately; things work out because there is only one such problematic set.

Claim 5.2.3. The cut returned by D for any pair of nodes is a (1+ε)2 approximate minimum
cut. Moreover, for any pair u, v ∈ V there exists a special node puv ∈ V such that

(1 + ε)3Max-Flow(u, v) ≥ min{cH(u, puv), cH(v, puv)} ≥ Max-Flow(u, v),

where cH is the weight of the edge in our flow-emulator graph H.

Proof. Let u, v be an arbitrary pair of nodes and let V ′ ⊆ V be the set such that u, v ∈ V ′ but
u and v were sent to different sets in the expansion operation on V ′ during the construction
of D. There are a few cases, depending on whether any of them is in V ′′big or not, and whether
the cuts they got assigned to had similar costs up to (1 + ε).

1. The first case is when none of u, v are in V ′′big. Assume without loss of generality that
c(Sf(u)) > c(Sf(v)) where Sf(u) and Sf(v) are the corresponding cuts. There are two
sub-cases, depending on whether the values of the two cuts are close or not.
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(a) If c(Sf(u)) > (1 + ε)c(Sf(v)) then

Max-Flow-Value(u, p) > Max-Flow-Value(v, p),

and so
Max-Flow-Value(v, u) = Max-Flow-Value(v, p).

As a result, it must be that u ∈ V ′ \ S′f(v) and Sf(v) is indeed the cut returned,
with (1 + ε) approximation ratio.

(b) Otherwise, if c(Sf(u)) ≤ (1 + ε)c(Sf(v)) then it must be that u ∈ V ′ \ S′f(v), since
otherwise when the algorithm examined f(v), it was the case that both u and
v were in S′f(v), and as they are in Vsmall they must had been sent to the same
recursion instance, contradicting our assumption on the expansion operation on
V ′, and so

Max-Flow-Value(u, v) ≤ c(Sf(v)).
Furthermore,

Max-Flow-Value(u, v) ≥ min(Max-Flow-Value(u, p),Max-Flow-Value(v, p))

and thus
(1 + ε)Max-Flow-Value(u, v) ≥ min(c(Sf(u)), c(Sf(v))).

By our assumption, c(Sf(u)) > c(Sf(v)) and so altogether

(1 + ε)Max-Flow-Value(u, v) ≥ c(Sf(v)).

Thus, the algorithm can output Sf(v) with an approximation guarantee (1 + ε), as
required.

2. The second case is when one of the nodes is in V ′′big and its Max-Flow to p is larger.
More specifically, let ubig ∈ V ′′big and v /∈ V ′′big be nodes such that c(Sg(ubig)) > c(Sf(v)),
where Sg(ubig) is the cut corresponding to ubig. Again, there are two sub-cases.

(a) If c(Sg(ubig)) > (1 + ε)c(Sf(v)) then similar to before, Sf(v) separates ubig and v,
providing a (1 + ε)-approximation.

(b) Otherwise, if c(Sg(ubig)) ≤ (1 + ε)c(Sf(v)) then it must be that ubig ∈ V ′ \ S′f(v),

since if not then as ubig ∈ Vbig and when the algorithm examined f(v) it did not
set f(ubig) := f(v), it must have been the case for a node x that was either f(v) or
before f(v) in the order (i.e. such that c(Sx) ≤ c(Sf(v))) that ubig was tested for
the first time, with c(Sx) > (1 + ε)c(Sg(ubig)), and so c(Sf(v)) > (1 + ε)c(Sg(ubig)).
However, by our assumption it holds that c(Sf(v)) < c(Sg(ubig)), in contradiction.
Thus, ubig ∈ V ′ \ S′f(v). Similar to before,

(1 + ε)Max-Flow-Value(ubig, v) ≥ c(Sf(v)),

and thus the returned cut Sf(v) is a (1 + ε) approximation, as required.

3. The third and last case is when one of the nodes is in V ′′big and its Max-Flow to p is
smaller. Let ubig ∈ V ′′big and v /∈ V ′′big be nodes such that c(Sf(v)) > c(Sg(ubig)). There
are two sub-cases.
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(a) If c(Sf(v)) > (1 + ε)c(Sg(ubig)) then similar to before, Sg(ubig) separates ubig and v,
providing a (1 + ε)-approximation.

(b) Otherwise, if c(Sf(v)) ≤ (1 + ε)c(Sg(ubig)) then it must be that ubig ∈ V ′ \ S′f(v).

Otherwise, since ubig ∈ Vbig and when the algorithm examined f(v) it did not set
f(ubig) := f(v), it must have been the case that c(Sf(v)) > (1 + ε)c(Sg(ubig)). How-
ever, by our assumption it holds that c(Sf(v)) ≤ (1+ε)c(Sg(ubig)), in contradiction.
Thus, ubig ∈ V ′ \ S′f(v). By previous arguments,

(1 + ε)Max-Flow-Value(ubig, v) ≥ min{c(Sbig), c(Sf(v))},

and since 1/(1 + ε)c(Sf(v)) ≤ c(Sg(ubig)), it must be that

(1 + ε)Max-Flow-Value(ubig, v) ≥ 1/(1 + ε)c(Sf(v)),

and finally
(1 + ε)2 ·Max-Flow-Value(ubig, v) ≥ Sf(v)

providing an approximation ratio of (1 + ε)2, concluding the claim.

To prove the statement about the weights in H simply observe that the weights in H
correspond exactly to (1 + ε) times the weights of the cuts that were considered in the proof
above. Note that when puv is the pivot separating u and v, i.e., the pivot that sent u and v to
different instances in an expansion step, it might be the case that the returned cut’s capacity
is the bigger out of the cuts of (u, puv) and (v, puv), in particular it happens in case 3b in the
above proof. However, in this case the smaller value is at least 1/(1 + ε) times the bigger
value, and so the fact that we multiplied all values by (1 + ε) when we added them to H
on one hand ensures the lower bound of Max-Flow(u, v) and on the other hand increases the
upper bound by a factor of (1 + ε) to be concluded as (1 + ε)3Max-Flow(u, v).

Running Time Next we prove the upper bounds on the preprocessing time, by proving that
with high probability, the algorithm terminates after Õ(n2) time. The crux of the argument
is to bound the depth of the recursion by O(logn). Later, in Section 5.2.4 we build on this
analysis to show that our more efficient implementation for unweighted graphs gives an upper
bound of Õ(m). There, we show that a single expansion step takes only Õ(m) rather than
O(n2) but the rest of the analysis is the same.

Let us give a high-level explanation of the argument below. Our goal is to bound the size
of each of the sets in the partition in an expansion operation by 3/4|V ′|. This is immediate for
the sets {f−1(i)}i because they are subsets of cuts Su of nodes u in Vsmall, and by definition
they satisfy that |Su| ≤ |V ′|/2. Therefore, we should only worry about V ′′big. However, any
node u that is initially in Vsmall will end up reassigned to one of the sets {f−1(i)}i and not to
V ′′big. Thus, it suffices to argue that there will be at least |V ′|/4 nodes in Vsmall. To argue about
this, let us recall where the cuts Su for each node u come from. They are the approximate
Min-Cuts that our assumed data structure returns when queried for pairs u, p for a randomly
chosen pivot p. For simplicity, let us assume that this data structure is deterministic (we
show how to lift this assumption in Section 5.2.5) which means that for any pair x, y the
answer to the query will always be a certain cut (Sx, Sy) and in this cut it must be that either
|Sx| ≤ n/2 or |Sy| ≤ n/2 or both. (More generally, if we take the intersection of each side of
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the cut with a subset V ′ ⊆ V we can replace n/2 by |V ′|/2, as we will do below.) Therefore,
the u, p query has a chance of at least 1/2 of having |Su| ≤ |V ′|/2 meaning that u is in Vsmall.
To complete the argument, we need a stronger property: we want that for a randomly chosen
p, at least 1/4 of the nodes u ∈ V ′ will have that the side of u is smaller than the side of p
and they will end up in Vsmall. This is argued more formally below.

We start with a general lemma about tournaments.

Lemma 5.2.4. Let Y = (VY , EY ) be a directed graph on n nodes and m edges that contains
a tournament on VY . Then Y contains at least n/2 nodes with out-degree at least n/4.

Proof. Each edge contributes exactly 1 to the total sum of the out-degrees and the in-degrees.
Thus, these two sums are equal and so the average out-degree in Y equals∑v∈VY outdegY (v)/n =
m/n ≥

(n
2
)
/n = (n − 1)/2. Using the probabilistic method, we get that there exists a

node with out-degree that is at least (n − 1)/2. By removing this node and using simi-
lar arguments repeatedly, we conclude that there exist dn/2e nodes with degrees at least
(n− 1)/2, (n− 2)/2, . . . , (n− dn/2e)/2, i.e. at least n/4.

The following is a general corollary, and is a result of Lemma 5.2.4, about cuts between
every pair of nodes.

Corollary 5.2.5. Let F = (VF , EF ) be a graph where each pair of nodes u, v ∈ VF is associ-
ated with a cut (Suv, Svu = VF \ Suv) where u ∈ Suv, v ∈ Svu (possibly more than one pair of
nodes are associated with each cut), and let V ′F ⊆ VF . Then there exist |V ′F |/2 nodes p′ in V ′F
such that at least |V ′F |/4 of the other nodes w ∈ V ′F \{p′} satisfy |Sp′w ∩ V ′F | > |Swp′ ∩ V ′F |.

Proof. Let HF (V ′F ) denote the helper graph of F on V ′F , where there is a directed edge from
u ∈ V ′F to v ∈ V ′F if and only if |Suv ∩ V ′F | > |Svu ∩ V ′F |. By Lemma 5.2.4, since HF (V ′F )
contains a tournament on V ′F , Corollary 5.2.5 holds.

Next, apply Corollary 5.2.5 on G, and let H = HG(V ′) be the helper graph of G on V ′
with the reassigned cuts. As a result, with probability at least 1/2, the pivot p is one of the
nodes with out-degree at least n′/4, and in that case, when the algorithm partitions V ′, it
must be that maxi|f−1(i)| ≤ n′/4, and |f−1(⊥)| ≤ 3n′/4, that is, the largest set created is of
size at most 3n′/4. After O(n logn) successful choices of p, the algorithm finishes with the
total depth of the recursion being O(log4/3 n). Note that the algorithm verifies the choice of p
and never proceeds with an unsuccessful one. Hence, it is enough to bound the running time
of the algorithm given only successful choices of p by Õ(n2) and Õ(m) in the general case
and in the unit edge-capacities case, respectively, and then multiply by the maximal number
of unsuccessful choices for any instance, which is bounded by 3 logn with high probability, as
shown below.

A straightforward implementation of an expansion step gives an upper bound of Õ(n2) on
the total running time for the algorithm given only successful choices of p. In Lemma 5.2.8
we prove the better upper bound of Õ(m) for unweighted graphs.

Finally, the probability for failure of 3 logn consecutive trials in a single instance is at
most (1/2)3 logn = 1/n3, and by the union bound over the Õ(n) instances in the recursion,
the probability that at least one instance takes more than 3 logn attempts to have a successful
choice of p is bounded by 1/n. We conclude that with high probability, the running time of
the algorithm is bounded by O(tp(n)) + Õ(n2) for general capacities and O(tp(m)) + Õ(m)
for unit edge-capacities, as required.
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Space Usage In the general weighted case, the total space usage is Õ(n2): There are
O(logn) levels and in each level the expansion operations are performed disjoint sets V ′.
Each operation stores arrays of size |V ′|, containing pointers, values, and cuts. Each cut can
take O(m) bits, but since we can apply the Benczur-Karger sparsification we can assume
that m = Õ(n) (unless we are in the unweighted setting which we will discuss separately).
Therefore, the total size at each recursive level is Õ(n2) and we are done. In unweighted
graphs, we will argue in Section 5.2.4 that for any partition of V and any choices of pivots in
each of the parts, the total number of edges in all minimum cuts from the pivots to the nodes
in their parts is upper bounded by O(m). The fact that we are dealing with approximations
only incurs a (1 + ε) factor to this cost. Therefore, we can store all the cuts in a single
recursive level in O(m) space, and the other arrays only take O(n logn) space per level. In
total, we get the Õ(m) bound.

Flow-Equivalent Tree Construction We apply a technique of Gomory and Hu [GH61].
Our data structure lets us to query for the approximate Max-Flow value for a pair of nodes
in Õ(1) time. We have the following proposition, extending the technique of [GH61] to
approximated values of an input graph G.
Proposition 5.2.6. Let G = (V,E) be an input graph and N = (V, c) a complete graph on
V such that for every two nodes u, v ∈ V , (1 + ε)Max-Flow(u, v) ≥ cN (u, v) ≥ Max-Flow(u, v).
Then a maximum spanning tree T of N is a (1 + ε)-approximate flow-equivalent tree of G.

