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Abstract

Hot-potato routing is a particular form of routing in a synchronous network of

processors, which makes no use of bu�ers at intermediate nodes. Packets must keep

moving in the network (possibly de
ected to \bad" directions), giving rise to the

term \hot-potato". Simple hot-potato algorithms are interesting for both practical

and theoretical reasons.

We analyze the worst case performance of some simple hot-potato routing algo-

rithms. For example, we show that any \minimumadvance" algorithm cannot livelock

on a tree network, and present a deterministic algorithm for general graphs, inspired

by random walks.

One of our main topics studies an algorithm for the mesh based on selecting a

small number of Hamiltonian paths, such that vertices that are close together on the

mesh are also close together on at least one of these paths. Based on these families

of Hamiltonian paths, routing between vertices is achieved in time that depends only

on the distance between these vertices, regardless of the size of the whole mesh.

This framework of mapping meshes to several Hamiltonian paths may be of in-

dependent interest, and indeed we demonstrate its relevance to the construction of

hash functions.
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Chapter 1

Introduction

1.1 Background

This work studies packet routing in synchronous network of processors, in which any

communication link can carry at most one packet at each time step. We consider a

form of packet routing known as hot-potato routing or de
ection routing [1, 12, 13,

15, 21, 27, 28]. The important characteristic of this form is that it requires no bu�er

space for storing delayed packets. Each packet must leave the processor at the step

following its arrival, unless it has arrived to its destination. Packets arriving to a

processor from its neighbors have to be redirected to distinct outgoing links. That

is, packets keep moving, giving rise to the term \hot-potato". This may cause some

packets to be \de
ected" away from their preferred direction. In particular, some

packets may temporarily move further away from their destinations. This di�ers

from the traditional store-and-forward routing, where a packet can be temporarily

stored at a processor, and forwarded along the desired link once it becomes available.

In general, de
ections cause a packet to traverse more edges on its way to its

destination, compared with store-and-forward routing. This is an added burden on the

network resources (communication links). On the other hand, de
ection eliminates

the need for storing packets at intermediate processors (other than the source and

destination). Storage operations may be undesirable, as they require processors to

allocate memory for packets not addressed to them, potentially consuming resources

such as time and energy. If a packet is not going to be stored, there is no need to

read in the whole packet, and the packet header su�ces for the routing decisions.

We �nd the study of natural and simple hot-potato routing algorithms interesting

for its own right, regardless of potential applications. Nevertheless, this research

may have practical signi�cance, as hot-potato routing trades o� memory resources

to communication links. The desirability of such tradeo� depends on the available

resources and technology. Parallel machines such as the Connection Machine [16] and

the HEP multiprocessor [26], as well as high-speed communication networks [21] use
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de
ection routing in various forms.

De
ection routing is also highly desirable in the domain of optical networks [1, 13,

27, 28]. In such networks, the storing of packets require conversions between optical

form and electronic one. Currently, these conversions are much slower than optical

transmission rates, and it pays o� to de
ect a blocked message, even at the cost of

longer routes.

Intermediate processors in hot-potato routing have no queues of waiting packets,

enabling shorter cycle times. In order to capitalize on this feature, it is important

that the routing choices a node makes are simple and easy to implement.

1.2 Preliminary Considerations

A routing algorithm for a network is a collection of functions, one function for each

node of the network. The arguments of the function are the header information of

the packets that enter the node at a particular time step, and the internal state

information of the node. The output of the function is an assignment of the packets

to distinct outgoing edges, except for those packets destined to the current node.

Given a network and a routing algorithm for that network, we would like the

algorithm to perform well on routing problems that occur in practice. We present

here some typical parameters to consider.

Batch vs. dynamic routing: Batch routing problems are of a \one shot" nature,

where several packets are injected into the network simultaneously, and after that, no

new packet is injected into the network (until all packets from the �rst batch reach

their destination). In dynamic routing problems, packets are continuously being

injected into the network. Dynamic routing scenarios typically allow for a source

node to store its own packets, since in certain time steps it might be impossible to

inject a packet into the network (if all outgoing edges from the source node are used

by other packets).

Worst case vs. average case: We may measure a routing algorithm according

to its performance on a worst case routing problem. Alternatively, a probability

distribution can be de�ned over the possible routing problems, and then we can

measure average case performance or performance with high probability.

Evacuation vs. bound per packet: For batch routing, it is typical to consider

the evacuation time - the time until all packets reach their destinations. Dynamic

routing must measure the delivery time - time required for a typical individual packet

to reach its destination.

Load: The performance of algorithms may vary with the load (number of packets)

in the network. For a lightly loaded network, one would expect packets to reach their

destinations quickly, whereas for a heavily loaded network, larger delays are to be

expected.
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Class of Networks: It is usually easier to devise an algorithm which is restricted

to a certain class of networks, such as trees, meshes, hypercubes etc. Commonly, the

algorithm is tailored to the network layout, in order to ease performance analysis.

Algorithms for general networks usually cannot exploit such speci�c properties.

Capacity: Communication links can carry only a limited quantity of packets at each

time step, called the capacity of the link. Commonly, the capacity of each link is

limited to one packet in each direction, but in some cases we may assume links of

larger capacity.

In this work, we restrict ourselves to a certain class of de
ection networks, that

correspond to the class of undirected graphs. We do not allow self-loops nor parallel

edges, and each undirected edge (link) represents a pair of anti-parallel edges.

We consider only routing algorithms that do not alter the packets (and, in partic-

ular, their headers), after the packets are injected to the network.

We are concerned only with worst case bounds. We do not consider any kind

of average case nor randomness in the routing algorithm or in the routing problem.

Some variants of hot-potato routing allow the annihilation of a packet in \severe"

situations, which happen with very low probability. We do not allow this feature.

In general, we will concentrate on batch routing.

