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Abstract. We introduce a new problem in the study of doubling spaces:
Given a point set S and a target dimension d∗, remove from S the fewest
number of points so that the remaining set has doubling dimension at
most d∗. We present a bicriteria approximation for this problem, and
extend this algorithm to solve a group of proximity problems.

1 Introduction

In the last few years, researchers have increasingly made use of the doubling
dimension in the design of algorithms. Analyzing algorithmic tasks via the dou-
bling dimension is natural for proximity problems such as nearest neighbor
search [KL04, BKL06, CG06b] and clustering [Tal04, ABS08, FM10], and for
graph problems such as spanner construction [GGN06, CG06a, DPP06, GR08a,
GR08b], the traveling salesman problem [Tal04], and routing [KSW04, Sli05,
AGGM06, KRXY07, KRX08]. The doubling dimension has proved to be a power-
ful tool in embeddings [Ass83, GKL03, ABN07, ABN08, CGT08, BRS07, GK09]
and has found applications in fields such as machine learning [BLL09, GKK10].
Interestingly, the problem of computing the exact doubling dimension of a point
set is NP-hard. (This result seems to be folklore.) Yet this fact has not deterred
the development of algorithms that are based on the doubling dimension, partly
because it can be approximated within a constant factor, and partly because
many of these algorithms function without explicit knowledge of the doubling
dimension – it appears only in the analysis.

However, a host of algorithms previously developed for doubling dimension
– perhaps even the majority of them – suffer from a more serious problem: They
are not robust to severe yet infrequent irregularities in the space. The guarantees
provided by these algorithms are markedly degraded even if only a small subset
of the working set possesses high doubling dimension. This problem was noted
for example by [CG08] who instead defined a global notion of dimension (which
can be thought of as the average doubling dimension over the set) and developed
an algorithm under this new definition.

We pursue a different approach. We introduce the following key problem:
Given an n-point set S and a target dimension d∗, remove from S the fewest
number of points so that the remaining set has doubling dimension at most
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d∗ (or equivalently, target doubling constant λ∗ = 2d∗). We thus call a data
set nearly-doubling if all but a negligible fraction of the points have bounded
doubling dimension.

A solution to this point removal problem yields a contribution in two related
areas. The first paradigm, broadly speaking, is outlier detection. In this scenario,
the removed points are ignored and only the remaining points are processed. A
direct motivation for this model stems from the dimension induced clustering
framework of [GHPT05], which given a point set seeks a subset with low intrinsic
dimension. Further motivation stems from algorithms which have “slack”; that
is, they give guarantees for most but not all of the point set [KRXY07, FM10].
These algorithm can be extended to nearly-doubling data sets by simply ignoring
the removed points (i.e. throwing them into the slack). The second paradigm
is an original one: Here, both the removed points and the remaining ones are
processed, albeit by separate algorithms tailored to the properties of the two
point sets.

Results. The point removal problem is NP-hard, and it is not difficult to show
that the problem does not admit even an approximate multiplicative-factor so-
lution (see Lemma 1). However, we develop a framework that yields a bicriteria
approximation for this problem. In Section 3, we present bicriteria algorithms
that achieve the following bounds:

1. In time 2O(d∗)n3, we remove a number of points arbitrarily close to optimal,
while achieving doubling dimension 4d∗ + O(1) (Corollary 1).

2. In time 2O(d∗)n log α (where α is the aspect ratio of S), we remove a number
of points arbitrarily close to optimal, while achieving doubling dimension
10d∗ + O(1) (Corollary 2).

3. In time 2O(d∗)n log3 n, we remove a number of points arbitrarily close to
optimal, while achieving doubling dimension 12d∗ + O(1) (Corollary 2).

