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Abstract. A bisection of a graph with n vertices is a partition of its vertices into two sets,
each of size n/2. The bisection cost is the number of edges connecting the two sets. The problem
of finding a bisection of minimum cost is prototypical to graph partitioning problems, which arise in
numerous contexts. This problem is NP-hard. We present an algorithm that finds a bisection whose
cost is within ratio of O(log1.5 n) from the minimum. For graphs excluding any fixed graph as a
minor (e.g., planar graphs) we obtain an improved approximation ratio of O(log n). The previously
known approximation ratio for bisection was roughly

√
n.
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1. Introduction. Let G(V, E) be an undirected graph with n vertices and m
edges, where n is even. For a subset S of the vertices (with S 6= ∅, V ), the cut (S, V \S)
is the set of all edges in G with one endpoint in S and one endpoint in V \ S; these
edges are said to be cut by (S, V \ S). The cost of a cut is the number of edges in it.

A cut (S, V \ S) is called a bisection of G if its two sides, S and V \ S, are each
of size n/2. We denote the minimum cost of a bisection of G by b = b(G). Minimum
bisection is the problem of computing b for an input graph G. This problem is NP-hard
(see [GJS76]), and we address the problem of approximating it.

Minimum bisection is one of the most basic problems in a family of problems
dealing with partitioning the vertices of an input graph. These problems are motivated
by divide-and-conquer approaches for solving a variety of other graph optimization
problems, see e.g. [LT80, BL84, RH01] and the references therein. By finding say a
small bisection, the graph can be partitioned into two equal size parts with very little
interaction between the parts, and thus solutions computed for each part separately
can be combined at low additional cost. Continuing this way recursively, there are
only log n levels before the graph is broken into individual vertices.

Graph partitioning is useful in a wide range practical settings such as VLSI design
and image processing, see e.g. [AK95, SM00], which has led, over the years, to the
development of several heuristics and general purpose solver packages. An extensive
survey of various heuristics is provided in [AK95] (see also [RWSB05] for a more recent
account). Common software packages for partitioning graphs include METIS (based
on [KK98]) and its extension hMETIS [MET], and JOSTLE [JOS]. The website of the
latter package contains also a graph partitioning archive with numerous benchmarks.

An algorithm is said to approximate a minimization problem within ratio f ≥ 1
if it runs in polynomial time and outputs a solution whose cost is at most f times
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the cost of the optimal solution. The problem is said to have a polynomial time
approximation scheme (PTAS) if for every fixed f > 1 there is an algorithm with
approximation ratio f .

1.1. Previous work. Graph partitioning problems were studied extensively in
the last few decades, and we mention only a few notable examples. Kerninghan
and Lin [KL70] designed a local search heuristic for minimum bisection. Lipton and
Tarjan [LT79] proved that planar graphs have a small vertex separator (a notion that
is closely related to bisection).

Leighton and Rao [LR88, LR99] showed how to approximate within ratio O(log n)
minimum-quotient cuts, which we shall call min-ratio cuts. In these cuts, one wishes to
minimize the cut ratio (also called edge expansion or flux) c/|S|, where c is the number
of edges in the cut and |S| is the cardinality of the smaller of the two sides of the cut.
Recently, the approximation ratio for this problem was improved to O(

√
log n) by

Arora, Rao and Vazirani [ARV04], and some technical aspects of the latter algorithm
(such as running time) were refined by [AHK04, Lee05].

A β-balanced cut is a cut that partitions the graph into two parts, each of size at
most βn. Leighton and Rao [LR88] (see also [LR99, Shm97]) used their approximate
min-ratio cuts to find a 2/3-balanced cut (also called edge separator) with at most
O(b log n) edges; the latter bound improves to O(b

√
log n) if one uses instead the

recent approximation algorithm of [ARV04] for min-ratio cuts. Note that such a 2/3-
balanced cut does not provide an O(log n) approximation for the value of b. For
example, when the graph consists of three disjoint cliques of equal size, an optimal
2/3-balanced cut has no edges, whereas b = Ω(n2).

A straightforward approach for obtaining an exact bisection is to first find an
almost balanced cut (e.g., using approximate min-ratio cuts) and then move a few low
degree vertices from one side to the other. Using this approach one can approximate
bisection within a ratio of Õ(

√
m/b) (we use Õ(f) to denote O(f · polylog n)); see,

e.g., [LR99, Footnote 10] and [FKN00]. This is a dramatic improvement over the
naive ratio of O(m/b) (achieved by arbitrarily picking n/2 vertices) but might still be
larger than n.

The best (in terms of n) approximation ratio previously known is Õ(
√

n), due
to [FKN00] (improving over an n/2 ratio due to Saran and Vazirani [SV95]). Their
approach follows, in part, a divide and conquer paradigm. Two of their main tools
are (i) approximate min-ratio cuts, which are used to recursively break the graph,
and (ii) dynamic programming, which is used to combine certain possible parts into
an exact bisection. The current work also uses a divide and conquer approach but in
a more sophisticated way.

Several results might indicate that minimum bisection cannot be approximated
arbitrarily well in polynomial time. Bui and Jones [BJ92] show that for every fixed
ε > 0, it is NP-hard to approximate the minimum bisection within an additive term
of n2−ε. Feige [Fei02] showed that if refuting 3SAT is hard on average on a natural
distribution of inputs, then for every fixed ε > 0 there is no 4/3 − ε approximation
algorithm for minimum bisection. Khot [Kho04] proved that minimum bisection does
not admit a polynomial time approximation scheme (PTAS) unless NP has random-
ized sub-exponential time algorithms. More precisely, Khot shows that for every ε > 0
there is a constant δ < 1 such that if there is a polynomial time (1+ε)-approximation
algorithm for minimum bisection then 3SAT can be solved by a randomized algorithm
in time 2nδ

.
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1.2. Our results. Our main result is an algorithm for approximating the mini-
mum bisection within a polylogarithmic ratio.

Theorem 1.1. A bisection of cost within ratio of O(log1.5 n) of the minimum
can be computed in polynomial time.

We remark that the approximation ratio we obtain is, in fact, O(log n) times
the approximation ratio known for min-ratio cuts. In earlier versions of the current
paper [FK02], the approximation ratio claimed for minimum bisection was O(log2 n),
because at that time the best approximation ratio known for min-ratio cuts was
O(log n) [LR88, AR98, LLR95].

Section 2 gives an overview of the algorithm. On a high level, the algorithm
follows a divide and conquer approach. The input graph is recursively divided into
smaller and smaller parts, using a new cut notion which we call an amortized cut,
and then the parts are combined into a bisection using dynamic programming. The
definition of this new cut notion appears in this overview.

Section 4 describes our algorithm for approximating bisection, based on a subrou-
tine for finding an amortized cut. If the subroutine is guaranteed to find a ρ-amortized
cut in a graph, the algorithm computes a bisection whose cost is within a ratio of
1 + O(ρ log n) of the minimum.

In section 3 we devise an algorithm for finding an O(
√

log n)-amortized cut in
a general graph. By using this algorithm as a subroutine in the 1 + O(ρ log n) ap-
proximation algorithm for bisection, we are guaranteed that ρ = O(

√
log n), proving

Theorem 1.1. The subroutine actually uses a τ -approximate min-ratio cut in order to
find an O(τ)-amortized cut. The approximation ratio currently known for min-ratio
cut in general graphs is τ = O(

√
log n) due to Arora, Rao and Vazirani [ARV04].

In certain graph families, there is a better approximation ratio τ for the min-ratio
cut problem. If these graph families are closed under taking induced subgraphs, then
we can approximate bisection within an improved ratio of O(τ log n). For example,
it is shown in [KPR93] that in graphs excluding any fixed graph as a minor (e.g.,
bounded-genus graphs) min-ratio cut can be approximated within a constant ratio,
i.e., τ = O(1).

Theorem 1.2. In graphs excluding a fixed graph as a minor (e.g., planar graphs),
a bisection of cost within a ratio of O(log n) of the minimum can be computed in
polynomial time.

Section 5 extends our results to several natural generalizations of the bisection
problem. These extensions include, for example, bisection of graphs with arbitrary
nonnegative edge costs and graph partitioning into three parts of equal size.

1.3. Related work. Additional related work includes the following. Garg,
Saran, and Vazirani [GSV99] give an approximation ratio of 2 for the problem of
finding a 2/3-balanced cut of minimum cost in a planar graph. Their result extends
to a β-balanced cut, for every β ≥ 2/3, but does not extend to a bisection, which is
a 1/2-balanced cut. In [AKK99], Arora, Karger, and Karpinski show that bisection
has a PTAS for everywhere-dense graphs, i.e., graphs with minimum degree Ω(n). In
[dlVKK04], de la Vega, Karpinski and Kenyon give a PTAS for minimum bisection
in a metric space (a complete graph with nonnegative weights satisfying the triangle
inequality).

On the hardness side, Berman and Karpinski [BK02] show that the approximation
ratio of minimum bisection in 3-regular graphs is not significantly better than that of
minimum bisection in general graphs. Feige and Yahalom [FY03] show that directed
minimum bisection is not approximable at all.
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Our results and techniques have been used in several ways. Berman and Karpin-
ski [BK03] use our approximation algorithm above to obtain, for every fixed k > 0, a
polylogarithmic approximation ratio for minimum bisection in k-uniform hypergraphs.
Andreev and Räcke [AR04] study a generalization of minimum bisection where the
graph needs to be partitioned into k = k(n) equal-sized parts (hence k is part of the
input). Using a technique similar to ours they design a bicriteria approximation algo-
rithm with ratio O(log1.5 n). Coja-Oghlan et al. [COGLS04] use our approximation
algorithm above to certify efficiently the unsatisfiability of random 2k-SAT with suf-
ficiently many clauses. Svitkina and Tardos [ST04] use our approximation algorithm
to obtain polylogarithmic approximation ratio for a variant of the minimum multicut
problem.

A natural generalization of min-ratio cuts not addressed in this paper is (es-
sentially) a problem called Sparsest-Cut with general demands. This problem has
received a lot of attention. Early approximation algorithms for it include [AR98,
LLR95], and these were recently improved by [ALN05] (building on [ARV04, Lee05,
CGR05]). Some indications to the inapproximability of this problem were given by
[CKK+05, KV05, KR06]. Other related problems not addressed here are the vertex-
cut variants of min-ratio cut and of Sparsest-Cut with general demands; some ap-
proximation algorithms for these problems are designed in [AKR03, FHL05].

1.4. Conventions and notation. We will often denote the two sides of a (not
necessarily optimal) bisection as white W and black B. A graph may have several dif-
ferent bisections of minimum cost. For the analysis, let us fix one of them (arbitrarily)
and call it the fixed optimal bisection (W ∗, B∗).

For V1, V2, two disjoint subsets of vertices in a graph, let e(V1, V2) denote the
number of edges with one endpoint in V1 and the other endpoint in V2. Subsets
V1, V2 ⊂ V are called a partition of V if they are nonempty, disjoint, and their union
is equal to V . In our context, V is the vertex set of a graph, and then a partition
V = V1 ∪ V2 is equivalent to the cut (V1, V2).

A subset of vertices S ⊂ V with 0 < |S| < |V | corresponds to a cut (S, S) in
the graph, where S = V \ S. We denote by r(S) the ratio of this cut, i.e., r(S) =

e(S,S)

min{|S|,|S|} , and by r′(S) the ratio of this cut towards S, i.e., r′(S) = e(S,S)
|S| . We

call S a part of the graph, referring either to the set of vertices S or to the subgraph
induced on S, depending on the context.