We introduce some basic notation which will be used throughout this work:

n (or N ) - number of nodes in the network. For meshes and tori, n will denote a

side of the mesh (e.g. the n� n mesh).

k - number of packets in the network.

d(u; v) - the distance (length of shortest path) between nodes u and v.

D - diameter of network.

d

p

- the distance between source and destination of packet p.

t

p

- the number of time steps until packet p reaches its destination.

The least requirement from a routing algorithm is a guarantee that all packets

will reach their destination at some time. It would be unfortunate if the algorithm

enters livelock - packets keep cycling in the network and never reach their destination.

Routing algorithm might perform well on some networks, and livelock on others.

When measuring the performance of an algorithm, we usually seek an explicit

bound on the evacuation time or on the delivery time (t

p

). The advantage of bounding

the delivery time (of a packet) over the evacuation time (of the network) is the option

to refer to parameters which are speci�c to this packet. For example, delivery time

bound can be expressed in terms of d

p

. The corresponding evacuation time would

then use D as an upper bound for d

p

.

In general, we would like a worst case bound which depends on the network load

(k) and on the distances between source and destination of packets (d

p

). Even a tight

worst case bound is not necessarily practical, as practical implementations take into
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account also the average case. It is also important to �gure out the problem nature.

For example, when k >> d

p

, one would like to bound performance as a function of

d

p

alone.

In many cases a lower bound on the performance is also interesting, and not

only for disqualifying unsuccessful algorithms. When related to a whole class of

algorithms, a lower bound points out a weakness of this whole class, and might lead

to a corresponding re�nement of the class. When related to a speci�c algorithm, the

lower bound is typically used to evaluate the quality of corresponding upper bounds.

1.3 Classi�cation of Algorithms

We are interested in natural algorithms which are simple to implement. A coarse

separation of the routing algorithms into classes includes shortest paths algorithms

and structured algorithms (we will shortly de�ne these terms as we discuss them).

In shortest path algorithms, a packet which does not meet any other packets on its

way, will be routed along a shortest path towards its destination. Following [11], we

further re�ne this class

1

by restricting the behavior in the case that several packets

meet in a node. The restrictions below (additional restriction further limits the class

of algorithms) apply at any time step, for any nonempty node.

� Minimum Advance: At least one packet advances towards its destination.

� Weakly Stable: If a packet is de
ected, than there is no free outgoing edge

that would lead it closer to its destination.

� Stable

2

: There is no possibility of changing the edges assigned to some of the

packets such that all those packets strictly gain from the change (get an edge

that leads them closer to their destination).

� Maximum Advance: The maximum possible number of packets advance.

These restrictions by themselves do not guarantee good performance. Hajek (Fig.

1 in [15]) demonstrated a livelock situation on the 4-cycle (and hence also on the

mesh) for a stable algorithm. Feige [11] exhibited a livelock situation for a maximum

advance algorithm, on a permutation problem on certain networks (including the

torus).

Hence, the maximum advance principle is not su�cient by itself to guarantee

termination. This is due to the lack of a good contention resolution - a method of

assigning priorities to contesting packets. Two examples of priority rules which avoid

livelock are:

1. Priority is given to packets that are closest to destination.

1

Similar classes, but using di�erent terminology, appear in [6, 5].

2

This corresponds to a stable solution in terms of game theory.
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2. The packets have �xed priority levels, independently of their location in the

network.

It is easy to show that any minimum advance routing algorithm obeying one of the

above two priority schemes routes a batch of k packets in at most k �D steps. The

maximumadvance livelock mentioned above is based on furthest �rst priority scheme.

Another class of algorithms is the structured algorithms, in which packets follow

some predetermined policy. The policy is well chosen, so that packets travel in a

pre-speci�ed global order. These routes are not the shortest possible, but their anal-

ysis is usually simpler because of their rigid pattern. Structured algorithms are not

necessarily even minimum advance, as they follow the �xed, pre-speci�ed route even

if the destination can be reached by a shorter path.

A subclass of the structured routing algorithms are collision-free algorithms, where

packets routes are carefully planned to avoid contention. In collision-free algorithms,

the route of each packet is set in advance, independently of the other packets. There-

fore, the delivery time t

p

is independent of the load k. A naive example for such

algorithm is routing along a Hamiltonian path (or cycle). Assume the network con-

tains a Hamiltonian path, which visits each of its n nodes. If any node in the batch

problem is the source of at most one packet, the network is evacuated within n steps,

regardless of the number of packets, k.

In this work (Chapter 4) we also consider the scheme of potential guided algo-

rithms, where each packet has some potential value at each of the network nodes.

The algorithm at each node assigns packets to outgoing edges such that the sum of

potentials (at the next step) will be minimal. This de�nition alone does not guarantee

good performance, and additional restrictions on the potential function are required.

Other structured algorithms, based on various schemes, are sometimes tailored to

certain networks. For example, Feige and Raghavan[12] presented the three bend algo-

rithm for two dimensional torus networks. In their algorithm, packets move basically

along rows and columns, and the number of turns (change of direction) is restricted

to 3. Another example is routing by (essentially) sorting, devised by Newman and

Schuster [23], for mesh, torus and hypercube networks.

1.4 Summary of Results

Recall the concept of collision-free algorithms, where packet routes are pre-speci�ed,

so packets never contest on the same link. A straightforward collision-free algorithm

is routing along a Hamiltonian path. Recall that a Hamiltonian path is one which

visits every node in the graph exactly once. Assuming that each packet is the source

of at most once packet, we get t

p

� n. However, this is quite poor in many cases, e.g.

where n >> d

p

. This is the case on the two dimensional mesh (or torus), where the

diameter is O(

p

n).
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We address the problem of designing a collision-free routing algorithm in which

the time required to deliver a packet is independent of the network size and load,

i.e. the bound for t

p

depends solely on d

p

. We deal with mesh and torus networks,

focusing on the two dimensional case.

