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Abstract

The quest for a PTAS for Nash equilibrium in
a two-player game seeks to circumvent the PPAD-
completeness of an (exact) Nash equilibrium by find-
ing an approximate equilibrium, and has emerged as
a major open question in Algorithmic Game Theory.
A closely related problem is that of finding an equilib-
rium maximizing a certain objective, such as the social
welfare. This optimization problem was shown to be
NP-hard by Gilboa and Zemel [Games and Economic
Behavior 1989]. However, this NP-hardness is unlikely
to extend to finding an approximate equilibrium, since
the latter admits a quasi-polynomial time algorithm, as
proved by Lipton, Markakis and Mehta [Proc. of 4th
EC, 2003].

We show that this optimization problem, namely,
finding in a two-player game an approximate equilib-
rium achieving large social welfare is unlikely to have a
polynomial time algorithm. One interpretation of our
results is that the quest for a PTAS for Nash equilib-
rium should not extend to a PTAS for finding the best
Nash equilibrium, which stands in contrast to certain
algorithmic techniques used so far (e.g. sampling and
enumeration).

Technically, our result is a reduction from a noto-
riously difficult problem in modern Combinatorics, of
finding a planted (but hidden) clique in a random graph
G(n, 1/2). Our reduction starts from an instance with
planted clique size k = O(log n). For comparison, the
currently known algorithms due to Alon, Krivelevich
and Sudakov [Random Struct. & Algorithms, 1998],
and Krauthgamer and Feige [Random Struct. & Algo-
rithms, 2000], are effective for a much larger clique size
k = Ω(

√
n).

1 Introduction

Computational aspects of equilibrium concepts, and in
particular of Nash equilibrium, have seen major ad-
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vances over the last few years, both from the side of
algorithms and in terms of computational complexity
(namely, completeness and hardness results). Perhaps
the most celebrated result in this area [CDT06, DGP06]
proves that computing a Nash equilibrium in a finite
game with two players is PPAD-complete. Conse-
quently, a weaker notion of ε-approximate Nash equilib-
rium, or in short an ε-equilibrium, was suggested, and
the following has emerged as a central open question:

Is there a PTAS for Nash equilibrium?

In other words, is there a polynomial time algorithm
that finds an ε-Nash equilibrium for arbitrarily small
but fixed ε > 0? Here and in the sequel we follow
the literature and assume that the game’s payoffs are
in the interval [0, 1], and approximations are measured
additively; see Section 2 for precise definitions.

While every game has at least one Nash equilibrium,
the game may actually have many equilibria, some more
desirable than others. Thus, an attractive solution
concept is to find Nash equilibrium maximizing an
objective such as the social welfare (the total utility
of all players). For two-player games this problem is
known to be NP-hard [GZ89, CS03]. But as we shall
soon see, this hardness result is unlikely to extend to
ε-equilibrium.

A fairly simple technique, yet surprisingly powerful,
is random sampling, where each player’s mixed strat-
egy ~x is replaced by another mixed strategy ~x′ that has
small support, obtained by sampling a few pure strate-
gies independently from ~x and taking ~x′ be a uniform
distribution over the chosen pure strategies. (We allow
repetitions, i.e. the support is viewed as a multiset.)
This technique leads to a simple algorithm that finds in
a two-player game an ε-equilibrium in quasi-polynomial
time NO(ε−2 log N) [LMM03], assuming that the game is
represented as two N × N matrices.1 Indeed, apply-
ing random sampling on any Nash equilibrium together
with Chernoff-like bounds yields an ε-equilibrium con-
sisting of mixed strategies that are each uniform over a

1Throughout, f is called quasi-polynomial if f(n) ≤ nO(log n).
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multiset of size O(ε−2 log N), and such an ε-equilibrium
can be found by exhaustive search. In fact, this ar-
gument applies also to the social-welfare maximization
problem, and thus the algorithm of [LMM03] finds in
time NO(ε−2 log N) an ε-equilibrium whose social-welfare
is no more than ε smaller than the maximum social-
welfare of a Nash equilibrium in the game.