2. Overview and techniques. Our approximation algorithm for minimum bi-
section has three stages, as outlined below.

Stage 1: Decomposition. This stage consists of a sequence of divide steps. The
input to a divide step is a part of the input graph G, i.e., a vertex set and the subgraph
induced on it, and the output is a partition of the vertex set into two nonempty subsets,
giving two new parts of the graph. These divide steps are applied on the input graph
G recursively until it is decomposed into individual vertices.

The output of the whole decomposition stage is a binary tree T that we call the
decomposition tree. Each node i of the tree contains a part Vi obtained in a divide
step, as follows. The root of the tree contains the input graph G, the leaves of the
tree contain individual vertices of G, and the two direct descendants of a node i are
the two subparts obtained in the divide step of its part Vi.

To complete the description of the decomposition stage, we need to explain how
a divide step is performed. This is done using a new notion called an amortized cut,
which we define later in this section. We devise an algorithm for finding amortized
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cuts in section 3. The decomposition stage is described in more detail in section 4.1.
Stage 2: Labeling. Consider a labeling of the decomposition tree T , which labels

each (nonleaf) tree node as either white or black. Fixing a parameter 1/2 < α < 1,
we say that a labeling is α-consistent with respect to a white-black bisection (W,B)
of the input graph if every part Vi (at a tree node i) satisfies that |W ∩ Vi| ≤ α|Vi| if
the label of node i is white and that |B ∩ Vi| ≤ α|Vi| if the label of node i is black.

The desired outcome of the labeling stage is a labeling which is α-consistent
with the fixed optimal bisection (W ∗, B∗), called in short an opt-consistent labeling.
However, an optimal bisection is not known to the algorithm; so instead of finding
an opt-consistent labeling, this stage produces a family of labelings such that at least
one member of the family is opt-consistent. The description of how this is done is
deferred to section 4.2. For the purpose of this overview, it will be convenient to think
of the labeling stage as if it produces only one labeling, which is opt-consistent.

Stage 3: Combining. Given a decomposition tree T and an arbitrary (not neces-
sarily opt-consistent) labeling of it, the combining stage assigns to each vertex v of
the input graph G a white charge and a black charge. The two charges are simple
to compute based on the labels along the path from the root of T to the leaf that
contains the vertex v.

The charge of a bisection (W,B) of the input graph G (with respect to the la-
beling) is defined as the sum of the white charges of the vertices of W and the black
charges of the vertices of B. The functions white charge and black charge have the
property that for every bisection, charge is an upper bound on cost (regardless of the
labeling).

If the charge is defined with respect to an opt-consistent labeling of T , then our
notion of amortized cut used in the decomposition stage guarantees, in addition, that
the charge of the fixed optimal bisection is within a polylogarithmic factor of its cost
b. Hence, using the opt-consistent labeling produced by the labeling stage ensures
that the input graph G contains a bisection whose charge is within polylogarithmic
ratio of b.

Finding a bisection of minimum charge in G is relatively straightforward. Asso-
ciate with each vertex a net-charge, which is its white charge minus its black charge,
and pick the n/2 vertices with smallest net-charge to form one side, W , leaving the
remaining n/2 vertices in another side, B. The bisection (W,B) that we find has
minimum charge, and its cost is thus within a polylogarithmic factor of b, the cost of
the minimum bisection.

It is interesting to note that finding a minimum cost bisection is an optimization
problem with a quadratic objective function (minimizing the number of edges, where
edges are pairs of vertices). Finding a minimum charge bisection (given the decom-
position tree and an opt-consistent labeling) is an optimization problem with a linear
objective function (sum of net-charges over individual vertices). Hence, in a sense, our
algorithm performs a linearization of a quadratic function and loses a polylogarithmic
factor in the process.

The above presentation of the combining stage was oversimplified. The output of
the labeling stage is not one labeling that is opt-consistent, but rather a large family
of labelings, such that at least one of them is opt-consistent. Moreover, this family
has exponential cardinality; so we cannot try the above net-charge approach on each
labeling separately. Instead, we exploit the structure of this family of labelings and
use dynamic programming to compute a labeling from the family and a bisection
such that the charge of this bisection with respect to this labeling is minimum over
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all labeling-bisection pairs. Details appear in section 4.4.
In the rest of the overview we shall introduce and discuss the notion of amortized

cut, which is of central importance in bounding the ratio between the charge and
the cost of the fixed optimal bisection. To motivate this new notion we present our
algorithm as a divide and conquer algorithm. We then suggest a kind of cut that is
desirable for the algorithm’s divide step and call this cut notion an amortized cut.

Divide and conquer approach. A possible divide and conquer approach for
a graph problem is to divide the input graph G into two parts (using a cut), solve a
subproblem for each part, and then combine the solutions of the two subproblems into
a solution for G. This approach can be applied recursively, and then the input graph
G is recursively divided into smaller and smaller parts, where each part is associated
with a subproblem. Note that the divide step cut is a tool of this approach and is not
intended to be a solution to the subproblem.

In our context, the graph problem is minimum bisection, and we apply this divide
and conquer approach to the more general problem of cutting away an arbitrary
number of vertices that is given as part of the input. (Bisection is the special case
where the given number is n/2.) Similarly, the subproblem of each part requires to cut
away (from that part) an arbitrary number of vertices that is given in the subproblem.
Note that minimum bisection is a cut problem, and therefore in addition to the divide
step cuts we have here also solution cuts (later called combined cuts). Note that the
solution cut of a part need not be the same as the divide step cut of this part.

Our three stage algorithm outlined above follows this divide and conquer ap-
proach. The task of breaking the input graph into smaller and smaller parts is
performed by the decomposition stage, whose decomposition tree T represents the
recursive structure of the divide steps.

For such a divide and conquer approach to be successful, it is desirable that (i)
each of the two subproblems can be solved separately and (ii) the solutions of the
two subproblems can be combined while incurring a relatively small additional cost.
Below we provide an overview of how our algorithms handle these issues.

Consider the problem of cutting away k vertices from a part U ⊆ V of the input
graph. The corresponding divide step uses a cut (U1, U2) of U to break this problem
into the two subproblems of cutting away k1 vertices from U1 and of cutting away k2

vertices from U2, with k = k1 +k2. (For the sake of exposition assume that k1, k2 can
be guessed.) Let us assume that the subproblem associated with each subpart Ui is
solved separately (by recursion) and the solution obtained for it is a cut (Ci, Fi) with
|Ci| = ki (see also Figure 2.1). The two solution cuts are then combined into a cut of U
that separates k = k1 +k2 vertices, namely (C1∪C2, F1∪F2). Let Cut(U ′, k′) denote
the cost of the cut of U ′ that separates k′ vertices and is found by the algorithm.
Then the cost of the combined cut is given by

Cut(U, k) = Cut(U1, k1) + Cut(U2, k2) + e(C1, F2) + e(C2, F1).(2.1)

Previous accounting method. The approach of [FKN00] is based on a straight-
forward upper bound on the cost (2.1) of the combined cut. The additional cost
incurred by the divide step, i.e., e(C1, F2) + e(C2, F1), is at most the cost of all the
edges cut by the divide step, i.e., e(U1, U2), yielding the upper bound

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(U1, U2).(2.2)

We remark that a bound similar to (2.2) is used in divide and conquer algorithms
for many other graph problems, such as minimum cut linear arrangement (a.k.a.
cutwidth); see, e.g., [LR99].
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Fig. 2.1. The divide and conquer paradigm.

The divide steps of [FKN00] use an approximate min-ratio cut to break each part
U . This cut appears to be suitable for the bound (2.2) because it minimizes the cost
of the cut (U1, U2), and at the same time tries to cut the part U into parts of roughly
equal size, so as to minimize the depth of the recursion.

It is instructive to evaluate the quality of our upper bound in the case where the
computed cut (C1∪C2, F1∪F2) is just the cut induced on U by the optimal bisection
(W ∗, B∗). Intuitively, we analyze the case where the algorithm happens to find the
optimal bisection. In fact, we will later use dynamic programming to find a bisection
for which the upper bound is minimized; so such an analysis bounds from above the
cost of the output bisection.

There are cases where the upper bound (2.2) is tight (i.e., holds with equality).
Indeed, the cuts within each Ui are computed independently of each other, and so it
might happen that all the edges between the two parts U1, U2 end up in the combined
cut. However, this bound is insensitive to cases where only a few of the edges that
are cut in the divide step end up in the combined cut, leading to a relatively poor
approximation ratio.

New accounting method. We introduce a more sophisticated way of bounding
the cost of the combined cut. Since F1 ⊆ U1 and F2 ⊆ U2 we can bound the cost of
the combined cut by

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(C1, U2) + e(C2, U1).(2.3)

Unlike the actual cost (2.1), the upper bound (2.3) can be used in a divide and
conquer approach, as follows. Let us call e(C1, U2)+e(C2, U1) the charge of the divide
step of U . This charge can be distributed into a charge e(C1, U2) of the part U1 and
a charge e(C2, U1) of the part U2. The charge of a part Ui consists of the edges going
from Ci to the other part U3−i and thus depends on the cut (Ci, Fi) chosen in the
part Ui but not on the cut chosen in the other part U3−i. We obtain two separate
subproblems (as in each part Ui we want to find a cut (Ci, Fi) for which the sum of
the cost of this cut and the charge to this part is minimal), enabling a recursive divide
and conquer approach. In contrast, the terms e(C1, F2) and e(C2, F1) of the actual
cost of the combined cut depend on the cuts chosen in both parts and do not allow
us to break the problem into two separate subproblems.



8 URIEL FEIGE AND ROBERT KRAUTHGAMER

The new accounting method makes a distinction between the two sides C and F
of the combined cut. Unlike, e.g., in (2.2), these two sides have different roles in the
upper bound (2.3), and we will choose in a certain way which side is referred to as
C (and which as F ). Since we wish to minimize the charge, it makes sense to choose
the smaller of the two sides to be C. In our analysis we have a somewhat relaxed
condition, requiring that |C| ≤ α|U |, for a fixed 1/2 < α < 1. The task of identifying
a side C as required above in each divide step (i.e., each node of the decomposition
tree) is performed by the labeling stage, as explained in section 4.2.

The charge of a bisection is the upper bound that is obtained by applying the
upper bound (2.3) recursively; i.e., it is the sum of the charges of all the divide steps.
In section 4.3 we discuss this notion in more detail, and in section 4.4 we show that
its current formulation is equivalent to the one from Stage 3 of the algorithm outline
(where the identification of a side C at each divide step corresponds to labeling of
the decomposition tree T ). From the current formulation it is straightforward that
the charge of a bisection is always an upper bound on its cost (regardless of the
identification of C at each divide step, i.e., the tree labeling).

We call the vertices of C = C1 ∪C2 charged and the vertices of F = F1 ∪ F2 free.
The edges in the part U can then be classified as charged-charged, charged-free, or
free-free, according to their two endpoints.

Desired divide step. Rather than find a bisection of minimum cost, our ap-
proximation algorithm looks for a bisection of minimum charge. Our desired divide
step is therefore one that guarantees that for the fixed optimal bisection, charge can
be used to approximate cost. By the labeling stage, it suffices to refer here to charge
with respect to an opt-consistent labeling; so from now on we assume that |C| ≤ α|U |
at each divide step.

