
Streaming Facility Location in High Dimension
via Geometric Hashing

(Full version available at arXiv:2204.02095)

Artur Czumaj∗
University of Warwick

A.Czumaj@warwick.ac.uk

Shaofeng H.-C. Jiang†
Peking University

shaofeng.jiang@pku.edu.cn

Robert Krauthgamer‡
Weizmann Institute of Science

robert.krauthgamer@weizmann.ac.il

Pavel Veselý§
Charles University

vesely@iuuk.mff.cuni.cz

Mingwei Yang
Peking University

yangmingwei@pku.edu.cn

Abstract—In Euclidean Uniform Facility Location, the input
is a set of clients in R

d and the goal is to place facilities
to serve them, so as to minimize the total cost of opening
facilities plus connecting the clients. We study the classical
setting of dynamic geometric streams, where the clients are
presented as a sequence of insertions and deletions of points in the
grid {1, . . . ,Δ}d, and we focus on the high-dimensional regime,
where the algorithm’s space complexity must be polynomial (and
certainly not exponential) in d · logΔ.

We present a new algorithmic framework, based on impor-
tance sampling from the stream, for O(1)-approximation of the
optimal cost using only poly(d · logΔ) space. This framework
is easy to implement in two passes, one for sampling points
and the other for estimating their contribution. Over random-
order streams, we can extend this to a one-pass algorithm by
using the two halves of the stream separately. Our main result,
for arbitrary-order streams, computes O(d1.5)-approximation
in one pass by using the new framework but combining the
two passes differently. This improves upon previous algorithms
that either need space exponential in d or only guarantee
O(d · log2 Δ)-approximation, and therefore our algorithms for
high-dimensional streams are the first to avoid the O(logΔ)-
factor in approximation that is inherent to the widely-used
quadtree decomposition. Our improvement is achieved by em-
ploying a geometric hashing scheme that maps points in R

d into
buckets of bounded diameter, with the key property that every
point set of small-enough diameter is hashed into at most poly(d)
distinct buckets.

Finally, we complement our results with a proof that every
streaming 1.085-approximation algorithm requires space expo-
nential in poly(d · logΔ), even for insertion-only streams.

Index Terms—sublinear algorithms, facility location, streaming
algorithms, hash functions, high dimension

Shaofeng H.-C. Jiang is partially supported by a national key R&D program
of China No. 2021YFA1000900.∗ Research partially supported by the Centre for Discrete Mathematics and
its Applications (DIMAP), by a Weizmann-UK Making Connections Grant,
by an IBM Faculty Award, and by EPSRC award EP/V01305X/1.† Research partially supported by a startup fund from Peking University,
and the Advanced Institute of Information Technology, Peking University.‡ Work partially supported by ONR Award N00014-18-1-2364, by the Israel
Science Foundation grant #1086/18, by a Weizmann-UK Making Connections
Grant, by a Minerva Foundation grant, and the Weizmann Data Science
Research Center.
§ Partially supported by GA ČR project 22-22997S and by Center

for Foundations of Modern Computer Science (Charles University project
UNCE/SCI/004).

I. INTRODUCTION

Facility Location is a classical problem in combinatorial

optimization and operations research, and models a scenario

where one wishes to find a placement of facilities that opti-

mizes the total service cost for a given set of customers. The

cost has two different parts: opening a facility at a location

incurs a so-called opening cost, and serving each customer

incurs a so-called connection cost. The goal is to minimize the

sum of both costs. Typical examples of applications include

placement of servers in a network and location planning.
Euclidean Uniform Facility Location: In the Uniform

Facility Location (UFL) problem, all possible facilities have

the same opening cost f > 0. This is essentially a clustering

problem; it is similar to k-median, except that the number of

clusters is not prescribed in advance, but rather optimized by

adding to the objective a regularization term (proportional to

the number of clusters).

We consider the Euclidean version of UFL, where the data

points and facilities all lie in R
d. Formally, given as input a

dataset P ⊆ R
d and f > 0, the goal is to open a set F ⊆ R

d of

facilities, so as to minimize the total connection cost (the cost

of connecting each data point to its nearest facility according

to the Euclidean distance) plus the total opening cost (opening

each facility costs f). That is, the goal is to find F ⊆ R
d that

minimizes

cost(P, F) :=
∑
p∈P

dist(p, F) + f · |F | ,

where we denote dist(p, F) := minq∈F dist(p, q) and

dist(p, q) := ‖p−q‖2 is the Euclidean distance. This problem

has been studied extensively for decades in many algorithmic

settings, including offline, online, dynamic, sublinear-time,

streaming, and so forth; see Section I-C for an overview and

references.
Streaming Setting: Euclidean UFL has also played a

special role in the study of algorithms for dynamic ge-

ometric streams. Indeed, the seminal paper by Indyk [1],

which introduced this model, considered UFL as one of its

benchmark problems, together with the minimum spanning

462

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00050

tree, minimum-weight (bichromatic) matching, and k-median

problems.

In the setting of dynamic geometric streams, the input P
is presented as a stream of insertions and deletions of points

from [Δ]d := {1, 2, . . . ,Δ}d. The algorithms should be space-
efficient, ideally using space that is polylogarithmic in Δd,

which is a natural benchmark because it is polynomial in

the representation of a single point using O(d · logΔ) bits.

Due to this constraint, we cannot store the actual solution

which could take space Ω(Δd), hence the algorithms only

approximate the optimal cost OPT, which in case of UFL

is OPT := minF⊆Rd cost(P, F). We say that a randomized

algorithm achieves α-approximation, for α ≥ 1, if it outputs

an estimate E that with probability at least 2/3 satisfies

OPT ≤ E ≤ α·OPT. (In many cases, this success probability

can be amplified using standard methods.)

In this dynamic geometric streaming model, algorithms gen-

erally exhibit a dichotomy, as their space complexity is either

polynomial or exponential in the dimension d. Obviously,

algorithms whose space complexity is exponential in d are

applicable only in a low-dimensional setting, say d = O(1) or

d = O(log logΔ). This class contains many algorithms that

achieve an O(1)-approximation, or even (1+ε)-approximation

for arbitrary fixed ε > 0, from facility location [2], [3] to

minimum spanning tree [4], and several other basic geometric

problems [5]–[7]. The list would extend even further if we

included algorithms for the insertion-only model.

One would clearly prefer algorithms whose space complex-

ity is polynomial in d. Such algorithms are known for facility

location and several other problems, but unfortunately their

approximation ratio is usually high, for example O(d · logΔ)
or even higher; see, e.g., [1], [8], [9]. A major open problem

in the area is to break this barrier and significantly improve

the approximation factor, say to O(1) if not 1 + ε, to match

the ratios obtainable in low dimension, while using space

polynomial in d · logΔ. This question was partially resolved

for k-median [10] and k-means [11], by designing coresets, to

achieve (1 + ε)-approximation using space k · poly(d · logΔ)
for a fixed ε > 0; however, these bounds are low-space only

for small values of k.

As for UFL, the state-of-the-art streaming algorithms

achieve only: O(d·log2Δ)-approximation using space poly(d·
logΔ) [1]; O(1)-approximation for constant d [2] (which

seems to generalize to 2O(d)-approximation using 2O(d)-

space); and (1 + ε)-approximation for d = 2 [3] (even

if this approach could be extended to general d, its space

bound seems to be (logΔ)Ω(d)). Since one can expect many

applications of UFL (or clustering in general) to require high

dimension d, the above bounds would not be satisfactory for

either having large approximation ratio or using prohibitively

large space.

The main barrier for closing this gap is the lack of suitable

techniques for high-dimensional spaces. In particular, the

quadtree subdivision is a natural geometric decomposition

technique used in almost all previous geometric streaming

algorithms, allowing for a lot of strong results in a low

dimension [3]–[7]. However, a quadtree in a high dimension,

as used by Indyk [1] and more recent follow-up papers [8], [9],

gives a tree embedding, which is very useful algorithmically,

but necessarily distorts distances by an Ω(d · logΔ)-factor.

It seems that new techniques must be developed in order

to get a better approximation ratio in a high dimension, but

surprisingly, very little, if at all, is known beyond the quadtree

techniques. This technical barrier is not specific to UFL, but

rather applies to many geometric problems.