Proof. To prove the claim about T , let u, v be any two nodes and consider any uv-path in T
u1 = u, . . . , uk = v, and we will show that

(1 + ε)Max-Flow(u, v) ≥ min{cN (u1, u2), . . . , cN (uk−1, uk)} ≥ Max-Flow(u, v).

For the first inequality, we follow the original proof for the exact case [GH61], where it
is shown that for any path u1 = u, . . . , uk = v in the complete network representing exact
answers, it holds that

Max-Flow(u1, uk) ≥ min{Max-Flow(u1, u2), . . . ,Max-Flow(uk−1, uk)}.

This is proved by induction. By the strong triangle inequality

Max-Flow(u1, uk) ≥ min{Max-Flow(u1, uk−1),Max-Flow(uk−1, uk)},

and by the inductive hypothesis

Max-Flow(u1, uk−1) ≥ min{Max-Flow(u1, u2), . . . ,Max-Flow(uk−2, uk−1)}.

Thus, in our approximate setting and by our construction, it must follow that

Max-Flow(u, v) ≥ 1/(1 + ε) min{cN (u1, u2), . . . , cN (uk−1, uk)}.

The second inequality relies on the properties of any path in a maximum-weight spanning
tree, as follows. For any path u1 = u, . . . , uk = v between u and v in T it holds that

min{cN (u1, u2), . . . , cN (uk−1, uk)} ≥ cN (u, v).

Indeed, otherwise the edge uv must not be in T , and it could thus replace the minimum-
weight edge in the path u1, . . . , uk in T while increasing the total weight of the edges in T ,
in contradiction.
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This allows us to construct, in Õ(n2) time, a complete graph N on V that has an edge
of weight cN (s, t) between any pair of nodes s, t such that (1 + ε)2Max-Flow(s, t) ≥ w(s, t) ≥
Max-Flow(s, t). By Proposition 5.2.6, the maximum spanning tree (MST) of this complete
graph is a (1 + ε)2-approximate flow-equivalent tree of G.

5.2.4 A Faster Implementation For Unweighted Graphs

In this section we explain how to improve the bounds of Theorem 5.2.1 in the case of un-
weighted graphs.

Theorem 5.2.7. For graphs G = (V,E) with unit edge-capacities, the time bounds in Theo-
rem 5.2.1 for constructing T and D become tp(m)+Õ(m), and the space bound for D becomes
Õ(m).

First, we show that an expansion step can be executed more efficiently in unweighted
graphs by only spending time proportional to the number of edges in all the cuts we process.
In unweighted graphs the total size is only O(m). This is challenging because our reassignment
needs to analyze which nodes are in each cut and what is the best value for each one. We
have managed to do this by adapting known data structures for dynamic graph connectivity.

Lemma 5.2.8. The running time for the algorithm given only successful choices of p is
bounded by Õ(m) for graphs with unit edge-capacities.

Proof. For unit edge-capacities, we first show that the total space of all cuts examined by
the algorithm is bounded by Õ(m), and then that the running time is linear in that measure.
Indeed, the cuts computed in each recursion depth are between pivot-sink pairs such that a
pivot in one instance is never a sink in another instance in the same depth. Let Qi ⊆ V × V
denote the set containing all pairs of nodes queried in depth i. Denote by T a cut-equivalent
tree of G, and by αT the (multi-)set of edges in T that are the answers to (exact) Min-Cut
queries in T of the pairs in Qi. We assume that for every pair t, p in Qi, the edge in T
answered is the one touching t. Note that our assumption could have only increased the total
capacity of the edges in αT . Since no node can be both a pivot and a sink in the same depth,
it must be that every edge in T is returned and added to αT at most twice, and since the sum
of all edge-capacities in T is 2m (see Lemma 5 in [BHKP07]), an O(m) bound for the total
capacity of the edges in αT follows. Since the capacity of every edge in T is the number of
edges in the cut it represents, and the cuts our algorithm uses are (1 + ε)-approximated, they
contain at most (1 + ε) times the number of edges in the cuts corresponding to the edges in
αT , as claimed.

Now, to see that the running time is bounded, first note that for every cut Su examined
by the algorithm throughout its execution, nodes v ∈ S′u are examined and they either getting
a value under g or f , or removed from the corresponding set it belonged to, V ′big, Vsmall, or
V ′′big, so we are left with showing that counting and reporting a set S′u could be done in Õ(1)
and O(|S′u|) time, respectively. In fact, for each Su we will consider a subset of Su that is the
connected component in G \ δ(Su) containing u, where δ(Su) is the set of edges leaving Su,
with additional running time of O(δ(Su)), and Õ(m) for all cuts Su’s. We explain these steps
below.

Claim 5.2.9. Let G = (V,E) be a graph and VT ⊆ V a subset of terminals. For every cut
S ⊆ V given by the edges δ(S) and every node y ∈ S, it is possible to count the nodes in
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S(y)∩VT for a cut S(y) ⊆ S that is the connected component of G[S] that contains y, in time
O(|δ(S)|), and enumerate S(y) ∩ VT in additional time O(|S(y) ∩ VT |).

Proof. The idea is to slightly modify a known dynamic connectivity algorithm [HK95], as
follows. In [HK95], by using Euler Tour Trees (ETTs) implemented by Binary Search Trees
(BSTs) a dynamic forest is maintained, each of whose trees representing a connected compo-
nent in the graph. The important feature of ETTs we utilize here is that their BST imple-
mentation is well suited for storing and answering aggregate information on its subtrees, in
addition to supporting elementary operations such as finding the root of a tree containing a
node, cutting and linking a subtree from and to trees, and answering if two nodes are con-
nected, all in Õ(1) time. Thus, the information we keep for every subtree is the size of its
intersection with VT . Next, using the dynamic algorithm, remove the edges δ(S), denoting the
resulting graph by GS and the connected component of y in GS by Cy. Then enumerate every
edge in the cut δ(S) and remove every edge that neither of its ends lies in Cy, resulting in a
cut S(y) = Cy containing y and such that c(S(y)) ≤ c(S), as in the claim. In order to report
S(y) ∩ VT , simply output the aggregated information in the root of the BST corresponding
to S(y). To enumerate the nodes in S(y)∩VT , traverse the BST of the connected component
S(y) starting with the root, and follow a child whose intersection with VT is ≥ 1, until arriv-
ing at a leaf which is then enumerated. The total time spent for removing the cut edges and
reporting the intersection size is thus O(|δ(S)|), and an additional time of O(|S(y) ∩ VT |) is
spent on traversing the BST and enumerating the nodes in S(y) ∩ VT .

We use claim 5.2.9 on our instance by first preprocessing the cuts Sy the algorithm
computed and switch them with the corresponding cuts Sy(y) in total time Õ(m) for the
current depth (as shown in the beginning of this proof), and then setting VT to be either
V ′, V ′big, Vsmall, or V ′′big, which incurs an addition of O(|V ′|+|V ′big|+|Vsmall|+|V ′′big|) = O(V ′) to
the running time, bringing the total running time at a single depth to Õ(m), as required. Mul-
tiplying by the height of the recursion, which is at most O(log4/3 n), concludes the proof.

As claimed before, there are at most Õ(1) unsuccessful choices of pivots per a successful
one, thus the total time for constructing D is Õ(m), as required.

Flow-Equivalent Tree Construction for Unweighted Graphs We use the flow-emulator
H to compute a flow-equivalent tree without spending Ω(n2) time as in the general case.
Lemma 5.2.10. A flow equivalent tree T can be constructed from H in near linear time in
the size of H, such that T represents a (1+ε)3 approximation of the correct Max-Flow values.

Proof. The algorithm is to simply pick a maximum spanning tree TH of the flow-emulator H.
In order to prove that TH is an approximate flow-equivalent tree of the input graph G, consider
a complete graph H ′ on V that is constructed from H by adding an edge between every pair of
nodes u, v that did not have an edge in H, with capacity c(uv) = min{cH(u, puv), cH(v, puv)},
for the special node puv from Claim 5.2.3. This claim and the construction of H ′ imply that
for every pair uv in H ′,

(1 + ε)3Max-FlowG(u, v) ≥ cH′(u, v) ≥ Max-FlowG(u, v).

We show that there exists a maximum spanning tree of H ′ that does not pick the newly
added edges. It will follow that TH is also a maximum spanning tree of H ′ and thus, by
Proposition 5.2.6, TH is a (1 + ε)3-approximate flow-equivalent tree of G, as required.
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Now, let TH′ be any maximum spanning tree of H ′. In what follows we show that new
edges could always be replaced by edges from H in a way that does not decrease the weight
of TH′ . We call an edge uv in TH′ a new edge if it does not exist in H. For every new edge
uv in TH′ that satisfies, without loss of generality, that cH′(puv, u) ≥ cH′(puv, v) (the case
cH′(puv, u) ≤ cH′(puv, v) is symmetric), replace uv with an edge in H according to the first
of the following rules that applies (note that at least one must be true).

1. If the edge puvv is in TH′ , then replacing uv with puvu ∈ E(H) could only increase the
weight of TH′ .

2. If the edge puvu is in TH′ , then replacing uv with puvv ∈ E(H) would keep the weight
of TH′ the same.

3. If neither of the edges puvu and puvv is in TH′ , then

(a) If the path in TH′ between puv and v, denoted P ′pv, does not contain the edge uv,
then we replace uv with puvu ∈ E(H), which could only increase the total weight
of the tree.

(b) If P ′pv does contain the edge uv, then we replace uv with puvv ∈ E(H), keeping
the total weight of the tree the same.

At the end, TH′ remains only with edges that are inH. Thus, we concluded Lemma 5.2.10.

5.2.5 Handling Randomized Data Structures

To bound the depth of the recursion by O(logn) we argued (using Lemma 5.2.4 about tour-
naments) that for a randomly chosen pivot p it will be the case that for at least a 1/4 of the
targets u the side of u in the cut returned by our hypothetical data structure is smaller. If the
data structure we wish to use is randomized, there could be an issue because the returned
cut could change each time we ask this query (or if we ask the query as (p, u) or (u, p)), and
the notions we use in the arguments are not well-defined. Here we show how to avoid these
issues by a more careful analysis that fixes the random bits used by the data structure.

First, for Theorem 5.2.1 we assume that the preprocessing step is deterministic and the
queries are randomized, and note that it is enough to consider this case also for Theorem 5.2.2
that deals with offline (1 + ε)-approximate minimum st-cut algorithms, called henceforth
(1 + ε)MinCut(s, t). Generate a sequence of O(toffline(m)) random coins, and use these coins
for every application of (1 + ε)MinCut(s, t), keeping the results consistent in the following
way. For a pair s, t queried by the algorithm, apply (1+ε)MinCut(s, t) or (1+ε)MinCut(t, s),
according to increasing order of s and t’s binary representation. By standard amplification
techniques and union bound, we assume that for all pairs s, t, (1 + ε)MinCut(s, t) succeed.
Thus, the tournament in Lemma 5.2.4 is well-defined, and this case is concluded. Second, we
assume the preprocessing step is randomized, and the queries are deterministic. In this case,
by union bound over all

(n
2
)
pairs of distances, (1 + ε)MinCut(s, t) succeeds. Finally, if both

preprocessing and queries are randomized, generate first all random coins as described in the
previous two cases, then apply union bound over the two of them.
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5.3 Algorithm for a Cut-Equivalent Tree

In this section we show a new algorithm for constructing a cut-equivalent tree for graphs
from a minor-closed family F (for example all graphs), given a Min-Cut data structure for
this family F . For ease of exposition, we first assume that the data structure supports also
Max-Flow queries (reporting the value of the cut) in time tmf (m); we will later show that
Min-Cut queries suffice.

Theorem 5.3.1. Given a capacitated graph G ∈ F on n nodes and m edges, and access
to a deterministic Min-Cut data structure for F with preprocessing time tp(·) and output
sensitive time tmc(·), one can construct, with high probability, a cut-equivalent tree for G in
time Õ(tp(m) + m · tmc(m)). Furthermore, it suffices that the data structure’s queries are
restricted to a fixed source.

By combining our algorithm with the Min-Cut data structure of Arikati, Chaudhuri, and
Zaroliagis [ACZ98] for graphs with treewidth bounded by (a parameter) t, which attains
tp = n logn · 22O(t) and tmc = tmf = 22O(t) , we immediately get the first near-linear time
construction of a cut-equivalent tree for graphs with bounded treewidth, as follows.

Corollary 5.3.2 (Expanded Corollary 5.1.1). Given a graph G with n nodes and treewidth at
most t, one can construct, with high probability, a cut-equivalent tree for G in time Õ(22O(t)

n).

The rest of this section is devoted to proving Theorem 5.3.1. Our analysis relies on
the classical Gomory-Hu algorithm [GH61], hence we start by briefly reviewing it (largely
following [AKT20b]) with a bit more details than in Section 5.2.1.