Consider the charge of the fixed optimal bisection and recall that it is the sum
of the charges of all the divide steps. The charge of a divide step of a part U is
e(C1, U2) + e(C2, U1) and can be written also as e(C1, F2) + e(C2, F1) + 2e(C1, C2),
i.e., the cost of the charged-free edges that the divide step cuts and twice the cost of
the charged-charged edges that it cuts. Observe that a charged-free edge is always
an edge of the fixed optimal bisection (and vice versa) and that each edge is cut
exactly once in the decomposition stage. Hence, all the charged-free edges cut in all
the divide steps are exactly all the edges of the fixed optimal bisection. So for the
fixed optimal bisection, the difference between charge and cost is twice the cost of all
the charged-charged edges cut in all the divide steps.

It is therefore desired that the divide step cuts relatively few charged-charged
edges, where relative here is, with respect to b, the cost of the fixed optimal bisection.
Since b is the total cost of the charged-free edges that are cut in all the divide steps,
we seek an amortization scheme that amortizes the total cost of all charged-charged
edges cut against the total cost of all charged-free edges cut. The partition of vertices
to charged and free is not known to the divide step, and we therefore require that the
amortization scheme holds for every possible partition of vertices to charged and free.

A simple amortization scheme can consider each divide step separately and amor-
tize the cost of the charged-charged edges cut in a divide step against the cost of the
charged-free edges cut in the same divide step. Suppose that in every divide step
the amortized cost in this method is at most ρ; i.e., at every part U we have that
e(C1, C2) ≤ ρ[e(C1, F2)+e(C2, F1)]. Then the total cost of charged-charged edges cut
in all divide steps is clearly at most ρb, and the charge of the fixed optimal bisection
is at most (1 + 2ρ)b.
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The problem with this simple amortization scheme is that in order to guarantee
that the scheme holds for all possible partitions of vertices to charged and free, ρ might
be required to be at least n, a value that is too high for our intended application. For
example, consider a graph that consists of two cliques of size n/2 connected by an
edge e. If the divide step breaks any of the cliques, then letting this clique be C and
the other clique be F , the amortization cost will be at least n. Otherwise, the divide
step consists of the edge e and then, letting C consist of the two endpoints of e, the
amortization cost will be infinite.

We employ a more complicated amortization scheme that allows a small amor-
tization cost ρ but introduces an additional logarithmic factor. The reason for the
logarithmic factor is that this scheme amortizes against the same edge more than
once (but, in a sense, not too many times). Another complication is that this scheme
actually has two amortization methods, and it uses at each divide step the one that
is better (for that divide step).

Amortized cut. We amortize the cost of the charged-charged edges cut in a
divide step against the cost of the charged-free edges in the part being divided, i.e. in
the divide step of a part U we amortize e(C1, C2) against e(C,F ). The edges that
we amortize against are not cut in this divide step, and hence an edge may receive
an amortized cost in many divide steps. However, our amortization scheme described
below will guarantee that the total cost amortized against a single edge is at most
O(ρ · log n) for a suitable ρ. Since the edges that we amortize against are charged-free
edges and hence edges of the fixed optimal bisection, it would follow that the total
cost of the charged-charged edges cut in all the divide steps is at most O(ρ log n) · b,
and so the charge of the fixed optimal bisection is (1 + O(ρ log n)) · b.

For motivation, consider the case where the divide steps recursion has depth
O(log n), e.g., when all the divide steps are roughly balanced. In this case, an edge
can receive an amortized cost in at most O(log n) divide steps. Suppose that in
every divide step the amortized cost is at most ρ; i.e., in every part U we have that
e(C1, C2) ≤ ρ · e(C, F ). Then the total cost amortized against a single edge is at most
O(ρ log n).

We do not require that the divide steps are balanced but rather scale the amorti-
zation cost at a part U according to the imbalance of its divide step. Out of the several
possible scaling factors we will use only the following two, where we assume, without
loss of generality, that |U1| ≤ |U2|. The first scaling factor is e(C1, F1)/e(C,F ), and
its corresponding amortization method requires that

e(C1, C2) ≤ ρ · e(C1, F1)
e(C, F )

· e(C, F ).(2.4)

The second scaling factor is |C1|/|C|, and its corresponding amortization method
requires that

e(C1, C2) ≤ ρ · |C1|
|C| · e(C,F ).(2.5)

Alternative formulations. The first amortization method (2.4) can also be written
as e(C1, C2) ≤ ρ ·e(C1, F1). A convenient interpretation of this formulation is that we
amortize against the charged-free edges inside U1, the smaller side of the divide step
cut (rather than inside U , the part being divided), and the amortized cost is required
to be at most ρ.
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The second amortization method (2.5) can be written also as e(C1, C2) ≤ ρ ·
r′(C) · |C1|, where r′(C) = e(C, F )/|C|. (See section 1.4 for the difference between
r′(C) and r(C).) A convenient interpretation of this formulation is that we amortize
against the vertices in C1, the charged vertices inside the smaller side of the divide
step cut, and the amortized cost is required to be at most ρ · r′(C).

Total amortized cost. The total cost amortized in the first method (2.4) is at most
O(ρ log n) · b. Indeed, let us use the alternative formulation in which the amortization
is only against edges inside U1, the smaller side of the divide step cut. An edge can
be inside U1 in at most log n divide steps (since the size of the part it is contained in
reduces at each such divide step by a factor of 2). Hence the total cost amortized in
this method against a single edge (of the fixed optimal bisection) is at most O(ρ log n),
and the claim follows.

The total cost amortized in the second method (2.5) is also at most O(ρ log n) · b.
Indeed, we show in section 4.3 that the total cost amortized in this method against a
single edge (of the fixed optimal bisection) is at most O(ρ log n) (essentially by careful
summation of the relevant terms of the form |C1|/|C|), and the claim follows.

Our amortization scheme. Our amortization scheme chooses at each divide step
the scaling factor that is better for this divide step, and so it suffices to have that at
each part U at least one of (2.4) and (2.5) holds. It follows from the above discussion
(see section 4.3 for a full proof) that the total cost amortized in both methods together
is at most O(ρ log n) · b.

We can now formally define our desired divide step according to the (alternative
formulations of) the two amortization methods described above. We call this cut an
amortized cut.

Definition. Let (U1, U2) be a cut with |U1| ≤ |U2| in a graph G′(U,E′), and
let U = C ∪ F be a partition of the graph vertices U to charged vertices C and free
vertices F . Let us denote Ci = Ui ∩C and Fi = Ui ∩C for i = 1, 2, as in Figure 2.1.
Let

ρe =
e(C1, C2)
e(C1, F1)

and ρv =
e(C1, C2)
|C1| · r′(C)

,(2.6)

where r′(C) = e(C,F )/|C|. We call ρe the amortized cost for the edges, and ρv the
amortized cost for the vertices. (Note that ρe, ρv depend on C,F .)

The amortized cost of the cut (U1, U2) is the maximum of min{ρe, ρv}, where the
maximum is taken over all partitions U = C ∪ F with 0 < |C| ≤ α|U | for a fixed
1
2 ≤ α < 1. We say that the cut (U1, U2) is ρ-amortized if its amortized cost is at
most ρ.

In order for us to correctly handle cases where there is no cost to amortize against,
we use the convention that 0

0 is defined to be 0 and that t
0 for t > 0 is defined to be

∞. In particular, we may extend (2.6) to the case where C = ∅ and then ρe, ρv are
defined to be 0.

Convenient characterizations. A convenient characterization of an amortized cut
is given in the following proposition, whose proof is straightforward. (We will use this
characterization in section 4.)

Proposition 2.1. A cut (U1, U2) with |U1| ≤ |U2| is ρ-amortized if and only if
for every C ⊂ U with |C| ≤ α|U | and F = U \ C,

e(C1, C2) ≤ ρ ·max
{

e(C1, F1),
|C1|
|C| · e(C, F )

}
,

where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.
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The restriction |C| ≤ α|U | implies that the two terms r(C) = e(C,F )
min{|C|,|F |} and

r′(C) = e(C,F )
|C| differ by no more than a constant factor. Indeed, min{|C|, |F |} =

Θ(|C|) and hence r(C) = e(C,F )
min{|C|,|F |} = e(C,F )

Θ(|C|) = Θ(r′(C)).

We can therefore characterize the amortized cost of a cut (up to constant factors)
in terms of r(C) rather than r′(C). (We will use this characterization in section 3.)
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Proposition 2.2. A cut (U1, U2) with |U1| ≤ |U2| is O(ρ)-amortized if for every
partition U = C ∪ F with 0 < |C| ≤ α|U |,

min
{

e(C1, C2)
e(C1, F1)

,
e(C1, C2)
|C1| · r(C)

}
≤ ρ,(2.7)

where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.
Remarks. Observe that without the restriction |C| ≤ α|U |, the amortized cost ρ

might be required to be Ω(|U |), a value that is too high for our intended application.
For example, consider a clique on n vertices and a cut (U1, U2) in it with |U1| ≤ |U2|.
Let one vertex of U2 be the only free vertex and the rest of the vertices be charged.
The number of charged-charged edges cut is |U1| · Θ(n). There are no charged-free
edges in U1; so the amortized cost for the edges is ρe = ∞. The number of charged
vertices in the smaller side is |U1| and r′(C) = n−1

n−1 = 1; so the amortized cost for the

vertices is ρv = |U1|Θ(n)
|U1|·1 = Θ(n). Therefore, the amortized cost of any cut would be

ρ = Ω(n).
In contrast, we show that the restriction |C| ≤ α|U | allows us to obtain relatively

small values of ρ. Namely, there always exists a cut whose amortized cost is ρ = O(1),
and a cut whose amortized cost is O(

√
log |U |) can be computed efficiently. We remark

that our constructions are stronger than those required by Proposition 2.2, as they
satisfy (2.7) with no restriction on |C|. (The point is that we use r(C) rather than
r′(C), which makes a significant difference when |C| À |F |, as in the above clique
example.)

Note that the amortized cost ρ is not an approximation ratio. On the one hand,
it is not clear from the definition that every graph has an O(1)-amortized cut. On the
other hand, the amortized cost of a cut may be smaller than 1, as demonstrated by
a graph that consists of two cliques of size n/2 connected by an edge. The cut that
separates the two cliques can be seen to have amortized cost O(1/n).

3. Finding an amortized cut. In this section we devise an algorithm for find-
ing O(

√
log n)-amortized cuts in general graphs and O(1)-amortized cuts in graphs

excluding any fixed minor (e.g., planar graphs). The input graph for this algorithm
is denoted by G (though it may be just a part of the input graph for bisection). We
assume that G is connected, as otherwise we can separate a connected component
while cutting no edges at all.

Section 3.1 shows that every optimal min-ratio cut is an O(1)-amortized cut. It
follows that in every graph there exists an O(1)-amortized cut. An optimal min-ratio
cut is NP-hard to find in general graphs, and we thus consider approximate min-ratio
cuts.

Section 3.2 demonstrates an approximate min-ratio cut which would be a poor
divide step for our accounting method. In particular, its amortized cost is high,
showing that the arguments of section 3.1 do not immediately extend from optimal
min-ratio cuts to approximate ones.

Section 3.3 presents an algorithm that uses a τ -approximate min-ratio cut in
order to find an O(τ)-amortized cut. The algorithm of [ARV04] for min-ratio cuts in
general graphs achieves approximation ratio τ = O(

√
log n), and we can thus find an

O(
√

log n)-amortized cut. For certain graph families a better approximation ratio is
possible. For example, in graphs excluding any fixed minor, a ratio of τ = O(1) is
known due to [KPR93], and we can thus find an O(1)-amortized cut.
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3.1. Min-ratio cuts are O(1)-amortized. We give an O(1) upper bound on
the amortized cost of optimal min-ratio cuts. The proof is based on the character-
ization given in Proposition 2.2 for an amortized cut. We remark that our proof
satisfies (2.7) with no restriction on |C|.

