
Coping with NP-hardness:

Approximating minimum bisetion

and heuristis for maximum lique

Thesis for the Ph.D. Degree

by

Robert Krauthgamer

Supervisor: Prof. Uriel Feige

Department of Computer Siene and Applied Mathematis

The Weizmann Institute of Siene

Submitted to: Feinberg Graduate Shool

Weizmann Institute of Siene

Rehovot 76100, Israel

April 16, 2001

(Revised Deember 2001)



ii



Abstrat

Many important optimization problems are known to be NP-hard. That is,

unless P = NP, there is no polynomial time algorithm that optimally solves these

problems on every input instane. We study algorithmi ways for \oping" with

NP-hard optimization problems.

One possible approah for oping with the NP-hardness is to relax the re-

quirement for exat solution, and devise approximation algorithms, i.e. eÆient

algorithms that produe a solution that is guaranteed to be nearly optimal. In

the last deade, our understanding of many NP-hard optimization problems was

greatly improved, both from the diretion of approximation algorithms and from

the diretion of hardness of approximation. However, there is still a large gap in

our understanding of the approximability of several fundamental problems.

A notable example is the minimum bisetion problem, that requires to �nd

in a graph a minimum-ost ut that partitions the verties into two equal-size

sets. This problem has appliations both in theory and in pratie. The seminal

work of Leighton and Rao (1988) was largely motivated by this problem, and

led to algorithms with approximation ratio O(logn) for several related problems.

However, prior to our work no sublinear (in n) approximation ratio was known

for this problem, and its approximability is a famous open problem.

We signi�antly improve the known approximation ratio for minimum bise-

tion. Our algorithms ahieve an approximation ratio O(log

2

n), whih is \in the

same ballpark" as the urrent approximation ratios for many related problems.

Another approah for oping with the NP-hardness is to relax the requirement

for worst-ase analysis, and onsider instead heuristi algorithms that are su-

essful on average-ase input instanes. One main diÆulty in providing rigorous

analysis of heuristis lies in realistially modeling average-ase instanes.

Consider for example the hidden lique problem. In a random model for the

problem, a random graph on n verties is hosen (i.e. G

n;1=2

) and then a lique of

size k is randomly plaed in the graph, and the goal is to �nd the planted lique

in the graph. A semi-random model may extend this random model by allowing

an adversary to remove any edge that is not inside the planted lique.

We devise for the hidden lique problem a heuristi that is based on the Lov�asz

theta funtion, a well-known semide�nite programming relaxation of maximum

lique. Our heuristi is suessful in the semi-random model when k � 
(

p

n).

In ontrast, previous heuristis have similar suess in the random model but fail

in the semi-random model.

We also study relaxations that are stronger than the Lov�asz theta funtion,

namely those obtained by the \lift-and-projet" method of Lov�asz and Shrijver

(1991). We show that on a random graph G

n;1=2

the value of these stronger

relaxations is omparable to the theta funtion, and hene they do not extend

our heuristi mentioned above to a planted lique of smaller size k = o(

p

n).
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Chapter 1

Introdution

Optimization problems arise naturally in a variety of pratial and theoretial ontexts.

Many suh important problems are known to be NP-hard; that is, unless P = NP, there is

no polynomial time algorithm that optimally solves these problems on every input instane,

see e.g. [GJ79℄.

We study algorithmi ways for \oping" with NP-hard optimization problems. In many

ases, merely lassifying a problem as NP-hard does not suÆe, and one needs to apply some

algorithm for dealing with the problem at hand. It is therefore desirable to devise algorithms

that ope with the NP-hardness, by means of relaxing some of the requirements.

One approah for oping with the NP-hardness is to relax the requirement for exat

solution, and settle for an approximate solution, i.e. a solution that is guaranteed to be nearly

optimal. These approximation algorithms are usually evaluated by their approximation ratio,

whih is the worst-ase ratio between the values of the solution provided by the algorithm

and that of the optimum solution.

Another approah for oping with the NP-hardness is to relax the requirement for worst-

ase analysis, and onsider instead the behavior of an algorithm on average-ase input in-

stanes. We are interested in evaluating these heuristi algorithms by providing for them

rigorous performane guarantees (and not by experimental methods suh as benhmarks).

In this work we restrit our attention to the two approahes mentioned above, namely

approximation algorithms and analysis of heuristis, but we remark that there are also other

approahes. For example, one may relax the polynomial time restrition and seek subexpo-

nential time algorithms, trying to improve over straightforward exhaustive searh. Another

approah examines whether a problem is �xed-parameter tratable, whih means that there

exists for the problem an algorithm whose running time is polynomial when some parameter

of the problem (e.g. the value of the optimum solution) is �xed independently of the input

size. It is also possible to ombine several approahes, suh as heuristis that produe (on

average) nearly optimal solutions, or (superpolynomial) branh and bound algorithms that

save running time by using approximation algorithms (or heuristis) to skip branhes that

do not ontain (or are unlikely to ontain) an optimal solution.

The literature on oping with NP-hard optimization problems is immense, and we will

only mention a few referenes of a broader sope. The famous example of the traveling sales-

man problem (TSP) is studied thoroughly in [LLKS85℄, inluding approximation algorithms,
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average-ase analysis, empirial evaluation, polyhedral methods, and branh and bound

methods. The approah of approximation algorithms is studied in [Ho97℄ and in [Vaz01℄

(see also the ompendium [CK95℄). Average-ase analysis (from the viewpoint of random

graphs) is surveyed in [FM97℄. The approah of �xed-parameter tratability is studied

in [DF99℄. Various heuristis are evaluated empirially in [Rei94℄ and in [JT96℄.

One may wonder whether this diversity of approahes for oping with NP-hardness is re-

ally neessary. One possible reason for this is that no one approah seems to be suitable in all

ases and e�etive for all problems. Approximation algorithms, for example, seem promising

in several problems (e.g. Eulidean TSP [Aro98℄), where an arbitrarily good approximation

an be found in polynomial time, but other problems (e.g. maximum lique [H�as99℄), annot

be approximated within ratio of n

1��

, for any �xed � > 0, unless P = ZPP. The diversity of

approahes seems essential also beause of the diÆulty in omparing di�erent approahes.

In partiular, an algorithm that performs well with respet to one riterion, might perform

poorly with respet to another riterion.

1.1 Basi terminology

An optimization problem is a searh problem, i.e. eah problem instane has a set of feasible

solutions, where the size of eah solution is polynomial in the size of the instane. Eah

solution is assoiated with a value (e.g. ost or bene�t), whih is a positive integer that

an be omputed from the instane and the solution in polynomial time. The optimization

problem an be either a minimization problem or a maximization problem, and it requires

to �nd a feasible solution with an optimal (minimal or maximal, respetively) value.

In general, we speify the omputational resoures (time, spae and randomness) used by

an algorithm as a funtion of the input size, where the input is assumed to be oded in an

alphabet of a �xed size (e.g. in binary). However, in graph problems it is more onvenient

to haraterize the input size by the number of verties in the input graph, whih is denoted

throughout by n. We say that an algorithm is eÆient if its running time is polynomial (in

the input size).

We next de�ne the optimization problems that we address in this work. These graph

problems are known to be NP-hard, see e.g. [GJ79, CK95℄.

Minimum bisetion. A ut of a graph is a partition of the graph verties into two nonempty

subsets alled the sides of the ut, and onsists of the edges with one endpoint in eah subset.

The edges of a ut are also said to ross the ut. The ost of a ut is the number of edges

that ross it. A bisetion is a ut whose two sides are of equal ardinality. The minimum

bisetion problem requires to �nd in an input graph a bisetion of minimal ost.

Maximum lique. A lique in a graph is a subset of its verties that indue a omplete

subgraph, i.e. every two verties in the subset are onneted by an edge. The size of a lique

is the number of verties in it. The maximum lique problem requires to �nd in an input

graph a lique of maximal size.

Maximum independent set (a.k.a. stable set). An independent set in a graph is a

subset of its verties that indue an empty subgraph, i.e. every two verties in the subset
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are not onneted by an edge. The size of an independent set is the number of verties in it.

The maximum independent set problem requires to �nd in an input graph an independent

set of maximal size.

It is well-known that that a lique in a graph G orresponds to an independent set in

the edge omplement graph

�

G, and therefore there is an equivalene between the maximum

lique problem and the maximum independent set problem.

1.2 Approximation algorithms

In many appliations it is reasonable to ompromise on a solution whose value is lose to the

optimum, if suh a solution an be found eÆiently. Therefore, the quality of a solution is

measured by the proximity of its value to that of the optimal solution. Most ommonly, the

proximity between two values is measured by their ratio (although it is sometimes plausible

to measure it by their di�erene).

De�nitions. A polynomial time algorithm A has approximation ratio r � 1 if for any

instane of the problem, algorithm A produes a solution whose value is within a ratio

of r from the value of an optimal solution for this instane. We also say that A is an r

approximation algorithm. Note that the approximation ratio is measured for the worst-ase

instane of the problem. Typially, r is allowed to be a funtion of the instane size (e.g. of

the number of verties n in the input graph for graph problems). In the ase of a randomized

approximation algorithm we onsider the expeted value of the algorithm's solution to the

instane (where the expetation is taken over the oin tosses of the algorithm).

A family of algorithms is alled a polynomial time approximation sheme (PTAS) if the

family ontains algorithms with approximation ratios that are arbitrarily lose to 1, i.e. the

family ontains a 1+ � approximation algorithm for every � > 0. Suh a family of algorithms

is alled a fully polynomial time approximation sheme (FPTAS) if for every � > 0, the family

ontains a 1 + � approximation algorithm whose running time is polynomial in 1=�.

Bakground. The approximation ratio of an NP-hard problem is usually studied from

two diretions. An approximability result shows that this problem an be approximated

within some ratio r

1

, by devising an approximation algorithm for it. An inapproximability

result shows that the problem annot be approximated within some ratio r

2

, unless P = NP

(or a similar assumption). For some problems, the approximability and inapproximability

results are essentially tight, namely r

1

and r

2

are equal up to low order terms, yielding an

approximation threshold that ompletely lassi�es this problem in terms of approximation.

For other problems, there is urrently a large gap between the two types of results, and

they are not well-understood in terms of approximation. The ompendium [CK95℄ ontains

referenes to most of the results ahieved in this �eld, and many important results are

desribed in [Ho97℄ and in [Vaz01℄.

NP-hard optimization problems might di�er quite substantially in terms of their approx-

imation ratios. We mention below a few typial examples, although it should be noted that

there are also other (less typial) approximation ratios, see e.g. [GKR

+

99℄ and [EP00℄.
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Some problems are known to be NP-hard to solve exatly but have an arbitrarily good

�xed approximation ratio. One example for a problem that admit an FPTAS is Knapsak[IK75℄.

Examples for problems that admit PTAS inlude Bin-Paking [FdlVL81℄ and Eulidean-

TSP [Aro98℄.

The \next" level in the quality of approximation is a onstant ratio. On the one hand,

many problems are known to be approximable within a onstant ratio. On the other hand,

many of them do not have a PTAS, unless P = NP. That is, for eah suh problem there

is an inapproximability result to within some onstant ratio larger than 1. Many of these

results are proved using a general tehnique that follows from the onnetion between Prob-

abilistially Chekable Proofs (PCPs) and inapproximability [FGL

+

96, AS98, ALM

+

98℄. For

example, eah of the problems MAX-SAT, MAX-CUT, Vertex over, Metri-TSP, Multiway

ut and Steiner tree is approximable within some onstant ratio, but inapproximable (assum-

ing P 6= NP) within another onstant ratio, see e.g. [PY91, ALM

+

98℄. A few problems have

a onstant approximation threshold, e.g. for a version of MAX-SAT known as MAX-E3SAT,

a 8=7 approximation algorithm [Joh74℄ is mathed by an inapproximability result [H�as97℄

within a ratio of 8=7� �, for any �xed � > 0 (assuming P 6= NP).

Other problems, suh as Set-Cover, Hitting-Set and Dominating-Set, an be approx-

imated [Joh74℄ within a logarithmi order, but annot be approximated [Fei98℄ within

(1 � �) lnn, for any � > 0 (unless NP � DTIME(n

O(log log n)

)). Several problems have a

polylogarithmi approximation ratio and a far from tight (if any) inapproximability result,

e.g. utwidth [LR99℄, bandwidth [Fei00℄ and minimum bisetion (see Setion 1.4).

There are problems whih are even harder to approximate. Several problems, suh as

Label over, Nearest Lattie Vetor (CVP), Nearest Codeword and Longest Path annot

be approximated [ABSS97, KMR97℄ within 2

log

1��

n

, for any �xed � > 0, unless NP �

DTIME(n

polylogn

) (for some of these problems, these inapproximability results were slightly

improved in [DS99, DKRS99℄). However, there is still a large gap between the inapproxima-

bility results and the approximability results for these problems, and it is possible that they

are even harder to approximate.

Some problems, suh as maximum lique and hromati number, annot be approx-

imated [H�as99, FK98℄ within n

1��

, for any �xed � > 0, unless P = ZPP. Known al-

gorithms ahieve approximation ratios of O(n= log

2

n) for maximum lique [BH92℄ and

O(n(log logn)

2

= log

3

n) for hromati number [Hal93℄.

1.3 Analysis of heuristis

Although hard to solve in the worst-ase, NP-hard problems may be signi�antly easier

on \average" instanes enountered in pratie. It is therefore desirable to devise heuristi

algorithms, that suessfully produe an optimal solution on average-ase instanes. We wish

to evaluate heuristis by rigorous analysis methods that explain or predit good behavior of

the heuristi in real-life instanes.

Most ommonly, a rigorous analysis of a heuristi onsists of an input model and of

performane guarantees. The input model de�nes whih input instanes are onsidered as

average-ase instanes. The performane guarantees are desired properties that the heuristi

should satisfy when it is applied on average-ase instanes from the input model.
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Many results and open problems in this area are surveyed by Frieze and MDiarmid [FM97℄.

Random input models. A main diÆulty in analyzing heuristis is to devise a input

model that realistially represents average-ase instanes that our in pratie. One possible

input model is a random model, that assumes some probability distribution on the input

instanes. Usually, the desired performane guarantee is that the heuristi suessfully �nds

an optimal solution on all but a \vanishing" part of the input distribution. Formally, an event

in a distribution of graphs on n verties is said to happen almost surely if its probability

is 1 � o(1) (i.e. approahes 1 as n tends to in�nity); then the formal requirement of the

performane guarantee stated above is that the heuristi almost surely �nds an optimal

solution.

A straightforward random model for graph problems is G

n;p

, the random graph on n

verties with edge probability p, whih is formally de�ned as the distribution generated by

plaing an edge independently with probability p between eah pair of n verties. For

example, the distribution G

n;1=2

represents a uniform distribution on all graphs on n labeled

verties. In general, however, p may depend on n.

For some problems, the model of a random graph G

n;p

is an inadequate framework for

evaluating heuristis. We illustrated this by the minimum bisetion problem. It an be seen

that for p� 1=n, almost surely all the bisetions in a random graph G

n;p

have ost roughly

pn

2

=4. Therefore, good and bad heuristis have nearly the same performane in this random

graph model.

Another random model that has been suggested is similar to the random graph model,

exept that one solution is \planted" in the graph. That is, the graph is reated by �rst

hoosing a solution at random, and then plaing edges in the graph at random in a way that

ensures that the hosen solution will almost surely be an optimal solution. For example, a

planted bisetion model may �rst hoose a random partition of the n graph verties into two

equal-size subsets, and then plae edges at random, so that an edge is plaed with probability

q if it rosses the bisetion de�ned by the hosen partition, and with probability p if it does

not. If q is suÆiently smaller than p, then the bisetion de�ned by the hosen partition is,

almost surely, a minimum bisetion. Several heuristis for this and similar planted bisetion

models were studied in [BCLS87, Bop87, DF89, JS98, CK99, FK01a℄.

Semi-random input models. Although the input distributions employed by random

models are quite natural, there is usually no laim that these models represent instanes that

our in real-life appliations. Furthermore, a heuristi that relies exessively on statistial

properties of the graphs in these distributions (e.g. all verties have roughly the same degree),

might perform well on these spei� distributions, but poorly on more realisti distributions.

It is therefore desirable to have input models that represent (e�etively) a wider range of

instanes.

To enrih the input model, Blum and Spener [BS95℄ suggested a semi-random model, in

whih the input is generated by a mixture of random and adversarial hoies. In the strongest

of their semi-random models, a graph is �rst drawn at random from some distribution,

and then an adversary an modify this graph subjet to some restritions. The desired

performane guarantee is that regardless of the adversary (i.e. for all adversaries), the
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heuristi almost surely �nds an optimal solution. Here, the probability is taken over the

hoie of the algorithm's oin tosses and the hoie of the graph from the distribution (before

modi�ation by the adversary).

Feige and Kilian [FK01a℄ formalized this semi-random model of [BS95℄ as a monotone

adversary model, in whih the adversary is allowed to add ertain edges and/or remove ertain

other edges (depending on the problem). For example, they onsider the planted bisetion

model desribed above, together with an adversary that is allowed to remove edges that ross

the planted bisetion and to add edges that do not ross it. Clearly, suh adversarial moves

an only derease the ost of the planted bisetion or inrease the ost of other bisetions,

and so it may appear, intuitively, that the adversary an only make the bisetion problem

easier. However, as Feige and Kilian note, this monotone adversary an foil many popular

tehniques for heuristis, e.g. it an alter the degrees of verties, reate bisetions that are

\loally optimum", and modify the spetrum (eigenvalues of the adjaeny matrix) of the

graph. A heuristi that is suessful in a semi-random model withstands suh an adversarial

\help", and is therefore more robust.

Interestingly, it is also possible to show hardness results for the semi-random graph model.

Blum and Spener [BS95℄ show that in a ertain semi-random model, there is no suessful

heuristi for the problem of oloring a graph with 4 olors, unless NP � BPP. Feige and

Kilian [FK01a℄ show a similar result for the maximum independent set problem.

Evidene for optimality. An average-ase algorithm does not have an apriori guarantee

on its performane, and it is therefore valuable to ertify that the solution it produed on

the partiular instane at hand is indeed optimal. The algorithm of Boppana [Bop87℄ for

the minimum bisetion problem has suh a erti�ation property (see also [FK01a℄). His

algorithm outputs a bisetion together with a lower bound (that is obtained by a relaxation)

on the minimum ost of a bisetion. If the ost of the output bisetion is equal to the lower

bound then it is lear that the output bisetion is indeed an optimal solution. Boppana's

analysis shows that this is indeed the ase, almost surely.

Average polynomial time. Another possible performane guarantee is that of average

polynomial time, whih means that on any instane the heuristi �nds the planted solution

(or an optimal solution) and that the expeted running time of the heuristi (over the

distribution of the input instanes) is polynomial. For example, Dyer and Frieze [DF89℄

show for several graph problems an average polynomial time algorithm in a random model

with onstant edge probabilities. Some improvements (to smaller edge probabilities and for

semi-random models) are given in [SFVM98, Sub99℄.

Related areas. Note that NP-hard problems are not neessarily easy on the average.

Distributions on whih a problem is hard on the average ase are neessary for ryptography.

It is therefore important to identify problems and orresponding distributions, on whih the

problem is hard on the average.

Levin [Lev86℄ put a basis for a theory of average NP-ompleteness. The emphasis in

Levin's theory appears to be to identify distributions on whih the underlying problem is

hard. In ontrast, the emphasis in our work is to provide algorithms that perform well on
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average with respet to distributions that our in pratie, and not neessarily with respet

to the most diÆult distributions.

1.4 Overview of our results

Our researh on oping with NP-hard optimization problems spans the two approahes de-

sribed above, namely approximation algorithms and analysis of heuristis. In eah approah,

we onentrate on one graph problem that is fundamental in the sense that a better under-

standing of it may reet on our understanding of many other problems and, possibly, of the

whole approah.

Approximation algorithms for minimum bisetion. In the last deade, our under-

standing of the approximability of many NP-hard optimization problems was greatly im-

proved, due to both approximation algorithms and hardness of approximation results. For

many problems, known algorithm ratios math the hardness of approximation results, up to

an order of magnitude or less. However, there is still a large gap in our understanding of the

approximability of several fundamental problems.

Notable examples to large gaps between approximability and inapproximability results

are graph partitioning problems, and, in partiular, minimum bisetion. (Reall from Se-

tion 1.1 that a bisetion is a ut that partitions the verties into two sets of equal ardinality;

the minimum bisetion problem requires to �nd in an input graph a bisetion of minimum

ost).

In a seminal work, Leighton and Rao [LR88, LR99℄ obtained a biriteria approximation

(a.k.a. pseudo-approximation) algorithm. That is, given an input graph on n verties, their

algorithm �nds a 2/3-balaned ut (i.e. a ut that partitions the verties into two sets, eah

of ardinality at most 2n=3) whose ost is at most O(logn) times that of the minimum ost

bisetion. The tehniques and results of Leighton and Rao found many appliations and

inspired additional work, see e.g. [LR99, Shm97, ENRS99℄.

However, prior to our work there was no major progress on the approximation ratio of

minimum bisetion (i.e. when the strit onstraint on the ardinalities of two sides of the

ut annot be relaxed). On the one hand, there is no hardness of approximation result that

exludes the possibility that minimum bisetion admits a PTAS. On the other hand, the

known approximation ratio was n=2, due to Saran and Vazirani [SV95℄.

We devise an algorithm that approximates the minimum bisetion within a ratio of

O(log

2

n). This approximation ratio improves over the previous (linear in n) approximation

ratio signi�antly, and is, in partiular, \in the same ballpark" as the biriteria algorithms

of [LR88, LR99℄ and [ENRS99℄.

Our algorithm extends (with the same approximation ratio) to minimum bisetion in

graphs with arbitrary nonnegative edge osts and polynomially bounded nonnegative integer

vertex weights. It also extends to utting away from the graph k verties, where k is given

as part of the input, and to utting the input graph into any �xed number of parts of equal

ardinality.
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Our approximation algorithm follows a divide and onquer approah, where the input

graph is reursively divided into smaller parts based on a new ut notion that we de�ne,

and the parts' solutions are ombined using dynami programming. Our new ut notion is

related to a min-ratio ut (i.e. a ut with the minimal ratio between the ost of the ut and

the number of verties in the smaller of its two sides), and we show how it an be omputed

from an approximate min-ratio ut using ow tehniques (i.e. min (s; t)-ut).

The approximation ratio of our algorithm an be desribed as O(� logn), where � is

the approximation ratio for the problem of �nding in a graph a min-ratio ut. Known

algorithms for general graphs ahieve � = O(logn), see [LR88, LR99℄ and [AR98, LLR95℄.

For graphs exluding any �xed graph as a minor (e.g. planar graphs), known algorithms

ahieve a onstant ratio, i.e. � = O(1), see [KPR93℄, and hene in these graphs our algorithm

approximates minimum bisetion within ratio O(logn).

We also devise a simpler (randomized) algorithm for minimum bisetion, whose approx-

imation ratio is better (than the one above) in the variant that requires to ut away a

relatively small number of verties. Namely, the algorithm �nds a ut that separates k ver-

ties (where k is given as part of the input) at a ost that is within a ratio of 1 + �k= logn

from the minimum, for an arbitrarily small onstant � > 0. In partiular, this algorithm

yields a PTAS for the problem of utting k = O(logn) verties from a graph (a problem

that is not known to be in P). The algorithm extends to graphs with arbitrary nonnegative

edge weights.

These two approximation algorithms for minimum bisetion are desribed in full in Chap-

ter 2. Preliminary versions of these results appeared in [FK00b℄ and in [FKN00, Setion 5℄.

Analysis of heuristis for maximum lique. The maximum lique problem appears to

be diÆult on the input model of a random graph G

n;1=2

. It is known that the maximum

size of a lique in G

n;1=2

is roughly 2 log

2

n, almost surely, see e.g. [AS92℄. Several simple

and natural algorithms (e.g. the greedy one) �nd a lique of size roughly log

2

n, almost

surely. Karp [Kar76℄ suggested the problem of �nding a lique of size signi�antly larger

than log

2

n, but no eÆient algorithm is known to ahieve that. Finding liques of size

3

2

log

2

n in a random graph G

n;1=2

was even suggested in [JP00℄ as a hard omputational

problem on whih to base ryptographi appliations

We fous on the hidden lique problem, whih is a variant with a planted solution. In the

random model of this problem, a random graph G

n;1=2

is hosen, and then a lique of size k

is randomly plaed in the graph. The goal is to �nd in the graph a lique of size k.

For the hidden lique problem in the random model, Ku�era [Ku�95℄ observed that taking

the verties with highest degrees almost surely sueeds in �nding the hidden lique, when

k > 

p

n logn for a suÆiently large onstant  > 0. Alon, Krivelevih and Sudakov [AKS98℄

showed an algorithm based on eigenvalue tehniques that almost surely �nds the hidden

lique, when k � 
(

p

n). Jerrum showed that the Metropolis proess does not �nd the

lique, almost surely, when k = o(

p

n).

We devise another heuristi for the hidden lique problem. Our heuristi also �nds the

hidden lique, almost surely, when k � 
(

p

n), but it extends to a semi-random model

of the problem, in whih an adversary is allowed to remove (from the random graph with
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the planted lique) any edge that is not inside the planted lique. In ontrast, the previous

algorithms of [Ku�95, AKS98℄ have similar suess in the random model, but fail in the semi-

random model, unless k = 
(n). An additional useful property of our heuristi is that it

almost surely erti�es the optimality its solution. Namely, the heuristi produes its solution

together with an upper bound on the size of the maximum lique in the input graph, and

the value of the solution mathes, almost surely, the upper bound.

Our heuristi is based on the Lov�asz theta funtion, a well-known semide�nite program-

ming relaxation of the maximum lique problem. For the random model, our main argument

is that the relaxation is almost surely tight and orresponds to the planted lique. We then

extend the result to the semi-random model by using the monotoniity of the relaxation with

respet to removing edges from the graph. Note that in the worst ase, the Lov�asz theta

funtion is far from being tight [Fei97℄, so in terms of approximation ratio it gives a poor

guarantee.

A possible diretion for extending our heuristi to a planted lique of smaller size k =

o(

p

n), is to use a stronger relaxation than the Lov�asz theta funtion. In partiular, if the

relaxation is monotone with respet to adding edges, it may be plausible to ompare the

almost sure value of the relaxation on a random graph G

n;1=2

, whih we denote by

^

k, with

the size k of the planted lique. If k <

^

k then, almost surely, the relaxation value on the

hidden lique graph would be at least

^

k and the relaxation would not be tight. However,

if k >

^

k then it may be the ase that, almost surely, the relaxation is tight on the hidden

lique graph (i.e. has value k), and an be used to �nd the planted lique. For example, our

heuristi mentioned above implements this approah, based on Juh�asz' proof [Juh82℄ that

the theta funtion of a random graph G

n;1=2

is almost surely �(

p

n).

Lov�asz and Shrijver [LS91℄ designed a powerful \lift-and-projet" proedure that pro-

dues semide�nite programming relaxations that are stronger than the Lov�asz theta funtion.

Their general tehnique (it an be applied to any 0-1 integer programming problem) pro-

dues a sequene of tighter and tighter relaxations, so that the nth relaxation in the sequene

is guaranteed to be tight (where n is the number of variables in the integer program). For

the maximum lique problem, they show that the �rst relaxation in the sequene is already

at least as tight as the theta funtion. Furthermore, for any �xed r, the rth relaxation in

the sequene an be omputed in polynomial time, up to an arbitrarily small error, and is

therefore a plausible andidate for a hidden lique heuristi.

We show that on a random graph G

n;1=2

, the value of the rth relaxation in the sequene

of Lov�asz and Shrijver [LS91℄, for r = o(logn), is almost surely roughly

q

n=2

r

. It follows

that the rth relaxation for r = O(1) almost surely has a value of �(

p

n), whih is omparable

(up to onstant fators) to the Lov�asz theta funtion. Hene, on the hidden lique graph

with planted lique size k = o(

p

n), those relaxations in the sequene that are known to be

omputable in polynomial time are not tight, almost surely, and o�er no improved heuristi

under the approah outlined above (sine improvement by arbitrarily large onstant fators

an be ahieved by other methods due to [AKS98℄).

Our results on heuristis for maximum lique are desribed in full in Chapter 3. One

part of these results appeared in [FK00a℄ and another part is based on [FK01b℄.
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1.5 Perspetives

An important goal in the area of approximation algorithms is to ahieve an approximation

threshold for minimum bisetion and other graph partitioning problems. Our results in

Chapter 2 are a signi�ant improvement in the known approximation ratio for minimum

bisetion, but there is still a onsiderable gap in the understanding of this problem in terms

of approximation, as no hardness of approximation result is known.

Our new ut notion, alled amortized ut, is useful to both approximation and biriteria

approximation algorithms for minimum bisetion. We show that an algorithm that �nds a

�-amortized ut, an be used to �nd a bisetion whose ost is at most O(� logn) times that

of the minimum ost bisetion, and also to �nd a 2/3-balaned ut whose ost is at most

O(�) times that of the minimum ost bisetion (see Setion 2.5.6). Our algorithm ahieves

an amortized ost � = O(logn) by using an approximation algorithm for min-ratio uts.

However, we show that any graph ontains an O(1)-amortized ut (whih does not follow

immediately from the de�nition, sine � is not an approximation ratio). Therefore, further

investigation of the values of � that an be ahieved by an eÆient algorithm, is interesting

in the ontext of improved algorithms for minimum bisetion, and may possibly have other

appliations.

Devising a realisti model of average-ase input instanes is a main diÆulty in any

rigorous analysis of heuristis. Our results for the hidden lique problem in Chapter 3,

extend results that were previously known in the random model, to a semi-random model

that represents a wider range of input graphs. A semi-random model improves over a random

model in many respets, but it also has ertain drawbaks. For example, in many semi-

random models that use a planted solution, this planted solution is almost surely a unique

optimal solution. It is therefore possible that heuristis that perform well in this model,

perform poorly in other settings where the optimal solution is not unique.

The tehnique of Lov�asz and Shrijver [LS91℄ an be used for many optimization prob-

lems, as it allows to produe eÆiently omputable relaxations that are tighter than before

for (almost) any 0-1 integer programming problem. In partiular, the relaxations that it

produes an be used in various approahes for oping with the NP-hardness of a problem.

So far, this tehnique has not found appliations in the area of approximation algorithms,

possibly beause many aspets of this powerful tehnique are not well-understood. We view

our work in Chapter 3 as a step in the diretion of understanding this tehnique from various

aspets, and our analysis of its performane (for maximum lique) on a random graph, is

the �rst appliation of the tehnique to average-ase analysis.
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Chapter 2

Approximating minimum bisetion

�

2.1 Introdution

Let G(V;E) be an undireted graph with n verties and m edges, where n is even. For a

subset S of the verties (with S 6= ;; V ), the ut (S; V n S) is the set of all edges in G with

one endpoint in S and one endpoints in V n S; these edges are said to be ut by (S; V n S).