A. Results

We break this barrier of existing techniques, and devise a

geometric importance-sampling approach that is based on a

geometric hashing scheme. Using this technique, we obtain

improved approximation for UFL in high-dimensional streams,

i.e., using poly(d·logΔ) space. We present our new streaming

bounds for UFL below, and defer discussion of our technical

contributions to Section I-B. Throughout, we assume that all

data points in P are distinct, and that the streaming algorithm

knows in advance the parameters Δ and f. These are relatively

standard assumptions in the model of dynamic geometric

streams, and we omit them from the statements below.1

We begin by presenting a two-pass streaming algorithm that

computes an O(1)-approximation to the cost of UFL. The

underlying idea is to apply in the first pass the abovementioned

importance-sampling method to select a sample of points from

P , and then in the second pass to compute the contribution

of each sampled point (for details see Section I-B). This

result demonstrates the significant advantage of our technique

over the quadtree/tree-embedding based methods, which do

not yield an O(1)-approximation, even in two passes. This

limitation of previous techniques can be seen also in recent

work [9] that achieves O(log n)-approximation for bichro-

matic matching (earth mover distance) in two passes, where

n = |P | is the number of input points (their approach extends

to one pass, albeit with an additive error).

Theorem I.1 (Two-Pass Algorithm). There is a two-pass
randomized algorithm that computes an O(1)-approximation
to Uniform Facility Location of an input P ⊆ [Δ]d presented
as a dynamic geometric stream, using poly(d · logΔ) bits of
space.

We can extend the approach from Theorem I.1 to random-
order insertion-only streams (where the stream is a uniformly

random permutation of P and we assume |P | is given), by

using the first half of the stream to simulate the first pass of

the algorithm from Theorem I.1, and then using the second

half to approximate the estimator used in the second pass of

the algorithm. There is clearly correlation between the two

halves of the stream, and neither half represents the full input

faithfully, but we can circumvent these obstacles and obtain a

one-pass O(1)-approximation algorithm, as stated below. We

1It suffices to know an O(1)-approximation to logΔ and to f for all our
results. The assumption about distinct points was made also in [1], and can
sometimes be removed easily, e.g. in insertion-only streams using a random
perturbation.

463

are not aware of previous geometric streaming algorithms in

high dimension, particularly those based on quadtrees, that

obtain O(1)-approximation in random-order streams (apart

from those for k-median [10] and k-means [11], though these

bounds are low-space only for small k).

Theorem I.2 (Random-Order Algorithm). There is a
one-pass randomized algorithm that computes an O(1)-
approximation to Uniform Facility Location of an input P ⊆
[Δ]d presented as a random-order insertion-only stream, using
poly(d · logΔ) bits of space.

Finally, to deal with arbitrary-order dynamic streams in one

pass, we have to significantly extend our methods. Specifically,

our previous scheme of first obtaining samples and then

computing their estimations cannot work, and we need our

importance sampling to provide additional structure. This more

involved step crucially relies on a powerful property in our

geometric hashing scheme, namely, that every point set of

small-enough diameter is hashed to only poly(d) distinct

buckets. However, this also introduces the O(d1.5)-factor in the

approximation ratio, which corresponds to a key performance

parameter of the hashing.

Theorem I.3 (One-Pass Algorithm). There is a one-pass ran-
domized algorithm that computes an O(d1.5)-approximation
to Uniform Facility Location of an input P ⊆ [Δ]d presented
as a dynamic geometric stream, using poly(d · logΔ) bits of
space.

While the approximation ratio of O(d1.5) may look pro-

hibitively large, it is useful to note that many geometric

problems, including facility location, are reducible to the

case d = O(log n), where n = |P |, by using standard

techniques relying on the Johnson–Lindenstrauss lemma. Fur-

thermore, the previously best streaming algorithm for UFL

with poly(d·logΔ) space, by Indyk [1], has an approximation

factor of O(d · log2Δ) and thus, for d = Θ(logn) and

Δ = poly(n), we improve the approximation factor from

O(log3 n) to O(log1.5 n).

Other streaming algorithms for UFL in the literature focus

solely on the case of constant d, or even just d = 2, and for

general d seem to use space exponential in d. In particular,

Lammersen and Sohler [2] gave an exp(O(d))-approximation

using exp(Ω(d)) · polylogΔ space (which thus has worse

approximation ratio than our algorithm for d = ω(1)), and

Czumaj et al. [3] designed a (1 + ε)-approximation for UFL

in the Euclidean plane, which for a fixed ε > 0 seems to

require space (logΔ)Ω(d) in order to be extended to dimension

d, meaning that the space would be superlogarithmic for

d = ω(1).

The results above are complemented by the following

lower bound, which follows by a reduction from the one-way

communication complexity of the Boolean Hidden Matching

problem.

Theorem I.4 (Streaming Lower Bound). For any dimen-
sion d, any one-pass randomized algorithm that for a given

insertion-only stream of points from [Δ]d for Δ = 2O(d)

approximates Uniform Facility Location within ratio better
than 1.085, requires 2poly(d·logΔ) space.

The lower bound in particular implies the impossibility of

designing a streaming (1 + ε)-approximation for any ε > 0
with f(ε) · poly(d · logΔ) space, even for insertion-only

streams. In terms of n = |P |, the space lower bound is Ω(
√
n)

in the setting with d = Θ(logn) and Δ = poly(n).

B. Technical Overview

For simplicity, in this section we consider the insertion-

only setting, and assume that the instance is scaled so that the

opening cost is f = 1. Then the input P ⊆ R
d of size n = |P |

is not restricted to a discrete grid. Our overall strategy is to

design a streaming implementation of an estimator known to

achieve an O(1)-approximation. This estimator was proposed

in [12] in the context of sublinear-time algorithms (based

on an offline O(1)-approximation algorithm in [13]). The

idea is to associate to every data point p ∈ P a value

rp ∈ [1/n, 1] (formally defined in Definition II.1), that satisfies

two key properties (Fact II.2): First, the sum of all rp’s gives

an O(1)-approximation to UFL, i.e.,
∑

p∈P rp = Θ(OPT).
Second, rp is roughly the inverse of the number of points

inside the ball B(p, rp) centered at p with radius rp, i.e.,

|P ∩B(p, rp)| = Θ(1/rp). It follows that rp can be estimated

(see Fact II.3) by just counting the number of points in the

balls B(p, 2−j) for j = 1, . . . , log2 n, which is easy if p is

known at the beginning of the stream. However, if p is given as

a query at the end of the stream, then any finite approximation

requires Ω(n) space, by a reduction from the communication

complexity of indexing.

Naı̈ve Approach: Uniform Sampling: Consider initially

making two passes over the stream, the first one samples a

few points, and the second pass estimates the rp value for

each sampled point p. Since all rp ∈ (0, 1], one immedi-

ate idea is to perform uniform sampling, and argue using

Chernoff bounds that the resulting scaled estimate is likely

to be Θ(
∑

p∈P rp) = Θ(OPT). However, to obtain decent

concentration, one needs the expectation
∑

p∈P rp to be large

enough, which need not hold. Indeed, consider Example I.5

below, where uniform sampling needs to draw Ω(
√
n) samples

to have a decent chance to see even one point p with rp = 1,

which is necessary for obtaining a nontrivial approximation.

Example I.5. Let P = P1 ∪ P2, where P1 consists of√
n points, whose pairwise distances are at least 1, and P2

consists of n− |P1| = Θ(n) points whose pairwise distances

are (approximately) 1/n; these two sets are at distance at

least 1 from each other. (A realization of this point set is

possible in dimension Θ(log n).) One can easily verify from

the definition that all x ∈ P1 have rx = 1, and all x ∈ P2

have rx = Θ(1/n), thus OPT = Θ(
∑

p∈P rp) = Θ(
√
n).

To bypass the limitation of uniform sampling, we can em-

ploy importance sampling: sample one point p∗ ∈ P , such that

each p ∈ P is picked with probability roughly proportional to

464

rp, and construct an unbiased estimator Ẑ = 1/Pr[p∗]·rp∗ . By

a standard analysis, such an estimator has low variance, and

thus averaging a few independent samples yields an accurate

estimate. To get some intuition, in Example I.5, when sampling

proportionally to rp, the total sampling probability of the

points p with rp = 1 is far larger than that of the remaining

points.

However, this importance sampling idea is difficult to im-

plement in streaming. At first glance, it is a chicken-and-egg

problem: importance sampling aims to estimate
∑

p rp, but

it requires knowing the rp values. The crux is that a coarse

estimation for rp suffices for importance sampling, but as

noted above, computing rp for point queries with any finite

ratio requires Ω(n) space. Moreover, even if the rp values of

the sampled points could be estimated at the end of the stream,

how would a streaming algorithm draw samples proportionally

to these estimates?