We suggest to use a family of Hamiltonian paths instead of a single path. When

injecting a packet, one of the Hamiltonian paths is chosen, and the packet travels

along this Hamiltonian path with no interference from other packets, until reaching

its destination. We require that for each (possible) packet p at least one of the

Hamiltonian paths will deliver p to its destination within time which depends only on

d

p

, say g(d

p

) steps. An elementary argument shows that using only one path cannot

satisfy these requirements.

In Chapter 2 we study the underlying model. It is a family F of Hamiltonian

paths (or cycles) on the mesh (or torus), such that any two vertices which are d-

far from each other on the mesh, are connected by (at least) one of the paths in

F within some expansion g(d). The performance measurements of this model are

the cardinality of the family F , and the order of magnitude of the function g. We

investigate the asymptotic behavior of these measures, i.e. when n!1.

The underlying model is analogous to stereoscopic

3

vision, where the combination

of several two dimensional images give the appearance of the original solid form in

three dimensions, particularly its depth (distance) information. Similarly, in our

model a collection of Hamiltonian paths jointly characterize the distance information

of the original mesh.

We thus refer to this F as a stereoscopic family of permutations, (Hamiltonian

paths are generalized to arbitrary permutations).

We construct a stereoscopic family of permutations for the two dimensional mesh

(or torus). This family consists of 3 Hamiltonian paths (or cycles), and achieves

quadratic expansion, g(d

p

) = O(d

2

p

). We show that two paths cannot satisfy such

requirements, so this construction is optimal w.r.t. jFj. We also show that for any

family F of constant cardinality, g(d

p

) = 
(d

2

p

) by a simple counting argument

(regarding the sizes of the corresponding neighborhoods), so up to constant factors,

our expansion g is optimal.

We conclude that routing by stereoscopic families of permutations in the two

dimensional mesh achieves t

p

= �(d

2

p

), with the requirement that the capacity of

each link is 3 (to support the 3 Hamiltonian paths).

Stereoscopic families of permutations are applicable also in other areas, such as

approximate queries in a dictionary and hashing noisy data. Linial and Sasson [20]

present a hashing scheme which is non-expansive - close inputs are stored close to

each other in memory. Their scheme hashes a one dimensional universe (interval)

into another interval (in fact a small set of intervals). The framework of stereoscopic

families of permutations allows us to generalize the one dimensional scheme to arbi-

trary dimensions.

3

From Greek: stereo's = solid and skopein = to look at/view
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For such applications, we study the case of higher dimensions and extend the two

dimensional construction to m + 1 Hamiltonian paths in the m-dimensional torus,

with g(d) = O(d

m

) expansion. This family of Hamiltonian paths is then used to

construct a stereoscopic family of permutations for the general case, mapping an m-

dimensional universe to a q-dimensional one, with m+1 one-to-one functions and

achieving g(d) = O(d

m=q

) expansion.

We demonstrate how the general case construction can be used to upgrade a one-

dimensional non-expansive hashing scheme, to inputs and memory of arbitrary (pos-

sibly di�erent) dimensions. An m-dimensional universe is hashed to a q-dimensional

one, simultaneously by m + 1 one-to-one functions, each having its own copy of the

whole dictionary. This scheme maps distance � in the m-dimensional universe to

O(�

m=q

) in the q-dimensional storage. However, the memory size required is m + 1

times larger than in the one-dimensional scheme, and each operation must be per-

formed in each of these m+ 1 copies.

In Chapter 3 we show that any minimum advance algorithm on any tree network

cannot livelock. Our proof holds also in the presence of an adversary, as long as the

minimum advance principle is satis�ed.

In chapter 4 we de�ne the class of potential guided algorithm, where each packet has

a potential function, i.e. a potential value at each node in the network. The potential

function might depend on the packet's current location, the packet's destination and

source nodes, etc. Each node locally routes incoming packets so as to minimize their

potential, where as contentions are resolved through the potentials. That is, each node

applies the assignment which leads to the minimum possible \sum of potentials" in

the next step (after traveling their assigned edges).

We show that any potential guided algorithm on any tree network is stable. How-

ever, a potential guided algorithm is not necessarily maximum advance, even not on

tree networks.

We suggest a speci�c potential function which is the expected hitting time of

random walk from the packet's current location to its destination. Using this potential

function, any network is evacuated within 2n

3

log k steps. On tree networks and cycles

we show that this algorithm is maximum advance and achieves t

p

� d

p

+ 2(k � 1).

Unfortunately, this result does not hold for mesh networks, since even a single packet

does not use a shortest path.

1.5 Related Work

Baran [3] is widely credited with having �rst proposed hot-potato routing. Borodin

and Hopcroft [7] proposed an algorithm for hot-potato routing on the hypercube. Al-

though they did not give a complete analysis of its behavior, they observed that \ex-

perimentally the algorithm appears promising". Prager [25] showed that the Borodin-
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Hopcroft algorithm stops in n steps on the 2

n

-nodes hypercube for a special class of

permutations.

Apparently, the �rst to consider worst case bounds for hot-potato routing was

Hajek [15]. Some of his results which are relevant to our work, are demonstrating the

possibility of a livelock, and the notion of priority to packets that are closer to their

destination.

Part of our work concerns worst case bounds for general networks. Using the

closest �rst priority rule devised by Hajek, it is clear that any minimum advance

algorithm on any network terminates inO(k�D). The work of Hajek was continued by

Brassil and Cruz [9]. In the context of general networks, Brassil and Cruz considered

a minimum advance algorithms with �xed priorities and obtained the following result.

