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ABSTRACT
We characterize the streaming space complexity of every symmetric

norm l (a norm on Rn invariant under sign-flips and coordinate-

permutations), by relating this space complexity to the measure-

concentration characteristics of l . Specifically, we provide nearly
matching upper and lower bounds on the space complexity of

calculating a (1 ± ϵ)-approximation to the norm of the stream,

for every 0 < ϵ ≤ 1/2. (The bounds match up to poly(ϵ−1 logn)
factors.)We further extend those bounds to any large approximation

ratio D ≥ 1.1, showing that the decrease in space complexity is

proportional to D2
, and that this factor the best possible. All of the

bounds depend on the median of l(x) when x is drawn uniformly

from the l2 unit sphere. The samemedian governsmany phenomena

in high-dimensional spaces, such as large-deviation bounds and the

critical dimension in Dvoretzky’s Theorem.

The family of symmetric norms contains several well-studied

norms, such as all lp norms, and indeed we provide a new explana-

tion for the disparity in space complexity between p ≤ 2 and p > 2.

In addition, we apply our general results to easily derive bounds

for several norms that were not studied before in the streaming

model, including the top-k norm and the k-support norm, which

was recently employed for machine learning tasks.

Overall, these results make progress on two outstanding prob-

lems in the area of sublinear algorithms (Problems 5 and 30 in http:

//sublinear.info).

CCS CONCEPTS
• Theory of computation → Sketching and sampling; Data
compression; Lower bounds and information complexity;
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1 INTRODUCTION
The study of norms on data streams has a rich history, and in par-

ticular has driven much of the fantastic development of streaming

algorithms, see e.g. [AMS99, IW05, Ind06, Mut05]. A data stream
is a sequence of additive ±1 updates that accumulate on the coor-

dinates of an n-dimensional vector v , and a streaming algorithm

reads the sequence of updates and computes some function of v .
This is known as the turnstile model, and for simplicity we assume

that |vi | ≤ poly(n), for all i ∈ [n]. Despite plenty of work, it is

still an open problem to design a generic streaming algorithm for

approximating norms. Although very challenging, it may not be

too much to ask for. In fact, several existing methods, including the

Indyk-Woodruff sketch [IW05, BOR15], yield so-called “universal

sketches” that can be used to approximate whole classes of stream-

ing problems at once. So we ask, is there a generic method that

can approximate any desired norm of a stream with near-optimal

space complexity? Second, is there a universal sketch whose single

evaluation on a vector (say on a stream) suffices to approximate ev-

ery norm in a wide class? While several powerful upper and lower

bound techniques have been developed, including embeddings,

heavy-hitters, and reductions from Communication Complexity, it

is not apparent how they can be applied to an entirely new norm,

see also Open Problems 5 (Sketchable Distances) and 30 (Universal

Sketching) in the list [sub06].

This is a real challenge for at least two reasons. First, we lack

a generic framework for embeddings. Even when it is possible to

embed into an easy-to-handle space, a new embedding must be

constructed and applied to the input stream for each norm. Second,

current techniques, heavy-hitters included, have been confined to

norms with additive structure. Nearly all of the norms considered

so far decompose, on some level, into a sum of independent quanti-

ties, and this fact is heavily exploited in the design of algorithms
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and lower bounds. Examples include lp norms (see references in

Section 1.3), the entropy norm [CDM06, CCM07, HNO08], and cas-

caded lp norms [JW09, Jay13]. Abandoning our reliance on additive

decomposability has been a major bottleneck en route to a broader

characterization of norms.

We overcome this barrier in the setting of symmetric norms, see

e.g. [Bha97, Chapter IV]. A norm l : Rn → R is called symmetric
if, for all x ∈ Rn and every n × n permutation matrix P , it satisfies
l(Px) = l(x) and also l(|x |) = l(x), where |x | is the coordinate-

wise absolute value of x . It is a partial answer to the question

above, as we design a generic algorithm for symmetric norms and

it is based on a universal sketch. Specifically, for every s > 0,

there is a single sketch of size s · poly(log(n)/ϵ), that yields a (1 ±
ϵ)-approximation

1
for every symmetric norm whose streaming

space complexity is at most s . In fact, we show that the streaming

space complexity of a symmetric norm is determined by the norm’s

measure-concentration characteristics. To be precise, let X ∈ Rn

be uniformly distributed on Sn−1, the l2 unit sphere. The median of

a symmetric norm l is the (unique!) valueMl such that Pr[l(X ) ≥
Ml ] ≥ 1/2 and Pr[l(X ) ≤ Ml ] ≥ 1/2. Similarly, bl denotes the

maximum value of l(x) over x ∈ Sn−1. We call the ratio

mc(l) B bl /Ml
the modulus of concentration of the norm l . Our results show that

this modulus of concentration is crucial in determining the stream-

ing space complexity of any symmetric norm. This quantity gov-

erns many phenomena in high-dimensional spaces, for example,

it appears in large-deviation bounds and the critical dimension in

Dvoretzky’s Theorem is n/mc(l)2, see e.g. [MS86, KV07].

Symmetric norms clearly include the lp and entropy norms, and

we present fresh examples with heretofore unknown streaming

space complexity, like the top-k norm,Q norms, andQ ′ norms, later

on. Although matrix norms are generally not symmetric, our results

immediately imply lower bounds for unitarily invariant matrix

norms, for example the Ky Fan norms, by restricting attention to

diagonal matrices.

One well-studied family of symmetric norms is that of lp norms

on Rn , defined as lp (x) B (
∑n
i=1 |xi |

p )1/p . For 1 ≤ p ≤ 2, the

maximum value of lp (x) over x ∈ S
n−1

is blp = n1/p−1/2 and con-

centrates at Mlp = Θ(n1/p−1/2), so the modulus of concentration is

mc(lp ) = O(1). For p > 2, the maximum is blp = 1 but again concen-

trates at Mlp = Θ(n1/p−1/2), hence mc(lp ) = Θ(n1/2−1/p ). Recall

that the streaming space complexity for a (1± 1/10)-approximation

of lp isΘ(logn), whenp ≤ 2 [KNW10], and isΘ(n1−2/p logn)when
p > 2 [LW13, Gan15] (the constant 1/10 here is arbitrary). Thus for

all values of p ≥ 1, the space complexity of computing a (1 ± 1/10)-

approximation to lp is Θ(mc(lp )
2
logn). Our main result recovers

this fact up to a polylogn factor.

But, the modulus of concentration cannot be the whole story

for streaming algorithms. It expresses an average behavior of the

norm on Rn , and even if the norm is well-behaved on average, like

l1 for example, it is possible that a more difficult norm is concealed

1
We state the approximation ratio in one of two standard ways. A D-approximation,

D ≥ 1, to l (v) is a value ˆl such that l (v) ≤ ˆl ≤ Dl (v). When D is very close to one,

it is more convenient to consider a (1 ± ϵ )-approximation, 0 ≤ ϵ < 1/2, which is

defined as (1 − ϵ )l (v) ≤ ˆl ≤ (1 + ϵ )l (v) and corresponds to a D-approximation for

D = 1+ϵ
1−ϵ .

in a lower-dimensional subspace. One example of this is l(x) B
max{l∞(x), l1(x)/

√
n} on Rn , which has mc(l) = O(1). However,

when x has fewer than

√
n nonzero coordinates, l(x) = l∞(x), which

is just a lower-dimensional copy of l∞ and implies, by [AMS99], an

Ω(
√
n) space lower bound for l . In order for the modulus of concen-

tration to have any connection with streaming space complexity,

we have to close this gap.

Notice that, for every k ≤ n, the norm l induces a norm l (k ) on

Rk by setting

l (k )((x1,x2, . . . ,xk )) B l((x1, . . . ,xk , 0, . . . , 0)).

Of course, because of the permutation symmetry we could have

chosen any set of n−k coordinates to be the zeros. As the examples

above show, the modulus of concentration of l (k ) may vary with

k . However, any streaming approximation algorithm for l is also

trivially a streaming approximation algorithm for l (k ). We therefore

define the maximum modulus of concentration of the norm l as

mmc(l) B max

k≤n
mc(l (k )) = max

k≤n

bl (k )

Ml (k )
.

Our main result is that this quantity characterizes the streaming

space complexity of every symmetric norm l .

1.1 Our Results
Quite surprisingly, for every symmetric norm l on Rn , the optimal

space complexity of a streaming algorithm that gives a (1 ± ϵ)-
approximation for l is mmc(l)2 · poly(log(n)/ϵ). This characteriza-
tion tells us in particular whether a given symmetric norm admits a

polylogarithmic space approximation or requires polynomial space.

Theorem 1.1 (Main Theorem). Let l be a symmetric norm on Rn .
For every ϵ > 0, there is a one-pass streaming algorithm that on an
input stream vector v ∈ Rn computes, with probability at least 0.99,
a (1 ± ϵ)-approximation to l(v), and uses mmc(l)2 · poly(log(n)/ϵ)
bits of space.

Theorem 1.2 (Lower Bound). Let l be a symmetric norm on Rn .
Any turnstile streaming algorithm that outputs, with probability at
least 0.99, a (1 ± 1/6)-approximation for l(·) must use Ω(mmc(l)2)
bits of space in the worst case.

For the coarser D-approximation, where D > 1.1 and can grow

with n, in Theorem 1.3 we build upon the algorithm of Theorem 1.1

trading the larger approximation ratio for a 1/D2
multiplicative

decrease in storage. It turns out that the quadratic dependence

on D is the best possible; we prove the matching lower bound in

Theorem 1.4.

Theorem 1.3. Let l be a symmetric norm on Rn . For every 1.1 ≤

D ≤ mmc(l) there is a one-pass streaming algorithm that on input
stream vector v ∈ Rn computes, with probability at least 0.99, a
D-approximation to l(v) and uses (mmc(l)2/D2) · poly(logn) bits of
space.

Theorem 1.4. Let l be a symmetric norm on Rn . Any turnstile
streaming algorithm that outputs, with probability at least 0.99, a
D-approximation for l(·) must use Ω(mmc(l)2/D2) bits of space in
the worst case.

We prove the upper bound theorems in Sections 3 and 5, re-

spectively, with some details in the full version of this paper.). The
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lower bounds both appear in Section 4. To our knowledge, this is the

first application of measure concentration to streaming algorithms

(Chernoff and Hoeffding bounds aside). The geometric and analyt-

ical properties of high-dimensional normed spaces have become

well understood over decades of research. We hope that more tools

from that field can be brought to bear on these intriguing streaming

problems, see Section 7 for promising directions for further work.

Applications and Examples. Section 6 describes some applications

of our results. One application is to a class of norms called Q ′

norms [Bha97], which includes the lp norms for 1 ≤ p ≤ 2, among

others. Q ′ norms are just the dual norms to Q norms (shorthand

for quadratic), which in turn are norms of the form l(x) = Φ(x2)1/2,
for some symmetric norm Φ, where x2 denotes coordinate-wise
squaring of x . We study these norms in Section 6.2. The upshot

is that every Q ′ norm l ′ has mmc(l ′) = O(logn), and thus can be

computed by a streaming algorithm using polylogarithmic space.