The ost of a ut is the number of edges in it.

A ut (S; V nS) is alled a bisetion of G if its two sides, S and V nS, are eah of size n=2.

We denote the minimum ost of a bisetion of G by b. Minimum bisetion is the problem of

omputing b for an input graph G. Garey, Johnson, and Stokmeyer [GJS76℄ show that this

problem is NP-hard, and we address the problem of approximating it.

An algorithm is said to approximate a minimization problem within ratio r � 1 if it runs

in polynomial time and outputs a solution whose value (or, if the algorithm is randomized,

its expeted value over the oin tosses of the algorithm) is at most r times the ost of the

optimal solution. A problem is said to have a polynomial time approximation sheme (PTAS)

if for every �xed r > 1 there is an algorithm with approximation ratio r.

A ut (S; V nS) with jSj = k is alled a (k; n�k) ut ofG. Let b

k

denote the minimum ost

of a (k; n�k) ut in G. In the minimum (k; n�k) ut problem, we are given a graph G and a

number k 2 f1; : : : ; n�1g, and we wish to ompute b

k

. The minimum (k; n�k) ut problem

is NP-hard, as it inludes minimum bisetion as the speial ase k = n=2. Furthermore, the

proof of Bui and Jones [BJ92℄ atually shows that it is NP-hard to ompute b

k

in graphs of

maximum degree 3 and for k = �n (and even k = n

�

) for any �xed 0 < � < 1. We address

the problem of approximating b

k

.

It is not known whether b

k

is polynomial time omputable when k is a slowly growing

funtion of n, say k = logn. Note that a straightforward exhaustive searh on all vertex

subsets of size k an �nd b

k

in time n

k+�(1)

, whih is polynomial only if k = O(1), i.e. a

�xed onstant independent of n.

�

This hapter is based on the full versions of [FK00b℄ and of [FKN00, Setion 5℄.
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2.1.1 Previous work

Leighton and Rao [LR88, LR99℄ showed how to approximate within ratio O(logn) minimum-

quotient uts, whih we shall all min-ratio uts. In these uts, one wishes to minimize the

ut ratio (also alled edge expansion or ux) =jSj, where  is the number of edges ut, and

jSj is the ardinality of the smaller of the two vertex sets.

A �-balaned ut is a ut that partitions the graph into two parts, eah of size at most �n.

Leighton and Rao [LR88℄ used the approximate min-ratio uts to �nd a 2/3-balaned ut

(also alled edge separator) with at most O(b logn) edges, see also [LR99, Shm97℄. Note that

suh a 2/3-balaned ut does not provide an O(logn) approximation for the value of b. For

example, when the graph onsists of 3 disjoint liques of equal size, an optimal 2/3-balaned

ut has no edges, whereas b = 
(n

2

).

A straightforward approah for obtaining an exat bisetion is to �rst �nd an almost

balaned ut (e.g. using approximate min-ratio uts) and then move a few low degree

verties from one side to the other. Using this approah one an approximate bisetion

within a ratio of

~

O(

q

m=b) (we use

~

O(f) to denote O(f �polylog n)) see e.g. [LR99, Footnote

10℄ and [FKN00℄. This is a dramati improvement over the naive ratio of O(m=b) (ahieved

by arbitrarily piking n=2 verties), but might still be larger than n.

In terms of n, the best approximation ratio known prior to our work was n=2, due to

Saran and Vazirani [SV95℄. We presented in [FKN00℄ an approximation algorithm that

ahieves approximation ratio

~

O(

p

n). In [FK00b℄, we improved the approximation ratio

to polylogarithmi in n, by using similar tehniques (e.g. approximate min-ratio uts and

dynami programming), but in a more sophistiated way. In this thesis, we desribe the im-

proved approximation algorithm from [FK00b℄, and a related result (that was not improved)

from [FKN00, Setion 5℄.

Additional related work inlude the following. In [AKK99℄, Arora, Karger and Karpinski

show that bisetion has a PTAS for everywhere-dense graphs, i.e. graphs with minimum

degree 
(n). In [GSV99℄, Garg, Saran and Vazirani give an approximation ratio of 2 for

the problem of �nding a 2/3-balaned ut of minimum ost in a planar graph. Their result

extends to a �-balaned ut, for any � � 2=3, but does not extend to a bisetion, whih

is a 1=2-balaned ut. In [BJ92℄, Bui and Jones show that for any �xed � > 0, it is NP-

hard to approximate the minimum bisetion within an additive term of n

2��

. In terms of

approximation ratio, however, there is no known hardness of approximation result whih

exludes the possibility that bisetion has a PTAS. Several heuristis for minimum bisetion

are studied (in terms of average-ase behavior) in [BCLS87, Bop87, DF89, JS98, CK99,

FK01a℄.

2.1.2 Our results

Our main result is an algorithm for approximating the minimum bisetion within a polylog-

arithmi ratio.

Theorem 2.1. A bisetion of ost within ratio of O(log

2

n) of the minimum an be omputed

in polynomial time.

12



In Setion 2.2 we give an overview of the algorithm. On a high level, the algorithm

follows a divide-and-onquer approah. The input graph is reursively divided into parts,

using a new ut notion whih we all an amortized ut, and then the parts are ombined into

a bisetion using dynami programming.

In Setion 2.4 we desribe our algorithm for approximating bisetion, based on a subrou-

tine for �nding an amortized ut. If the subroutine is guaranteed to �nd a �-amortized ut

in a graph, the algorithm omputes a bisetion whose ost is within ratio of 1 + O(� logn)

of the minimum.

In Setion 2.3 we devise an algorithm for �nding an O(logn)-amortized ut in a gen-

eral graph. By using this algorithm as a subroutine in the 1 + O(� logn) approximation

algorithm for bisetion, we are guaranteed that � = O(logn), proving Theorem 2.1. The

subroutine uses a � -approximate min-ratio ut in order to �nd an O(�)-amortized ut. The

best known approximation algorithms for min-ratio ut in general graphs, due to Leighton

and Rao [LR88, LR99℄ and due to [AR98, LLR95℄, have approximation ratio � = O(logn).

In ertain graph families, there is a better approximation ratio � for the min-ratio ut

problem. If these graph families are losed under taking indued subgraphs, then we an

approximate bisetion within an improved ratio of O(� logn). For example, it is shown

in [KPR93℄ that in graphs exluding any �xed graph as a minor (e.g. bounded-genus graphs)

min-ratio ut an be approximated within a onstant ratio, i.e. � = O(1).

Theorem 2.2. In graphs exluding any �xed graph as a minor (e.g. planar graphs), a

bisetion of ost within ratio of O(logn) of the minimum an be omputed in polynomial

time.

In Setion 2.5 we show that our results extend to several natural generalizations of the

bisetion problem. These extensions inlude, for example, bisetion of graphs with arbitrary

nonnegative edge osts and graph partitioning into three parts of equal size.

Cutting few verties. We present a simple randomized algorithm that is aimed towards

approximating the minimum (k; n�k) ut problem when k is relatively small. The algorithm

and its analysis are desribed in Setion 2.6, where we prove the following theorem. We say

that an event happens with high probability if its probability approahes 1 as n goes to

in�nity.

Theorem 2.3. For every �xed � > 0, there is a polynomial time randomized algorithm that

�nds, with high probability (over the oin tosses of the algorithm), a (k; n�k) ut whose ost

is at most (1 + �k= lnn)b

k

.

In partiular, the above algorithm implies (by the Markov inequality) the following ap-

proximation ratios for k = O(logn) and for k = 
(logn). Note that Corollary 2.2 should be

used only when k is slightly larger than O(logn), while for larger k the approximation ratio

of Theorem 2.1 is preferable.

Corollary 2.1. For any k = O(logn), there is a PTAS for the minimum (k; n � k) ut

problem.

Corollary 2.2. For any k = 
(logn), the minimum (k; n� k) ut problem an be approxi-

mated within a ratio of O(k= logn).
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2.1.3 Conventions and notation

We will often denote the two sides of a (not neessarily optimal) bisetion as white W and

blak B. A graph may have several di�erent bisetions of minimum ost. For the analysis,

let us �x one of them (arbitrarily) and all it the �xed optimal bisetion (W

�

; B

�

).

For V

1

; V

2

two disjoint subsets of verties in a graph, let e(V

1

; V

2

) denote the number of

edges with one endpoint in V

1

and the other endpoints in V

2

. Subsets V

1

; V

2

� V are alled a

partition of V if they are nonempty, disjoint, and their union is equal to V . In our ontext,

V is the vertex set of a graph, and then a partition V = V

1

[ V

2

is equivalent to the ut

(V

1

; V

2

).

A subset of verties S � V with 0 < jSj < jV j, orresponds to a ut (S; S) in the graph,

where S = V nS. We denote by r(S) the ratio of this ut, i.e. r(S) =

e(S;S)

minfjSj;jSjg

, and by r

0

(S)

the ratio of this ut towards S, i.e. r

0

(S) =

e(S;S)

jSj

. We all S a part of the graph, referring

either to the set of verties S or to the subgraph indued on S, depending on the ontext.

2.2 Overview and tehniques

Our approximation algorithm for minimum bisetion has three stages, as outlined below.

Stage 1: Deomposition. This stage onsists of a sequene of divide steps. The input to

a divide step is a part of the input graph G, i.e. a vertex set and the subgraph indued on

it, and the output is a partition of the vertex set into two nonempty subsets, giving two new

parts of the graph. These divide steps are applied on the input graph G reursively, until it

is deomposed into individual verties.

The output of the whole deomposition stage is a binary tree T , that we all the deom-

position tree. Eah node i of the tree ontains a part V

i

obtained in a divide step, as follows.

The root of the tree ontains the input graph G, the leaves of the tree ontain individual

verties of G, and the two diret desendants of a node i are the two subparts obtained in

the divide step of its part V

i

.

To omplete the desription of the deomposition stage, we need to explain how a divide

step is performed. This is done using a new notion alled an amortized ut, whih we de�ne

later in this setion. We devise an algorithm for �nding amortized uts in Setion 2.3. The

deomposition stage is desribed in more detail in Setion 2.4.1.

Stage 2: Labeling. Consider a labeling of the deomposition tree T , whih labels eah

(nonleaf) tree node as either white or blak. Fixing a parameter 1=2 < � < 1, we say that a

labeling is �-onsistent with respet to a white-blak bisetion (W;B) of the input graph if

every part V

i

(at a tree node i) satis�es that jW \ V

i

j � �jV

i

j if the label of node i is white,

and that jB \ V

i

j � �jV

i

j if the label of node i is blak.

The desired outome of the labeling stage is a labeling whih is �-onsistent with the �xed

optimal bisetion (W

�

; B

�

), alled in short an opt-onsistent labeling. However, an optimal

bisetion is not known to the algorithm, so instead of �nding an opt-onsistent labeling,

this stage produes a family of labelings, suh that at least one member of the family is
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opt-onsistent. The desription of how this is done is deferred to Setion 2.4.2. For the

purpose of this overview, it will be onvenient to think of the labeling stage as if it produes

only one labeling, whih is opt-onsistent.

Stage 3: Combining. Given a deomposition tree T and an arbitrary (not neessarily

opt-onsistent) labeling of it, the ombining stage assigns to eah vertex v of the input graph

G a white harge and a blak harge. The two harges are simple to ompute based on the

labels along the path from the root of T to the leaf that ontains the vertex v.

The harge of a bisetion (W;B) of the input graph G (with respet to the labeling) is

de�ned as the sum of the white harges of the verties of W and the blak harges of the

verties of B. The funtions white harge and blak harge have the property that for every

bisetion, harge is an upper bound on ost (regardless of the labeling).

If the harge is de�ned with respet to an opt-onsistent labeling of T then our notion

of amortized ut used in the deomposition stage guarantees in addition that the harge

of the �xed optimal bisetion is within a polylogarithmi fator of its ost b. Hene, using

the opt-onsistent labeling produed by the labeling stage ensures that the input graph G

ontains a bisetion whose harge is within polylogarithmi ratio of b.

Finding a bisetion of minimum harge in G is relatively straightforward. Assoiate with

eah vertex a net-harge, whih is its white harge minus its blak harge, and pik the n=2

verties with smallest net-harge to form one side W , leaving the remaining n=2 verties in

another side B. The bisetion (W;B) that we �nd has minimum harge, and its ost is thus

within a polylogarithmi fator of b, the ost of the minimum bisetion.

It is interesting to note that �nding a minimum ost bisetion is an optimization problem

with a quadrati objetive funtion (minimizing the number of edges, where edges are pairs

of verties). Finding a minimum harge bisetion (given the deomposition tree and an

opt-onsistent labeling) is an optimization problem with a linear objetive funtion (sum of

net-harges over individual verties). Hene in a sense, our algorithm performs a linearization

of a quadrati funtion, and loses a polylogarithmi fator in the proess.

The above presentation of the ombining stage was oversimpli�ed. The output of the

labeling stage is not one labeling that is opt-onsistent, but rather a large family of labelings,

suh that at least one of them is opt-onsistent. Moreover, this family has exponential

ardinality, so we annot try the above net-harge approah on eah labeling separately.

Instead, we exploit the struture of this family of labelings and use dynami programming

to ompute a labeling from the family and a bisetion, suh that the harge of this bisetion

with respet to this labeling is minimum over all labeling-bisetion pairs. Details appear in

Setion 2.4.4.

In the rest of the overview we shall introdue and disuss the notion of amortized ut,

whih is of entral importane in bounding the ratio between the harge and the ost of the

�xed optimal bisetion. To motivate this new notion we present our algorithm as a divide-

and-onquer algorithm. We then suggest a kind of ut that is desirable for the algorithm's

divide step and all this ut notion an amortized ut.
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Divide and onquer approah

A possible divide and onquer approah for a graph problem is to divide the input graph G

into two parts (using a ut), solve a subproblem for eah part, and then ombine the solutions

of the two subproblems into a solution for G. This approah an be applied reursively, and

then the input graph G is reursively divided into smaller and smaller parts, where eah part

is assoiated with a subproblem. Note that the divide step ut is a tool of this approah,

and is not intended to be a solution to the subproblem.

In our ontext, the graph problem is minimum bisetion, and we apply this divide and

onquer approah for the more general problem of utting away an arbitrary number of

verties that is given as part of the input (bisetion is the speial ase where the given

number is n=2). Similarly, the subproblem of eah part requires to ut away (from that

part) an arbitrary number of verties that is given in the subproblem. Note that minimum

bisetion is a ut problem, and therefore in addition to the divide step uts we have here also

solution uts (later alled ombined uts). Note that the solution ut of a part need not be

the same as the divide step ut of this part.

Our three stage algorithm outlined above follows this divide and onquer approah. The

task of breaking the input graph into smaller and smaller parts is performed by the deom-

position stage, whose deomposition tree T represents the reursive struture of the divide

steps.

For suh a divide and onquer approah to be suessful, it is desirable that (i) eah of

the two subproblems an be solved separately; and (ii) the solutions of the two subproblems

an be ombined while inurring a relatively small additional ost. Below we provide an

overview of how our algorithms handles these issues.

Consider the problem of utting away k verties from a part U � V of the input graph.

The orresponding divide step uses a ut (U

1

; U

2

) of U to break this problem into the two

subproblems of utting away k

1

verties from U

1

and of utting away k

2

verties from U

2

,

with k = k

1

+ k

2

. (For the sake of exposition assume that k

1

; k

2

an be guessed.) Let

us assume that the subproblem assoiated with eah subpart U

i

is solved separately (by

reursion) and the solution obtained for it is a ut (C

i

; F

i

) with jC

i

j = k

i

(see also Fig. 2.1).

The two solution uts are then ombined into a ut of U that separates k = k

1

+ k

2

verties,

namely (C

1

[C

2

; F

1

[ F

2

). Let Cut(U

0

; k

0

) denote the ost of the ut of U

0

that separates k

0

verties and is found by the algorithm. Then the ost of the ombined ut is given by

Cut(U; k) = Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(C

1

; F

2

) + e(C

2

; F

1

): (2.1)

Previous aounting method

The approah of [FKN00℄ is based on a straightforward upper bound on the ost (2.1) of the

ombined ut. The additional ost inurred by the divide step, i.e. e(C

1

; F

2

) + e(C

2

; F

1

), is

at most the ost of all the edges ut by the divide step, i.e. e(U

1

; U

2

), yielding the upper

bound

Cut(U; k) � Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(U

1

; U

2

): (2.2)
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Figure 2.1: The divide and onquer paradigm

We remark that a bound similar to (2.2) is used in divide and onquer algorithms for

many other graph problems, suh as minimum ut linear arrangement (a.k.a. utwidth),

see e.g. [LR99℄.

The divide steps of [FKN00℄ use an approximate min-ratio ut to break eah part U .

This ut appears to be suitable for the bound (2.2) beause it minimizes the ost of the ut

(U

1

; U

2

), and at the same time tries to ut the part U into parts of roughly equal size, so as

to minimize the depth of the reursion.

It is partiularly instrutive to evaluate the quality of our upper bound in the ase where

the omputed ut (C

1

[ C

2

; F

1

[ F

2

) is just the ut indued on U by the optimal bisetion

(W

�

; B

�

). Intuitively, we analyze the ase where the algorithm happens to �nd the optimal

bisetion. In fat, we will later use dynami programming to �nd a bisetion for whih the

upper bound is minimized, so suh an analysis bounds from above the ost of the output

bisetion.

There are ases where the upper bound (2.2) is tight (i.e. holds with equality). Indeed,

the uts within eah U

i

are omputed independently of eah other, and so it might happen

that all the edges between the two parts U

1

; U

2

end up in the ombined ut. However, this

bound is insensitive to ases where only few of the edges that are ut in the divide step end

up in the ombined ut, leading to a relatively poor approximation ratio.

New aounting method

We introdue a more sophistiated way of bounding the ost of the ombined ut. Sine

F

1

� U

1

and F

2

� U

2

we an bound the ost of the ombined ut by

Cut(U; k) � Cut(U

1

; k

1

) + Cut(U

2

; k

2

) + e(C

1

; U

2

) + e(C

2

; U

1

): (2.3)

Unlike the atual ost (2.1), the upper bound (2.3) an be used in a divide and onquer

approah, as follows. Let us all e(C

1

; U

2

) + e(C

2

; U

1

) the harge of the divide step of U .

This harge an be distributed into a harge e(C

1

; U

2

) of the part U

1

, and a harge e(C

2

; U

1

)

of the part U

2

. The harge of a part U

i

onsists of the edges going from C

i

to the other
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part U

3�i

, and thus depends on the ut (C

i

; F

i

) hosen in the part U

i

, but not on the ut

hosen in the other part U

3�i

. We obtain two separate subproblems (as in eah part U

i

we want to �nd a ut (C

i

; F

i

) for whih sum of the ost of this ut and the harge to this

part is minimal), enabling a reursive divide and onquer approah. In ontrast, the terms

e(C

1

; F

2

) and e(C

2

; F

1

) of the atual ost of the ombined ut depend on the uts hosen in

both parts, and do not allow to break the problem into two separate subproblems.

The new aounting method makes a distintion between the two sides C and F of

the ombined ut. Unlike e.g. in (2.2), these two sides have di�erent roles in the upper

bound (2.3), and we will hoose in a ertain way whih side is referred to as C (and whih

as F ). Sine we wish to minimize the harge, it makes sense to hoose the smaller of the

two sides to be C. In our analysis we have a somewhat relaxed ondition, requiring that

jCj � �jU j, for a �xed 1=2 < � < 1. The task of identifying a side C as required above

in eah divide step (i.e. eah node of the deomposition tree) is performed by the labeling

stage, as explained in Setion 2.4.2.

The harge of a bisetion is the upper bound that is obtained by applying the upper

bound (2.3) reursively, i.e. it is the sum of the harges of all the divide steps. In Setion 2.4.3

we disuss this notion in more detail, and in Setion 2.4.4 we show that its urrent formulation

is equivalent to the one from Stage 3 of the algorithm outline (where the identi�ation of a

side C at eah divide step orresponds to labeling of the deomposition tree T ). >From the

urrent formulation it is straightforward that the harge of a bisetion is always an upper

bound on its ost (regardless of the identi�ation of C at eah divide step, i.e. the tree

labeling).

We all the verties of C = C

1

[C

2

harged and the verties of F = F

1

[F

2

free. The edges

in the part U an then be lassi�ed as harged-harged, harged-free or free-free, aording

to their two endpoints.

Desired divide step

Rather than �nd a bisetion of minimum ost, our approximation algorithm looks for a

bisetion of minimum harge. Our desired divide step is therefore one that guarantees that

for the �xed optimal bisetion, harge an be used to approximate ost. By the labeling

stage, it suÆes to refer here to harge with respet to an opt-onsistent labeling, so from

now on we assume that jCj � �jU j at eah divide step.

Consider the harge of the �xed optimal bisetion, and reall that it is the sum of the

harges of all the divide steps. The harge of a divide step of a part U is e(C

1

; U

2

)+e(C

2

; U

1

)

and an be written also as e(C

1

; F

2

)+ e(C

2

; F

1

)+2e(C

1

; C

2

), i.e. the ost of the harged-free

edges that the divide step uts and twie the ost of the harged-harged edges that it uts.

Observe that a harged-free edge is always an edge of the �xed optimal bisetion (and vie

versa) and that eah edge is ut exatly one in the deomposition stage. Hene, all the

harged-free edges ut in all the divide steps are exatly all the edges of the �xed optimal

bisetion. So for the �xed optimal bisetion, the di�erene between harge and ost is twie

the ost of all the harged-harged edges ut in all the divide steps.

It is therefore desired that the divide step uts relatively few harged-harged edges,

where relative here is with respet to b, the ost of the �xed optimal bisetion. Sine b
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is the total ost of the harged-free edges that are ut in all the divide steps, we seek an

amortization sheme that amortizes the total ost of all harged-harged edges ut against

the total ost of all harged-free edges ut. The partition of verties to harged and free is

not known to the divide step, and we therefore require that the amortization sheme holds

for every possible partition of verties to harged and free.

A simple amortization sheme an onsider eah divide step separately and amortize the

ost of the harged-harged edges ut in a divide step against the ost of the harged-free

edges ut in the same divide step. Suppose that in every divide step the amortized ost in this

method is at most �, i.e. at every part U we have that e(C

1

; C

2

) � �[e(C

1

; F

2

) + e(C

2

; F

1

)℄.

Then the total ost of harged-harged edges ut in all divide steps is learly at most �b, and

the harge of the �xed optimal bisetion is at most (1 + 2�)b.

The problem with this simple amortization sheme is that in order to guarantee that the

sheme holds for all possible partitions of verties to harged and free, � might be required to

be at least n, a value that is too high for our intended appliation. For example, onsider a

graph that onsists of two liques of size n=2 onneted by an edge e. If the divide step breaks

any of the liques, then letting this lique be C and the other lique be F , the amortization

ost will be at least n. Otherwise, the divide step onsists of the edge e and then letting C

onsist of the two endpoints of e, the amortization ost will be in�nite.

We employ a more ompliated amortization sheme that allows a small amortization

ost � but introdues an additional logarithmi fator. The reason for the logarithmi fator

is that this sheme amortizes against the same edge more than one (but, in a sense, not

too many times). Another ompliation is that this sheme atually has two amortization

methods, and it uses at eah divide step the one that is better (for that divide step).

Amortized ut

We amortize the ost of the harged-harged edges ut in a divide step against the ost of the

harged-free edges in the part being divided, i.e. in the divide step of a part U we amortize

e(C

1

; C

2

) against e(C; F ). The edges that we amortize against are not ut in this divide

step, and hene an edge may reeive an amortized ost in many divide steps. However, our

amortization sheme desribed below will guarantee that the total ost amortized against a

single edge is at most O(� � logn), for a suitable �. Sine the edges that we amortize against

are harged-free edges and hene edges of the �xed optimal bisetion, it would follow that

the total ost of the harged-harged edges ut in all the divide steps is at most O(� logn) �b,

and so the harge of the �xed optimal bisetion is (1 +O(� logn)) � b.

For motivation, onsider the ase where the divide steps reursion has depth O(logn),

e.g. when all the divide steps are roughly balaned. In this ase, an edge an reeive an

amortized ost in at most O(logn) divide steps. Suppose that in every divide step the

amortized ost is at most �, i.e. in every part U we have that e(C

1

; C

2

) � � � e(C; F ). Then

the total ost amortized against a single edge is at most O(� logn).

We do not require that the divide steps are balaned, but rather sale the amortization

ost at a part U aording to the imbalane of its divide step. Out of the several possible

saling fators we will use only the following two, where we assume, without loss of gener-

ality, that jU

1

j � jU

2

j. The �rst saling fator is e(C

1

; F

1

)=e(C; F ), and its orresponding

19



amortization method requires that

e(C

1

; C

2

) � � �

e(C

1

; F

1

)

e(C; F )

� e(C; F ): (2.4)

The seond saling fator is jC

1

j=jCj, and its orresponding amortization method requires

that

e(C

1

; C

2

) � � �

jC

1

j

jCj

� e(C; F ): (2.5)

Alternative formulations. The �rst amortization method (2.4) an be written also as

e(C

1

; C

2

) � � � e(C

1

; F

1

). A onvenient interpretation of this formulation is that we amortize

against the harged-free edges inside U

1

, the smaller side of the divide step ut (rather than

inside U , the part being divided), and the amortized ost is required to be at most �.

The seond amortization method (2.5) an be written also as e(C

1

; C

2

) � � � r

0

(C) � jC

1

j

where r

0

(C) = e(C; F )=jCj (see Setion 2.1.3 for the di�erene between r

0

(C) and r(C)). A

onvenient interpretation of this formulation is that we amortize against the verties in C

1

,

the harged verties inside the smaller side of the divide step ut, and the amortized ost is

required to be at most � � r

0

(C).

Total amortized ost. The total ost amortized in the �rst method (2.4) is at most

O(� logn) �b. Indeed, let us use the alternative formulation in whih the amortization is only

against edges inside U

1

, the smaller side of the divide step ut. An edge an be inside U

1

in

at most logn divide steps (sine the size of the part it is ontained in redues at eah suh

divide step by a fator of 2). Hene the total ost amortized in this method against a single

edge (of the �xed optimal bisetion) is at most O(� logn), and the laim follows.

The total ost amortized in the seond method (2.5) is also at most O(� logn) �b. Indeed,

we show in Setion 2.4.3 that the total ost amortized in this method against a single edge

(of the �xed optimal bisetion) is at most O(� logn) (essentially by areful summation of

the relevant terms of the form jC

1

j=jCj), and the laim follows.

Our amortization sheme. Our amortization sheme hooses at eah divide step the

saling fator that is better for this divide step, and so it suÆes to have that at eah part U

at least one of (2.4) and (2.5) holds. It follows from the above disussion (see Setion 2.4.3 for

a full proof) that the total ost amortized in both methods together is at most O(� logn) � b.

We an now formally de�ne our desired divide step aording to the (alternative formu-

lations of) the two amortization methods desribed above. We all this ut an amortized

ut.

De�nition (amortized ut). Let (U

1

; U

2

) be a ut with jU

1

j � jU

2

j in a graph G

0

(U;E

0

),

and let U = C [F be a partition of the graph verties U to harged verties C and free verties

F . Let us denote C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2, as in Fig. 2.1. Let

�

e

=

e(C

1

; C

2

)

e(C

1

; F

1

)

and �

v

=

e(C

1

; C

2

)

jC

1

j � r

0

(C)

(2.6)
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where r

0

(C) = e(C; F )=jCj. We all �

e

the amortized ost for the edges, and �

v

the amortized

ost for the verties (note that �

e

; �

v

depend on C; F ).

The amortized ost of the ut (U

1

; U

2

) is the maximum of minf�

e

; �

v

g, where the maximum

is taken over all partitions U = C [ F with 0 < jCj � �jU j for a �xed

1

2

� � < 1. We say that

the ut (U

1

; U

2

) is �-amortized if its amortized ost is at most �.

In order us to orretly handle ases where there is no ost to amortize against, we use the

onvention that

0

0

is de�ned to be 0, and that

t

0

for t > 0 is de�ned to be 1. In partiular,

we may extend (2.6) to the ase where C = ; and then �

e

; �

v

are de�ned to be 0.

Convenient haraterizations. A onvenient haraterization of an amortized ut is

given in the following proposition, whose proof is straightforward. (We will use this hara-

terization in Setion 2.4.)

Proposition 2.3. A ut (U

1

; U

2

) with jU

1

j � jU

2

j is �-amortized if and only if for every

C � U with jCj � �jU j and F = U n C,

e(C

1

; C

2

) � � �max

n

e(C

1

; F

1

) ;

jC

1

j

jCj

� e(C; F )

o

where C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2.

The restrition jCj � �jU j implies that the two terms r(C) =

e(C;F )

minfjCj;jF jg

and r

0

(C) =

e(C;F )

jCj

di�er by no more than a onstant fator. Indeed, minfjCj; jF jg = �(jCj) and hene

r(C) =

e(C;F )

minfjCj;jF jg

=

e(C;F )

�(jCj)

= �(r

0

(C)).

We an therefore haraterize the amortized ost of a ut (up to onstant fators) in

terms of r(C) rather than r

0

(C). (We will use this haraterization in Setion 2.3).

Proposition 2.4. A ut (U

1

; U

2

) with jU

1

j � jU

2

j is O(�)-amortized if for every partition

U = C [ F with 0 < jCj � �jU j,

min

(

e(C

1

; C

2

)

e(C

1

; F

1

)

;

e(C

1

; C

2

)

jC

1

j � r(C)

)

� � (2.7)

where C

i

= U

i

\ C and F

i

= U

i

\ C for i = 1; 2.

Remarks. Observe that without the restrition jCj � �jU j, the amortized ost � might

be required to be 
(jU j), a value that is too high for our intended appliation. For example,

onsider a lique on n verties and a ut (U

1

; U

2

) in it with jU

1

j � jU

2

j. Let one vertex of

U

2

be the only free vertex, and the rest of the verties be harged. The number of harged-

harged edges ut is jU

1

j � �(n). There are no harged-free edges in U

1

, so the amortized

ost for the edges is �

e

=1. The number of harged verties in the smaller side is jU

1

j and

r

0

(C) =

n�1

n�1

= 1, so the amortized ost for the verties is �

v

=

jU

1

j�(n)

jU

1

j�1

= �(n). Therefore,

the amortized ost of any ut would be � = 
(n).