Returning to the first paradigm presented above, our algorithms solve the
clustering problem posed by [GHPT05]. (They provided heuristic solutions to
this question.) In Section 4, we present algorithms that function under the second
paradigm delineated above: These algorithms process the removed points and
the remaining ones with separate techniques tailored to the properties of the
two point sets. When the data set is nearly-doubling, or more precisely, when
all but at most square root of the points have bounded doubling dimension,
we give near-linear time algorithms for constructing (1 + ε)-stretch spanners,
approximate minimum spanning trees, O(1)-query time distance oracles, and
calculating approximate all points nearest neighbor.

2 Preliminaries

In this section we define doubling dimension, and present some basic hardness
results. We then review point hierarchies for doubling spaces.



Doubling dimension. For a metric (X, d), let λ be the infimum value such that
every closed ball in X can be covered by λ closed balls of half the radius, where
a ball is centered at a point of the metric. λ is the doubling constant of X, and
the doubling dimension of X is dim(X) = log2 λ. A metric is doubling when its
doubling dimension is finite. It is a folklore result that determining the doubling
constant (and dimension) of a point set is an NP-hard problem. We formalize
this result below.

Lemma 1. Given a metric (S, d), computing the doubling constant of S is NP-
hard.

Proof. The proof is a reduction from vertex cover with bounded degree ∆ [PY91].
Let G = (V,E) be an input instance of vertex cover with degree ∆ <

√
|V |. Note

that the size of any vertex cover of G must be greater than
√
|V |. Create a set

S containing |V | points, each corresponding to a vertex in V . Let d(u, v) = 1
2

for u, v ∈ S if the corresponding vertices have an edge in E, and let d(u, v) = 1
otherwise. The radius of S is 1.

Now, any subset of S found in a closed ball of radius 1
2 contains fewer than√

|V | points (since the degree of V is less than
√
|V |), so the doubling constant

of the subset is less than
√
|V |. However, the minimum covering of all of S by

closed balls of radius 1
2 is equivalent to the minimum vertex cover of V , which is

necessarily greater than
√
|V |. It follows that determining the doubling constant

of S is equivalent to determining the minimum vertex cover of V .

Note that the above reduction preserves hardness of approximation: It is
NP-hard to determine the doubling constant of a metric within a factor 16

15 − ε
(see [Cle99]). This problem does admit an approximation – for example, a 2-
approximation to the doubling dimension (equivalently, the square of the dou-
bling constant) can be determined by the algorithm of Lemma 3 (see also [HM05,
Theorem 9.1]).

A further consequence of Lemma 1 is that the problem of removing the
minimum number of points from a set S in order to obtain a set S′ with some
target doubling constant does not admit a multiplicative-factor approximation
algorithm: That is, it is NP-hard to distinguish the case where no points need
be removed, from the case that one point must be removed.

Point hierarchies. Here, we define hierarchical partitions and describe three
different partitions that have appeared in the literature and will be utilized in
this paper.

Similar to what was described in [GGN06, KL04], a subset of points X ⊆ Y
is an (r, s)-discrete center set (or net in the terminology of [KL04]) of Y (r ≤ s)
if it satisfies the following properties:

(i) Packing: For every x, y ∈ X, d(x, y) > r.
(ii) Covering: Every point y ∈ Y is strictly within distance s of some point

x ∈ X: d(x, y) ≤ s.



We say that x covers y if x ∈ X, y ∈ Y and d(x, y) ≤ s. The previous
conditions require that the points of X be spaced out, yet nevertheless cover
all points of Y . A hierarchical partition for a set S is a hierarchy of discrete
center sets, where each level of the hierarchy is a discrete center set of the level
beneath it. The bottom level contains all points, and the top level contains only a
single point. (For ease of presentation, we assume that the minimum inter-point
distance in S is 1.)

The first hierarchy we describe is that of [KL04]. The hierarchy is composed
of levels H2i (for integer i = 0, . . .), where each level H2i (i > 0) is a (2i, 2i)-
discrete center set for the previous level H2i−1 . (The subscript in the notation of
the level indicates that the packing and covering properties of subsequent levels
grow by a factor of 2.) The bottom level of the hierarchy is the set Y20=1 = S, and
the top level is the set Y2dlog αe that contains only a single point. The construction
supports insertions and deletions to the hierarchy in time 2O(log λ) log α. (Recall
that α is the aspect ratio of S.)