New Idea: Geometric Importance Sampling: Instead of

trying to estimate the value of rp, we implement importance

sampling indirectly (in Theorem III.1), using a geometric

hashing scheme ϕ : R
d → R

d that “isolates” points with

large rp. As usual in hashing, the codomain of ϕ is somewhat

arbitrary (e.g., in applications it could be [Δ]d), and a bucket
refers to a preimage ϕ−1(z), i.e., the set of points mapped to

the same image z. Ideally, we would like the aforementioned

points (with large rp) to each get its own bucket, and the others

(small rp) to collide, say, into one bucket per cluster, and thus

take up only a few buckets. Given such a hashing scheme, we

apply it to all the points in P and pick a non-empty bucket

at random. This is equivalent to sampling uniformly from the

hash values (of all points in P), and is easily implemented

in streaming using a well-known tool called the �0-sampler;

see e.g. [14] (this tool produces a uniform sample from the

distinct elements of a stream, and applying it here will sample

uniformly from the distinct hash values).

The geometric hashing scheme, when combined with sub-

sampling, guarantees that with high probability,

a) the number of non-empty buckets is bounded by poly(d ·
logΔ) ·OPT, and

b) every bucket with at least one point of large rp contains

at most poly(d · logΔ) points.

We may assume that points of large rp constitute a significant

fraction of
∑

p rp = Θ(OPT) (because we can anyway

neglect a subset of points whose contribution is low), and

employ the following two-level uniform sampling: First sample

uniformly a non-empty bucket of the hashing scheme, and

then sample uniformly a point from that bucket. Now, the

probability of sampling a point p of large rp is at least

1/ poly(d · logΔ) (this holds whenever rp > 1/ poly(d ·
logΔ)). Thus, by taking poly(d · logΔ) samples we are likely

to hit at least one point of large rp, which in fact leads

to a robust estimator. The aforementioned two-level uniform

sampling is implemented by extending a standard construction

of the �0-sampler (in Lemma III.3), inspired by a different

extension in [4].

This implementation of importance sampling bypasses the

straightforward approach of first estimating the desired values

(in our case rp) and then sampling accordingly, as done

previously in some fast algorithms, e.g., for counting [15]

and for geometric problems [16], and in “data-compression”

algorithms, e.g., constructing graph sparsifiers [17], [18]

and geometric coresets [19], [20]. Previously, such a non-

straightforward implementation of importance sampling was

employed in streaming algorithms for matrices [21], [22], for

the same reason that the needed values are hard to compute

in a streaming fashion.

Consistent Geometric Hashing with Bounded Gap: We

now elaborate on the geometric hashing, which plays a central

role in our importance-sampling algorithm and is formally

defined as follows. Throughout, diam(S) denotes the diameter

of S ⊆ R
d.

Definition I.6 (Consistent Hashing). A mapping ϕ : Rd →
R

d is called a Γ-gap Λ-consistent hash with diameter bound

� > 0, or simply (Γ,Λ)-hash,2 if it satisfies:

1) Diameter: for every image z ∈ ϕ(Rd), we have

diam(ϕ−1(z)) ≤ �; and

2) Consistency: for every S ⊆ R
d with diam(S) ≤ �/Γ, we

have |ϕ(S)| ≤ Λ.

Intuitively, the first condition (diameter) requires that further

apart points are never hashed (mapped) to the same bucket,

and the second one (consistency) requires that highly-clustered

points, even if their number is very large, are hashed to only

a few different buckets.

We present this definition with a general parameter Λ, but

in our application we always require Λ := poly(d), which is

sufficient as our algorithms have their approximation ratios

independent of Λ and space only polynomially depending

on Λ. However, the “gap” parameter Γ, equal to the ratio

between the diameter bound � and the consistency diameter

�/Γ, goes into the approximation factor of our one-pass

streaming algorithm (Theorem I.3), besides affecting the space

complexity polynomially.

Comparison to Related Geometric Decompositions: Our

definition of consistent hashing is essentially equivalent to

the notion of sparse partitions that was introduced by Jia,

Lin, Noubir, Rajaraman, and Sundaram [23]. Their definition

concerns a partition of R
d, if we view each part in that

partition as a bucket in a hashing, then their definition is

the same as Definition I.6. However, in our setting it is more

natural to think of a hash function, because the part/bucket that

contains each input point x ∈ R
d must be computed using a

small amount of memory, and a mere partition of Rd may not

suffice. The construction in [23] has consistency Λ = 2d (it is

a straightforward partition into cubes), and is thus not useful

in our context. Notably, Filtser [24] designed a sparse partition

with consistency Λ = poly(d) and gap Γ = O(d/ log d),
however, in this partition the description of a part takes Ω(2d)

2While the parameter � is important when applying the hashing, when
constructing the hashing one can assume by scaling that � = 1.

465

bits, and thus does not directly imply a hash function that can

be evaluated on a point in small space.

We construct a consistent hashing scheme with gap Γ =
O(d1.5) (Lemma III.6) that can be evaluated at a point x ∈ R

d

in space and time poly(d). We stress that the hash function

is data-oblivious, because Definition I.6 requires the function

to be defined on the entire R
d. This gap parameter Γ can

potentially be improved to O(d/ log d), to match the non-

streaming construction in [24].

In fact, the same gap bound of Γ = O(d1.5) was recently

obtained by Dunkelman et al. [25]. It is not stated there

explicitly (but can be verified by inspecting their analysis)

because their construction is designed for a different notion,

called consistent rounding, which is incomparable to our Def-

inition I.6 primarily because they require each bucket to have

a bounded volume (instead of diameter), and their guarantee

on the number of intersections is also slightly different. Their

construction is somewhat similar to ours except that it works

top-down, whereas ours works bottom-up.

We note that the second condition in Definition I.6 does

not easily follow from many known methods in the literature.

Indeed, if we partition the space R
d using standard methods,

like hypercube subdivisions as in a quadtree (see, e.g., [26]),

it is hard to avoid clusters from intersecting 2Ω(d) buckets,

instead of only poly(d). Other geometric decompositions, such

as padded decomposition [27]–[29], and Locality-Sensitive

Hashing [30], aim for different guarantees that are not directly

comparable to those of Definition I.6; see Section I-C for a

broader comparison.

Remark I.7. By a private communication with Arnold Filtser,

we were informed of the existence of hash functions with

Γ = O(d/ log d) that uses space poly(d), and this gap bound

is known to be tight [24]. Plugging in this new hash function,

the approximation ratio of Theorem I.3 may be improved to

O(d/ log d). However, it takes time exp(d) to evaluate the

hash value for a single point which is significantly worse than

the poly(d) time as in our construction, and thus results in

a worse running time in Theorem I.3.3 It is therefore open

to design a poly(d)-consistent geometric hash function with

Γ = O(d/ log d) that can be evaluated in poly(d) space and
time.

Construction of the Hashing: Our O(d1.5)-gap construc-

tion first partitions the entire R
d into unit hypercubes. Then

we apply an identical decomposition/partition on every unit

hypercube, and the partition of the entire space is the collection

of all the parts (across all unit hypercubes). The partition into

hypercubes immediately implies a diameter bound. Consider

now the partition of an (arbitrary) unit hypercube H; intu-

itively, we partition H into d + 1 groups of regions, such

that regions in the same group are at distance ≥ ε := �/Γ
of each other (where � = O(

√
d) when we start with unit

hypercubes). This way, a subset of diameter < ε can only

intersect one region from each of the d + 1 groups, which

3Even though not explicitly stated, the running time per update and query
in Theorem I.3 is poly(d · logΔ).

}ε
} . . .
ε

. . .

.

......

... ...

Fig. 1. An illustration of the construction of a (Γ, d+1)-hash in 2D, showing
only a vicinity of a single square [0, 1]2 of the initial partition (in black). The

2ε-neighborhoods of vertices, which form S+2ε
0 , are depicted in red (north-

west shaded areas), and the ε-neighborhoods of edges, that is, set S+ε
1 \S+2ε

0 ,
are depicted in blue (north-east shaded areas).

ensures consistency. Roughly, each of the d + 1 groups, say

the i-th group, corresponds to all the i-dimensional faces of

the hypercube. However, simply taking these i-dimensional

faces cannot work, since they intersect and the minimum

distance is 0. To make them separated, we employ a sequential

process, where iteration i = 0, 1, 2, . . . takes as our next group

the i-dimensional faces and their close �∞ neighborhoods,

excluding (i.e., removing) points that are sufficiently close (in

the �∞ distance) to (i − 1)-dimensional faces. In particular,

we crucially use the following geometric fact.

Fact I.8. Consider two orthogonal i-dimensional subspaces
S1, S2 and denote their intersection by I . Denoting by A+t

the �∞ neighborhood of A of radius t, define S′i := S+ε
i \I+2ε

for i = 1, 2. Then dist(S′1, S
′
2) >

√
2ε.

Our construction iterates over i = 0, . . . , d− 1 and repeat-

edly uses the above fact. Denoting by Si the union of the

i-dimensional faces, the i-th group consists of the connected

regions of S+(d−i)ε
i \ S+(d−i+1)ε

i−1 . Finally, the d-th group

consists of a single region corresponding to the hypercube

interior after removing the previous groups. See Figure 1 for

an illustration.