Several Q ′ norms have been proposed as regularizers for sparse

recovery problems in Machine Learning. One such norm is the

k-support norm [AFS12], which is more conveniently described

via its unit ball Ck = conv{x ∈ Rn : |supp(x)| ≤ k and l2(x) ≤ 1}.

It is not readily apparent how to design a specialized streaming

algorithm for this norm, but we obtain such an explicit algorithm,

for every k , as a special case of Q ′ norms. Another example is

the box-Θ norm [MPS14], where given 0 < a < b ≤ c , we let

Θ B {θ ∈ [a,b]n : l1(θ ) ≤ c}, and define the box-Θ norm as

lΘ(x) B min

θ ∈Θ

( n∑
i=1

x2i /θi
)
1/2
, and its dual norm is

l ′Θ(x) B max

θ ∈Θ

( n∑
i=1

θix
2

i

)
1/2
.

It’s easy to see that every box-Θ norm is a Q ′ norm, and therefore

has polylogarithmic streaming space complexity. To the best of our

knowledge, there is no other technique that can approximate these

norms on a streaming vector.

Our results also apply to what we shall call the top-k norm. De-

noted as Φk (x), it is defined as the sum of the k largest coordinates

of |x | [Bha97]. This norm is a special case of the Ky Fan k-norm and

is sometimes studied as a toy example to understand regulariza-

tion of the Ky Fan norms [WDST14]. We show in Section 6.1 that

mmc(Φk ) = Θ̃(
√
n/k), so when k is large, for example linear in n,

the top-k norm of a stream vector can be approximated in only poly-

logarithmic space. We are aware of no other streaming algorithms

that can approximate this norm, as ours does.

1.2 Overview of Techniques
Upper Bound. Our algorithm for Theorem 1.1 uses a linear sketch

in the style of Indyk and Woodruff’s sketch for large frequency

moments [IW05], but the size of the sketch is calibrated by mmc(l).
The algorithm is presented in Section 3, with some details pre-

sented in the full version. This is a surprising application of the

Indyk-Woodruff sketching technique, as all previous applications of

this method are to computing functions with an additive structure∑n
i=1 f (vi ). In these settings, the Indyk-Woodruff algorithm can be

viewed as performing Importance Sampling of the summands of

the target function

∑n
i=1 f (vi ). However, a symmetric norm l need

not have an explicit mathematical formula, let alone be decompos-

able as a sum, and we thus need a different way to identify the

“important” coordinates, which informally means that zeroing these

coordinates would introduce too much error to l(v). At a high level,

our analysis makes two major contributions. The first is to provide

an explicit criterion for importance, and the second is to reveal

that inside this importance criterion, the most crucial quantity is

the maximum modulus of concentration mmc(l). A more detailed

outline of the analysis follows, omitting constants and dependence

on ϵ .
First, we imagine rounding each coordinate of the streaming

vector v to a power of α = 1 + 1/polylog(n), which can be seen to

have negligible effect using basic properties of symmetric norms.

Moreover, since the norm is symmetric, it suffices to know only the

number of coordinates, bi , at each “level” α i . By our choice of α ,
there are only polylog(n) levels, so we can represent the rounded

vector succinctly. Recovering the rounded vector exactly would

require linear storage, so we use the Indyk-Woodruff sampling

technique to approximate the vector.

The Indyk-Woodruff procedure approximates each bi by sam-

pling each coordinate i of the vectorv with probability polylog(n)/bi ,
and then in the sampled vector (which is expected to have polylog(n)
coordinates of level i whenever bi , 0), the algorithm identifies

l2-heavy-hitters. If the coordinates of level i are l2-heavy-hitters in
the sampled vector (they are in the same level and thus have about

the same value), then we get a good estimate of bi ; it’s not as simple

as counting them and scaling inversely to the sampling probability,

but that is the right idea. If the coordinates are not l2-heavy-hitters,
then we get no estimate for bi , and must assume it is 0. We show

that if we parameterize the sketch according to mmc(l)2, then we

get approximations to all the “important” levels, which is sufficient

to accurately recover l(v).

Lower Bound. The lower bound of Theorem 1.2 is proved using

a reduction from the Communication Complexity of multiparty

set-disjointness, and concentration of measure of the norm l again
plays a key role. In the disjointness setting, each of t players is given
a subset of [n], and their task is to determine whether the sets are

mutually disjoint or are “uniquely” intersecting. Instead of the stan-

dard reduction, where each player places in the stream one update

to vi for every element i ∈ [n] in the set he holds, in our reduction,

each player j ∈ [t] adds to the stream a vectorw(i, j) ∈ Rn whenever

element i is in his set. Each vectorw(i, j) is random but the entire col-

lection of vectors is designed so that the resulting stream vector is,

roughly, a uniformly random vector on a “disjoint” instance, and a

vector maximizing the norm on an “intersecting” instance. For these

two cases to be well-separated, we must choose the number of play-

ers t to be large enough. By applying concentration of measure, we

show that t = O(
√
n/mmc(l)) players suffice, and, by known com-

munication bounds for disjointness [CKS03, BJKS04, Gro09], this

leads to an Ω(n/t2) = Ω(mmc(l)2) storage lower bound for every

algorithm approximating the norm l to within 1± 1/6 (the constant

1/6 is arbitrary). Extending the lower bound to a D-approximation,

for D bounded away from 1, can be accomplished with the same

reduction using t = O(D
√
n/mmc(l)) players instead, which yields

Theorem 1.4. The proofs of both lower bound theorems can be

found in Section 4.
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Optimal Tradeoff. For the D-approximation algorithm, Theo-

rem 1.3, the idea is to define, given a norm l , a new symmetric

function l(D) : R
n → R≥0 such that l(x) ≤ l(D)(x) ≤ Dl(x). Even

though l(D) is not a norm, we can still define mmc(l(D)), which

is bounded as Õ(mmc(l)/D). The approximation comes by using

our main algorithm to get a 1.1-approximation to l(D)(v), which
translates into a 2D-approximation of l(v). The definition of l(D)
and its analysis are presented in Section 5.

1.3 Related Work
There has been extensive work on computing norms, and related

functions, in the sketching and streaming models. Most recently,

Andoni, Krauthgamer, and Razenshteyn [AKR15] have shown that

a normed space (Rn , l) embeds linearly into l0.99 with distortion

D > 1 if and only if this normed space admits distance estima-

tion sketching with approximation Θ(D) and sketch size O(1) bits.
Thus, they characterize sketching of a general norm by its em-

beddability. In comparison, our characterization applies only to

symmetric norms, but we consider streaming (not sketching) algo-

rithms, which in Theorem 1.1 means a stronger consequence, and

in Theorem 1.2 means a stronger assumption. And perhaps more

importantly, our results achieve (1 + ϵ)-approximation, while their

algorithm achieves approximation proportional to D (though their

lower bound shows a linear tradeoff with sketch size).

Another important tool that may seem relevant is that every

turnstile streaming algorithm can be replaced by a linear sketch,

as shown by Li, Nguyen, and Woodruff [LNW14]. However, this

transformation does not make it easy to determine the streaming

complexity of a given symmetric norm l , because it is not easy to

design a linear sketch for l .
There are other generic streaming algorithms that provide ap-

proximation guarantees for an entire class of functions of the form∑n
i=1 f (vi ), where f is some nonnegative function [BO10, BO13a].

If one has a so-called f -heavy-hitters algorithm that identifies ev-

ery coordinate i accounting for half of the total sum, i.e., f (vi ) ≥∑
j,i f (vj ) andmoreover approximates this f (vi ), then one can also

approximate the sum

∑n
i=1 f (vi ), incurring only an O(logn) factor

overhead on top of the f -heavy-hitters algorithm’s storage. For a

large class of functions f , including monotone functions, comput-

ing f -heavy-hitters can be reduced to computing l2-heavy-hitters
in several random sub-streams [BOR15, BCWY16] or even just ran-

dom sampling [BC15]. Universality falls out as a side-effect of the

design of the algorithm — the only dependence on f is through the

number of sub-streams, which determines the sketch size, up to

a polylog(n) factor. Therefore, any two functions that lead to the

same sketch size, in fact, use the exact same sketch.

Finally, we should mention there is a very long line of results

on estimating lp norms (also called frequency moments) in a data

stream, including designing small-space algorithms [AMS99, IW05,

Ind06, GC07, Li08, KNW10, AKO11, BO13a, BO13b, BKSV14, Gan15]

and proving space lower bounds [SS02, CKS03, BJKS04, Gro09,

ANPW13, LW13]. This list omits improvements of the runtime

of update and output procedures, and devising extensions like lp
sampling.

2 PRELIMINARIES
An important unit vector for us is ξ (n

′) B 1√
n′
(1, 1, 1, . . . 1, 0, . . . , 0) ∈

Rn , for any n′ ≤ n, which has n′ nonzero coordinates. We abuse

the notation to write ξ (n
′) ∈ Rn

′

by removing zero coordinates, and

vice-versa by appending zeros. Let us record some basic facts about

symmetric norms.

Lemma 2.1 (Monotonicity of SymmetricNorms, see e.g. Propo-

sition IV.1.1 in [Bha97]). If l(·) is a symmetric norm and x ,y ∈ Rn

satisfy that for all i , |xi | ≤ |yi |, then l(x) ≤ l(y).

Without loss of generality, we assume that our norms are nor-

malized on the standard basis, i.e., l(ei ) = 1. Recall that the dual
of a norm l : Rn → R is the norm l ′ : Rn → R given by l ′(x) B

sup{
| ⟨x,y ⟩ |
l (y) : y , 0}. For the following facts see, e.g., [MS86, Sec-

tions 3.1.2 and 4.5].

Fact 2.2. For all x ∈ Rn , l∞(x) ≤ l(x) ≤ l1(x).

Fact 2.3. Let a,b > 0 be such that, for all x ∈ Rn , a−1 l2(x) ≤
l(x) ≤ b l2(x). Then, for all x ∈ Rn , b−1 l2(x) ≤ l ′(x) ≤ a l2(x).

Fact 2.4. Ml Ml ′ ≥ 1.

We restrict attention to vectors v whose coordinates are in the

range {−m, . . . ,m}, for m = poly(n), so logm = O(logn). Our
results still apply when m is larger but one must replace logn
factors with logm factors.

Last, wemust be precise about themodel of computation, because

we do not have a mathematical formula for the norm. Our algorithm

will rely on evaluating the norm on a vector that is derived from

a sketch of the stream. Every coordinate of this vector should be

easy to recover from the sketch, but the vector need not be written

explicitly, to avoid Ω(n) storage. To accomodate this, we make

the assumption that our algorithm has access to an oracle NORM
that computes l(v) using queries to the coordinates of v , i.e., our
algorithm must provide query access to any coordinate vi .