The second hierarchy is that of [GR08a]. This hierarchy is similar to that of
[KL04], but level H2i is a ( 1

22i, 2i)-discrete center set for H2i−1 . This hierarchy
supports insertions and deletions in 2O(log λ) log n amortized time. Hence, a series
of n insertions and deletions can be done deterministically in 2O(log λ)n log n time.

The third hierarchy is that of [CG06b]. In this hierarchy, level H5i is a
( 1
55i, 3

55i)-discrete center set for H5i−1 . (The packing and covering properties
of subsequent levels grow by a factor of 5.) The hierarchy supports insertions in
time 2O(log λ) log n, though points cannot be removed from within the hierarchy.
(A static hierarchy with similar construction time was also presented in [HM06].)

On top of these hierarchies, we define a parent-child relationship: Point y ∈
H2i (or H5i) is the child of one of the points in H2i+1 (or H5i) that covers y.
This immediately defines an ancestral relationship as well.

3 Point removal algorithm

In this section, we present the bicriteria algorithm for the problem of removing
points to obtain a target doubling constant. The construction, presented below,
proceeds roughly as follows: We formulate the notion of a “bad” witness set,
which can be found efficiently and exists if and only if the doubling constant is
too large (to within some constant factors). Given this setup, the algorithms is
greedy: Repeatedly find such a witness set and remove it entirely.

We first define the density constant (in Section 3.1), and explain the existence
of witness sets for the density constant. We show that it is NP-hard to locate
a maximum witness set, but we are able to give an approximation algorithm
for locating witness sets. In Section 3.2, we use this approximation algorithm
for witness sets to develop a bicriteria point removal algorithm for achieving a
target density constant. This bicriteria algorithm in turn yields a bicriteria point
removal algorithm for achieving a target doubling constant. Finally, in Section
3.3, we show how to improve the runtime of the two bicriteria algorithms.



3.1 Density constant and witness sets

Let a closed ball B(x, r) ∈ S be centered at point x and include all points of set
S within distance r of x. We define the density constant µ(S) of point set S as
follows: µ(S) is the smallest number such that every open r-radius ball of S (for
every r) contains at most µ(S) points of mutual inter-point distance greater than
r/2. Clearly the doubling constant cannot be greater than the density constant.
Further, the density constant is not greater than the square of the doubling
constant (since µ(S) balls of radius r

4 are required to cover these points). It
follows that √

µ(S) ≤ λ(S) ≤ µ(S).

Now, we consider the following point removal problem: Given a point set S
and a target density constant µ∗ ≤ µ(S), remove the minimum number of points
from S to obtain a set S∗ with density constant µ∗. (This problem can serve as a
proxy for the problem of removing points to obtain a target doubling constant.)
However, we demonstrate in Lemma 2 below that the problem of determining
the density constant of a point set S is NP-hard. An immediate consequence of
Lemma 2 is that the point removal problem to achieve a target density constant
is NP-hard.

Lemma 2. Given a point set S, the problem of determining the density constant
of S is NP-hard.

Proof. The proof is a reduction from the maximum independent set problem with
bounded degree ∆ [PY91]. Let G = (V,E) be an input instance of the max
independent set problem with degree ∆ <

√
|V |. Note that the size of any maxi-

mal independent set for G is greater than
√
|V |. Create a set S containing |V |

points, each corresponding to a vertex in V . Let d(u, v) = 1
2 + ε for u, v ∈ S

(and an infinitely small ε) if the corresponding vertices have an edge in E, and
let d(u, v) = 1 otherwise. The radius of S is 1.