Lemma 3.1. An optimal min-ratio cut in a graph is O(1)-amortized.
Proof. Let (V1, V2) be an optimal min-ratio cut in a graph G and assume, without

loss of generality, that |V1| ≤ |V2|. Let V = C ∪ F be an arbitrary partition of the
graph vertices to charged vertices C and free vertices F , with 0 < |C| < |V |, and
denote Ci = Vi ∩C and Fi = Vi ∩F for i = 1, 2 (see also Figure 3.1). We show below
that

min
{

e(C1, C2)
e(C1, F1)

,
e(C1, C2)
|C1| · r(C)

}
≤ 2,(3.1)

and then by Proposition 2.2 we will have that (V1, V2) is O(1)-amortized, which proves
the lemma. Note that we can assume that |C1| > 0, as otherwise there is nothing to
prove.

F

C1

F2

F1

C2

C

V1

V2

Fig. 3.1. The amortized cost of an optimal min-ratio cut (V1, V2).

One easy case is when e(C1,C2)
e(C1,F1)

(i.e., the amortized cost for the edges ρe) is at
most 2, which clearly implies (3.1).

Another easy case is when e(C1,C2)
|C1| ≤ 2r(V1). Since (V1, V2) is an optimal min-

ratio cut, we also have that r(V1) ≤ r(C). We obtain that e(C1,C2)
|C1|·r(C) ≤ 2 r(V1)

r(C) ≤ 2, and
therefore (3.1) holds.

We next prove that one of the two easy cases above must hold, as otherwise we
must have that r(F1) < r(V1), in contradiction with (V1, V2) being an optimal min-
ratio cut. Indeed, assume that e(C1, C2)/e(C1, F1) > 2 and e(C1,C2)

|C1| > 2r(V1). Since

r(V1) = e(V1,V2)
|V1| is the average degree from V1 to V2, it can be represented as the

following convex combination of the average degree from C1 to V2 and the average
degree from F1 to V2, namely

r(V1) =
|F1|
|V1| ·

e(F1, V2)
|F1| +

|C1|
|V1| ·

e(C1, V2)
|C1| .

Since r(F1) = e(F1,V2)+e(F1,C1)
|F1| (note that |F1| ≤ |V1| ≤ 1

2 |V |), we can represent r(V1)
also as

r(V1) =
|F1|
|V1| · r(F1) +

|C1|
|V1| ·

[
e(C1, V2)− e(F1, C1)

|C1|
]

.
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By the above two assumptions (that exclude the easy cases) we have that

e(C1, V2)− e(F1, C1)
|C1| ≥ e(C1, C2)− e(F1, C1)

|C1| ≥
1
2e(C1, C2)
|C1| > r(V1).

The last two inequalities imply that

r(V1) >
|F1|
|V1| · r(F1) +

|C1|
|V1| · r(V1).

We obtained that some convex combination of r(F1) and r(V1) is smaller than r(V1),
and we can therefore conclude that r(F1) < r(V1). This contradicts the fact that
(V1, V2) is an optimal min-ratio cut and completes the proof of Lemma 3.1.

The converse of Lemma 3.1 is not true, and an O(1)-amortized cut can be an
Ω(n)-approximate min-ratio cut, as follows from the next proposition with t = O(1).

Proposition 3.2. Fix a constant 1/2 < α < 1 for the definition of an amortized
cut. Then for every t = o(n), there is an O(1/t)-amortized cut which is an Ω(n/t)-
approximate min-ratio cut.

Proof. Consider a graph on n vertices, for a sufficiently large n, that consists of
three cliques as follows. V1 is a clique on t vertices, V2 is a clique on αn vertices, and
V3 is a clique on the remaining Ω(n) vertices. In addition, the graph contains one
edge connecting V1 to V2 and one edge connecting V2 to V3.

The cut (V1, V2 ∪V3) has amortized cost O(1/t). Indeed, let C ∪F be a partition
of the vertices with |C| ≤ αn. We may assume that C contains both endpoints of the
edge between V1 and V2, as otherwise the cut contains no charged-charged edges and
its amortized cost is 0. So we have that the cost of the charged-charged edges cut is
1 and that both V1 and V2 contain at least one charged vertex. If V1 contains also at
least one free vertex, then the number of charged-free edges in V1 is at least t− 1 and
hence ρe = e(C1,C2)

e(C1,F1)
≤ 1/(t− 1). Otherwise, we have C1 = V1; since there are at most

αn charged vertices, and at least one of them is in V1, we have that V2 contains also
free vertices and thus e(C, F ) ≥ Ω(n); it follows that ρv = e(C1,C2)

e(C,F ) · |C||C1| ≤ O(1/t).
The cut (V1, V2 ∪ V3) is an Ω(n/t)-approximate min-ratio cut. Indeed, the ratio

of this cut is r(V1) = 1/t, while the cut (V3, V1 ∪ V2) is an optimal min-ratio cut and
has ratio r(V3) = O(1/n).

The next corollary follows from Lemma 3.1.
Corollary 3.3. In every graph there exists an O(1)-amortized cut.
This corollary is optimal up to constant factors, and there are graphs for which

any cut has amortized cost Ω(1). For example, consider a clique on n vertices. Given
a cut (V1, V2) with |V1| ≤ |V2|, let α be the constant in the amortized cut definition
and take (α − 1/2)n vertices of V2 and all of V1 to be the charged vertices. It can
be seen that ρe = ∞ and ρv = Θ(1), and so the amortized cost of the cut (V1, V2) is
Ω(1), as claimed.

3.2. Approximate min-ratio cuts might be poor amortized cuts. We
demonstrate that an approximate min-ratio cut of a graph might be a poor divide
step and, in particular, a poor amortized cut. Consider, for example, the following
graph G on 2n + 2

√
εn vertices for a fixed 0 < ε < 1 (see also Figure 3.2). The vertex

set of the graph is F1∪F2∪C1 ∪C2, where each of F1, F2 are of size n, each of C1, C2

are of size
√

εn, and each of the four subsets forms a clique. These four cliques are
connected as follows. Between F1 and F2 there are n edges that form a matching (i.e.,
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F C

n

2
√

εn

εn

2
√

εn
n

n

F2

F1

C2

C1

√
εn

√
εn

Fig. 3.2. A poor divide step by an approximate min-ratio cut.

have no common endpoint). Between C1 and C2 there are all possible εn edges; thus
C1 ∪C2 forms a clique. There are also 2

√
εn edges between Fi and Ci (for i = 1, 2) so

that their endpoints at Fi are distinct and each vertex of Ci is an endpoint of exactly
two of these edges.

Let C = C1 ∪C2 be the charged vertices and F = F1 ∪F2 the free vertices. Such
a partition to charged and free may reflect the “right” cut of 2

√
εn vertices from the

graph G (if, e.g., the input graph for bisection consists of this graph G and a clique
on 2n− 2

√
εn vertices).

Consider a divide step based on the cut (F1 ∪C1, F2 ∪C2), whose ratio is nearly
optimal. Indeed, an optimal min-ratio cut in this graph is (F1, C1 ∪ F2 ∪ C2) and
its ratio is 1 + 2

√
ε/
√

n. The cut (F1 ∪ C1, F2 ∪ C2) has a slightly higher ratio of
(1 + ε)(1− o(1)), and so it is a 1 + ε approximate min-ratio cut.

Observe that the cut (F1 ∪C1, F2 ∪C2) is a poor divide step. It cuts εn charged-
charged edges while the total number of charged-free edges in G (and the bisection
cost in the input graph) is only 4

√
εn. According to the new accounting method, such

a divide step does not give an approximation ratio better than Ω(
√

εn).
The observation that the cut (F1∪C1, F2∪C2) is a poor divide step is supported by

its high amortized cost. The amortized cost for the edges is ρe = εn/2
√

εn =
√

εn/2.
The ratio of the cut (C,F ) is r(C) = r′(C) = 2; so the amortized cost for the vertices
is ρv = εn/(

√
εnr′(C)) =

√
εn/2. We conclude that a 1 + o(1) approximate min-ratio

cut might have amortized cost ρ ≥ min{ρe, ρv} =
√

εn/2.

3.3. Finding O(τ )-amortized cut. We present an algorithm that finds an
O(τ)-amortized cut, given a subroutine for computing a τ -approximate min-ratio cut.
The algorithm is motivated by the O(1) upper bound on the amortized cost of a min-
ratio cut shown in section 3.1. In particular, we examine what additional properties
are required in order to extend the analysis of Lemma 3.1 from optimal min-ratio cuts
to approximate ones.

The proof of Lemma 3.1 uses twice the fact that (V1, V2) is an optimal min-ratio
cut. In the first usage we had that e(C1,C2)

|C1|·r(C) ≤ 2 r(V1)
r(C) ≤ 2, which extends to the case

where (V1, V2) is an approximate min-ratio cut with the approximation ratio carried
over to the amortized cost; i.e., if (V1, V2) is a τ -approximate min-ratio cut, then we
have e(C1,C2)

|C1|·r(C) ≤ 2 r(V1)
r(C) ≤ 2τ .

The second time we used the fact that (V1, V2) is an optimal min-ratio cut was to
say that r(F1) < r(V1) cannot hold and gives a contradiction. In general, this usage
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does not extend to an approximate min-ratio cut, as demonstrated by the example
in section 3.2. However, the proof does extend to an approximate min-ratio cut if we
have the additional property that the ratio of V1 is minimal over all its subsets F1;
i.e., r(V1) ≤ r(F1) for all F1 ⊂ V1. We therefore obtain that the proof of Lemma 3.1
extends to approximate min-ratio cuts as follows.

Lemma 3.4. Let (V1, V2) be a τ -approximate min-ratio cut in a graph, with
|V1| ≤ |V2|. If r(V1) ≤ r(F1) for every F1 ⊂ V1, then (V1, V2) is an O(τ)-amortized
cut.

Note that the proof of Lemma 3.4 is not symmetric with respect to the two
amortization methods. It guarantees that either e(C1, C2)/e(C1, F1) ≤ 2 (i.e., the
amortized cost for the edges ρe is at most 2) or e(C1,C2)

|C1|·r(C) ≤ 2τ (i.e., the amortized
cost for the vertices ρv is O(τ)). In contrast, in the proof of Lemma 3.1 for optimal
min-ratio both amortization costs are O(1).

The amortized cut algorithm. We use Lemma 3.4 to devise an algorithm that
finds an O(τ)-amortized cut based on a τ -approximate min-ratio cut. The algorithm,
described in Figure 3.3, starts with a τ -approximate min-ratio cut (V1, V2) and then
“fixes” it so that it would also be “minimal” with respect to containment, as required
by Lemma 3.4. It then follows that the output cut is O(τ)-amortized.

In order to “fix” the cut (V1, V2), the algorithm uses minimum (s, t)-cuts in a
related graph G′, which is defined in step 2. The related graph G′ contains edges of
the input graph G, as well as new edges. The edges from G have unit capacity, while
the capacity of the new edges is some parameter p > 0. Step 3 then finds the optimal
value of p with respect to the minimum (s, t)-cut. Before discussing implementation
issues of step 3, let us analyze the algorithm’s correctness.

Algorithm FindAmortized.
1. Find in the input graph G = (V, E) a τ approximate min-ratio cut

(V1, V2) with |V1| ≤ |V2|.
2. Create a related graph G′:

– Merge all vertices of V2 into a single vertex t, removing self-loops
at t, and keeping all edges to V1, including parallel edges.
– Add a new vertex s which is connected to each vertex of V1 by
an edge whose capacity (weight) is a parameter p > 0.