3 AN ALGORITHM FOR SYMMETRIC NORMS
In this section we prove Theorem 1.1, which shows that a symmetric

norm can be approximated in the turnstile streaming model using

one pass and O(mmc(l)2 poly(1/ϵ · logn)) bits of memory. The

Algorithm 1, uses a subroutine called Level1, whose full description
appears in the full version. The rest of this section considers a given

symmetric norm l on Rn and a desired accuracy parameter 0 < ϵ <
1. Let the two parameters α > 1 and 0 < β ≤ 1 be determined later,

possibly depending on n, ϵ andmmc(l). We assumemmc(l) ≤ γ
√
n,

for some sufficiently small constant 0 < γ ≪ 1/2, since otherwise

the lower bound given in Theorem 1.2 implies that linear memory

is necessary to approximate this norm with a streaming algorithm.

3.1 Level Vectors and Important Levels
Definition 3.1 (Important Levels). For v ∈ Rn , define level i as

Bi B {j ∈ [n] : α
i−1 ≤ |vj | < α i }, and denote its size by bi B |Bi |.

We say that level i is β-important if

bi > β
∑
j>i

bj ; and biα
2i ≥ β

∑
j≤i

bjα
2j .

Recall from Section 2 that we restrict attention to vectors v
whose coordinates are in the range {−m, . . . ,m}, form = poly(n).
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This assumption implies that the number of non-zero bi ’s is at
most t = O(logα n). And if we normalize v to a unit vector in l2-
norm, then every non-zero coordinate has absolute value at least

1/poly(n).
We will rely on the next theorem, which shows a streaming

algorithm recovers all the important bi ’s. Its proof appears in the

full version.

Theorem 3.2. For every ϵ > 0, there is a one-pass streaming
algorithm Level1 that given an input stream and parameters α ′ =
1 + γ > 1 and 0 < β ≤ 1, outputs { ˆbi } for base α = 1 +O(γ ), such
that with probability 1 −O(1/poly(n)), for all i ,

• ˆbi ≤ bi ; and
• if level i is β-important, then ˆbi ≥ (1 − ϵ)bi .

This algorithm uses O(γ−5ϵ−2β−1 log12 n) bits of space.

To state and analyze our algorithm for approximating l(v), we
introduce the following notation. Later, we shall omit (v) from the

notation, as it is clear from the context.

Definition 3.3 (Level Vectors and Buckets). Define the level vector
for v ∈ Rn with integer coordinates to be

V (v) B (α1, . . . ,α1︸      ︷︷      ︸
b1 times

,α2, . . . ,α2︸      ︷︷      ︸
b2 times

, . . . ,α t , . . . ,α t︸      ︷︷      ︸
bt times

, 0, . . . , 0) ∈ Rn ;

and define the i-th bucket of V (v) to be

Vi (v) B ( 0, . . . , 0︸  ︷︷  ︸
b1+b2+...+bi−1 times

,α i , . . . ,α i︸      ︷︷      ︸
bi times

, 0, . . . , 0︸  ︷︷  ︸
bi+1+bi+2 ...bt times

,

0, . . . , 0) ∈ Rn .

Let V̂ (v) and V̂i (v) be defined similarly for the approximated values

{ ˆbi }. We denote V (v)\Vi (v) as the vector with the i-th bucket re-

placed by 0; and denoteV (v)\Vi (v)∪V̂i (v) as the vector by replacing
the whole i-th bucket with V̂i (v), i.e.,

V (v)\Vi (v) ∪ V̂i (v) B (α
1, . . . ,α1︸      ︷︷      ︸
b1 times

, . . . ,α i , . . . ,α i︸      ︷︷      ︸
ˆbi times

, . . . ,α t , . . . ,α t︸      ︷︷      ︸
bt times

,

0, . . . , 0) ∈ Rn .

3.2 Approximated Levels Provide a Good
Approximation

We first show the level vector V can be used to approximate l(v), if
we choose a base α B 1 +O(ϵ).

Proposition 3.4. For all v ∈ Rn , l(V (v))/α ≤ l(v) ≤ l(V (v)).

Proof. Follows directly from the monotonicity of symmetric

norms (Lemma 2.1). �

The next key lemma shows that l(V̂ ) is a good approximation to

l(V ).

Lemma 3.5 (Bucket Approximation). For every level i , if ˆbi ≤ bi ,
then l(V \Vi ∪ V̂i ) ≤ l(V ); and if ˆbi ≥ (1 − ϵ)bi , then l(V \Vi ∪ V̂i ) ≥
(1−ϵ)l(V ).

Proof. The upper bound follows immediately from the mono-

tonicity of norms. We will prove the lower bound as follows. Let us

take the vector

V̂i B ( 0, 0, . . . 0,︸     ︷︷     ︸
b1+b2+...+bi−1 times

α i , . . . α i︸    ︷︷    ︸
ˆbi times

, 0, . . . , 0).

Let us also defineW := V −Vi . Note thatW + V̂i is a permutation

of a vectorV \Vi ∪ V̂i . We will prove that, under assumptions of the

lemma, l(W + V̂i ) ≥ ( ˆbi/bi )l(V ).
For a vectorv ∈ Rn and a permultation π ∈ Σn , we denote π (v) a

vector inRn such that π (v)i := vπ (i). Since the norm l is symmetric,

we have that l(v) = l(π (v)). Consider a set of permultations S ,
consisting of all permutations that are cyclic shifts over the non-

zero coordinates ofVi , and do not move any other coordinates. That

is, there is exactly bi permultations in S , and for every π ∈ S , we
have π (W ) =W . By the construction of the set S , we have,∑

π ∈S
π (V̂i ) = ˆbiVi

and therefore

∑
π ∈S π (W + V̂i ) = ˆbiVi + biW . As vectors Vi andW

have disjoint support, by monotonicity of the norm l with respect

to each coordinates we can deduce l( ˆbiVi + biW ) ≥ l( ˆbi (Vi +W )).
By plugging those together,

ˆbi l(Vi +W ) ≤ l( ˆbiVi + biW ) = l

(∑
π ∈S

π (V̂i +W )

)
≤

∑
π ∈S

l
(
π (V̂i +W )

)
= bi l(V̂i +W ) (1)

where the last equality follows from the fact that l is symmetric and

|S | = bi . Hence, l(V̂i +W ) ≥
ˆbi
bi
l(V ) ≥ (1 − ϵ)l(V ), as desired. �

3.3 Contributing Levels and Important Levels
Definition 3.6 (Contributing Levels). Level i is called β-contributing

if l(Vi ) ≥ β l(V ) .

Lemma 3.7. Let V ′ be the vector obtained from V by removing
all levels that are not β-contributing. Then (1 −O(logα n) · β)l(V ) ≤
l(V ′) ≤ l(V ).

Proof. Let i1, . . . , ik be the levels that are not β-contributing.
Then by the triangle inequality,

l(V ) ≥ l(V ) − l(Vi1 ) − . . . − l(Vik ) ≥ (1 − kβ)l(V ).

The proof follows by bounding k by t = O(logα n), which is the

total number of non-zero bi ’s. �

The following lemma and Lemma 3.15 show together that that

every β-contributing level is also β ′-important for a suitable β ′ that
depends on mmc(l).

Lemma 3.8. If level i is β-contributing, then bi ≥
λβ 2

mmc(l )2 log2 n
·
∑
j>i bj for some absolute constant λ > 0.

We present the following concentration of measure results for

the proof of this lemma,

Lemma 3.9. For every norm l on Rn , if x ∈ Sn−1 is drawn uni-
formly at random according to Haar measure on the sphere, then

Pr(|l(x) −Ml | >
2 bl
√
n
) <

1

3

Lemma 3.10. For every n > 0, there is a vector x ∈ Sn−1 satisfying
(1) |l∞(x) −Ml (n)∞

| ≤ 2/
√
n,

(2) |l(x) −Ml (n) | ≤ 2 bl (n)/
√
n, and

(3) |{i : |xi | >
1

K
√
n
}| > n

2
for some universal constant K .
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We prove these lemmas using Levy’s isoperimetric inequality,

see e.g. [MS86, Section 2.3].

Theorem 3.11 (Levy’s Isoperimetric Ineqality). For a con-
tinuous function f : Sn−1 → R, let Mf be the median of f , i.e.,
µ({x : f (x) ≤ Mf }) ≥ 1/2 and µ({x : f (x) ≥ Mf }) ≥ 1/2, where
µ(·) is the Haar probability measure on the unit sphere Sn−1. Then
µ({x : f (x) = Mf }ϵ ) ≥ 1 −

√
π/2e−ϵ

2n/2, where for a set A ⊂ Sn−1

we denote Aϵ B {x : l2(x ,A) ≤ ϵ} and l2(x ,A) B infy∈A | |x − y | |2.

Proof of Lemma 3.9. By applying Theorem 3.11, for random x
distributed according to the Haar measure on the l2-sphere, with

probability at least 1 −
√
π/2e−2 > 2

3
there is some y ∈ Sn−1,

such that ∥x − y∥2 ≤
2√
n
and l(y) = Ml . We know that norm l is

bl -Lipschitz with respect to ∥ · ∥2, and as such

|l(x) −Ml | = |l(x) − l(y)| ≤ l(x − y) ≤ bl ∥x − y∥ ≤
2 bl
√
n

�

Proof of Lemma 3.10. Consider x drawn uniformly at random

from a unit sphere. According to Lemma 3.9, we have Pr(|l∞(x) −
Ml (n)∞

| > 2/
√
n) < 1

3
and Pr(|l(x) −Ml | > 2 bl /

√
n) < 1

3
.

Let us define τ (x , t) B |{i : |xi | < t}|. We need to show that for

some universal constant K , with probability larger than
2

3
over a

choice of x , we have τ (x , 1

K
√
n
) < n

2
.

Indeed, consider random vector z ∈ Rn , such that all coordi-

nates zi are independent standard normal random variables. It is

well known, that
z
∥z ∥2

is distributed uniformly over a sphere, and

therefore has the same distribution as x . There is a universal con-
stant K1 such that Pr(∥z∥2 > K1

√
n) < 1

6
, and similarly, there is a

constant K2, such that Pr(|zi | <
1

K2

) < 1

12
. Therefore, by Markov

bound we have Pr(τ (z, 1

K2

) > n
2
) < 1

6
. Using union bound, with

probability larger than
2

3
it holds simultanously that ∥z∥2 ≤ K1

√
n

and τ (z, 1

K2

) < n
2
, in which case τ (z/∥z∥2,

1

K1K2

√
n
) < n

2
.

Finally, by union bound, a random vector x satisfies all of the

conditions in the statement of the lemma with positive probability.