Now, any subset of S found in a closed ball of radius 1
2 +ε contains fewer than√

|V | points (since the degree of V is less than
√
|V |), so the density constant of

any subset of points of S that all fall in a ball of radius 1
2 +ε and have inter-point

distance greater than 1
4 + ε

2 is less than
√
|V |. However, the maximum number of

points in all of S with inter-point distance greater than 1
2 is necessarily greater

than
√
|V |. It follows that determining the density constant of S is equivalent

to determining the maximum independent set in V .

As an aside, note that the reduction preserves hardness of approximation: It
is NP-hard to approximate the density constant of a point set S within a factor
of |S| 12−ε (this follows easily from [Has96]).

It follows from Lemma 2 that the point removal problem to achieve a tar-
get density constant is NP-hard. Further, this problem does not even admit a
multiplicative-factor approximation algorithm: It is NP-hard to distinguish the
case where no points need be removed, from the case that one point must be
removed. However, we can approximate the density constant of a point set, as
in Lemma 3 below. We will first require a definition.



Definition 1. Given a point set S, a witness set S′ ⊂ S is a set of points
contained in a closed ball of radius r with mutual inter-point distance greater
than r

2 .

Comment. Note that the existence of a witness set S′ ⊂ S implies that µ(S) ≥
|S′|. The notion of a witness set exists for the density constant, but a similar
notion does not exist for the doubling constant. That is, the addition of points to
a set S with doubling constant λ(S) may in fact result in a set with somewhat
lower doubling constant than λ(S). This motivates our decision to define the
density constant.

Lemma 3. Given an n-point set S with minimum inter-point distance 1, there
exists an O(2O(log µ(S))n3) time algorithm that locates a witness set of size d

√
µ(S)e.

Proof. Note that there are O(n2) inter-point distances in S, so there exist O(n2)
distinct balls of S, each of size O(n). For each ball B(x ∈ S, r), we greedily
build the point hierarchy of [KL04] consisting of four radii levels {r, r

2 , r
4 , 1},

where level r contains only one point, and level 1 contains all points. This can
be done in time 2O(log µ)n per ball (where µ = µ(S)), yielding a total runtime of
O(2O(log µ)n3).

Now there must exist in S a point set S′ of size exactly µ with radius r and
minimum inter-point distance greater than r/2, for some r. In the hierarchy for
the ball that contains S′ (and possibly contains other points as well), one of the
following must hold:

(i) Level r
2 contains at least d√µe points; it follows that these points are con-

tained in a ball of radius r and have minimum inter-point distance greater
than r

2 , so that they are a witness set. Or,
(ii) Level r

2 contains fewer than d√µe points. Now, since the µ points of S′ have
minimum distance r

2 , they must be covered by distinct points of level r
4 , so

there must exist more than µ points in level r
4 . It follows that some point of

level r
2 covers more than

√
µ points of level r

4 . These points have minimum
inter-point distance greater than r

4 and are found in a set of radius less than
r
2 , so they are a witness set.

Comment. As an aside, note that the algorithm of Lemma 3 yields a
2-approximation to the doubling dimension of S.

Lemma 3 shows that the density constant can be approximated. In the next
section, we will use this tool to develop a bicriteria algorithm for the problem of
removing points to obtain a target density constant. This will in turn allow us
to develop a bicriteria algorithm for the problem of removing points to obtain
a target doubling constant. However, for the purposes of efficient algorithmic
runtime, we need to introduce a slightly stronger variant of Lemma 3, as follows:

Lemma 4. Given an n-point set S with minimum inter-point distance 1 and a
parameter µ′ ≤ µ(S), there exists an O(2O(log µ′)n3) time algorithm that locates
a maximal collection of distinct witness sets each of size d√µ′e.