LetW

p

be the length of the shortest path that connects, in order of decreasing priority,

the destinations of packets with priority up to the priority of packet p. Let k

p

be the

number of packets with priority higher than that of packet p. Then t

p

� D+2k

p

+W

p

.

An upper bound for general networks was also considered by Feige [11]. He proved

that any maximum advance algorithm with �xed priorities achieves t

p

� d

p

+ 2

k

� 2,

and showed that this result is tight, i.e. in some maximum advance cases (includ-

ing �xed priority and closest �rst priority) t

p

= d

p

+ 2

k

� 2. As a corollary, he

concluded that any maximum advance algorithm with �xed priority evacuates any

network within O(D + k

D

logD

). In the same paper, Feige also shows an algorithm for

arbitrary networks that achieves t

p

� 2(R + k � 1), where R is the network radius.

This algorithm is based on applying the maximum advance principle on a spanning

tree, and is not even minimum advance on the original network.

Some other part of our work refers only to mesh and torus networks. This area

of worst case bounds for routing on networks of speci�c types (meshes, tori and

hypercubes) was also studied. Newman and Schuster [23] presented an algorithm

that is based on sorting for permutation routing in the n� n two dimensional mesh.

Their algorithm routes every permutation in 7n + o(n) steps. They apply the same

idea to route permutation problems on the 2

n

hypercube in O(n

2

) steps, and on

the n � n torus in 4n + o(n) steps. Using the same method, Kaufmann, Lauer and

Schroder [18] improved the result for the mesh. Other works [4, 6] present simpler

algorithms for the n� n two dimensional mesh and torus networks, but their bounds

are not as good as O(n).

Borodin, Rabani and Schieber [8] show an algorithm that achieves t

p

� d

p

+2(k�1)

on mesh networks of arbitrary dimension, if each node is the source of at most one

packet. Feige [11] shows an algorithm for mesh and torus networks of arbitrary

dimension that achieves t

p

� d

p

+ 2k in any problem.

Other works involving average case analysis (or random algorithms) on speci�c

networks include the works of Feige and Raghavan [12] and of Kaklamanis, Krizanc

and Rao [17].

In some routing problems k >> d

p

, and one wants to bound t

p

as a function of d

p

14



alone. Ben-Aroya and Schuster [5] designed an algorithm that routes any one-to-one

problem in a two dimensional mesh in 7 steps, provided that for all packets p, d

p

� 3.

Feige [11] improved this to 5 steps, and presented a stable algorithm that guarantees

t

p

� O(d

p

) on the in�nite line.

Part of our work is applicable also in the domain of hashing noisy data. In this

context, our work can be used to extend the non-expansive hashing scheme devised

by Linial and Sasson [20]. Related work in this context is described in section 2.8,

where we discuss this topic.
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Chapter 2

Stereoscopic Families of

Permutations

2.1 Motivation

Unlike Store-and-Forward routing, packets in hot-potato routing might be de
ected to

undesired locations, deviating from their preferred course. The actual route traveled

by each packet in a hot-potato algorithm depends on many other packets and their

interactions. It is therefore hard not only to design e�cient hot-potato algorithms,

but also to analyze performance of hot-potato routing.

A useful approach for overcoming all these de
ections, is simply avoiding con-

tention between packets, in a collision-free algorithm. Recall that we de�ned a

collision-free algorithm as one in which packets never contest on the same link. So

the route of each packet in a collision-free algorithms is independent of other packets,

and thus, known in advance.

A straightforward way to design a collision-free hot-potato algorithm is routing

along a Hamiltonian path (or cycle). Recall that a Hamiltonian path (cycle) is one

which visits every node in the graph (network) exactly once.

On the one hand, routing along Hamiltonian paths is elegant, simple to describe

and analyze, and easy to implement (i.e. the routing table in every node is trivial).

Assume each node gives priority to packets traveling in the network over new packets

generated at the node. Then once packets are injected to the network, they travel

to their destination without any interference. Another advantage of routing along

a Hamiltonian path is in batch routing, where every node is the origin of at most

one packet. In this case the time required to deliver a packet is independent of the

network load, even if all packets are destined to the same node.

On the other hand, the performance guaranteed by routing along a Hamiltonian

path is not very good, since packets travel almost the whole network, 
(N), regardless

of the situation. This is especially poor when the packet's destination is relatively

close on the network but quite far on the Hamiltonian path. Delivery time of 
(N) is
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also unsatisfactory when the network diameter is much smaller than N , as in the two-

dimensional mesh, where the diameter is O(

p

N). In both cases one would expect

much better delivery time since packets have the possibility to travel signi�cantly

shorter routes than �(N).

Of the several shortcomings of the Hamiltonian path routing scheme, our work

addresses only one: design a collision-free scheme in which the routing time for each

individual packet can be bounded by a function of the distance between its source and

destination, independent of the size of the network. We deal with mesh and torus

networks, concentrating on the two dimensional case. Another property we would

like to preserve is the 
exibility to extend the batch (one-shot) algorithm to dynamic

routing, allowing new packets to be generated continuously.

We mentioned before that routing along a Hamiltonian path on the two-dimensional

mesh results with poor delivery time w.r.t. the distance d

p

. In fact, a simple argu-

ment (see section 2.3.3) shows there will always be a pair of neighbors on the mesh

whose distance on the Hamiltonian path is 
(

p

N). Thus, the delivery time of a

single packet cannot be bounded by a function of d

p

alone (independent of n).

Our idea is to enhance the collision-free hot-potato algorithm to simultaneously

use several Hamiltonian paths, and route each packet along the best Hamiltonian

path. In this approach, we �rst need a small family F of Hamiltonian paths. Then,

routing from some origin x to destination y is performed by traveling along the best

(w.r.t. x and y) Hamiltonian path from F (the path is chosen only once, when the

packet is injected). We require that for each (possible) packet p there will be at least

one Hamiltonian path in F delivering p within some g(d

p

) steps, (for exampleO(d

2

p

)).