The existence of a quasi-polynomial algorithm may
seem as promising evidence that a polynomial algorithm
exists. This goal has drawn intense work [DMP06,
KPS06, DMP07, BBM07, TS07], which made encour-
aging progress and culminated (so far) with a polyno-
mial time algorithm that computes a 0.3393-equilibrium
[TS07]. All these algorithms, with the sole exception of
[TS07], rely on the aforementioned approach of prov-
ing the existence of a small support ε-equilibrium via
sampling, and then finding such an equilibrium using
exhaustive search in conjunction with other algorithmic
tools (such as linear programming).

While progress on the approximation side remains
steady, the other side of computational lower bounds
has resisted attempts to exclude PTAS by extending
the known hardness results to approximations (beyond
FPTAS), either for any equilibrium or for an objective-
maximizing one. The reason for this difficulty might be
the aforementioned quasi-polynomial time algorithms,
due to which it is less plausible that we can prove
hardness of approximation based on NP-hardness or
PPAD-hardness for the corresponding question.

In this paper we give the first negative evidence for
the existence of a PTAS for the objective-maximizing
question. Since NP-hardness is out of the question, we
design a reduction from the well known problem of find-
ing a hidden (planted) clique in a random graph. The
latter choice is non-standard, as the problem appears
to be hard on the average rather than in a worst-case
sense. However, in several respects it is an ideal choice.
First, it admits a straightforward quasi-polynomial time
algorithm. Second, the average-case nature of the prob-
lem is particularly suited for constructing games with a
highly regular structure, which will be important in our
reduction.

The hidden clique problem. In this problem,
the input is a graph on n vertices drawn at random
from the following distribution Gn,1/2,k: pick a random
graph from Gn,1/2 and plant in it a clique of size
k = k(n).2 The goal is to recover the planted clique
(in polynomial time), with probability at least (say)
1/2 over the input distribution. Note that the clique

2Gn,p denotes the distribution over graphs on n vertices
generated by placing an edge between every pair of vertices
independently with probability p.

is hidden in the sense that its “location” is adversarial
and not known to the algorithm (but independent of the
random graph, e.g. of its degrees). In a random graph,
the maximum size of a clique is, with high probability,
roughly 2 log n, and thus when the parameter k is larger
than this value, the planted clique will be, with high
probability, the unique maximum clique in the graph,
and the problem’s goal is simply to find the maximum
clique in the graph (see Lemma 2.2 for details). The
problem was suggested independently by Jerrum [Jer92]
and by Kučera [Kuč95].

It is not difficult to see that the hidden clique
problem becomes only easier as k gets larger, and the
best polynomial-time algorithm to date, due to Alon,
Krivelevich and Sudakov [AKS98], solves the problem
whenever k ≥ Ω(

√
n) (see also [FK00]). Improving over

this bound is a well-known open problem, and certain
algorithmic techniques provably fail this task, namely
the Metropolis process [Jer92] and the Lovász-Schrijver
hierarchy of relaxations [FK03]. The hidden clique
problem can be easily solved in quasi-polynomial time
nO(log n); for the most difficult regime k = O(log n), this
is obviously true even in a worst-case sense.

1.1 Our Results We relate the worst case hardness
of finding an approximate equilibrium to that of solving
the hidden clique problem, formally stated as follows.

Theorem 1.1. There are constants ε̂, ĉ > 0 such that
the following holds. If there is a polynomial-time al-
gorithm that finds in an input two-player game an
ε̂-equilibrium whose social-welfare is no more than ε̂
smaller than the maximum social-welfare of an equi-
librium in this game, then there is a (randomized)
polynomial-time algorithm that solves the hidden clique
problem for k = ĉ log n with high probability.