In ontrast, we show that the restrition jCj � �jU j allows to obtain relatively small

values of �. Namely, there always exists a ut whose amortized ost is � = O(1), and a
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ut whose amortized ost is O(log jU j) an be omputed eÆiently. We remark that our

onstrutions are stronger than those required by Proposition 2.4, as they satisfy (2.7) with

no restrition on jCj. (The point is that we use r(C) rather than r

0

(C), whih makes a

signi�ant di�erene when jCj � jF j, as in the above lique example.)

Note that the amortized ost � is not an approximation ratio. On the one hand, it is not

lear from the de�nition that every graph has an O(1)-amortized ut. On the other hand,

the amortized ost of a ut may be smaller than 1, as demonstrated by a graph that onsists

of two liques of size n=2 onneted by an edge. The ut that separates the two liques an

be seen to have amortized ost O(1=n).

2.3 Finding an amortized ut

In this setion we devise an algorithm for �nding O(logn)-amortized uts in general graphs,

and O(1)-amortized uts in graphs exluding any �xed minor (e.g. planar graphs). The input

graph for this algorithm is denoted by G (though it may be just a part of the input graph

for bisetion). We assume that G is onneted, as otherwise we an separate a onneted

omponent while utting no edges at all.

Setion 2.3.1 shows that every optimal min-ratio ut is an O(1)-amortized ut. It follows

that in every graph there exists an O(1)-amortized ut. An optimal min-ratio ut is NP-hard

to �nd in general graphs, and we thus onsider approximate min-ratio uts.

Setion 2.3.2 demonstrates an approximate min-ratio ut whih would be a poor divide

step for our aounting method. In partiular, its amortized ost is high, showing that

the arguments of Setion 2.3.1 do not immediately extend from optimal min-ratio uts to

approximate ones.

Setion 2.3.3 presents an algorithm that uses a � -approximate min-ratio ut in order to

�nd an O(�)-amortized ut. Known algorithms for the min-ratio ut problem in general

graphs [LR99, AR98, LLR95℄ have approximation ratio � = O(logn), and we an thus

�nd an O(logn)-amortized ut. For ertain graph families a better approximation ratio is

possible. For example, in graphs exluding any �xed minor, a ratio of � = O(1) is known

due to [KPR93℄, and we an thus �nd an O(1)-amortized ut.

2.3.1 Min-ratio uts are O(1)-amortized

We give an O(1) upper bound on the amortized ost of optimal min-ratio uts. The proof

is based on the haraterization given in Proposition 2.4 for an amortized ut. We remark

that our proof satis�es (2.7) with no restrition on jCj.

Lemma 2.5. An optimal min-ratio ut in a graph is O(1)-amortized.

Proof. Let (V

1

; V

2

) be an optimal min-ratio ut in a graph G, and assume, without loss of

generality, that jV

1

j � jV

2

j. Let V = C [ F be an arbitrary partition of the graph verties

to harged verties C and free verties F , with 0 < jCj < jV j, and denote C

i

= V

i

\ C and

F

i

= V

i

\ F for i = 1; 2 (see also Fig. 2.2). We show below that

min

(

e(C

1

; C

2

)

e(C

1

; F

1

)

;

e(C

1

; C

2

)

jC

1

j � r(C)

)

� 2; (2.8)
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and then by Proposition 2.4 we will have that (V

1

; V

2

) is O(1)-amortized, whih proves the

lemma. Note that we an assume that jC

1

j > 0, as otherwise there is nothing to prove.

F

C

1

F

2

F

1

C

2

C

V

1

V

2

Figure 2.2: The amortized ost of an optimal min-ratio ut (V

1

; V

2

)

One easy ase is when

e(C

1

;C

2

)

e(C

1

;F

1

)

(i.e. the amortized ost for the edges �

e

) is at most 2,

whih learly implies (2.8).

Another easy ase is when

e(C

1

;C

2

)

jC

1

j

� 2r(V

1

). Sine (V

1

; V

2

) is an optimal min-ratio ut,

we also have that r(V

1

) � r(C). We obtain that

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2, and therefore (2.8)

holds.

We next prove that one of the two easy ases above must hold, as otherwise we must have

that r(F

1

) < r(V

1

), in ontradition with (V

1

; V

2

) being an optimal min-ratio ut. Indeed,

assume that e(C

1

; C

2

)=e(C

1

; F

1

) > 2 and

e(C

1

;C

2

)

jC

1

j

> 2r(V

1

). Sine r(V

1

) =

e(V

1

;V

2

)

jV

1

j

is the

average degree from V

1

to V

2

, it an be represented as the following onvex ombination of

the average degree from C

1

to V

2

and the average degree from F

1

to V

2

, namely

r(V

1

) =

jF

1

j

jV

1

j

�

e(F

1

; V

2

)

jF

1

j

+

jC

1

j

jV

1

j

�

e(C

1

; V

2

)

jC

1

j

:

Sine r(F

1

) =

e(F

1

;V

2

)+e(F

1

;C

1

)

jF

1

j

(note that jF

1

j � jV

1

j �

1

2

jV j), we an represent r(V

1

) also as

r(V

1

) =

jF

1

j

jV

1

j

� r(F

1

) +

jC

1

j

jV

1

j

�

"

e(C

1

; V

2

)� e(F

1

; C

1

)

jC

1

j

#

:

By the above two assumptions (that exlude the easy ases) we have that

e(C

1

; V

2

)� e(F

1

; C

1

)

jC

1

j

�

e(C

1

; C

2

)� e(F

1

; C

1

)

jC

1

j

�

1

2

e(C

1

; C

2

)

jC

1

j

> r(V

1

):

The last two inequalities imply that

r(V

1

) >

jF

1

j

jV

1

j

� r(F

1

) +

jC

1

j

jV

1

j

� r(V

1

):

We obtained that some onvex ombination of r(F

1

) and r(V

1

) is smaller than r(V

1

), and

we an therefore onlude that r(F

1

) < r(V

1

). This ontradits the fat that (V

1

; V

2

) is an

optimal min-ratio ut, and ompletes the proof of Lemma 2.5.
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The onverse of Lemma 2.5 is not true, and an O(1)-amortized ut an be an 
(n)-

approximate min-ratio ut, as follows from the next proposition with t = O(1).

Proposition 2.6. Fix a onstant 1=2 < � < 1 for the de�nition of an amortized ut.

Then for every t = o(n), there is an O(1=t)-amortized ut whih is an 
(n=t)-approximate

min-ratio ut.

Proof. Consider the a graph on n verties, for a suÆiently large n, that onsists of three

liques as follows. V

1

is a lique on t verties, V

2

is a lique on �n verties, and V

3

is a lique

on the remaining 
(n) verties. In addition, the graph ontains one edge onneting V

1

to

V

2

, and one edge onneting V

2

to V

3

.

The ut (V

1

; V

2

[ V

3

) has amortized ost O(1=t). Indeed, let C [ F be a partition of the

verties with jCj � �n. We may assume that C ontains both endpoints of the edge between

V

1

and V

2

, as otherwise the ut ontains no harged-harged edges and its amortized ost

is 0. So we have that the ost of the harged-harged edges ut is 1, and that both V

1

and

V

2

ontain at least one harged vertex. If V

1

ontains also at least one free vertex, then the

number of harged-free edges in V

1

is at least t � 1 and hene �

e

=

e(C

1

;C

2

)

e(C

1

;F

1

)

� 1=(t � 1).

Otherwise, we have C

1

= V

1

; sine there are at most �n harged verties, and at least one of

them is in V

1

, we have that V

2

ontains also free verties and thus e(C; F ) � 
(n); it follows

that �

v

=

e(C

1

;C

2

)

e(C;F )

�

jCj

jC

1

j

� O(1=t).

The ut (V

1

; V

2

[ V

3

) is an 
(n=t)-approximate min-ratio ut. Indeed, the ratio of this

ut is r(V

1

) = 1=t, while the ut (V

3

; V

1

[ V

2

) is an optimal min-ratio ut and has ratio

r(V

3

) = O(1=n).

The next orollary follows from Lemma 2.5.

Corollary 2.7. In every graph there exists an O(1)-amortized ut.

Corollary 2.7 is optimal up to onstant fators, and there are graphs for whih any ut

has amortized ost 
(1). For example, onsider a lique on n verties. Given a ut (V

1

; V

2

)

with jV

1

j � jV

2

j, let � be the onstant in the amortized ut de�nition, and take (�� 1=2)n

verties of V

2

and all of V

1

to be the harged verties. It an be seen that �

e

= 1 and

�

v

= �(1), and so the amortized ost of the ut (V

1

; V

2

) is 
(1), as laimed.

2.3.2 Approximate min-ratio uts might be poor amortized uts

We demonstrate that an approximate min-ratio ut of a graph might be a poor divide step,

and in partiular a poor amortized ut. Consider, for example, the following graph G on

2n + 2

p

�n verties for a �xed 0 < � < 1 (see also Fig. 2.3). The vertex set of the graph is

F

1

[F

2

[C

1

[C

2

where eah of F

1

; F

2

are of size n, eah of C

1

; C

2

are of size

p

�n, and eah

of the four subsets forms a lique. These four liques are onneted as follows. Between F

1

and F

2

there are n edges that form a mathing (i.e. have no ommon endpoint). Between

C

1

and C

2

there are all possible �n edges, thus C

1

[C

2

forms a lique. There are also 2

p

�n

edges between F

i

and C

i

(for i = 1; 2) so that their endpoints at F

i

are distint and eah

vertex of C

i

is an endpoint of exatly two of these edges.
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F C

n

2
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�n

�n

2

p

�n

n

n

F

2

F

1

C

2

C

1

p

�n

p

�n

Figure 2.3: A poor divide step by an approximate min-ratio ut

Let C = C

1

[ C

2

be the harged verties, and F = F

1

[ F

2

the free verties. Suh a

partition to harged and free may reet the \right" ut of 2

p

�n verties from the graph G

(if, e.g., the input graph for bisetion onsists of this graph G and a lique on 2n � 2

p

�n

verties).

Consider a divide step based on the ut (F

1

[C

1

; F

2

[C

2

), whose ratio is nearly optimal.

Indeed, an optimal min-ratio ut in this graph is (F

1

; C

1

[F

2

[C

2

) and its ratio is 1+2

p

�=

p

n.

The ut (F

1

[C

1

; F

2

[C

2

) has a slightly higher ratio of (1 + �)(1� o(1)), and so it is a 1+ �

approximate min-ratio ut.

Observe that the ut (F

1

[C

1

; F

2

[C

2

) is a poor divide step. It uts �n harged-harged

edges while the total number of harged-free edges in G (and the bisetion ost in the input

graph) is only 4

p

�n. Aording to the new aounting method, suh a divide step does not

give an approximation ratio better than 
(

p

�n).

The observation that the ut (F

1

[ C

1

; F

2

[ C

2

) is a poor divide step is supported by

its high amortized ost. The amortized ost for the edges is �

e

= �n=2

p

�n =

p

�n=2.

The ratio of the ut (C; F ) is r(C) = r

0

(C) = 2, so the amortized ost for the verties is

�

v

= �n=(

p

�nr

0

(C)) =

p

�n=2. We onlude that a 1+o(1) approximate min-ratio ut might

have amortized ost � � minf�

e

; �

v

g =

p

�n=2.

2.3.3 Finding O(�)-amortized ut

We present an algorithm that �nds an O(�)-amortized ut, given a subroutine for omputing

a � -approximate min-ratio ut. The algorithm is motivated by the O(1) upper bound on the

amortized ost of a min-ratio ut shown in Setion 2.3.1. In partiular, we examine what

additional properties are required in order to extend the analysis of Lemma 2.5 from optimal

min-ratio uts to approximate ones.

The proof of Lemma 2.5 uses twie the fat that (V

1

; V

2

) is an optimal min-ratio ut. In

the �rst usage we had that

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2, whih extends to the ase where (V

1

; V

2

)

is an approximate min-ratio ut with the approximation ratio arried over to the amortized

ost, i.e. if (V

1

; V

2

) is a � -approximate min-ratio ut then we have

e(C

1

;C

2

)

jC

1

j�r(C)

� 2

r(V

1

)

r(C)

� 2� .

The seond time we used the fat that (V

1

; V

2

) is an optimal min-ratio ut was to say

that r(F

1

) < r(V

1

) annot hold and gives a ontradition. In general, this usage does not
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extend to an approximate min-ratio ut, as demonstrated by the example in Setion 2.3.2.

However, the proof does extend to an approximate min-ratio ut if we have the additional

property that the ratio of V

1

is minimal over all its subsets F

1

, i.e. r(V

1

) � r(F

1

) for all

F

1

� V

1

. We therefore obtain that the proof of Lemma 2.5 extends to approximate min-ratio

uts as follows.

Lemma 2.8. Let (V

1

; V

2

) be a � -approximate min-ratio ut in a graph, with jV

1

j � jV

2

j. If

r(V

1

) � r(F

1

) for every F

1

� V

1

then (V

1

; V

2

) is an O(�)-amortized ut.

Note that the proof of Lemma 2.8 is not symmetri with respet to the two amortization

methods. It guarantees that either e(C

1

; C

2

)=e(C

1

; F

1

) � 2 (i.e. the amortized ost for the

edges �

e

is at most 2), or

e(C

1

;C

2

)

jC

1

j�r(C)

� 2� (i.e. the amortized ost for the verties �

v

is O(�)).

In ontrast, in the proof of Lemma 2.5 for optimal min-ratio both amortization osts are

O(1).

The amortized ut algorithm. We use Lemma 2.8 to devise an algorithm that �nds

an O(�)-amortized ut based on a � -approximate min-ratio ut. The algorithm, desribed

in Fig. 2.4, starts with a � -approximate min-ratio ut (V

1

; V

2

) and then \�xes" it so that it

would also be \minimal" with respet to ontainment, as required by Lemma 2.8. It then

follows that the output ut is O(�)-amortized.

In order to \�x" the ut (V

1

; V

2

), the algorithm uses minimum (s; t)-uts in a related

graph G

0

, whih is de�ned in step 2. The related graph G

0

ontains edges of the input graph

G, as well as new edges. The edges from G have unit apaity, while the apaity of the

new edges is some parameter p > 0. Step 3 then �nds the optimal value of p with respet

to the minimum (s; t)-ut. Before disussing implementation issues of step 3, let us analyze

the algorithm orretness.

Lemma 2.9. The ut (S; V n S) output by algorithm FindAmortized is a � -approximate

min-ratio ut. In addition, every nonempty subset of V

1

has ratio at least as large as S, i.e.

r(S) = minfr(S

0

) : ; 6= S

0

� V

1

g.

Proof. Consider an arbitrary value p and an arbitrary (s; t)-ut in the related graph G

0

with

the orresponding set S � V

1

(see Fig. 2.5). The ut onsists of (i) edges between s and

V

1

n S (eah of apaity p) (ii) edges between S and V

1

n S (these are edges from the input

graph G) and (iii) edges between S and t (these are the edges between S and V

2

in the input

graph G). The apaity of this (s; t)-ut is thus

ap(S) = p � jV

1

n Sj+ e(S; V n S)

where, as usual, e(�; �) denotes the number of orresponding edges in the input graph G. In

the speial ase of the empty set S = ;, the apaity of the (s; t)-ut is

ap(;) = p � jV

1

j

Fixing the value of p, let us ompare the apaity of the ut de�ned by the empty set ;

with that of an arbitrary set S 6= ;, i.e. ap(;) vs. ap(S). The empty set ; yields a smaller
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Algorithm FindAmortized.

1. Find in the input graph G = (V;E) a � approximate min-

ratio ut (V

1

; V

2

) with jV

1

j � jV

2

j.

2. Create a related graph G

0

:

{ Merge all verties of V

2

into a single vertex t, remov-

ing self loops at t, and keeping all edges to V

1

, inluding

parallel edges.

{ Add a new vertex s whih is onneted to eah vertex

of V

1

by an edge whose apaity (weight) is a parameter

p > 0.

3. Let S denote the verties of V

1

whih are on the same side

with s in a minimum (s; t)-ut of G

0

.

{ Find (e.g. by binary searh) the minimum p > 0 for

whih S 6= ;. (Possibly, S = V

1

).

4. Output the ut (S; V n S) of the input graph.

Figure 2.4: Algorithm for amortized uts

apaity whenever

p � jV

1

j < p � jV

1

n Sj+ e(S; V n S)

m

p <

e(S; V n S)

jSj

= r(S)

where r(S) is the ratio of the ut (S; V nS) in the input graph G (note that jSj � jV

1

j �

1

2

jV j

and that r(S) > 0 if G is onneted).

We laim that the value of p found at step 3 is essentially p

�

= minfr(S) : ; 6= S � V

1

g.

Indeed, when p < p

�

, a minimum (s; t)-ut in G

0

orresponds to S = ;, and when p > p

�

, a

minimum (s; t)-ut yields a set S 6= ;. When p = p

�

, a minimum (s; t)-ut an be obtained

either by S = ;, or by (one or more) S 6= ; with r(S) = p

�

.

When p = p

�

+ � for a very small � > 0, only the sets S 6= ; with r(S) = p

�

give smaller

apaity than the empty set, and thus a minimum (s; t)-ut is obtained by one of these sets

S. By the de�nition of p

�

, this set ; 6= S � V

1

has minimal ratio r(S) over all nonempty

subsets of V

1

, i.e. r(S) = minfr(S

0

) : ; 6= S

0

� V

1

g, as laimed. Furthermore, sine S = V

1

is

inluded in this range, we get that r(S) � r(V

1

) and hene (S; V nS) is a � -approximate min-

ratio ut, �nishing the proof. We remark that a slightly modi�ed algorithm an guarantee

in addition that r(S) < r(S

0

) for every S

0

� S with S

0

6= ;; S. Details omitted.

Theorem 2.4. Given a subroutine for omputing a � -approximate min-ratio ut, algorithm

FindAmortized �nds an O(�)-amortized ut.
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t

V

1

V

1

n S

S

1

s

V

2

V

2

p

1

Figure 2.5: An (s; t)-ut in the related graph G

0

Proof. Lemma 2.9 guarantees that the ut found by the algorithm satis�es the requirements

of Lemma 2.8, from whih it follows that the ut is O(�)-amortized.

We now address the issue of implementing step 3. Observe that p

�

is the maximum value p

for whih the empty set ; gives a minimum (s; t)-ut. Sine, by de�nition, p

�

is the ratio r(S)

of a set S, it has only n

3

possible values, whih an be exhaustively searhed. Alternatively,

p

�

an be found in O(logn) iterations of binary searh, sine as an exat multiple of 1=jSj

it is bounded between 0 and n, and the di�erene between any two of its possible values is

more than 1=n

2

.

One we �nd p

�

, we need to �nd a set S 6= ; that gives a minimum (s; t)-ut for p

�

. We

an either guess a vertex of V

1

and merge it with s before omputing the minimum (s; t)-ut

for p

�

, or alternatively ompute a minimum (s; t)-ut for p = p

�

+ � with e.g. � = 1=n

2

.

2.4 The bisetion algorithm

In this setion we desribe our approximation algorithm for bisetion and prove the following

theorem. (See Setion 2.2 for the de�nition of an amortized ut.)

Theorem 2.5. Given a subroutine that �nds a �-amortized ut, a bisetion within ratio of

1 +O(� logn) of the minimum an be found in polynomial time.

2.4.1 Deomposition stage

The deomposition stage reursively divides the input graph G = (V;E) into smaller and

smaller parts using a �-amortized ut subroutine (e.g. the one devised in Setion 2.3). Eah

part is further divided unless it onsists of a single vertex.

The deomposition stage builds a rooted binary tree T , alled the deomposition tree,

whih orresponds to the reursive deomposition of the input graph G in a natural way, as

follows. (Throughout, we all the verties of T nodes, to avoid onfusion with the verties

of the input graph G.) Eah tree node i ontains a part V

i

� V that was found during

the reursive deomposition. The root node of T ontains V , i.e. the whole input graph G.

Let us denote the two hildren of a nonleaf node i by L(i) and R(i). Then their two parts
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V

L(i)

; V

R(i)

are the result of dividing V

i

, i.e. the �-amortized ut found in V

i

is (V

L(i)

; V

R(i)

). A

leaf of the tree T ontains a part that onsists of a single vertex of G. Therefore T ontains

exatly n leaves and n� 1 nonleaf nodes.

2.4.2 Labeling stage

Reall the following de�nitions from Setion 2.2. A labeling of the deomposition tree T labels

eah nonleaf node of the tree as either white or blak. Fixing a parameter 1=2 < � < 1,

we say that a labeling is �-onsistent with respet to a white-blak bisetion (W;B) of G if

every tree node i satis�es that: If the label of node i is white then jW \ V

i

j � �jV

i

j, and

if the label of node i is blak then jB \ V

i

j � �jV

i

j (where V

i

is the part ontained in node

i). A labeling is alled opt-onsistent if it is �-onsistent with the �xed optimal bisetion

(W

�

; B

�

).

The labeling stage produes a family F of labelings. The ardinality of F is exponential

in n, so rather than listing its members expliitly, the labeling stage produes an impliit

representation of F . The atual work of the labeling stage is to mark ertain nodes of T ,

and these nodes impliitly de�ne the family F , as desribed below.

The labeling stage marks some of the nodes of T in a proess that goes from the root of

T towards its leaves, as follows. The root of T is always marked, and any other node i in

the tree is marked in this proess if its losest marked anestor j satis�es jV

i

j �

1

2�

jV

j

j (as

before, V

i

and V

j

are the parts ontained in the nodes i and j, respetively). Note that the

onstant � is hosen so that

1

2

< � < 1, implying

1

2

<

1

2�

< 1.

A labeling of T is said to be derived from the marked nodes, if the label of every unmarked

node is the same as the label of its losest marked anestor (there is no restrition on the

labels of the marked nodes). Note that in this ase the labels of the marked nodes uniquely

de�ne the labels of all the internal tree nodes.

The family F produed by the labeling stage onsists of all the labelings that an be de-

rived from the marked nodes. Sine eah of the 
(n) marked nodes an be labeled arbitrarily

by one of two olors, the resulting family of labelings has exponentially large ardinality, and

we annot expliitly list all the family members. Instead, the algorithm impliitly represents

this family F by identifying whih are the marked nodes.

Lemma 2.10. The family of labelings F ontains at least one opt-onsistent labeling.

Proof. Let the white-blak ut (W;B) be the �xed optimal bisetion. Consider the labeling

that is derived from the marked nodes, with the label of eah marked node i being the olor

in minority among the verties of V

i

.

This labeling is learly in the family F , and we laim that it is also opt-onsistent.

Indeed, the label of a marked node i is by de�nition the minority olor in V

i

. The label

of an unmarked node i is the same as the label of its losest marked anestor j. Suppose,

without loss of generality, that this label (of i and j) is white. Then at most half the verties

of V

j

are white, i.e. jW \ V

j

j �

1

2

jV

j

j. Observe that V

i

� V

j

and jV

i

j >

1

2�

jV

j

j and hene

jW \ V

i

j � jW \ V

j

j �

1

2

jV

j

j < �jV

i

j. Hene, this labeling of F is opt-onsistent.
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2.4.3 The harge of a bisetion

We now formally de�ne the harge of a bisetion (W;B) with respet to the deomposition

tree T and a labeling of it. The referene to T will later be omitted, as we always refer to

the tree omputed in the deomposition stage.

De�nition (harge). Let (W;B) be a bisetion of the input graph, and assume we are given

a deomposition tree T and a labeling of it. For eah (nonleaf) node i of T , if i is labeled white

then we let (see Fig. 2.6) C

i

= W \ V

i

and F

i

= B \ V

i

, and if i is labeled blak then we let

C

i

= B\V

i

and F

i

=W \V

i

. We obtain a ut (C

i

; F

i

) of the part V

i

, and say that C

i

is harged

and F

i

is free. The harge of the divide step of a (nonleaf) node i is de�ned as

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

):

The harge of the bisetion (W;B) is de�ned as the sum of all the divide steps harges, i.e.

X

i2T

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

):

(These harges are de�ned with respet to T and a labeling of it.)

Step

Divide

Step

Divide

Step

Divide

Step

Divide

F

i

= B \ V

i

: : :

C

i

= W \ V

i

: : :

V

R(i)

V

L(i)

V

L(L(i))

V

L(R(i))

: : : : : :

F

L(i)

=W\V

L(i)

V

R(L(i))

V

R(R(i))

: : : : : :

V

R(i)

C

R(i)

=W\V

R(i)

F

R(i)

=B\V

R(i)

C

L(i)

=B\V

L(i)

V

i

V

L(i)

Figure 2.6: The harge of a bisetion (W;B) throughout the deomposition tree
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Bisetion harge vs. ost

In ertain onditions, a bisetion harge an approximate its ost. As shown below, the

harge of a bisetion upper bounds its ost, and the gap between them is not too large if the

harge is taken with respet to an �-onsistent labeling (as in the ase of the �xed optimal

bisetion and an opt-onsistent labeling).

Lemma 2.11. The harge of a bisetion (W;B) with respet to any labeling is at least as

large as its ost.

Proof. As we have seen in setion 2.2, the true ost of the (W;B) edges ut in a divide step i

is e(C

i

\V

L(i)

; F

i

\V

R(i)

)+ e(C

i

\V

R(i)

; F

i

\V

L(i)

), and is therefore not larger than the harge

of this step. The proof follows by summing over all divide steps, sine the deomposition

stage eventually divides the graph into individual verties, and so every edge of the bisetion

(W;B) is ut at some divide step.

Lemma 2.12. The harge of a bisetion (W;B) with respet to a labeling that is �-onsistent

with it is at most e(W;B) � (1 +O(� logn)).

Proof. Consider a bisetion (W;B) and a labeling of T that is �-onsistent with it. As we

have seen in Setion 2.2 and in Lemma 2.11 the harge of a divide step is larger than the

true ost of the (W;B) edges ut in that step by the ost of the harged-harged edges ut in

that divide step. Summing over the divide steps we get that the harge of (W;B) the �xed

optimal bisetion is larger than its ost by 2

P

i

e(C

i

\ V

L(i)

; C

i

\ V

R(i)

), where i ranges over

all (nonleaf) nodes i in T . We use the shorter notation C

L

= C

i

\ V

L(i)

and C

R

= C

i

\ V

R(i)

,

where i is lear from the ontext.

To upper bound 2

P

i

e(C

L

; C

R

), observe that eah part V

i

is divided using a �-amortized

ut, and that the �-onsistent labeling guarantees that jC

i

j � �jV

i

j for all nodes i, so we

an use the amortization sheme of Setion 2.2. Namely, let us assume, without loss of

generality, that the deomposition stage plaes in the left hild of a node i the smaller of the

two subparts of V

i

, i.e. jV

L(i)

j � jV

R(i)

j for every nonleaf node i. Then by Proposition 2.3 we

an upper bound

e(C

L

; C

R

) � � �max

n

e(C

L

; F

L

) ;

jC

L

j

jC

i

j

� e(C

i

; F

i

)

o

;

and obtain

2

X

i

e(C

L

; C

R

) � 2� �

(

X

i

e(C

L

; F

L

) +

X

i

jC

L

j

jC

i

j

� e(C

i

; F

i

)

)

: (2.9)

Therefore, to omplete the proof of Lemma 2.12 it suÆes to upper bound the sums in the

urly brakets (i.e. the total ost amortized in eah of the two methods) by e(W;B)�O(logn).

Consider �rst

P

i

e(C

L

; F

L

). The edges that ontribute to this sum are harged-free edges

and hene edges of the bisetion (W;B). An edge in the ut (C

L

; F

L

) must be inside V

L(i)

,

the smaller side of the ut of V

i

, and any single edge an be inside V

L(i)

in at most logn

divide steps i throughout the tree T . Hene,

P

i

e(C

L

; F

L

) onsists of at most logn times the

ost of every edge of the bisetion (W;B), and therefore this sum is at most e(W;B) � logn.

Consider next

P

i

jC

L

j

jC

i

j

� e(C

i

; F

i

), and reall our onvention that

0

0

is de�ned to be 0. The

edges of e(C

i

; F

i

) ontribute to the sum their ost saled by a fator of

jC

L

j

jC

i

j

. Eah edge of
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e(C

i

; F

i

) is a harged-free edge and hene an edge of the bisetion (W;B). However, an edge

of the bisetion (W;B) belongs to e(C

i

; F

i

) if and only if this edge is inside V

i

. The nodes i

for whih this edge is inside V

i

are all on a path from the root to a leaf of the deomposition

tree T , and therefore the total ontribution of this edge is at most its ost saled by the sum

of

jC

L

j

jC

i

j

over that path in T .

We laim that the sum of

jC

L

j

jC

i

j

over any path from the root to a leaf is bounded by

O(logn). It follows from this laim that

P

i

jC

L

j

jC

i

j

� e(C

i

; F

i

) an be desribed as the ost of

every edge of the bisetion (W;B) saled by at most O(logn), and therefore this sum is at

most e(W;B) �O(logn).

To prove the laim, onsider an arbitrary path from the root to a leaf, and denote the

path nodes by 1; 2; : : : ; p+ 1. At eah node i the harged side (i.e. C

i

) may be either W or

B, depending on the label of the node, so denoting w

j

= jW \V

j

j and b

j

= jB \V

j

j, we have

that

jC

L

j

jC

i

j

is either

w

L(i)

w

i

or

b

L(i)

b

i

, and learly at most their sum. Hene,

p

X

i=1

jC

L

j

jC

i

j

�

p

X

i=1

w

L(i)

w

i

+

p

X

i=1

b

L(i)

b

i

Consider �rst

P

p

1

w

L(i)

w

i

, and observe that w

i

is a noninreasing sequene, sine in the tree,

node i is a parent of node i + 1. If node i + 1 is a left hild (of its parent node i), then

w

L(i)

= w

i+1

and hene

w

L(i)

w

i

=

w

i+1

w

i

� 1. The number of suh nodes i is at most logn,

sine the path from the root to a leaf an ontain at most logn left hildren i (reall that

jV

L(i)

j � jV

R(i)

j). The ontribution of all suh nodes i to

P

p

1

w

L(i)

w

i

is therefore at most logn.

If node i+1 is a right hild (of its parent i), then w

L(i)

= w

i

�w

i+1

, and the ontribution

of all suh nodes i is at most

P

p

1

w

i

�w

i+1

w

i

. Clearly,

w

i

�w

i+1

w

i

�

1

w

i

+ : : : +

1

w

i+1

+1

and hene

the ontribution of all suh nodes i to

P

p

1

w

L(i)

w

i

is at most

P

p

1

w

i

�w

i+1

w

i

�

1

w

1

+ : : : +

1

2

+ 1 =

H(w

1

) � H(n) where H(k) =

P

k

1

1

j

is the k-th harmoni number.