The Gomory-Hu algorithm. This algorithm constructs a cut-equivalent tree T in itera-
tions. Initially, T is a single node associated with V (the node set of G), and the execution
maintains the invariant that T is a tree; each tree node i is a super-node, which means that it
is associated with a subset Vi ⊆ V ; and these super-nodes form a partition V = V1 t · · · t Vl.
Each iteration works as follows: pick arbitrarily two graph nodes s, t that lie in the same tree
super-node i, i.e., s 6= t ∈ Vi, then construct from G an auxiliary graph G′ by merging nodes
that lie in the same connected component of T \ {i}, and invoke a Max-Flow algorithm to
compute in G′ a minimum st-cut, denoted C ′. (For example, if the current tree is a path on
super-nodes 1, . . . , l, then G′ is obtained from G by merging V1 ∪ · · · ∪ Vi−1 into one node
and Vi+1 ∪ · · · ∪ Vl into another node.) The submodularity of cuts ensures that this cut is
also a minimum st-cut in the original graph G, and it clearly induces a partition Vi = S t T
with s ∈ S and t ∈ T . The algorithm then modifies T by splitting super-node i into two
super-nodes, one associated with S and one with T , that are connected by an edge whose
weight is the value of the cut C ′, and further reconnecting each j which was a neighbor of i in
T to either super-node S or T , depending on which side of the minimum st-cut C ′ contains
Vj .

The algorithm performs these iterations until all super-nodes are singletons, and then T
is a weighted tree with effectively the same node set as G. It is proved in [GH61] that for
every s, t ∈ V , the minimum st-cut in T , viewed as a bipartition of V , is also a minimum
st-cut in G, and of the same cut value. We stress that this property holds regardless of the
choices, made at each iteration, of two nodes s 6= t ∈ Vi.
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5.3.1 The Algorithm for General Capacities

We turn out attention to proving Theorem 5.3.1. Let G = (V,E, c) be the input graph. We
shall make the following assumption, justified by a standard random-perturbation argument
that we provide for completeness in Section 5.3.6.

Assumption 5.3.3. The input graph G has a single cut-equivalent tree T ∗, with n−1 distinct
edge weights. 10

5.3.2 Overview of the Algorithm

At a very high level, our algorithm accelerates the Gomory-Hu algorithm by performing every
time a batch of Gomory-Hu steps instead of only one step. Similarly to the actual Gomory-
Hu algorithm, our algorithm is iterative and maintains a tree T of super-nodes, which means
that every tree node i is associated with Vi ⊆ V , and these super-nodes form a partition
V = V1 t · · · t Vl. This tree T is initialized to have a single super-node corresponding to V ,
and since it is modified iteratively, we shall call T the intermediate tree. Eventually, every
super-node is a singleton and the tree T corresponds to T ∗.

In a true Gomory-Hu execution, every iteration partitions some super-node i into exactly
two super-nodes, say Vi = S t T , which are connected by an edge according to the minimum
cut between a pair s ∈ S, t ∈ T that is computed in an auxiliary graph. In contrast, our
algorithm partitions a super-node i into multiple super-nodes, say Vi = Up t Vi,1 t · · · t Vi,d,
that are connected in a tree topology where the last edge in the path from Up to each Vi,j ,
j ∈ [d], is set according to the minimum cut between a pivot p ∈ Up and a corresponding
ui,j ∈ Vi,j , where all these cuts are computed in the same auxiliary graph. We call this an
expansion step and super-node Up is called the expansion center ; see Figure 5.2 for illustration.
Each iteration of our algorithm applies such an expansion step to every super-node in the
intermediate tree T . These iterations can also be viewed as recursion, and thus each expansion
step occurs at a certain recursion depth, which will be bounded by our construction.

To prove that our algorithm is correct, we will show that every expansion step corre-
sponds to a valid sequence of Gomory-Hu steps. Just like in the Gomory-Hu algorithm, our
algorithm relies on minimum-cut computations in auxiliary graphs, although it will make
multiple queries on the same auxiliary graph. This alone does not guarantee overall running
time Õ(m), because in some scenarios the total size of all auxiliary graphs at a single depth
is much bigger than m. For example, if T ∗ consists of two stars of size n/3 connected by a
path of length n/3, and G is similar but has in addition all possible edges between the stars
(with low weight), the total size of all auxiliary graphs would be Ω(n3). We overcome this
obstacle using a capacitated auxiliary graph (CAG), which is the same auxiliary graph as in
the Gomory-Hu algorithm, but with parallel edges merged into a single edge with their total
capacity. We will show (in Lemma 5.3.12) that the total size of all CAGs at a single depth is
linear in m.

Another challenge is to bound the recursion depth by O(logn). A partition in the Gomory-
Hu algorithm might be unbalanced, where in our algorithm, this issue comes into play by a
poor choice of a pivot; for example, in a star graph with edge-capacities 1, . . . , n − 1, if the
pivot p is the leaf incident to the edge of capacity 1, then the minimum cut between p and

10Even though the perturbation algorithm is Monte Carlo, our algorithm can still be made Las Vegas since
if a random perturbation fails Assumption 5.3.3, then our algorithm could encounter two crossing cuts, but it
can identify this situation and restart the algorithm with another perturbation.
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any other node is the same ({p}, V \{p}), giving little information on how to partition V and
make significant progress. Observe however that a random pivot would work much better in
this example; more precisely, a set of O(logn) random pivots contains, with high probability,
at least one pivot p for which the minimum cuts between p and each of the other nodes will
partition V into super-nodes that are all constant-factor smaller, thus our expansion step
will decrease the super-node size by a constant factor. But notice that even if a pivot p is
given, we still need to bound the time it takes to partition the super-node. Our algorithm
repeatedly computes a minimum cut between p and some other node, such that the time
spent on computing this minimum cut is proportional to its progress in reducing |Vi|, until
Ω(|Vi|) nodes are separated away from Vi. Altogether, all these minimum cuts (from a single
pivot p) take time that is near-linear in the size of the corresponding CAG. It will then follow
that the total time of all expansion steps at a single depth is near-linear in the total size of
their CAGs, which as mentioned above is linear in m, and finally since the depth is O(logn),
the overall time bound is Õ(m).

5.3.3 Full Algorithm

To better illustrate our main ideas, we now present our algorithm with a slight technical sim-
plification of employing both Min-Cut and Max-Flow queries. After analyzing its correctness
and running time in Section 5.3.4, we will show that Max-Flow queries are not necessary, in
Section 5.3.5.

The algorithm initializes T as a single super-node associated with the entire node set
V , and ends when all super-nodes in T are singletons, supposedly corresponding to the
cut-equivalent tree T ∗. At every recursion depth in between, the algorithm performs an
expansion step in every non-singleton super-node. The expansion of super-node i ∈ T of size
ni = |Vi| ≥ 2, whose CAG is denoted Gi, works as follows. Pick a pivot node p ∈ Vi uniformly
at random, and for every node u ∈ Vi \{p} let (Su, V (Gi)\Su) be the minimum up-cut in Gi,
and let S′u = Vi ∩ Su. In order to compute |S′u|, create in a preprocessing step a copy G̃i of
Gi, and assuming its edge-capacities are integers (by scaling), connect (in G̃i) the pivot p to
all other nodes u ∈ Vi \ {p} by new edges of small capacity δ = 1/n3. Note that G̃ depends
on p but not on u, hence it is preprocessed once per pivot p then used for multiple nodes u.
Then for every node u ∈ Vi \ {p} compute

hp(u) := [Max-Flow-ValueG̃i(u, p)−Max-Flow-ValueGi(u, p)]/δ,

which clearly satisfies hp(u) = |S′u|, and then compute the set

V
≤1/2
i (p) := {u ∈ Vi \ {p} : hp(u) ≤ ni/2}.

Now repeat picking random pivots until finding a pivot p for which |V ≤1/2
i (p)| ≥ ni/4.

Next, initialize Up := Vi, pick uniformly at random a node u ∈ Up ∩ V ≤1/2
i (p), and

enumerate the edges in the cut (Su, V (Gi) \ Su). Partition Up into two super-nodes, Up ∩ Su
and Up \ Su, connected by an edge of capacity Max-Flow-Value(u, p), then reconnect every
edge previously connected to Up in T to either Up ∩ Su or Up \ Su according to the cut
(V (Gi) \ Su, Su). Repeat the above, i.e., pick another node u ∈ Up ∩ V ≤1/2

i (p) and so forth,
as long as |Up| > 7ni/8 (we shall prove that such a node u always exists), calling these
nodes u1, . . . , ud in the order they are picked by the algorithm; when |Up| ≤ 7ni/8 is reached,
conclude the current expansion step.
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Recall that the algorithm performs such an expansion step to every non-singleton super-
node (i.e., ni ≥ 2) at the current depth, and only then proceeds to the next depth. The base
case ni = 1 can be viewed as returning a trivial tree on Vi.
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Figure 5.2: The changes to T by our algorithm. Left: before expansion step of Vi. Middle:
after expansion step with expansion center Up (dashed), and the subtree of T corresponds to
partition Vi = ⊔7

j=1 Uj t Up. Right: when the algorithm terminates.

5.3.4 Analysis

We start by showing that whenever our algorithm reports a tree, there exists a Gomory-
Hu execution that produces the same tree. Notice that super-nodes at the same depth are
disjoint, hence an expansion of one of them does not affect the other super-nodes, and the
result of these expansion steps is the same regardless of whether they are executed in parallel
or sequentially in any order.

Lemma 5.3.4 (Simulation by Gomory-Hu Steps). Suppose there is a sequence of Gomory-
Hu steps producing tree T (j), and that an expansion step performed to Vi ∈ T (j) produces
T (j+1). Then there is a sequence of Gomory-Hu steps that simulates also this expansion step
and produces T (j+1).

Proof. Assume there is a truncated execution of the Gomory-Hu algorithm that produces T (j),
we describe next a sequence of Gomory-Hu algorithm’s steps starting with T (j) that produces
T (j+1). Recall that to produce T (j+1), our algorithm partitions a super-node Vi ∈ T (j) into
Up t Vi,1 t · · · t Vi,d, where the last edge in the path from super-node Up ∈ T (j+1) to each
super-node Vi,k ∈ T (j+1) for k ∈ [d] was set according to the minimum cut between a pivot
p ∈ Up and a corresponding ui,k ∈ Ui,k, at the time of the partition, and these minimum
cuts are computed in the same auxiliary graph Gi. Let ui,1, . . . , ui,d be in the order they are
picked by the algorithm, thus if the path between Up and ui,a in T (j+1) contains Ui,b, then
a ≤ b (We may omit the subscript i when it is clear from the context.)

The Gomory-Hu steps are as follows. Starting with T (j), for each k = 1, . . . , d, execute
a Gomory-Hu step with the pair uk, p from super-node Up in T (we will shortly show that
indeed uk, p ∈ Up at that stage), and denote the resulting tree by T (j),k. By convention,
T (j),0 := T (j).
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Informally, one may ask why can we carry out multiple Gomory-Hu steps using the same
auxiliary graph and circumvent the sequential nature of the Gomory-Hu algorithm? The
answer stems from the Gomory-Hu analysis, that for every s, t ∈ Vi the minimum st-cut in
Gi is also a minimum st-cut in G, and from Assumption 5.3.3, which guarantees that the
minimum st-cuts in G are unique, and thus do not cross each other. Therefore these cuts
may be found all in the same auxiliary graph, and we only need to verify the corresponding
Gomory-Hu steps.

More formally, we prove by induction that for every k ∈ [0, .., d], there is a sequence of
Gomory-Hu steps that produces T (j),k. The base case k = 0 holds because of our initial
assumption that T (j) can be produced by a sequence of Gomory-Hu steps. For the inductive
step, assume that T (j),k can be produced by a sequence of Gomory-Hu steps. By the analysis
of the Gomory-Hu algorithm, for every pair of nodes s, t ∈ Up in T (j),k, the minimum st-cut in
the auxiliary graph of Up in T (j),k is a minimum st-cut in G, and this is correct in particular
for the pair our algorithm picks, uk+1, p. By the same reasoning, the minimum uk+1p-cut in
Gi is also a minimum puk+1-cut in G. By Assumption 5.3.3, these two cuts are identical,
and hence the partition of Up in T (j),k that our algorithm performs and the reconnection of
the subtrees that it does (based on the minimum uk+1p-cut in Gi) is exactly the same as the
Gomory-Hu execution would do (based on the minimum uk+1p-cut in the auxiliary graph of
Up in T (j),k), resulting in T (j),k+1. Lemma 5.3.4 now follows from the case k = d.

The next corollary follows from Lemma 5.3.4 immediately by induction.

Corollary 5.3.5. There is a Gomory-Hu execution that outputs the same tree as our algo-
rithm, which by the correctness of the Gomory-Hu algorithm and Assumption 5.3.3, is the
cut-equivalent tree T ∗.

We proceed to prove the time bound stated in Theorem 5.3.1. Our strategy is to bound
the running time of a single expansion step in proportion to the size of the corresponding
CAG, and then bound the total size, as well as the construction time, of all CAGs at a single
depth of the recursion. Finally, we will bound the recursion depth by O(logn), to conclude
the overall time bound stated in Theorem 5.3.1.