We remark that our proof is actually shown for the
special case of symmetric two player games (see Section
2 for definitions), which makes the result only stronger
(since this is a hardness result). We make no attempt
to optimize various constants in the proofs.

1.2 Related Work There are complexity classes
that attempt to capture problems requiring running
time nO(log n), see [PY96] and references in Section 5
therein. It is plausible that our approach of relying
on the hidden clique problem, may be used to prove
hardness of approximation for problems mentioned in
[PY96], such as the VC dimension of a 0-1 matrix, and
the minimum dominating set in a tournament graph.

Average-case hardness. The hidden clique prob-
lem is related to the assumption that refuting 3SAT is
hard on average (for low-density formulas), which was



used by Feige [Fei02] to derive constant factor hardness
of approximation for several problems, such as mini-
mum bisection, dense k-subgraph and maximum bipar-
tite clique. His results may be interpreted as evidence
that approximation within the same (or similar) factor
is actually NP-hard, which is a plausible possibility but
not known to date. In fact, the random 3SAT refuta-
tion conjecture may be viewed [Feige, private communi-
cation] as a scaled version of the hidden clique problem,
so that straightforward algorithms based on enumera-
tion require exponential, rather than quasi-polynomial,
running time. It is not difficult to see that some of
the combinatorial optimization problems addressed in
[Fei02] are also hard to approximate under the assump-
tion that the hidden clique problem cannot be solved
in polynomial time. Consider for example the dense k-
subgraph problem; the hidden clique graph itself obvi-
ously contains a k-vertex subgraph of maximum density,
while any algorithm that is likely to find in it a suffi-
ciently dense k-vertex subgraph can be used to find the
planted clique, see e.g. Lemma 5.3. The argument for
the maximum bipartite clique problem is similar.

It is worth noting that the assumption that the hid-
den clique problem is hard was used in a few other con-
texts, including for cryptographic applications [JP00],
and for hardness of testing almost k-wise independence
[AAK+07]. The decision version of the hidden clique
problem, namely, to distinguish between the distribu-
tions Gn,1/2,k and Gn,1/2, is attributed to M. Saks in
[KV02, Section 5].

Computing equilibria. The last decade has seen
a vast literature on computational aspects of equilibria
in various scenarios, including for example graphical
games (where the direct interaction between players is
limited by a graph structure), succinct games (where
the payoffs can be represented succinctly, e.g. due
to strong symmetries or a combinatorial structure),
and markets (where sellers and buyers interact via
prices). For more details, we refer the reader to the
excellent and timely surveys [Pap08, Rou08] and the
many references therein. More concretely for Nash
equilibrium in bimatrix games, see the recent surveys
[Pap07, Spi08].

In general, the problems of finding any equilibrium
and that of finding an equilibrium that maximizes some
objective need not have the same (runtime) complexity,
although certain algorithmic techniques may be effec-
tive to both. As mentioned earlier, this indeed happens
for ε-equilibrium in two-player games, when employing
random sampling combined with quasi-polynomial ex-
haustive search. Another example is the use of the dis-
cretization method [KLS01], which was recently used
in [DP08] to find an ε-equilibrium in anonymous games

with fixed number of strategies, but actually extends
to the value-maximization version [Daskalakis, private
communication]. Yet another example is the algorithm
of [EGG07] for graphical games on bounded degree trees
and whose best response policy [KLS01] has polynomial
size.

2 Preliminaries

Let [n] = {1, 2, ..., n}. An event E is said to occur with
high probability if Pr[E ] ≥ 1 − 1/nΩ(1); the value of n
will be clear from the context. An algorithm is called
efficient if it runs in polynomial time nO(1).

2.1 Nash Equilibria in games In the sequel, we
restrict our attention to symmetric games, hence our
definition assumes square matrices for the payoff. A
(square) two-player bi-matrix game is defined by two
payoff matrices R, C ∈ Rn×n, such that if the row
and column players choose pure strategies i, j ∈ [n],
respectively, the payoff to the row and column players
are R(i, j) and C(i, j), respectively. The game is called
symmetric if C = R>.