Proof. The construction is similar to the one presented in the proof of Lemma 3.
We identify all O(n2) balls, and for each ball B(x, r) we build its hierarchy one
point at a time. If the insertion of a point into the hierarchy of B(x, r) implies
a witness set of size d√µ′e – that is, either level r

2 contains d√µ′e points, or
a point of level r

2 covers d√µ′e points – then we output the witness set as an
element of the collection, and delete the points of this witness set from all ball
hierarchies. We then repair the hierarchies (as usual after a deletion, see [KL04])
and resume the hierarchy construction. The removal of the witness set points
and subsequent repair of the hierarchies do not increase the runtime.

3.2 Bicriteria algorithm

Given Lemma 4, we prove the following theorem, which is a bicriteria algorithm
for the problem of removing points to achieve a target density constant. A corol-
lary of this theorem gives a bicriteria algorithm for the problem of removing
points to achieve a target doubling constant.

Theorem 1. Given a point set S with density constant µ(S) and a target density
constant µ∗, let k∗ = k∗(S, µ∗) be the minimum number of points that must be
removed from S to obtain a set S∗ with density constant µ∗. Then there exists a
2O(log µ∗)n3 time algorithm that removes k′ ≤ cµ∗+1

(c−1)µ∗+1 · k∗ points from S (for
any desired c ≥ 1), and yields a point set S′ with density constant µ(S′) ≤ (cµ∗)2.

Proof. We first prove the theorem for c = 1. We run the algorithm of Lemma 3
to find a collection of distinct witness sets of size exactly µ∗ + 1. Remove these
sets from S. It follows that the resulting set S′ has density constant at most
(µ∗)2. Now, in the optimal solution S∗, at least one of the points in each witness
set must be removed. Hence, the algorithm removes k′ ≤ (µ∗ + 1)k∗ points.

Turning to c > 1, we run the algorithm of Lemma 3 to find a collection
of distinct witness sets of size exactly cµ∗ + 1. Remove these sets from S. It
follows that the resulting set S′ has density constant at most (cµ∗)2. Now, if
our algorithm has removed a witness set of size m, then in the optimal solution
at least m − µ∗ of these points must have been removed. It follows that the
algorithm removes k′ ≤ cµ∗+1

cµ∗+1−µ∗ k
∗ = cµ∗+1

(c−1)µ∗+1 · k∗ points from S.

This algorithm for the density constant implies a similar one for the doubling
constant:

Corollary 1. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that
must be removed from S to obtain a set S∗ with doubling constant λ∗. Then there
exists an 2O(log λ∗)n3 time algorithm that removes m′ ≤ c(λ∗)2+1

(c−1)(λ∗)2+1 ·m∗ points
from S (for any desired c ≥ 1), and yields a point set S′ with doubling constant
λ(S′) ≤ (c(λ∗)2)2.

Proof. The proof follows from Theorem 1 with µ∗ = (λ∗)2.



3.3 Improved run time

While the bicriteria algorithms implied by Theorem 1 and Corollary 1 provide
a powerful tradeoff for the two point removal problems, the algorithmic runtime
may be undesirable for some applications. Here we present bicriteria algorithms
that feature near-linear runtime at the expense of slightly higher dimension.

Theorem 2. Given a point set S with density constant µ(S) and a target density
constant µ∗, let k∗ = k∗(S, µ∗) be the minimum number of points that must be
removed from S to obtain a set S∗ with density constant µ∗. Then there exists

(i) An algorithm that runs in 2O(log µ∗)n log α time that removes k′ ≤ cµ∗+1
(c−1)µ∗+1 ·

k∗ points from S (for any desired c ≥ 1), and yields a point set S′ with density
constant µ(S′) ≤ (cµ∗)5.

(ii) An algorithm that runs in 2O(log µ∗)n log3 n time that removes k′ ≤ cµ∗+1
(c−1)µ∗+1 ·

k∗ points from S (for any desired c ≥ 1), and yields a point set S′ with den-
sity constant µ(S′) ≤ (cµ∗)6.