We suggest the following interpretation to routing along Hamiltonian paths. Con-

sider a factory, whose production 
oor forms a mesh, and its workers are located

at each of the mesh nodes. These workers interact with each other by sending and

receiving packages (products, messages etc.), along (one-directional) moving strips.

A simple solution is to use one Hamiltonian cycle to cover all workers posts, within

�(N) time. Each worker picks from the strip packages destined to him, and puts on

the strip those he wants to send, as soon as he spots a vacant place. This resembles

the moving strips used to pick up baggage in airports, where baggage is added to the

moving strip on a vacancy basis, and people take their belongings when it reaches

their position.

An alternative setting for the factory moving strips is building two (one-directional)

moving strips for each path in the stereoscopic familyF . The overall investment sums

up to 2jFj moving strips, each located in a distinct elevation (height), and covering

the whole factory 
oor. The workers algorithm remains quite the same. Each worker

that wants to send a package chooses a moving strip, according to a �xed table of

packages destinations. He then puts his package on the strip, as soon as he spots a

vacant place on this strip. When the worker sees a package destined to him on any
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of the 2jFj strips, he picks it up.

The advantage gained by using 2jFj moving strips is that packages are delivered

within �(d

2

p

) time. If the size of the 
oor N is very large and/or workers cooperation

tend to favor short distances, the performance with 2jFj strips is signi�cantly better

than with only one strip. Each worker has to be alert to the 2jFj strips at all times.

Hence, we want F to be of small cardinality as much as possible. Smaller jFj also

require less resources (strips) to be put in the system.

Allowing several Hamiltonian paths complicates the simple collision-free hot-potato

routing (see section 2.7 for details), but also puts the grounds to an independent theo-

retic model of preserving distances (metrics) when mapping a high dimensional mesh

to a lower dimensional one (e.g. two dimensional mesh mapped to the line). Clearly,

reducing the dimension is achieved on the expense of other resources, such as the

number of Hamiltonian paths jFj, and the neighborhood (distances) expansion.

In addition, this independent model of mapping higher dimensional mesh to a

lower dimensional one can be used in other applications, such as extending the one

dimensional non-expansive hashing of Linial and Sasson [20], to arbitrary dimensions

(see section 2.8).

2.2 The Model

The following de�nes several types of paths and cycles on a universe U (either a mesh

or torus of arbitrary dimension) with N elements, with the corresponding Manhattan

distance d

U

(i.e. L

1

norm).

De�nition 1 A tour � is a one-to-one function � : U 7! f1; : : : ; Ng, where U is a

mesh (or torus).

De�nition 2 Let � : U 7! f1; : : : ; Ng be a one-to-one function, where U is a mesh

(or torus). Then � is called a Hamiltonian path or shortly a path if

d

U

(�

�1

(x); �

�1

(x+ 1)) = 1 for all 1 � x < N

De�nition 3 Let � : U 7! f1; : : : ; Ng be a Hamiltonian path, where U is a mesh (or

torus). Then � is called a Hamiltonian cycle or simply a cycle if

d

U

(�

�1

(1); �

�1

(N)) = 1

De�nition 4 Let � : U 7! f1; : : : ; Ng be a one-to-one function, where U is a mesh

(or torus). Then � is called an (�; �)-shrinkable numbering of vertices if for any

two vertices x and y

d

U

(x; y) � �(d

1

(�(x); �(y)))

�
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Remark: The term shrinkable numbering introduced in [11], but similar notions

appeared in earlier works, in other contexts. See [19].

We de�ne a variant of paths and cycles, which allows bounded jumps. That is, a

tour visiting each node exactly once (Hamiltonicity), and the distance on the mesh

(or torus) between each node and its successor on the tour, is bounded by some �.

De�nition 5 Let � : U 7! f1; : : : ; Ng be a one-to-one function, where U is a mesh

(or torus). Then � is called a �-bounded jumps path or shortly �-path on U if

d

U

(�

�1

(x); �

�1

(x+ 1)) � � for all 1 � x < N

De�nition 6 Let � : U 7! f1; : : : ; Ng be �-bounded jumps path, where U is a mesh

(or torus). Then � is called a �-bounded jumps cycle or shortly �-cycle on U if

d

U

(�

�1

(1); �

�1

(N)) � �

De�nition 7 A permutation � is a one-to-one function �

i

: U 7! V , where U; V

are meshes (or tori) of arbitrary (possibly di�erent) dimensions, with N elements

(jU j = jV j = N).

De�nition 8 Let F

(N)

= f�

1

; �

2

; : : : ; �

l

g be a family of permutations �

i

: U 7! V ,

where U; V are meshes (or tori) of arbitrary (possibly di�erent) dimensions, with N

elements (jU j = jV j = N). F

(N)

is called a stereoscopic family of permutations

w.r.t. expansion g

N

: N 7! N, if

8x; y 2 U; min

i

f d

V

(�

i

(x); �

i

(y)) g � g

N

(d

U

(x; y))

A stereoscopic family of permutations is good if g

N

(d) is independent of N and

monotonic w.r.t. d. For example g

N

(d) = O(d) is good and implies that F preserves

distances up to a constant factor.

Notation: We will denote by d

i

the Manhattan distance on the i-dimensional uni-

verse (either mesh or torus).

We de�ned a stereoscopic family of permutations to contain any permutation (one-

to-one) functions. Collision-free routing according to a stereoscopic family F requires

particular permutations which are Hamiltonian paths, since at each time step, packets

can only be directed to a neighboring node. However, de�ning the model in a more

general way (any one-to-one functions) is more suitable for other applications, such

as hashing noisy data (see section 2.8).