�

We now prove that the norm l of the (normalized) all-ones vector

ξ (n) is closely related to themedian of the norm. This all-ones vector

is useful because it can be easily related to a single level of V .

Lemma 3.12 (Flat Median Lemma). Let l : Rn → R be a sym-
metric norm. Then

λ1Ml /
√
logn ≤ l(ξ (n)) ≤ λ2Ml ,

where λ1, λ2 > 0 are absolute constants.

Note that the first inequality is tight for l∞. To prove this lemma,

we will need the following well-known fact, see e.g. [MS86].

Fact 3.13. There are absolute constants 0 < γ1 ≤ γ2 such that for
every integer n ≥ 1,

γ1
√
log(n)/n ≤ Ml (n)∞

≤ γ2
√
log(n)/n.

Proof of Lemma 3.12. Using Lemma 3.10, there is a constant

λ > 0 and a vector x ∈ Sn−1 such that (i) |l∞(x) −Ml∞ | ≤ λ
√
1/n,

(ii) |l(x) −Ml | ≤ λ bl /
√
n and (iii) |{i : |xi | >

1

K
√
n
}| > n

2
By Fact

3.13, Ml∞ = Θ(
√
log(n)/n). On the other hand, mmc(l) ≤ γ

√
n,

for sufficiently small γ , thus λ bl /
√
n < Ml . We can therefore

get constants γ1,γ2 > 0 such that γ1Ml ≤ l(x) ≤ γ2Ml and

γ1
√
log(n)/n ≤ l∞(x) ≤ γ2

√
log(n)/n. Therefore |x | ≤ γ2

√
lognξ (n)

coordinate-wise, and by monotonicity of symmetric norms,

γ1Ml ≤ l(x) ≤ γ2
√
logn l(ξ (n)). (2)

For the second part of the lemma, let J = {i : |xi | >
1

K
√
n
}. As

|J | > n
2
, there is a permutation π such that [n] − J ⊂ π (J ). Let

|x | be a vector obtained from x by taking an absolute value of

every coordinate, and let π (x) denote applying permutation π to

coordinates of vector x . We have |x |+π (|x |) >
ξ (n)
K coordinate-wise,

and therefore by monotonicity of symmetric norms, we have

1

K
l(ξ (n)) ≤ l(|x |+π (|x |)) ≤ l(|x |)+l(π (|x |)) = 2l(x) ≤ 2γ2Ml . �

Next, we show that themedian is roughlymonotone (inn), which
is crucial for the norm to be approximated.

Lemma 3.14 (Monotonicity of Median). Let l : Rn → R be a
symmetric norm. For all n′ ≤ n′′ ≤ n,

Ml (n′) ≤ λmmc(l)
√
logn′Ml (n′′) ,

where λ > 0 is an absolute constant.

Proof. By Lemma 3.12 and the fact that ξ (n
′)
is also a vector in

Sn
′′−1

,

λMl (n′)/
√
logn′ ≤ l(ξ (n

′)) ≤ bl (n′′) ≤ mmc(l)Ml (n′′) . �

We are now ready to prove the Lemma 3.8.

Proof of Lemma 3.8. Fix a β-contributing level i , and let U be

the vector V after removing buckets j = 0, . . . , i . By Lemma 3.12,

there is an absolute constant λ1 > 0 such that

l(Vi ) = α i
√
bi l(ξ

(bi )) ≤ λ1α
i
√
bi Ml (bi ) ,

and similarly

l(U ) ≥
λ2α

i√
logn

√∑
j>i

bj Ml (
∑
j>i bj ) .

We now relate these two inequalities as follows. First, l(Vi ) ≥
β l(V ) ≥ β l(U ). Second, we may assume bi <

∑
j>i bj , as oth-

erwise the lemma holds, and then by monotonicity of the median

(Lemma 3.14) Ml (bi ) ≤ λ3mmc(l)
√
logn Ml

∑
j>i bj , for some abso-

lute constant λ3 > 0. Putting these together, we get

β ·
λ2α

i√
logn

√∑
j>i

bj ≤ λ1α
i
√
bi · λ3mmc(l)

√
logn,

and the lemma follows. �

Lemma 3.15. If level i is β-contributing, then there is an absolute
constant λ > 0 such that

biα
2i ≥

λβ2

mmc(l)2(logα n) log2 n

∑
j≤i

bjα
2j .

Proof of Lemma 3.15. Fix a β-contributing level i , and let h B

argmaxj≤i
√
bjα

j
. We proceed by separating into two cases. First,

if bi ≥ bh then the lemma follows easily by∑
j≤i

bjα
2j ≤ tbhα

2h ≤ O(logα n)biα
2i .

The second case is when bi < bh . Using the definition of a con-

tributing level and Lemma 3.12,

λ1α
i
√
bi Ml (bi ) ≥ l(Vi ) ≥ βl(V ) ≥ λ2βα

h√bh/lognMl (bh ) ,
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for some absolute constants λ1, λ2 > 0. Plugging in Ml (bi ) ≤

λ3mmc(l)
√
lognMl (bh ) , which follows from monotonicity of the

median (Lemma 3.14), for some absolute constant λ3 > 0, we get

λ1α
i
√
bi Ml (bi ) ≥

λ2β
√
bhα

h√
logn

·
Ml (bi )

λ3mmc(l)
√
logn

,

√
biα

i ≥
λ2β

√
bhα

h

λ1λ3mmc(l) logn
.

Squaring the above and observing thatbhα
2h ≥ 1

O (logα n)
∑
j≤i bjα

2j
,

the proof is complete. �

3.4 Putting It Together
Proof of Theorem 1.1. Recall from Section 2 that we assume

our algorithm has access to an oracle NORM that computes l(v) using
queries to the coordinates of v , i.e., our algorithm must provide

query access to any coordinate vi . We assume without loss of

generality that ϵ ≥ 1/poly(n), because an exact algorithm using

space O(n logn) is trivial.
Our algorithm maintains a data structure that eventually pro-

duces a vector V̂ . We will show that with high probability, l(V̂ )
approximates l(v) and we will also bound the space required for

the data structure. The algorithm is presented in Algorithm 1. The

idea is to run the Level1 algorithm with appropriate parameters.

Specifically, to achieve (1 ± ϵ)-approximation to l(v), we set the

approximation guarantee of the buckets to be ϵ ′ B O
(

ϵ 2
logn

)
and

the importance guarantee to be β ′ B O
(

ϵ 5

mmc(l )2 log5 n

)
.

Algorithm 1 OnePassSymmetricNorm(S,n)

1: Input: stream S of from domain [n], and ϵ > 0

2: Output: X
3: (α , ˆb1, ˆb2, . . . , ˆbt ) ← Level1(S,n,α ′ = 1 + O(ϵ), ϵ ′ =

O
(

ϵ 2
logn

)
, β ′ = O

(
ϵ 5

mmc(l )2 log5 n

)
,δ = 0.01ϵ

n );

4: Construct V̂ using α and
ˆb1, ˆb2, . . . , ˆbt ;

5: Invoke NORM, answer each query for vi by V̂i ;
6: X ← output of NORM.
7: Return X .

Let v be the streaming vector. It is approximated by its level

vectorV with baseα = 1+O(ϵ), namely, (1−O(ϵ))l(v) ≤ l(V ) ≤ l(v)
by Proposition 3.4. Observe that t = O(logα n) = O(log(n)/ϵ), and
assume that algorithm Level1 succeeds, i.e., the high-probability
event in Theorem 3.2 indeed occured. Denote by V̂ the output of

Level1, and by V ′ the vector V after removing all buckets that

are not β-contributing, and define V̂ ′ similarly to V̂ , where we set

β B ϵ/t = O(ϵ2/logn). Every β-contributing level is necessarily

β ′-important by Lemmas 3.8 and 3.15 and therefore satisfies
ˆbi ≥

(1 − ϵ ′)bi . We bound the error from removing non-contributing

levels by Lemma 3.7, namely,

(1 −O(ϵ)) l(V ) ≤ (1 −O(logα n) · β) l(V ) ≤ l(V ′) ≤ l(V ).

By monotonicity (Lemma 2.1) and by Lemma 3.5,

l(V̂ ) ≥ l(V̂ ′) = l((V ′\Vi1 ∪ V̂i1 ) . . . \Vik ∪ V̂ik )

≥ (1 − ϵ ′)t l(V ′) ≥ (1 −O(ϵ))l(V ′).

Altogether, (1 −O(ϵ))l(v) ≤ l(V̂ ′) ≤ l(v), which bounds the error

of l(V̂ ′) as required.
The space requirement of the algorithm is dominated by that of

subroutine Level1, namely, O
(
log

12 n
β ′ϵ ′2ϵ 5

)
= O

(
mmc(l )2 log19 n

ϵ 14

)
bits.

Storing the data structure, i.e.,
ˆbi ’s, requires only

O(logα n) logn = O
(
log

2 n
ϵ

)
bits. �

4 LOWER BOUND
The overall plan is to use the multiparty disjointness communica-

tion complexity problem to prove an Ω(mmc(l)2) bits storage lower
bound on any turnstile streaming algorithm outputs a (1 ± 1/6)-

approximation, or better, to the norm of the frequency vector. The

bound is otherwise independent of the norm or n.
Multiparty disjointness is a communication problem where there

are t players who each recieve a subset of [n], and their goal is to

determine whether their sets are intersecting or not. The problem

was introducted by Alon, Matias, and Szegedy [AMS99] to prove

storage lower bounds for the frequency moments problem. After

several improvements [CKS03, BJKS04], the communication com-

plexity of multiparty disjointness was settled at an asymptotically

optimal Ω(n/t) bits of communication by Gronemeier [Gro09].

4.1 John’s Theorem for Symmetric Norms
We will start by proving the following specialization of John’s

Theorem [Joh48] to the case of symmetric norms.

Theorem 4.1 (John’s Theorem for Symmetric Norms). If l(·)
is a symmetric norm on Rn , then there exist 0 < a ≤ b such that
b/a ≤

√
n and, for all x ∈ Rn , al2(x) ≤ l(x) ≤ bl2(x).

Proof. By John’s Theorem [Joh48] there exists a unique ellip-

soid E of maximum volume contained in B = {x ∈ Rn | l(x) ≤ 1}

and, furthermore, B ⊆
√
nE. E is permutation and sign symmetric

because B is, so it follows from Lemma 4.2 that E is a sphere. There-

fore, there exist 0 < a < b such that al2(x) ≤ l(x) ≤ bl2(x), for all
x ∈ Rn , and, furthermore, b/a ≤

√
n. �

Lemma 4.2. If an ellipsoid E is symmetric under every permutation
or change of signs to its coordinates then E is a sphere.