To intuitively see why this geometric hashing helps, con-

sider the instance in Example I.5, and let us focus on esti-

mating the number of points with rp = 1 (for which uniform

sampling does not work). In Example I.5, points are grouped

466

into natural clusters: the whole P2 forms a cluster that consists

of O(n) points each with rp = O(1/n), and each point in

P1 forms a singleton cluster whose rp = 1. We construct a

(Γ, poly(d))-hash with diameter bound � = 1/2 (as guaranteed

in Lemma III.6), and let ε := �/Γ. By the second guarantee,

every small ball of radius O(1/n)� ε is mapped to poly(d)
points/buckets, even if the ball originally could have Ω(n)
points. Hence, after the hashing, the entire cluster P2 with

O(n) points gets mapped to poly(d) points, while points in

P1 are preserved because of the diameter bound of the buckets.

Hence, applying the two-level uniform sampling, we hit one

point in P1 with at least poly(d) samples on average.

Finally, we note that the actual implementation of this

whole idea is more involved and requires additional steps.

For instance, the nice cluster structure in Example I.5 might

not be present in a general input, and our analysis needs

to explicitly define a clustering where a cluster containing p
has diameter roughly rp. Another issue is that our overview

focused on rp = 1. For general rp, we use a subsampling at

rate 2−i to “reduce” the case rp = 2−i to the case rp = 1,

which is conceptually similar to the subsampling used in

the construction of �0-samplers. At the end, this algorithm

implements our desired importance sampling task, namely, it

uses space poly(d·logΔ) and produces a sample p∗ ∈ P such

that every p ∈ P is picked with probability proportional to at

least rp/ poly(d · logΔ).
Streaming Implementations: The above-mentioned geomet-

ric importance sampling (Theorem III.1) can be implemented

in one pass using small space. However, it only returns a set

of samples S ⊆ P , and to actually estimate
∑

p∈P rp one still

needs to estimate the value rp for each p ∈ S. This limitation

is a consequence of our importance-sampling approach, which

bypasses estimating the rp values on purpose.

Two Passes and Random-Order Streams: Our two-pass

streaming algorithm is quite simple: the first pass computes

a sample S ⊆ P using importance sampling (Theorem III.1),

and the second pass estimates rp for each p ∈ S using Fact II.3

and straightforward counting. Its space complexity is poly(d ·
logΔ) per point p ∈ S, and we need |S| = poly(d · logΔ).

A similar approach can be applied also in the random-order

model (i.e., the stream is a uniformly random permutation of

P): the first half of the stream is used to generate a sample

S, and the second half is used to estimate the rp value of the

points p ∈ S sampled in the first half. However, more technical

steps are needed in the analysis, due to the correlation between

the two halves of the stream, and the fact that a random half

does not represent the full stream accurately.

One-pass Implementation: The one-pass setting is signif-

icantly more difficult. We estimate
∑

p∈P rp, by partitioning

P into levels i = 1, . . . , d · log2Δ, namely, we let Pi :=
{p ∈ P : rp ∈ (2−i, 2−i+1]} and Wi :=

∑
p∈Pi

rp. We build

an estimator for Wi separately for each i (recall that in this

section we assume f = 1).

For simplicity, we focus here on i = 0, so we now only care

about points p ∈ P0, meaning that rp = Θ(1). Then W0 =∑
p∈P0

rp = Θ(|P0|), and it suffices to estimate |P0|. To this

end, it is natural to use the estimator 1/Pr[x] · I(x ∈ P0),
where x is a sample generated by our importance sampling.

However, the indicator I(x ∈ P0) turns out to be very

sensitive, and it is difficult to estimate it in one pass even

within a constant factor (e.g., distinguish between rx ≥ 1/2
and rx ≤ 1/10). Hence, we have to design a more relaxed

tester and analyze how this affects the approximation ratio.

To implement this tester, we construct an (Γ, poly(d))-hash

with diameter bound � = 1/10. Recalling that the rp values

satisfy that |P ∩ B(p, rp)| = Θ(1/rp), we observe that if

a hashing bucket contains a point with rp ≥ 1/2, then the

number of points in this bucket is bounded by O(1). This

means that a bucket either consists only of points with large

rp values, or no such point at all. Using this observation, we

maintain a counter for the number of points mapped to every

bucket, and when a point is sampled, we retrieve also the

counter for its bucket, and if the counter is small, we use it as

a proxy for the event that the bucket consists only of points

with large rp values, including in particular the sampled point.

However, a subtle technical issue is that some point y with

ry � 1 can possibly lie on the “boundary” of the bucket,

and then the number of points in that bucket is small, while

P ∩ B(y, ry) contains many nearby points that lie in other

buckets. Hence, we need to count the number of points in a

slightly enlarged region, i.e., for a bucket Q ⊆ R
d we need to

count the points in P that fall inside the ry-neighborhood of

Q, denoted here as B(Q, ry) and defined as the set of points

in R
d at distance at most ry from Q. Hence, if we maintain the

counter for P ∩B(Q, β) for some β > 0 then the information

of the counter suffices for rejecting y’s whose ry ≤ O(β).

Now, suppose we are to maintain the counter for some β.

To implement this, whenever we see a data point x arrives,

we should increase the counter for all buckets Q such that

x ∈ B(Q, β) (a similar trick appears e.g. in [4]). However, this

becomes challenging in the streaming setting, primarily due to

the fact that the number of buckets Q such that x ∈ B(Q, β)
can be huge (e.g., 2d), and more importantly, most of them

may be “fake”, in that they do not contain any data point.

Consequently, these fake nonempty buckets can enlarge the

support of the �0-sampler significantly, which makes it difficult

to obtain a uniform sample.

To tackle this challenge, we make use of the guarantee from

the geometric hashing, that any subset of R
d with diameter

less than ε = O(1/Γ) is mapped to poly(d) buckets (see

Definition I.6). Hence, if we choose β = ε/2, the effect of

enlarging the buckets by an additive β = ε/2 is essentially

making every data point x a ball B(x, ε/2), and add the image

of this ball to the buckets/counters. The poly(d) intersection

bound ensures that the number of fake buckets is still well

bounded.

Finally, the approximate tester is off by a factor of Γ, which

is the gap of the geometric hashing, and we show that this

factor goes into the approximation ratio, which will thus be

O(Γ).

467

C. Related Work

Facility Location Problem: The facility location problem

is one of the fundamental problems in operations research and

combinatorial optimization, and has received extensive studies

in the past. In the offline setting with uniform opening costs,

the facility location problem has been proved to be NP-hard

[31], and is hard to approximate within factor 1.463 [32] (un-

less NP ⊆ DTIME
[
nO(log logn)

]
). For the upper bounds,

the state of the art for general metrics is a 1.488-approximation

by Li [33], and PTAS’s are known for special metric spaces,

specifically, doubling metrics [34], minor-free graphs [35], and

near-linear time PTAS’s for (bounded-dimensional) R
d [36]

and planar graphs [37]. For the online setting, Meyerson [38]

gave an O(log n)-competitive algorithm, and Fotakis [39]

proved that it has ratio Θ(log n/ log logn) and that this ratio

is asymptotically optimal.

Geometric Decomposition: Geometric decomposition is

a topic that was studied extensively, with many different

definitions, even beyond R
d, that are motivated by numerous

applications. For brevity, we only mention a few that are closer

to our work. One basic genre, often called space partitioning,

refers to a partition of R
d, perhaps using a variant of the

standard grid (quadtree) partition, e.g. [40]. Sometimes it is

convenient to use multiple space partitions, or a probability

distribution over space partitions (e.g., a few shifts or a random

shift of the grid partition [26], [41], [42]). Another standard

requirement is that every part in the partition has a bounded

diameter (e.g., padded and separating decomposition [27]–

[29]), or alternatively that every part has a bounded volume

(e.g., [25], [43]). The above examples ask that nearby points

lie in the same part, but another type of decomposition, called

Locality-Sensitive Hashing (LSH) [30], only asks that close-by

points fall in the same part with noticeably higher probability

than far-away points.

Two-pass and Random-order Streaming Algorithms: Be-

sides the most studied streaming model of one-pass algorithms

over an arbitrary (non-random) order streams, algorithms

requiring a few passes or assuming that the stream order

is random have received significant attention as well. For

graph streams, two-pass streaming algorithm have been de-

signed, for example, for graph spanners [44], [45], maximum

matching [46], and triangle counting [47]. Apart from graph

streams, other examples of two-pass algorithms include those

for matrix norm estimation [48], set cover [49], and geo-

metric earth mover distance [9]. The one-pass random-order

(insertion-only) setting was studied for problems including

matching [50], [51], quantile estimation [52], graph connected

components and minimum spanning tree [53], and frequency

moment estimation [54].