Lemma 5.3.6. Assuming tp(m) = Õ(m) and tmc(m) = Õ(1), the (randomized) running time
of a single expansion step on Vi, including constructing the children CAGs, and preprocessing
it for queries, is near-linear in the size of Gi with probability at least 1− 1/n3.

Proof. We start with bounding the number of pivot choices. To do that, we use Corol-
lary 5.2.5 with VF = V (Gi), V ′F = Vi, and HGi(Vi) as the helper graph of Gi on Vi, where
the corresponding cuts are the minimum cuts between pairs in Vi. By Corollary 5.2.5, the
probability that at least 4 logn random pivots p all satisfy |V ≤1/2

i (p)| < ni/4, which we call an
unsuccessful choice of pivot p, is bounded by 1/n4. The number of expansion steps is at most
n− 1, because the final tree T contains n− 1 edges, and each expansion step creates at least
one such edge. By a union bound we conclude that with probability at least 1− 1/n3, every
expansion step picks a successful pivot within 4 logn trials. Observe that for every choice of
p we compute hp(u) for all u ∈ Vi, which takes time Õ(|Vi|+ |Gi|) for all pivots. We can thus
focus henceforth on the execution with a successful pivot p.

We now turn to bound the total time spent on queries in Gi. Let T ∗i be the subgraph
of T ∗ induced on Vi. Observe that T ∗i must be connected, because Vi is a super-node in
an intermediate tree of the Gomory-Hu algorithm (see Lemma 5.3.4). Define a function

77



` : V (T ∗i ) \ {p} → E(T ∗i ), where `(u) is the lightest edge in the path between u and p in
T ∗i , and `(p) = ∅ (see Figure 5.3 for illustration); it is well-defined because Assumption 5.3.3
guarantees there are no ties. For an edge e ∈ T ∗i , we say that e is hit if the targets ui,1, . . . , ui,d
picked by the expansion step include a node u such that `(u) = e. Let He be an indicator
for the event that edge e is hit. In order to bound the total number of nodes and edges in
the CAG that participate in minimum-cut queries performed by the expansion step, we first
bound the number of edges that are hit along any single path.

Claim 5.3.7. With high probability, for every path P between a leaf and p in T ∗i , the number
of edges in P that are hit is

∑
e∈P He ≤ O(logn).

Proof. Let T ∗i,` be the graph constructed from T ∗i by merging nodes whose image under ` is
the same. Observe that nodes that are merged together, namely, `−1(e) for e ∈ E(T ∗i ), are
connected in T ∗i , and therefore the resulting T ∗i,` is a tree. See Figure 5.3 for illustration. We
shall refer to nodes of T ∗i,` as vertices to distinguish them from nodes in the other graphs. For
example, p is not merged with any other node, and thus forms its own vertex.
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Figure 5.3: An illustration showing T ∗i with solid blue lines, while the corresponding graph
T ∗i,` with dashed gray lines. For example, e1 = `(a) = `(b) = `(c) = `(d). The nodes in
`−1(e2) are not in V

≤1/2
i (p), and so the expansion step never picks any of them as a sink.

After picking any node from `−1(e3), a new super-node containing `(e3) (and possibly the
vertex below as well) is formed.

For sake of analysis, fix a leaf in T ∗i,`, which determines a path to the root p, denoted P`,
and let us now bound the number of nodes picked (by the expansion step) from vertices in
P`.

Claim 5.3.8. With high probability, the total number of nodes u picked by the algorithm from
vertices in P` is at most O(logn).

78



Proof. We will need the following two observations regarding T ∗i,`.

Observation 5.3.9. No vertex in T ∗i,` contains nodes from both V ≤1/2
i (p) and Vi \ V ≤1/2

i (p).

This is true because all nodes u in the same vertex `−1(e) have the same minimum up-cut
in G, which is a basic property of the cut-equivalent tree T ∗, and thus all these nodes will
have the same Su and the same S′u computed in the CAG Gi.

Observation 5.3.10. The vertices that contain nodes in V ≤1/2
i (p) form a prefix of the path

P`.

This is true by monotonicity of |Sx| as a function of the hop-distance of x from p in P`,
denoted P ′`.

The algorithm only picks nodes from V
≤1/2
i (p), thus it suffices to bound the nodes picked

from (the vertices along) the prefix P ′`. Fix a list π of the nodes in (vertices in) P ′` in increasing
order of their hop-distance from p in P`, Now recall that the targets ui,1, . . . , ui,d are chosen
sequentially, each time uniformly at random from Up ∩ V ≤1/2

i (p) for the current Up. Initially,
Up contains all the nodes in π (but may contain also nodes outside the path P`). Now each
time a target u is chosen, some nodes are separated away from Up. Define the list π′ to be
the restriction of π to nodes currently in Up; notice that Up and π′ change during the random
target choices, but π is fixed. We can classify the randomly chosen target u into three types.

1. u is not from the current list π′: In this case π′ does not change. We call this a “don’t
care” event, because we shall ignore this choice.

2. u is from the current list π′: In this case π′ is shortened into a prefix of π′ that does not
contain u. We now have two subcases:

2.a. u is from the first half of π′: Then π′ is shortened by factor at least 2. We call this
event “big progress”.

2.b. u is from the second half of π′: We call this event “small progress”.

Now to complete the proof of Claim 5.3.8, consider the random process of choosing the
targets u. To count the number of targets u from P`, we can ignore targets of type 1 and
focus on targets of type 2, in which case type 2a occurs with probability at least 1/2. As
the initial list π has length at most n, with high probability the random process terminates
within 16 logn steps (counting only targets of type 2). 11

Proceeding with the proof of Claim 5.3.7, suppose the path P consists of nodes v1, . . . , vk =
p where v1 is the leaf. Then the path P` consists of `−1(`(v1)), . . . , `−1(`(vk)) restricted to
distinct vertices. Note that whenever an edge e in P that is hit, some target u is picked from
`−1(e) and in particular from P`. By Claim 5.3.8, with high probability the number of target
nodes picked from P` is bounded by O(logn), implying that also the number of hit edges in
P is bounded by O(logn). Finally, Claim 5.3.7 follows by applying a union bound over all
(at most n) leaves.

Next, we use Claim 5.3.7 to bound the total running time of an expansion step.
11The similar but different idea that the minimum cuts from a uniformly random node p partition the aux-

iliary graph in a balanced way with high probability, which allows bounding the recursion depth by analyzing
the maximal length of paths in the recursion tree, appears in Lemma 35 and Theorem 11 in [BCH+08].
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Claim 5.3.11. An internal iteration in the expansion step, that partitions a super-node Up
into Up \ Su and Up ∩ Su, takes time Õ(|Su| + kiup), where kiup is the number of edges in the
minimum up-cut (V (Gi) \ Su, Su).

Proof. Using the Min-Cut data structure, the algorithm spends Õ(kiup) time for finding the
edges in the minimum up-cut (Su, V (Gi) \ Su), where we denote their number by kiup. When
partitioning a super-node Up, the algorithm does not explicitly list the nodes in Up \ Su
as this would take too much time. Instead, it only lists the nodes in Up ∩ Su, i.e., those
that are separated from Up, as follows. We first find Su by using Claim 5.2.9 on Gi, with
terminals initialized to VT := V (Gi), and queries to S := Su. Observe that in our case Su is
connected (i.e., S(u) = Su) as otherwise there would have been a subset S̃u ⊂ Su such that
c(S′u) < c(Su), contradicting the minimality of c(Su).

Second, we enumerate the nodes in Su and test for membership in Up, to find Up ∩ Su.
Recall that updating the intermediate tree T requires reconnecting each edge that was initially
incident to super-node Up, to one of the two new super-nodes Up \ Su and Up ∩ Su. Thus, we
discuss this reconnection process next.

Throughout the expansion step, we maintain a list L of all super-nodes that are adjacent
to Up, starting with the super-nodes Gi \ Vi. Technically, for each super-node Vj adjacent to
Up it is stored by a representative node from Vj and a pointer to Vj . In order to reconnect
subtrees after partitioning Up ∩ Su out of Up, the algorithm finds which super-nodes in L are
in Su. This is done by enumerating the nodes in Su∩V (Gi) and testing for membership in L.
Then, connect those super-nodes to the new super-node Up ∩ Su in T , and finally update L
to reflect the reconnection. At the end, Up \ Su is connected to the remaining subtrees. This
proves Claim 5.3.11.

We continue with the proof of Lemma 5.3.6, that the total time for an expansion step
is bounded. We may assume henceforth that the O(logn) bound in Claim 5.3.7 holds, as it
occurs with high probability. The number of times a node u ∈ V (Gi) is queried (when it
belongs to some Sv) is equal to the number of hit edges in its path to the pivot p in T ∗i ,
which we just assumed to be bounded by O(logn). The number of times an edge e ∈ E(Gi) is
queried is equal to the number of hit edges in T ∗i along the two paths from e’s ends to the pivot
p, which we just assumed to be bounded by O(logn). Altogether, the time it takes to scan
the cuts Sui,1 , . . . , Sui,d and the corresponding super-nodes Vi,1, . . . , Vi,d that are separated
away from Vi is bounded, by Claim 5.3.11, by

Õ
( d∑
j=1
|Sui,j |+ kiui,jp

)
≤ Õ

(
|V (Gi)|+ |E(Gi)|

)
.

Finally, observe that the total time it takes to construct the CAGs of any super-node Vi’s
children in a single expansion step is linear in the size of Vi’s CAG. This completes the proof
of Lemma 5.3.6.

Next, we show that the total size of all CAGs at a certain depth is bounded by O(m).
In fact, we show it for partition trees, which generalize the intermediate trees produced by
our algorithm. A partition tree T of a graph G = (V,E) is a tree whose nodes V1, . . . , Vl are
super-nodes of G and form a partition V = V1 t · · · t Vl. Clearly, our intermediate tree T is
a partition tree, and so we are left with proving the following lemma.
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Lemma 5.3.12. Let G = (V,E) be an input graph, and let T be a partition tree on super-nodes
V1, . . . , Vl. Then the total size of the corresponding CAGs G1, . . . , Gl is at most 2n + 3m =
O(m).

Proof. Root T at an arbitrary node r and direct all edges away from r. Now charge each
edge e in a CAG Gi to some graph edge uv ∈ E(G) that contributes to its capacity, picking
one arbitrarily if there are multiple such edges. Let Puv be the path in T between the two
super-nodes Vu and Vv that contain u and v, respectively, and observe that super-node Vi
must lie on this path, see Figure 5.4 for illustration.
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Figure 5.4: An illustration of the partition tree T rooted at r. The thick red line depicts a
graph edge uv ∈ E(G) that is being charged. The dashed red curve depicts Puv, the path in
T between super-nodes Vu and Vv.

To bound the total charge for a single graph edge uv ∈ E(G), observe that it cannot be
charged by two edges e′, e′′ in the same CAG Gi, it thus suffices to count how many different
CAGs contribute to the charge of uv. We split this into three cases.

1. Vi is an endpoint of Puv (i.e., Vi = Vu or Vi = Vv): An edge uv ∈ E(G) can be charged
in this manner at most twice (over all CAGs), namely, by one edge in Gu and one in Gv.
Thus, the total charge over all uv ∈ E(G) is at most 2m.

2. Vi is the least common ancestor, abbreviated LCA, of Vu and Vv in T : An edge uv ∈
E(G) can be charged in this manner at most once (over all CAGs). Thus, the total
charge over all uv ∈ E(G) is at most m.

3. Vi is not an endpoint of Puv nor it is the LCA of Vu and Vv: In this case, exactly one of
Vu and Vv is a descendant of Vi. We bound the number of such edges e (over all CAGs)
directly, i.e., without charging to uv, as follows.
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Let di be the degree of Vi in the tree T . Recall that the CAG Gi is obtained from G
by merging the nodes in V \ Vi into exactly di nodes, one for each neighbor of Vi in T ,
and one of these di nodes in Gi, denote it x̂i, is the merger of all the nodes from all the
super-nodes Vj that are non-descendants of Vi. (see section 5.3.2). It follows that an
edge e in Gi (in this case) connects this x̂i to one of the other di − 1 nodes mentioned
above, and clearly there are at most di − 1 such edges. By summing over all the CAGs
G1, . . . , Gl, the total number of such edges e is at most ∑i(di − 1) ≤ 2n.

Altogether, the total size of all the CAGs is at most 2m+m+ 2n = O(m), as claimed.

We are now ready to prove the main Theorem.

Proof of Theorem 5.3.1 under the assumption on Max-Flow queries. To simplify matters, let
us assume henceforth that tp(m) = Õ(m) and tmc(m) = Õ(1). The general case is analyzed
similarly and results in the time bound Õ(tp(m)+m · tmc(m)) stated in Theorem 5.3.1 for the
following reasons. The preprocessing time is performed Õ(1) times per CAG, hence the total
preprocessing time over all CAGs that the algorithm constructs is at most Õ(tp(m)), the first
summand above. The total size of all answers to all queries at a single depth is near-linear in
the total size of all CAGs at this depth; hence over all depths it is bounded by Õ(m · tmc(m)),
the second summand above.