3. Let S denote the vertices of V1 which are on the same side with s
in a minimum (s, t)-cut of G′.
– Find (e.g., by binary search) the minimum p > 0 for which S 6= ∅.
(Possibly, S = V1).

4. Output the cut (S, V \ S) of the input graph.

Fig. 3.3. Algorithm for amortized cuts.

Lemma 3.5. The cut (S, V \ S) output by algorithm FindAmortized is a τ -
approximate min-ratio cut. In addition, every nonempty subset of V1 has ratio at
least as large as S, i.e., r(S) = min{r(S′) : ∅ 6= S′ ⊆ V1}.

Proof. Consider an arbitrary value p and an arbitrary (s, t)-cut in the related
graph G′ with the corresponding set S ⊂ V1 (see Figure 3.4). The cut consists of (i)
edges between s and V1 \S (each of capacity p), (ii) edges between S and V1 \S (these
are edges from the input graph G), and (iii) edges between S and t (these are the
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t

V1V1 \ S
S

1

s

V2

V2

p

1

Fig. 3.4. An (s, t)-cut in the related graph G′.

edges between S and V2 in the input graph G). The capacity of this (s, t)-cut is thus

cap(S) = p · |V1 \ S|+ e(S, V \ S),

where, as usual, e(·, ·) denotes the number of corresponding edges in the input graph
G. In the special case of the empty set S = ∅, the capacity of the (s, t)-cut is

cap(∅) = p · |V1|.

Fixing the value of p, let us compare the capacity of the cut defined by the empty
set ∅ with that of an arbitrary set S 6= ∅, i.e., cap(∅) vs. cap(S). The empty set ∅
yields a smaller capacity whenever

p · |V1| < p · |V1 \ S|+ e(S, V \ S)
m

p <
e(S, V \ S)

|S| = r(S),

where r(S) is the ratio of the cut (S, V \ S) in the input graph G. (Note that
|S| ≤ |V1| ≤ 1

2 |V | and that r(S) > 0 if G is connected.)
We claim that the value of p found at step 3 is essentially p∗ = min{r(S) : ∅ 6=

S ⊆ V1}. Indeed, when p < p∗, a minimum (s, t)-cut in G′ corresponds to S = ∅,
and, when p > p∗, a minimum (s, t)-cut yields a set S 6= ∅. When p = p∗, a minimum
(s, t)-cut can be obtained either by S = ∅ or by (one or more) S 6= ∅ with r(S) = p∗.

When p = p∗ + ε for a very small ε > 0, only the sets S 6= ∅ with r(S) = p∗ give
smaller capacity than the empty set, and thus a minimum (s, t)-cut is obtained by one
of these sets S. By the definition of p∗, this set ∅ 6= S ⊂ V1 has minimal ratio r(S)
over all nonempty subsets of V1, i.e., r(S) = min{r(S′) : ∅ 6= S′ ⊆ V1}, as claimed.
Furthermore, since S = V1 is included in this range, we get that r(S) ≤ r(V1) and
hence (S, V \S) is a τ -approximate min-ratio cut, finishing the proof. We remark that
a slightly modified algorithm can guarantee in addition that r(S) < r(S′) for every
S′ ⊂ S with S′ 6= ∅, S. Details are omitted.

Theorem 3.6. Given a subroutine for computing a τ -approximate min-ratio cut,
algorithm FindAmortized finds an O(τ)-amortized cut.

Proof. Lemma 3.5 guarantees that the cut found by the algorithm satisfies the re-
quirements of Lemma 3.4, from which it follows that the cut is O(τ)-
amortized.
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We now address the issue of implementing step 3. Observe that p∗ is the maximum
value p for which the empty set ∅ gives a minimum (s, t)-cut. Since, by definition, p∗

is the ratio r(S) of a set S, it has only n3 possible values, which can be exhaustively
searched. Alternatively, p∗ can be found in O(log n) iterations of binary search, since
as an exact multiple of 1/|S| it is bounded between 0 and n, and the difference between
any two of its possible values is more than 1/n2.

Once we find p∗, we need to find a set S 6= ∅ that gives a minimum (s, t)-cut for p∗.
We can either guess a vertex of V1 and merge it with s before computing the minimum
(s, t)-cut for p∗ or, alternatively, compute a minimum (s, t)-cut for p = p∗ + ε with,
e.g., ε = 1/n2.

4. The bisection algorithm. In this section we describe our approximation al-
gorithm for bisection and prove the following theorem. (See section 2 for the definition
of an amortized cut.)

Theorem 4.1. Given a subroutine that finds a ρ-amortized cut, a bisection within
a ratio of 1 + O(ρ log n) of the minimum can be found in polynomial time.

4.1. Decomposition stage. The decomposition stage recursively divides the
input graph G = (V, E) into smaller and smaller parts using a ρ-amortized cut sub-
routine (e.g., the one devised in section 3). Each part is further divided unless it
consists of a single vertex.

The decomposition stage builds a rooted binary tree T , called the decomposition
tree, which corresponds to the recursive decomposition of the input graph G in a
natural way, as follows. (Throughout, we call the vertices of T nodes to avoid confusion
with the vertices of the input graph G.) Each tree node i contains a part Vi ⊆ V
that was found during the recursive decomposition. The root node of T contains V ,
i.e., the whole input graph G. Let us denote the two children of a nonleaf node i
by L(i) and R(i). Then their two parts VL(i), VR(i) are the result of dividing Vi; i.e.,
the ρ-amortized cut found in Vi is (VL(i), VR(i)). A leaf of the tree T contains a part
that consists of a single vertex of G. Therefore T contains exactly n leaves and n− 1
nonleaf nodes.

4.2. Labeling stage. Recall the following definitions from section 2. A labeling
of the decomposition tree T labels each nonleaf node of the tree as either white or
black. Fixing a parameter 1/2 < α < 1, we say that a labeling is α-consistent
with respect to a white-black bisection (W,B) of G if every tree node i satisfies the
following: If the label of node i is white, then |W ∩ Vi| ≤ α|Vi|, and if the label of
node i is black, then |B ∩ Vi| ≤ α|Vi| (where Vi is the part contained in node i). A
labeling is called opt-consistent if it is α-consistent with the fixed optimal bisection
(W ∗, B∗).

The labeling stage produces a family F of labelings. The cardinality of F is
exponential in n; so rather than listing its members explicitly, the labeling stage
produces an implicit representation of F . The actual work of the labeling stage is to
mark certain nodes of T , and these nodes implicitly define the family F , as described
below.

The labeling stage marks some of the nodes of T in a process that goes from
the root of T towards its leaves, as follows. The root of T is always marked, and
any other node i in the tree is marked in this process if its closest marked ancestor j
satisfies |Vi| ≤ 1

2α |Vj |. (As before, Vi and Vj are the parts contained in the nodes i
and j, respectively.) Note that the constant α is chosen so that 1

2 < α < 1, implying
1
2 < 1

2α < 1.
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A labeling of T is said to be derived from the marked nodes if the label of every
unmarked node is the same as the label of its closest marked ancestor. (There is no
restriction on the labels of the marked nodes.) Note that in this case the labels of the
marked nodes uniquely define the labels of all the internal tree nodes.

The family F produced by the labeling stage consists of all the labelings that can
be derived from the marked nodes. Since each of the Ω(n) marked nodes can be labeled
arbitrarily by one of two colors, the resulting family of labelings has exponentially
large cardinality, and we cannot explicitly list all the family members. Instead, the
algorithm implicitly represents this family F by identifying which are the marked
nodes.

Lemma 4.2. The family of labelings F contains at least one opt-consistent label-
ing.

Proof. Let the white-black cut (W,B) be the fixed optimal bisection. Consider
the labeling that is derived from the marked nodes, with the label of each marked
node i being the color in minority among the vertices of Vi.

This labeling is clearly in the family F , and we claim that it is also opt-consistent.
Indeed, the label of a marked node i is by definition the minority color in Vi. The
label of an unmarked node i is the same as the label of its closest marked ancestor
j. Suppose, without loss of generality, that this label (of i and j) is white. Then at
most half the vertices of Vj are white, i.e., |W ∩ Vj | ≤ 1

2 |Vj |. Observe that Vi ⊂ Vj

and |Vi| > 1
2α |Vj | and hence |W ∩Vi| ≤ |W ∩Vj | ≤ 1

2 |Vj | < α|Vi|. Hence, this labeling
of F is opt-consistent.

4.3. The charge of a bisection. We now formally define the charge of a bi-
section (W,B) with respect to the decomposition tree T and a labeling of it. The
reference to T will later be omitted, as we always refer to the tree computed in the
decomposition stage.

Definition. Let (W,B) be a bisection of the input graph and assume we are
given a decomposition tree T and a labeling of it. For each (nonleaf) node i of T , if i
is labeled white, then we let (see Figure 4.1) Ci = W ∩ Vi and Fi = B ∩ Vi, and if i is
labeled black, then we let Ci = B ∩ Vi and Fi = W ∩ Vi. We obtain a cut (Ci, Fi) of
the part Vi, and say that Ci is charged and Fi is free. The charge of the divide step
of a (nonleaf) node i is defined as

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

The charge of the bisection (W,B) is defined as the sum of all the divide steps charges,
i.e.,

∑

i∈T

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

(These charges are defined with respect to T and a labeling of it.)
Bisection charge vs. cost. In certain conditions, a bisection charge can ap-

proximate its cost. As shown below, the charge of a bisection upper bounds its cost,
and the gap between them is not too large if the charge is taken with respect to an α-
consistent labeling (as in the case of the fixed optimal bisection and an opt-consistent
labeling).

Lemma 4.3. The charge of a bisection (W,B) with respect to any labeling is at
least as large as its cost.

Proof. As we have seen in section 2, the true cost of the (W,B) edges cut in a
divide step i is e(Ci ∩ VL(i), Fi ∩ VR(i)) + e(Ci ∩ VR(i), Fi ∩ VL(i)) and is therefore not



20 URIEL FEIGE AND ROBERT KRAUTHGAMER

Step

Divide

Step

Divide

Step

Divide

Step

Divide

Fi = B ∩ Vi

. . .

Ci = W ∩ Vi

. . .

VR(i)

VL(i)

VL(L(i)) VL(R(i))

. . . . . .

FL(i) =W∩VL(i)

VR(L(i)) VR(R(i))

. . . . . .

VR(i)

CR(i) =W∩VR(i)FR(i) =B∩VR(i)CL(i) =B∩VL(i)

Vi

VL(i)

Fig. 4.1. The charge of a bisection (W, B) throughout the decomposition tree.

larger than the charge of this step. The proof follows by summing over all divide steps,
since the decomposition stage eventually divides the graph into individual vertices,
and so every edge of the bisection (W,B) is cut at some divide step.

Lemma 4.4. The charge of a bisection (W,B) with respect to a labeling that is
α-consistent with it is at most e(W,B) · (1 + O(ρ log n)).

Proof. Consider a bisection (W,B) and a labeling of T that is α-consistent with
it. As we have seen in section 2 and in Lemma 4.3 the charge of a divide step is
larger than the true cost of the (W,B) edges cut in that step by the cost of the
charged-charged edges cut in that divide step. Summing over the divide steps we
get that the charge of (W,B), the fixed optimal bisection, is larger than its cost by
2

∑
i e(Ci ∩ VL(i), Ci ∩ VR(i)), where i ranges over all (nonleaf) nodes i in T . We use

the shorter notation CL = Ci ∩ VL(i) and CR = Ci ∩ VR(i), where i is clear from the
context.