A mixed strategy for a player is a distribution over
pure strategies (i.e. rows/columns), and for brevity we
may refer to it simply as a strategy. An ε-approximate
Nash equilibrium is a pair of mixed strategies (x, y) such
that

∀i ∈ [n], e>i Ry ≤ x>Ry + ε,

∀j ∈ [n], x>Cej ≤ x>Cy + ε.

Here and throughout, ei is the i-th standard basis
vector, i.e. 1 in i-th coordinate i, and 0 in all other
coordinates. If ε = 0, the strategy pair is called a Nash
equilibrium (NE). The definition immediately implies
the following.

Proposition 2.1. For an ε-equilibrium (x, y), it holds
that for every mixed strategies x̃, ỹ,

x̃>Ry ≤ x>Ry + ε,

x>Rỹ ≤ x>Ry + ε.

As we are concerned with an additive notion of ap-
proximation, we assume that the entries of the matrices
are in the range [0, M ], for M which is a constant inde-
pendent of all the other parameters. Our results easily
translate to the case M = 1 by scaling all payoffs.

Consider a pair of strategies (x, y). We call the
payoff of the row player x>Ry (this is actually the
expected payoff), and similarly for the column player.
The value of an (approximate) equilibrium for the game
is the average of the payoffs of the two players. Recall
that social-welfare is the total payoff of the two players,
and thus equals twice the value.



2.2 The hidden clique problem Recall that in
this problem the input is drawn at random from the
distribution Gn,1/2,k. Intuitively, the problem only
becomes easier as k gets larger, at least in our regime
of interest, namely k ≥ c0 log n for sufficiently large
constant c0 > 0. This intuition can be made precise
as follows.

Lemma 2.2. Suppose there are a constant c1 > 0 and a
polynomial time algorithm such that given an instance of
the hidden clique problem with k ≥ c1 log n finds a clique
of size 100 log n with probability at least 1/2. Then there
exists a constant c0 > 0 and a randomized polynomial
time algorithm that solves the hidden clique problem for
every k ≥ c0 log n.

This lemma is probably known, but since we could
not provide a reference, we prove it in Appendix A,
essentially using ideas from [AKS98] and [McS01]. No-
tice that due to potential correlations, one cannot em-
ploy simple techniques that are useful in worst-case in-
stances, such as repeatedly finding and removing from
the input graph a clique of size 100 log n (using the as-
sumed algorithm), not to mention of course that the
assumed algorithm only succeeds with probability 1/2
(and repeating it need not amplify the success proba-
bility).

3 The Reduction

We prove Theorem 1.1 by reducing the hidden clique
problem to the Nash equilibrium problem. That is,
given an input instance of the hidden clique problem we
construct a two-player game such that with high prob-
ability (over the randomness in our construction and in
the hidden clique instance), a high-value approximate
equilibrium leads, in polynomial time, to a solution to
the hidden clique instance.

Techniques. Our construction is motivated by an
observation of Halperin and Hazan [HH05], that for
every graph, the quadratic form corresponding to the
graph’s adjacency matrix, when considered over the the
unit simplex (i.e. all probability distributions over [n]),
is maximized exactly at a (normalized) incidence vector
of a maximum clique in the graph. We rely on this
observation, as one portion of the game we construct
is exactly the adjacency matrix of the hidden clique
instance. However, this is not enough to obtain a
suitable Nash equilibrium instance.

First, an equilibrium is a bi-linear form rather than
a quadratic form, hence the results of [HH05] are not
directly applicable. We thus use (mainly in Lemma
5.2 below) the special properties of an approximate
equilibrium to prove a relationship of similar flavor

between bi-linear forms on the adjacency matrix and
large cliques (or actually dense subgraphs) in the graph.