D. Paper Organization

Due to the space limit, we only present the technical details

for geometric importance sampling (Section III). The details

for the streaming implementations and the lower bounds are

omitted, and they can be found in the full version [55].

II. PRELIMINARIES

Notation: We use the usual notation [n] := {1, . . . , n},
and for a function ϕ : X → Y and y ∈ Y , we denote

ϕ−1(y) := {x ∈ X : ϕ(x) = y}. The d-dimensional
ball centered at x ∈ R

d with radius r ≥ 0 is defined as

B(x, r) := {y ∈ R
d : dist(x, y) ≤ r}.

Definitions and Facts from Mettu-Plaxton (MP) Algo-
rithm: We will need some machinery from the MP algo-

rithm [12], [13]. We first introduce the definition of rp,

and then recall useful facts, particularly that it suffices to

approximate
∑

p∈P rp, because it O(1)-approximates OPT.

Definition II.1 ([13]). For every p ∈ P , let rp be the number

such that ∑
x∈P∩B(p,rp)

(
rp − dist(p, x)

)
= f. (1)

It is easy to see that rp is well-defined and f
|P | ≤ rp ≤

f. Indeed, using the notation z+ = max(z, 0), we can write

the left-hand side of (1) as
∑

x∈P (rp − dist(p, x))+, which

is easily seen to be non-decreasing with rp. For illustration,

suppose p is one of k points whose pairwise distances are all

equal to a ∈ (0, f), and all other points are at distance at least

f from p; then rp = Θ(a+ f/k).

Fact II.2 (Lemmas 1 and 2 in [12]). The following holds.

• For every p ∈ P , it holds that |P ∩B(p, rp)| ≥ f/rp and
|P ∩B(p, rp/2)| ≤ 2f/rp.

•
∑

p∈P rp = Θ(OPT).

We assume without loss of generality (w.l.o.g.) that Δ is a

power of two. Let L := d · log2Δ ≥ log2 |P | as |P | ≤ Δd

by the assumption that points are distinct. The first point of

Fact II.2 implies that the rp value can be approximated within

a constant factor by counting the number of points in balls of

geometrically increasing radii.

Fact II.3. Let j0 be the maximum j ∈ {0, . . . , L} such that
|P ∩B(p, 2−jf)| ≥ 2j . Then

rp ∈ (2−j0−1f, 2−j0+1f]. (2)

Moreover, there is a one-pass deterministic streaming algo-
rithm that given the opening cost f > 0 and a point p in
advance of the data set P presented as a dynamic stream,
returns an estimate r̂p such that rp ≤ r̂p ≤ O(rp) using space
of O(L2) bits.

Proof: By Fact II.2, if rp ≤ 2−j0−1f then we arrive at the

contradiction |P ∩B(p, 2−j0−1f)| ≥ |P ∩B(p, rp)| ≥ f/rp ≥
2j0+1. And if rp > 2−j0+1f then we arrive at the contradiction

|P ∩ B(p, 2−j0 f)| ≤ |P ∩ B(p, rp/2)| ≤ 2f/rp < 2j0 . To

implement the estimation in dynamic streams, we count the

number of points in each of the balls B(p, 2−jf) for j =
0, . . . , L using an L-bit counter.

468

III. IMPORTANCE SAMPLING VIA GEOMETRIC HASHING

In this section, we develop a streaming algorithm for

importance sampling on P , where the probability to report

each point x ∈ P is (at least) proportional to its contribution

to
∑

x∈P rx. Similarly to other streaming algorithms for

sampling (e.g., �p-samplers), our algorithm might fail with a

tiny but non-zero probability, in our case qfail = 1/poly(Δd),
and the analysis can effectively ignore these events by a union

bound.4 While the algorithm’s goal is to sample from P , we

also allow it to return ⊥, which is not considered a failure,

as long as it returns points from P with sufficiently large

probability.5 The output ⊥ is useful in the algorithm’s design,

as it can replace the use of a fixed point from P , and also

handle properly the corner case P = ∅.
Theorem III.1. There is a one-pass randomized algorithm
that, given P ⊆ [Δ]d presented as a dynamic geometric
stream, samples a random point p∗ ∈ P ∪ {⊥} such that

∀x ∈ P, Pr[p∗ = x] ≥ Ω

(
1

poly(d · logΔ)
)
· rx∑

y∈P ry
,

and also reports a 2-approximation P̂r[p∗] for the probability
of sampling this point, i.e., Pr[p∗ = x] ≤ P̂r[p∗] ≤ 2Pr[p∗ =
x]. This algorithm uses poly(d · logΔ) bits of space, and fails
with probability at most 1/ poly(Δd).

Proof of Theorem III.1: We first provide an algorithm

that samples points x ∈ P at a given level i ∈ {1, . . . , L},
which refers to points with rx value roughly 2−if. We present

it as an offline algorithm in Algorithm 1, and discuss below

how to implement it as a streaming algorithm. The main

guarantee about its output is given in Lemma III.2 below,

whose proof appears in Section III-B. We remark that the

algorithm returns ⊥ in case subi(P) is empty, i.e., no point

survives the subsampling. (We will see later that Theorem III.1

follows by simply executing a streaming implementation of

this algorithm with a random level i.)

Lemma III.2. Algorithm 1 returns a random point p∗ ∈ P ∪
{⊥} such that ∀x ∈ Pi,

Pr[p∗ = x] ≥ Ω

(
1

poly(d · logΔ)
)
· 2−i · f

OPT
,

where Pi := {x ∈ P : 2−if < rx ≤ 2−i+1f}.

4Failure in Theorem III.1 or Lemma III.3 means that the algorithm may
behave arbitrarily, e.g., not return anything or even return a point outside
P , and it is not easy to verify if the point is in P . Formally, having failure
probability qfail means that the total variation distance between the algorithm’s
output distribution and desired distribution (e.g., uniform over a certain set in
the case of �0-sampler) is at most qfail.

5For example, an acceptable output distribution may be ⊥ with probability
1
2

, and every x ∈ P with probability 1
2
rx/

∑
y∈P ry .

Algorithm 1 Importance sampling for single level i

1: let � ← 0.1 · 2−if, let ϕi be a (Γ, poly(d))-hash of R
d

with diameter bound � � use Lemma III.6

2: subsample P with rate 2−i � denote the subsampled

subset of P by subi(P)
3: sample uniformly a ∈ ϕi(subi(P)), then uniformly p∗ ∈

ϕ−1
i (a) ∩ subi(P)

4: return p∗ � if such p∗ does not exist (e.g., if

subi(P) = ∅), return ⊥.

A. Streaming Implementation of Algorithm 1.

Line 1 uses Lemma III.6 to get a data-oblivious function

ϕi, hence this step can be executed before the algorithm starts

to process the stream.
Subsampling in Dynamic Streams: Line 2 performs subsam-

pling with rate 2−i, that is, each point in P is independently

sampled with probability 2−i. If the stream is insertion-

only we just sample each newly added point independently

with probability 2−i. However, in dynamic streams we need

consistency between insertions and deletions of a point, and

we thus apply a random hash function h : [Δ]d → {0, 1} such

that for every point p we have Pr[h(p) = 1] = 2−i. We draw

this hash function at the beginning of the stream, and then

for each insertion/deletion of a point p, we evaluate h(p) to

determine whether p is subsampled.

In the analysis, we assume that these subsampling events are

independent for all points, i.e., that h is fully random. To deal

with the fact that storing such a hash function takes Δd bits,

we use Nisan’s pseudorandom generator (PRG) [56] that has

the following guarantee: For any parameters R and S, given

a seed of Ω(S · logR) truly random bits, the PRG generates

R bits that cannot be distinguished from truly random bits by

any algorithm running in space S. Naturally, we use this PRG

with S being the space cost of our algorithm and R = i ·Δd

(which is the number of independent fair coin flips needed to

generate h).
Two-level Uniform Distinct Sampling: To implement the

final sampling step of Algorithm 1 (in line 3), we present in

Lemma III.3 a two-level �0-sampler, which is more convenient

to describe as sampling from a frequency matrix. is an exten-

sion of a standard �0-sampler (from a frequency vector); see

e.g. [14]. We are not aware of such a sampler in the literature,

although similar extensions were devised before, e.g. in [4].6

Lemma III.3 (Two-Level �0-Sampler). There is a randomized
algorithm, that given as input a matrix M ∈ R

m×n, with m ≤
n and integer entries bounded by poly(n), that is presented as
a stream of additive entry-wise updates, returns an index-pair
(i, j) of M , where i is chosen uniformly at random (u.a.r.)