Proof. We begin by building the hierarchy of [KL04] for S, inserting one point
at a time. Now, if a point insertion causes a point of level H2i to possess more
than (cµ∗)5 neighbors in H2i within distance 32 · 2i, then we can find a witness
set: By building a hierarchy for just the neighbor set on distances {32 · 2i, 16 ·
2i, 8 · 2i, 4 · 2i, 2 · 2i, 2i}, we locate in the neighbor set some witness set of size at
least cµ∗. (That is, some point in the neighbor set hierarchy must cover cµ∗ + 1
points one level down, and these points form a witness set for S.) As before, the
points of the witness set are then deleted from the hierarchy of S. The algorithm
terminates with set S′ when no more witness sets can be found. This can all
be be done in O(2O(log µ∗)n log α) time. The analysis for optimality of removed
points is the same as above.

It is only left to show that the resulting set cannot have density constant
greater than (cµ∗)5: Suppose in contradiction that S′ contained a witness set of
size greater than (cµ∗)5 with diameter r and minimum inter-point distance r

2 .
Now, each point of the witness set appears in H1, the bottom level of the full
hierarchy, and a geometric series gives that the distance between each point and
its ancestor in level H2i is less than 2i+1. Hence, the distance between the level
Hi ancestors of two different points of the witness set is greater than r

2 − 2i+2

and less than r + 2i+2. Now let j be the index for which r ≥ 2j > r
2 . Let

i = j − 3, so that the distance between the ancestors of two points is greater
than r

2 − 2j−1 ≥ 0 (and so at least 2i) and less than r + 2j−1 ≥ 20 · 2i. This
contradicts the assumption that there does not exist in the hierarchy a set of
more than (cµ)5 points within radius 32 · 2i and minimum inter-point distance
2i.

The runtime of 2O(log µ∗)n log3 n can be achieved by using the hierarchy of
[GR08a] instead of the hierarchy of [KL04]. (Note however that the semi-dynamic
hierarchy of [CG06b] or the static hierarchy of [HM05] are not sufficient for our
purposes.) The analysis is similar.



This above point removal algorithm for the density constant implies a similar
one for the doubling constant:

Corollary 2. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that
must be removed from S to obtain a set S∗ with doubling constant λ∗. Then there
exists

(i) An algorithm that runs in 2O(log λ)n log α time that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1), and yields a point set S′ with dou-
bling constant λ(S′) ≤ (c(λ∗)2)5.

(ii) An algorithm that runs in 2O(log λ)n log3 n time that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1), and yields a point set S′ with dou-
bling constant λ(S′) ≤ (c(λ∗)2)6.

4 Applications

The algorithms of Section 3 are given a point set S, and remove from S a set R,
resulting in a set S′ = S−R of low doubling constant (λ∗)O(1). If |R| = O(n1/2)
(that is, S is nearly-doubling), we can use techniques from [GR08b, BGK+10] to
construct near-linear runtime algorithms for spanners and fast distance oracles.

We first review the spanner of [GR08b] in Section 4.1, and then present the
near-linear algorithms in Section 4.2

4.1 Spanner review

We review the (1 + ε)-stretch spanner presented in [GR08b] (which itself draws
on the work of [GGN06]). This spanner is constructed as follows: Given a point
set S, the point hierarchy of [CG06b] is constructed for S. First, all parent-
child pairs in the hierarchy are connected by edges in the spanner; these are the
parent-child edges. Next, we add edges to connect all point pairs p, q ∈ H5i (for
all i) if p and q are c-neighbors, that is if d(p, q) ≤ c5i for some fixed constant
c = Θ(1/ε). These are the lateral edges. Notice that the lateral edges of level H5i

are much longer than the parent-child edges of that level (by a factor of θ(1/ε)).
The entire construction can be done in time 2O(log λ(S)) log n + ε−O(log λ(S)).