Second, a simple use of the adjacency matrix yields
a very small gap (between vectors corresponding to a
clique and those that do not) that is by far insufficient
to rule out a PTAS. To boost this gap we use an
idea of Feder, Nazerzadeh, and Saberi [FNS07] to
eliminate from the game all equilibria of small support
(cardinality at most O(log n)).

The construction. Let ε̂, ĉ and M, c1, c2 be con-
stants to be defined shortly. Given an instance G ∈
Gn,1/2,k of the hidden clique problem, consider the two-
player game defined by the following payoff matrices (for
the row-player and the column player, respectively):

R =
(

A −B>

B 0

)
; C =

(
A B>

−B 0

)

The matrices R, C are of size N×N for N = nc1 . These
matrices are constructed from the following blocks.

1. The upper left n × n block in both R, C is the
adjacency matrix of G with self loops added.

2. The lower right block 0 in both R,C is the all zeros
matrix of size (N − n)× (N − n).

3. All other entries are set via an (N − n)× n matrix
B whose entries are set independently at random
to be

Bi,j =

{
M with probability 3

4 · 1
M ;

0 otherwise.

Notice that the game is symmetric, i.e. C = R>, and
that outside the upper left block A, the game is zero-
sum.

Choice of parameters. We set the parameters in
our construction as follows.

• M = 12;

• c2 = 200;

• c1 = 2 + c2 log(4M/3); (recall N = nc1)

• ĉ = 32M2(c1 + 2); and

• ε̂ = 1/50M .

Note that these parameters do not depend on k,
the size of the hidden clique, and in particular, k can be
much larger than log n. The reason is that the algorithm
in our reduction focuses on finding a clique of size
100 log n, which clearly must have a large overlap with
the planted clique, and from which the entire planted
clique can be found using standard techniques (Lemma
2.2).



As is standard in computational complexity, we
prove Theorem 1.1 by analyzing the completeness and
soundness of the reduction.

In the sequel, when we say with high probability,
it means over the choice of G from Gn,1/2,k over the
construction of the game (namely the randomness in
B), and over the coin tosses of our algorithms. We note
however, that most of our algorithms are deterministic;
the only exception is Lemma 2.2 (and of course the
algorithms that invoke it).

4 Completeness

Lemma 4.1. With high probability, the game above has
an equilibrium of value 1.

Proof. Consider the distributions (mixed strategies)
x = y which are a uniform distribution over the strate-
gies corresponding to the planted k-clique, xi = 1

k if i is
in the planted clique, and xi = 0 otherwise. The value
of this strategy set is 1

2x>(R+C)y = 1. We shall prove
that with high probability this is an equilibrium.

Consider without loss of generality the row player,
and observe that her payoff when she plays x is exactly
1. We need to show that she cannot obtain a larger
payoff by playing instead any strategy i ∈ [N ]. For
i ≤ n, her new payoff is at most the largest entry in A,
i.e. 1. For each i > n, her new payoff is the average
of k distinct values in B, which is highly concentrated
around its mean 3/4. Formally, we use the following
Chernoff-Hoeffding bound.

Theorem 4.2. ([Hoe63]) Let X1, ..., Xm be indepen-
dent random variables bounded by |Xj | ≤ C, and let
X̄ = 1

m

∑
j Xj. Then for all t > 0,

Pr[X̄ −E[X̄] ≥ t] ≤ exp(−mt2

2C2 ).

In our case, the variables satisfy |Xj | ≤ M and E[Xj ] =
3
4 , and X̄ is the payoff of playing strategy i > n (when
the other player still plays x = y). We thus obtain

Pr[X̄ ≥ 1] ≤ exp(− k
32M2 ).