The de�nition of a stereoscopic family of permutations is based solely on the metric

de�ned on the mesh (or torus). No other property of the graph (such as diameter,

vertex degree etc.) is considered. In principle, stereoscopic families of permutations

can be de�ned on any graph (network), but this is beyond the scope of the current

work.

The model of stereoscopic family of permutations consists of 4 parameters:
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�

1

; �

2

Dimensions of the source and destination meshes.

N Size of domain, namely the number of elements to map.

jFj Number of permutations (functions) required.

g

N

Neighborhood expansion measure, usually considered by its order of magni-

tude.

We are interested in the asymptotic behavior, where N ! 1. The parameters

jFj and g

N

represent the costs (expensive ingredients), and our goal is to reduce

these parameters to the minimum. Our study addresses the optimal solutions and

the tradeo�s between the two parameters. For example:

� Does constant jFj su�ce ? If so, what is the minimal corresponding g

N

?

� Can g

N

be independent of N ?

� Is it possible to achieve g

N

(d) = O(d) ?

� What is the best g

N

possible ? What jFj does it require ?

The study is organized as follows:

Section 2.3 Presents preliminary intuitions to the problem, showing elementary

constructions and bounds.

Section 2.4 Presents upper and lower bounds which are tight up to constant factors,

for paths in a two dimensional universe.

Section 2.5 Extends the two dimensional upper bound to higher dimensions. That

is, a family of m+ 1 paths on the m-dimensional torus.

Section 2.6 Generalizes the upper bound and constructs a stereoscopic family of

permutations for mapping any dimensional torus to any other dimensional mesh

(or torus).

Section 2.7 Discusses how to use stereoscopic families of permutations for routing,

and points out its bene�ts.

Section 2.8 Provides an example of another application of stereoscopic families of

permutations. We generalize non-expansive hashing of one dimensional inputs

universe and one dimensional memory (by Linial and Sasson [20]), to inputs

universe and memory, each of arbitrary dimension.
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2.3 Preliminary Intuitions

2.3.1 Store-and-Forward Algorithm

For comparison, we present an elementary Store-and-Forward algorithm for routing

packets in the two dimensional mesh (or torus) in O(d

2

p

) steps. We assume that every

node can be the origin of at most one packet.

Packets are routed along an arbitrary shortest path. In case of contention, priority

is given to packets whose distance from origin to destination (i.e. d

p

) is minimal. So

a packet p is delayed only by higher priority packets whose origin is at most d

p

steps

from p's route. The number of such origins is at most 9d

2

p

, as follows. p's route is

trivially bounded by a d

p

� d

p

square. Extending this square by d

p

in each direction,

we get a 3d

p

� 3d

p

square which covers all possible delaying origins.

We assume that every node is the source of at most one packet, so every packet p

is delayed at most 9d

2

p

steps (in addition to d

p

steps in which it advances). Therefore,

every individual packet p reaches its destination within 10d

2

p

steps.

2.3.2 Synchronized Spirals for Batch Routing

A neat static (one shot) hot-potato algorithm to deliver packets in O(d

2

p

) steps on

the two dimensional torus is to route each packet in a spiral path (a snail), starting

at its origin, as in �gure 2.1. In this case, every node can be the source of up to 4

packets, each injected on a spiral of a di�erent direction (orientation).

Figure 2.1: Batch routing along spirals

Assume �rst that every node can be the source of only one packet. If all packets

are injected to the network at the same time (t = 0), packets routes (spirals) will

be synchronized, so that packets never meet (at a vertex), regardless of the network

load.
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When each node is the source of up to 4 packets, every source node initiates (up

to) 4 spirals, one in each direction (orientation): up, down, right and left. Each of

the 4 packets is injected to a di�erent orientation spiral. The spiral paths correlate

perfectly. At each node, the 4 incoming packets are assigned to distinct outgoing

edges, without contention between packets on a link. The exact synchronization

between the spirals induces the requested collision-free hot-potato routing.

Every single spiral path covers the whole torus, so each packet will reach its

destination within 9d

2

p

steps. Another advantage of the algorithm is that it is not

restricted to distinct destinations.

However, the delicate timing is also the algorithm weakness, preventing extension

to dynamic routing. In dynamic routing, nodes generate packets continuously, so

packets are injected to the network at di�erent times. The spiral paths will then

coincide rather than correlate, producing contention on links.

Nodes in the torus belong to di�erent spirals at di�erent times steps. Therefore,

the routing table in each node must depend either on the time t, or alternatively, on

the source of each incoming packet. Only with this information available, the node

can decide how to assign an incoming packet to an outgoing edge. On the other hand,

the packet's destination is only important for checking whether the node reached its

destination. Further routing decisions at the node (assignments of outgoing edge) are

totally independent of the packets' destinations.

2.3.3 One Path in Two Dimensions

Observation 1 Let M

n

be a n�n mesh (or torus). Then there exists a Hamiltonian

path �, such that

8x; y d

1

(�(x); �(y)) � 2n � d

2

(x; y)

where d

1

denotes distance on the (one dimensional) path, and d

2

denotes distance on

the (two dimensional) mesh.

Proof. Simply let � scan the mesh (or torus) by rows in a snake like order (see

�gure 2.2). Let x; y be arbitrary nodes in the meshM

n

. Consider �rst the case where

x; y reside on the same row. Since we scan the whole row at once, their distance on

� is at most n.

Otherwise, they are in di�erent rows, in which case the number of rows separating

them is at most d

2

(x; y) + 1 � 2d

2

(x; y) (including those of x and y). Therefore, the

distance on � between them is at most n � 2d

2

(x; y) � 2n � d

2

(x; y). 2

Our goal is a bound for d

1

(�(x); �(y)), which is a function of d

2

(x; y) and inde-

pendent of n. The motivation is a very large (possibly in�nite) mesh, where nodes

communicate with a relatively small neighborhood.