We onlude that

P

p

1

w

L(i)

w

i

� logn+H(n) � O(logn). Similarly,

P

p

1

b

L(i)

b

i

= O(logn), and

together we get that

P

p

1

jC

L

j

jC

i

j

� O(logn), proving the laim and the lemma.

Corollary 2.13. The harge of the �xed optimal bisetion (W

�

; B

�

) with respet to an opt-

onsistent labeling is at most b(1 +O(� logn)).

Distributing harge to verties

It will be onvenient (algorithmially) to distribute the harge of a bisetion (W;B) (with

respet to T and a labeling) to the verties of the input graph, as follows. For eah vertex

v 2 V

i

let the ross-degree of v at node i, denoted ross

i

(v), be the ost of the edges that

are inident at v and are ut in divide step i. We de�ne the harge of a vertex v 2 V as

the sum of the ross-degree of v at all nodes i for whih v belongs to the harged side, i.e.

P

i:v2C

i

ross

i

(v). The next lemma proves that distributing the harge of a bisetion to the

graph verties is indeed orret.

Lemma 2.14. The harge of a bisetion (W;B) is the sum of the harges of all verties in

G.
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Proof. The harge of a divide step of node i is equal to the sum of the ross-degrees at node

i of all verties v 2 V

i

, i.e.

e(C

i

\ V

L(i)

; V

R(i)

) + e(C

i

\ V

R(i)

; V

L(i)

) =

X

v2C

i

ross

i

(v) :

Summing over all nodes i in the tree T , the lefthandside is, by de�nition, the bisetion harge,

and the righthand side is the sum of the harges of all verties in G. The proof follows.

Distributing the harge to the verties of G is important algorithmially. The harge

of a vertex depends on (and an be easily omputed from) the side of this vertex in the

bisetion (W;B), the deomposition tree T , and the labeling of T , but it does not depend

on the side of the ut (W;B) that other verties of the graph belong to. It follows that the

harge of a bisetion (W;B) with respet to a given deomposition tree T and a labeling of

it, depends linearly on the plaement of verties into W and B. This formulation of harge

will be exploited by (the dynami programming in) the ombining stage.

2.4.4 Combining stage

The ombining stage omputes a bisetion of the input graph G and a labeling of the de-

omposition tree T , suh that the bisetion harge with respet to the labeling is at most

b � (1+O(� logn)). It then follows from Lemma 2.11 that the ost of the omputed bisetion

is at most b � (1 +O(� logn)), as desired.

Consider �rst the ase where an opt-onsistent labeling is known. Then it suÆes to

ompute a bisetion ofG whose harge with respet to this opt-onsistent labeling is minimal,

beause Corollary 2.13 guarantees that the harge of the omputed bisetion is at most

b � (1 + O(� logn)). Below we desribe a simple proedure for �nding a bisetion of G with

minimal harge with respet to a given labeling.

However, we do not know how to eÆiently �nd an opt-onsistent labeling, and therefore

we go over all the labelings in the family F . Spei�ally, using a more ompliated proedure

desribed below the ombining stage �nds a bisetion of G and a labeling from F , suh that

the harge of the bisetion with respet to the labeling is minimal over all suh bisetion-

labeling pairs. Lemma 2.10 guarantees that at least one of these labelings is opt-onsistent,

in whih ase Corollary 2.13 applies. Hene, the bisetion-labeling pair omputed by this

proedure satis�es that the harge of the bisetion with respet to the labeling is indeed at

most b � (1 +O(� logn)).

Minimizing harge over a given labeling

Finding a bisetion of minimum harge with respet to a given labeling is relatively straight-

forward. By Lemma 2.14, the harge of a bisetion (W;B) is the sum of the vertex harges.

Sine the deomposition tree T and the labeling are �xed, the harge of a vertex depends

only on its side in the bisetion (W;B). We an therefore ompute for eah vertex v what is

its harge when it belongs to W , alled the white harge of v, and what is its harge when

it belongs to B, alled the blak harge of v. (Note that summing the white harge and the

blak harge of a vertex gives the degree of that vertex in G.)
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The harge of a bisetion (W;B) is then the sum of the white harges of W and the

blak harges of B. To �nd a bisetion (W;B) with minimum harge with respet to the

given labeling, we an thus ompute for eah vertex its net-harge (white harge minus blak

harge), and take W to be the n=2 verties with smallest net-harge. (This algorithm for

the ase where a labeling is given was used in the algorithm outline in Setion 2.2, where we

assumed that the labeling stage produes an opt-onsistent labeling.)

Minimizing harge over the family F

The ombining stage uses dynami programming to �nd a bisetion and a labeling from the

family F , so that the harge of the bisetion with respet to this labeling is minimum over

all suh bisetion-labeling pairs.

The dynami programming table Q has entries of the form Q(i; k; g), where i is a node

of the deomposition tree T , k is an integer between 0 and jV

i

j, and g is a guess list that

ontains the labels of the marked anestors of node i. Throughout, i is onsidered an anestor

of itself.

An entry Q(i; k; g) in the table ontains the optimal solution to the following problem:

Choose k verties of V

i

and a labeling from F that agrees with g, so that when these k

verties are plaed in the side W and the remaining verties of V

i

are plaed in the side

B, the sum of the harges of all the verties of V

i

with respet to the hosen labeling, is

minimal over all suh hoies. Note that when we only onsider labelings from the family F

that agree with g, the labels of all the anestors of i are uniquely de�ned from g, while the

marked desendants of i an have arbitrary labels.

For a leaf node i, the table entry Q(i; k; g) an be omputed diretly, as follows. Sine i is

a leaf node, the part V

i

onsists of a single vertex, say v, and k an be either 0 or 1. If k = 0

then v is neessarily in B, and if k = 1 then v is neessarily in W . The guess list g gives

the labels of all the nodes on the path from the leaf i to the root, and hene all the labels

that an possibly a�et the harge of v. Sine k and g uniquely de�ne all the data that the

harge of v depends on, Q(i; k; g) is just the harge of v, and an be omputed diretly as

P

j

ross

j

(v) where j ranges over all anestors of i whose label (aording to g) agrees with

the side of v (as follows from k).

For a nonleaf node i, the table entry Q(i; k; g) an be eÆiently omputed from table

entries of its hildren nodes L(i); R(i). Indeed, hoosing k verties from V

i

is equivalent to

hoosing j verties from one hild part V

L(i)

and k�j verties from the other hild part V

R(i)

,

so we need to add up two entries, eah orresponding to one hild node. The optimal value

of j is not known, but it an be exhaustively searhed. The guess list g an be extended into

lists g

L

; g

R

for the hildren nodes, in possibly more than one way. Therefore,

Q(i; k; g) = min

0�j�k

min

g

L

;g

R

fQ(L(i); j; g

L

) +Q(R(i); k � j; g

R

)g

where g

L

; g

R

range over all possible extensions of g, as desribed below. If a hild node L(i)

is a marked node, then there are two possible ways to extend the list g into a list g

L

(by

adding a label for V

L(i)

), and the optimum Q(i; k; g) is ahieved by taking the one whih is

better. If a hild node L(i) is not a marked node, then the only extension is g

L

= g, beause

i and L(i) have the same marked anestors. The possible extensions of the hild node R(i)

34



are similar. It follows that eah table entry of a nonleaf node i an be omputed from table

entries of its hildren L(i); R(i) in time O(jV

i

j) = O(n).

To �ll all the table entries, start from the entries that orrespond to leaf nodes i and

go upwards the deomposition tree T . In partiular, the entries Q(i

root

; n=2; g) will be

omputed for the root node i

root

. At the root node, the guess list g ontains the label of the

root, and thus has only two possible values. (In fat, the two entries must be the same due

to symmetry.) The ombining stage outputs min

g

Q(i

root

; n=2; g), whih by de�nition, is the

minimum harge of all bisetions of the input graph with respet to any labelings from F ,

as desired. A bisetion that ahieves this minimum harge an also be omputed. Simply

go over the table entries in the reversed order of omputation, and reover at eah entry the

values of j; g

L

; g

R

that gave the optimum. Alternatively, assoiate with eah entry Q(i; k; g)

a set of k verties of V

i

whih is optimal for it, and its orresponding labels.

Lemma 2.15. The ombining stage �nds in polynomial time a bisetion of the input graph

G and a labeling from the family F , so that the harge of the bisetion with respet to the

labeling is minimal over all suh bisetion-labeling pairs.

Proof. The above disussion shows that the algorithm orretly omputes every entryQ(i; k; g),

and a bisetion-labeling pair as desired.

The size of the table Q is polynomial in n. Indeed, there are only O(n) tree nodes i.

For eah tree node i, the range of k ontains O(jV

i

j) = O(n) possible values. In addition,

at eah tree node i the guess list g ontains labels of at most O(logn) anestor nodes, and

thus g assumes polynomially many values. The polynomial bound on the size of the table Q

follows.

An entry for a leaf nodes i is omputed eÆiently. An entry for a nonleaf node is

eÆiently omputed from previously omputed entries. By the upper bound on the table

size we onlude that all the table entries are omputed in polynomial time, and in partiular

Q(i

root

; n=2; g).

Corollary 2.16. The ombining stage �nds bisetion of the input graph (and a labeling of

T ) suh that bisetion harge (with respet to the labeling) is at most b(1 +O(� logn)).

Proof. By Lemma 2.15 and Corollary 2.13 there exists a bisetion of G and a labeling of F

suh that the bisetion harge with respet to the labeling is at most b(1 +O(� logn)). The

proof then follows by applying Lemma 2.10.

This orollary ompletes the proof of Theorem 2.5, sine by Lemma 2.11 the harge of a

bisetion is an upper bound on its atual ost.

2.5 Extensions

Our results extend to several variants (and generalizations) of the minimum bisetion prob-

lem, inluding the ase of edges with arbitrary nonnegative osts (Setion 2.5.1), the ase of

verties with polynomially bounded nonnegative integer weights (Setion 2.5.2), the variant

that requires, in addition, to separate a given pair of verties s and t (Setion 2.5.3), the

ase of utting away from the graph an arbitrary number of verties (instead of n=2) that
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is given as part of the input (Setion 2.5.4), the ase of utting the input graph into a �xed

number of equal-size parts (Setion 2.5.5), and the ase of �nding a 2/3-balaned ut whose

ost is small relative to the minimum bisetion ost b (Setion 2.5.6).

In what follows, the basi bisetion problem refers to the minimum bisetion problem

that was de�ned in Setion 2.1. In ontrast, the extended bisetion problems refer to the

variants of the problem spei�ed above. We disuss eah extended problem separately, but

it is straightforward to ombine together several extensions (e.g. to allow both edge osts

and vertex weights as desribed above, and require that the total weight of the verties ut

away is a number k that is given in the input).

We onsider two approahes for extending our approximation algorithm from the basi

bisetion problem to an extended problem. One approah is to redue the extended problem

to the basi one. Another approah is to modify the algorithm that we devised for the

basi bisetion problem so that it handles also the extended variant. As we disuss below,

eah approah has its own advantages and so it is valuable to show both approahes for eah

extended problem. We indeed show that for almost all the extended problems spei�ed above

both approahes an be applied, although for a few problems we provide only a modi�ed

algorithm.

A major advantage of the redution approah is that it is self ontained and not restrited

to the partiular algorithm that we devise, so future improvement in the approximation ratio

for the basi problem may lead to an immediate improvement also for the extended problem.

Most of our redutions transform an approximation ratio f(n) for the basi problem into an

approximation ratio f(n

O(1)

) for the extended problem (beause they inrease the number

of verties n by a polynomial), and so for the urrent approximation ratio f(n), whih

is polylogarithmi, these redutions inrease the approximation ratio by at most a onstant

fator. The tehniques used in our redutions are similar to those devised in [BJ92, BCLS87℄

for the (di�erent) purpose of proving NP-hardness results.

The advantages of the algorithm modi�ation approah are that it preserves aspets that

are spei� to our algorithm, suh as an improved O(logn) approximation ratio for planar

graphs, and that it is usually more eÆient (and therefore pratial) than the redution

approah. A drawbak of the algorithm modi�ation approah is that it requires to go

again through the algorithm's analysis. In partiular, we might be required to verify that

the approximate min-ratio ut algorithm (that we use as a blak-box) an be extended

aordingly. However, the neessary hanges in the algorithm and its proof are usually

straightforward.

2.5.1 Edge osts

Suppose that the edges of the input graph G have arbitrary nonnegative osts, and that the

ost of a bisetion is the total ost (i.e. sum of the osts) of its edges, and we wish to �nd a

bisetion of G of (approximately) minimum ost.

Redution. We redue the extended problem of bisetion with edge osts (desribed

above) to the basi bisetion problem, as follows. Given a graph G with edge osts as an

input, we �rst guess the most ostly edge in a minimum ost bisetion of G, by exhaustively
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trying all O(n

2

) edges in the input graph. By saling all edge osts, we an assume, without

loss of generality, that the ost of the guessed edge is n

2

. It follows that the ost b of the

optimum bisetion is at least n

2

but smaller than n

4

. We then round down all edge osts to

their losest integer, whih an derease the ost of any bisetion by at most

�

n

2

�

� b=2 and

therefore by a fator of at most 2. We next hange to n

5

every edge ost that is larger than

n

5

, whih does not a�et the ost of nearly optimal bisetions (i.e. whose original ost was

within ratio of roughly n from the minimum). Finally, we replae eah vertex of the graph

by a lique of size n

5

, and eah edge (u; v) of ost t by t unit ost edges plaed arbitrarily

between the lique of u and the lique of v (sine t < n

10

we an do that with no parallel

edges).

The bisetion of minimum ost b in G orresponds to a bisetion of ost �(b) in the

resulting graph. Hene, applying our algorithm for the basi problem on the resulting graph

(whih has n

6

verties) yields a bisetion whose ost is O(b(logn

6

)

2

) = O(b log

2

n). This

bisetion annot split any of the liques that we reated, as otherwise its ost will be at least

n

5

�1� b log

2

n, and it therefore must orrespond to a bisetion of G, whose ost is roughly

the same, namely O(b log

2

n), as required.

Modi�ed algorithm. We modify our algorithm for the basi bisetion problem so that

it handles the extended problem with edge osts, as follows. Rather than onsidering the

number of edges we always onsider their ost, e.g. e(V

1

; V

2

) denotes the sum of the osts

of the edges with one endpoint in V

1

and one endpoint in V

2

. The orresponding hanges in

our algorithm and analysis are straightforward. Note that the amortized ut algorithm (see

Fig. 2.4) requires (in step 1) a subroutine that omputes an approximate min-ratio ut with

respet to the edge osts, but known algorithms (e.g. due to [LR99℄) provide this subroutine.

Note also this algorithm's binary searh (step 3) takes O(M logn) iterations, where M is

the number of bits used to represent an edge ost, and so the running time is polynomial in

the input size. The resulting approximation ratio is the same as for the basi problem, i.e.

O(log

2

n).

2.5.2 Polynomial vertex weights

Suppose that the verties of the input graph G have nonnegative integer weights that are

bounded by a polynomial n



(where n is the number of verties in G), and let a bisetion be

a ut that separates half of the total weight (i.e. sum of the weights) of the verties of V .

We wish to �nd a bisetion of G of (approximately) minimum ost. Note that if the weights

are allowed to be exponential in n, �nding any bisetion of the graph is equivalent to the

partition (or subset-sum) problem, and therefore NP-hard.

Redution. We redue the extended problem of bisetion with vertex weights (desribed

above) to the basi bisetion problem, as follows. Given a graph G with vertex weights as

an input, we replae eah vertex of ost w in G by a lique of maxf1; w � n

3

g unit weight

verties, and replae eah edge (u; v) in G by one edge plaed arbitrarily between the lique

of u and the lique of v. In addition, for eah vertex of weight 0 in G we plae in the graph

a new isolated vertex of unit weight.
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A bisetion of minimum ost b in G orresponds to a bisetion of the same ost b in the

resulting graph. Hene, applying our algorithm for the basi problem on the resulting graph

(whih has at most n

+4

verties) yields a bisetion whose ost is O(b( + 4)

2

log

2

n). This

bisetion annot split any of the liques that we reated, as otherwise its ost will be at least

n

3

� 1� b � (+4)

2

log

2

n. Furthermore, the verties of the reated liques of size at least n

3

must be partitioned evenly by this bisetion, as otherwise their partition deviates from an

even one by at least n

3

(these lique sizes are multiples of n

3

) whih is muh more than the

total number of remaining verties, 2n

2

(reall that we added isolated verties for verties

of weight 0 in G). The omputed bisetion of the resulting graph therefore orresponds to a

bisetion of G, whose ost is the same, namely O(b(+ 3)

2

log

2

n), as required.

Modi�ed algorithm. We modify our algorithm for the basi bisetion problem so that it

handles the extended problem with vertex weights, as follows. Rather than onsidering the

number of verties in a part we always onsider their total weight, e.g. r(S) denotes the ost

of the ut (S; V nS) divided by the minimum between the weight of S and the weight of V nS.

The orresponding hanges in our algorithm and analysis are straightforward. Note that the

amortized ut algorithm (see Fig. 2.4) requires (in step 1) a subroutine that omputes an

approximate min-ratio ut with respet to the vertex weights, but known algorithms (e.g.

due to [LR99℄) provide this subroutine. Note also that in this algorithm's related graph G

0

(step 2) the apaity of an edge between a vertex v 2 V

1

and the new vertex s is p times

the weight of v

1

. The resulting approximation ratio is the same as for the basi problem, i.e.

O(log

2

n).

2.5.3 Separating two verties from eah other (s� t ut)

Suppose that the input graph G ontains two speial verties s and t, and we wish to �nd a

bisetion that separates s from t and has minimum ost. (Note that the onverse restrition,

namely that s; t will not be separated, is equivalent to merging them into one vertex of

weight 2, and therefore follows from Setion 2.5.2).

Redution. We redue the extended problem of a bisetion that separates s from t to the

extended problem of bisetion with vertex weights (desribed in Setion 2.5.2), as follows.

Given an input graph G with speial verties s; t as above, we let the verties s; t have weights

n and let all other verties of G have weight 1. The total weight of s and t together is 2n,

while the total weight of all other verties is n� 2 (and thus smaller), so every bisetion of

the resulting graph must separate s from t. It follows that every bisetion of the resulting

graph orresponds to a bisetion of G that separates s from t and has the same ost, and

vie versa. We an therefore �nd a bisetion of G that separates s from t and its ost is

within O(log

2

n) from the minimum.

Modi�ed algorithm. We modify our algorithm for the basi bisetion problem so that it

handles the extended problem of a bisetion that separates s from t, as follows. We hange the

dynami programming table Q of the ombining stage, so that every entry Q(i; k; g) ontains

two solutions (if they exist); one solution with the k hosen verties ontaining s but not t,
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and the other solution with the k hosen verties not ontaining any of s and t. Computing

the table entries is straightforward, and the output of the algorithm is min

g

Q(i

root

; n=2; g),

where the minimum is taken only over solutions that ontain s and not t. The neessary

hanges in our analysis are straightforward. The resulting approximation ratio is the same

as for the basi problem, i.e. O(log

2

n).

2.5.4 Cutting an arbitrary given number of verties

Suppose that the input onsists of a graph G and a number k, and we wish to �nd a minimum

ost ut that separates exatly k verties.

Redution. We redue the problem of utting away a given number k of verties to the

problem of bisetion with vertex weights (desribed in Setion 2.5.2), as follows. Given an

input graph G and a number k (assume, without loss of generality, that k � n=2), we let

the verties of G have weight 1, and add to the graph an isolated vertex of weight n� 2k. It

is lear that every bisetion of the resulting graph orresponds to a ut of G that separates

k verties and has the same ost, and vie versa. We an therefore �nd a ut of G that

separates k verties and its ost is within O(log

2

n) from the minimum.

Modi�ed algorithm. We modify our algorithm for the basi bisetion problem so that

it handles the extended problem of utting a given number of verties, as follows. The

only hange in the algorithm is in the ombining stage, that now outputs min

g

Q(i

root

; k; g),

where Q is the dynami programming table (see Setion 2.4.4). The neessary hanges in

our analysis are straightforward. The resulting approximation ratio is the same as for the

basi problem, i.e. O(log

2

n).

2.5.5 Cutting into a �xed number of parts

Suppose that we wish to �nd a ut that separates the input graph G into a �xed number p

of parts of equal size.

We do not know of a redution from this extended problem to the basi bisetion problem.

A reursive bisetion approah has a poor performane in general, although it may be useful

in some speial ases and if some requirements are relaxed, see [ST97℄ and the referenes

therein.

Modi�ed algorithm. We modify our algorithm for the basi bisetion problem so that it

handles the problem of utting the graph into p parts of equal size, as follows. The ost of

a ut that partitions V into p parts V

1

; : : : ; V

p

is

X

j<l

e(V

j

; V

l

) =

1

2

X

j

e(V

j

; V n V

j

):

Therefore, by saling the value of every possible solution by a fator of 2 (whih learly

does not a�et any approximation ratio issues), we obtain that the objetive funtion of
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the extended problem has the onvenient form

P

j

e(V

j

; V n V

j

). Observe that eah ut

(V

j

; V n V

j

) orresponds to separating V

j

from the other parts, whih are grouped into

one part V n V

j

. Thus, eah summand e(V

j

; V n V

j

) in the objetive funtion is similar

to the basi bisetion problem (with the minor exeption that the two sides are not of the

equal sizes). Below we desribe the modi�ations to the three stages of the algorithm, whih

works simultaneously on all p uts (V

j

; V n V

j

). Its analysis is based on applying the new

aounting method of Setion 2.2 separately to eah of these p uts.

The deomposition stage omputes a deomposition tree T exatly as in the algorithm

for the basi problem (see Setion 2.4.1). Observe that the amortized ut notion does not

depend on the ut that we seek, and so the obtained deomposition (and its tree T ) an be

used for all uts (V

j

; V n V

j

).

We extend the notion of a labeling of the deomposition tree, as follows. An extended

labeling of T assigns to every tree node a vetor of p \basi" labels, one label for eah ut

(V

j

; V n V

j

). An extended labeling orresponds to deiding at eah tree node i and for eah

j, whih of V

j

and V n V

j

is onsidered harged (and whih is onsidered free) in the part

V

i

. Note that an extended labeling an be viewed as a vetor, whose oordinate j forms a

basi labelings for (V

j

; V n V

j

).

The labeling stage marks some nodes of the tree T exatly as in the algorithm for the

basi problem (see Setion 2.4.2). This stage impliitly de�nes a family F that onsists of all

extended labelings in whih every unmarked node has the same label as its losest marked

anestor (there is no restrition on the labels of the marked nodes). It is straightforward

that F ontains at least one extended labeling, for whih every oordinate j (forms a basi

labeling that) is �-onsistent with the ut (V

j

; V n V

j

). We an restrit the number of

possible labels at the marked (and hene also unmarked) nodes from 2

p

to p + 1 values, as

follows. Similar to the proof of Lemma 2.10 it is suÆient for our purposes that F ontains

the labeling where V

j

is onsidered free at a marked node i if more than half the verties of

the part V

i

are from V

j

. At any part V

i

, the latter an happen for at most one value of j,

and so it suÆes to onsider only labelings where at most one V

j

is free.

We extend the notion of a harge of a vertex, as follows. The extended harge of a vertex

v with respet to an extended labeling is the sum of the basi harges of v with respet to

eah of the p oordinates of this extended labeling.

The ombining stage uses dynami programming on a table Q, whose entries are of the

form Q(i; k; g), as follows. i is a tree node. k = (k

1

; : : : ; k

p

), where k

j

is the desired size

of the jth part and

P

j

k

j

= jV

i

j. g = (g

1

; : : : ; g

p

) where g

j

is a guess list that ontains the

jth label of every marked anestor of i. An entry Q(i; k; g) ontains the optimal solution

to the following problem: Choose a partition of V

i

into subsets with sizes aording to k,

and hoose a labeling from F that agrees with g, so that the sum of the extended harges

of all the verties of V

i

with respet to the hosen labeling, is minimal over all suh hoies.

Note that this problem requires some orrelation between p uts, and therefore Q(i; k; g) is

generally not equal to

P

j

Q(i; k

j

; g

j

) (where Q is the basi table).

The rules for omputing the entries of the table Q are a straightforward extension of

those for the table Q (see Setion 2.4.4). The algorithm omputes all the table entries and

then outputs min

g

Q(i

root

; k; g) where k = (n=p; : : : ; n=p).

The running time of this modi�ed algorithm is polynomial in n (for �xed p). Indeed,
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the deomposition stage and the labeling stage are exatly as in the algorithm for the basi

bisetion problem, so let us onsider the dynami programming table Q of the ombining

stage. The number of tree nodes i is O(n), and the range of k ontains at most n

p

possible

values. The vetor g ontains one of p + 1 possible values for eah of the O(logn) marked

anestors (of the relevant tree node i), so g assumes one of n

O(log p)

values. It follows that

the size of the table Q is n

p+O(log p)

. Eah table entry is omputed eÆiently from previously

omputed entries, and hene the ombining stage takes polynomial time.

To analyze the approximation ratio, let V

1

; : : : ; V

p

be the optimal partition of the input

graph into p parts of equal size. Reall that the extended harge of a vertex is the sum of its

basi harges with respet to eah ut (V

j

; V n V

j

), and we an therefore apply the analysis

of the basi algorithm for eah ut (V

j

; V n V

j

) separately. It follows that the output value

is guaranteed to be at most O(log

2

n) �

P

j

e(V

j

; V n V

j

). Furthermore, one an obtain from

the table Q a ut (into p parts of equal size) whose ost is at most (half) this value, i.e.

within a ratio of O(log

2

n) from the minimum.

2.5.6 Biriteria approximation and balaned uts

Suppose that we wish to �nd a 2/3-balaned ut (reall that a ut is alled �-balaned if

it partitions the graph into two parts, eah of size at most �n) whose ost is guaranteed

to be small relative to the minimum ost b of a bisetion (i.e. a 1/2-balaned ut). Here,

the minimum bisetion problem is relaxed in two respets, as the solution ut is allowed

to have ost larger than b and also to deviate from the ardinality onstraints (for its two

sides). Algorithms for suh problems are sometimes referred to as biriteria approximation

and sometimes as pseudo-approximation.

Known biriteria approximation algorithms �nd a 2/3-balaned ut whose ost is at most

O(b logn). Leighton and Rao [LR88, LR99℄ show how an algorithm that �nds a � approxi-

mate min-ratio ut an be used to �nd a 2/3-balaned ut of ost O(b�); the approximation

ratio � = O(logn) that they ahieve is the best urrently known, see also [Shm97℄. Even,

Naor, Rao and Shieber [ENRS97℄ devise a di�erent algorithm that also �nds a 2/3-balaned

ut of ost O(b logn).

We show below that amortized uts an be used to obtain also biriteria approximation

algorithms (in addition to approximation algorithms) for minimum bisetion. In fat, our

algorithm is similar to the one of [LR88, LR99℄, exept that we use amortized uts instead

of approximate min-ratio uts.

Lemma 2.17. An algorithm that �nds a �-amortized ut an be used to �nd a 2/3-balaned

ut of ost b(1 +O(�)).

Proof. Given an input graphG(V;E) on n verties, use the algorithm that �nds a �-amortized

ut, as follows. Repeatedly �nd (in the graph) a �-amortized ut and remove (from the graph)

the smaller of its two sides, until the graph ontains no more than 2n=3 verties. Denoting

by S the set of verties that remain in the graph after the last iteration, output the ut

(S; V n S).

It is straightforward to see that n=3 < jSj � 2n=3, and hene the output ut (S; V n S)

is a 2/3-balaned ut. We prove below that the total ost of all edges ut by the amortized
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uts (throughout the iterations) is at most b(1 + O(�)). It would then follow immediately

that e(S; V n S) � b(1 +O(�)), as required.

We now upper bound the total ost of all edges ut in the amortized uts. Let (W;B)

be a �xed optimal bisetion of ost b, and all the verties of W white, and the verties of

B blak. The total ost of white-blak edges ut is learly at most b. We show below that

the total ost of all white-white edges ut is O(b�). By the symmetry between W and B,

we will then have a similar upper bound on the total ost of the blak-blak edges ut, and

obtain the desired upper bound of b(1 +O(�)) on the total ost of all edges ut.

To show that the total ost of white-white edges ut in the amortized uts is O(b�), we

onsider the white verties W as harged in all the amortized uts, and then white-white

edges are harged-harged edges. The algorithm applies a �-amortized ut in parts of G that

ontain at least 2n=3 verties. At least n=2 � n=3 = n=6 of the verties in suh a part are

blak, while at most n=2 of them are white, and hene at most 3/4 of the verties in this

part are onsidered harged. Taking a onstant � � 3=4 in the de�nition of an amortized

ut, we have that the ost of the harged-harged edges ut an be amortized in one of two

amortization methods (see Setion 2.2).

In one amortizationmethod the ost of the harged-harged edges ut is amortized against

harged-free edges in the smaller side of the ut, with amortized ost at most �. Observe

that an edge an be in the smaller side of the amortized ut (the side that is removed) in at

most one iteration, so the total ost amortized in this method (in all the iterations) against

one harged-free edge is at most �. Hene, the total ost amortized in this method (in all

the iterations) is at most b�.

In the other amortization method the ost of the harged-harged edges ut is amortized

against harged-free edges in the part being divided, with amortized ost at most �jC

1

j=jCj,

where C denotes the harged verties in the part being divided and C

1

denotes the harged

verties in the smaller side of the ut. The total ost amortized in this method (in all

the iterations) against one harged-free edge is then upper bounded by � times the sum of

jC

1

j=jCj over all iterations. Reall that the harged verties are the white verties, and so

jCj � n=6 in all amortized uts (i.e. iterations). Furthermore, eah vertex is in the smaller

side of the ut (the side that is removed) in at most one iteration, and so the sum of jC

1

j

over all iterations is at most n=2. It follows that the total ost amortized in this method

(in all the iterations) against one harged-free edge is at most 3�, and hene the total ost

amortized in this method is at most b � 3�.

We onlude that the total ost of all harged-harged (i.e. white-white) edges ut in all

the iterations is at most b �4�. As desribed above, this proves that the total ost of all edges

ut in all the iterations is at most b(1 + 8�) = b(1 +O(�)), and the lemma follows.

We remark that a 2/3-balaned ut of ost b(1 + O(�)) an be found also by modifying

the algorithm we devised for the basi bisetion problem so that its ombining stage outputs

min

g;n=3�k�n=2

Q(i

root

; k; g) (and its orresponding ut). Indeed, the proof of Lemma 2.17

shows a 2/3-balaned ut whose harge (with respet to a ertain labeling in F) is at most

b(1 +O(�)). Details omitted.
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2.6 Cutting a few verties from a graph

In this setion we present a randomized algorithm for approximating the minimum (k; n�k)

ut problem when k is relatively small. In partiular, we prove Theorem 2.3 by showing that

for an arbitrary �xed � > 0, the algorithm �nds, with high probability, a (k; n�k) ut whose

ost is at most (1 + �k= lnn)b

k

. The algorithm appears in Setion 2.6.1. Some extensions of

this algorithm are desribed in Setion 2.6.2.