First, assume the perturbation attempt from Section 5.3.6 is successful. By Lemma 5.3.6
the total time spent at each super-node Vi is near-linear in the size of Gi, and thus by
Lemma 5.3.12, the total time spent at each recursion depth is bounded by O(m). By the
definition of the algorithm, at each super-node Vi during the recursion, Θ(|Vi|) nodes are
partitioned away from Vi, and so by Lemma 5.3.12, Θ(n) nodes are partitioned away from
all CAGs at this depth, thus after the O(logn) depth, each super-node Vi is a singleton,
concluding Theorem 5.3.1 in this case.

Second, if the perturbation attempt from Section 5.3.6 is unsuccessful, which happens
with probability at most 1/n3, and two cuts are crossing each other, then we would identify
that and restart the algorithm. By Lemma 5.3.6, with probability at most 1/n3 the number
of incorrect pivots exceeds O(logn), and by a union bound with the probability of a failed
perturbation attempt, the running time of the algorithm is bounded by Õ(m) with high
probability.

5.3.5 Lifting the Assumption on Max-Flow Queries

Recall that our goal is to construct a cut-equivalent tree using access to Min-Cut queries. So
far we have assumed that we also have access to Max-Flow queries. In this subsection we
show how to lift this additional assumption. We will change the algorithm and the analysis
slightly, as follows.

First, at each expansion step, run the algorithm on 4 logn preprocessed copies of Gi, each
on one of the randomly picked pivots. Similar to our calculation from the original proof,
with high probability, for every expansion step throughout the execution, at least one of the
corresponding graphs will have a successful pivot. We will make sure that an unsuccessful
pivot will never output a wrong tree; it may only keep running indefinitely (until we halt it).
Since with high probability at least one of the graphs is of a successful pivot, this only incurs
a factor of Õ(1) to the running time.
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Second, instead of picking a node u ∈ Up∩V ≤1/2
i (p) at random as in the original algorithm,

pick 4 log8/7 n nodes from Up and use Claim 5.2.9 on 4 log8/7 n copies of Gi, simultaneously,
each for one of the chosen nodes u, to test if |S′u| ≤ ni/2. If all nodes were unsuccessful
choices, draw another set of 4 log8/7 n nodes. Continue to draw batches until at least one
node is successful. Then, for an arbitrary successful node u, use Claim 5.2.9 to find the kiup
edges in the minimum up-cut, and the nodes in S′u.

Since the probability for a single node u chosen at random to satisfy |S′u| ≤ ni/2 is always
at least 1/8, and as we pick 4 log8/7 n nodes uniformly at random each time, we get that:
with probability at least 1 − (7/8)4 log8/7 n = 1 − 1/n4, at least one of the 4 log8/7 n chosen
nodes is successful. By a union bound over the maximal number of partitions in expansion
steps throughout the execution, i.e. internal iterations of expansion steps (at most n), we get
that with probability at least 1 − 1/n3 each one of the batches results in at least one of the
4 log8/7 n nodes in the batch is successful. Hence, the only part of the proof that needs to be
further addressed is Claim 5.3.7. In particular, we prove the following variant of the claim.

Claim 5.3.13. With high probability, for every path P between a leaf and p in T ∗i , the total
number of edges in P that are hit is at most O(log2 n).

Proof. Wemention the differences from the proof of the original Claim 5.3.7. The classification
of the choice of a random target u into three types is as follows.

1. (Similar to before) u is not from the current list π′: In this case π′ does not change. We
call this a “don’t care” event, because we shall ignore this choice.

2. u is from the current list π′: In this case π′ is shortened into a prefix of π′ that does not
contain u. We now have two subcases:

2.a. u is from the first 1− 1/(3 log8/7 n) fraction of π′: Then π′ is shortened by factor
at least 1/(3 log8/7 n). We call this event “big progress”.

2.b. u is from the complement part of π′: We call this event “small progress”.

Here, we have a random process in which type 2a occurs with probability at least 1 −
1/(3 log8/7 n), and therefore with high probability it terminates within 64 log8/7 n lnn steps
(these steps count only targets of type 2). We conclude that with high probability, every such
path has at most 64 log8/7 n lnn = O(log2 n) nodes chosen from its vertices.

We proceed to the proof of Theorem 5.3.1, highlighting the differences.

Proof of Theorem 5.3.1. With high probability, at each expansion step at most O(logn) un-
successful pivots are chosen before picking a successful one. At each level, we spend at most
tp(m) time for the preprocessing of the min-cut data structures for fixed sources, and so unsuc-
cessful pivots only incur a factor Õ(1) on the running time. Thus, the proof of Theorem 5.3.1
is concluded.

5.3.6 Unique Cut-Equivalent Tree via Pertubation

The following proposition shows that by adding small capacities to the edges, we can assume
that G has one cut-equivalent tree T ∗ (see also [BENW16, Preliminaries]).
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Proposition 5.3.14. One can add random polynomially-bounded values to the edge-capacities
in G, such that with high probability, the resulting graph G′ has a single cut-equivalent tree
T ∗ with n − 1 distinct edge weights, and moreover the same T ∗ (with edge weights rounded
back) is a valid cut-equivalent tree also for G.

Proof. We use the following well known lemma.

Lemma 5.3.15 (The Isolation Lemma [MVV87]). Let h and H be positive integers, and let
F be an arbitrary family of subsets of the universe [h]. Suppose each element x ∈ [h] in the
universe receives an integer weight w(x), each of which is chosen independently and uniformly
at random from [H]. The weight of a set S in F is defined as w(S) := ∑

x∈S w(x). Then,
there is probability at most h/H that more than one set in F will attain the minimum weight
among them.

Consider s, t ∈ V . Using the lemma above with F the set of all minimum st-cuts in
G, h := m, and H := n7, we would get that there is probability at most 1/n5 that more
than one cut separating s and t will attain the minimum capacity among them (i.e. will
be a minimum st-cut). However this might drastically change the capacity of the edges
(and cuts), so we divide all added weights by n10. In other words, we add a number from
{1/n10, . . . , n7/n10} uniformly at random to the capacity of every edge in G to get that with
probability at most 1/n5, the pair s, t have more than one minimum st-cut, and also the
capacity of the cut remains close to its original value. By a union bound over all pairs in V
there is a probability of at most 1/n3 for at least one pair to have more than one minimum
cut. Next, the probability for two minimum-cuts (Su, V \ Su) and (Sw, V \ Sw) separating
two different pairs of nodes u, u′ and w,w′, respectively, to have the same value after the
perturbation is small. Without loss of generality, let e be an edge in the cut (Su, V \ Su) but
not in (Sw, V \ Sw). Conditioning on the values of all other edges, e could have at most one
value that makes the cuts’ values equal. Since each value is drawn with probability 1/n7, by
a union bound on all pairs of pairs of node in V , the probability that two different pairs of
nodes that have different minimum cuts but had the same value in G will have also the same
value in G′ (i.e., after the perturbation) is at most 1/n3. Finally, by applying a union bound
again, with probability at least 1− 1/n2 none of the events happen, that is every pair has a
unique minimum cut, and no two pairs of nodes have two different minimum-cuts with the
same value.

Since the value of every cut in G′ is bigger by at most m · 1/n3 ≤ 1/n than its original
value, and assuming the edge-capacities in G are integers (by scaling), the minimum st-cut
in G′ is smaller than any non-minimum st-cut, that is a cut separating s and t that is not the
minimum one in G, and also the value of any non-minimum st-cut in G′ is bigger by at least
1 − 1/n than the minimum st cut in G. Hence, T ∗ is a valid cut-equivalent tree for G, and
by removing the added weights from T ∗ we have also the original cut values. This completes
the proof of Proposition 5.3.14.

5.4 Algorithm for an Output Sensitive Data Structure

For completeness, we show here that designing an output sensitive data structure for minimum-
cuts can be reduced to the construction of cut-equivalent trees, i.e. the opposite direction
than in Section 5.3.
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Theorem 5.4.1. Given a capacitated graph G = (V,E, c) on n nodes, m edges, and a cut-
equivalent tree T of G, there is a deterministic data structure that after preprocessing in time
Õ(m), can report for a query pair s, t ∈ V , the edges in a minimum st-cut in time Õ(output).

We first give an overview of the reduction. Consider a tour t1, . . . , t2n−1 = t1 on (the nodes
of) the tree T , starting at an arbitrary node t1 and following a DFS (i.e., going “around” the
tree and traversing each edge twice). Now assign each graph edge e = (w,w′) ∈ E two points
p1, p2 in a two-dimensional grid of size (2n − 1) × (2n − 1), as follows. One point p1 has x
and y coordinates according to the first time the tour visits w and w′, respectively; the other
point p2 has the same coordinates but in the opposite order. See Figure 5.5 for illustration.

𝑠′ 

𝑡1 

𝑡2 

𝑡3 
𝑤 

𝑤′ 

𝑡′ 

𝑧 

𝑧′ 

𝑡2𝑛−1 

Figure 5.5: An illustration of the tour on T and how the edges E are mapped to grid points
P . The rooted tree T is depicted by black arrows, and the tour by a solid blue line except for
one tree edge (s′, t′) that is dashed. We also show two edges of the graph G that have exactly
one endpoint in the subtree under t′, depicted by dashed red lines. They are mapped to grid
points p2(w,w′) inside rectangle (5.1), and p1(z, z′) inside rectangle (5.2).

Given a query pair s, t ∈ V , the algorithm first finds the lightest edge (s′, t′) ∈ E(T )
in the unique st-path in T . It then reports all the graph edges in the cut corresponding to
removing (s′, t′) from T , using the following observation. View T as rooted at t1 (where the
tour begins), and assume without loss of generality that s′ = parent(t′). Then the subtree
under t′ is visited exactly in the interval Is′t′ := [FirstVisit(t′),LastVisit(t′)] where for a node
q ∈ V ,

FirstVisit(q) := min{k ∈ [2n− 1] : tk = q},
LastVisit(q) := max{k ∈ [2n− 1] : tk = q}.

As a result, every graph edge e that crosses the cut corresponding to (s′, t′) has exactly one
endpoint inside the interval Is′t′ (more precisely, all its visits are inside that interval) and
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one endpoint outside that interval (actually, all its visits are outside). Finally, we define two
rectangles in the grid that contain exactly the points corresponding to edges of this cut, and
employ a known algorithm to report all the points (edges of G) inside these rectangles.

Proof of Theorem 5.4.1. The preprocessing algorithm works as follows. Given G and its cut-
equivalent tree T , construct a tour t1, . . . , t2n−1 on T as described in the overview. Then, for
every graph edge (w,w′) ∈ E, create two points

p1(w,w′) := (FirstVisit(w),FirstVisit(w′)),
p2(w,w′) := (FirstVisit(w′),FirstVisit(w)).

Store the set P of the 2m points created in this manner in a data structure that supports
range queries (as explained below).

Given a pair of nodes s, t ∈ V as a query for minimum st-cut, the algorithm first finds
the lightest edge in the unique st-path between in T in Õ(1) time, denoted (s′, t′) where we
assume without loss of generality that s′ = parent(t′) (recall we view t1 as the root of T ).
The algorithm then reports all the points in P that lie inside the two rectangles

[FirstVisit(t′),LastVisit(t′)]× [1,FirstVisit(t′)− 1], (5.1)
[FirstVisit(t′),LastVisit(t′)]× [LastVisit(t′) + 1, 2n− 1]. (5.2)

To see why this output is correct, observe that these two rectangles are disjoint, and that
their union is exactly Is′t′ × Is′t′ (using the notation from the overview). Thus, points of P
inside their union correspond precisely to edges in E with exactly one endpoint visited in the
interval Is′t′ , i.e., exactly one endpoint in the subtree under t′. Moreover, an edge e can be
reported at most once, because it cannot be that both p1, p2 ∈ Is′t′ × Is′t′ .

Reporting all the points inside these two rectangles could be done by textbook approach
through range trees in time O(k+ logn) [PS85], where k is the output size which for us is the
number of edges in the cut. The preprocessing time of [PS85] for p points is O(p log p), and so
the preprocessing time of our data structure is O(m logm), and the query time is Õ(output),
where output is the number of edges in the output cut.

5.5 Algorithm for Flow-Equivalent Trees
In this section we prove that O(n logn) queries to a Max-Flow-Value oracle are enough to
construct a flow-equivalent tree with high probability. This is analogous to the Gomory-
Hu algorithm, which constructs a cut-equivalent tree using minimum-cut queries. Let F
be a graph family that is closed under perturbation of edge-capacities, and suppose that
for every graph in F with m edges, after tp(m) preprocessing time, Max-Flow-Value queries
could be answered in time tmf (m). The following is the main result of this section, which
is a consequence of Theorem 5.5.3 below. We use the term Min-Cut data structure as in
Section 5.3, although we only need here queries for the value (not an actual cut).

