
Discrete Applied Mathematics 127 (2003) 643– 649
www.elsevier.com/locate/dam

On cutting a few vertices from a graph�

Uriel Feige1 , Robert Krauthgamer∗;2 , Kobbi Nissim3

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel

Received 19 March 2001; received in revised form 7 February 2002; accepted 18 February 2002

Abstract

We consider the problem of 0nding in an undirected graph a minimum cut that separates
exactly a given number k of vertices. For general k (i.e. k is part of the input and may depend
on n) this problem is NP-hard.
We present for this problem a randomized approximation algorithm, which is useful when k

is relatively small. In particular, for k = O(log n) we obtain a polynomial time approximation
scheme, and for k = �(log n) we obtain an approximation ratio O(k=log n).
? 2003 Elsevier Science B.V. All rights reserved.

Keywords: Approximation algorithms; Graph partitioning; Random edge contraction; Dynamic programming

1. Introduction

Let G(V; E) be an undirected graph on n vertices, and assume that each edge has
a nonnegative cost. For a subset S of the vertices, let (S; V \ S) denote, as usual, the
cut of G that consists of the edges with exactly one endpoint in S. The cost of a cut
is the sum of the costs of its edges. In the case where all edges have a unit cost, the

� This research was supported in part by a Minerva grant.
∗ Corresponding author. International Computer Science Institute, 1947 Center Street, Suite 600,

94704-1198 Berkeley, CA, USA.
E-mail addresses: feige@wisdom.weizmann.ac.il (U. Feige), robi@cs.berkeley.edu (R. Krauthgamer),

kobbi@dimacs.rutgers.edu (K. Nissim).
1 Incumbent of the Joseph and Celia Reskin Career Development Chair.
2 Work supported in part by a Dora Ostre memorial scholarship. Present address: International Com-

puter Science Institute, Berkeley, CA 94704, USA and Computer Science Division, University of California,
Berkeley, CA 94720, USA.
3 Present address: DIMACS Center, 96 Frelinghuysen Rd., Piscataway, NJ 08554, USA.

0166-218X/03/$ - see front matter ? 2003 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(02)00394 -3

644 U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649

cost of a cut is simply the number of edges in it. A cut (S; V \S) with |S|=k is called
a (k; n− k) cut of G. Let bk denote the minimum cost of a (k; n− k) cut in G.
In the minimum (k; n − k) cut problem, we are given the graph G with the edge

costs and a number k ∈{1; : : : ; n− 1}, and we wish to compute bk , i.e. the minimum
cost of a (k; n − k) cut. The minimum (k; n − k) cut problem, i.e. computing bk for
general k, is NP-hard. Indeed, Garey et al. [4] show that it is NP-hard to compute bk
in the special case k = n=2, known as the minimum bisection problem, even in unit
cost graphs. It is straightforward to see that the proof of Bui and Jones [1] for the
NP-hardness of 0nding edge separators, actually shows that it is NP-hard to compute
bk in graphs of maximum degree 3 and for k = �n (and even k = n�) for any 0xed
0¡�¡ 1.
It is not known whether bk is polynomial time computable when k is a slowly

growing function of n, say k = log n. Note that a straightforward exhaustive search on
all vertex subsets of size k can 0nd bk in time nk+�(1), which is polynomial only if
k =O(1), i.e. a 0xed constant independent of n.
We address the problem of approximating bk when k is relatively small compared

to n. An algorithm is said to approximate a minimization problem within ratio r¿ 1
if it runs in polynomial time and outputs a solution whose value is at most r times
the value of the optimal solution. The problem is said to have a polynomial time ap-
proximation scheme (PTAS) if for every 0xed r ¿ 1 it has an approximation algorithm
with approximation ratio r.
Related work: For general k, the current authors presented in the extended abstract

[3] the 0rst sublinear (in n) approximation ratio for the minimum (k; n− k) cut prob-
lem, giving an O(