Proof. Let A be a positive semidefinite matrix such that E =
{x ∈ Rn | xTAx = 1}. Since A is a real positive semidefinite matrix,

it can be decomposed as A = SDST , where S is orthonormal and

D is a diagonal matrix with D11 ≥ D22 ≥ · · ·Dnn ≥ 0. We will

show that all of the diagonal entries in D are the same, from which

it follows that A = D and E is a sphere. Let si , for i ∈ [n], be the
columns of S . Let i , 1, choose a permutation P1 so that P1s1 has
its coordinates in decreasing order by magnitude, and choose a

permutation Pi so that Pisi has the same. Now choose a diagonal

matrixD that hasD j j = 1 if (P1s1)j has the same sign as (Pisi )j , and
D j j = −1 if the signs are different, zeros may be treated arbitrarily.

Let P = PT
1
DPi ; since P is the product of permutation matrics and

a sign change matrix we have E = {x | xT PAPT x ≤ 1} by the

symmetry assumption.

We have D11 = sT
1
As1, since s1 is a unit vector orthogonal to

si , i > 1. Let λ = ST PT s1. By construction we have

∑
j λ

2

j = 1

and λi > 0. If we suppose that Dii < D11, then we arrive at the
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following contradiction

D11 = s1As1 = s1PAP
T s1 =

n∑
j=1

λ2jD j j < D11.

Therefore, D11 = Dii , for all i , and E is sphere. �

4.2 Concentration of a Symmetric Norm
Let us begin by discussing a concentration inequality for symmetric

norms. We will need concentration of l(Z ) around
√
nMl , where Z

is distributed according to the canonical Gaussian disribution on n
dimensions. To get it, we will use the following two concentration

theorems for Lipschitz functions. The diffrence between them is

the underlying distribution, whether it is uniform on Sn−1 or mul-

tivariate Gaussian. Comparing l(Z ) against its own median is just

a direct application of Theorem 4.4. There is a little bit more work

to do because we wish to compare l(Z ) to the median of l(·) over
Sn−1, which is also the median of l(Z )/l2(Z ). Note that the M in

Theorem 4.3 is not the same as theM in Theorem 4.4 because the

probability distributions are different.

Theorem 4.3 ([MS86]). Let f : Sn−1 → R be 1-Lipschitz, let
Z ∈ Sn−1 be chosen uniformly at random, and letM be the median
of f (Z ). Then, for all t > 0, Pr(| f (Z ) −M | ≥ t) ≤ 2e−nt

2/2.

Theorem 4.4 ([LT13]). Let f : Rn → R be 1-Lipschitz, let

Z1,Z2, . . . , Zn
iid

∼ N (0, 1), and let M be the median of f (Z ). Then,
for all t > 0, Pr(| f (Z ) −M | ≥ t) ≤ e−t

2/2.

It will also be helpful to have the following fact about χ2 random
variables.

Lemma 4.5. ([LM00]) Let X ∼ χ2n . For all x ≥ 0,
Pr(X ≥ n + 2

√
nx + x) ≤ e−x and Pr(X ≤ n − 2

√
nx) ≤ e−x .

Lemma 4.6. Let n ≥ 2 and let Z ∈ Rn be a random vector with
coordinates Z1,Z2, . . . ,Zn

iid

∼ N (0, 1). LetMl be the median of l(·) on
Sn−1, where l(·) is a symmetric norm on Rn . Then, for all t ≥ 0,

Pr(|l(Z ) −
√
nMl | ≥ t

√
nMl ) ≤ 7e−t

2/200.

Proof. We first establish an inequality that does not have the

correct dependence on t , it is (4), and then use it to bound themedian

of l(Z ) in terms of

√
nMl . That will allow us to apply Theorem 4.4

and get the bound above.

By Theorem 4.1, there exist 0 < al ≤ bl such that bl /al ≤
√
n

and, for all x ∈ Rn , al l2(x) ≤ l(x) ≤ bl l2(x). This implies l(·) is
bl -Lipschitz on R

n
. By scaling the norm (and, as a consequence,

Ml ), we may assume al = 1 without loss of generality.

It is easy to see that

Pr(l(Z ) −
√
nMl ≥ t

√
nMl )

= Pr

(
l(Z ) − l2(Z )Ml +l2(Z )Ml −

√
nMl ≥ t

√
nMl

)
≤ Pr

(
l(Z ) − l2(Z )Ml ≥

√
nMl

t

2

)
+ Pr

(
l2(Z ) −

√
n ≥
√
n
t

2

)
.

(3)

For the second term, notice that l2(Z )
2
is a χ2n random variable.

Using Lemma 4.5, we have

Pr

(
l2(Z ) −

√
n ≥
√
n
t

2

)
= Pr

(
l2(Z )

2 ≥ n(1 +
t

2

)2
)

= Pr

(
l2(Z )

2 ≥ n + 2
√
n(
√
n
t

2

) + (
√
n
t

2

)2
)
≤ e−nt

2/4.

For the first term in (3), we have

Pr

(
|l(Z ) − l2(Z )Ml | ≥

√
nMl

t

2

)
≤ Pr

(����l( Z

l2(Z )
) −Ml

���� ≥ Ml
t

4

)
+ Pr(l2(Z ) ≥ 2

√
n).

The scaled norm l(·)/bl is 1-Lipschitz and Z/l2(Z ) is distributed
according to the Haar distribution, so by Theorem 4.3 and our

previous χ2 bound we have

Pr

(
l(Z ) − l2(Z )Ml ≥

√
nMl

t

2

)
≤ 2 exp{−

nM2

l t
2

32 b2l

} + e−n

≤ 2 exp{−
t2

32

} + e−n

where the final inequality follows becauseMl /bl ≥ al /bl ≥ 1/
√
n.

So far, we have established, ∀ t ≥ 0,

Pr(l(Z ) −
√
nMl ≥ t

√
nMl ) ≤ 2e−t

2/32 + e−n + e−nt
2/4. (4)

It is almost the bound that we want, except for the e−n term. Substi-

tuting in t = 8 and n ≥ 2we find Pr(l(Z ) ≥ 9

√
nMl ) ≤

1

2
. Therefore

the median of l(Z ) is at no larger than 9

√
nMl , so Theorem 4.4 im-

plies, ∀ t ≥ 0 and n ≥ 2,

Pr(l(Z ) − 9
√
nMl ≥ t

√
nMl ) ≤ e−t

2nM
2

l /2 b
2

l ≤ e−t
2/2. (5)

The last step is to combine these two bounds by using (4) to bound,

∀t ≤ 10 and n ≥ 2, Pr(l(Z ) ≥ t
√
nMl ) ≤ 3e−t

2/32+e−n ≤ 7e−t
2/32

and using (5) to establish, ∀t ≥ 10 and n ≥ 2,

Pr(l(Z ) ≥ t
√
nMl ) = Pr(l(Z ) − 9

√
nMl ≥ (t − 9)

√
nMl )

≤ Pr(l(Z ) − 9
√
nMl ≥

t

10

√
nMl ) ≤ e−t

2/200,

which proves the theorem. �

4.3 The Norm of a Randomized Vector
The multiparty disjointness reduction used to prove Theorem 1.2

uses a randomized vector. Given a vector v ∈ Rn , we randomize it

by replacing the coordinates by independent Normally distributed

random variables Vi ∼ N (0,v2i ), for each i ∈ [n].
The next lemma allows us to compare the distribution of the

norm of two different randomized vectors. Recall that a random

variable Y is said to stochastically dominate a random variable X
if Pr(Y ≥ t) ≥ Pr(X ≥ t) for all t ∈ R, or, equivalently, their cdf’s
satisfy FX ≥ FY .

Lemma 4.7. Let σ ,τ ∈ Rn
≥0

satisfy σ ≤ τ coordinate-wise. Let
Xi ∼ N (0,σ 2

i ), independently for i = 1, . . . ,n, and Yi ∼ N (0,τ 2i ),
independently for i = 1, . . . ,n. Then l(Y ) stochastically dominates
l(X ), in particular, for all t ∈ R,

Pr(l(X ) ≥ t) ≤ Pr(l(Y ) ≥ t).

Proof. It is well known that, for any random variables Y ′ and
X ′, Y ′ stochastically dominates X ′ if and only if there is a coupling

of X ′ and Y ′ so that X ′ ≤ Y ′. Since τi ≥ σi we have that |Yi |
stochastically dominates |Xi |, for all i . Therefore, there is a coupling
of the vectors |X | and |Y | so that |X | ≤ |Y | coordinate-wise at

every sample point. This is also a coupling of l(X ) and l(Y ), and by

applying Lemma 2.1 proves that l(X ) ≤ l(Y ) at every sample point.

Thus, l(Y ) stochastically dominates l(X ). �

The main technical lemma we use to prove Theorem 1.2 is the

following.
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Lemma 4.8. If v ∈ Sn−1 has l(v) = bl and V ∈ Rn is a random

vector with coordinates distributed Vi
iid

∼ N (0,v2i ), then Pr(l(V ) ≥
bl /4) ≥ 1/10.

In order to prove Lemma 4.8 we will first need to bound E l(V ).

Lemma 4.9. If v ∈ Sn−1 has l(v) = bl and V is a random vector

with coordinates distributed Vi
iid

∼ N (0,v2i ), then E l(V ) ≥ 0.49 bl .

Proof. If on every outcome it happened that |V | ≥ |v | coordinate-
wise then Lemma 2.1 would imply the desired result. Of course, it

is very likely that for some coordinates |Vi | < |vi |. The idea of the
proof is to “patch up” those coordinates with another vector that

has small norm and then apply the reverse triangle inequality. Let

U = max{|v | − |V |, 0}, where the maximum is taken coordinate-

wise. U was chosen so that |V | + U ≥ |v |, hence by Lemma 2.1

l(|V | + U ) ≥ l(v) = bl , and by the reverse triangle inequality

l(V ) ≥ l(v) − l(U ).
It remains to bound E l(U ). We will begin by bounding E l2(U )

and use this value to bound E l(U ). LetZ ∼ N (0, 1) and let 1A be the

indicator function of the set A. Direct calculation with the Normal

c.d.f. shows that

E l2(U )
2 =

n∑
i=1

2v2i E
(
1[0,1)(Z ) (1 − Z )

2

)
≤ 0.26

∑
v2i = 0.26,

Therefore, E l2(U ) ≤
(
E l2(U )

2
)
1/2
≤ 0.51, where the first inequal-

ity is Jensen’s. Finally, we can conclude E l(U ) ≤ bl E l2(U ) ≤
0.51 bl and E l(V ) ≥ l(v) − E l(U ) ≥ 0.49 bl . �

Proof of Lemma 4.8. For a random variable X and event A, let
E(X ;A) = EX1A(X ) =

∫
A XdP . We begin with the trivial bound,

for any 0 < α < β ,

E l(V ) = E(l(V ); (0,α]) + E(l(V ); (α , β]) + E(l(V ); (β ,∞))

≤ α + β Pr(l(V ) ∈ (α , β]) + E(l(V ); (β ,∞)). (6)

We shall use l2(V ) to bound the last term above. Observe that

E l2(V )
2 = 1 and, letting Z1, . . . ,Zn

iid

∼ N (0, 1),

Var(l2(V )
2) = Var

(∑
i
v2i Z

2

i

)
=

∑
i
v4i Var(Z

2

i ) = 2

∑
i
v4i ≤ 2l2(v)

2 = 2,

because v ∈ Sn−1 has unit length. For k > 0, we have by Cheby-

shev’s Inequality that

Pr(l2(V )
2 ≥
√
2k + 1) ≤

1

k2
,

and, by a change of variables,

Pr(l2(V ) ≥ x) ≤

(
x2 − 1
√
2

)−2
=

2

(x2 − 1)2
≤ 4/x4, for x >

√
2,

and it extends trivially to all x > 0. This implies Pr(l(V ) ≥ bl x) ≤
4/x4, hence Pr(l(V ) ≥ x) ≤ 4(bl /x)

4
. Thus,

E(l(V ); (β ,∞)) ≤

∫ ∞
β

4 b4l
x4

dx =
4 b4l
3β3
.