6The notion of �p-sampling with meta-data, which was recently introduced
in [9], sounds related but is quite different, as each index i arrives with an
associated value λi; in fact, their approach builds on Precision Sampling [57]
and is applicable only for p > 0. The use of a two-level structure and its
representation as a matrix were introduced in [58], [59] as cascaded aggre-
gates/norms, however their algorithms estimate these norms, not sampling an
index by the norm. A sampler for cascaded �p,2-norm was designed in [22],
building on properties of the Gaussian distribution and �p-samplers.

469

from the non-zero rows, and then j is chosen u.a.r. from the
non-zero columns in that row i. The algorithm uses space
poly(log n), fails with probability at most 1/ poly(n), and can
further report the corresponding row-sum

∑
j′ Mi,j′ .

It is straightforward to implement line 3 of Algorithm 1

using this sampler. Simply convert the updates to P , on the fly,

into updates to a frequency matrix M , whose rows correspond

to all hash buckets (images of ϕi) and columns correspond to

all grid points ([Δ]d). This is clearly a huge matrix, but it

is not maintained explicitly. The reported row-sum
∑

j′ Mi,j′

corresponds to the number of points in P that are hashed

(mapped) to the bucket returned by the sampler. Hence, we can

implement Algorithm 1 in one pass over a dynamic geometric

stream. The success probability depends on the two-level �0-

sampler, and is thus 1 − 1/ poly(n) ≥ 1 − 1/ poly(Δd), and

assuming success, the output distribution is as described in

Lemma III.2.

We can now complete the proof of Theorem III.1. The

algorithm draws uniformly at random a level i∗ ∈ {1, . . . , L}
and executes Algorithm 1 for this level i∗. Now consider a

point x ∈ P , and let j be the level for which x ∈ Pj , i.e.,

2−jf < rx ≤ 2−j+1f. Then by Lemma III.2, the probability

to sample this point x is

Pr[p∗ = x] ≥ Pr[i∗ = j] · 1

poly(d · logΔ) · 2
−j · f

OPT

≥ 1

L
· 1

poly(d · logΔ) · Ω
(

rx∑
y∈P ry

)
. (3)

Recall that the algorithm needs to report also an estimate

P̂r[p∗] for the probability of sampling the specific point p∗

that is reported. Given the randomly chosen level i∗ (which

might differ from the level j of x), for the algorithm to

pick x, it must first subsample x, which happens with prob-

ability 2−i∗ , then pick the bucket of x under ϕi∗ , while

there are |ϕi∗(subi∗(P))| non-empty buckets, and finally, it

has to pick this point x from its bucket, which contains

|ϕ−1
i∗ (ϕi∗(x)) ∩ subi∗(P)| subsampled points. Thus,

Pr
[
p∗ = x | i∗] = 2−i∗

|ϕi∗(subi∗(P))| · |ϕ−1
i∗ (ϕi∗(x)) ∩ subi∗(P)|

.

Furthermore, the algorithm can accurately estimate all these

quantities; indeed, the bucket size is known from the two-level

�0-sampler (recall that Lemma III.3 reports also the corre-

sponding row-sum), and to estimate the number of non-empty

buckets the algorithm can run in parallel a standard streaming

algorithm for counting distinct elements (see e.g. [60]).

B. Proof of Lemma III.2

Subsampling: The first step is to subsample every point

in P independently with probability 1/2i. For every subset

S ⊆ P , let subi(S) ⊆ S be the random subset after the

subsampling. The following describes several standard facts

about the subsampling.

Fact III.4. ∀S ⊆ R
d and t ≥ 2, the following holds.

• If |S| ≥ 2i, then Pr[| subi(S)| ≥ t · |S| · 2−i] ≤
exp(−Θ(t)).

• If |S| ≤ 2i, then Pr[| subi(S)| ≥ t] ≤ exp(−Θ(t)).
Proof: For every u ∈ S, let Xu ∈ {0, 1} be the indicator

random variable such that Xu = 1 if and only if u ∈ subi(S),
so Pr[Xu = 1] = 2−i for every u ∈ S. Then | subi(S)| =∑

u∈S Xu, and E[| subi(S)|] = |S|·2−i. Let μ := E[subi(S)].

• If |S| ≥ 2i, then μ ≥ 1. By Chernoff bound,

Pr[| subi(S)| ≥ t · |S| · 2−i]

= Pr[| subi(S)| − μ ≥ (t− 1) · μ]
≤ exp(−Θ(t) · μ)
≤ exp(−Θ(t)).

• If |S| ≤ 2i, then μ ≤ 1. By Chernoff bound,

Pr[| subi(S)| ≥ t] = Pr[| subi(S)| − μ ≥ (t/μ− 1) · μ]
≤ exp(−Θ(t)).

Geometric Hashing: We consider bounded consistent

hashing schemes that do not map small “clusters” of points

into too many buckets. We restate the definition below, and

we prove the existence of such hashing schemes, with certain

parameters, in Lemma III.6. As mentioned in Section I, Jia

et al. [23] introduced an essentially equivalent notion called

“sparse partitions”, although we further require that evaluating

the hash function at a point is efficient.

Definition III.5 (Restatement of Definition I.6). A mapping

ϕ : R
d → R

d is called a Γ-gap Λ-consistent hash with

diameter bound � > 0, or simply (Γ,Λ)-hash, if it satisfies:

1) Diameter: for every image z ∈ ϕ(Rd), we have

diam(ϕ−1(z)) ≤ �; and

2) Consistency: for every S ⊆ R
d with diam(S) ≤ �/Γ, we

have |ϕ(S)| ≤ Λ.

Lemma III.6. There exists a (Γ, d+1)-hash ϕ : Rd → R
d for

Γ = Θ(d
√
d). Furthermore, one can evaluate ϕ(x) for input

x ∈ R
d in time and space poly(d).

Proof: The proof can be found in the full version.

Sampling on ϕi(subi(P)): Suppose we apply

Lemma III.6 to find a (Γ, poly(d))-hash ϕi with diameter

bound � = 2−if/10, and define ε := �/Γ which is the

magnitude of the consistency guarantee. Then ϕi(subi(P))
essentially maps points in subi(P) into buckets, and our plan

is to sample from these buckets. Next, we wish to upper

bound |ϕi(subi(P))|, which is the support of sampling, in

terms of OPT. Since the guarantee on ϕi in Lemma III.6 is

about clusters/subsets, we need to first define a clustering of

the point set (Lemma III.7) such that the number of points

in each cluster C is upper bounded by O(f/ diam(C)).
Then, in Lemma III.8, we use the guarantee of the geometric

hashing on the clusters resulting from Lemma III.7 to bound

|ϕi(subi(P))|. In general, there are two types of clusters

according to the diameter: i) “small” with diameter at most

470

ε = �/Γ, for which we use the consistency guarantee of our

geometric hashing, i.e., the second point of Definition I.6

(note that for small clusters, f/ diam(C) is not a useful bound

on |C|), and ii) “large”, for which O(1/ diam(C)) is not too

large and the subsampling leaves only poly(d · logΔ) points

for each “large” cluster with high probability. (In the lemma

below, if diam(C) = 0, the bound O(f/ diam(C)) is defined

to be Δd.)

Lemma III.7 (Extended MP-clustering). There exists a par-
tition C of P such that f · |C| ≤ O(d · logΔ) · OPT and for
every C ∈ C, |C| ≤ O(f/ diam(C)).

Proof: The following algorithm from [13], called MP

algorithm, finds a 3-approximation for UFL.

1) List P in non-decreasing order of rp.

2) Examine p ∈ P in order, and if there is no open facility

in B(p, 2rp), then open the facility at p.

Denote the set of the facilities opened by MP algorithm as

FMP. We use the following steps to construct a partition of

P .

1) For every p ∈ P , assign it to the nearest point in FMP.

2) For every p ∈ FMP, let C(p) ⊆ P be the set of points

that are assigned to p.

3) For every p ∈ FMP and every j = 1, . . . , L, let C(p)j :=
C(P) ∩ Pj .

4) For every p ∈ FMP and every j, arbitrarily divide C(p)j
into subsets of size 2j , possibly with a unique subset that

has size < 2j , and include these subsets into C.

Now we show that C is the collection satisfying

Lemma III.7. Clearly, C covers P , since every point in p is

assigned to some point in FMP.