√
nlog n) approximation ratio. Feige and Krauthgamer [2] improved

over this approximation ratio by devising an algorithm that achieves an O(log2 n) ap-
proximation ratio for the minimum (k; n− k) cut problem. However, for the case of a
relatively small k the result of [2] does not improve over an algorithm that we brieJy
described in [3, Section 5]. The current paper is the full version of our approximation
ratio for relatively small k from [3], which is currently the best approximation ratio
known for this case.
There is no known hardness of approximation result that excludes the possibility

of a PTAS for the minimum (k; n− k) cut problem. For additional related work (e.g.
results for restricted graph families and related problems) we refer the reader to [3,2].
Our results. We present a simple randomized algorithm that is aimed towards approx-

imating the minimum (k; n− k) cut problem when k is relatively small. The algorithm
and its analysis are described in Section 2, where we prove the following theorem.

Theorem 1. For every 5xed �¿ 0; there is a polynomial time randomized algorithm
that 5nds; with high probability; a (k; n− k) cut whose cost is at most (1+ �k=ln n)bk .

The above approximation ratio implies, in particular, the following results for k =
O(log n) and for k = �(log n).

Corollary 2. For any k = O(log n); there is a PTAS for the minimum (k; n− k) cut
problem.

U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649 645

Corollary 3. For any k = �(log n); the minimum (k; n − k) cut problem can be ap-
proximated within a ratio of O(k=log n).

Note that Corollary 3 should be used only when k is slightly larger than O(log n),
while for larger k the approximation ratio of [2] is preferable.
In Section 3 we discuss how our approximation algorithm extends to vertex weights

and to s− t cuts.
Techniques. Our algorithm utilizes random edge contraction and dynamic program-

ming. Random edge contraction was introduced by Karger and Stein [5] to devise
eKcient algorithms for the minimum cut problem. Each iteration of their algorithm se-
lects an edge at random and merges its endpoints, so as to form clusters of vertices. If
no edge of a 0xed minimum cut (S; V \S) is ever contracted, then every cluster is con-
tained entirely either in S or in V \S. When only two clusters remain, they correspond
to the 0xed minimum cut. It can be shown that there is a noticeable probability that
no edge of the 0xed minimum cut is ever contracted, and then the algorithm succeeds.
Our algorithm also applies random edge contractions iteratively, but instead of re-

quiring that only two clusters remain, we stop at an earlier point, in which we are
guaranteed that dynamic programming will 0nd a nearly minimum (k; n− k) cut. The
algorithm actually does not know the “right” stopping point, and therefore tries all
possible stopping points (taking the best solutions).

2. The algorithm

Our algorithm for 0nding a (k; n−k) cut (of nearly minimum cost) uses the random
edge contraction technique of Karger and Stein [5]. It consists of repeating the following
algorithm CONTRACT suKciently many times in order to amplify its success probability.
Algorithm CONTRACT works in iterations, where each iteration consists of (i) a random

edge contraction stage followed by (ii) a combining stage that computes a cut of the
graph that corresponds to a (k; n−k) cut of the input graph. (Both stages are described
below). The algorithm proceeds with the iterations until there are no edges in the graph
(to contract) and then it outputs a cut of minimum cost among all (k; n−k) cuts found
throughout the iterations (if any).
Let us now describe in more detail the two stages that form an iteration of algorithm

CONTRACT. A schematic description of the algorithm appears in Fig. 1.
In the contraction stage we choose an edge at random and contract it, as follows.

The probability of choosing an edge is proportional to its cost, so if all edges have a
unit cost then an edge is selected uniformly at random. To contract the chosen edge,
we merge its two endpoints. If as a result there are several edges between some pairs
of (newly formed) vertices (i.e. parallel edges), we retain them all. Edges between
vertices that were merged are removed, so that there are never any self-loops.
We refer to the vertices of the formed graph as clusters. Each cluster is a set of

vertices (of the input graph) merged together. Note that the edges inside a cluster are
removed from the graph. The size of a cluster is the number of vertices in it, and its
degree is the cost of edges leaving the cluster.

646 U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649

Fig. 1. Algorithm for 0nding a (k; n− k) cut.