To upper bound 2
∑

i e(CL, CR), observe that each part Vi is divided using a ρ-
amortized cut and that the α-consistent labeling guarantees that |Ci| ≤ α|Vi| for all
nodes i; so we can use the amortization scheme of section 2. Namely, let us assume,
without loss of generality, that the decomposition stage places in the left child of a
node i the smaller of the two subparts of Vi; i.e., |VL(i)| ≤ |VR(i)| for every nonleaf
node i. Then by Proposition 2.1 we can upper bound

e(CL, CR) ≤ ρ ·max
{

e(CL, FL) , |CL|
|Ci| · e(Ci, Fi)

}
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and obtain

2
∑

i

e(CL, CR) ≤ 2ρ ·
{∑

i

e(CL, FL) +
∑

i

|CL|
|Ci| · e(Ci, Fi)

}
.(4.1)

Therefore, to complete the proof of Lemma 4.4 it suffices to upper bound the sums
in the curly brackets (i.e., the total cost amortized in each of the two methods) by
e(W,B) ·O(log n).

Consider first
∑

i e(CL, FL). The edges that contribute to this sum are charged-
free edges and hence edges of the bisection (W,B). An edge in the cut (CL, FL) must
be inside VL(i), the smaller side of the cut of Vi, and any single edge can be inside VL(i)

in at most log n divide steps i throughout the tree T . Hence,
∑

i e(CL, FL) consists
of at most log n times the cost of every edge of the bisection (W,B), and therefore
this sum is at most e(W,B) · log n.

Next consider
∑

i
|CL|
|Ci| · e(Ci, Fi) and recall our convention that 0

0 is defined to
be 0. The edges of e(Ci, Fi) contribute to the sum their cost scaled by a factor of
|CL|
|Ci| . Each edge of e(Ci, Fi) is a charged-free edge and hence an edge of the bisection
(W,B). However, an edge of the bisection (W,B) belongs to e(Ci, Fi) if and only if
this edge is inside Vi. The nodes i for which this edge is inside Vi are all on a path from
the root to a leaf of the decomposition tree T , and therefore the total contribution of
this edge is at most its cost scaled by the sum of |CL|

|Ci| over that path in T .

We claim that the sum of |CL|
|Ci| over any path from the root to a leaf is bounded

by O(log n). It follows from this claim that
∑

i
|CL|
|Ci| · e(Ci, Fi) can be described as the

cost of every edge of the bisection (W,B) scaled by at most O(log n), and therefore
this sum is at most e(W,B) ·O(log n).

To prove the claim, consider an arbitrary path from the root to a leaf and denote
the path nodes by 1, 2, . . . , p + 1. At each node i the charged side (i.e., Ci) may be
either W or B, depending on the label of the node; so denoting wj = |W ∩ Vj | and
bj = |B ∩ Vj |, we have that |CL|

|Ci| is either wL(i)

wi
or bL(i)

bi
and clearly at most their sum.

Hence,

p∑

i=1

|CL|
|Ci| ≤

p∑

i=1

wL(i)

wi
+

p∑

i=1

bL(i)

bi
.

First consider
∑p

1
wL(i)

wi
, and observe that wi is a nonincreasing sequence, since,

in the tree, node i is a parent of node i + 1. If node i + 1 is a left child (of its parent
node i), then wL(i) = wi+1 and hence wL(i)

wi
= wi+1

wi
≤ 1. The number of such nodes

i is at most log n, since the path from the root to a leaf can contain at most log n
left children i. (Recall that |VL(i)| ≤ |VR(i)|.) The contribution of all such nodes i to∑p

1
wL(i)

wi
is therefore at most log n.

If node i + 1 is a right child (of its parent i), then wL(i) = wi − wi+1, and
the contribution of all such nodes i is at most

∑p
1

wi−wi+1
wi

. Clearly, wi−wi+1
wi

≤
1

wi
+ · · · + 1

wi+1+1 and hence the contribution of all such nodes i to
∑p

1
wL(i)

wi
is at

most
∑p

1
wi−wi+1

wi
≤ 1

w1
+ · · · + 1

2 + 1 = H(w1) ≤ H(n), where H(k) =
∑k

1
1
j is the

kth harmonic number.
We conclude that

∑p
1

wL(i)

wi
≤ log n + H(n) ≤ O(log n). Similarly,

∑p
1

bL(i)

bi
=

O(log n), and together we get that
∑p

1
|CL|
|Ci| ≤ O(log n), proving the claim and the
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lemma.
Corollary 4.5. The charge of the fixed optimal bisection (W ∗, B∗) with respect

to an opt-consistent labeling is at most b(1 + O(ρ log n)).
Distributing charge to vertices. It will be convenient (algorithmically) to

distribute the charge of a bisection (W,B) (with respect to T and a labeling) to the
vertices of the input graph, as follows. For each vertex v ∈ Vi let the cross-degree of v
at node i, denoted crossi(v), be the cost of the edges that are incident at v and are cut
in divide step i. We define the charge of a vertex v ∈ V as the sum of the cross-degree
of v at all nodes i for which v belongs to the charged side, i.e.,

∑
i:v∈Ci

crossi(v). The
next lemma proves that distributing the charge of a bisection to the graph vertices is
indeed correct.

Lemma 4.6. The charge of a bisection (W,B) is the sum of the charges of all
vertices in G.

Proof. The charge of a divide step of node i is equal to the sum of the cross-degrees
at node i of all vertices v ∈ Vi, i.e.,

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)) =
∑

v∈Ci

crossi(v) .

Summing over all nodes i in the tree T , the left-hand side is, by definition, the bisection
charge, and the right-hand side is the sum of the charges of all vertices in G. The
proof follows.

Distributing the charge to the vertices of G is important algorithmically. The
charge of a vertex depends on (and can be easily computed from) the side of this vertex
in the bisection (W,B), the decomposition tree T , and the labeling of T , but it does
not depend on the side of the cut (W,B) that other vertices of the graph belong to.
It follows that the charge of a bisection (W,B), with respect to a given decomposition
tree T and a labeling of it, depends linearly on the placement of vertices into W and
B. This formulation of charge will be exploited by (the dynamic programming in) the
combining stage.

4.4. Combining stage. The combining stage computes a bisection of the input
graph G and a labeling of the decomposition tree T such that the bisection charge with
respect to the labeling is at most b · (1 + O(ρ log n)). It then follows from Lemma 4.3
that the cost of the computed bisection is at most b · (1 + O(ρ log n)), as desired.

First consider the case where an opt-consistent labeling is known. Then it suffices
to compute a bisection of G whose charge with respect to this opt-consistent labeling is
minimal because Corollary 4.5 guarantees that the charge of the computed bisection
is at most b · (1 + O(ρ log n)). Below we describe a simple procedure for finding a
bisection of G with minimal charge with respect to a given labeling.

However, we do not know how to efficiently find an opt-consistent labeling, and
therefore we go over all the labelings in the family F . Specifically, using a more
complicated procedure described below the combining stage finds a bisection of G and
a labeling from F such that the charge of the bisection with respect to the labeling
is minimal over all such bisection-labeling pairs. Lemma 4.2 guarantees that at least
one of these labelings is opt-consistent, in which case Corollary 4.5 applies. Hence,
the bisection-labeling pair computed by this procedure satisfies that the charge of the
bisection with respect to the labeling is indeed at most b · (1 + O(ρ log n)).

Minimizing charge over a given labeling. Finding a bisection of minimum
charge with respect to a given labeling is relatively straightforward. By Lemma 4.6,
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the charge of a bisection (W,B) is the sum of the vertex charges. Since the decompo-
sition tree T and the labeling are fixed, the charge of a vertex depends only on its side
in the bisection (W,B). We can therefore compute for each vertex v what its charge
is when it belongs to W , called the white charge of v, and what its charge is when it
belongs to B, called the black charge of v. (Note that summing the white charge and
the black charge of a vertex gives the degree of that vertex in G.)

The charge of a bisection (W,B) is then the sum of the white charges of W
and the black charges of B. To find a bisection (W,B) with minimum charge with
respect to the given labeling, we can thus compute for each vertex its net-charge
(white charge minus black charge) and take W to be the n/2 vertices with smallest
net-charge. (This algorithm for the case where a labeling is given was used in the
algorithm outline in section 2, where we assumed that the labeling stage produces an
opt-consistent labeling.)

Minimizing charge over the family F . The combining stage uses dynamic
programming to find a bisection and a labeling from the family F so that the charge of
the bisection with respect to this labeling is minimum over all such bisection-labeling
pairs.

The dynamic programming table Q has entries of the form Q(i, k, g), where i is
a node of the decomposition tree T , k is an integer between 0 and |Vi|, and g is a
guess list that contains the labels of the marked ancestors of node i. Throughout, i
is considered an ancestor of itself.

An entry Q(i, k, g) in the table contains the optimal solution to the following
problem: Choose k vertices of Vi and a labeling from F that agrees with g so that
when these k vertices are placed in the side W and the remaining vertices of Vi are
placed in the side B, the sum of the charges of all the vertices of Vi with respect to
the chosen labeling is minimal over all such choices. Note that when we consider only
labelings from the family F that agree with g, the labels of all the ancestors of i are
uniquely defined from g, while the marked descendants of i can have arbitrary labels.

For a leaf node i, the table entry Q(i, k, g) can be computed directly, as follows.
Since i is a leaf node, the part Vi consists of a single vertex, say v, and k can be either
0 or 1. If k = 0, then v is necessarily in B, and if k = 1, then v is necessarily in W .
The guess list g gives the labels of all the nodes on the path from the leaf i to the
root and hence all the labels that can possibly affect the charge of v. Since k and
g uniquely define all the data that the charge of v depends on, Q(i, k, g) is just the
charge of v and can be computed directly as

∑
j crossj(v), where j ranges over all

ancestors of i whose label (according to g) agrees with the side of v (as follows from
k).

For a nonleaf node i, the table entry Q(i, k, g) can be efficiently computed from
table entries of its children nodes L(i), R(i). Indeed, choosing k vertices from Vi is
equivalent to choosing j vertices from one child part VL(i) and k− j vertices from the
other child part VR(i); so we need to add up two entries, each corresponding to one
child node. The optimal value of j is not known, but it can be exhaustively searched.
The guess list g can be extended into lists gL, gR for the children nodes in possibly
more than one way. Therefore,

Q(i, k, g) = min
0≤j≤k

min
gL,gR

{Q(L(i), j, gL) + Q(R(i), k − j, gR)},

where gL, gR range over all possible extensions of g, as described below. If a child
node L(i) is a marked node, then there are two possible ways to extend the list g
into a list gL (by adding a label for VL(i)), and the optimum Q(i, k, g) is achieved by
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taking the one which is better. If a child node L(i) is not a marked node, then the
only extension is gL = g because i and L(i) have the same marked ancestors. The
possible extensions of the child node R(i) are similar. It follows that each table entry
of a nonleaf node i can be computed from table entries of its children L(i), R(i) in
time O(|Vi|) = O(n).