Theorem 5.5.1. Given a capacitated graph G = (V,E) ∈ F with n nodes andm edges, as well
as access to a deterministic Min-Cut data structure for F with running times tp(m), tmf (m),
one can construct a flow-equivalent tree for G in time O(tp(m) + n logn · tmf (m) + n log2 n)
with high probability.
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Similar to Section 5.2.5, Theorem 5.5.1 could be adjusted to handle randomized Min-Cut
data structures as well.

One application of the above theorem is to graphs with treewidth bounded by (a param-
eter) t, for which Arikati, Chaudhuri, and Zaroliagis [ACZ98] obtain tp = n logn · 22O(t) and
tmf = 22O(t) , and thus our algorithm constructs a flow-equivalent tree on such graphs in time
Õt(n), which was not known before.

Corollary 5.5.2. There is a randomized algorithm that given a capacitated graph G with n
nodes and treewidth at most t, constructs with high probability a flow-equivalent tree for G in
time O(n logn · 22O(t)).

Our main tool can be described as a theorem about recovering ultrametrics. This is
stated formally in Theorem 5.5.3, whose proof appears in Section 5.5.1. But we first recall
some standard terminology (see also [GV12]). Let (V,dist) be a finite metric space. (which
means that distances are non-negative, symmetric, satisfy the triangle inequality, and are
zero between, and only between, every point and itself). It is called an ultrametric space if in
addition

∀u, v, w ∈ V, dist(u,w) ≤ max{dist(u, v),dist(v, w)}. (5.3)

It is easy to see that (5.3) is equivalent to saying that the two largest distances in every
“triangle” u, v, w are equal.

A representing tree for an ultrametric (V, dist) is a rooted tree T = (VT , ET ) in which the
set of leaves L ⊆ VT is (a copy of) V , and every internal node (non-leaf) z ∈ VT \ L has a
label labelT (z) ∈ R+. Moreover, the labels along every root-to-leaf path are monotonically
decreasing. For two leaves u, v ∈ L, let T (u, v) denote the label of their LCA in T . It is easy
to see that dist(u, v) = labelT (u, v) is an ultrametric on L, and in particular satisfies (5.3).
Without loss of generality, we further assume throughout that that every internal node v ∈
VT \ L has at least two children.

Theorem 5.5.3. There is a randomized algorithm that, given oracle access to distances in
an ultrametric on a set of n points where the

(n
2
)
distances have exactly n− 1 distinct labels,

constructs a representing tree of the ultrametric, and with high probability it runs in time
O(n logn ·Q(n)+n log2 n) using O(n logn) distance queries, where Q(n) is the time to answer
a query.

Proof of Theorem 5.5.1. Given a graph G = (V,E), we use Proposition 5.3.14 (proved in
Section 5.3) to perturb the edge-capacities, and thus we assume henceforth that G has a
single cut-equivalent tree with n − 1 distinct capacities on its edges. Let N = (V,E′) be
a complete graph, where the weight of every edge (u, v) is Max-Flow-Value(u, v). It is well-
known that N with each edge weight inverted, denoted N ′, is an ultrametric (see [GH61] or
Proposition 5 in [GV12]). Since the cut-equivalent tree of G has n− 1 distinct capacities on
its edges, it must be that for the constructed ultrametric, the

(n
2
)
distances have exactly n−1

labels, and so we can apply Theorem 5.5.3 to recover a representing tree TN ′ of N ′ in total
time O(tp(m) + n logn · tmf (m) + n log2 n) with high probability of success.

Finally, construct a path P that is a flow-equivalent tree for G, by the following recursive
process, resembling a post-order traversal of the tree TN ′ . Given a node r of TN ′ (initially r is
the root), let u, v be its two children, and let Tu, Tv be the subtrees rooted at u, v, respectively.
By applying this procedure recursively on u, compute a path Pu that is a flow-equivalent tree

87



for the leaves of Tu, and similarly compute a path Pv for Tv. Now chose arbitrarily one
endpoint of Pu and one endpoint of Pv, and connect them by an edge whose capacity is the
label of r in TN ′ , and return the resulting path P .

The proof that this process computes a flow-equivalent tree of TN ′ follows easily by induc-
tion. The main observation is that for every two leaves a ∈ Tu, b ∈ Tv, their LCA in TN ′ is r
and thus Max-Flow-Value(u, v) is the smallest among all pairs of leaves under r, and it follows
by induction that the new edge connecting Pu and Pv will have minimum weight among all
the edges between a and b in P . The time to construct the path is linear in the size of TN ′ ,
and this concludes the proof of Theorem 5.5.1.

5.5.1 Recovering Ultrametrics

Proof of Theorem 5.5.3. Denote the input ultrametric by (V,dist). The algorithm works re-
cursively as follows, starting with V ′ = V . Given a subset V ′ ⊆ V of size n′ ≥ 2 of points
in an ultrametric, pick a pivot point p ∈ V ′ uniformly at random, query the distance from p
to all other points in V ′, and enumerate V ′ as p = q1, q2, . . . , qn′ in order of non-decreasing
distance from p. Repeat picking pivots until finding a pivot p for which

dist(qdn′/4e, p) < dist(qdn′/2e+1, p). (5.4)

We assumed n′ ≥ 2, as in the base case n′ = 1 the algorithm returns a trivial tree on
V ′. Next, find s ∈ [dn′/4e, dn′/2e] such that dist(qs, p) < dist(qs+1, p), partition V ′ into
V ′≤s = {q1, . . . , qs} and V ′>s = {qs+1, . . . , qn′} (see Figure 5.6). Now recursively construct
trees T ′≤s and T ′>s representing the ultrametrics induced on V ′≤s and V ′>s. By Claim 5.5.4
below, each of the constructed trees T ′≤s and T ′>s is binary, and its internal nodes have
distinct labels.

Finally, connect the tree T ′≤s “into” T ′>s as follows. Scan in T ′>s the path from the leaf
qs+1 to the root, and create a new node us+1 with label dist(qs+1, p) immediately after the
last node with a smaller label on this path (by subdividing an existing edge, or adding a
parent to the root to form a new root). Then connect T ′≤s under this new node us+1, and
return the combined tree, denoted T ′V ′ , as the output.

Claim 5.5.4. For every V ′ ⊆ V , every representing tree TV ′ of the ultrametric (V ′, dist) is
binary, and each of its internal nodes has a distinct distance label.

Proof. We first claim that the number of distinct distances in the ultrametric induced on V ′
is at least n′ − 1. Indeed, consider starting with the entire ultrametric (V,dist), which has
exactly n−1 distances, and removing the points in V \V ′ one by one. Each removed point can
decrease the number of distinct distances by at most 1, because if removing point z eliminates
two distinct distances, say to points x1 and x2, then the “triangle” z, x1, x2 has three distinct
distances, in contradiction with (5.3). Since (V,dist) has exactly n− 1 distances, the induced
metric on V ′ must have at least n− 1− (n− n′) = n′ − 1 distances.

Now denote by k the number of internal nodes in TV ′ , and let us show that k = n′− 1. In
one direction, k ≥ n′ − 1 because by the above claim, the tree TV ′ must have at least n′ − 1
distinct labels. For the other direction we count degrees. Every internal node in TV ′ has at
least two children, every internal node has degree at least 3, except for the root which has at
least 2, hence the sum of degrees in TV ′ is at least n′ + 3k − 1. At the same time, TV ′ is a
tree and has exactly n′+ k− 1 edges, hence this sum of degrees is 2(n′+ k− 1) ≥ n′+ 3k− 1,
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Figure 5.6: An illustration of the algorithm. Bold lines represent edges in T ′>s, and dashed
lines represent edges affected by connecting T ′≤s into this tree.

i.e., k ≤ n′ − 1. We conclude that both inequalities above hold with equality, which implies
that all k = n′ − 1 internal nodes have distinct labels, and none of them can have three or
more children.

Continuing with the proof of Theorem 5.5.3, let us now prove that the tree T ′V ′ constructed
by the algorithm represents all the distances correctly. It suffices to consider u ∈ T ′≤s and
v ∈ T ′>s, and show that in the combined tree

labelT ′
V ′

(u, v) = dist(u, v).

By the ordering of V ′, we have dist(u, p) ≤ dist(qs, p) < dist(qs+1, p) ≤ dist(v, p), and thus
by (5.3), dist(u, v) = dist(v, p). Since both u, p ∈ T ′≤s, we have labelTV ′ (v, p) = labelTV ′ (u, v),
and thus it suffices to show that

labelTV ′ (v, p) = dist(v, p).

We now have two case, as follows. Let t ≥ s+ 1 be the largest such that dist(qt, p) =
dist(qs+1, p), and partition V ′>s into V ′[s+1,t] = {qs+1, . . . , qt} and (possibly empty) V ′>t =
{qt+1, . . . , qn′}. Suppose first that v ∈ V ′[s+1,t]. In this case, by the way we connected the two
trees, the LCA of p and v is the same as of p and qs+1 (i.e., the new node us+1), and thus
labelT ′

V ′
(v, p) = dist(qs+1, p) = dist(v, p), as required. Suppose next that v ∈ V ′>t. In this

case, we shall show labelT ′
V ′

(v, p) = dist(v, qs+1) = dist(v, p). The first equality is because
by the way we connected the two trees, the LCA of p and v is the same as of qs+1 and v.
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For the second equality, observe that dist(qs+1, p) < dist(qs+1, v) by inspecting at the LCA of
each pair, and now use (5.3) on the “triangle” p, qs+1, v to identify its two largest distances
as dist(v, qs+1) = dist(v, p). We conclude that indeed in all cases labelTV ′ (v, p) = dist(v, p).

We proceed to show that with high probability, the algorithm makes only O(n logn)
distance queries. We first claim that for every V ′ ⊆ V (and thus every instance throughout
the recursion), every representing tree TV ′ has a centroid-like node c∗, where the number of
leaves under it in the tree TV ′ is in the range [dn′/4e, dn′/2e]. To see this, start with the root
of TV ′ , and follow the child with more leaves under it, until that number is no larger than
dn′/2e. Because the tree is binary by Claim 5.5.4, this stops at a node c∗ where the number
of leaves under it is some s∗ ∈ [dn′/4e, dn′/2e], as claimed. Now, a uniformly random pivot p
has probability s∗/n′ ≥ 1/4 to be a descendant of c∗, in which case (5.4) holds. Thus (5.4)
occurs with probability at least 1/4.

Consider now an execution of the algorithm, and describe it using a recursion tree defined
as follows (note the difference from a representing tree of V ′). In this tree, a vertex (we use this
term to distinguish from the nodes in the trees discussed above) corresponds to an instance
of the recursion and has two children corresponding to the two new instances if a successful
pivot is picked, and has one child if an unsuccessful pivot is picked. Thus, this recursion tree
has a vertex for every pivot that is picked. The total number of distance queries performed at
each depth i in the recursion tree is bounded by n, because instances at the same depth i have
pairwise-disjoint node sets, and every instance performs exactly one query for every non-pivot
node (for its distance to the pivot in the same instance). It thus suffice to show that with
high probability, the depth of the recursion tree is at most 8 log4/3 n, and this would imply
that the total number of queries is O(n logn). To see end, fix a node j ∈ V ; its root-to-leaf
path in the recursion tree contains at most log4/3 n successful pivots, as these already reduce
the instance size to at most 1. Now imagine these random pivots an infinite sequence of coins
with probability of success (heads) at least 1/4, even when conditioned on the outcomes of
earlier coins. With probability at least 1 − 1/n2, the prefix of 16 log4/3 n first random coins
already contains at least log4/3 n heads. If this high-probability event occurs, there are enough
successful pivots (heads) to guarantee that the recursion terminates before that coins prefix
is exhausted, which means that node j goes through at most 16 log4/3 n pivots. By union
bound over all n nodes, we conclude that with high probability the depth of the recursion
tree is at most 16 log4/3 n, in which case the total number of distance queries is O(n logn).
Finally, we bound the sorting of the distances the algorithm does for each instance from the
pivot in order to check if (5.4) holds. This takes c ·n′ logn′ for some constanct c by a standard
sorting algorithm, and by using the recursion tree as before, the sorting for all instances at
a single depth j takes time ∑V ′i ∈depthj

c · ni logni ≤ O(n logn), where |V ′i | = ni, and the
inequality is by the convexity of ni logni. Then, multiply by the height of the recursion tree
O(logn) to get the term O(n log2 n). Note that connecting the trees that came back from the
recursion takes O(logn′) time, which is much smaller than the sorting and thus is bounded as
well. Altogether, we get a total running time of O(n lognQ(n) + n log2 n), as required. This
concludes Theorem 5.5.3.

90



Bibliography

[ABBK17] A. Abboud, A. Backurs, K. Bringmann, and M. Künnemann. Fine-grained complexity
of analyzing compressed data: Quantifying improvements over decompress-and-solve. In
FOCS, pages 192–203, 2017. doi:10.1109/FOCS.2017.12.