In the combining stage we 0nd in the graph (of the current iteration) a set of clusters
whose total size is exactly k, and for which the sum of cluster degrees is minimal.
(For example, if all clusters are of size 1, i.e. contain a single vertex, then we actually
take the k vertices of smallest degree in the graph.) Note that any subset of clusters
corresponds to a cut (of the input graph) whose cost is no more than the sum of
degrees of these clusters. In particular, the subset of clusters that we 0nd is of total
size k and thus corresponds to a (k; n− k) cut of the input graph.
The combining stage can be implemented in polynomial time using dynamic pro-

gramming (note that k is polynomially bounded), as follows. Label the clusters by
1; 2; : : : ; L in an arbitrary way, and de0ne a dynamic programming table T . Each table
entry T (i; k ′) (with 16 i6L and 16 k ′6 k) describes the minimal sum of cluster
degrees, over all subsets Q of the clusters 1; 2; : : : ; i for which the total size (of Q) is
exactly k ′. It is straightforward that each entry T (i; k ′) can be easily computed from
entries of the form T (i−1; ·), and that the entries T (1; ·) are easy to initialize. The size
of the table is L · k =O(n2), so T (L; k), which is the desired output of the combining
stage, can be computed in polynomial time.

Lemma 4. The running time of algorithm CONTRACT is polynomial in n.

Proof. Each edge contraction decreases the number of vertices by 1; and thus the
number of iterations is bounded by n. Each iteration takes a polynomial time and the
proof follows.

We analyze the success probability of the algorithm based on the following desired
scenario. Suppose that the edges chosen to be contracted do not belong to a 0xed
optimum cut (S; V \ S), i.e. these edges are either inside S or inside V \ S, until at
some point the edges inside S (that remain in the graph) have a small cost relative
to the cost of the optimum cut. At this point, it can be seen that the combining stage
must 0nd a (k; n− k) cut (of the input graph) whose cost is nearly optimal.
The next lemma lower bounds the probability that the algorithm outputs a (k; n− k)

cut of relatively small cost. The parameter �¿ 0 in the lemma can have an arbitrary
value, but we later set �= �=ln n for a 0xed �¿ 0.

U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649 647

Lemma 5. For every (not necessarily 5xed) �¿ 0; algorithm CONTRACT outputs a
(k; n− k) cut whose cost is at most (1 + �k)bk with probability at least e−2=�.

Proof. For the analysis; 0x one cut (S; V \ S) with |S|= k whose cost bk is minimum.
Note that algorithm CONTRACT is not aware of this cut.
Consider a run of the algorithm, and let At (for 0¡t¡n) be the event that

the graph Gt resulting from the 0rst t contractions satis0es the following two
conditions:

(a) The total cost of edges of Gt with both endpoints in S is at most �kbk=2. (Note
that the number of such edges may be reduced at each iteration, since edges that
become self-loops are removed.)

(b) No cluster of Gt contains vertices both from S and from V \ S.

Condition (b) is equivalent to:

(b′) None of the 0rst t contracted edges belongs to the optimum cut (S; V \ S).

We claim that if the event A=∪tAt happens then the algorithm succeeds, i.e. 0nds a
(k; n− k) cut of cost at most (1+�k)bk . Indeed, assume that the event At happens and
consider the combining stage of iteration t, which is performed on Gt . From (b) we
have that every cluster in Gt is either a subset of S or a subset of V \S. Therefore, the
clusters contained in S have together all the vertices of S, and thus their total weight
is k. From (a) it follows that the sum of degrees of these clusters (in Gt) is at most
bk + 2(�kbk=2) = bk(1 + �k). The combining stage of iteration t will therefore 0nd a
set of clusters of total weight k and whose sum of cluster degrees is no larger, which
gives a (k; n− k) cut (of the input graph), with cost at most bk(1 + �k).
We next lower bound the probability of the event A. Let us say that an iteration

is successful if the edge chosen to be contracted is inside S, a ruin if it is from the
optimum cut (S; V \ S), and void if it is inside V \ S. By (a) and (b′), the event A is
equivalent to saying that the cost of edges inside S reduces to �kbk=2 or less before
any ruin iteration occurs. In this sense, the event A is aOected by the successful and
ruin iterations, but not by the void iterations. In other words, we need to compute
the probability that an iterations is successful conditioned on the iteration not being
void. As long as the cost of edges inside S, denoted |ES |, is more than �kbk=2, the
conditioned probability for a successful iteration is

|ES |
|ES |+ bk =

(
1 +

bk
|ES |

)−1
¿

(
1 +

1
�k=2

)−1
:

For the event A to happen we need that the 0rst k − 1 or less iterations that are not
void will all be successful, and thus

Pr[A]¿
(
1 +

1
�k=2

)−(k−1)
¿ e−2(k−1)=�k ¿ e−2=�:

648 U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649

The probability that the algorithm outputs a (k; n− k) cut of cost at most bk(1 + �k)
is at least Pr[A]¿ e−2=�, as claimed.

The next corollary follows from Lemma 5 by taking �= �=ln n for a 0xed �¿ 0.

Corollary 6. For every 5xed �¿ 0; with probability at least n−2=�; algorithm CONTRACT
outputs a (k; n− k) cut whose cost is at most (1 + �k=ln n)bk .

We can amplify the above success probability by repeating algorithm CONTRACT
polynomially many (roughly n2=�) times and taking from all the repetitions the cut of
minimum cost. We then obtain Theorem 1.

3. Extensions

s − t cuts: Suppose that the graph contains two special vertices s; t that must be
separated, i.e. we wish to 0nd a minimum cost cut (S; V \ S) with |S| = k, s∈ S and
t ∈V \ S.
Unlike the minimum cut algorithm of Karger and Stein [5] that does not extend

to s − t cuts (see e.g. [6, Problem 1.8]), our approximation ratio does extend to this
s− t cut variant of the problem. The proof follows by modifying the combining stage
to consider only clusters that do not contain t and such that at least one of them
contains s.
Vertex weights: Suppose that the vertices of G have nonnegative integer weights.

A w-cut cuts away vertices of total weight w, i.e. it is a cut (S; V \ S) for which the
sum of weights of S is w. Let bw be the minimum cost of a w-cut.
We consider the problem of 0nding a nearly optimal w-cut, i.e. whose cost approxi-

mates bw. We assume that the vertex weights are bounded by a polynomial in n, since
for exponential vertex weights it is NP-hard to decide whether G contains a w-cut (as
this is simply the subset-sum problem).
Let bw;k be the minimum cost of a cut that cuts away k ∈{1; : : : ; n− 1} vertices of

total weight w (and ∞ if no such cut exists). Modifying the combining stage to 0nd a
w-cut (using dynamic programming), it is straightforward to extend the proof of Lemma
5 and show that if bw;k is 0nite then with probability at least e−2=� algorithm CONTRACT
0nds a cut of cost at most (1 + �k)bw;k . By taking suKciently many repetitions with
� = �=log n for a 0xed �¿ 0, we conclude that one can 0nd in polynomial time a
w-cut whose cost is at most mink{(1 + �k=log n)bw;k} with high probability. Note that
the minimum in the latter bound is not necessarily obtained at a value of k for which
bw;k = bw.

References

[1] T.N. Bui, C. Jones, Finding good approximate vertex and edge partitions is NP-hard, Inform. Process.
Lett. 42 (3) (1992) 153–159.

U. Feige et al. / Discrete Applied Mathematics 127 (2003) 643– 649 649

[2] U. Feige, R. Krauthgamer, A polylogarithmic approximation of the minimum bisection, in: 41st Annual
IEEE Symposium on Foundations of Computer Science, Redonolo Beach, CA, USA, 2000, pp. 105–115.

[3] U. Feige, R. Krauthgamer, K. Nissim, Approximating the minimum bisection size, in: 32nd Annual ACM
Symposium on Theory of Computing, Portland, OR, USA, 2000, pp. 530–536.

[4] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simpli0ed NP-complete graph problems, Theoret.
Comput. Sci. 1 (3) (1976) 237–267.

[5] D.R. Karger, C. Stein, A new approach to the minimum cut problem, J. ACM 43 (4) (1996) 601–640.
[6] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.

	On cutting a few vertices from a graph
	Introduction
	The algorithm
	Extensions
	References