Now we return to (6) and substitute α = 0.49 bl /4 and β = 2.44 bl .

Together with Lemma 4.9 we get

0.49 bl ≤ E l(V ) ≤
0.49 bl

4

+ 2.32 bl Pr(l(V ) ≥ bl /4) +
4 bl

3(2.44)3
.

Upon rearranging the inequality we find Pr(l(V ) ≥ bl /4) ≥ 1/10,

as desired. �

4.4 Multiparty Disjointness and the Norm on a
Stream

We will show an Ω(mc(l)2) bits bound on the storage needed by a

streaming algorithm for the norm l .

Lemma 4.10. Let l(·) be a symmetric norm on Rn . A turnstile
streaming algorithm that outputs a (1 ± 1

6
)-approximation for l(·),

with probability at least 0.99, uses Ω(mc(l)2) bits in the worst case.

Let recall that every symmetric norm l(·) on Rn induces the

norm l(·)(k ) on Rk , for k < n, by setting any n − k coordinates to

0. The induced norm may have a different ratio of bl /Ml . Since a

streaming algorithm that approximates l(·) must also approximate

l(·)(k ), Lemma 4.10 in fact implies Theorem 1.2.

Proof of Lemma 4.10. We begin with an instance of the multi-

party disjointness promise problem on domain [n] with t = ⌈240
√
n

·Ml /bl ⌉ players. By Lemma 4.1, t ≥ 240

√
nMl /bl ≥ 240. The play-

ers are given sets P1, P2, . . . , Pt ⊆ [n] with the promise that either

they are pairwise disjoint or exactly one element is contained in

every set but they are otherwise disjoint. The players are allowed,

in any order, to communicate bits with each other by writing them

to a shared blackboard, and they are given shared access to a string

of random bits. The players’ goal is for at least one among them to

determine whether the sets P1, . . . , Pt are disjoint or intersecting. If
the players correctly determine the type of instance with probability

at least 0.55, then their communication scheme is called a “correct

protocol”. It is known that for any correct protocol, the players must

write Ω(n/t) bits to the blackboard in the worst case [CKS03]. In

this reduction, each of the t players will transmit the memory of the

streaming algorithm once, which leads to an Ω(n/t2) = Ω(b2l /M
2

l )

bits lower bound on the memory used by the algorithm.

Next, we describe the protocol under the assumption that the

players can perform computations with real numbers. After describ-

ing the protocol we explain that this assumption can be removed

by rounding the real values to a sufficiently high precision.

The players have shared access n2 i.i.d. N (0, 1) random variables

Zi, j , for i, j ∈ [n], and additional independent randomness for the

approximation algorithm.

Let v ∈ argmaxx ∈Sn−1 l(x), so that l(v) = bl . We define an n × n
matrix V with coordinates

Vi, j = Zi, jvi+j mod n .

Since v is fixed, all of the players can compute the matrix using

the shared randomness. Let Vj denote the jth column of V ; it is a
vector with independent Normally distributed entries. The vector

of standard deviations of Vj is a copy of v that has been cyclically

shifted down by j entries, in particular the standard deviation of

Vi,n is vi .
Here is the stream that the players create, they jointly run an

approximation algorithm for the norm on this stream. For each

player i and item j ∈ Pi the ith player adds a copy ofVj to the stream.

More precisely, for each j ∈ Pi player i adds 1 with frequency V1, j ,
2 with frequencyV2, j , etc. The players repeat this protocol 10 times

independently.
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Now we analyze the possible outcomes of one of the ten trials.

Let N ⊆ ∪ti=1Pi be the set of elements that appear in exactly one

set Pi , and let X =
∑
j ∈N Vj . If there is no intersection between the

Pi ’s, then the stream’s frequency vector is X . If they all intersect at

j∗, then the frequency vector is Y = tVj∗ + X .

It remains to compare l(X ) and l(Y ). The coordinates of X are

independent and normally distributed with zero mean and variance

EX 2

i =
∑
j ∈N
EV 2

i, j =
∑
j ∈N

v2i+j mod n ≤

n∑
j=1

v2j = 1.

Let Z be a random vector with coordinates Zi
iid

∼ N (0, 1), for i =
1, . . . ,n. By Lemma 4.7 Z stochastically dominates X , and using

Lemma 4.6 we have Pr( 1√
n
l(X ) ≥ 40Ml ) ≤ Pr( 1√

n
l(Z ) ≥ 40Ml ) ≤

0.005. On the other hand, Y stochastically dominates tVj∗ and
Lemma 4.8 additionally implies

Pr(l(tVj∗ + X ) ≥ 60Ml
√
n) ≥ Pr(tl(Vj∗ ) ≥ 60Ml

√
n)

≥ Pr(l(Vj∗ ) ≥ bl /4) ≥ 1/10.

The final player checks whether the maximum approximation

returned among the 10 trials is larger or smaller than 50Ml
√
n and

declares “intersecting” or “disjoint” accordingly.

The output of the protocol is correct on an intersecting instance if

at least one of the 10 stream vectors has norm larger than 60Ml
√
n

and the algorithm always returns a (1 ± 1/6)-approximation. It is

correct on a disjoint instance if all of the stream vectors have norm

smaller than 40Ml
√
n and the algorithm always returns a (1± 1/6)-

approximation. If the instance is an intersecting one, then with

probability at least 0.1 the magnitude of l(tVj∗ +X ) is large enough.
At least one of the ten trials will have this property with probability

at least 1− 0.910 ≥ 0.65, because the trials use independent random

matrices. Since the algorithm correctly approximates the normwith

probability at least 0.99, it follows that the protocol is correct for an

intersecting instance with probability at least 0.65− 10 · 0.01 = 0.55.
On a disjoint instance, one trial of the protocol is successful with

probability at least 0.992 ≥ 0.98 where one factor comes from the

success of the approximation algorithm and the other from our

earlier application of the concentration bound. Thus, the output of

the protocol correctly identifies a disjoint instance with probability

at least 1 − 10 · 0.02 = 0.8, by a union bound over the ten trials.

Therefore, this protocol is a correct protocol.

It remains to describe the rounding of the real values. It suffices to

represent each value with a sufficiently high precision. We replace

each variable as Zi, j with a discrete random variable Zi, j = Ẑi, j +

δi, j where Ẑi, j are distributed i.i.d. N (0, 1) and δi, j is difference

between Ẑi, j and its closest point in {
j
n4
| j = −n5, . . . ,n5 − 1,n5}.

In particular, with very high probability, |δi, j | ≤ 1/2n4 for all

pairs i, j. We also replace v by a vector v = v̂ + δv where v̂ ∈
argmaxx ∈Sn−1 l(x), so that l(v̂) = bl , and where δv is a vector

containing the difference between each entry of v̂i and the nearest

integer multiple of n−4 to it.

Each frequency in the stream is the sum of at most t variables.
Performing these replacements changes each frequency in the

stream by no more than 2tn−4. Let ∆ ∈ Rn denote this change, then

l(∆) ≤ bl l2(∆) ≤ 2 bl tn
−7/2 = O(Ml /n

3). Applying the triangle

and reverse triangle inequalities shows that the change negligible.

Therefore, the discretized protocol is correct also, which completes

the proof. �

Suppose there is an algorithm with the weaker,D-approximation

guarantee. Namely, D > 1 and with probability at least 0.99, the

algorithm returns a value
ˆl satisfying l(V ) ≤ ˆl ≤ Dl(V ), where V is

the stream vector. Themain lower bound, Theorem 1.2, can be easily

adapted this setting, where we get a lower bound of Ω(mmc(l)2/D2)

bits instead, with a small modification to the proof of Lemma 4.10.

Theorem 1.4. Let l be a symmetric norm on Rn . Any turnstile
streaming algorithm that outputs, with probability at least 0.99, a
D-approximation for l(·) must use Ω(mmc(l)2/D2) bits of space in
the worst case.

Indeed, the proof goes as above, except that the number of players

should be increased to t = ⌈240D
√
nMl /bl ⌉. The disjoint instances

do not change, but the norm is D times larger on an intersecting

instance. Thus, the D-approximation algorithm can distinguish the

two and we get the bound Ω(mc(l)2/D2), which is easily boosted

to Ω(mmc(l)2/D2) bits, as before. When l = l∞, this matches the

trade-off proved by Saks and Sun [SS02].

5 OPTIMAL SPACE-APPROXIMATION
TRADEOFF

In this section we obtain a nearly tight space-approximation trade-

off for computing any symmetric norm in the data-stream model.

Specifically, we show below how our earlier streaming algorithm

can be adapted to match the lower bound in Theorem 1.4, up to a

polylog(n) factor. The adapted algorithm achieves, for any D ≥ 1.1

and symmetric norm l , a D-approximation within Õ(mmc(l)2/D2)

bits of storage. The key part of the analysis is to define, a new

symmetric function l(D) on R
n
such that l(x) ≤ l(D)(x) ≤ Dl(x), for

all x ∈ Rn , and such that our earlier algorithm can find a (1 ± 1/2)-

approximation to l ′(x) using polylog(n) ·mmc(l)2/D2
bits of space.

We start in Section 5.1 with an algorithm for Q-norms (formaly

defined in Section 6.2), a special case that is easier to prove. We

then leverage ideas from this simpler case to design in Section 5.2

an algorithm for general symmetric norm.

5.1 D-Approximation for Q-norms
Theorem 5.1. Let l : RN → R be a Q-norm. Then for every

1.1 < D ≤ mmc(l) there is a randomized streaming algorithm that
D-approximates l and uses Õ(mmc(l)2/D2) bits of space.

Proof. Fix aQ-norm l and 1 < D ≤ mmc(l). We first show that

for all x ∈ RN ,

l(D)(x) B max

(
DMl l2(x)

logn
, l(x)

)
is an O(D)-approximation to l(x). Since l is a Q-norm, we have

by Lemma 6.9 that ξ (n) is roughly a minimizer of l(x) over SN−1,
namely,

∀x ∈ RN−1, l(ξ (n)) l2(x) ≤ 6

√
logn l(x).