When moving from higher dimensional mesh (or torus) to lower dimensional one,

we �rst encounter the problem of neighborhoods getting smaller. Namely, moving
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Figure 2.2: Scanning the mesh in a snake like order

from �

1

dimensions to �

2

dimensions, the R-neighborhoods shrink from size of �(R

�

1

)

nodes to the much smaller �(R

�

2

) nodes.

Consider a tour on the two dimensional mesh (or torus), which is equivalent to

mapping from dimension 2 to 1. The counting argument above shows we must at

least square the distances, namely g(d) = 
(d

2

). Indeed, on the two-dimensional

mesh there are �(R

2

) nodes in radius R from some �xed node x. So on the line, at

least one of these nodes must be 
(R

2

) steps far from x.

In fact, the di�culty of mapping from two dimensions to one dimension is much

more profound than the sizes of the neighborhoods. The following lemma shows that

even quadratic expansion of distances does not su�ce.

Lemma 2 Let � be a Hamiltonian path (or cycle) on the n�n two dimensional mesh

(or torus). Then

9x; y d

2

(x; y) = 1 ^ d

1

(�(x); �(y)) >

n

4

where d

1

denotes distance on the (one dimensional) path, and d

2

denotes distance on

the (two dimensional) mesh.

Proof. Since the path (or cycle) � is of size n

2

, there is a pair of nodes whose distance

on the path is at least

n

2

2

. Let x

0

; y

0

be the corresponding nodes in the mesh, so

d

1

(�(x

0

); �(y

0

)) �

n

2

2

. Recall, however, that the distance on the torus (or mesh) is

bounded by 2n, therefore there is a path from x to y on the two dimensional torus

x

0

= x

1

; x

2

; : : : ; x

r

= y

0

for some r � 2n.

Assume to the contrary, that d

1

(�(x

i

); �(x

i+1

)) �

n

4

for all i. Then we can bound

the overall distance between �(x

1

) and �(x

r

) using the triangle inequality:

d

1

(�(x

0

); �(y

0

)) = d

1

(�(x

1

); �(x

r

)) �

r�1

X

i=1

d

1

(�(x

i

); �(x

i+1

)) � (2n � 1) �

n

4

<

n

2

2
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Contradiction. 2

This lemma implies that g

N

, the expansion of distances, cannot be de�ned in-

dependently of N , even not as an exponential function or so. Moreover, there will

always be nodes whose distance expands from 1 on the mesh, to

n

4

on the line (a huge

expansion in terms of d = 1).

Nevertheless, the straightforward construction yields quite a tight upper bound

for one path on the two dimensional mesh, indicating we reached the limits of the

model. We conclude that representing several dimensions requires a more powerful

model, such as the stereoscopic family of permutations.

2.3.4 Two Paths in Two Dimensions

The model of stereoscopic family of permutations de�ned in section 2.2 allows us to

use several Hamiltonian paths in order to keep the neighborhoods expansion small.

Indeed, we can extend the single path constructed in Observation 1, to a family of two

paths with better performance (smaller distances expansion g

N

). The performance of

these two speci�c paths is better than any single path, according to the lower bound

of Lemma 2.

Lemma 3 Let M

n

be a n� n mesh, where n is odd. Then there exist 2 Hamiltonian

paths �

1

; �

2

on M

n

, such that

8x; y min

i=1;2

fd

1

(�

i

(x); �

i

(y))g �

(

4

p

n � d

2

(x; y) if d

2

(x; y) <

1

8

p

n

4n � d

2

(x; y) otherwise

Implying

8x; y min

i=1;2

fd

1

(�

i

(x); �

i

(y))g � 32

p

n � (d

2

(x; y))

2

where d

1

denotes distance on the path (one dimensional), and d

2

denotes distance on

the mesh (two dimensional).

Proof. Intuitively, we partitionM

n

into

p

n horizontal strips, each of height

p

n. The

path �

1

scans T

n

strip by strip, where in each strip traversal is by columns. �

2

is like

�

1

, but shifted half a strip downwards.

Formally, we pick a number s 2 [

p

n; 2

p

n], and partitionM

n

into s (almost) equal

strips (each of size �

n

s

). To be precise, suppose n = sq + r where 0 � r < s and

q = b

n

s

c, then the �rst r strips consist of q + 1 rows, and the remaining s � r strips

consist of q rows. The \height" of a single strip is bounded by:

q + 1 �

n

s

+ 1 �

p

n + 1 � 2

p

n

Path �

1

travelsM

n

strip by strip as follows. It enters the �rst strip at the Upper-

Left corner, and traverses the strip by columns towards the right hand-side, i.e. it goes
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down the �rst column, climbs up the second column, then down the third column,

and so on (see �gure 2.3). Since the number of columns is odd, the strip traversal

ends up in the Lower-Right corner of the strip, and �

1

enters the second strip at its

Upper-Right corner. It travels this strip towards the left hand-side (by columns, till

the Lower-Left corner) and so on, strip by strip, from top to bottom.

Figure 2.3: Scanning the mesh by strips

�

2

is de�ned to be a shift of �

1

for b

q

2

c units (half the strip size) down. For this

purpose, the \height" of the �rst and last strips is half the height of other strips.