Tehniques. Our algorithm utilizes random edge ontration and dynami programming.

Random edge ontration was introdued by Karger and Stein [KS96℄ to devise eÆient

algorithms for the minimum ut problem. Eah iteration of their algorithm selets an edge

at random and merges its endpoints, so as to form lusters of verties. If no edge of a �xed

minimum ut (S; V n S) is ever ontrated, then every luster is ontained entirely either in

S or in V n S. When only two lusters remain, they orrespond to the �xed minimum ut.

It an be shown that there is a notieable probability that no edge of the �xed minimum ut

is ever ontrated, and then the algorithm sueeds.

Our algorithm also applies random edge ontrations iteratively, but instead of requiring

that only two lusters remain, we stop at an earlier point, in whih we are guaranteed that

dynami programming will �nd a nearly minimum (k; n � k) ut. The algorithm atually

does not know the \right" stopping point, and therefore tries all possible stopping points

(taking the best solution).

2.6.1 A randomized algorithm

Our algorithm for �nding a (k; n � k) ut (of nearly minimum ost) uses the random edge

ontration tehnique of Karger and Stein [KS96℄. It onsists of repeating the following

algorithm Contrat suÆiently many times in order to amplify its suess probability.

Algorithm Contrat works in iterations, where eah iteration onsists of (i) a random

edge ontration stage followed by (ii) a ombining stage that omputes a ut of the graph

that orresponds to a (k; n� k) ut of the input graph. (Both stages are desribed below).

The algorithm proeeds with the iterations until there are no edges in the graph (to ontrat)

and then it outputs a ut of minimum ost among all (k; n� k) uts found throughout the

iterations (if any).

Let us now desribe in more detail the two stages that form an iteration of algorithm

Contrat. A shemati desription of the algorithm appears in Figure 2.7.

In the ontration stage we hoose an edge uniformly at random and ontrat it by

merging its two endpoints. If as a result there are several edges between some pairs of

(newly formed) verties (i.e. parallel edges), we retain them all. Edges between verties that

were merged are removed, so that there are never any self-loops.

We refer to the verties of the formed graph as lusters. Eah luster is a set of verties

(of the input graph) merged together. Note that the edges inside a luster are removed from

the graph. The size of a luster is the number of verties in it, and its degree is the number

of edges leaving the luster.
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In the ombining stage we �nd in the graph (of the urrent iteration) a set of lusters

whose total size is exatly k, and for whih the sum of luster degrees is minimal. Note that

any set of lusters, and in partiular the one that we �nd, orresponds to a (k; n� k) ut (of

the input graph) whose ost is no more than the sum of degrees of these luster.

It is straightforward to see that the ombining stage an be implemented in polynomial

time using dynami programming, see e.g. [CLR90, Chapter 16℄.

Algorithm Contrat.

Input: Graph on n verties and a number k.

Output: (k; n� k) ut in the graph.

1. While the graph ontains edges, do

1.1. edge ontration stage;

1.2. ombining stage to �nd a (k; n�k) ut.

2. Output the ut of minimum ost among the

uts found in step 1.2 (if any).

Figure 2.7: Algorithm for �nding a (k; n� k) ut

Lemma 2.18. The running time of algorithm Contrat is polynomial in n.

Proof. Eah edge ontration dereases the number of verties by 1, and thus the number of

iterations is bounded by n. Eah iteration takes a polynomial time and the proof follows.

We analyze the suess probability of the algorithm based on the following desired se-

nario. Suppose that the edges hosen to be ontrated do not belong to a �xed optimum ut

(S; V n S), i.e. these edges are either inside S or inside V n S, until at some point the edges

inside S (that remain in the graph) have a small ost relative to the ost of the optimum

ut. At this point, it an be seen that the ombining stage must �nd a (k; n� k) ut (of the

input graph) whose ost is nearly optimal.

Lemma 2.19. For every (not neessarily �xed) � > 0, algorithm Contrat outputs a

(k; n� k) ut whose ost is at most (1 + �k)b

k

with probability at least e

�2=�

.

Proof. For the analysis, �x one ut (S; V n S) with jSj = k whose ost b

k

is minimum. Note

that algorithm Contrat is not aware of this ut.

Consider a run of the algorithm, and let A

t

(for 0 < t < n) be the event that the graph

G

t

resulting from the �rst t ontrations satis�es the following two onditions:

(a) The total ost of edges of G

t

with both endpoints in S is at most �kb

k

=2.

(b) No luster of G

t

ontains verties both from S and from V n S.

Equivalently,
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(b') None of the �rst t ontrated edges belongs to the optimum ut (S; V n S).

We laim that if the event A = [

t

A

t

happens then the algorithm sueeds, i.e. �nds a

(k; n � k) ut of ost at most (1 + �k)b

k

. Indeed, assume that the event A

t

happens and

onsider the ombining stage of iteration t, whih is performed on G

t

. >From (b) we have

that every luster in G

t

is either a subset of S or a subset of V n S. Therefore, the lusters

ontained in S have together all the verties of S, and thus their total weight is k. >From (a) it

follows that the sum of degrees of these lusters (inG

t

) is at most b

k

+2(�kb

k

=2) = b

k

(1+�k).

The ombining stage of iteration t will therefore �nd a set of lusters of total weight k and

whose sum of luster degrees is no larger, whih gives a (k; n� k) ut (of the input graph),

with ost at most b

k

(1 + �k).

We next lower bound the probability of the event A. Let us say that an iteration is

suessful if the edge hosen to be ontrated is inside S, a ruin if it is from the optimum

ut (S; V n S), and void if it is inside V n S. By (a) and (b'), the event A is equivalent to

saying that the ost of edges inside S redues to �kb

k

=2 or less before any ruin iteration

ours. In this sense, the event A is a�eted by the suessful and ruin iterations, but not by

the void iterations. In other words, we need to ompute the probability that an iterations is

suessful onditioned on the iteration not being void. As long as the ost of edges inside S,

denoted jE

S

j, is more than �kb

k

=2, the onditioned probability for a suessful iteration is

jE

S

j

jE

S

j+ b

k

=

 

1 +

b

k

jE

S

j

!

�1

�

 

1 +

1

�k=2

!

�1

:

For the event A to happen we need that the �rst k � 1 or less iterations that are not void

will all be suessful, and thus

Pr[A℄ �

 

1 +

1

�k=2

!

�(k�1)

> e

�

2(k�1)

�k

> e

�2=�

:

The probability that the algorithm outputs a (k; n� k) ut of ost at most b

k

(1 + �k) is

at least Pr[A℄ > e

�2=�

, as laimed.

For example, taking � = �= lnn for a �xed � > 0 we obtain the following.

Corollary 2.20. For every �xed � > 0, with probability at least n

�2=�

, algorithm Contrat

outputs a (k; n� k) ut whose ost is at most (1 + �k= lnn)b

k

.

We an amplify the above suess probability by repeating algorithm Contrat poly-

nomially many (roughly n

2=�

) times and taking from all the repetitions the ut of minimum

ost. We then obtain Theorem 2.3.

2.6.2 Extensions

Edge osts. Suppose that the edges of the input graph have arbitrary nonnegative osts,

and let the ost of a ut be the total ost (i.e. sum of the osts) of its edges.

Our results for approximating the minimum (k; n � k) ut extend to this ase of edge

osts. The algorithm should be modi�ed so that that the probability of hoosing an edge

(for ontration) is proportional to its ost, and that the degree of a luster is the ost of

the edges leaving the luster. The proof follows.
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s�t uts. Suppose that the graph ontains two speial verties s; t that must be separated,

i.e. we wish to �nd a minimum ost ut (S; V n S) with jSj = k, s 2 S and t 2 V n S.

Unlike the minimum ut algorithm of Karger and Stein [KS96℄ that does not extend to

s� t uts (see e.g. [MR95, Problem 1.8℄), our approximation ratio does extend to this s� t

ut variant of the problem. The proof follows by modifying the ombining stage to onsider

only lusters that do not ontain t and suh that at least one of them ontains s.

Vertex weights. Suppose that the verties of G have nonnegative integer weights. A

w-ut uts away verties of total weight w, i.e. it is a ut (S; V n S) for whih the sum of

weights of S is w. Let b

w

be the minimum ost of a w-ut.

We onsider the problem of �nding a nearly optimal w-ut, i.e. whose ost approximates

b

w

. We assume that the vertex weights are bounded by a polynomial in n, sine for expo-

nential vertex weights it is NP-hard to deide whether G ontains a w-ut (as this is simply

the subset-sum problem).

Let b

w;k

be the minimum ost of a ut that uts away k 2 f1; : : : ; n� 1g verties of total

weight w (and 1 if no suh ut exists). Modifying the ombining stage to �nd a w-ut

(using dynami programming), it is straightforward to extend the proof of Lemma 2.19 and

show that if b

w;k

is �nite then with probability at least e

�2=�

algorithm Contrat �nds a

ut of ost at most (1 + �k)b

w;k

. By taking suÆiently many repetitions with � = �= logn

for a �xed � > 0, we onlude that one an �nd in polynomial time a w-ut whose ost is at

most min

k

f(1 + �k= logn)b

w;k

g with high probability. Note that the minimum in the latter

bound is not neessarily obtained at a value of k for whih b

w;k

= b

w

.

2.7 Conluding remarks.

Designing an algorithm that �nds a ut of amortized ost better than O(logn) remains

an important open question. An eÆient algorithm that aomplishes that will not only

improve the approximation ratio for minimum bisetion (by Theorem 2.5), but also the

biriteria approximation ratio for minimum bisetion (by Lemma 2.17), whih will lead, in

turn, to improved approximation ratios for many other problems, see [LR99, Setion 3℄.

Finding a ut whose amortized ost is better than O(logn) is, in a sense, no harder (and

possibly easier) than approximating min-ratio uts within a ratio better than O(logn), as the

former problem is reduible (by Theorem 2.4) to the latter. Furthermore, an O(1)-amortized

ut always exists (by Corollary 2.7), and we know of no hardness result for the problem of

�nding suh a ut.
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Chapter 3

Heuristis for maximum lique

�

3.1 Introdution

Let G(V;E) be a graph on n verties. A lique in G is a subset of the verties every two of

whih are onneted by an edge. The maximum lique problem requires to �nd a lique of

maximum size in an input graph G. The lique number of G denoted !(G), is the maximum

size of a lique in G.

An independent set (a.k.a. stable set) in G is a subset of the verties no two of whih are

onneted by an edge. The maximum independent set problem requires to �nd an indepen-

dent set of maximum size in an input graph G. The independene number (a.k.a. stability

number) of G denoted �(G), is the maximum size of an independent set in G. It is straight-

forward that a lique in G forms an independent set in the edge omplement graph G, so

!(G) = �(G). It follows that the maximum lique problem and the maximum independent

set problem are equivalent in many respets, inluding in our ontext. For onsisteny with

the related literature, we refer to one problem in some parts and to the other problem in

others.

The maximum lique problem is fundamental in the area of ombinatorial optimization,

and is losely related, in addition to the maximum independent set problem, also to the

vertex over problem (the vertex omplement of an independent set) and the hromati

number problem (minimum over by independent sets). The maximum lique problem (or

even �nding !(G)) is one of the �rst problems shown to be NP-hard [Kar72℄.

A ommon way to ope with NP-hardness of a problem is to devise algorithms that give

approximate solutions. An eÆient (i.e. polynomial time) algorithm is said to have an

approximation ratio r > 1 for the maximum lique problem if for every input graph, the

ratio between !(G) and the size of the lique returned by the algorithm is at most r = r(n).

It is known through work ulminating in [H�as99℄ that for any �xed � > 0 it is impossible

to approximate the lique number !(G) within a ratio of n

1��

, unless NP has randomized

polynomial time algorithms (NP=ZPP). The best approximation algorithm that is known

for !(G), due to [BH92℄, has approximation ratio O(n= log

2

n).

The intratability of the maximum independent set problem in the worst ase suggests

�

This hapter is based on [FK00a℄ and on [FK01b℄.
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studying the performane of algorithms on average instanes. A possible rigorous desription

of average instanes is by probabilisti models, see e.g. the survey [FM97℄ on average-ase

analysis of several graph algorithms on random graphs.

The problem of �nding a maximum lique on a random graph appears to be diÆult.

Let G

n;1=2

denote the random graph of n labeled verties obtained by hoosing, randomly

and independently, eah pair of verties to be an edge with probability 1/2. It is known

that the lique number of G

n;1=2

is roughly 2 log

2

n, almost surely, i.e. with probability that

approahes 1 as n tends to in�nity. Several simple and natural algorithms (e.g. the greedy

one) �nd a lique of size roughly log

2

n, almost surely. However, no algorithm is known to

�nd eÆiently an independent set of size signi�antly larger than log

2

n, see [Kar76℄. Finding

liques of size

3

2

log

2

n in random graphs was even suggested as a hard omputational problem

on whih to base ryptographi appliations, see [JP00℄.

The hidden lique problem. Jerrum [Jer92℄ and Ku�era [Ku�95℄ suggested indepen-

dently the following hidden lique problem. A random graph G

n;1=2

is hosen and then a

lique of size k is randomly plaed in the graph and we wish to �nd in this graph, denoted

G

n;1=2;k

, a maximum lique. Jerrum showed that the Metropolis proess will not �nd the

lique when k = o(

p

n). Ku�era observed that when k > 

p

n logn for an appropriate on-

stant , the verties of the planted lique would almost surely be the ones with the largest

degrees in G, and hene it is easy to reognize them eÆiently. Alon, Krivelevih and Su-

dakov [AKS98℄ showed an algorithm that almost surely �nds the planted lique whenever

k � 
(

p

n). Their algorithm is based on spetral properties of the graph, namely, it uses

the eigenvetor that orresponds to the seond largest eigenvalue of the adjaeny matrix of

the graph.

Performane guarantees for heuristis. A major motivation for studying various prob-

abilisti input models in general is to evaluate algorithms performane in real-life applia-

tions. It would be enouraging if we ould rigorously show that really diÆult instanes are

very rare, and we are more likely to enounter in pratie a \solvable" instane. However, it

is diÆult to establish a onnetion between probabilisti input models and instanes that

our in pratie. For example, random graph models are usually highly regular (all verties

are of roughly the same degree). While most graphs indeed have this property, real-life

instanes not neessarily do. It is therefore desirable to have an algorithm whih is e�etive

on a wider range of instanes.

One approah to enrih the lass of solvable instanes is to onsider a semi-random model,

in whih the input is generated by a mixture of random and adversarial hoies. Blum

and Spener [BS95℄ introdued two variants of the semi-random model. In one variant, an

adversary makes its hoies for the graph edges, but eah of these hoies is ipped with

some small probability (\noise"). In the other variant, a random graph is hosen �rst, and

then an adversary an modify this graph subjet to some restritions. This last variant of

the semi-random model was formalized by Feige and Kilian [FK01a℄ as a sandwih model.

First, two instanes G

min

and G

max

, both ontaining the same planted lique of size k, are

generated using random deisions. Then, an adversary is allowed to hoose any graph G

�

whih is sandwihed in between, i.e. G

min

� G

�

� G

max

, where inlusion is with respet to
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edges.

The algorithm of Feige and Kilian [FK01a℄ �nds a lique of linear size (k = 
(n)), in

the following sandwih setting. G

min

is the empty graph exept a lique of size k. G

max

is the omplete graph exept for roughly n logn random missing edges hosen from those

edges onneting the (same) lique and the rest of the graph. An adversary then hooses

G

min

� G

�

� G

max

, and thus has omplete ontrol over the edges whih are not adjaent to

the lique verties, and large ontrol over the edges onneting the lique to the rest of the

graph. The algorithm of [FK01a℄ uses semide�nite programming and mathings tehniques

and �nds, almost surely, a lique of k verties in the graph.

Sine average-ase algorithms do not have an a priori guarantee on their performane,

it is important to ertify that the algorithm is indeed suessful on the partiular instane

at hand. Boppana [Bop87℄ shows an algorithm with suh a erti�ation property for the

minimum bisetion problem (see also [FK01a℄). The algorithm outputs a bisetion together

with a lower bound on the size of the optimal bisetion. The analysis shows that the output

bisetion and lower bound are equal, almost surely, in whih ase the algorithm proves the

optimality of its output bisetion.

We present an algorithm for �nding a lique of size k � 
(

p

n) planted in a random

graph G

n;1=2

. Our algorithm improves over the algorithm of [AKS98℄ in two respets:

1. Extends to a semi-random model, where an adversary may remove edges from G

n;1=2;k

(the graph of [AKS98℄), exept for the edges forming the planted lique of size k. In

the sandwih model terminology, let G

max

= G

n;1=2;k

be the graph of [AKS98℄, and let

G

min

be the empty graph exept the same lique of size k. Then our algorithm �nds a

lique of size k in an arbitrary graph G

�

sandwihed in between G

min

and G

max

, almost

surely over the distribution of G

min

and G

max

. Observe that in this sandwih model,

the verties of the lique will not neessarily have higher degree, even if k �

p

n logn,

so also the algorithm of Ku�era would not work in this model.

2. Certi�es optimality of its solution. Using a semide�nite programming relaxation of the

lique problem, the algorithm provides an upper bound on the size of the maximum

lique in the graph. The upper bound mathes, almost surely, the solution of the

algorithm, proving that the lique output by the algorithm is the optimal one.

3.1.1 Semi-random model for the hidden lique problem

We study heuristis for the following sandwih model of the hidden lique problem. The

semi-random graph G

�

on n labeled verties is onstruted by a ombination of random and

adversarial deisions, as follows.

1. Random graph: for any pair of verties i; j the edge (i; j) is plaed in the graph with

probability 1/2. This gives the random graph G

n;1=2

.

2. Planted lique: a subset Q of k verties is hosen at random. Let G

min

be the empty

graph exept a lique on the verties of Q. Let G

max

be the random graph G

n;1=2

with a

planted lique on the verties of Q (i.e. an edge is fored between every pair of verties

in Q). G

max

is the G

n;1=2;k

graph of [AKS98℄.
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3. Adversarial omponent: having omplete knowledge of G

max

, an adversary may remove

from the graph arbitrary edges exept those whih form the lique on Q (i.e. it is not

allowed to remove edges both of whose endpoints are in Q). This gives the input graph

G

�

whih is sandwihed in between G

min

and G

max

.

Both graphs G

min

; G

max

ontain the same lique Q, and thus any sandwihed graph G

�

must also have a lique on Q. An adversary an remove any of the edges of G

max

outside

the lique Q, so it has ontrol over roughly half of all possible edges in the graph.

Observe that the algorithm is essentially required to output G

min

. The adversary is given

G

max

and may only remove edges, as long as G

�

still ontains G

min

. Thus, it may appear as

if the adversarial moves only make the problem easier. Nevertheless, many algorithms that

would reover a large lique in G

max

would fail on G

�

. A major motivation for the sandwih

graph model is to identify those algorithms whih are robust enough to withstand suh an

adversarial \help".

3.1.2 Relaxations of the problem

Lov�asz theta funtion. A well known relaxation of the independent set problem is the

theta funtion of a graph #(G), introdued by Lov�asz [Lov79℄ (see also [GLS93, Chapter

9℄ or Knuth's survey [Knu94℄). The formulation of the theta funtion as a semide�nite

program implies that, up to arbitrary preision, it an be omputed in polynomial time,

see e.g. [GLS93℄. Note that the equivalene between the independent set problem and the

lique problem through the edge omplement graph G, implies that #(G) is an eÆiently

omputable relaxation of the lique number !(G).

In terms of approximation ratio, the theta funtion appears to have little to o�er. The

ratio between #(G) and the lique !(G) an be as large as n

1�o(1)

, as shown in [Fei97℄.

Indeed, Hastad [H�as99℄ shows that no polynomial time omputable funtion approximates

!(G) within a ratio of n

1��

, unless NP has random polynomial time algorithms.

Also on the average there is a gap between the Lov�asz theta funtion #(G) and the lique

!(G). While the lique number of a random graph G

n;1=2

is almost surely roughly 2 log

2

n,

see e.g. [AS92℄, it is shown by Juh�asz [Juh82℄ that the value of the theta funtion is almost

surely �(

p

n).

Our approah is motivated by Juh�asz' result [Juh82℄ that the theta funtion of a random

graph G

n;1=2

is �(

p

n), almost surely. When a lique of size k � 

p

n, for a suÆiently large

onstant  > 0, is planted in a random graph, the theta funtion (being a relaxation) must

inrease to at least k. Furthermore, it is plausible that suh a notieable inrease in the theta

funtion will allow to �nd the planted lique. Indeed, we show that on this graph, whih is

the hidden lique graph G

n;1=2;k

, the value of the theta funtion is almost surely exatly k,

and then we an �nd (with some extra work) the planted lique.

In ontrast, when a lique of size k = o(

p

n) is planted in a random graph, the mono-

toniity properties of the theta funtion, see e.g. [Knu94, Setions 18-19℄), guarantee that

its value an only inrease, but not by more than k. It follows that on the hidden lique

graph G

n;1=2;k

, the value of the theta funtion is also almost surely �(

p

n), and it is therefore

possible that the planted lique has no notieable e�et on the theta funtion.
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A possible diretion for extending the above approah to a planted lique of smaller

size k = o(

p

n), is to use a relaxation that is stronger than the Lov�asz theta funtion. In

partiular, it is desirable to obtain a relaxation whose value on a random graph G

n;1=2

is

almost surely o(

p

n).

The general Lov�asz-Shrijver tehnique. Lov�asz and Shrijver [LS91℄ propose a gen-

eral tehnique for obtaining stronger and stronger relaxations of 0-1 integer programming

problems. They devise several proedures, alled matrix-ut operators, that produe from

a onvex (e.g. linear programming) relaxation P � [0; 1℄

n

of the problem, a onvex set

that is an improved relaxation for the 0-1 vetors in P . That is, the resulting onvex set

is ontained in P and ontains all the 0-1 vetors in P . The matrix-ut operators follow a

lift-and-projet approah; they lift the onvex relaxation P into a higher (quadrati) dimen-

sion by introduing new variables and new onstraints, and projet it bak into the original

spae.

The two main matrix-ut operators of Lov�asz and Shrijver [LS91℄ are denoted by N

and N

+

. The di�erene between the two operators is that the lifting of the latter involves,

in addition, a positive semide�nite onstraint. That is, if P is a linear programming re-

laxation, then N(P ) is also a linear programming relaxation, while N

+

(P ) is a semide�nite

programming relaxation.

The matrix-ut operators an be applied iteratively, say r � 0 times, and the iterated

operators are denoted N

r

and N

r

+

. The N-rank of a onvex relaxation P is de�ned as the

number of iterations of the N operator, that are needed to obtain the onvex hull of the 0-1

vetors of P (i.e. a perfetly tight relaxation). The N

+

-rank is de�ned similarly. Lov�asz

and Shrijver [LS91℄ show that the N -rank of a relaxation is always at most the dimension

(i.e. number of variables) d. The N

+

operator is a strengthening of the N operator, and

hene also the N

+

-rank is always at most d. Goemans and Tun�el [GT00℄ and Cook and

Dash [CD00℄ show that there exist relaxations whose N

+

-rank meets the upper bound d.

Furthermore, Lov�asz and Shrijver [LS91℄ show that the N and N

+

operators have the

following important algorithmi property. If one an eÆiently optimize (linear objetive

funtions) over a relaxation P , then it is possible to eÆiently optimize over the relaxation

produed from P by the operator. It follows that for every �xed r � 0, the iterated operators

N

r

and N

r

+

also satisfy this property.

Strong relaxations for maximum independent set. To obtain relaxations of the max-

imum independent set problem, Lov�asz and Shrijver [LS91℄ apply their general tehnique

of matrix-ut operators on a lassial linear programming relaxation FRAC of the prob-

lem. The relaxation FRAC is a linear program of polynomial size, and hene for every �xed

r � 0, one an eÆiently optimize over N

r

+

(FRAC). In ontrast, the dimension (i.e. number

of variables) d of FRAC is the number of verties n in the graph, and hene optimizing over

N

n

(FRAC) is NP-hard.

Lov�asz and Shrijver [LS91℄ show that the semide�nite programming relaxationN

+

(FRAC)

is at least as strong as the Lov�asz theta funtion. It follows, for example, that for any graph

on whih the theta funtion is not tight, the relaxation N

r

+

(FRAC) for r � 2 is stronger

than the theta funtion.
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The N-rank of a graph is de�ned as the N -rank of the relaxation FRAC. The N

+

-rank is

de�ned similarly. It follows that for graphs with bounded N

+

-rank, the stable set problem

an be solved in polynomial time. This inludes, in partiular, perfet graphs, sine their

N

+

-rank is at most 1 by the above onnetion to the theta funtion.

Stephen and Tun�el [ST99℄ study the ase where the graph G on n verties is the line

graph of an h-vertex graph H. They show that the N

+

-rank of G is at most bh=2, and

that this bound is met if H is a omplete graph on an odd number of verties, in whih ase

n =

�

h

2

�

and the N

+

-rank of G is 
(

p

n). Note that stable sets in G orrespond to mathings

in H, and that a maximum weight mathing an be found eÆiently; it follows that there

are graphs with unbounded (and rather large) N

+

-rank in whih the (weighted) stable set

problem an be solved in polynomial time.

3.1.3 Our results

We present an algorithm for the semi-random model of the hidden lique problem of Se-

tion 3.1.1. Our algorithm is based on the Lov�asz theta funtion, and its performane is

summarized in the next theorem. Throughout, we say that an event ours almost surely

if its probability, over the distribution of G

max

, tends to 1 when n ! 1. The adversarial

omponent is, of ourse, always assumed to have the worst possible e�et.

Theorem 3.1. For any k = 
(

p

n), there is a polynomial time algorithm that, given a

semi-random graph G

�

, outputs, almost surely, a lique of size k together with a tight upper

bound of k on the size of the largest lique in G

�

.

The key to the proof of Theorem 3.1 is the following lemma, that haraterizes the value

of the theta funtion on a random graph with a planted lique of a suÆiently large size k.

Note that this graph is exatly the graph G

max

of our semi-random model. Throughout, the

term with extremely high probability will be used to denote a probability 1 � e

�n

r

for some

onstant r > 0.

Lemma 3.1. Let G = G

n;1=2;k

= G

max

, where k > 

0

p

n for a large enough onstant 

0

. Then

with extremely high probability #(G) = k.

We also examine the asymptoti behavior on a random graph G

n;1=2

of relaxations of

Lov�asz and Shrijver [LS91℄℄ that are stronger than the theta funtion. In partiular, we

show that the typial value of the semide�nite programming relaxation N

r

+

(FRAC) on a

random graph is, loosely speaking, \roughly"

q

n=2

r

for r = o(logn). We note that this

haraterization answers (up to a onstant fator) a question of Knuth [Knu94, Setion

37,Problem P6℄.

Theorem 3.2. For every �xed Æ > 0 and r = o(logn), the value of the relaxation N

r

+

(FRAC)

on a random graph G

n;1=2

is at least

q

n=(2 + Æ)

r+1

and at most 4

q

n=(2� Æ)

r+1

, almost

surely.

Reall that the strongest relaxations of Lov�asz and Shrijver [LS91℄ whose value is known

to be eÆiently omputable are N

r

+

(FRAC) for r = O(1). Theorem 3.2 shows that on
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a random graph, the typial value of these relaxations is smaller than that of the theta

funtion by no more than a onstant fator. In the hidden lique problem, the planted lique

size k that a heuristi an handle an be improved by an arbitrarily large onstant fator

using a method of [AKS98℄, and therefore it appears that the improvement o�ered by these

stronger relaxations an be ahieved by other methods.

We use Theorem 3.2 to haraterize, up to a onstant fator, the typial N

+

-rank of a

random graph G

n;1=2

.

Theorem 3.3. The N

+

-rank of a random graph G

n;1=2

is almost surely �(logn).

Our results for the N

+

operator extend to a somewhat stronger variant of the matrix-

ut operators of Lov�asz and Shrijver [LS91℄. This operator, that we denote by N

FR+

, is

speialized for the maximum independent set problem and retains the important algorithmi

property of N

+

that an eÆient optimization over P implies an eÆient optimization over

N

FR+

(P ).

Organization. Setion 3.2 proves Lemma 3.1, by using a known formulation of the theta

funtion as an eigenvalue minimization problem. This formulation an be interpreted as

duality of semide�nite programming, see e.g. [Ali95℄.

Setion 3.3 gives a proof of Theorem 3.1, based on Lemma 3.1. In Setion 3.4.2 we address

the ase where the size of the planted lique is k > 

0

p

n (where 

0

is as in Lemma 3.1), and

show that a diret appliation of Lemma 3.1 gives an algorithm that reognizes, almost surely,

the verties of the planted lique in G

max

. In Setion 3.3.2 we use an idea from [AKS98℄

to extend this algorithm to the ase k � 

p

n for  < 

0

. It will follow quite easily in

Setion 3.3.3 that our algorithm has two additional performane guarantees, whih are the

robustness against the sandwih model adversary and a erti�ate (almost surely) for the

optimality of its solution. In Setion 3.3.4 we disuss the extension of the algorithm to a

random graph with edge probability di�erent than 1/2.

Setion 3.4 gives a tehnial desription of the matrix-ut operators of Lov�asz and Shri-

jver [LS91℄ (inluding our variant N

FR+

), and is intended mainly to readers who are unfa-

miliar with these operators. We present the formal de�nitions in Setion 3.4.1, ollet some

basi properties in Setion 3.4.2, and review known bounds on the N -rank and N

+

-rank in

Setion 3.4.3.

Setion 3.5 desribes our results on matrix-uts in a random graph. The lower bound

on the value of the relaxation N

r

+

(FRAC) is shown in Setion 3.5.1, and the upper bound is

shown in Setion 3.5.2.

Preliminaries. Throughout, we omit the graph G(V;E) if it is lear from the ontext. We

let n denote the number of verties in the graph G, and assume, without loss of generality,

that V = f1; : : : ; ng. For a vertex i in the graph, let �(i) denote the set of the verties that

are adjaent to i in the graph, i.e. �(i) : fj : ij 2 Eg, and let �(S) denote the set of verties

that are adjaent to at least one vertex of S, i.e. �(S) := [

i2S

�(i).