It was shown in [GR08b] that given two points p, q ∈ S, there exists a simple
spanner path that connects p and q and has stretch at most (1 + ε). Let p′, q′ ∈
H5j be the lowest ancestral c-neighbors of p and q. (That is, j is the smallest
index for which p′ and q′, the respective ancestors of p and q in H5j , are c-
neighbors.) The low stretch spanner path is the path that begins at p, follows a
series of parent-child edges up to p′, a single lateral edge to q′, and a series of
parent-child edges down to q. The length of the path is dominated by the length
of the single lateral edge: The length of the lateral edge is Θ(5j/ε), while the
length of all other edges in the path are bounded by two geometric series that
each sum to O(5j). This implies a (1 + ε)-stretch spanner path for the pair p, q.



4.2 Near linear algorithms

In this section we present near-linear algorithms for nearly-doubling spaces. We
have the following theorem:

Theorem 3. There exists an algorithm that, given point sets S′ and R (|R| =
O(

√
|S′|)), builds a (1 + ε)-stretch spanner for S = S′ ∪ R (n = |S|) with

ε−O(log λ∗)n edges in 2O(log λ∗)n log n + ε−O(log λ∗)n time.

Proof. We first construct the full graph for R, which is a 1-stretch spanner of
O(n) edges for these points. We then construct a (1 + ε) spanner for S′ in the
manner described above. It is left only to guarantee (1 + ε) stretch between
the points of S′ and R. To this end, for each point p ∈ R we locate the lowest
hierarchical level H2i of S′ in which p is covered, and connect p to its covering
point with a parent-child edge, and to all points of levels H2i and below within
distance c2i using lateral edges. As in [GR08b], there are ε−O(log λ) edges incident
on p, and this construction mimics an actual insertion of p into the hierarchy. It
follows that there exists low stretch paths connecting p ∈ R to all points of S′.

The following corollary is a consequence of the spanner construction of The-
orem 3.

Corollary 3. There exists an algorithm that, given point sets S′ and R (|R| =
O(

√
|S′|)), computes

(i) A (1+ ε) approximation to the minimum spanning tree(MST) for S, in time
2O(log λ∗)n log n + ε−O(log λ∗)n.

(ii) A (1+ε) approximation to all pairs nearest neighbor in time 2O(log λ∗)n log n+
ε−O(log λ∗)n.

(iii) A (1+ε)-approximate distance oracle that supports O(1)-time distance queries
with storage 2O(log λ∗ log log λ∗)n + ε−O(log λ∗)n, with construction time
2O(log λ∗)n log n + 2O(log λ∗ log log λ∗)n + ε−O(log λ∗)n.

Proof. (i) Given the above (1 + ε)-stretch spanner, a (1 + ε)-approximate MST
for S can be construction by a simple breadth first search algorithm (such as
Dijkstra’s algorithm) on the points and edges of the spanner.
(ii) A (1 + ε)-approximate nearest neighbor for each point p may be found by
consulting the spanner edges incident on p, and choosing the closest incident
point. This can be maintained in O(1) time per edge insertion.
(iii) A (1 + ε)-approximate O(1) query time distance oracle for doubling spaces
was presented in [BGK+10]. This oracle was built on the spanner of [GR08b]
described above: The structure records the exact distance between any pair of
points that are connected in the spanner. For query points p and q, the algorithm
simply locates the lowest ancestral c-neighbors p′, q′ of p, q, and returns their
distance. (Recall that p′, q′ are connected by a lateral edge, so their true distance
is recorded in the spanner.) It follows from the discussion above that the distance
between p′ and q′ is a (1 + ε)-approximation to the distance between p and q.



We extend the construction of [GR08b] to the spanner in the proof of The-
orem 3: We record the distance between any pairs of points that are connected
in the spanner of the proof of Theorem 3. It follows that the distance between
any pair p, q ∈ R is recorded explicitly. For all pairs p, q ∈ S′, a search for the
lowest ancestral c-neighbors of p and q returns an approximation for the distance
between p and q. For points p ∈ R and q ∈ S′, their distance can similarly be
derived via a search for the lowest ancestral c-neighbors, making use of the edges
added to the spanner in the construction for the proof of Theorem 3.
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