To fill all the table entries, start from the entries that correspond to leaf nodes i
and go upwards on the decomposition tree T . In particular, the entries Q(iroot, n/2, g)
will be computed for the root node iroot. At the root node, the guess list g contains the
label of the root and thus has only two possible values. (In fact, the two entries must
be the same due to symmetry.) The combining stage outputs ming Q(iroot, n/2, g),
which, by definition, is the minimum charge of all bisections of the input graph with
respect to any labelings from F , as desired. A bisection that achieves this minimum
charge can also be computed. Simply go over the table entries in the reverse order of
computation and recover at each entry the values of j, gL, gR that gave the optimum.
Alternatively, associate with each entry Q(i, k, g) a set of k vertices of Vi which is
optimal for it and its corresponding labels.

Lemma 4.7. The combining stage finds in polynomial time a bisection of the
input graph G and a labeling from the family F so that the charge of the bisection
with respect to the labeling is minimal over all such bisection-labeling pairs.

Proof. The above discussion shows that the algorithm correctly computes every
entry Q(i, k, g), and a bisection-labeling pair as desired.

The size of the table Q is polynomial in n. Indeed, there are only O(n) tree
nodes i. For each tree node i, the range of k contains O(|Vi|) = O(n) possible values.
In addition, at each tree node i the guess list g contains labels of at most O(log n)
ancestor nodes, and thus g assumes polynomially many values. The polynomial bound
on the size of the table Q follows.

An entry for a leaf node i is computed efficiently. An entry for a nonleaf node is
efficiently computed from previously computed entries. By the upper bound on the
table size we conclude that all the table entries are computed in polynomial time, and
in particular Q(iroot, n/2, g).

Corollary 4.8. The combining stage finds bisection of the input graph (and
a labeling of T ) such that bisection charge (with respect to the labeling) is at most
b(1 + O(ρ log n)).

Proof. By Lemma 4.7 and Corollary 4.5 there exists a bisection of G and a
labeling of F such that the bisection charge with respect to the labeling is at most
b(1 + O(ρ log n)). The proof then follows by applying Lemma 4.2.

This corollary completes the proof of Theorem 4.1, since by Lemma 4.3 the charge
of a bisection is an upper bound on its actual cost.

5. Extensions. Our results extend to several variants (and generalizations) of
the minimum bisection problem, including the case of edges with arbitrary nonnega-
tive costs (section 5.1), the case of vertices with polynomially bounded nonnegative
integer weights (section 5.2), the variant that requires, in addition, to separate a
given pair of vertices s and t (section 5.3), the case of cutting away from the graph
an arbitrary number of vertices (instead of n/2) that is given as part of the input
(section 5.4), the case of cutting the input graph into a fixed number of equal-size
parts (section 5.5), and the case of finding a 2/3-balanced cut whose cost is small
relative to the minimum bisection cost b (section 5.6).

In what follows, the basic bisection problem refers to the minimum bisection prob-
lem that was defined in section 1. In contrast, the extended bisection problems refer
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to the variants of the problem specified above. We discuss each extended problem
separately, but it is straightforward to combine together several extensions (e.g., to
allow both edge costs and vertex weights as described above and require that the total
weight of the vertices cut away is a number k that is given in the input).

We consider two approaches for extending our approximation algorithm from
the basic bisection problem to an extended problem. One approach is to reduce the
extended problem to the basic one. Another approach is to modify the algorithm that
we devised for the basic bisection problem so that it handles also the extended variant.
As we discuss below, each approach has its own advantages and so it is valuable to
show both approaches for each extended problem. We indeed show that for almost
all the extended problems specified above both approaches can be applied, although
for a few problems we provide only a modified algorithm.

A major advantage of the reduction approach is that it is self contained and not
restricted to the particular algorithm that we devise; so future improvement in the
approximation ratio for the basic problem would lead immediately to an improvement
also for the extended problem. Most of our reductions transform an approximation
ratio f(n) for the basic problem into an approximation ratio f(nO(1)) for the extended
problem (because they increase the number of vertices n by a polynomial), and so
for the current approximation ratio f(n), which is polylogarithmic, these reductions
increase the approximation ratio by at most a constant factor. The techniques used
in our reductions are similar to those devised in [BJ92, BCLS87] for the (different)
purpose of proving NP-hardness results.

The advantages of the algorithm modification approach are that it preserves as-
pects that are specific to our algorithm, such as an improved O(log n) approximation
ratio for planar graphs, and that it is usually more efficient (and therefore practical)
than the reduction approach. A drawback of the algorithm modification approach is
that it requires going again through the algorithm’s analysis. In particular, we might
be required to verify that the approximate min-ratio cut algorithm (that we use as
a black-box) can be extended accordingly. However, the necessary changes in the
algorithm and its proof are usually straightforward.

5.1. Edge costs. Suppose that the edges of the input graph G have arbitrary
nonnegative costs, and that the cost of a bisection is the total cost (i.e., sum of the
costs) of its edges, and we wish to find a bisection of G of (approximately) minimum
cost.

Reduction. We reduce the extended problem of bisection with edge costs (de-
scribed above) to the basic bisection problem, as follows. Given a graph G with edge
costs as an input, we first guess the most costly edge in a minimum cost bisection
of G, by exhaustively trying all O(n2) edges in the input graph. By scaling all edge
costs, we can assume, without loss of generality, that the cost of the guessed edge is
n2. It follows that the cost b of the optimum bisection is at least n2 but smaller than
n4. We then round down all edge costs to their closest integer, which can decrease the
cost of any bisection by at most

(
n
2

) ≤ b/2 and therefore by a factor of at most 2. We
next change to n5 every edge cost that is larger than n5, which does not affect the cost
of nearly optimal bisections (i.e., whose original cost was within a ratio of roughly n
from the minimum). Finally, we replace each vertex of the graph by a clique of size
n5 and each edge (u, v) of cost t by t unit cost edges placed arbitrarily between the
clique of u and the clique of v. (Since t < n10 we can do that with no parallel edges.)

The bisection of minimum cost b in G corresponds to a bisection of cost Θ(b) in
the resulting graph. Hence, applying our algorithm for the basic problem on the re-
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sulting graph (which has n6 vertices) yields a bisection whose cost is O(b(log n6)1.5) =
O(b log1.5 n). This bisection cannot split any of the cliques that we created, as other-
wise its cost will be at least n5 − 1 À b log1.5 n, and it therefore must correspond to
a bisection of G, whose cost is roughly the same, namely O(b log1.5 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem with edge costs, as follows. Rather than
considering the number of edges we always consider their cost; e.g., e(V1, V2) denotes
the sum of the costs of the edges with one endpoint in V1 and one endpoint in V2. The
corresponding changes in our algorithm and analysis are straightforward. Note that
the amortized cut algorithm (see Figure 3.3) requires (in step 1) a subroutine that
computes an approximate min-ratio cut with respect to the edge costs, but known
algorithms (e.g., due to [LR99]) provide this subroutine. Note also this algorithm’s
binary search (step 3) takes O(M log n) iterations, where M is the number of bits
used to represent an edge cost, and so the running time is polynomial in the input
size. The resulting approximation ratio is the same as for the basic problem, i.e.,
O(log1.5 n).

5.2. Polynomial vertex weights. Suppose that the vertices of the input graph
G have nonnegative integer weights that are bounded by a polynomial nc (where n
is the number of vertices in G), and let a bisection be a cut that separates half of
the total weight (i.e., the sum of the weights) of the vertices of V . We wish to find a
bisection of G of (approximately) minimum cost. Note that if the weights are allowed
to be exponential in n, finding any bisection of the graph is equivalent to the partition
(or subset-sum) problem and therefore NP-hard.

Reduction. We reduce the extended problem of bisection with vertex weights
(described above) to the basic bisection problem, as follows. Given a graph G with
vertex weights as an input, we replace each vertex of cost w in G by a clique of
max{1, w · n3} unit weight vertices and replace each edge (u, v) in G by one edge
placed arbitrarily between the clique of u and the clique of v. In addition, for each
vertex of weight 0 in G we place in the graph a new isolated vertex of unit weight.

A bisection of minimum cost b in G corresponds to a bisection of the same cost
b in the resulting graph. Hence, applying our algorithm for the basic problem on
the resulting graph (which has at most nc+4 vertices) yields a bisection whose cost is
O(b(c + 4)1.5 log1.5 n). This bisection cannot split any of the cliques that we created,
as otherwise its cost will be at least n3 − 1 À b · (c + 4)1.5 log1.5 n. Furthermore,
the vertices of the created cliques of size at least n3 must be partitioned evenly by
this bisection, as otherwise their partition deviates from an even one by at least n3

(these clique sizes are multiples of n3) which is much more than the total number of
remaining vertices, 2n2. (Recall that we added isolated vertices for vertices of weight
0 in G.) The computed bisection of the resulting graph therefore corresponds to a
bisection of G, whose cost is the same, namely O(b(c + 3)1.5 log1.5 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so
that it handles the extended problem with vertex weights, as follows. Rather than
considering the number of vertices in a part we always consider their total weight;
e.g., r(S) denotes the cost of the cut (S, V \ S) divided by the minimum between the
weight of S and the weight of V \S. The corresponding changes in our algorithm and
analysis are straightforward. Note that the amortized cut algorithm (see Figure 3.3)
requires (in step 1) a subroutine that computes an approximate min-ratio cut with
respect to the vertex weights, but known algorithms (e.g., due to [LR99]) provide this
subroutine. Note also that in this algorithm’s related graph G′ (step 2) the capacity of
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an edge between a vertex v ∈ V1 and the new vertex s is p times the weight of v1. The
resulting approximation ratio is the same as for the basic problem, i.e., O(log1.5 n).

5.3. Separating two vertices from each other (s−t cut). Suppose that the
input graph G contains two special vertices, s and t, and we wish to find a bisection
that separates s from t and has minimum cost. (Note that the converse restriction,
namely that s, t will not be separated, is equivalent to merging them into one vertex
of weight 2 and therefore follows from section 5.2.)

Reduction. We reduce the extended problem of a bisection that separates s from
t to the extended problem of bisection with vertex weights (described in section 5.2),
as follows. Given an input graph G with special vertices s, t as above, we let the
vertices s, t have weights n and let all other vertices of G have weight 1. The total
weight of s and t together is 2n, while the total weight of all other vertices is n − 2
(and thus smaller); so every bisection of the resulting graph must separate s from t.
It follows that every bisection of the resulting graph corresponds to a bisection of G
that separates s from t and has the same cost, and vice versa. We can therefore find
a bisection of G that separates s from t and its cost is within O(log1.5 n) from the
minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem of a bisection that separates s from t, as
follows. We change the dynamic programming table Q of the combining stage so
that every entry Q(i, k, g) contains two solutions (if they exist); one solution with
the k chosen vertices containing s but not t and the other solution with the k chosen
vertices not containing any of s and t. Computing the table entries is straightforward,
and the output of the algorithm is ming Q(iroot, n/2, g), where the minimum is taken
only over solutions that contain s and not t. The necessary changes in our analysis
are straightforward. The resulting approximation ratio is the same as for the basic
problem, i.e., O(log1.5 n).

5.4. Cutting an arbitrary given number of vertices. Suppose that the
input consists of a graph G and a number k, and we wish to find a minimum cost cut
that separates exactly k vertices.

Reduction. We reduce the problem of cutting away a given number k of vertices
to the problem of bisection with vertex weights (described in section 5.2), as follows.
Given an input graph G and a number k (assume, without loss of generality, that
k ≤ n/2), we let the vertices of G have weight 1 and add to the graph an isolated vertex
of weight n− 2k. It is clear that every bisection of the resulting graph corresponds to
a cut of G that separates k vertices and has the same cost, and vice versa. We can
therefore find a cut of G that separates k vertices and its cost is within O(log1.5 n)
from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem of cutting a given number of vertices, as
follows. The only change in the algorithm is in the combining stage, that now outputs
ming Q(iroot, k, g), where Q is the dynamic programming table (see section 4.4). The
necessary changes in our analysis are straightforward. The resulting approximation
ratio is the same as for the basic problem, i.e., O(log1.5 n).