By a union bound over all strategies i > n we have that
the probability there exists a strategy i > n with payoff
larger than 1 is at most (N −n) · e− k

32M2 ≤ nc1− ĉ
32M2 =

1/n2, where the last inequality follows by our choice of
c1. This completes the proof of Lemma 4.1. ¥

5 Soundness

To complete the proof of Theorem 1.1, we shall show
that with high probability, every ε̂-approximate equi-
librium with value ≥ 1 − ε̂ in the game can be used to
find the hidden clique efficiently. We do this in three

steps, using the three lemmas below. We note that the
second and main step (Lemma 5.2) can be made to hold
without any assumption on the value of the equilibrium
(details omitted in this abstract).

For our purpose, a bipartite subgraph is two equal-
size subsets V1, V2 ⊆ V (G) (not necessarily disjoint); its
density is the probability that random v1 ∈ V1, v2 ∈ V2

are connected by an edge, in the input graph with self-
loops added.

Lemma 5.1. With high probability, given an ε̂-
equilibrium in the game with value ≥ 1 − ε̂, we can ef-
ficiently compute a (4Mε̂)-equilibrium that is supported
only on A and has value ≥ 1− ε̂.

Lemma 5.2. (MAIN) With high probability, given a
(4Mε̂)-equilibrium supported only over the matrix A and
with value ≥ 1 − ε̂, we can efficiently find a bipartite
graph of size c2 log n and density 3

5 in the input graph.

Lemma 5.3. With high probability, given a bipartite
subgraph of size c2 log n and density ≥ 3

5 in the input
graph, we can efficiently find the entire planted hidden
k-clique.

5.1 Proof of Lemma 5.1 The following two claims
are stated with a general parameter δ > 0, although we
will later use them only with a specific value δ = ε̂.

Claim 5.4. In every pair of mixed strategies achieving
value ≥ 1− δ, at most δ of the probability mass of each
player resides on strategies not in [n].

Proof. The contribution to the value of the equilibrium
from outside the upper left block is 0, because over there
the game is zero-sum. Inside that block the two players
receive identical payoffs, which are according to A and
thus upper bounded by 1. Thus,

1− δ ≤ 1
2x>(R + C)y

=
∑

i,j∈[n]

xiyjAij ≤
(∑

i∈[n] xi

)( ∑
j∈[n] yj

)
,

and it immediately follows that both
∑

i∈[n] xi and∑
j∈[n] yj are at least 1− δ. ¥

Claim 5.5. Given an ε̂-equilibrium where at most δ of
each player’s probability mass reside on strategies not
in [n], we can find an (ε̂ + 3Mδ)-equilibrium that is
supported only on A and whose value is at least as large.

Proof. Given an ε̂-equilibrium (x, y), we obtain a new
equilibrium (x̃, ỹ) by restricting each player’s support
to [n], i.e. removing strategies not in [n] and scaling
to obtain a probability distribution. Since the game



is zero-sum outside of A, removing strategies not in A
does not change the value, and since the entries in A
are nonnegative, the scaling operation can only increase
the value, i.e. x̃>(R + C)ỹ ≥ x>(R + C)y.

To bound defections, consider without loss of gen-
erality the row player. First, her payoff when defect-
ing to strategy i ∈ [N ] does not change much, i.e.
|e>i Rỹ−e>i Ry| ≤ Mδ, because the total mass of y moved
around is at most δ, and different entries in R differ by
at most M . Furthermore, her payoff in the new equilib-
rium does not change much, i.e. |x̃>Rỹ−x>Ry| ≤ 2Mδ,
because at most 2δ of the total probability mass of x and
y was moved. ¥

Lemma 5.2 now follows immediately from the two
claims above by setting δ = ε̂.

5.2 Proof of Lemma 5.2 To prove this lemma, we
first need the following structural claim.

Claim 5.6. With high probability, in every 1/2-
approximate equilibrium supported only over the matrix
A, the total probability mass every player places on ev-
ery set of c2 log n pure strategies is ≤ 2/M .