An n� n (real) matrix Y is positive semide�nite if Y is symmetri and x

T

Y x � 0 for all

x 2 IR

n

. It is well-known that a symmetri matrix Y is positive semide�nite if and only if

all the eigenvalues of Y are nonnegative.
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A Gram matrix representation of an n � n matrix Y is a set of real-valued vetors

fv

1

: : : ; v

n

g suh that Y

ij

= v

T

i

v

j

for all i; j. It is well-known that a matrix Y is positive

semide�nite if and only if it has a Gram matrix representation.

3.2 The theta funtion in a hidden lique graph

In this setion we prove Lemma 3.1. Throughout this setion, let us denote by G the

graph G

max

, whih an be equivalently desribed as a random graph G

n;1=2

with a planted

independent set on k randomly hosen verties. Sine G has a (planted) independent set of

size k and the theta funtion is a relaxation of the independent set problem, #(G) � �(G) �

k.

The main part is to show the other diretion, i.e. that with extremely high probability

#(G) � k. The theta funtion has several equivalent formulations (f. [Lov79, GLS93,

Knu94℄. We will use the formulation as an eigenvalue minimization problem:

#

2

(G) = min

M

f�

1

(M)g

where M is an n � n real symmetri matrix with M

ij

= 1 whenever verties i; j are non-

adjaent in G, and �

i

(M) denotes the i-th largest eigenvalue of the matrixM . We derive an

upper bound on #(G) by \guessing" a partiular matrix M , and learly

#

2

(G) � �

1

(M) (3.1)

So it suÆes to show that with extremely high probability, our hoie of M is suh that

�

1

(M) � k.

Assume, without loss of generality, that the verties of the planted independent set are

the �rst k oordinates. Then our hosen M looks like

M =

2

6

6

6

4

J

k

B

t

B C

3

7

7

7

5

=

2

6

6

6

6

6

6

6

4

J

k

1=�1+x

j

1 1=� 1

1

1=�1+x

i

.

.

.

1=� 1 1

3

7

7

7

7

7

7

7

5

where J

k

is the all ones matrix of order k, B

t

is the transpose of B, and B;C are as follows.

Roughly half of the entries of B and C have to be +1 beause they orrespond to pairs of

non-adjaent verties in the graph G. We set all other entries of C to be -1. The remaining

entries of B are hosen so that the sum of eah row of B is 0. At eah row, we hoose

all entries to be equal. Formally, we de�ne the entries of C to be 

ij

= 1 if (i; j) 62 E and



ij

= �1 otherwise (for all k < i; j � n). B is de�ned by b

ij

= 1 if (i; j) 62 E and b

ij

= �1+x

i

otherwise (for all i > k and j � k), where x

i

= (2deg(x

i

; Q)� k)=deg(x

i

; Q), and deg(x

i

; Q)

denotes the number of verties in Q whih are adjaent to x

i

in the graph.

It is easy to see that k is an eigenvalue of M . By our hoie of B the vetor with 1 in

its �rst k entries and 0 otherwise is an eigenvetor whose eigenvalue is k. In order to prove
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that this vetor orresponds to the largest eigenvalue, i.e. �

1

(M) = k, it suÆes to show

that �

2

(M) < k.

Let us desribe M as the sum of three matries M = U +V +W . the three matries are

random but orrelated, as follows.

U is a random 1/-1 symmetri matrix, with 1 on the diagonal.

V is a random 0/2 symmetri matrix in the upper left k� k blok (with 0 in the diagonal),

and 0 otherwise. The matrix V is orrelated with U by v

ij

= 1�uij for all 1 � i; j � k.

W is the orretion matrix for having the row sums of B equal to 0.

U =

2

6

6

6

6

4

1 1=� 1

1

.

.

.

1=� 1 1

3

7

7

7

7

5

V =

2

6

6

6

4

0=2 0

0 0

3

7

7

7

5

W =

2

6

6

6

4

0 0=x

j

0=x

i

0

3

7

7

7

5

From [FK81℄ we know that with probability 1� e

�n

r

for some onstant r > 0:

8i � 1; j�

i

(U)j � 

1

p

n 8i � 2; j�

i

(V )j � 

2

p

k

By the Weyl theorem (f. [HJ85, page 181℄),

�

2

(M) � �

1

(U) + �

2

(V ) + �

1

(W ) � 

1

p

n+ 

2

p

k + �

1

(W ) (3.2)

To bound �

1

(W ), it suÆes to bound Tr(W

2

) beause

Tr(W

2

) =

X

i

�

i

(W

2

) =

X

i

(�

i

(W ))

2

� (�

1

(W ))

2

(3.3)

Sine W is symmetri Tr(W

2

) =

P

i

(W

i

W

t

i

) =

P

i;j

W

2

ij

= 2

P

i<j

W

2

ij

. Look at the i-th row

of B and the orresponding row of W . Let us denote by S

i

(for k < i � n) the number of

non-zero (i.e. x

i

) entries in this row ofW , i.e. S

i

= deg(i; Q). Then Tr(W

2

) = 2

P

n

i=k+1

S

i

x

2

i

.

Reall x

i

was hosen so that the orresponding row sum in B would be zero, so

x

i

= (2S

i

� k)=S

i

Sine S

i

= deg(i; Q) is binomially distributed S

i

� B(k; 1=2), then k = 2ES

i

and we get

Tr(W

2

) = 2

n

X

i=k+1

S

i

((2S

i

� k)=S

i

)

2

= 8

n

X

i=k+1

(S

i

� ES

i

)

2

=S

i

(3.4)

The following Lemma allows us to bound these quantities.

Lemma 3.2. With extremely high probability (at least 1� e

�n

r

for some onstant r > 0)

1.

P

n

i=k+1

(S

i

� ES

i

)

2

� k

3

=96.

2. S

i

� k=3.
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Proof. 1. We shall bound Y =

P

n

i=k+1

(S

i

�ES

i

)

2

by Azuma's inequality, f. [AS92℄. Let

us �rst ompute its expetation:

E(S

i

� ES

i

)

2

= V ar(S

i

) = k=4

EY = (n� k)k=4 � nk=4

Let Y

0

; Y

1

; Y

2

; : : : ; Y

k(n�k)

= Y be a Doob martingale of Y de�ned by exposing one

by one eah of the k(n � k) Bernoulli trials (reall S

i

� B(k; 1=2)). Let us now

bound the Martingale di�erene. To see how an exposure of a single Bernoulli trial

an a�et the �nal result Y , assume that all other Bernoulli trials have been �xed.

The sum Y =

P

i

(S

i

� ES

i

)

2

is then �xed exept for the ontribution of a single S

i

(whih inludes the yet unexposed Bernoulli trial). When that trial is exposed, the

ontribution of the orresponding S

i

will be either (v�ES

i

)

2

or (v+1�ES

i

)

2

, for some

value 0 � v � k=2�1. The di�erene between the two values is maximized when v = 0

or v = k=2�1. The Martingale di�erene is thus bounded by � = (

k

2

)

2

�(

k

2

�1)

2

= k�1.

By Azuma's inequality, for any � > 0

Pr

�

jY

k(n�k)

� EY

k(n�k)

j � ��

q

k(n� k)

�

� 2e

��

2

=2

Take � = n

1=4

to get

Pr

�

jY � EY j � n

1=4

k

q

k(n� k)

�

� e

�

p

n=4

Sine EY � nk=4 and k > 

0

p

n for a suÆiently large onstant 

0

> 0 we onlude

that with extremely high probability, Y � EY +n

3=4

k

3=2

� k

3

=4

02

+ k

3

=

03=2

� k

3

=96,

as laimed.

2. Follows immediately from Cherno� bound:

Pr[S

i

� k=3℄ = Pr[S

i

� 2=3 � ES

i

℄ � e

�k=36

� e

�

0

p

n=36

Using (3.3),(3.4) and Lemma 3.2 we get that with extremely high probability

(�

1

(W ))

2

� Tr(W

2

) < 8 � k

3

=96 � (3=k) = k

2

=4

and using (3.1),(3.2) we arrive at

�

2

(M) � �

1

(U) + �

2

(V ) + �

1

(W ) < 

1

p

n+ 

2

p

k + k=2 < k

as laimed.
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3.3 Algorithm for the hidden lique problem

In this setion we prove Theorem 3.1 and desribe its algorithm, extensively relying on the

result of Lemma 3.1. We shall start with the stritly random model, in whih the input graph

is G

max

and there is no adversary. First (Setion 3.4.2) we address the basi ase of k > 

0

p

n

for a large enough onstant 

0

, where we an easily use Lemma 3.1. Then (Setion 3.3.2) we

improve the result to any k = 
(

p

n). We use the approah of [AKS98℄ of guessing a �xed

number of verties from the planted lique, in order to redue the problem to the basi ase.

Finally (Setion 3.3.3), we show how our analysis easily extends to the semi-random model

with the exat same algorithm.

The monotoniity properties of the theta funtion, f. [Knu94, Setions 18-19℄, are used

throughout this setion. Spei�ally, addition (or removal) of an edge (or a vertex) from a

graph has a monotone e�et on the theta funtion, similarly to the independene number

�(G). For example, adding (resp. removing) an edge may only derease (resp. inrease) the

theta funtion.

Observe that in all ases Q is almost surely the unique maximum lique. Indeed, any

lique ontaining a vertex from V nQ, almost surely ontains at most (1 + o(1))k=2 verties

from Q, and at most 2 logn verties from V nQ, whih is altogether muh smaller that jQj.

3.3.1 The basi ase

In the basi ase we assume that the input graph is G

max

= G

n;1=2;k

(so there is no adversary),

and assume also that k > 

0

p

n for a large enough onstant 

0

.

Finding the lique verties an then be performed by testing separately eah vertex v to

see whether it belongs to the planted lique or not. To test if v belongs to the planted lique,

remove v from the graph G

max

to get the graph G

max

n v, and hek how this removal a�ets

the theta funtion. We an analyze G

max

n v by using the priniple of deferred deisions. If

the vertex v belongs to the planted lique, then G

max

n v has a lique of size k � 1 in an

otherwise random graph. If v does not belong to the planted lique, then G

max

n v has a

lique of size k in an otherwise random graph.

Applying Lemma 3.1 on G

max

and on G

max

n v for all verties v, and using the union

bound we get the following observation.

Observation. With extremely high probability, #(G

max

) = k and

#(G

max

n v) =

�

k � 1 if v belongs to the planted lique;

k otherwise;

This suggests the following simple algorithm for the basi ase:

Algorithm BasiFind.

Input: Graph G = G

max

where k > 

0

p

n for a large enough onstant 

0

.

1. P  fv : #(G n v) < #(G)� 1=2g

2. Output P and #(G).

The disussion above shows that with extremely high probability, the output P of algorithm

BasiFind is the planted lique Q of size k, and #(G) = jP j, proving its optimality.
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Improved Algorithm

The same observation leads to a more eÆient algorithm, whih uses only one omputation

of the theta funtion. The theta funtion has several equivalent formulations, f. [Lov79,

GLS93, Knu94℄, but we will use a partiular geometri maximization form, desribed as #

4

in [GLS93, Chapter 9.3℄, as follows. An orthonormal representation of G is a sequene of

unit length vetors fu

i

2 IR

n

: i 2 V g, suh that u

i

� u

j

= 0 whenever i; j are non-adjaent

verties. Then

#

4

(G) = max

d;fu

i

g

X

i2V

(d � u

i

)

2

where d 2 IR

n

ranges over all vetors of unit length, and fu

i

2 IR

n

: i 2 V g is an orthonormal

representation of G.

Using semide�nite programming, it is possible to solve #

4

(G) within arbitrary small

additive error, and arrive at a orresponding vetor d and an orthonormal representation

fu

i

g. (More preisely, formulation #

3

(G) desribes a semide�nite program, whose solution

an be eÆiently transformed to an equivalent orthonormal representation for #

4

(G). See

the above referenes for details).

Suppose now that we solve #

4

(G) for our input graph G = G

max

, and we get a solution

d; fu

i

g. We laim that the k verties whose ontribution (d�u

i

)

2

is the largest, are the verties

of the lique, with extremely high probability. This, of ourse, will enable us to reognize

the verties of the planted lique with only one suh omputation of the theta funtion.

To prove the laim, assume that the result of the above observation regarding #(G

max

) and

#(G

max

n v) indeed holds (whih happens with extremely high probability). Then #(G

max

) =

k, and thus the solution d; fu

i

g we get from the semide�nite programming has a value of

at least k � � (for arbitrary small �xed � > 0). In this solution, the ontribution of every

vertex of the planted lique, q 2 Q, is at least 1 � �, or otherwise, the same orthonormal

representation would give that #

4

(G

max

n q) �

P

i 6=q

(d �u

i

)

2

> k� 1, ontraditing the above

observation. However, the ontribution of any vertex j 2 V n Q is bounded, beause j is

(with extremely high probability) a neighbor of some q 2 Q, so u

j

� u

q

= 0 and therefore

(d � u

j

)

2

+ (d � u

q

)

2

� 1, and (d � u

j

)

2

� �. This shows that the ontribution of every vertex

q 2 Q is larger than that of vertex j 2 V nQ, as laimed.

As an estimate for k = jQj we an take the value we get from the semide�nite program-

ming for #

4

(G

max

), rounded to the nearest integer. This gives the following algorithm, whih

outputs P = Q and # = k with extremely high probability.

Algorithm ImprovedBasiFind.

Input: Graph G = G

max

where k > 

0

p

n for a large enough onstant 

0

.

1. Compute # #

4

(G) within small additive error � = 1=3, together with

a orresponding orthonormal representation fu

i

g and its handle d.

2. P  fi : (d � u

i

)

2

> 1=2g.

3. Output P and #.
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3.3.2 Smaller values of k

Following [AKS98℄, the main idea in improving the algorithm for G

max

to any k = 
(

p

n)

is to guess a onstant number of verties from the planted lique. We an then work on the

subgraph indued on those verties whih are ommon neighbors to all of our guess set. The

indued subgraph is muh smaller the G

max

, and is random exept for the planted lique of

size k. Thus we improve the ratio between the size of the lique and the size of the graph

by a onstant fator, and an use the algorithm of the basi ase (either BasiFind or

ImprovedBasiFind of Setion 3.3.1).

Guessing a onstant number of verties from the graph an be replaed by an exhaus-

tive searh on a polynomial number of possibilities. Let

^

N(S) denote the set of verties

neighboring to all of S. The algorithm for k � 

p

n with arbitrary �xed  > 0 is as follows.

Algorithm FindClique.

Input: Graph G = G

max

where k � 

p

n.

1. s 2dlog

2

(

0

=)e+ 3

2. For all subsets S of s verties, do

2.1. V

1

 

^

N(S).

2.2. (P

S

; #

S

) BasiFind(the subgraph indued on V

1

)

2.3. End-for.

3. Output the set S [ P

S

whih is a lique in G and has maximum size

over all hoies of S.

4. Output # = s +max

S

#

S

.

We laim that for any �xed , algorithm FindClique almost surely outputs the planted

lique Q and a tight upper bound # = k. First observe that for any �xed subset S of size

s, the ardinality of

^

N(S) in the random graph G

n;1=2

is a binomially distributed random

variable with parameters n� s and 1=2

s

. Thus, almost surely, j

^

N(S)j = (1 + o(1))n=2

s

for

all subsets of verties of size s in G

n;1=2

. Planting a lique of size k an inrease j

^

N(S)j by

at most k. Therefore, for all S, j

^

N(S)j = (1 + o(1))n=2

s

almost surely also in G

max

.

Sine algorithm FindClique heks all possible subsets S of size s, in some step it will

reah some S whih is a subset of the planted lique Q. At this iteration we almost surely

�nd the planted lique Q = S [ P

S

. Indeed, by the priniple of deferred deisions, the

subgraph indued on

^

N(S) is a random graph G

j

^

N(S)j;1=2

with a planted lique of size k� s.

By our hoie of s, the planted lique size satis�es k� s � 

p

n=2 � 

0

q

2n=2

s

� 

0

q

j

^

N(S)j.

Thus, algorithm BasiFind will almost surely �nd the planted lique Q n S in

^

N(S), and

as a result we will �nd the planted lique of size k in G

max

.

With extremely high probability, for all subsets S of size s heked by the algorithm

FindClique, the theta funtion of the subgraph indued on

^

N(S) is at most k � s, i.e.

#

S

� k�s for all S. Indeed, for eah subset S, either S � Q or S ontains a vertex not from
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Q. In the �rst ase the subgraph indued on

^

N(S) is a random graph with a planted lique

of size at most k�s. In the seond ase, with extremely high probability

^

N(S) ontains only

(1+o(1))k=2 < k� s verties of the planted lique Q. In either ase, using the monotoniity

properties, we may assume

^

N(S) ontains exatly k� s verties of the planted lique Q, and

by Lemma 3.1, with extremely high probability the theta funtion of the indued subgraph

is at most k � s. Using the union bound on polynomially many hoies of S, the event that

all these theta funtions will be at most k � s takes plae with extremely high probability.

3.3.3 A sandwihed graph G

�

To show that algorithm FindClique is robust enough to withstand a monotone adversary

of the sandwih model, we argue that an adversary annot prevent the algorithm from

sueeding. Thus, the proof for the stritly random model G

max

extends to the semi-random

model G

�

.

For simpliity, onsider �rst the basi ase where k > 

0

p

n for a large enough onstant 

0

.

Let G

�

be an arbitrary sandwihed graph, i.e. G

min

� G

�

� G

max

. Then by the monotoniity

properties of the theta funtion,

k � #(G

min

) � #(G

�

) � #(G

max

) � k

where the last inequality holds, almost surely, by our previous analysis. A similar phe-

nomenon happens when we remove one vertex, i.e. also in #(G

max

n v), as in the observation

of Setion 3.3.1. This shows that an adversary annot prevent the algorithm from �nding

the planted lique nor from ertifying the optimality of its solution.

In the general ase where k � 
(

p

n), we onsider the possible e�et of an adversary in

any of the appliations of the theta funtion in algorithm FindClique. These appliations

are equivalent to the removals of one vertex in the observation of Setion 3.3.1 (whih are

used in the proof of algorithm ImprovedFindClique).

The algorithm FindClique only applies the theta funtion on indued subgraphs of the

input graph G

�

. Let H be any suh indued subgraph of the orresponding G

max

. It follows

from the priniple of deferred deisions, that the indued subgraph H is a random graph

(with edge probability 1/2) with a randomly planted lique of size k

0

� k. Consider the

e�et of an adversary on this appliation of the theta funtion, i.e. on #(H). Reall that

an adversary is only allowed to remove edges. Thus, its e�et is limited to either removing

some verties from H (by reduing

^

N(S)), or removing some edges from H (by removing

the same edges from G

max

).

On the one hand, these operations may only derease the theta funtion, #(H), by the

aforementioned monotoniity properties. On the other hand, whenever the theta funtion is

tight on H due to its planted lique, (i.e. #(H) = k

0

), an adversary annot a�et the theta

funtion beause it annot remove any of the edges forming the planted lique, and H must

still ontain a lique of size k

0

. Note that these are exatly the properties used in the analysis

of algorithm FindClique.

Hene, an adversary annot prevent the algorithm from �nding the planted lique of size

k, and annot inrease the upper bound #, whih thus must remain k. Overall, whenever
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algorithm FindClique sueeds on G

max

, it also sueeds on an arbitrary sandwihed G

�

,

regardless of the adversary operations, as laimed.

3.3.4 Extension to other edge probabilities

The approah that we present an be generalized to �nd a hidden lique in a random graph

G

n;p

where the edge probability p is di�erent than 1/2.

For every �xed p, and thus �xed q = 1 � p, the main result holds, exept, maybe, for a

hange in the (polynomial) running time of the algorithm. That is, a hidden lique of size



p

n an be found, for every �xed  > 0. Indeed, it is known from [Juh82℄ that with extremely

high probability #(G

n;p

) = #(G

n;q

) = �(

q

np=q). To �nd in a G

n;p

graph a hidden lique

of size k � 

0

q

np=q, for a suÆiently large onstant 

0

> 0 (and thus extend Lemma 3.1),

one an take the matrix M of our proof in the spirit of [Juh82℄. To �nish the argument,

observe that the idea from [AKS98℄ of guessing a onstant number of verties allows handling

a hidden lique of size 

p

n for arbitrary �xed  > 0, and that the sandwih properties of

the theta funtion give robustness against a monotone adversary.

When p = o(1) �nding hidden liques beomes easier. For example, if p = 1=n

Æ

for a

�xed Æ > 0, it is possible to �nd a hidden lique of size O(1=Æ) << n

(1�Æ)=2

'

q

np=q by

exhaustively trying all subsets of this size in the graph. Indeed, with high probability the

maximum lique in the random graph is of size O(1=Æ), and an thus be found in polynomial

time by exhaustive searh. If a lique of size 

0

=Æ is planted in the graph, for a suÆiently

large onstant 

0

> 0, then with high probability it will be the unique maximum lique in

the graph, and an similarly be found in polynomial time.

When q = o(1) �nding a hidden lique beomes more diÆult. For example, the idea

of [AKS98℄ of guessing a onstant number of verties in the hidden lique has only a negligible

e�et in reduing the size of the graph. Nevertheless, we believe that our analysis of the

algorithm based on the theta funtion an be extended to work for a large range of values

of q = o(1), �nding liques of size 

0

q

n=q for suÆiently large 

0

. We remark that the ase

of extremely small q, namely q =

 log n

n

for a suÆiently large  > 0, was handled in [FK01a℄

(in a model that is more adversarial than the one studied here), where it was shown how to

�nd hidden liques of linear size k = 
(n). Note that this value of q is larger by a fator of

logn then the one whih a general bound of 

0

q

n=q would have required for a linear sized

lique. It appears to us that the loss of the logn fator is unavoidable for the semi-random

graph model when q is so small (for reasons that are explained in [FK01a℄), but an perhaps

be avoided in a random graph model that involves no adversary.

3.4 The matrix-ut operators of Lov�asz and Shrijver

In this setion we desribe several lift-and-projet operators proposed by Lov�asz and Shri-

jver [LS91℄. They alled them matrix-ut operators. When given a onvex set (e.g. a

polytope) P , these operators onsider it as a relaxation of the onvex hull of its 0-1 vetors,

and produe another relaxation that is tighter. In other words, these operators produe a
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onvex set that is sandwihed (in terms of ontainment) between P and (the onvex hull of)

its 0-1 vetors. Furthermore, the produed relaxation is stritly tighter than P , (unless P is

already tight).

For ompleteness, we review in this setion the de�nitions of these operators, many of

their properties (that we need) and relevant known results. We may repeat some known

proofs and examples, partly in order to extend them to a more general setting that inludes

the N

FR+

operator, and partly to aid readers who are unfamiliar with these operators.

We mention properties that hold for general 0-1 optimization, and fous on the stable set

problem. In Setion 3.4.1 we desribe the required framework and present the de�nitions of

the matrix-ut operators. In Setion 3.4.2 we ollet some basi properties of these operators.

In Setion 3.4.3 we desribe known tehniques to evaluate the e�etiveness of these operators,

and known results. Lov�asz gives an alternative formulation of the matrix-ut operators

in [Lov94℄.

Our notation mostly follows that of Lov�asz and Shrijver [LS91℄. Throughout, let e

j

be

the jth unit vetor, let 0 be the vetor of all zeros, and let 1 =

P

j

e

j

be the vetor of all

ones. The sizes (dimensions) of 0; 1 and e

j

will be lear from the ontext.

Reall that a set is alled a one if it is losed under multipliation by a nonnegative

number. A onvex one is thus a set that is losed under a nonnegative linear (a.k.a. oni)

ombination. (Throughout, we will onsider onvex ones rather than polytopes.) A poly-

hedral one is a one that is also a polyhedron; equivalently, a polyhedral one is a set that

an be de�ned by fx : Ax � 0g for some matrix A.

3.4.1 De�nitions

Homogenization. It will be onvenient to deal with homogenous systems of inequali-

ties. We therefore embed the n-dimensional spae IR

n

in IR

n+1

as the hyperplane x

0

= 1

(throughout, the 0th variable plays a speial role), and work with onvex ones in IR

n+1

, as

follows.

Sine we deal with 0-1 programming on n variables, our basi example is a polytope P

that is ontained in [0; 1℄

n

(the onvex hull of the n-dimensional hyperube f0; 1g

n

). To

homogenize P using the new variable x

0

, �rst embed P in the hyperplane x

0

= 1 of IR

n+1

,

and then generate from it a onvex one. That is, if

P = fx 2 IR

n

: Ax � b; 0 � x � 1g ; (3.5)

then the onvex one obtained by homogenization is

K :=

��

x

0

x

�

2 IR

n+1

: Ax � x

0

b; 0 � x � x

0

1

�

: (3.6)

Note that suh K an be desribed as the intersetion of �nitely many linear onstraints

u

t

x � 0 (here x 2 IR

n+1

), and hene it is a polyhedral one.

We denote by Q � IR

n+1

the onvex one that is obtained from the polytope [0; 1℄

n

via

the homogenization proedure (3.5)-(3.6). Namely,

Q :=

n

(x

0

; x

1

; : : : ; x

n

)

T

: 0 � x

i

� x

0

for all 1 � i � n

o

: (3.7)
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Note that Q is a polyhedral one that an be desribed by 2n linear inequalities.

Throughout, let K � Q be a (losed) onvex one. We denote by K

I

the onvex one

that is generated by all 0-1 vetors in K. Observe that within the hyperplane x

0

= 1, K

I

is

exatly the integral hull (i.e. onvex hull of the integral vetors) of K. For example, Q

I

= Q.

The polar one of K, denoted K

�

, is the onvex one de�ned by

K

�

:= fu 2 IR

n+1

: x

T

u � 0 for all x 2 Kg:

Observe that a vetor u 2 K

�

orresponds to a linear onstraint u

T

x � 0 that is valid for K

(i.e. satis�ed by all vetors x 2 K). The polar one K

�

is thus the olletion of valid linear

onstraints for K. For example, Q is de�ned in (3.7) by 2n linear onstraints, and hene Q

�

is spanned by the vetors e

i

and f

i

= e

0

� e

i

, for i = 1; : : : ; n.

Frational stable sets. We will be mostly intereted in the stable set problem. LetG(V;E)

be a graph with no isolated verties and jV j = n. Then the stable sets of G orrespond to

the 0-1 solutions of the system of linear inequalities

x

i

� 0 for all i 2 V (nonnegativity onstraints) (3.8)

and

x

i

+ x

j

� 1 for all ij 2 E (edge onstraints) (3.9)

Let STAB(G) � IR

n

denote the onvex hull of the 0-1 solutions of the system (3.8)-(3.9).

Let FRAC(G) � IR

n

(for \frational stable sets") denote the solution set of the system

(3.8)-(3.9) (i.e. without integrality restrition). Clearly, STAB(G) � FRAC(G).

Let FR(G) � IR

n+1

be the polyhedral one that is obtained from the polytope FRAC(G)

via the homogenization proedure (3.5)-(3.6). That is, FR(G) is the solution set of the

following homogenous system of linear inequalities for the stable set problem:

x

i

� 0 for eah i 2 V (3.10)

x

0

� x

i

� x

j

� 0 for eah ij 2 E (3.11)

Let ST(G) be the polyhedral one that is obtained from the polytope STAB(G) via the

homogenization proedure (3.5)-(3.6). It is straightforward that (FR(G))

I

= ST(G).

Throughout, we omit the graph G when it is lear from the ontext, denoting STAB(G)

by STAB et. It an be seen that its polar one FR

�

is spanned by the vetors e

i

for

i = 1; : : : ; n and the vetors f

ij

= e

0

� e

i

� e

j

for ij 2 E. Note that FR � Q and hene

FR

�

� Q

�

.

Matrix-ut operators. Let K

1

; K

2

� Q be losed onvex ones in IR

n+1

(e.g. K

1

=

FR(G) and K

2

= Q). Consider the one K

1

\K

2

. For eah u 2 K

�

1

the onstraint u

T

x � 0

is valid for K

1

, and for eah v 2 K

�

2

the onstraint v

T

x � 0 is valid for K

2

. It follows that

the quadrati inequality (u

T

x)(x

T

v) � 0 is valid for K

1

\K

2

. Furthermore,

K

1

\K

2

=

n

x : u

T

xx

T

v � 0 for all u 2 K

�

1

; v 2 K

�

2

; x

0

� 0

o

(3.12)
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beause any original inequality, say u

T

x � 0 for K

1

, an be reovered by adding the two

quadrati inequalities obtained by e

i

; f

i

2 Q

�

� K

�

2

, giving u

T

x � x

0

= u

T

xx

T

(e

i

+ f

i

) � 0.

Furthermore, all 0-1 vetors in K

1

\K

2

satisfy x

2

i

= x

i

. Therefore, if x is a 0-1 vetor in

K

1

\K

2

and with x

0

= 1, then setting Y = xx

T

we have that

(a) Y is symmetri.

(b) Y e

0

= diag(Y ), i.e. Y

ii

= Y

i0

for all 1 � i � n.

() u

T

Y v � 0 for all u 2 K

�

1

and v 2 K

�

2

.

(d) Y is positive semide�nite.

Note that () an be written as

(') Y K

�

2

� K

1

Lov�asz and Shrijver [LS91℄ proposed the following lift-and projet proedure. Given

K

1

; K

2

, onsider the derived ones:

M(K

1

; K

2

) := fY 2 IR

(n+1)�(n+1)

: Y satisi�es (a)-()g

M

+

(K

1

; K

2

) := fY 2 IR

(n+1)�(n+1)

: Y satisi�es (a)-(d)g

and de�ne the projetions of these liftings on IR

n+1

:

N(K

1

; K

2

) := fY e

0

: Y 2M(K

1

; K

2

)g

N

+

(K

1

; K

2

) := fY e

0

: Y 2M

+

(K

1

; K

2

)g:

It follows from the above disussion that

(K

1

\K

2

)

I

� N

+

(K

1

; K

2

) � N(K

1

; K

2

) � K

1

\K

2

(3.13)

Relevant variants of the operators. We use shorter notation to easily handle two speial

ases. When K

2

= Q we omit K

2

, i.e. N(K) := N(K;Q) and N

+

(K) := N

+

(K;Q). In this

ase, we have that (') is equivalent to:

(") Every olumn of Y is in K

1

; the di�erene of the �rst olumn and any other olumn

of Y is in K

1

.