[ABDN18] A. Abboud, K. Bringmann, H. Dell, and J. Nederlof. More consequences of falsifying
SETH and the orthogonal vectors conjecture. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 253–266, 2018. doi:
10.1145/3188745.3188938.

[ABHS17] A. Abboud, K. Bringmann, D. Hermelin, and D. Shabtay. SETH-based lower bounds for
subset sum and bicriteria path. CoRR, 2017. Available from: http://arxiv.org/abs/
1704.04546.

[ABMR11] E. Alkassar, S. Böhme, K. Mehlhorn, and C. Rizkallah. Verification of certifying computa-
tions. In International Conference on Computer Aided Verification, pages 67–82. Springer,
2011.

[ABW15] A. Abboud, A. Backurs, and V. V. Williams. Tight hardness results for LCS and other
sequence similarity measures. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

[ABW18] A. Abboud, A. Backurs, and V. V. Williams. If the current clique algorithms are op-
timal, so is Valiant’s parser. SIAM J. Comput., 47(6):2527–2555, 2018. doi:10.1137/
16M1061771.

[ACLY00] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network information flow. IEEE Trans.
Information Theory, 46(4):1204–1216, 2000. doi:10.1109/18.850663.

[ACZ98] S. R. Arikati, S. Chaudhuri, and C. D. Zaroliagis. All-pairs min-cut in sparse networks.
J. Algorithms, 29(1):82–110, 1998.

[AGI+19] A. Abboud, L. Georgiadis, G. F. Italiano, R. Krauthgamer, N. Parotsidis, O. Trabelsi,
P. Uznanski, and D. Wolleb-Graf. Faster Algorithms for All-Pairs Bounded Min-Cuts.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132, pages 7:1–7:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.7.

[AHK12] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012. doi:10.4086/
toc.2012.v008a006.

[AKT20a] A. Abboud, R. Krauthgamer, and O. Trabelsi. Cut-equivalent trees are optimal for min-cut
queries in undirected graphs. Accepted to FOCS’20, 2020.

[AKT20b] A. Abboud, R. Krauthgamer, and O. Trabelsi. New algorithms and lower bounds for
all-pairs max-flow in undirected graphs. In Proceedings of the Thirty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’20, page 48–61, USA, 2020. doi:
10.1137/1.9781611975994.4.

91

http://dx.doi.org/10.1109/FOCS.2017.12
http://dx.doi.org/10.1145/3188745.3188938
http://dx.doi.org/10.1145/3188745.3188938
http://arxiv.org/abs/1704.04546
http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1137/16M1061771
http://dx.doi.org/10.1137/16M1061771
http://dx.doi.org/10.1109/18.850663
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.7
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1137/1.9781611975994.4
http://dx.doi.org/10.1137/1.9781611975994.4


[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory, algorithms and
applications. Prentice Hall, 1993.

[AV18] N. Anari and V. V. Vazirani. Planar graph perfect matching is in NC. In M. Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
pages 650–661, 2018. doi:10.1109/FOCS.2018.00068.

[AW14] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dy-
namic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

[AWY15] A. Abboud, R. Williams, and H. Yu. More applications of the polynomial method to
algorithm design. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’15, pages 218–230, 2015. doi:10.1145/2722129.2722146.

[AWY18] A. Abboud, V. V. Williams, and H. Yu. Matching triangles and basing hardness on an
extremely popular conjecture. SIAM J. Comput., 47(3):1098–1122, 2018. doi:10.1137/
15M1050987.

[BCH+08] A. Bhalgat, R. Cole, R. Hariharan, T. Kavitha, and D. Panigrahi. Efficient algo-
rithms for Steiner edge connectivity computationand Gomory-Hu tree construction for
unweighted graphs. Unpublished full version of [BHKP07], 2008. Available from:
http://hariharan-ramesh.com/papers/gohu.pdf.

[BENW16] G. Borradaile, D. Eppstein, A. Nayyeri, and C. Wulff-Nilsen. All-pairs minimum cuts
in near-linear time for surface-embedded graphs. In 32nd International Symposium on
Computational Geometry, SoCG 2016, pages 22:1–22:16, 2016.

[BFJ95] J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-
connectivity in mixed graphs. SIAM J. Discret. Math., 8(2):155–178, 1995. doi:
10.1137/S0036142993226983.

[BGL17] K. Bringmann, A. Grønlund, and K. G. Larsen. A dichotomy for regular expression
membership testing. In FOCS, pages 307–318, 2017. doi:10.1109/FOCS.2017.36.

[BHKP07] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An O(mn) Gomory-Hu tree
construction algorithm for unweighted graphs. In 39th Annual ACM Symposium on Theory
of Computing, STOC’07, pages 605–614. ACM, 2007. doi:10.1145/1250790.1250879.

[BJS10] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network Flows.
John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2010.

[BK09] G. Borradaile and P. Klein. An Õ(n logn) algorithm for maximum st-flow in a directed
planar graph. J. ACM, 56(2):9:1–9:30, April 2009. doi:10.1145/1502793.1502798.

[BK15a] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows
in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. doi:10.1137/070705970.

[BK15b] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In V. Guruswami, editor, IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, pages 79–97, 2015. doi:
10.1109/FOCS.2015.15.

[BSW15] G. Borradaile, P. Sankowski, and C. Wulff-Nilsen. Min st-cut oracle for planar graphs
with near-linear preprocessing time. ACM Trans. Algorithms, 11(3), 2015. doi:10.1145/
2684068.

[BW17] K. Bringmann and P. Wellnitz. Clique-based lower bounds for parsing tree-adjoining
grammars. In CPM, pages 12:1–12:14, 2017. doi:10.4230/LIPIcs.CPM.2017.12.

92

http://dx.doi.org/10.1109/FOCS.2018.00068
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2722129.2722146
http://dx.doi.org/10.1137/15M1050987
http://dx.doi.org/10.1137/15M1050987
http://hariharan-ramesh.com/papers/gohu.pdf
http://dx.doi.org/10.1137/S0036142993226983
http://dx.doi.org/10.1137/S0036142993226983
http://dx.doi.org/10.1109/FOCS.2017.36
http://dx.doi.org/10.1145/1250790.1250879
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1137/070705970
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1145/2684068
http://dx.doi.org/10.1145/2684068
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.12


[CGI+16] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-
deterministic extensions of the strong exponential time hypothesis and consequences for
non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations in Theoret-
ical Computer Science, ITCS ’16, pages 261–270. ACM, 2016. doi:10.1145/2840728.
2840746.

[CH03] R. Cole and R. Hariharan. A fast algorithm for computing steiner edge connectivity. In
Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC
’03, pages 167–176. ACM, 2003. doi:10.1145/780542.780568.

[Cha15] Y. Chang. Conditional lower bound for RNA folding problem. CoRR, abs/1511.04731,
2015. arXiv:1511.04731.

[Chi60] R. T. Chien. Synthesis of a communication net. IBM Journal of Research and Develop-
ment, 4(3):311–320, 1960.

[CLL13] H. Y. Cheung, L. C. Lau, and K. M. Leung. Graph connectivities, network coding, and
expander graphs. SIAM Journal on Computing, 42(3):733–751, 2013. doi:10.1137/
110844970.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)
80013-2.

[CW16] T. M. Chan and R. Williams. Deterministic apsp, orthogonal vectors, and more: Quickly
derandomizing razborov-smolensky. In Proceedings of the Twenty-seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1246–1255, 2016. doi:10.
1145/2884435.2884522.

[Edm70] J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
structures and their applications, pages 69–87, 1970.

[EG04] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominat-
ing set. Theor. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/j.tcs.2004.05.009.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian journal of
Mathematics, 8(3):399–404, 1956. Available from: http://www.rand.org/pubs/papers/
P605/.

[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[FKT19] A. Filtser, R. Krauthgamer, and O. Trabelsi. Relaxed voronoi: A simple frame-
work for terminal-clustering problems. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, volume 69, pages 10:1–
10:14, 2019. doi:10.4230/OASIcs.SOSA.2019.10.

[Fre95] G. N. Frederickson. Using cellular graph embeddings in solving all pairs shortest paths
problems. J. Algorithms, 19(1):45–85, July 1995. doi:10.1006/jagm.1995.1027.

[Gab95] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. Syst. Sci., 50(2):259–273, 1995.

[GGI+17] L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznanski. All-pairs 2-
reachability in o(nˆw log n) time. In I. Chatzigiannakis, P. Indyk, F. Kuhn, and
A. Muscholl, editors, 44th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 74:1–74:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. Avail-
able from: https://doi.org/10.4230/LIPIcs.ICALP.2017.74, doi:10.4230/LIPIcs.
ICALP.2017.74.

93

http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/780542.780568
http://arxiv.org/abs/1511.04731
http://dx.doi.org/10.1137/110844970
http://dx.doi.org/10.1137/110844970
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1145/2884435.2884522
http://dx.doi.org/10.1145/2884435.2884522
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://www.rand.org/pubs/papers/P605/
http://www.rand.org/pubs/papers/P605/
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.10
http://dx.doi.org/10.1006/jagm.1995.1027
https://doi.org/10.4230/LIPIcs.ICALP.2017.74
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.74
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.74


[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9:551–570, 1961. Available from: http://www.jstor.
org/stable/2098881.

[GH86] F. Granot and R. Hassin. Multi-terminal maximum flows in node-capacitated networks.
Discrete Applied Mathematics, 13(2-3):157–163, 1986.

[GIKW17] J. Gao, R. Impagliazzo, A. Kolokolova, and R. R. Williams. Completeness for first-order
properties on sparse structures with algorithmic applications. In 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 2162–2181, 2017. doi:10.1137/
1.9781611974782.141.

[GT01] A. V. Goldberg and K. Tsioutsiouliklis. Cut tree algorithms: an experimental study.
Journal of Algorithms, 38(1):51–83, 2001.

[Gus90] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143–155, 1990.

[GV12] V. Gurvich and M. N. Vyalyi. Characterizing (quasi-)ultrametric finite spaces in terms of
(directed) graphs. Discret. Appl. Math., 160(12):1742–1756, 2012. doi:10.1016/j.dam.
2012.03.034.

[HK95] M. R. Henzinger and V. King. Randomized dynamic graph algorithms with polylogarith-
mic time per operation. In Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, page 519–527, 1995. doi:10.1145/225058.225269.

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing multiterminal
flow networks and computing flows in networks of small treewidth. J. Comput. Syst. Sci.,
57:366–375, 1998. doi:10.1006/jcss.1998.1592.

[HKP07] R. Hariharan, T. Kavitha, and D. Panigrahi. Efficient algorithms for computing all low
s − t edge connectivities and related problems. In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 127–136. SIAM, 2007. Available from:
http://dl.acm.org/citation.cfm?id=1283383.1283398.

[HL07] R. Hassin and A. Levin. Flow trees for vertex-capacitated networks. Discrete Appl. Math.,
155(4):572–578, 2007. doi:10.1016/j.dam.2006.08.012.

[HO94] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms, 17(3):424–446, 1994. doi:10.1006/jagm.1994.1043.

[IP01] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, March 2001. doi:10.1006/jcss.2000.1727.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63(4):512–530, December 2001.
doi:10.1006/jcss.2001.1774.

[Jel63] F. Jelinek. On the maximum number of different entries in the terminal capacity matrix
of oriented communication nets. IEEE Transactions on Circuit Theory, 10(2):307–308,
1963. doi:10.1109/TCT.1963.1082149.

[KL15] D. R. Karger and M. S. Levine. Fast augmenting paths by random sampling from residual
graphs. SIAM J. Comput., 44(2):320–339, 2015. doi:10.1137/070705994.

[KLOS14] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time algorithm for
approximate max flow in undirected graphs, and its multicommodity generalizations. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, pages 217–226, 2014. doi:10.1137/1.9781611973402.16.

[KM03] R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM Trans.
Netw., 11(5):782–795, 2003. doi:10.1109/TNET.2003.818197.

94

http://www.jstor.org/stable/2098881
http://www.jstor.org/stable/2098881
http://dx.doi.org/10.1137/1.9781611974782.141
http://dx.doi.org/10.1137/1.9781611974782.141
http://dx.doi.org/10.1016/j.dam.2012.03.034
http://dx.doi.org/10.1016/j.dam.2012.03.034
http://dx.doi.org/10.1145/225058.225269
http://dx.doi.org/10.1006/jcss.1998.1592
http://dl.acm.org/citation.cfm?id=1283383.1283398
http://dx.doi.org/10.1016/j.dam.2006.08.012
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1109/TCT.1963.1082149
http://dx.doi.org/10.1137/070705994
http://dx.doi.org/10.1137/1.9781611973402.16
http://dx.doi.org/10.1109/TNET.2003.818197


[KT18a] L. Kamma and O. Trabelsi. Nearly optimal time bounds for kpath in hypergraphs. arXiv
preprint arXiv:1803.04940, 2018.