Proof. For convenience, denote d = c2 log n. Suppose
that one of the players, say the column player, has
measure of more than 2

M on a support of size ≤ d. Let
us compute the probability that there exists a row in
B, in which the d corresponding entries all have a value
of M . If this event happens, then we do not have an
ε-equilibrium, since the row player can defect to this
particular row, to obtain payoff ≥ 2

M · M = 2, while
her current payoff is ≤ 1. The probability this event
happens for a single row is obviously pd for p = 3

4M ,
and very small. But we have N − n rows, and they are
independent. Thus, the probability that no row has a
streak of M ’s in the particular d columns is at most

(1− pd)N−n ≤ exp(−pdN/2)

= exp(−nc1−c2 log 4M
3 /2)

≤ exp(−n2/2)

where the last inequality is by our choice of c1. Hence
with probability 1−e−n2

there is such a row, and hence
this cannot be an equilibrium.

We now need to rule out all possible subsets sets of
size d. There are

(
n
d

) ≤ nd such subsets, and each one
cannot be an equilibrium with probability ≥ 1−e−n2/2.
We can rule out all of them by a union bound, since
nd · e−n2/2 ≤ e−Ω(n2). ¥

Proof. [Proof of Lemma 5.2] Let (x, y) be such an
(4Mε̂)-equilibrium. Define T = {j ∈ supp(y) :

x>Aej ≥ 4
5}, where ej is the j-th standard basis vec-

tor. Observe that T is nonempty, since x>Ay ≥ 1 − ε̂.
Furthermore, the total probability mass outside of T
is

∑
j /∈T yj ≤ 1

2 , or otherwise moving this probability
mass into T would increase the column player’s pay-
off by more than 1

2 (1 − ε̂ − 4
5 ) > 1

12 > 4Mε̂, by our
choice of ε̂, contradicting our assumption of an approx-
imate equilibrium (specifically Proposition 2.1). Since∑

j∈T yj ≥ 1
2 > 2

M and 4Mε̂ ≤ 1/2, we have by Claim
5.6 that |T | ≥ c2 log n. To get size exactly c2 log n, we
can just take an arbitrary subset of T . Thus, denoting
by uT the uniform distribution on T , the pair (x, uT )
satisfies

x>AuT ≥ 4
5 .

Now define S = {i ∈ supp(x) : e>i AuT ≥ 3
5}.

Its total probability mass must be
∑

i∈S xi > 2
M , as

otherwise x>AuT ≤ 2
M ·1+(1− 2

M )· 35 < 4
5 , by our choice

of M ≥ 10. By claim 5.6 we then have |S| > c2 log n.
Let uS be the uniform distribution over the set S. Then
u>S AuT ≥ 3

5 , i.e. S, T define a bipartite subgraph of size
≥ c2 log n and density ≥ 3

5 . To get size exactly c2 log n,
we can just take an arbitrary subset of S. ¥

5.3 Proof of Lemma 5.3 To prove this lemma we
separate out first how to extract a clique of logarithmic
size.

Claim 5.7. With high probability, given a bipartite sub-
graph of size c2 log n and density ≥ 3

5 in the input graph,
we can efficiently find a clique of size 100 log n.

Proof. Let S, T ⊂ V (G) be the two sets forming the
bipartite subgraph, and let W ⊂ V (G) denote the ver-
tices of the planted clique, i.e. |W | = k. A straight-
forward union bound shows that with high probabil-
ity at least 1

20 of the vertices in S must lie in the
planted clique. Indeed, the number of sets S, T ⊂ V (G)
with |S| = |T | = c2 log n and |S ∩ W | < 1

20 |S| is at
most

(
n
|S|

)|T | < n2c2 log n. For each of them, the den-
sity between S \W and T is essentially the average of
Θ(c2 log n)2 Bernoulli random variables with expecta-
tion 1/2 (except that some variables may be included
twice, and except for at most c2 log n terms correspond-
ing to self loops). Thus, by the Chernoff bound above,
Pr[density(S∩W,T ) ≥ 0.55] ≤ exp(−Ω(c2 log n)2). and
we get that with high probability,

density(S, T ) =

= |S∩W |
|S| density(S ∩W,T ) + S\W

|S| density(S \W,T )

< 3
5 .