5.5. Cutting into a fixed number of parts. Suppose that we wish to find a
cut that separates the input graph G into a fixed number p of parts of equal size. We
note that [ENRS99, AR04] design bicriteria approximation algorithms for a number
of parts p = p(n) that is given in the input.



28 URIEL FEIGE AND ROBERT KRAUTHGAMER

We do not know of a reduction from this extended problem to the basic bisection
problem. A recursive bisection approach has a poor performance in general, although
it may be useful in some special cases and if some requirements are relaxed; see [ST97]
and the references therein.

Modified algorithm. We modify our algorithm for the basic bisection problem so
that it handles the problem of cutting the graph into p parts of equal size, as follows.
The cost of a cut that partitions V into p parts V 1, . . . , V p is

∑

j<l

e(V j , V l) =
1
2

∑

j

e(V j , V \ V j).

Therefore, by scaling the value of every possible solution by a factor of 2 (which clearly
does not affect any approximation ratio issues), we obtain that the objective function
of the extended problem has the convenient form

∑
j e(V j , V \ V j). Observe that

each cut (V j , V \ V j) corresponds to separating V j from the other parts, which are
grouped into one part V \ V j . Thus, each summand e(V j , V \ V j) in the objective
function is similar to the basic bisection problem (with the minor exception that the
two sides are not of the equal sizes). Below we describe the modifications to the three
stages of the algorithm, which works simultaneously on all p cuts (V j , V \ V j). Its
analysis is based on applying the new accounting method of section 2 separately to
each of these p cuts.

The decomposition stage computes a decomposition tree T exactly as in the algo-
rithm for the basic problem (see section 4.1). Observe that the amortized cut notion
does not depend on the cut that we seek, and so the obtained decomposition (and its
tree T ) can be used for all cuts (V j , V \ V j).

We extend the notion of a labeling of the decomposition tree, as follows. An
extended labeling of T assigns to every tree node a vector of p “basic” labels, one
label for each cut (V j , V \V j). An extended labeling corresponds to deciding at each
tree node i and for each j, which of V j and V \ V j is considered charged (and which
is considered free) in the part Vi. Note that an extended labeling can be viewed as a
vector, whose coordinate j forms a basic labeling for (V j , V \ V j).

The labeling stage marks some nodes of the tree T exactly as in the algorithm
for the basic problem (see section 4.2). This stage implicitly defines a family F that
consists of all extended labelings in which every unmarked node has the same label as
its closest marked ancestor. (There is no restriction on the labels of the marked nodes.)
It is straightforward that F contains at least one extended labeling for which every
coordinate j (forms a basic labeling that) is α-consistent with the cut (V j , V \V j). We
can restrict the number of possible labels at the marked (and hence also unmarked)
nodes from 2p to p + 1 values, as follows. Similar to the proof of Lemma 4.2 it is
sufficient for our purposes that F contains the labeling where V j is considered free
at a marked node i if more than half the vertices of the part Vi are from V j . At any
part Vi, the latter can happen for at most one value of j, and so it suffices to consider
only labelings where at most one V j is free.

We extend the notion of a charge of a vertex, as follows. The extended charge of
a vertex v with respect to an extended labeling is the sum of the basic charges of v
with respect to each of the p coordinates of this extended labeling.

The combining stage uses dynamic programming on a table Q, whose entries are
of the form Q(i, k, g), as follows. i is a tree node. k = (k1, . . . , kp), where kj is the
desired size of the jth part and

∑
j kj = |Vi|. g = (g1, . . . , gp), where gj is a guess

list that contains the jth label of every marked ancestor of i. An entry Q(i, k, g)
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contains the optimal solution to the following problem: Choose a partition of Vi into
subsets with sizes according to k, and choose a labeling from F that agrees with
g so that the sum of the extended charges of all the vertices of Vi with respect to
the chosen labeling is minimal over all such choices. Note that this problem requires
some correlation between p cuts, and therefore Q(i, k, g) is generally not equal to∑

j Q(i, kj , gj) (where Q is the basic table).
The rules for computing the entries of the table Q are a straightforward extension

of those for the table Q (see section 4.4). The algorithm computes all the table entries
and then outputs ming Q(iroot, k, g), where k = (n/p, . . . , n/p).

The running time of this modified algorithm is polynomial in n (for fixed p).
Indeed, the decomposition stage and the labeling stage are exactly as in the algorithm
for the basic bisection problem; so let us consider the dynamic programming table
Q of the combining stage. The number of tree nodes i is O(n), and the range of k
contains at most np possible values. The vector g contains one of p+1 possible values
for each of the O(log n) marked ancestors (of the relevant tree node i); so g assumes
one of nO(log p) values. It follows that the size of the table Q is np+O(log p). Each
table entry is computed efficiently from previously computed entries, and hence the
combining stage takes polynomial time.

To analyze the approximation ratio, let V 1, . . . , V p be the optimal partition of the
input graph into p parts of equal size. Recall that the extended charge of a vertex is
the sum of its basic charges with respect to each cut (V j , V \V j), and we can therefore
apply the analysis of the basic algorithm for each cut (V j , V \V j) separately. It follows
that the output value is guaranteed to be at most O(log1.5 n) · ∑j e(V j , V \ V j).
Furthermore, one can obtain from the table Q a cut (into p parts of equal size) whose
cost is at most (half) this value, i.e., within a ratio of O(log1.5 n) from the minimum.

5.6. Bicriteria approximation and balanced cuts. Suppose that we wish
to find a 2/3-balanced cut (recall that a cut is called β-balanced if it partitions the
graph into two parts, each of size at most βn) whose cost is guaranteed to be small
relative to the minimum cost b of a bisection (i.e., a 1/2-balanced cut). Here, the
minimum bisection problem is relaxed in two respects, as the solution cut is allowed
to have cost larger than b and also to deviate from the cardinality constraints (for
its two sides). Algorithms for such problems are sometimes referred to as bicriteria
approximation and sometimes as pseudoapproximation.

Known bicriteria approximation algorithms find a 2/3-balanced cut whose cost
is at most O(b

√
log n). Leighton and Rao [LR88, LR99] show how an algorithm that

finds a τ approximate min-ratio cut can be used to find a 2/3-balanced cut of cost
O(bτ); the best approximation ratio currently known is τ = O(

√
log n) due to Arora,

Rao and Vazirani [ARV04].
We show below that amortized cuts can be used to obtain also bicriteria approxi-

mation algorithms (in addition to approximation algorithms) for minimum bisection.
In fact, we show a bicritera approximation algorithm that is very similar to the one
of [LR88, LR99], except it uses amortized cuts instead of approximate min-ratio cuts.

Lemma 5.1. Let the definition of amortized cuts use a constant α/ge3/4. Then
an algorithm that finds a ρ-amortized cut can be used to find a 2/3-balanced cut of
cost b(1 + O(ρ)).

Proof. Given an input graph G(V, E) on n vertices, use the algorithm that finds
a ρ-amortized cut, as follows. Repeatedly find (in the graph) a ρ-amortized cut and
remove (from the graph) the smaller of its two sides until the graph contains no more
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than 2n/3 vertices. Denoting by S the set of vertices that remain in the graph after
the last iteration, output the cut (S, V \ S).

It is straightforward to see that n/3 < |S| ≤ 2n/3, and hence the output cut
(S, V \ S) is a 2/3-balanced cut. We prove below that the total cost of all edges cut
by the amortized cuts (throughout the iterations) is at most b(1 + O(ρ)). It would
then follow immediately that e(S, V \ S) ≤ b(1 + O(ρ)), as required.

We now upper bound the total cost of all edges cut in the amortized cuts. Let
(W,B) be a fixed optimal bisection of cost b and call the vertices of W white and the
vertices of B black. The total cost of white-black edges cut is clearly at most b. We
show below that the total cost of all white-white edges cut is O(bρ). By the symmetry
between W and B, we will then have a similar upper bound on the total cost of the
black-black edges cut and obtain the desired upper bound of b(1 + O(ρ)) on the total
cost of all edges cut.

To show that the total cost of white-white edges cut in the amortized cuts is O(bρ),
we consider the white vertices W as charged in all the amortized cuts, and then white-
white edges are charged-charged edges. The algorithm applies a ρ-amortized cut in
parts of G that contain at least 2n/3 vertices. At least n/2−n/3 = n/6 of the vertices
in such a part are black, while at most n/2 of them are white, and hence at most 3/4
of the vertices in this part are considered charged. Taking a constant α ≥ 3/4 in the
definition of an amortized cut, we have that the cost of the charged-charged edges cut
can be amortized in one of two amortization methods (see section 2).

In one amortization method the cost of the charged-charged edges cut is amortized
against charged-free edges in the smaller side of the cut, with amortized cost at most
ρ. Observe that an edge can be in the smaller side of the amortized cut (the side that
is removed) in at most one iteration; so the total cost amortized in this method (in
all the iterations) against one charged-free edge is at most ρ. Hence, the total cost
amortized in this method (in all the iterations) is at most bρ.

In the other amortization method the cost of the charged-charged edges cut is
amortized against charged-free edges in the part being divided, with amortized cost
at most ρ|C1|/|C|, where C denotes the charged vertices in the part being divided
and C1 denotes the charged vertices in the smaller side of the cut. The total cost
amortized in this method (in all the iterations) against one charged-free edge is then
upper bounded by ρ times the sum of |C1|/|C| over all iterations. Recall that the
charged vertices are the white vertices, and so |C| ≥ n/6 in all amortized cuts (i.e.,
iterations). Furthermore, each vertex is in the smaller side of the cut (the side that is
removed) in at most one iteration, and so the sum of |C1| over all iterations is at most
n/2. It follows that the total cost amortized in this method (in all the iterations)
against one charged-free edge is at most 3ρ, and hence the total cost amortized in this
method is at most b · 3ρ.

We conclude that the total cost of all charged-charged (i.e., white-white) edges
cut in all the iterations is at most b · 4ρ. As described above, this proves that the
total cost of all edges cut in all the iterations is at most b(1 + 8ρ) = b(1 + O(ρ)), and
the lemma follows.

We remark that a 2/3-balanced cut of cost b(1+O(ρ)) can be found also by mod-
ifying the algorithm we devised for the basic bisection problem so that its combining
stage outputs ming,n/3≤k≤n/2 Q(iroot, k, g) (and its corresponding cut). Indeed, the
proof of Lemma 5.1 shows a 2/3-balanced cut whose charge (with respect to a certain
labeling in F) is at most b(1 + O(ρ)). Details are omitted.
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5.7. Concluding remarks. Designing an algorithm that finds a cut of amor-
tized cost better than O(

√
log n) remains an important open question. An efficient

algorithm that accomplishes that will not only improve the approximation ratio for
minimum bisection (by Theorem 4.1), but also the bicriteria approximation ratio for
minimum bisection (by Lemma 5.1), which will lead, in turn, to improved approxi-
mation ratios for many other problems; see [LR99, section 3].

Finding a cut whose amortized cost is better than O(
√

log n) is, in a sense, no
harder (and possibly easier) than approximating min-ratio cuts within a ratio better
than O(

√
log n), as the former problem is reducible (by Theorem 3.6) to the latter.

Furthermore, an O(1)-amortized cut always exists (by Corollary 3.3), and we know
of no hardness result for the problem of finding such a cut.
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