Recalling fromLemma 3.12 that, for some absolute constants λ1, λ2 >

0, λ1Ml /
√
logn ≤ l(ξ (n)) ≤ λ2Ml , we have that λ1Ml l2(x) ≤
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6(logn) · l(x). Altogether we obtain (assuming, without loss of gen-

erality, that λ1 < 1)

∀x ∈ RN−1, l(x) ≤ l(D)(x) ≤
6D

λ1
l(x). (7)

Our algorithm for l simply applies Theorem 1.1 to compute an

O(1)-approximation to l(D)(x), using mmc(l(D))
2 · polylog(n) bits

of space. This is indeed possible because l(D) is clearly a symmetric

norm on Rn , and yields anO(D)-approximation for l , which implies

D-approximation by scaling D appropriately.

It remains to boundmmc(l(D)) and show it is smaller thanmmc(l)
by factorD roughly. By Lemma 6.8, there is an absolute constant λ >

0 such that Ml (n′) ≥ Ml (n)/(λ
√
logn) for all n′ ≤ n. Let n∗ ≤ n be

such that mmc(l) = bl (n∗)/Ml (n∗) , thus mmc(l) ≤ λ
√
lognmc(l (n)).

Since D ≤ mmc(l), we have

DMl ≤ λ
√
lognmc(l (n))Ml ≤ λ

√
logn · bl

⇒ b
l (n
′)

D
≤ max

(
λbl /

√
logn, bl

)
.

By definition of lD ,Ml (n
′)

D
≥ max

(
DMl
logn ,

Ml

λ
√
logn

)
. Thus,

mmc(l(D)) ≤
λ logn

D
mc(l (n)) ≤

λ logn

D
mmc(l (n)).

We conclude that there exists a streaming algorithm computes an

O(D)-approximation for l using Õ(mmc(lD )
2) = Õ(mmc(l)2/D2)

bits of space. �

5.2 D-Approximation for General Symmetric
Norms

Theorem 1.3. Let l be a symmetric norm on Rn . For every 1.1 ≤

D ≤ mmc(l) there is a one-pass streaming algorithm that on input
stream vector v ∈ Rn computes, with probability at least 0.99, a
D-approximation to l(v) and uses (mmc(l)2/D2) · poly(logn) bits of
space.

Proof. Let α > 1 be a constant. Given a vector v ∈ Rn with

integer coordinates, analogously to Defintion 3.3, define V α =

V α
1
+V α

2
+ . . .+V α

t , whereV α
i is the level i vector ofv with base α ,

and appropriate t = O(logn). For each i ∈ [t], we define similarly

b
(α )
i as the number of coordinates falling into level i . Define for

each integer 1 ≤ n′ ≤ n, h(ξ (n
′)) B min{Dl(ξ (n

′)), bl (n′) }, and

h(V α
i ) B h(ξ (b

(α )
i ))l2(V

α
i ) = min{Dl(V α

i ), bl (b) l2(V
α
i )}, and

h(α )(v) B
∑
i ∈[t ]

h(V α
i ).

We will omit the superscript α if it is clear from the context. We

first claim that h(v) is an Õ(D)-approximation to l(v). Indeed

l(v) ≤ α
∑
i ∈[t ]

l(Vi ) ≤ α
∑
i ∈[t ]

min{Dl(Vi ), bl (bi ) l2(Vi )} = αh(v),

(8)

and by monotonicity and homogeneity of norm l

h(v) =
∑
i ∈[t ]

h(Vi ) ≤
∑
i ∈[t ]

Dl(Vi ) ≤ Dt max

i ∈[t ]
l(Vi ) ≤ (λD logn)l(v),

where λ > 0 is a constant. Thus h(v) is an Õ(D)-approximation to

l(v).

It remains to prove that h(v) can be O(1)-approximated using

Õ(mmc(l)2/D2) bits of space. Let β = O(1/logn) and

β ′ = O

(
D2β2

log
2 nmmc(l)2

)
.

Let v ∈ Rn be the streaming vector. We run algorithm Level1 with
importance parameter β ′, base parameter α and constant error

parameter ϵ ∈ (0, 1/2). By Theorem 3.2, Level1 is guaranteed to

output a vector V̂ α ′
with base α ′ = Θ(1) and with the following

guarantees. Let t ′ = O(logn/logα ′), then for every i ∈ [t ′], ˆb
(α ′)
i ≤

b
(α ′)
i and if V̂ α ′

i is β ′-important, then also (1−ϵ)b
(α ′)
i ≤ ˆb

(α ′)
i . Thus,∑

i ∈[t ′]

h(V̂ α ′
i ) =

∑
i ∈[t ′]

min{Dl(V̂ α ′
i ), bl(

ˆbi ) l2(V̂
α ′
i )}

≤
∑
i ∈[t ′]

min{Dl(V α ′
i ), bl (bi ) l2(V

α ′
i )} = h(V

α ′). (9)

We prove in Lemma 5.3 below that a β-contributing level of h(v)

(defined as h(V α ′
i ) ≥ βh(V α ′)) is a β ′-important level. LetU ⊂ [t ′]

be the set of contributing levels. Then,

h(V̂ α ′) ≥
∑
i ∈U

h(V̂ α ′
i ) =

∑
i ∈U

min{Dl(V̂ α ′
i ), bl(

ˆbi ) l2(V̂
α ′
i )}

≥
(1 − ϵ)

2

∑
i ∈U

min{Dl(V α ′
i ), bl (bi ) l2(V

α ′
i )},

where the second inequality follows from Lemma 3.5 and that

bl ˆbi
≥ blbi

/2. Indeed, let v∗ ∈ Rbi , then we cut v∗ into two

pieces with roughly equal number of non-zeros v∗ = v∗
1
+v∗

2
, then

l(v∗) ≤ l(v∗
1
) + l(v∗

2
) ≤ 2 bl ˆbi

. On the other hand,

∑
i<U h(Vi ) ≤

tβh(V ) ≤ λ1h(V ), for some constant λ1 > 0 that can be chosen arbi-

trarily small. Thus h(V̂ α ′) ≥ (1 − ϵ)(1 − λ1)h
(α ′)(v)/2 is a constant-

factor approximation to h(V ). Last, by Theorem 3.2, Level1 uses

Õ(1/β ′) = Õ(mmc(l)2/D2) bits of space. �

Lemma 5.2. For every integers 0 < n1 ≤ n2 ≤ n,

h(ξ (n1)) ≤
λ
√
lognmmc(l)

D
h(ξ (n2)),

for some absoute constant λ > 0.

Proof. Since h(ξ (n1)) = min

(
Dl(ξ (n1)), bl (n1)

)
and h(ξ (n2)) =

min

(
Dl(ξ (n2)), bl (n2)

)
, then

h(ξ (n1))/h(ξ (n2))

= max

©«
min

(
Dl(ξ (n1)), bl (n1)

)
Dl(ξ (n2))

,
min

(
Dl(ξ (n1)), bl (n1)

)
bl (n2)

ª®®¬
≤ max

(
λ
√
lognmin

(
mmc(l),

mmc(l)

D

)
,min

(
λDMl (n1)

bl (n2)
,
bl (n1)

bl (n2)

))
≤

λ
√
lognmmc(l)

D
, (10)

where the second inequality follows from Lemma 3.12 and Lemma

3.14. The last inequality uses bl (n1) ≤ bl (n2) and λ > 0 is an absolute

constant. �

Lemma 5.3. If a level i is β-contributing, i.e., h(Vi ) ≥ βh(V ), then

(1) bi ≥
λD2β 2

log
2 nmmc(l )2

∑
j>i bj ;
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(2) biα
2i ≥

λD2β 2

log
2 nmmc(l )2

∑
j≤i bjα

2j ,

for some constant λ > 0.

Proof. The proof is similar to that of Lemma 3.8 and that of

Lemma 3.15. Since level i is β-contributing, we have

h(Vi ) ≥ β
∑
j ∈[t ]

h(Vj ).

Let j∗ = argmaxj>i bj . We can assume bi ≤ bj∗ since otherwise

bi ≥
∑
j>i bi/t . Thus, by Lemma 5.2

h(Vi ) ≥ βh(Vj∗ ) ⇒
√
bi ≥

Dβ√
λ′ lognmmc(l)

√
bj∗

⇒ bi ≥
D2β2

λ′t lognmmc(l)2

∑
j>i

bj .

where λ′ > 0 is an absolute constant.

For the second inequality, let j ′ B argmaxj≤i
√
bjα

j
.We proceed

by separating into two cases. First, if bi ≥ bj′ then the lemma

follows easily by

biα
2i ≥ bj′α

2j′ ≥

∑
j≤i bjα

2j

t
.

The second case is when bi < bj′ ,

α i
√
bih(ξ

(i)) = h(Vi ) ≥ βh(V ) ≥ βh(Vj′) = βα j
′
√
bj′h(ξ

(j′)).

By Lemma 5.2, we get

α i
√
bi ≥ βα j

′
√
bj′

h(ξ (j
′))

h(ξ i )
≥

Dβ
√
bj′α

j′√
λ′′ lognmmc(l)

,

where λ′′ > 0 is an absolute constant. Squaring the above and

observing that biα
2i ≥

D2β 2

λ′′t lognmmc(l )2
∑
j≤i bjα

2j
, the proof is

complete. �

6 APPLICATIONS & EXAMPLES
6.1 The Top-k Norm Φ(k )
The top-k norm onRn is simply the sum of the k largest coordinates

in absolute value, formally, Φ(k)(x) B
∑k
i=1 |x |[i], where |x |[1] ≥

. . . ≥ |x |[n] are the coordinates ordered by non-increasing absolute

value. It is known (see e.g. [Bha97, Exer. IV.1.18]) that the dual norm

of Φ(k ) is Φ
′
(k)(x) B max{l∞(x), l1(x)/k}. We can understand the

streaming space complexity of such a norm l by comparing the

maximum and the median of such a norm over Sn−1, which is an

easy calculation, and then applying Theorems 1.1 and 1.2.

Theorem 6.1. There are absolute constants λ1, λ2 > 0 such that
for all k = 1, . . . ,n,

λ1

√
n

k logn
≤ mmc(Φ(k )) ≤ λ2

√
n

k
, and

λ1

√
k

log(k) + 1
≤ mmc(Φ′

(k )) ≤ λ2
√
k .

The above inequalities are existentially tight, by considering the

cases k = 1 and k = n. To prove this theorem, we will need the next

two lemmas. They both assume 1 ≤ k ≤ n.

Lemma 6.2. For all x ∈ Rn ,
√

k
n l2(x) ≤ Φ(k )(x) ≤

√
k l2(x).