Note that we have from (3.13) that

K

I

� N

+

(K) � N(K) � K (3.14)

For the stable set problem, we may take K

2

= FR, whih we denote in the subsript,

i.e. N

FR

(K) := N(K;FR) and N

FR+

(K) := N

+

(K;FR). In this ase, we have that (') is

equivalent to:

("') Y e

i

2 K

1

for all i � 1, and Y f

ij

2 K

1

for all ij 2 E.
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We assume throughout that K � FR, and then we have from (3.13) that

K

I

� N

FR+

(K) � N

FR

(K) � K (3.15)

It follows from the de�nition that using K

2

= FR is at least as strong as using K

2

= Q in

the same operator, i.e. N

FR

(K) � N(K) and N

FR

+

(K) � N

+

(K). We therefore have that

K

I

� N

FR+

(K) � N

FR

(K) � N(K) � K (3.16)

K

I

� N

FR+

(K) � N

+

(K) � N(K) � K (3.17)

The power of these operators is disussed in Setion 3.4.3. As for the relation between

N

FR

(K) and N

+

(K), it an be seen that N

FR

(K) 6� N

+

(K) (e.g. by a lique on 5 verties

and K = FR, see Setion 3.4.3), but it is not lear (to us) whether N

+

(K) � N

FR

(K).

Iterated operators. De�ne the iterated operator N

r

(K) reursively by N

0

(K) = K and

N

r

(K) = N(N

r�1

(K)) for r � 1. For other operators, the iterated operator is de�ned

similarly.

The following Theorem of Lov�asz and Shrijver [LS91℄ proves that even without the

positive semide�niteness onstraint (d), it suÆes to apply n iterations in order to get from

a onvex one K � Q the one K

I

. It follows that applying the N operator on K 6= K

I

produes a relaxation of K

I

that is stritly tighter than K.

Theorem 3.4 (Lov�asz and Shrijver [LS91℄). Let K � Q be a onvex one in IR

n+1

.

Then N

n

(K) = K

I

.

It is often easier to work in the original n-dimensional spae (without homogenization),

so in the ase that K is the one obtained from a polytope (or a onvex set) P in [0; 1℄

n

via

the homogenization proedure (3.5)-(3.6), de�ne

N(P ) :=

�

x 2 IR

n

:

�

1

x

�

2 N(K)

�

and similarly for the other operators (inluding the iterated ones).

For the stable set problem, K will be one of the ones obtained from FR(G) by an

iterated operator, e.g. N

r

(FR(G)). Going bak to the original n-dimensional spae we shall

abbreviate N

r

(G) := N

r

(FRAC(G)) and similarly for the other operators. We then have

from Theorem 3.4 that N

n

(G) = STAB(G).

Ranks. The N-rank of an inequality u

T

x � 0 that is valid for K

I

, is the smallest nonneg-

ative integer r suh that u

T

x � 0 is valid for N

r

(K). (Note that the rank is relative to K).

For N

+

,N

FR

and N

FR+

the rank is de�ned similarly. Theorem 3.4 states that these ranks

are at most n (the dimension) for any valid inequality.

The N-rank of a one K is the smallest nonnegative integer r suh that N

r

(K) = K

I

,

and similarly for the other operators. By Theorem 3.4, the N -rank of K is at most n (the

dimension).

The N -rank of a graph G, is the N -rank of FR(G), and similarly for the other operators.

For example, for a bipartite graph STAB = FRAC and hene the N -rank of a bipartite

graph is 0. We will elaborate on bounds on the rank in Setion 3.4.3.
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Algorithmi aspets. Lov�asz and Shrijver [LS91℄ give suÆient onditions for eÆient

weak (i.e. up to arbitrary preision) optimization (of linear objetive funtions) over N(K),

N

+

(K), N

FR

(K) and N

FR+

(K). Tehnially, the matrix-ut operators have the following

algorithmi property.

Theorem 3.5 (Lov�asz and Shrijver [LS91℄). A polynomial time weak separation ora-

le for K gives a polynomial time weak separation orale for N

r

(K); N

r

+

(K); N

r

FR

(K) and

N

r

FR+

(K) for any �xed onstant r.

By the equivalene between weak (i.e. up to arbitrary preision) optimization and weak

separation (see [GLS93℄), Theorem 3.5 implies a weak optimization of any linear objetive

funtion over these relaxations of K

I

.

Lov�asz and Shrijver [LS91℄ suspet that Theorem 3.5 does not extend to N(K;K).

They remark, however, that it if K is given by an expliit system of polynomially many

linear inequalities, then Theorem 3.5 does extend to N(K;K).

For the stable set problem, the one K = FR is given by an expliit linear program of

polynomial size, so one an solve the separation problem for it in polynomial time. We thus

obtain the following theorem.

Theorem 3.6. For every �xed r � 0, the weak optimization problem for N

r

(G) an be solved

in polynomial time, and similarly for N

r

+

; N

r

FR

; N

r

FR+

.

3.4.2 Basi properties

We ollet some properties of the matrix-ut operators de�ned in Setion 3.4.1. In partiular,

Corollary 3.7 and Lemma 3.16 will be used in Setion 3.5.1.

Monotoniity. It is straightforward that the matrix-ut operators are monotone with

respet to ontainment of K

1

and K

2

, as follows.

Lemma 3.3. Let K

0

1

� K

1

and K

2

� K

0

2

. Then N(K

0

1

; K

0

2

) � N(K

1

; K

2

) and similarly for

N

+

.

It follows that the matrix-ut operators are monotone with respet to adding/removing

edges.

Corollary 3.4. Let G

0

be a graph that is obtained from another graph G by adding edges.

Then N

r

(G

0

) � N

r

(G), and similarly for N

r

+

,N

r

FR

,N

r

FR+

.

Proof. Observe that FR(G

0

) � FR(G). The proof follows from Lemma 3.3.

Down-monotoniity. Throughout, we use x � y, where x; y are two vetors, to denote

x

i

� y

i

for every oordinate i.

A non-empty onvex set P � [0; 1℄

n

is alled down-monotone (in [0; 1℄

n

) if for every

x 2 P , every y 2 [0; 1℄

n

with y � x is also in P (see e.g. [GLS93, page 11℄). Similarly, a
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onvex one f0g 6= K � Q is alled down-monotone if for every x 2 K, every y 2 Q with

y � x and y

0

= x

0

is also in K.

The next lemma shows that the matrix-ut operators preserve down-monotoniity. It

extends a similar result for N(�) and N

+

(�), that is given by Goemans and Tun�el [GT00,

Theorem 5.1℄ (where a down-monotone polytope is alled lower-omprehensive) and by Cook

and Dash [CD00, Lemma 2.6℄ (where the polytope is said to be of an anti-bloking type).

Lemma 3.5. Let K

1

; K

2

� Q be down-monotone onvex ones. Then N(K

1

; K

2

) is down-

monotone, and similarly for N

+

.

Proof. Let x 2 N(K

1

; K

2

) and 0 � x

0

� x with x

0

0

= x

0

. It suÆes to prove that x

0

2

N(K

1

; K

2

) when x; x

0

di�er only in a single oordinate, say i = 1, sine we an repeat the

same argument for eah oordinate. Furthermore, for a single oordinate i = 1 it suÆes to

prove the ase x

0

1

= 0, sine N(K

1

; K

2

) is onvex, and so onvex ombinations of x

0

and x

give any desired value for oordinate i = 1.

Sine x 2 N(K

1

; K

2

), there exists a matrix Y 2 M(K

1

; K

2

) with x = Y e

0

. De�ne the

matrix Y

0

by

Y

0

ij

=

�

0 if i = 1 or j = 1;

Y

ij

otherwise.

We laim that Y

0

2M(K

1

; K

2

). Indeed, Y

0

learly satis�es (a) and (b). To prove (), let

u 2 K

�

1

; v 2 K

�

2

, and from Lemma 3.6 below we have that u� u

1

x

1

2 K

�

1

and v� v

1

x

1

2 K

�

2

and hene

u

T

Y

0

v = (u� u

1

x

1

)

T

Y (v � v

1

x

1

) � 0

Observe that x

0

= Y

0

e

0

, and therefore x

0

2 N(K

1

; K

2

), as required.

For the proof of N

+

we need to show that (d) also holds, and indeed from the Gram

matrix representation of Y we an obtain a Gram matrix representation of Y

0

by replaing

the vetor that orresponds to oordinate i = 1 with the all zeros vetor 0.

Lemma 3.6. Let K � Q be down-monotone and let v 2 K

�

. Then v � v

i

e

i

2 K

�

for all

i � 1.

Proof. By the down-monotoniity of K, for every x 2 K we have that x � x

i

e

i

2 K, and

hene (v � v

i

e

i

)

T

x =

P

j 6=i

v

j

x

j

= v

T

(x� x

i

e

i

) � 0.

Observe that Q is down-monotone by its de�nition in (3.7), and that FRAC is down-

monotone by its de�nition in (3.10)-(3.11). By Lemma 3.5 the matrix-ut operators preserve

down-monotoniity and we obtain the following orollary for the iterated operators.

Corollary 3.7. N

r

(G) is down-monotone, and similarly for N

r

+

,N

r

FR

,N

r

FR+

.

Flipping and renaming oordinates. The operators N;N

+

; N

FR

; N

FR+

are invariant

under various operations, inluding renaming indies (i.e. permuting the order of oordi-

nates), and ipping oordinates x

i

! (x

0

� x

i

) for any subset of the indies f1; 2; : : : ; ng.

More formally,
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Lemma 3.8 (Lov�asz and Shrijver [LS91℄). Let A be a linear transformation mapping

Q onto itself. Then N(AK

1

; AK

2

) = AN(K

1

; K

2

) and similarly for N

+

. Hene N(AK) =

AN(K) and similarly for N

+

.

By ipping oordinates, one an extend Lemma 3.5. For example, it follows that the

N and N

+

operators preserve up-monotoniity (shown by Cook and Dash [CD00, Setion

2℄ as the bloking property), and a \onvex orner" property (shown by Goemans and

Tun�el [GT00, Setion 5℄).

Intersetion with faes. A fae of Q is the intersetion of Q with hyperplanes of the

form fx : x

i

= 0g or fx : x

i

= x

0

g. The intersetion of K with a fae of Q onsists of all

x 2 K with one or more of their oordinates �xed to 0 or x

0

(reall that x

0

orresponds to

1 in the non-homogenous ase).

The following lemma proves equivalene between �xing some oordinates before applying

a matrix-ut operator (e.g. in K) and afterwards (e.g. in N(K)). It extends a similar result

that is given by Goemans and Tun�el [GT00℄ for N(�) and N

+

(�).

Lemma 3.9. If F is a fae of Q, then N(K

1

\ F;K

2

) = N(K

1

; K

2

) \ F and similarly for

N

+

.

Proof. The diretion \�" follows from Lemma 3.3, sine N(K

1

\ F;K

2

) � N(K

1

; K

2

) and

N(K

1

\ F;K

2

) � N(F;K

2

) � F , and similarly for N

+

.

For the onverse diretion \�" with the N operator, let x 2 N(K

1

; K

2

)\ F . Then there

exists a matrix Y 2 M(K

1

; K

2

) with Y e

0

= x. Let H be any one of the hyperplanes of the

form fx : x

i

= 0g or fx : x

i

= x

0

g that de�ne F . Sine e

j

; f

j

2 Q

�

� K

�

2

for all j, we have that

Y e

j

2 K

1

� Q and Y f

j

2 K

1

� Q, while their sum satis�es Y e

j

+Y f

j

= Y e

0

= x 2 F � H.

Sine H de�nes a fae of Q then by de�nition of a fae we have that Y e

j

(and also Y f

j

) must

belong to H.

1

But every v 2 IR

n+1

is a linear ombination of fe

0

; e

1

; : : : ; e

n

g and Y e

j

2 H

for all j � 0, and so Y v 2 H for every v, inluding all v 2 K

�

2

.

For every v 2 K

�

2

we have that Y v belongs to K

1

� Q, by the de�nition of Y . We saw

above that Y v also belongs to all hyperplanes H that de�ne F , and we onlude that Y v

belongs also to F . Hene, Y v 2 K

1

\ F for all v 2 K

�

2

, implying that Y 2 M(K

1

\ F;K

2

)

and x 2 N(K

1

\ F;K

2

). The proof for N

+

is similar, sine Y is also known to be positive

semide�nite.

We remark that the above proof of Lemma 3.9 extends to the ase where F is a fae of

K

1

, as shown by Cook and Dash [CD00, Lemma 2.2℄ for N(�) and N

+

(�). For the speial

ases K

2

= Q and K

2

= FR we obtain the following.

Corollary 3.10. If F is a fae of Q (or a fae of K), then N(K \ F ) = N(K) \ F and

similarly for N

+

,N

FR

,N

FR+

.

1

In other words, suppose that the hyperplane H is de�ned by the equality u

T

x = 0 (i.e. u = e

i

or u = f

i

)

and that the inequality u

T

x � 0 is valid for Q (i.e. Q is entirely ontained in one side of H). We then have

that u

T

(Y e

j

); u

T

(Y f

j

) � 0 while their sum is u

T

x = 0, implying that u

T

(Y e

j

) = u

T

(Y f

j

) = 0.
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Deleting �xed oordinates. Suppose that K is ontained in a fae of Q. Then some

of the oordinates are �xed (i.e. x

i

= 0 or x

i

= x

0

), and it may be desirable to delete

these oordinates and redue the dimension. Formally, a deletion operation of indies subset

I � f1; : : : ; ng is the funtion f : IR

n+1

! IR

n+1�jIj

where f(x) is the vetor x restrited to

the oordinates not in I, i.e. f(x) = (x

i

)

i 62I

.

In the following we show that deleting �xed oordinates of K before applying a matrix-

ut operator (e.g. in K) is equivalent to deleting them afterwards (e.g. in N(K)). The

following handles the basi ase of one oordinate that is �xed to 0.

Lemma 3.11. Let F = Q \ fx : x

n

= 0g and let f be the deletion operation of oor-

dinate i = n. If K

1

; K

2

are onvex ones that are ontained in F then f(N(K

1

; K

2

)) =

N(f(K

1

); f(K

2

)),

2

and similarly for N

+

.

Proof. The deletion operation f is a linear transformation from IR

n+1

to IR

n

, and thus an

be desribed as an n� (n+1) matrix A. Note that olumns 0 to n� 1 of A form an identity

matrix and olumn n of A is all zeros. We �rst laim that AK

�

= (AK)

�

for K = K

1

and

for K = K

2

. Indeed, by de�nition, u 2 AK

�

if there exists r 2 IR with

�

u

r

�

2 K

�

. Note

that

�

u

r

�

2 K

�

holds either for all values of r or for no value of r, sine K � fx : x

n

= 0g.

Therefore,

AK

�

= fu : 9r 2 IR with

�

u

r

�

2 K

�

g = fu :

�

u

0

�

2 K

�

g:

We also have that

(AK)

�

= fu : u

T

(Ax) � 0 8x 2 Kg = fu : A

T

u 2 K

�

g:

Sine A

T

u =

�

u

0

�

, we obtain AK

�

= (AK)

�

.

Let us now prove that M(AK

1

; AK

2

) = AM(K

1

; K

2

)A

T

. For the diretion \�", let

Y 2 M(AK

1

; AK

2

). Then by (), for every u 2 K

�

1

; v 2 K

�

2

we have that u

T

A

T

Y Av � 0.

We therefore have that

�

Y 0

0

T

0

�

= A

T

Y A 2M(K

1

; K

2

):

Multiplying by A from the left and by A

T

from the right, we obtain (sine AA

T

is the identity

matrix) that Y 2 AM(K

1

; K

2

)A

T

.

For the onverse diretion \�", let Y 2 AM(K

1

; K

2

)A

T

. Sine K

1

� fx : x

n

= 0g, every

matrix in M(K

1

; K

2

) has only zeros in row n, and by the symmetry (a) it has only zeros

also in olumn n. Hene,

A

T

Y A =

�

Y 0

0

T

0

�

2M(K

1

; K

2

):

By (), for every u 2 K

�

1

; v 2 K

�

2

it holds that u

T

A

T

Y Av � 0, and hene Y 2M(AK

1

; AK

2

).

2

Note that the appliation of N in the righthand side is in a smaller dimension than in the lefthand side.
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Now sine A

T

e

0

is just e

0

(in a larger dimension), we onlude that

N(AK

1

; AK

2

) = AM(K

1

; K

2

)A

T

e

0

= AM(K

1

; K

2

)e

0

= AN(K

1

; K

2

):

The proof for the N

+

operator is similar sine Y is positive semide�nite if and only if

A

T

Y A is (observe that Y has a Gram matrix representation if and only if A

T

Y A has suh

a representation).

We an extend Lemma 3.11 to an arbitrary fae F and to an arbitrary K

2

, as follows.

Lemma 3.12. Let F = Q \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I

1

g and let f be the

deletion operation of the oordinates I

0

[ I

1

. If K

1

is a onvex one ontained in F and K

2

is a onvex one ontained in Q, then f(N(K

1

; K

2

)) = N(f(K

1

); f(K

2

\ F )), and similarly

for N

+

.

Proof. K

1

and K

2

\ F are both ontained in F , so we an repeatedly apply Lemma 3.11 on

them, and delete the oordinates of I

0

[ I

1

. (Note that by using Lemma 3.8 we an extend

Lemma 3.11 also to deleting oordinates that are �xed to x

0

.) It follows that f(N(K

1

; K

2

\

F )) = N(f(K

1

); f(K

2

\ F )).

By Lemma 3.9 we have that N(K

1

; K

2

\ F ) = N(K

1

; K

2

) \ F , and sine N(K

1

; K

2

) �

K

1

� F , we have that N(K

1

; K

2

\ F ) = N(K

1

; K

2

). The proof follows.

For the stable set problem, it is straightforward to see that �xing and deleting a oordinate

of FR(G) has the following e�et.

Lemma 3.13. Let F = Q \ fx : x

i

= 0g, and let f be the deletion operation of oordinate

i. Then f(FR(G) \ F ) = FR(G� i).

Lemma 3.14. Let F = Q \ fx : x

i

= x

0

g, and let f be the deletion operation of oordinate

i. Then f(FR(G) \ F ) = FR(G� i) \ fx : x

j

= 0 for j 2 �(i)g.

For the speial ases K

2

= Q and K

2

= FR we obtain the following from Lemma 3.12.

Corollary 3.15. Let F = Q \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I

1

g and let f be

the deletion operation of the oordinate I

0

[ I

1

. If K is a onvex one ontained in F then

f(N(K)) = N(f(K)),

3

and similarly for N

+

; N

FR

and N

FR+

.

Proof. For the N operator we have from Lemma 3.12 that

f(N(K)) = N(f(K); f(Q \ F ))

and f(Q \ F ) is just Q in the smaller dimension, so f(N(K)) = N(f(K)). The proof for

the N

+

operator is similar.

For the N

FR

operator we have from Lemma 3.12 that

f(N

FR

(K)) = N(f(K); f(FR(G) \ F ));

3

Note that the appliation of N in the righthand side is in a smaller dimension than in the lefthand side.
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and it follows from Lemmas 3.13 and 3.14 that f(FR(G)\F ) = FR(G� I

0

� I

1

)\H, where

H = fx : x

i

= 0 8i 2 �(I

1

)� I

0

� I

1

g. We therefore have that

f(N

FR

(K)) = N(f(K);FR(G� I

0

� I

1

) \H):

Note that f(K) � H sine K � F \ FR(G) � H, and so by Lemma 3.9 we have that

f(N

FR

(K)) = N

FR

(f(K)), as required. The proof for N

FR+

(K) is similar.

Corollary 3.15 extends a similar result that is given by Cook and Dash [CD00℄ for N(�)

and N

+

(�). Tehnially, they de�ne an embedding operation as one that introdues new

oordinates that are �xed (to either 0 or x

0

), and state that for every onvex one K

0

and

an embedding operation g, g(N(K

0

)) = N(g(K

0

)), and similarly for N

+

(see also [ST99℄).

The deletion operation is the inverse of embedding, so for N(�) and N

+

(�) Corollary 3.15 is

equivalent to the result of Cook and Dash [CD00℄.

Removing verties from the graph. For the stable set problem, the properties olleted

so far, and in partiular Corollary 3.15, give a useful haraterization to whether x 2 N

r

(G)

in the ase that x has a �xed oordinate (i.e. x

i

= 0 or x

i

= x

0

).

Reall that V = f1; : : : ; ng. For a vetor x 2 IR

n

and a subset W � V , we denote by x

W

the restrition of x to the oordinates of W .

Lemma 3.16. Let x 2 IR

n

, and assume that for some i we have that x

i

= 1 and that x

j

= 0

for all j 2 �(i). Then for all r � 0, x 2 N

r

(G) if and only if x

V ��(i)�i

2 N

r

(G� �(i)� i),

and similarly for N

r

+

,N

r

FR

and N

r

FR+

.

Proof. It is lear that x belongs to the fae F of Q that is de�ned by the hyperplanes

fx : x

i

= x

0

g and fx : x

j

= 0g for all j 2 �(i). Then x 2 N

r

(G) if and only if x 2 N

r

(G)\F ,

whih is equivalent, by Corollary 3.10, to x 2 N

r

(FR(G)\F ). Let f be the deletion operation

of the oordinates �(i)[fig, and then we have equivalently that f(x) 2 f(N

r

(FR(G)\F )).

By Corollary 3.15, the latter is equivalent to f(x) 2 N

r

(f(FR(G) \ F )). By Lemmas 3.13

and 3.14, we have that f(FR(G)\ F ) = FR(G� �(i)� i), and the proof follows. The proof

for N

r

+

,N

r

FR

and N

r

FR+

is similar.

Lemma 3.17. Let x 2 IR

n

be a vetor and assume that x

i

= 0 for some i. Then x 2 N

r

(G)

if and only if x

V �i

2 N

r

(G� i), and similarly for N

r

+

,N

r

FR

and N

r

FR+

.

Proof. It is lear that x belongs to the fae F of Q that is de�ned by the hyperplane x

i

= 0.

Then x 2 N

r

(G) if and only if x 2 N

r

(G) \ F , whih is equivalent, by Corollary 3.10, to

x 2 N

r

(FR(G) \ F ). Let f be the deletion operation of the oordinate i, and then we have

equivalently that f(x) 2 f(N

r

(FR(G) \ F )). By Corollary 3.15, the latter is equivalent to

f(x) 2 N

r

(f(FR(G) \ F )). By Lemma 3.13 we have that f(FR(G) \ F ) = FR(G� i), and

the proof follows. The proof for N

r

+

,N

r

FR

and N

r

FR+

is similar.

3.4.3 Bounds on the rank

We desribe general methods to obtain upper and lower bounds on the N -rank and N

+

-

rank of valid inequalities, and extend them to N

FR

-rank.We also illustrate the use of these

methods on a few valid onstraints for the stable set problem (see Table 3.4.3 on page 78).
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Vertex deletion and ontration. Let a

T

x � b be an inequality valid for STAB(G).

For a subset W � V , we denote by a

W

the restrition of a to the oordinates of W . For

every i 2 V , if a

T

x � b is valid for STAB(G), then a

T

V�i

x � b is valid for STAB(G� i) and

a

T

V��(v)�i

x � b � a

i

is valid for STAB(G � �(i) � i). Following the terminology of Lov�asz

and Shrijver [LS91℄, we say that these inequalities arise from a

T

x � b by the deletion and

ontration of vertex i, respetively. Note that if a

T

x � b is an inequality suh that for some

i, both the deletion and the ontration of i yield inequalities valid for the orresponding

graphs, then a

T

x � b is valid for G.

The N -rank of an inequality valid for STAB(G) depends only on the subgraph indued

by those verties with a nonzero oeÆient, and similarly for N

+

,N

FR

and N

FR+

. Indeed,

if a vertex i has a zero oeÆient, then the inequality being valid for N

r

(G) is equivalent,

by Corollary 3.7, to the inequality being valid for N

r

(G) \ fx : x

i

= 0g, whih in turn is

equivalent, by Lemma 3.17, to the inequality being valid for N

r

(G� i).

Upper bounds on the N-rank. Lov�asz and Shrijver [LS91℄ give an upper bound on

N(K), whih allows to upper bound the N -rank of an inequality, as follows.

The sum of two sets K

0

; K

00

� IR

n+1

is de�ned as K

0

+ K

00

:= fx

0

+ x

00

: x 2 K

0

; x

00

2

K

00

g. Note that if K

0

; K

00

are onvex ones in Q then K

0

+ K

00

is also a onvex one in

Q. Furthermore, if K

0

; K

00

are obtained via the homogenization proedure (3.5)-(3.6) from

polytopes P

0

; P

00

� IR

n

, respetively, then K

0

+K

00

orresponds to all onvex ombinations

of a point from P

0

and a point from P

00

(reall that oordinate 0 needs to be saled to 1).

Lemma 3.18 (Lov�asz and Shrijver [LS91℄). For all 1 � i � n,

N(K) �

�

K \ fx : x

i

= 0g

�

+

�

K \ fx : x

i

= x

0

g

�

:

Proof. If x 2 N(K) then there exists Y 2M(K) with x = Y e

0

= Y e

i

+Y f

i

for any i � i � n.

Clearly, Y e

i

2 K \ fx : x

i

= x

0

g and Y f

i

2 K \ fx : x

i

= 0g, and the proof follows.

Corollary 3.19. If an inequality is valid for both K \ fx : x

i

= 0g and K \ fx : x

i

= x

0

g,

then it is valid for N(K).

Goemans and Tun�el [GT00℄ note that repeatedly using Lemma 3.18 and Corollary 3.10,

gives that for all I � f1; : : : ; ng with jIj = r,

N

r

(K) �

X

I

0

�I

�

K \ fx : x

i

= 0 8i 2 I

0

g \ fx : x

i

= x

0

8i 2 I n I

0

g

�

:

In partiular, this shows that the N -rank of any one K is at most n, proving Theorem 3.4.

For the stable set problem, Corollary 3.19 an be rephrased as follows (using Lemmas 3.16

and 3.17).

Lemma 3.20 (Lov�asz and Shrijver [LS91℄). Let P be a onvex set with STAB � P �

FRAC. If a

T

x � b is an inequality suh that for some i 2 V , both the deletion and ontration

of i give an inequality valid for P , then a

T

x � b is valid for N(P ).
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For example, if C indues a hordless odd yle in G, the odd hole onstraint

X

i2C

x

i

�

jCj � 1

2

(3.18)

has N -rank at most (and atually exatly) 1, beause both the ontration and the deletion of

any vertex result in an inequality that is valid for FRAC. (In fat, Lov�asz and Shrijver [LS91℄

prove that N(FRAC) is exatly the relaxation that is obtained by adding to FRAC all the

odd hole onstraints.)

Lov�asz and Shrijver [LS91℄ also give the following upper bound on the N -rank of a graph.

The proof follows by applying Lemma 3.20 repeatedly for n � �(G) � 1 verties outside a

maximum stable set in the graph, sine the graph indued on the other verties must be

bipartite.

Corollary 3.21 (Lov�asz and Shrijver [LS91℄). The N-rank of a graph G of stability

number �(G) is at most n� �(G)� 1.

It follows that the N -rank of any graph G is at most n� 2. Note that the N -rank of FR

is at most n� 2, while the N -rank of a general one K is at most (and an atually be) n.

We next analyze the N -rank of a few more examples, due to Lov�asz and Shrijver [LS91℄.

By Corollary 3.21, if B is a lique in G, the lique onstraint

X

i2B

x

i

� 1 (3.19)

has N -rank at most (and atually exatly) jBj�2. Note that the lass of all lique onstraints

strengthens the lass of all edge onstraints (3.9).

If D indues a hordless odd yle in G (the edge omplement of G), the odd antihole

onstraint

X

i2D

x

i

� 2 (3.20)

has N -rank at most (and atually exatly) (jDj � 3)=2, beause the ontration of a vertex

results in an inequality trivially valid for FRAC, and the deletion of a vertex results in an

inequality that is the sum of two lique onstraints, eah of size (jDj � 1)=2 and hene of

N -rank (jDj � 5)=2.

If W indues an odd wheel in G with enter i

0

2 W , the odd wheel onstraint

X

i2Wnfi

0

g

x

i

+

jW j � 2

2

x

i

0

�

jW j � 2

2

(3.21)

has N -rank at most (and atually exatly) 2, sine the ontration of the enter vertex

results in a trivial inequality, and the deletion of the enter vertex results with the odd hole

onstraint.
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Upper bounds on the N

FR

-rank. The methods for obtaining upper bounds on the N -

rank an be extended (with modi�ations) to upper bounds on the N

FR

-rank, as follows.

Lemma 3.22. For all ij 2 E,

N(K) �

�

K \ fx : x

i

= x

j

= 0g

�

+

�

K \ fx : x

j

= x

0

g

�

+

�

K \ fx : x

i

= x

0

g

�

:

Proof. If x 2 N

FR

(K) then there exists Y 2 M(K) with x = Y e

0

= Y e

i

+ Y e

j

+ Y f

ij

for any ij 2 E. Clearly, Y e

i

2 K \ fx : x

i

= x

0

g and Y e

j

2 K \ fx : x

j

= x

0

g and

Y f

ij

2 K \ fx : x

i

= x

j

= 0g, and the proof follows.

Corollary 3.23. If an inequality is valid for K \ fx : x

i

= x

0

g, for K \ fx : x

j

= x

0

g, and

for K \ fx : x

i

= x

j

= 0g, then it is valid for N

FR

(K).

Corollary 3.23 an be rephrased as follows (using Lemmas 3.16 and 3.17).

Lemma 3.24. Let P be a onvex set with STAB � P � FRAC. If a

T

x � b is an inequality

suh that for some ij 2 E, the ontration of i, the ontration of j and the deletion of fi; jg

give an inequality valid for P , then a

T

x � b is valid for N(P ).

The following upper bound on the N

FR

-rank of a graph follows by applying Lemma 3.24

repeatedly on edges, so that the removal of their endpoints results in a bipartite graph (e.g.

a mathing that is maximal with respet to ontainment).

Corollary 3.25. Suppose that a graph G ontains a set of � edges, whose endpoints removal

results in a bipartite graph. Then the N

FR

-rank of G is at most �.

It follows that the N

FR

-rank of a graph G is at most (n� 2)=2 if n is even and (n� 1)=2

if n is odd; in general it is at most b(n� 1)=2. In partiular, the N

FR

-rank of the lique

onstraint (3.19) is at most b(jBj � 1)=2.

We an apply these bounds on the other examples. The N

FR

-rank of the odd hole

onstraint onstraint (3.18) is at most (and thus exatly) 1, sine the N

FR

operator is at least

as strong as N . The N

FR

-rank of the odd antihole onstraint (3.20) is at most b(jDj+ 1)=4,

beause the ontration of a vertex results in an inequality trivially valid for FRAC, and the

deletion of two verties results in an inequality that is the sum of two lique onstraints, eah

of size at most (jDj � 1)=2 and hene of N

FR

-rank b(jDj � 3)=4. (In fat, it an be shown

by diret alulations that the N

FR

-rank of the odd antihole onstraint (3.20) with jDj = 7

is at most 1.) The N

FR

-rank of the wheel onstraint (3.21) is at most (and thus exatly) 1,

sine the ontration of the enter vertex results in a trivial inequality, the ontration of a

non-enter vertex results in an inequality is valid for FRAC, and the deletion of these two

verties also results in an inequality is valid for FRAC.