To upper bound the number of points in each cluster,

suppose C ∈ C is created by dividing C(p)j for some p and

j. Then ∀q ∈ C, p ∈ B(q, 2rq). To see this, suppose for

the contrary that p /∈ B(q, 2rq). By the construction of C(p),
p ∈ FMP is the closest to q, hence p /∈ B(q, 2rq) implies

that no point in FMP belongs to B(q, 2rq). However, by the

MP algorithm, this means q should have been added to FMP,

which is a contradiction. Hence for every q1, q2 ∈ C ⊆ Pj ,

dist(q1, q2) ≤ dist(q1, p) + dist(p, q2)

≤ O(2−jf) +O(2−jf) = O(2−jf),

which implies that diam(C) = O(2−jf). By Step 4 of

the construction, we know that |C| ≤ 2j . Therefore, when

diam(C) > 0, |C| ≤ O(f/ diam(C)) holds.

Finally, we bound the number of clusters. For every p ∈
FMP and every j, the number of subsets that we obtain

from the division is at most
⌈|C(p)j |/2j⌉ ≤ |C(p)j |/2j + 1.

Summing over p and j,

f · |C| ≤ f ·
∑

p∈FMP

L∑
j=1

1 + |C(p)j)|/2j

≤ O(d · logΔ) · |FMP| · f+O(1) ·
∑

p∈FMP

∑
j

∑
q∈C(p)j

rq

≤ O(d · logΔ) · |FMP| · f+O(OPT)

≤ O(d · logΔ) ·OPT),
where the second inequality uses that C(p)j ⊆ Pj and∑

p∈P rp = Θ(1) · OPT. This completes the proof of

Lemma III.7.

Lemma III.8. With probability at least 1 − 1/ poly(Δd), f ·
|ϕi(subi(P))| ≤ poly(d · logΔ) ·Γ ·OPT ≤ poly(d · logΔ) ·
OPT.

Proof: Let C be the collection of subsets guaranteed by

Lemma III.7. Then

|ϕi(subi(P))| ≤
∑
C∈C

|ϕi(subi(C)| ≤ |C| ·max
C∈C

|ϕi(subi(C))|.

Since f · |C| ≤ O(d · logΔ) · OPT, it suffices to prove that

with probability at least 1 − 1/ poly(Δd), |ϕi(subi(C))| ≤
poly(d · logΔ) for every C ∈ C.

We wish to bound |ϕi(subi(C))| for C with “small” diame-

ter and “large” diameter separately. For C with diam(C) ≤ ε,

by Definition I.6 and Lemma III.6, we have |ϕi(C)| ≤
poly(d), which implies that

|ϕi(subi(C))| ≤ |ϕi(C)| ≤ poly(d) .

For C with diam(C) > ε = Θ(f/(2iΓ)), by Lemma III.7, we

have |C| ≤ O(f/ diam(C)) ≤ O(2i · Γ). By Fact III.4, with

probability at least 1−1/ poly(Δd), | subi(C)| ≤ O(d·logΔ)·
Γ. Finally, applying the union bound to all subsets C ∈ C with

diam(C) > ε concludes the proof of Lemma III.8.

The next lemma states that if the close neighborhood (at

distance rp) of any point p in Pi does not contain too many

points after subsampling P , then for any subsampled point

p ∈ Pi there are not too many subsampled points mapped by

ϕi into the same bucket as p.

Lemma III.9. With probability at least 1− 1/ poly(Δd), for
every point p such that rp ≥ 2−if, |ϕ−1

i (ϕi(p))∩ subi(P)| ≤
O(d · logΔ).

Proof: Observe that if rp ≥ 2−if, then |ϕ−1
i (ϕi(p)) ∩

P | ≤ O(2i). This is a consequence of having � = 2−if/10,

and the fact that |B(p, rp/2) ∩ P | ≤ O(2i) (by Fact II.2).

Hence, Lemma III.9 follows by applying Fact III.4 on the set

ϕ−1
i (ϕi(p)) ∩ P .

Proof of Lemma III.2: If Pi = ∅, then Algorithm 1

always returns an arbitrary point of P or ⊥, and the guarantee

of the lemma trivially holds. Now suppose Pi �= ∅ and fix

x ∈ Pi. Let P ′ = P \{x}. Let E be the event that the following

happens (over the randomness of subi).

1) f · |ϕi(subi(P
′))| ≤ poly(d · logΔ) ·OPT.

471

2) for every point p with rp ≥ 2−if, |ϕ−1
i (ϕi(p)) ∩

subi(P
′)| ≤ O(d · logΔ).

By Lemma III.8 and Lemma III.9, Pr[E] ≥ 1− 1/ poly(Δd).
Moreover, E implies that

f·|ϕi(subi(P))| ≤ f·|ϕi(subi(P
′))|+f ≤ poly(d·logΔ)·OPT,

and for every point p with rp ≥ 2−if,

|ϕ−1
i (ϕi(p)) ∩ subi(P)| ≤ |ϕ−1

i (ϕi(p)) ∩ subi(P ′)|+ 1

≤ O(d · logΔ).
Note that E is independent to whether or not x survives the

subsampling. Let Ax := ϕ−1
i (ϕi(x)) ∩ subi(P) be the set

of points that lie in the same bucket of ϕi as x. Suppose

Algorithm 1 returns a random point p∗. Then a point x ∈ Pi

is sampled with probability

Pr[p∗ = x] ≥ Pr[p∗ = x | E] · Pr[E]
≥ Ω(1) · 2−i · 1

|ϕi(subi(P))| · |Ax|
≥ Ω(1) · 1

poly(d · logΔ) · 2
−i · f

OPT
.

This completes the proof of Lemma III.2.

IV. FUTURE DIRECTIONS

Improved Hash Functions: As mentioned in Remark I.7,

it is an interesting open question to design an O(d/ log d)-
gap poly(d)-consistent hashing that is computable in poly(d)
space and time. Note that this is the optimal gap bound as

shown by Filtser [24].

New One-Pass Approach: Since the gap bound deter-

mines the approximation ratio of the one-pass algorithm,

our framework cannot be directly used for a better than

O(d/ log d)-approximation in one pass using poly(d · logΔ)
space. The main open problem is thus to design a one-pass

streaming O(1)-approximation algorithm for Uniform Facility

Location in high-dimensional Euclidean spaces.

Multiple Passes: It is also interesting to explore the power

of multiple passes. In particular, is it possible to achieve (1+
ε)-approximation using, e.g., poly(d·logΔ) passes? Our lower

bound works only for one pass, and it would be interesting to

strengthen it to O(1)-passes using poly(d · logΔ) space.

ACKNOWLEDGMENT

We are indebted to Arnold Filtser for telling us, very shortly

after we announced our results (on the arXiv), about the

definition of sparse partitions and the prior work in [23], [24].

REFERENCES

[1] P. Indyk, “Algorithms for dynamic geometric problems over data
streams,” in 36th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), 2004, pp. 373–380.

[2] C. Lammersen and C. Sohler, “Facility location in dynamic geometric
data streams,” in 16th Annual European Symposium on Algorithms
(ESA), 2008, pp. 660–671.

[3] A. Czumaj, C. Lammersen, M. Monemizadeh, and C. Sohler, “(1+ ε)-
approximation for facility location in data streams,” in 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013, pp.
1710–1728.

[4] G. Frahling, P. Indyk, and C. Sohler, “Sampling in dynamic data streams
and applications,” International Journal of Computational Geometry and
Applications, vol. 18, no. 1/2, pp. 3–28, 2008.

[5] G. Frahling and C. Sohler, “Coresets in dynamic geometric data
streams,” in 37th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), 2005, pp. 209–217.

[6] A. Andoni, K. D. Ba, P. Indyk, and D. P. Woodruff, “Efficient sketches
for earth-mover distance, with applications,” in 50th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2009, pp.
324–330.

[7] A. Czumaj, S. H. Jiang, R. Krauthgamer, and P. Veselý, “Streaming
algorithms for geometric Steiner forest,” in 49th International
Colloquium on Automata, Languages, and Programming (ICALP),
2022, pp. 47:1–47:20. [Online]. Available: https://doi.org/10.4230/
LIPIcs.ICALP.2022.47

[8] A. Andoni, P. Indyk, and R. Krauthgamer, “Earth mover distance over
high-dimensional spaces,” in 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2008, pp. 343–352.

[9] X. Chen, R. Jayaram, A. Levi, and E. Waingarten, “New streaming
algorithms for high dimensional EMD and MST,” in 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), 2022, pp.
222–233. [Online]. Available: https://doi.org/10.1145/3519935.3519979

[10] V. Braverman, G. Frahling, H. Lang, C. Sohler, and L. F. Yang, “Clus-
tering high dimensional dynamic data streams,” in 34th International
Conference on Machine Learning (ICML), 2017, pp. 576–585.

[11] Z. Song, L. F. Yang, and P. Zhong, “Nearly optimal dynamic k-means
clustering for high-dimensional data,” CoRR, vol. abs/1802.00459, 2018.

[12] M. Bădoiu, A. Czumaj, P. Indyk, and C. Sohler, “Facility location
in sublinear time,” in 32nd International Colloquium on Automata,
Languages, and Programming (ICALP), 2005, pp. 866–877.