We remark that the second inequality above is tight for x = ξ (k ).

Proof. Fix x ∈ Rn . We use Cauchy-Schwarz

k∑
i=1
|x |[i] ≤

√
k

( k∑
i=1
|x |2
[i]

)1/2
≤
√
k

( n∑
i=1

x2
[i]

)
1/2

.

For the second inequality, we use monotonicity of lp -norms

k∑
i=1
|x |[i] ≥

( k∑
i=1
|x |2
[i]

)1/2
≥

(
k

n

n∑
i=1
|x |2
[i]

)
1/2

. �

Lemma 6.3.
λ1k√
n
≤ MΦ(k ) ≤

λ2k
√
logn
√
n

for some absolute constants
λ1, λ2 > 0.

Proof. For the first inequality,Φ(k )(x) ≥
k
n

∑n
i=1 |x |[i] =

k
n l1(x).

Therefore, MΦ(k ) ≥
k
n Ml1 ≥ λ1k/

√
n for some absolute constant

λ1 > 0. For the second inequality, Φ(k)(x) ≤ kl∞(x), and thus

MΦ(k ) ≤ kMl∞ ≤
λ2k
√
logn
√
n

for some absolute constant λ2 > 0. �

Proof of Theorem 6.1. To boundmmc(Φ(k )), consider firstn
′ ≥

k , then by a direct calculation,

√
k

(λ2k
√
logn′/

√
n′)
≤

b
Φ(n
′)

(k )

M
Φ(n
′)

(k )

≤

√
k

(λ1k/
√
n′)
.

For n′ ≤ k , we have Φ(k )(x) = l1(x) for all x ∈ R
n′
, and we know

that mmc(l1) is a constant. The first part of the theorem follows.

To bound mmc(Φ′
(k )), consider first the case n′ ≥ k . For all

x ∈ Rn
′

we have Φ′
(k )(x) ≥ l1(x)/k , thus MΦ′(n

′)

(k )
= Ω(

√
n′/k). In

addition, b
Φ′(n

′)

(k )
≤ max{1,

√
n′/k}, and thus b

Φ′(n
′)

(k )
/M

Φ′(n
′)

(k )
≤
√
k .

Consider now the case n′ ≤ k . For all x ∈ Rn
′

, we have Φ′
(k )(x) =

l∞(x), and thus, b
Φ′(n

′)

(k )
/M

Φ′(n
′)

(k )
= Θ(

√
n′/logn′). We conclude that

mmc(Φ′
(k )) = Ω(

√
k/(logk + 1)). �

6.2 Q-Norms and Q ′-Norms
A norm l : Rn → R is called a Q-norm if there exists a symmetric

norm Φ : Rn → R such that

∀x ∈ Rn , l(x) = Φ(x2)1/2,

where xp = (x
p
1
,x

p
2
, . . . ,x

p
n ) denotes coordinate-wise p-th power.

A norm l ′ : Rn → R is called a Q ′-norm if its dual norm, which is

given by l(x) = sup{
⟨x,y ⟩
l ′(y) : y , 0}, is a Q-norm.

We can show that every Q ′-norm can be approximated using

polylogarithmic space, by bounding bl ′/Ml ′ and then applying

Theorem 1.1, as follows.

Theorem 6.4. For every Q ′-norm l ′ : Rn → R, mmc(l ′) =
O(logn).

Corollary 6.5 (Streaming Complexity of Q ′-Norms). Every
Q ′-norm l ′ : Rn → R can be (1 + ϵ)-approximated by a one-pass
streaming algorithm that uses poly(log(n)/ϵ) space.

The proof of Theorem 6.4 will follow by establishing the four

lemmas below. It builds on the machinery developed in Section 3 to

compare the median of l to l(ξ (n
′)), where ξ (n

′)
is the l2-normalized

all-ones vector of dimension n′.
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Lemma 6.6. Let l : Rn → R be a Q-norm, and let 0 < n′ ≤ n.
Then l(ξ (n

′)) ≥ l(ξ (n))/2.

Proof. Write n = qn′ + r , where r < n′ is the remainder. Then

ξ (n) =

©«
√

n′
n (ξ
(n′), . . . , ξ (n

′)︸            ︷︷            ︸
q times

),
√

r
n ξ
(r )

ª®®®®¬
.

By monotonicity of symmetric norms and the triangle inequality,

l(ξ (n)) ≤ l

©«
√

n′
n (ξ
(n′), . . . , ξ (n

′)︸            ︷︷            ︸
q times

)

ª®®®®¬
+ l

(√
r
n ξ
(r )

)

≤ 2l

©«
√

n′
n (ξ
(n′), . . . , ξ (n

′)︸            ︷︷            ︸
q times

)

ª®®®®¬
.

We can write l(x) = Φ(x2)1/2 for some symmetric norm Φ. Thus,
by the triangle inequality,

l

©«
√

n′
n (ξ
(n′), . . . , ξ (n

′)︸            ︷︷            ︸
q times

)

ª®®®®¬
=

√
n′
n Φ

(
(ξ (n

′))2, . . . , (ξ (n
′))2

)
1/2

≤

√
n′
n

(
q Φ((ξ (n

′))2)

)
1/2
≤ l(ξ (n

′)).

�

Lemma 6.7. Let l : Rn → R be a Q-norm, then for all x ∈ Rn ,
l(x) ≤ l2(x) .

Proof. Let l(x) = Φ(x2)1/2 for some symmetric norm Φ. By

Lemma 2.2,Φ(x) ≤ l1(x) and therefore l(x) = (Φ(x
2))1/2 ≤ l1(x

2)1/2 =

l2(x). �

The next lemma can be viewed as a complement of Lemma 3.14

(monotonicity of the median) for the special case of Q-norms.

Lemma 6.8. Let l : Rn → R be a Q-norm, and let 0 < n′ ≤ n be
an integer. Then

Ml (n) ≤ λ
√
lognMl (n′)

for some absolute constant λ > 0.

Proof. By Lemmas 3.12 and 6.6, we can find absolute constant

λ1, λ2 > 0 such that

λ1Ml (n)/
√
logn ≤ l(ξ (n)) ≤ 2l(ξ (n

′)) ≤ 2λ2Ml (n′) . �

Now we show that a Q-norm achieves roughly the minimum at

ξ (n).

Lemma 6.9 (Flat Minimum). Let l : Rn → R be a Q-norm. Then
∀x ∈ Sn−1, l(ξn ) ≤ 6

√
logn l(x).

Proof. Set α B 1/2 and fix a vector x ∈ Sn−1. We permute its

coordinates and write |x | = (V1;V2; . . . ;Vt ;V
′), where Vi = {|x j | :

α j < |x j | ≤ α j−1} for i = 1, . . . , t = logn, and V ′ = {|x j | : |x j | ≤
1/n}. Let bi = |Vi |. Since l2(x) = 1,

1 = l2(x)
2 ≤

t∑
i=1

biα
2(i−1) + 1/n.

Thus, there exists i ≤ t for which |Vi |α
2(i−1) ≥ 1

2t , and together

with Lemma 6.6,

l(x) ≥ l(Vi ) ≥
√
biα

i l(ξ (bi )) ≥

√
α 2

2t l(ξ (bi )) ≥
√

1

8t l(ξ
(n))/2. �

Proof of Theorem 6.4. Let l be the Q-norm which is dual to

l ′. By Lemma 6.9, ∀x ∈ Rn , l2(x) ≤ 6

√
logn/l(ξ (n)) · l(x), which

implies, using Fact 2.3, that bl ′ ≤ 6

√
logn/l(ξ (n)). By Fact 2.4 and

Lemma 3.12, we know that 1/Ml ′ ≤ Ml ≤ l(ξ (n))
√
logn/λ1. The

theorem follows by putting the two bounds together. �

7 CONCLUDING REMARKS
There is obviously a poly( 1ϵ logn) gap between our upper and lower

bounds. For the lp norms, p > 2, our lower bound is Ω(n1−2/p ),
matching the true space complexity towithin aΘ(logn) factor [LW13,

Gan15]. Despite the gap, we do partially answer Open Problem 30

(Universal Sketching) in [sub06], by showing that the class of sym-

metric norms admits universal sketches, and also Open Problem 5

(Sketchable Distances) in [sub06], by showing that every symmetric

norm l admits streaming algorithms and is thus sketchable with

space mmc(l)2 · poly( 1ϵ logn).
Both our algorithm and our lower bound rely on the symme-

try of the norm. It would be very interesting to see whether the

modulus of concentration is a key factor in the space complexity

also for general norms. Our results do extend a little towards more

general norms. Notice that, given any symmetric norm l on Rn

and invertible linear transformation A : Rn → Rn , our results
also apply to the streaming complexity of lA B l(A(·)), which is

always a norm but is generally not symmetric. For example, l2(A(·))
is the norm induced by the inner product ⟨x ,y⟩A B yTATAx , and
it is not symmetric unless all singular values of A are the same. To

compute lA(v) one applies A to the incoming stream vector v and

then runs an algorithm for l (we do not count the storage for A).
Therefore, the space complexity of lA is no worse than that of l ,
and, as the same argument applies to l = lA(A

−1(·)), the two must

have the same streaming complexity (we assume that O(logn) bits
suffice to represent any entry of A or A−1 to sufficient precision).

More generally, norms that can be related to each other by com-

position with an invertible linear transformation, as above, must

have the same space complexity. On the other hand, this opera-

tion does not preserve mc(l) or mmc(l). Perhaps a norm should

be put into a “canonical form” that is more amenable to deter-

mining its space complexity. For example, the distorted Euclidean

norm l(v) = (vTATAv)1/2, mentioned above, may have mmc(l)
on the order of min{

√
n,σ1(A)/σn (A)}, but it can be seen immedi-

ately to have space complexity poly( 1ϵ logn) ·mmc(l2)
2
bits (in fact

O( 1ϵ 2 logn) bits), from the AMS algorithm [AMS99] and by recog-

nizing l(v) = l2(Av) (again assuming O(logn) bits represents any
entry of A to sufficient precision). Can we use mmc(·) to determine

the space complexity of every norm?

It would be very interesting also to design a small sketch that

is oblivious to the linear transformation. For instance, letM be a

family of linear transformations where lA , lB for all A,B ∈ M.

Is there a linear sketch that approximates the norm lA(v) for any
streamed vectorv ∈ Rn and linear transformationA ∈ M? Observe

that no small sketch can be oblivious to all linear transformations,

since that would allow recovery of every coordinate of v .
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Our Theorem 1.3 shows a quadratic space-approximation trade-

off for every symmetric norm. Previously, this was only known

for the l∞ norm due to Saks and Sun [SS02]. Investigating space-

approxmation tradeoff is an interesting direction because such

tradeoffs appear in the sketching lower bounds of [AKR15], how-

ever no matching algorithms are known for other specific norms

of interests, such as the Earth Mover Distance and the trace norm

(of matrices).
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