[KT18b] R. Krauthgamer and O. Trabelsi. Conditional lower bounds for all-pairs max-flow. ACM
Trans. Algorithms, 14(4):42:1–42:15, 2018. doi:10.1145/3212510.

[KT19] R. Krauthgamer and O. Trabelsi. The set cover conjecture and subgraph isomorphism
with a tree pattern. In 36th International Symposium on Theoretical Aspects of Computer
Science, STACS 2019, pages 45:1–45:15, 2019. doi:10.4230/LIPIcs.STACS.2019.45.

[Kün18] M. Künnemann. On nondeterministic derandomization of Freivalds’ algorithm: Con-
sequences, avenues and algorithmic progress. In 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, pages 56:1–56:16, 2018.
doi:10.4230/LIPIcs.ESA.2018.56.

[LG14] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC, pages 296–303,
2014. doi:10.1145/2608628.2608664.

[LNSW12] J. Lacki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Single source - all sinks max
flows in planar digraphs. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, pages 599–608, 2012. doi:10.1109/FOCS.2012.66.

[LS14] Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear
programs in õ(vrank) iterations and faster algorithms for maximum flow. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 424–433,
2014. doi:10.1109/FOCS.2014.52.

[LS20a] Y. P. Liu and A. Sidford. Faster energy maximization for faster maximum flow. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 803–814, 2020. doi:10.1145/
3357713.3384247.

[LS20b] Y. P. Liu and A. Sidford. Unit capacity maxflow in almost m time. CoRR, abs/2003.08929,
2020. Available from: https://arxiv.org/abs/2003.08929, arXiv:2003.08929.

[LWW18] A. Lincoln, V. V. Williams, and R. R. Williams. Tight hardness for shortest cycles and
paths in sparse graphs. In SODA, pages 1236–1252, 2018.

[LYC03] S.-Y. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE transactions on infor-
mation theory, 49(2):371–381, 2003. doi:10.1109/TIT.2002.807285.

[Mad16] A. Madry. Computing maximum flow with augmenting electrical flows. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 593–602,
2016. doi:10.1109/FOCS.2016.70.

[May60] W. Mayeda. Terminal and branch capacity matrices of a communication net. IRE Trans-
actions on Circuit Theory, 7(3):261–269, 1960. doi:10.1109/TCT.1960.1086673.

[May62] W. Mayeda. On oriented communication nets. IRE Transactions on Circuit Theory,
9(3):261–267, 1962. doi:10.1109/TCT.1962.1086912.

[Men27] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115,
1927.

[MMNS11] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

[NP85] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

95

http://dx.doi.org/10.1145/3212510
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.45
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.56
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1109/FOCS.2012.66
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1145/3357713.3384247
http://dx.doi.org/10.1145/3357713.3384247
https://arxiv.org/abs/2003.08929
http://arxiv.org/abs/2003.08929
http://dx.doi.org/10.1109/TIT.2002.807285
http://dx.doi.org/10.1109/FOCS.2016.70
http://dx.doi.org/10.1109/TCT.1960.1086673
http://dx.doi.org/10.1109/TCT.1962.1086912
http://dx.doi.org/10.1007/BF02579206


[Pan16] D. Panigrahi. Gomory-Hu trees. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages
858–861. Springer, 2016. doi:10.1007/978-1-4939-2864-4.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[Räc02] H. Räcke. Minimizing congestion in general networks. In 43rd Symposium on Foundations
of Computer Science, FOCS 2002, pages 43–52, 2002. doi:10.1109/SFCS.2002.1181881.

[RST14] H. Räcke, C. Shah, and H. Täubig. Computing cut-based hierarchical decompositions
in almost linear time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’14, page 227–238. SIAM, 2014. doi:10.1137/1.
9781611973402.17.

[Sch02] A. Schrijver. On the history of the transportation and maximum flow problems. Math.
Program., 91(3):437–445, 2002. doi:10.1007/s101070100259.

[ST18] A. Sidford and K. Tian. Coordinate methods for accelerating `∞ regression and faster
approximate maximum flow. In FOCS ’18, pages 922–933. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00091.

[Vas09] V. Vassilevska. Efficient algorithms for clique problems. Inf. Process. Lett., 109(4):254–
257, 2009. doi:10.1016/j.ipl.2008.10.014.

[Vas12] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
STOC, pages 887–898, 2012. doi:10.1145/2213977.2214056.

[Vas15] V. Vassilevska-Williams. Hardness of Easy Problems: Basing Hardness on Popular Con-
jectures such as the Strong Exponential Time Hypothesis (Invited Talk). In 10th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2015), volume 43 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 17–29. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

[Vas18] V. Vassilevska-Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of ICM, 2018. To Appear. Available from: http://people.csail.mit.edu/
virgi/eccentri.pdf.

[Wil05] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

[Wil16] R. R. Williams. Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs
of batch evaluation. In 31st Conference on Computational Complexity, CCC 2016, pages
2:1–2:17, 2016.

[WL93] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. IEEE transactions on pattern analysis and
machine intelligence, 15(11):1101–1113, 1993.

[WW18] V. V. Williams and R. R. Williams. Subcubic equivalences between path, matrix, and
triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

[Yu18] H. Yu. An improved combinatorial algorithm for Boolean matrix multiplication. Inf.
Comput., 261:240–247, 2018. doi:10.1016/j.ic.2018.02.006.

96

http://dx.doi.org/10.1007/978-1-4939-2864-4
http://dx.doi.org/10.1109/SFCS.2002.1181881
http://dx.doi.org/10.1137/1.9781611973402.17
http://dx.doi.org/10.1137/1.9781611973402.17
http://dx.doi.org/10.1007/s101070100259
http://dx.doi.org/10.1109/FOCS.2018.00091
http://dx.doi.org/10.1016/j.ipl.2008.10.014
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://people.csail.mit.edu/virgi/eccentri.pdf
http://people.csail.mit.edu/virgi/eccentri.pdf
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1145/3186893
http://dx.doi.org/10.1016/j.ic.2018.02.006


Appendix A

Papers not Included in the Thesis

The following are the abstract sections of papers that were written during my PhD period
but are not included in this thesis.

Relaxed Voronoi: A Simple Framework for Terminal-Clustering
Problems [FKT19]

We reprove three known algorithmic bounds for terminal-clustering problems, using a single
framework that leads to simpler proofs. In this genre of problems, the input is a metric space
(X, d) (possibly arising from a graph) and a subset of terminals K ⊂ X, and the goal is to
partition the points X such that each part, called a cluster, contains exactly one terminal
(possibly with connectivity requirements) so as to minimize some objective. The three bounds
we reprove are for Steiner Point Removal on trees [Gupta, SODA 2001], for Metric 0-Extension
in bounded doubling dimension [Lee and Naor, unpublished 2003], and for Connected Metric
0-Extension [Englert et al., SICOMP 2014].

A natural approach is to cluster each point with its closest terminal, which would parti-
tion X into so-called Voronoi cells, but this approach can fail miserably due to its stringent
cluster boundaries. A now-standard fix, which we call the Relaxed-Voronoi framework, is
to use enlarged Voronoi cells, but to obtain disjoint clusters, the cells are computed greed-
ily according to some order. This method, first proposed by Calinescu, Karloff and Rabani
[SICOMP 2004], was employed successfully to provide state-of-the-art results for terminal-
clustering problems on general metrics. However, for restricted families of metrics, e.g., trees
and doubling metrics, only more complicated, ad-hoc algorithms are known. Our main con-
tribution is to demonstrate that the Relaxed-Voronoi algorithm is applicable to restricted
metrics, and actually leads to relatively simple algorithms and analyses.

The Set Cover Conjecture and Subgraph Isomorphism with a
Tree Pattern [KT19]

In the Set Cover problem, the input is a ground set of n elements and a collection of m sets,
and the goal is to find the smallest sub-collection of sets whose union is the entire ground
set. The fastest algorithm known runs in time O(mn2n) [Fomin et al., WG 2004], and the
Set Cover Conjecture (SeCoCo) [Cygan et al., TALG 2016] asserts that for every fixed ε > 0,
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no algorithm can solve Set Cover in time 2(1−ε)n poly(m), even if set sizes are bounded by
∆ = ∆(ε). We show strong connections between this problem and k-Tree, a special case of
Subgraph Isomorphism where the input is an n-node graph G and a k-node tree T , and the
goal is to determine whether G has a subgraph isomorphic to T .

First, we propose a weaker conjecture Log-SeCoCo, that allows input sets of size ∆ =
O(1/ε · logn), and show that an algorithm breaking Log-SeCoCo would imply a faster al-
gorithm than the currently known 2n poly(n)-time algorithm [Koutis and Williams, TALG
2016] for Directed nTree, which is k-Tree with k = n and arbitrary directions to the edges of
G and T . This would also improve the running time for Directed Hamiltonicity, for which no
algorithm significantly faster than 2n poly(n) is known despite extensive research.

Second, we prove that if Set Cover cannot be solved significantly faster than 2n poly(m)
(an assumption even weaker than Log-SeCoCo), then k-Tree cannot be computed significantly
faster than 2k poly(n), the running time of the Koutis and Williams’ algorithm. Applying
the same techniques to the p-Partial Cover problem, a parameterized version of Set Cover
that requires covering at least p elements, we obtain a new algorithm with running time
(2 + ε)p(m+n)O(1/ε) for arbitrary ε > 0, which improves previous work and is nearly optimal
assuming SeCoCo.

Nearly Optimal Time Bounds for k-Path in Hypergraphs [KT18a]
We study the k-HyperPath problem: Given an r-uniform hypergraph for some integer r, the
goal is to find a tight path of length k, that is, a sequence of k nodes such that every consecutive
r of them constitute a hyperedge in the graph. This problem is a natural generalization of
k-Path in graphs, and was investigated for large values of the uniformity parameter r =
Ω(k) (Lincoln, V.Williams, and Williams, SODA 2018), where a conditional lower bound of
Õ(nk) was presented (where throughout, n is the number of nodes and m is the number of
(hyper)edges).

We give almost tight conditional lower bounds on the running time of the k-HyperPath
problem for smaller values of r, showing that an algorithm with running time O∗(2(1−γ)k)
where γ > 0 is independent of r is probably impossible. Specifically, it implies that Set Cover
on n elements can be solved in time O∗(2(1−δ)n) for some δ > 0. To complete the picture,
we show that a known algorithm for k-Path (Koutis and Williams, TALG 2016) could be
extended to k-HyperPath for every integer r ≥ 3, with running time 2km ·poly(n). We believe
a by-product of our conditional lower bound techniques is diversifying the scope of reductions
from Set Cover.

98


	Introduction
	Conditional Lower Bounds for the Directed Case
	Improved Lower Bounds for Unit-Capacity Directed Graphs
	New Results for Undirected Graphs
	Optimality of Gomory-Hu Trees for Min-Cut Queries and Fast Approximation Algorithms 

	Conditional Lower Bounds for All-Pairs Max-Flow in Directed Graphs
	Introduction
	Prior Work
	Our Contribution

	Reduction to Multiple-Pairs Max-Flow with Unit Capacity
	Reduction to Multiple-Pairs Max-Flow in Capacitated Networks
	Generalization to Bounded Cuts
	Global Max-Flow

	Faster Algorithms for All-Pairs Bounded Min-Cuts in Unit-Capacity Directed Graphs
	Introduction
	Our Contribution

	Preliminaries
	Overview of Our Algorithmic Approach
	Reducing 4-Clique to All-Pairs Min-Cut
	Reduction to the Unbounded Case
	Reduction to the k-Bounded Case

	Randomized Algorithms for General Digraphs

	New Algorithms and Lower Bounds for All-Pairs Max-Flow in Unit-Capacity Undirected Graphs
	Introduction
	The Challenge of Lower Bounds in Undirected Graphs
	Our Results

	Algorithm for a Cut-Equivalent Tree
	Near-Linear Nondeterministic Algorithm for Cut-Equivalent Tree
	The Nondeterministic Algorithm
	Reduction from a Decision Problem to a total search problem

	Conditional Lower Bound for All-Pairs Max-Flow
	Open Problems
	Acknowledgements

	Cut-Equivalent Trees are Optimal for Min-Cut Queries
	Introduction
	Our Results
	Preliminaries

	Our Approximation Algorithms
	Overview
	Approximate Min-Cut Queries and Flow-Equivalent Trees
	Our Tree-Like Data Structure
	A Faster Implementation For Unweighted Graphs
	Handling Randomized Data Structures

	Algorithm for a Cut-Equivalent Tree
	The Algorithm for General Capacities
	Overview of the Algorithm
	Full Algorithm
	Analysis
	Lifting the Assumption on Max-Flow Queries
	Unique Cut-Equivalent Tree via Pertubation

	Algorithm for an Output Sensitive Data Structure
	Algorithm for Flow-Equivalent Trees
	Recovering Ultrametrics


	Papers not Included in the Thesis