Lower bounds on the N-rank. Lov�asz and Shrijver [LS91℄ show that ertain uniform

frational stable sets belong to N

r

(G), regardless of the graph G. For example, for r = 0

it is straightforward that (1=2)1 2 FRAC(G). The following lemma gives an extension to

larger r, with the uniform solution being smaller, depending on r.
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Lemma 3.26 (Lov�asz and Shrijver [LS91℄). Assume that P is down-monotone and

ontains STAB(G). If (1=r)1 2 P for r > 0 then 1=(r + 1)1 2 N(P ).

Proof. Let K be the onvex one obtained from P via the homogenization proedure (3.5)-

(3.6). De�ne the matrix Y 2 IR

(n+1)�(n+1)

by

Y

ij

=

8

<

:

1 if i = j = 0;

1=(r + 1) if (i = 0; j > 0) or (i > 0; j = 0) or (i = j > 0);

0 otherwise.

To see that Y 2 M(K;Q) observe that (a),(b) learly hold, and let us now show that (")

holds.

Y e

i

=

1

t + 1

(e

0

+ e

i

) 2 ST(G) � K

and

Y f

i

=

r

r + 1

e

0

+

X

j 6=0;i

1

r + 1

e

j

=

r

r + 1

0

�

e

0

+

X

j 6=0;i

1

r

e

j

1

A

:

By the indution hypothesis we have that

X

j 6=0;i

1

r

e

j

�

X

j 6=0

1

r

e

j

2 P;

and the down-monotoniity of P implies that Y f

i

2 K, and thus (") holds. We onlude

that Y e

0

2 N(K), i.e. 1=(r + 1)1 2 N(P ).

Corollary 3.27 (Lov�asz and Shrijver [LS91℄). 1=(r + 2)1 2 N

r

(G) for all r � 0.

Proof. Proeed by indution on r. We mentioned above that the ase r = 0 is trivial. The

indutive step follows from Lemma 3.26, sine N

r

(FRAC(G)) learly ontains STAB(G) and

is down-monotone by Corollary 3.7.

Corollary 3.28 (Lov�asz and Shrijver [LS91℄). The N

FR

-rank of a graph G of stability

number �(G) is at least n=�(G)� 2.

Proof. Let r be the N -rank of G, and hene N

r

(G) = STAB(G). By Corollary 3.27 we have

that 1=(r + 2)1 2 N

r

(G). The inequality 1

T

x � � is valid for STAB(G) = N

r

(G), and in

partiular for 1=(r + 2)1, implying that n=(r + 2) � �(G), and the proof follows.

For example, the stability number of a lique B is 1, so the N -rank of B is at least,

and hene exatly, jBj � 2. In fat, the above proof shows that the N -rank of the lique

onstraint (3.19) is at least, and hene exatly, jBj � 2. The stability number of an an odd

antihole D is 2, so the N -rank of D is at least jDj=2� 2, and sine jDj is odd, it must be at

least (jDj � 3)=2. In fat, this shows that the N -rank of the odd antihole onstraint (3.20)

is at least, and hene exatly, (jDj � 3)=2. Corollary 3.27 also yields a lower bound on the

N -rank of the wheel onstraint (3.21). Indeed, let r be the N -rank of this onstraint. Then

we have that this onstraint is valid for N

r

(G) and, in partiular, for 1=(r + 2)1 2 N

r

(G).

Thus,

1

r + 2

 

jW j � 1 +

jW j � 2

2

!

�

jW j � 2

2

whih gives that

2(jW j�1)

jW j�2

+ 1 � r+ 2 and thus r � 1 +

2

jW j�2

. Sine the N -rank of the wheel

onstraint is an integer, it must be at least, and hene exatly, 2.
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Lower bounds on the N

FR

-rank. The methods for obtaining lower bounds on the N -

rank an be extended (with modi�ations) to lower bounds on the N

FR

-rank, as follows.

Lemma 3.29. Assume that P be down-monotone and ontains STAB(G). If (1=r)1 2 P

for r > 0 then 1=(r + 2)1 2 N

FR

(P ).

Proof. De�ne the matrix Y 2 IR

(n+1)�(n+1)

by

Y

ij

=

8

<

:

1 if i = j = 0;

1=(r + 2) if (i = 0; j > 0) or (i > 0; j = 0) or (i = j > 0);

0 otherwise.

To see that Y 2M(K;FR) observe that (a),(b) learly hold, and let us now show that (")

holds.

Y e

i

=

1

r + 2

(e

0

+ e

i

) 2 ST(G) � K

and for ij 2 E

Y f

ij

=

r

r + 2

e

0

+

X

l 6=0;i;j

1

r + 2

e

l

=

r

r + 2

0

�

e

0

+

X

l 6=0;i;j

1

r

e

l

1

A

By the indution hypothesis we have that

X

l 6=0;i;j

1

r

e

l

�

X

l 6=0

1

r

e

l

2 P

and the down-monotoniity of P implies that Y f

ij

2 K, and thus (") holds. We onlude

that Y e

0

2 N

FR

(K), i.e. 1=(r + 2)1 2 N

FR

(P ).

Corollary 3.30. 1=(2r + 2)1 2 N

r

FR

(G) for all r � 0.

Proof. Proeed by indution on r. We mentioned above that the ase r = 0 is trivial. The

indutive step follows from Lemma 3.29, sine N

r

FR

(FRAC(G)) learly ontains STAB(G)

and is down-monotone by Corollary 3.7.

Corollary 3.31. T N

FR

-rank of a graph G of stability number �(G) is at least n=(2�(G))�1.

Proof. Let r be the N -rank of G, and hene N

r

(G) = STAB(G). By Corollary 3.30 we have

that 1=(r + 2)1 2 N

r

(G). The inequality 1

T

x � �(G) is valid for STAB(G) = N

r

(G), and

in partiular for 1=(r + 2)1, implying that n=(2r + 2) � �(G), and the proof follows.

For example, the N

FR

-rank of a lique B is at least jBj=2� 1 (sine the stability number

of B is 1), and it must be an integer, so we have that it is at least b(jBj � 1)=2. In fat, the

above proof shows that the N

FR

-rank of the lique onstraint (3.19) is at least, and hene

exatly, b(jBj � 1)=2. The N

FR

-rank of an odd antihole D is at least jDj=4� 1 (sine the

stability number of D is 2), and it must be an integer (while jDj is odd), so we have that it

is at least bjDj=4. In fat, this shows that the N -rank of the odd antihole onstraint (3.20)

is at least bjDj=4. Corollary 3.27 also yields a lower bound on the N -rank of the wheel
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onstraint (3.21). Indeed, let r be the N -rank of this onstraint. Then we have that this

onstraint is valid for N

r

(G) and, in partiular, for 1=(r + 2)1 2 N

r

(G). Thus,

1

r + 2

 

jW j � 1 +

jW j � 2

2

!

�

jW j � 2

2

whih gives that

2(jW j�1)

jW j�2

+ 1 � r+ 2 and thus r � 1 +

2

jW j�2

. Sine the N -rank of the wheel

onstraint is an integer, it must be at least, and hene exatly, 2.

Upper bounds on the N

+

-rank. Lov�asz and Shrijver [LS91℄ give also a suÆient on-

dition for an inequality to be valid for N

+

(K). The following lemma onsiders an inequality

u

T

x � 0 with u

0

� 0 and u

i

� 0 for i � 1. It an be extended to an arbitrary inequality

u

T

x � 0 by ipping the relevant oordinates aording to Lemma 3.8.

Lemma 3.32 (Lov�asz and Shrijver [LS91℄). If for all i with u

i

< 0, u

T

x � 0 is valid

for K \ fx : x

i

= x

0

g, then u

T

x � 0 is valid for N

+

(K).

For the stable set problem, Lemma 3.32 implies the following lemma, whih is desribed

in the original n-dimensional spae, i.e. by inequalities a

T

x � b (with a 2 IR

n

) that are valid

for STAB(G). Observe that the only non-trivial ase is b > 0 and a � 0, and then we an

use Lemma 3.32.

Lemma 3.33 (Lov�asz and Shrijver [LS91℄). If a

T

x � b is an inequality valid for

STAB(G) suh that for all i 2 V with a

i

> 0 the ontration of i gives an inequality with

N

+

-rank at most r, then a

T

x � b has N

+

-rank at most r + 1.

For example, the lique, odd hole, odd wheel, and odd antihole onstraints all have N

+

-

rank at most (and thus exatly) 1. Lov�asz and Shrijver [LS91℄ show also that the so-alled

orthogonality onstraints (see [Lov79, GLS93℄ for de�nition) are valid for N

+

(FRAC) by

de�nition, and hene their N

+

-rank is also 1.

One simple way to derive faet-de�ning valid inequalities from other faet-de�ning in-

equalities is loning a lique at a vertex i. That is, replaing the vertex i by a lique and

replaing every edge inident to i by orresponding edges that are inident to all the lique

verties, and substituting the variable of i in the inequality with the sum of the variables of

the lique verties. In general, it is not lear how loning inuenes the N

+

-rank of an in-

equality. However, Goemans and Tun�el [GT00℄ note that Lemma 3.33 implies that loning

at the enter vertex of an odd wheel inequality still has N

+

-rank 1, and that loning at one

or several verties of an odd wheel, odd hole, or odd antihole inequality, the N

+

-rank is

at most 2. Indeed, �xing any variable (of the orresponding subgraph) to 1, the resulting

inequality an be seen to be a linear ombination of lique inequalities and hene valid for

N

+

(FRAC).

Corollary 3.34 (Lov�asz and Shrijver [LS91℄). If G� �(i)� i has N

+

-rank at most r

for every i 2 V , then the N

+

-rank of G is at most r + 1.

It follows for example, that the N

+

-rank of a lique, an odd antihole or an odd wheel, is

at most (and hene exatly) 1.
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ConstraintnRank N N

FR

N

+

N

FR+

odd hole (3.18) 1 1 1 1

lique (3.19) jBj � 2 b(jBj � 1)=2 1 1

antihole (3.20) (jDj � 3)=2 bjDj=4 � rank � b(jDj+ 1)=4 1 1

wheel (3.21) 2 1 1 1

Table 3.1: The ranks of some example onstraints

Corollary 3.35 (Lov�asz and Shrijver [LS91℄). The N

+

-rank of a graph G is at most

its stability number �(G).

Note that Corollary 3.35 is tight for a lique.

Lower bounds on the N

+

-rank. Lov�asz and Shrijver [LS91℄ give no general method

to lower bound the N

+

-rank. The approah taken by Stephen and Tun�el [ST99℄, Goemans

and Tun�el [GT00℄, and Cook and Dash [CD00℄ is to obtain an analog of Corollary 3.27 that

holds for a spei� one K. That is, they show that N

r

+

(K) ontains a \uniform" solution

that does not belong to K

I

, and thus obtain that the N

+

-rank of K must be larger than r.

Our analysis in Setion 3.5 also follows this approah.

We note that Goemans and Tun�el [GT00℄ give a suÆient ondition for N

+

(K) = N(K)

to hold, but this ondition appears to be not appliable to the stable set problem.

The ranks of the example onstraints are listed in Table 3.4.3.

3.5 The Lov�asz-Shrijver relaxations in a random graph

In this setion we show that the N

+

-rank of a random graph G

n;1=2

is �(logn), almost surely.

In partiular, we analyze the asymptoti behavior of maxf1

T

x : x 2 N

r

+

(G)g for r = o(logn).

Loosely speaking, we show that the value of this relaxation is \roughly"

q

n=2

r

, almost surely.

Below are the preise formulations of our lower bound and upper bound on maxf1

T

x :

x 2 N

r

+

(G)g. Our proofs extend the proof of Juh�asz [Juh82℄ whih shows that the theta

funtion of a random graph is almost surely �(

p

n).

Theorem 3.7. For any �xed  >

p

2 there exists a �xed �

0

> 0, suh that if 0 � r � �

0

logn,

then almost surely maxf1

T

x : x 2 N

r

+

(G

n;1=2

)g �

p

n=

r+1

.

The proof of Theorem 3.7 appears in Setion 3.5.1. Tehnially, we show that N

r

+

(G

n;1=2

)

ontains, almost surely, the \uniform" solution (1=

r+1

p

n)1, and hene obtain a lower bound

on the value of the relaxation.

To show that the above lower bound is nearly tight, we give in the next thereom an upper

bound on the value of the relaxation. Its proof appears in Setion 3.5.2.

Theorem 3.8. For any �xed d <

p

2 there exists a �xed �

0

> 0, suh that if 1 � r � �

0

logn,

then almost surely maxf1

T

x : x 2 N

r

+

(G

n;1=2

)g � 4

p

n=d

r+1

.

It is straightforward that Theorem 3.2 follows from Theorems 3.7 and 3.8 by taking

 =

p

2 + Æ and d =

p

2� Æ.
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The N

+

-rank of a random graph G

n;1=2

. We an now use Theorem 3.7 and Corol-

lary 3.35 to show that the N

+

-rank of a random graph is almost surely logarithmi in n,

proving Theorem 3.3. In omparison, the N -rank of a random graph is almost surely at least


(n= logn) by Corollary 3.28, and at most n� O(logn) by Corollary 3.21.

Proof of Theorem 3.3. Let G be a random graph from the distribution G

n;1=2

, and let us

�rst show a lower bound on the N

+

-rank. It is well known that, almost surely, the maximum

size of a stable set in G is roughly 2 log

2

n, i.e.

maxf1

T

x : x 2 STABg � O(logn)

We have from Theorem 3.7 with r = �

0

logn that, almost surely,

maxf1

T

x : x 2 N

r

+

(FRAC)g � n


(1)

It follows that N

r

+

(FRAC) 6= STAB, and hene the N

+

-rank of FRAC (and therefore of G),

is larger than r = �

0

logn = 
(logn).

The upper bound on N

+

-rank of G follows from Corollary 3.35. Indeed, the stability

number of a random graph G

n;1=2

is, almost surely, roughly 2 log

2

n, and hene the N

+

-rank

of G is, almost surely, O(logn), as laimed.

3.5.1 Lower bound on the value of N

r

+

(G

n;1=2

)

We prove Theorem 3.7 by showing that N

r

+

(G

n;1=2

) ontains, almost surely, the \uniform"

solution (1=

r+1

p

n)1. First we exhibit in Lemma 3.36 ertain onditions that are suÆient

for suh a uniform solution to be feasible in N

r

+

(G

n;1=2

). We then show in Lemma 3.37 that

these onditions are almost surely satis�ed by a random graph G

n;1=2

.

Notation. We will say that two verties are non-adjaent if they are not adjaent and they

are not equal (i.e. they are adjaent in the omplement graph). We make no attempt to

optimize onstants.

Lemma 3.36. Let G be a graph on n verties, let  =

p

2(1 + �)

10

for 0 < � < 1=5 and let

r � 0. Assume that for every S � V with jSj � r, the graph G

0

= G � S � �(S) satis�es

(let n

0

denote the number of verties in G

0

):

(i) All eigenvalues of the adjaeny matrix of G

0

are at least �(1 + �)

p

n

0

.

(ii) The degree of every vertex in G

0

is between

1

1+�

n

0

2

and (1 + �)

n

0

2

.

If 

r+1

� �

p

n then (1=

r+1

p

n)1 2 N

r

+

(G).

Proof. Proeed by indution on r. For the base ase r = 0, observe that (1=

r+1

p

n)1 satis�es

the nonnegativity and edge onstraints and therefore is in FR(G) by de�nition.

For the indutive step, assume it holds for r � 0, and let us show that it holds for r + 1.

Let G be a graph with (i),(ii) holding for any jSj � r + 1, and 

r+2

� �

p

n. We an hoose,
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in partiular, jSj = 0 and have that (i),(ii) hold for the graph G itself. To ease notation,

de�ne

� := (1 + �)

5

(

r+1

=

p

2)

p

n (3.22)

Let A be the n� n adjaeny matrix of G, i.e. A

ij

= 0 whenever (i; j) 2 E or i = j and

A

ij

= 1 otherwise. We know from (i) that all eigenvalues of A are at least �(1+ �)

p

n � ��.

Hene, the matrix B = A + �I is positive semide�nite, and there exist vetors z

1

; : : : ; z

n

suh that B

ij

= z

T

i

z

j

. Therefore

kz

i

k

2

= B

ii

= �; 8i � 1: (3.23)

Let z

0

=

P

n

i=1

z

i

. Then

kz

0

k

2

= (

X

i>0

z

i

)

T

(

X

j>0

z

j

) =

X

i;j>0

B

ij

: =

X

i>0

X

j>0

B

ij

To estimate

P

j>0

B

ij

=

P

j>0

A

ij

+ � for i > 0, observe that we have from (ii) that

1

1 + �

n

2

�

X

j>0

A

ij

� (1 + �)

n

2

while � � (

r+2

=2)

p

n � �n=2. Hene,

1

1 + �

n

2

�

X

j>0

B

ij

� (1 + �)

2

n

2

; (3.24)

and we onlude that

1

1 + �

n

2

2

� kz

0

k

2

� (1 + �)

2

n

2

2

(3.25)

For every i � 0 let v

i

be the unit length vetors in the diretion of the vetor z

i

, i.e.

v

i

= z

i

=kz

i

k, and let x

i

= (v

T

i

v

0

)

2

. Observe that x

0

= (v

T

0

v

0

)

2

= 1.

We laim that x = (x

1

; : : : ; x

n

)

T

is in N

r+1

+

(G). Let us �rst show how the proof of

Lemma 3.36 follows from this laim. Indeed, from (ii) we have that

v

T

i

v

0

= (

z

i

kz

i

k

)

T

(

P

j>0

z

j

kz

0

k

) =

P

j>0

B

ij

p

�kz

0

k

Together with (3.24) and (3.25) we an estimate x

i

= (v

T

i

v

0

)

2

by

1

(1 + �)

4

�

1

2�

� x

i

� (1 + �)

5

1

2�

(3.26)

and from (3.22) we have that

x

i

�

1

2(1 + �)

4

�

p

2

(1 + �)

5



r+1

p

n

�

1



r+2

p

n
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and thus (1=

r+2

p

n)1 � x 2 N

r+1

+

(G). By the monotoniity guaranteed in Corollary 3.7 we

have (1=

r+2

p

n)1 2 N

r+1

+

(G), whih indeed proves the indutive step.

We now prove the laim x 2 N

r+1

+

(G), by presenting a matrix Y 2 M

+

(N

r

+

(G)) whose

0th olumn orresponds to x. Indeed, let Y be the (n + 1) � (n + 1) matrix de�ned by

Y

ij

= (v

T

i

v

j

)

p

x

i

x

j

for all i; j � 0. By de�nition, Y

i0

= (v

T

i

v

0

)

p

x

i

= x

i

for i � 0, and in

partiular Y

00

= x

0

= 1. We will show that Y satis�es (a),(b),(") and (d). Three of them

are straightforward:

(a) Y is symmetri by de�nition.

(b) Y

ii

= kv

i

k

2

x

i

= x

i

and hene Hene Y

ii

= x

i

= Y

i0

.

(d) Y is positive semide�nite beause it an be represented by the vetors f

p

x

i

v

i

g, i.e.

Y

ij

= (

p

x

i

v

i

)

T

(

p

x

j

v

j

) for all i; j � 0.

Before proving ("), observe that for i; j > 0 we have

Y

ij

= (

z

i

kz

i

k

)

T

(

z

j

kz

j

k

)

p

x

i

x

j

= (1=�)B

ij

p

x

i

x

j

and B

ij

is either �, 0 or 1. So for i; j > 0 we have

Y

ij

=

8

>

<

>

:

x

i

if i = j

0 if i 6= j and ij 2 E

(1=�)

p

x

i

x

j

if i 6= j and ij 62 E

and the estimate of (3.26) gives that x

i

� 1=2� and

p

x

i

x

j

� 1=2�. Hene,

Y =

2

6

6

6

6

6

4

1 x

1

� � � x

n

x

1

x

1

0

�

�

�

p

x

i

x

j

�

.

.

.

.

.

.

x

n

0

�

�

�

p

x

i

x

j

�

x

n

3

7

7

7

7

7

5

�

2

6

6

6

6

6

6

4

1

1

2�

� � �

1

2�

1

2�

1

2�

0

�

�

�

1

2�

2

.

.

.

.

.

.

1

2�

0

�

�

�

1

2�

2

1

2�

3

7

7

7

7

7

7

5

Consider Y e

i

, the ith olumn of Y , for i > 0, and sale it by a fator of 1=x

i

so that

its 0th entry will be 1. We get a frational solution where vertex i has value 1, its adjaent

verties have value 0, and its non-adjaent verties j have value (1=�)

q

x

j

=x

i

� 1=�. Let G

0

be the subgraph of G indued on the latter verties (i.e. those non-adjaent to i), and let

n

0

denote the number of verties in G

0

. Then by Lemma 3.16, we have that the frational

solution Y e

i

is in N

r

+

(G) if and only if its restrition to G

0

is in N

r

+

(G

0

). Eah oordinate in

the frational solution restrited to G

0

is bounded by

1

�

s

x

j

x

i

�

1

�

(1 + �)

9=2

�

p

2



r+1

q

n(1 + �)

�

1



r+1

p

n

0

where the �rst inequality is due to (3.26), the seond is due to (3.22), and the third follows

from n

0

� (1 + �)

n

2

whih we have from (ii). The frational solution restrited to G

0

is
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thus dominated by the uniform solution (1=

r+1

p

n

0

)1, whih belongs to N

r

+

(G

0

) by applying

the indution hypothesis to G

0

. (Note that G

0

satis�es (i),(ii) for any 0 � jSj � r by

de�nition, and that we have 

r+1

� �

p

n= � �

p

n

0

.) From the monotoniity guaranteed by

Corollary 3.7, we onlude that also the frational solution restrited to G

0

is in N

r

+

(G

0

), and

therefore Y e

i

2 N

r

+

(G).

Consider Y f

i

, the di�erene between olumn 0 and olumn i of Y , for i > 0. Its 0th

entry is 1 � x

i

� 1 � 1=2�, its ith entry is 0, and any other jth entry is at most roughly

1=2�. Observe that

x

i

�

(1 + �)

5

2�

�

1

p

2n

� 1�

1

p

2

(3.27)

where the �rst inequality is due to (3.26), the seond is due to (3.22) and the third is due

to

p

n � 5�

p

n � 5

r+2

> 10. Saling the vetor Y f

i

by a fator 1=(1� x

i

) so that its 0th

entry is 1, we obtain a frational solution in whih the value of the jth entry is at most

x

j

1� x

i

�

(1 + �)

5

=2�

1=

p

2

=

1



r+1

p

n

:

The frational solution is thus dominated by (1=

r+1

p

n)1, whih by the indution hypothesis

belongs to N

r

+

(G). (Note that G satis�es the requirements for r). From the monotoniity

guaranteed by Corollary 3.7, (as all entries of Y f

i

are nonnegative) we onlude that Y f

i

2

N

r

+

(G).

We therefore have that (") holds, whih ompletes the proof of the indutive step and

of Lemma 3.36.

The proof of Lemma 3.36 extends also to N

r

FR+

(G). Indeed, we need to onsider also

Y f

ij

for ij 2 E. The 0th entry of this vetor is 1�x

i

�x

j

� 1�2=2�, the ith and jth entries

are 0, and any other kth entry is either roughly 1=2� if k is adjaent to both i; j, or roughly

1=2�� 2=2�

2

� 1=2� if k is non-adjaent to both i; j, or roughly 1=2�� 1=2�

2

� 1=2� if k

is adjaent to exatly one of i; j. Similar to (3.27) we have that

x

i

+ x

j

� 2 �

1

p

2n

� 1�

1

p

2

:

Saling this vetor (by a small fator) so that the 0th entry is 1, we obtain a frational

solution in whih the value of the kth entry is at most

x

k

1� x

i

� x

j

�

(1 + �)

5

=2�

1=

p

2

=

1



r+1

p

n

:

The frational solutions is thus dominated by (1=

r+1

p

n)1, whih by the indution hypoth-

esis belongs to N

r

+

(G). From the monotoniity guaranteed by Corollary 3.7, (as all entries

of Y f

ij

are nonnegative) we onlude that Y f

ij

2 N

r

+

(G).

Lemma 3.37. Let � > 0 be �xed. Then there exists a �xed �

0

> 0 that depends on �, suh

that for any r � �

0

logn, a random graph G

n;1=2

almost surely satis�es the requirements of

Lemma 3.36.
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Proof. Observe that a suÆiently small �

0

> 0 that depends on � guarantees that 

r+1

� �

p

n

(we an assume, without loss of generality, that � < 1=5).

Consider a partiular hoie of S of size s � r, and its orresponding graph G

0

(V

0

; E

0

)

(the subgraph of G indued on the verties that are non-adjaent to all the verties of S).

The number of verties in G

0

, whih we denote by n

0

= jV

0

j, has binomial distribution

B(n� s; 1=2

s

). Sine s � logn � n=4, we have by Cherno� bound that

Pr

h

n

0

� n=2

s+1

i

� 2

�Æ

1

n=2

s

(3.28)

for some �xed Æ

1

> 0.

G

0

is a random graph (with edge probability 1=2) on n

0

verties. Therefore, the adjaeny

matrix of G

0

is a random symmetri matrix and we an use results on the onentration of

its eigenvalues. In partiular, we have from Krivelevih and Vu [KV00℄ (whih improve the

onentration shown by F�uredi and K�omlos [FK81℄, see also [AKV01℄) that

Pr [G

0

does not satisfy (i)℄ � 2

�Æ

2

n

0

(3.29)

for some Æ

2

> 0 that depends on �.

Sine G

0

is a random graph, the degree of a partiular vertex in G

0

has binomial distri-

bution B(n

0

� 1; 1=2). By Cherno� bound and the union bound on the n

0

verties we have

that

Pr [G

0

does not satisfy (ii)℄ � n

0

2

�Æ

3

n

0

(3.30)

for some �xed Æ

3

> 0 that depends on �.

Using the union bound on the events of (3.29) and (3.30) we an bound the probability

that G

0

does not satisfy (i) or (ii). In order to obtain a bound in terms of n (rather than

n

0

), we add to the union bound also the event of (3.28) and have that for some �xed Æ > 0

that depends on �,

Pr [G

0

does not satisfy (i) or (ii)℄ � n2

�Æn=2

s

Taking the union bound on all possible sets S of size at most r, the probability that the

requirements of Lemma 3.36 do not hold is at most

r

X

s=0

 

n

s

!

n2

�Æn=2

s

� rn

r+1

2

�Æn=2

r

� n

r+2

2

�Æn=2

r

� 1

when r � �

0

logn for a suÆiently small �xed �

0

> 0 that depends on �, and hene these

requirements hold almost surely.

The proof of Theorem 3.7 follows from Lemma 3.36 and Lemma 3.37.

3.5.2 Upper bound on the value of N

r

+

(G

n;1=2

)

To prove Theorem 3.8 we �rst exhibit in Lemma 3.38 ertain onditions that are suÆient

for the inequality 1

T

x � 4

p

n=d

r+1

to be valid for N

r

+

(G). We then show in Lemma 3.39

that these onditions are almost surely satis�ed by a random graph G

n;1=2

.
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The Lov�asz theta funtion of a graph is de�ned as #(G) = maxf1

T

x : x 2 TH(G)g,

where TH(G) is the solution set of the nonnegativity onstraints (3.8) and the so-alled or-

thogonality onstraints (see [Lov79, GLS93℄ for de�nition). Lov�asz and Shrijver [LS91℄ show

that the orthogonality onstraints have N

+

-rank at most 1, and hene N

+

(G) � TH(G).

Lemma 3.38. Let G be a graph on n verties, let d =

p

2(1� �) for 0 < � < 1 and let r � 1.

Assume that for every S � V with jSj � r, the graph G

0

= G � S � �(S) satis�es (let n

0

denote the number of verties in G

0

):

(i) #(G

0

) � 2(1 + �)

p

n

0

.

(ii) The degree of every vertex in G

0

is between

1

1+�

n

0

2

and (1 + �)

n

0

2

.

If d

r+1

� �

2

p

n then maxf1

T

x : x 2 N

r

+

(G)g � 4

p

n=d

r+1

.

Proof. Proeed by indution on r. For the base ase r = 1, we an hoose jSj = 0 and then

(i) and (ii) hold for the graph G itself. In partiular, we have that

maxf1

T

x : x 2 N

+

(G)g � #(G) � 2(1 + �)

p

n < 4

p

n=d

2

For the indutive step, assume it holds for r � 1 and let us show that it holds for r+1. In

other words, given a graph G with (i),(ii) holding for any jSj � r+1, we will prove that the

inequality 1

T

x � 4

p

n=d

r+2

is valid for N

r+1

+

(G). By Lemma 3.33 we know that it suÆes

to prove that for every vertex v, the inequality that arises from the ontration of v, i.e.

1

T

x � 4

p

n=d

r+2

� 1, is valid for N

r

+

(G� �(v)� v).

By the indution hypothesis forG

0

= G��(v)�v we have that maxf1

T

x : x 2 N

r

+

(G

0

)g �

4

p

n

0

=d

r+1

, i.e. the inequality 1

T

x � 4

p

n

0

=d

r+1

is valid for N

r

+

(G

0

). Sine (ii) holds also for

G itself, we have that n

0

� (1 + �)

n

2

, and hene

4

p

n

0

d

r+1

�

4

p

n

d

r+1

p

1 + �

p

2

=

4

p

n

d

r+2

p

1 + �(1� �) �

4

p

n(1� �

2

)

d

r+2

�

4

p

n

d

r+2

� 1

where the last inequality follows from d

r+2

� 4�

2

p

n. Therefore we have that for N

r

+

(G

0

)

the inequality 1

T

x � 4

p

n

0

=d

r+1

� 4

p

n=d

r+2

� 1 holds, whih ompletes the proof of the

indutive step.

Lemma 3.39. Let � > 0 be �xed. Then there exists a �xed �

0

> 0 that depends on �, suh

that for any r � �

0

logn, a random graph G

n;1=2

almost surely satis�es the requirements of

Lemma 3.38.

Proof. The proof is similar to the proof of Lemma 3.37, but with the di�erent requirement (i).

Juh�asz [Juh82℄ shows that #(G

0

) is at most (2+ o(1))

p

n

0

, almost surely, by using the result

of F�uredi and K�omlos [FK81℄ on the onentration of eigenvalues of random symmetri

matries. By using the stronger onentration result of Krivelevih and Vu [KV00℄ (see

also [AKV01℄), we have that (3.29) holds also here, and the proof follows.

The proof of Theorem 3.8 follows from Lemma 3.38 and Lemma 3.39.
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