[13] R. R. Mettu and C. G. Plaxton, “The online median problem,” SIAM
Journal on Computing, vol. 32, no. 3, pp. 816–832, 2003.

[14] G. Cormode and D. Firmani, “A unifying framework for �0-sampling
algorithms,” Distributed Parallel Databases, vol. 32, no. 3, pp. 315–335,
2014.

[15] R. M. Karp and M. Luby, “Monte-Carlo algorithms for enumeration
and reliability problems,” in 24th Annual Symposium on Foundations of
Computer Science (FOCS), 1983, pp. 56–64.

[16] P. Indyk, “A near linear time constant factor approximation for
Euclidean bichromatic matching (cost),” in 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2007, pp. 39–42. [Online].
Available: http://dl.acm.org/citation.cfm?id=1283383.1283388

[17] A. A. Benczúr and D. R. Karger, “Randomized approximation schemes
for cuts and flows in capacitated graphs,” SIAM Journal on Computing,
vol. 44, no. 2, pp. 290–319, 2015.

[18] D. A. Spielman and N. Srivastava, “Graph sparsification by effective
resistances,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1913–
1926, Dec. 2011.

[19] D. Feldman and M. Langberg, “A unified framework for approximating
and clustering data,” in 43rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), 2011, pp. 569–578.

[20] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective clustering,”
SIAM Journal on Computing, vol. 49, no. 3, pp. 601–657, 2020.

[21] Y. Li and D. P. Woodruff, “On approximating functions of the singular
values in a stream,” in 48th Annual ACM symposium on Theory of
Computing (STOC), 2016, pp. 726–739.

[22] V. Braverman, R. Krauthgamer, A. Krishnan, and R. Sinoff, “Schatten
norms in matrix streams: Hello sparsity, goodbye dimension,” in 37th
International Conference on Machine Learning (ICML), 2020, pp. 1100–
1110.

[23] L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram, “Universal
approximations for TSP, Steiner tree, and set cover,” in 37th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), 2005, pp.
386–395.

[24] A. Filtser, “Scattering and sparse partitions, and their applications,” in
47th International Colloquium on Automata, Languages, and Program-
ming (ICALP), 2020, pp. 47:1–47:20.

[25] O. Dunkelman, Z. Geyzel, C. Keller, N. Keller, E. Ronen, A. Shamir, and
R. J. Tessler, “Error resilient space partitioning (invited talk),” in 48th
International Colloquium on Automata, Languages, and Programming
(ICALP), 2021, pp. 4:1–4:22.

472

[26] S. Arora, “Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,” Journal of the ACM,
vol. 45, no. 5, pp. 753–782, 1998.

[27] N. Linial and M. E. Saks, “Low diameter graph decompositions,”
Combinatorica, vol. 13, no. 4, pp. 441–454, 1993.

[28] Y. Bartal, “Probabilistic approximations of metric spaces and its al-
gorithmic applications,” in 37th Annual Symposium on Foundations of
Computer Science (FOCS), 1996, pp. 184–193.

[29] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. A. Plotkin, “Ap-
proximating a finite metric by a small number of tree metrics,” in 39th
Annual Symposium on Foundations of Computer Science (FOCS), 1998,
pp. 379–388.

[30] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in 30th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 1998, pp. 604–613.

[31] N. Megiddo and K. J. Supowit, “On the complexity of some common
geometric location problems,” SIAM Journal on Computing, vol. 13,
no. 1, pp. 182–196, 1984.

[32] S. Guha and S. Khuller, “Greedy strikes back: Improved facility location
algorithms,” Journal of Algorithms, vol. 31, no. 1, pp. 228–248, 1999.

[33] S. Li, “A 1.488 approximation algorithm for the uncapacitated facility
location problem,” Information and Computation, vol. 222, pp. 45–58,
2013.

[34] V. Cohen-Addad, A. E. Feldmann, and D. Saulpic, “Near-linear time
approximation schemes for clustering in doubling metrics,” Journal of
the ACM, vol. 68, no. 6, pp. 44:1–44:34, 2021.

[35] V. Cohen-Addad, P. N. Klein, and C. Mathieu, “Local search yields
approximation schemes for k-means and k-median in Euclidean and
minor-free metrics,” SIAM Journal on Computing, vol. 48, no. 2, pp.
644–667, 2019.

[36] S. G. Kolliopoulos and S. Rao, “A nearly linear-time approximation
scheme for the Euclidean k-median problem,” SIAM Journal on Com-
puting, vol. 37, no. 3, pp. 757–782, 2007.

[37] V. Cohen-Addad, M. Pilipczuk, and M. Pilipczuk, “A polynomial-time
approximation scheme for facility location on planar graphs,” in 60th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2019, pp. 560–581.

[38] A. Meyerson, “Online facility location,” in 42nd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2001, pp. 426–431.

[39] D. Fotakis, “On the competitive ratio for online facility location,”
Algorithmica, vol. 50, no. 1, pp. 1–57, 2008.

[40] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[41] U. Feige and R. Krauthgamer, “Stereoscopic families of permutations,
and their applications,” in 5th Israel Symposium on the Theory of
Computing and Systems (ISTCS), 1997, pp. 85–95.

[42] T. M. Chan, S. Har-Peled, and M. Jones, “On locality-sensitive orderings
and their applications,” SIAM Journal on Computing, vol. 49, no. 3, pp.
583–600, 2020.

[43] G. Kindler, R. O’Donnell, A. Rao, and A. Wigderson, “Spherical cubes
and rounding in high dimensions,” in 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2008, pp. 189–198.

[44] M. Kapralov and D. P. Woodruff, “Spanners and sparsifiers in dynamic
streams,” in 33rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2014, pp. 272–281.

[45] A. Filtser, M. Kapralov, and N. Nouri, “Graph spanners by sketching
in dynamic streams and the simultaneous communication model,” in
32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2021, pp. 1894–1913. [Online]. Available: https://doi.org/10.1137/1.
9781611976465.113

[46] C. Konrad and K. K. Naidu, “On two-pass streaming algorithms for
maximum bipartite matching,” in APPROX-RANDOM, 2021, pp. 19:1–
19:18.

[47] G. Cormode and H. Jowhari, “A second look at counting triangles in
graph streams (corrected),” Theoretical Computer Science, vol. 683, pp.
22–30, 2017.

[48] V. Braverman, S. R. Chestnut, R. Krauthgamer, Y. Li, D. P. Woodruff,
and L. F. Yang, “Matrix norms in data streams: Faster, multi-pass
and row-order,” in 35th International Conference on Machine Learning
(ICML), 2018, pp. 648–657.

[49] S. Assadi, “Tight space-approximation tradeoff for the multi-pass
streaming set cover problem,” in 36th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), 2017, pp. 321–
335.

[50] M. Kapralov, S. Khanna, and M. Sudan, “Approximating matching
size from random streams,” in 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2014, pp. 734–751.

[51] S. Assadi and S. Behnezhad, “Beating two-thirds for random-order
streaming matching,” in 48th International Colloquium on Automata,
Languages, and Programming (ICALP), 2021, pp. 19:1–19:13.

[52] S. Guha and A. McGregor, “Stream order and order statistics: Quantile
estimation in random-order streams,” SIAM Journal on Computing,
vol. 38, no. 5, pp. 2044–2059, 2009.

[53] P. Peng and C. Sohler, “Estimating graph parameters from random order
streams,” in 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2018, pp. 2449–2466.

[54] D. P. Woodruff and S. Zhou, “Separations for estimating large fre-
quency moments on data streams,” in 48th International Colloquium
on Automata, Languages, and Programming (ICALP), 2021, pp. 112:1–
112:21.

[55] A. Czumaj, S. H. Jiang, R. Krauthgamer, P. Veselý, and M. Yang,
“Streaming facility location in high dimension via geometric hashing,”
arXiv, vol. abs/2204.02095, 2022.

[56] N. Nisan, “Pseudorandom generators for space-bounded computation,”
Combinatorica, vol. 12, no. 4, pp. 449–461, 1992. [Online]. Available:
https://doi.org/10.1007/BF01305237

[57] A. Andoni, R. Krauthgamer, and K. Onak, “Streaming algorithms via
precision sampling,” in 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2011, pp. 363–372.

[58] G. Cormode and S. Muthukrishnan, “Space efficient mining of multi-
graph streams,” in 24th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), 2005, p. 271–282.

[59] T. S. Jayram and D. P. Woodruff, “The data stream space complexity of
cascaded norms,” in 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2009, pp. 765–774.

[60] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm
for the distinct elements problem,” in Proceedings of the 29th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), 2010, pp. 41–52.

473