Furthermore, we can take a union bound over all choices
of such S, T by choosing c2 as a sufficiently large
constant.



Thus, given S, T we can try all subsets of S of size
1
20c2 log n by exhaustive search (the number of such sets
is nO(c2) = nO(1)), and find the largest subset S′ that
forms a clique in G. By the above analysis, with high
probability |S′| ≥ c2

20 log n = 100 log n.
¥

Lemma 5.3 now follows by combining the above
claim with Lemma 2.2. This completes also the proof
of Theorem 1.1.
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A Deferred Proof from Section 2

Proof. [Proof of Lemma 2.2] Suppose there exists a
polynomial time algorithm A∗ that, given the hidden
clique problem with k ≥ c1 log n, finds a clique of size
100 log n. We prove that there exists a (randomized)
polynomial time algorithm that solves the hidden clique
problem exactly for every k ≥ c0 log n, where c0 = 2tc1

for a sufficiently large t to be determined later. The
algorithm is composed of two stages.

Stage 1. Randomly partition the graph vertices
into t parts. In each part, the expected number
of vertices from the planted clique vertices is k/t ≥
c0 log n

t = 2c1 log n. Furthermore, using Chernoff bounds
it is easy to show that with probability > 7/8, every
part contains at least c1 log n vertices from the hidden
clique. In our analysis we shall assume henceforth that
this event does not occur.

In each part separately, first complete it into an
instance of hidden clique of size exactly n, by adding
n− n/t vertices and connecting all new potential edges
with probability 1

2 . Then apply the polynomial time
algorithm A∗. Observe that each part is distributed ex-
actly as a hidden clique instance, and by our assumption
its hidden clique size is large enough that algorithm A∗

succeeds, with probability ≥ 1/2, in finding a clique of
size at least 100 log n. Since the different parts are in-
dependent, the probability that A∗ succeeds in one or
less parts is ≤ (t + 1)2−t < 1/8 for, say, t = 6. In our
analysis we shall assume henceforth that this event does
not occur, i.e. A∗ succeeds in at least two parts.

In each part where A∗ succeeds, we may assume
that the clique size is exactly 100 log n by removing
arbitrary vertices from it. Since even in the entire
graph the maximum clique size in the random portion
(i.e. not not using the planted clique) is with high
probability roughly 2 log n. In our analysis we shall
assume henceforth that this event occurs, in every part
where A∗ succeeds, at least 97 log n among the 100 log n
vertices of the clique found belong to the planted clique.

Stage 2. In each part i apply the following.
Identify another part j 6= i where A∗ succeeded in
finding a clique of size 100 log n. Select the vertices in
the part i whose degree towards the clique found in part
j is at least 97 log n. Call these vertices Qi and report
all selected vertices, i.e. Q = ∪iQi. (If A∗ did not
succeed in at least two parts, report fail.)

To analyze this stage, observe that a vertex v from
part i that belongs to the planted clique must have
degree at least 97 log n towards the clique found in
another part j, and thus belongs to Qi. On the other
hand, for a vertex v in part i that does not belong to
the planted clique, the expected degree towards any
fixed subset of 100 log n vertices in part j is 50 log n.
Notice that the chosen part j and the clique found in
it are completely independent of the edges connecting
different parts, because they are determined only by
the edges internal to the different parts (possibly in a
complicated way, e.g. how to break ties if A∗ succeeds
in more than two parts). Thus, the probability that v
has degree at least 97 log n towards the corresponding
clique in part j is, using the Chernoff bound, ≤ 1/n2.
By a union bound over all vertices we get that with
high probability all such vertices do not belong to Qi.
Combining this with the events mentioned earlier, we
get by a union bound that Q = ∪iQi contains exactly
all the hidden clique vertices with probability at least
2/3. ¥