Let x; y be arbitrary nodes in the mesh, and we will bound their distance on the

�

i

's. Consider �rst the case that for some path �

i

they are in the same strip. Then the

horizontal distance (distance between their columns) is bounded by d

2

(x; y). Since �

i

scans this strip by columns, we get

d

1

(�

i

(x); �

i

(y)) � (d

2

(x; y) + 1) � (q + 1) � 4

p

n � d

2

(x; y)

Otherwise, the two nodes are in di�erent strips in both paths, and thus the distance

between them must be at least

d

2

(x; y) �

1

2

q �

1

2

(

n

2

p

n

� 1) �

1

8

p

n

However, the number of strips between them is at most

d

2

(x;y)

q

+1 (including those of

x and y), so

d

1

(�

i

(x); �

i

(y)) � (q + 1)n � (

d

2

(x; y)

q

+ 1) � 4n � d

2

(x; y) � 32

p

n � (d

2

(x; y))

2

2
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Lemma 4 Let T

n

be a n�n torus, where n is even. Then there exist 2 Hamiltonian

cycles �

1

; �

2

on T

n

, such that

8x; y min

i=1;2

fd

1

(�

i

(x); �

i

(y))g � 64

p

n � (d

2

(x; y))

2

where d

1

denotes distance on the (one dimensional) cycle, and d

2

denotes Manhattan

distance on the (two dimensional) torus.

Proof. Intuitively, as in the mesh, we partition T

n

into

p

n horizontal strips, each of

width

p

n. �

1

scans T

n

strip by strip, where in each strip, the traversal is by columns.

However, due to the wrap-around nature of the torus, the strips will be slanted, so

that the strips are connected to each other in the wrap-around (the strip slope is

p

n

n

).

�

2

is half a strip downwards shift of �

1

.

Formally, we pick a number s 2 [

p

n; 2

p

n], and partition T

n

into s (almost) equal

strips (each of size �

n

s

). Suppose n = (2s)q + r where 0 � r < 2s and q = b

n

2s

c.

Since n is even, r is also even, and n = s(2q) + r. The �rst

r

2

strips consist of 2q + 2

rows, and the remaining s�

r

2

strips consist of 2q rows. The \height" of a single strip

is bounded by:

2q + 2 � 2

n

2s

+ 2 �

p

n+ 2 � 3

p

n

The strips are slanted downwards using \steps" (see �gure 2.4). The height of

each step is 2, and the steps are in speci�c q+1 columns which are spread uniformly

on the strip (every �

n

q+1

nodes). Clearly, in s �

r

2

strips q steps su�ce, so only the

�rst q of the q + 1 columns will be used.

Figure 2.4: Slanted strips on the Torus

�

1

is de�ned to travel T

n

strip by strip, each of them traversed by columns. Upon

reaching a step, the path might deviate from columns scanning, as in �gure 2.5. The

strips are concatenated (in the wrap-around), forming a one long strip, in which �

1

travels. �

1

is actually a cycle, because the number of columns is even.

De�ne �

2

to be a q units (half the strip height) downwards shift of �

1

.
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Figure 2.5: Deviation from columns scanning on strip steps

Let x; y be arbitrary nodes in the mesh, and we will bound their distance on the

�

i

's. Consider �rst the case that for some path �

i

they are in the same strip. Then the

horizontal distance (distance between their columns) is bounded by d

2

(x; y). Since �

i

scans this strip by columns (up to 2 columns deviation), we get

d

1

(�

i

(x); �

i

(y)) � (d

2

(x; y) + 2) � (2q + 2) � 9

p

n � d

2

(x; y)

Otherwise, the two nodes are in di�erent strips in both paths, and thus the distance

between them must be at least

d

2

(x; y) >

1

2

q �

1

4

n

2s

�

1

16

p

n

However, the number of strips between them is at most

d

2

(x;y)

2q

+1 (including those of

x and y), so

d

1

(�

i

(x); �

i

(y)) � (2q + 2)n � (

d

2

(x; y)

2q

+ 1) � 4n � d

2

(x; y) � 64

p

n � (d

2

(x; y))

2

2

2.3.5 Preserving Only Speci�c Distances

We stress that the di�culty in preserving the metric is the global handling of all

possible pairs at di�erent possible distances. Speci�c distances (neighborhoods) such

as � = 5 or � =

p

n are maintained by two paths. The construction is similar to

section 2.3.4, with strips adjusted according to the distance we want to preserve.

Suppose that we want to preserve a distance �(n) on the mesh. We follow the

proof of Lemma 3, with strips of \height" 2� (roughly), and �

2

is a shift of �

1

by

half a strip \height" (see �gure 2.3). Every two nodes at distance � (or less), must

be in the same strip in one of the paths �

i

. The distance of the two nodes on this

path �

i

, is then bounded by O(�

2

).
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2.4 Two dimensions

Recall that our goal is to bound the neighborhood expansion g

N

independently of N .

However, the lower bound following from Lemma 2 shows this is impossible unless

using at least two paths. Although our constructions with two paths are better than

the lower bound for one path, they still expand neighborhoods signi�cantly.

In this section we consider the two dimensional case, and present a family F of

3 Hamiltonian paths, with distances expansion g(d) = O(d

2

). In addition, we prove

this is optimal with respect to both the number of paths and the order of magnitude

of the expansion g.

2.4.1 Quadratic Expansion Lower Bound

Observation 5 Let fF

(N)

g

1

N=1

be stereoscopic families of permutations on the two

dimensional mesh (or torus), and let jF

(N)

j = O(1). Then g

N

(d) = 
(d

2

).

Proof. Consider the following counting argument. Let x be a �xed node on the two

dimensional mesh (or torus). Then the number of nodes on the mesh (or torus) in

radius R from x is quadratic, namely �(R

2

). Since the number of paths in F is

constant, at least one of these nodes must be 
(R

2

) steps far from x on all paths.

2

2.4.2 Constructive Upper Bound with Three Paths

Following we construct a stereoscopic family of permutations F = f�

1

; �

2

; �

3

g with

expansion g(d) = O(d

2

), which is the best possible expansion up to constant factors,

by Observation 5. We will see later (section 2.4.5) that it is optimal w.r.t. jFj. The

most natural graph for this construction is a n � n torus, where n = 3 � 2

l

, yielding

simpler proof and lower constants (Lemma 6 below). Adjustments to arbitrary tori

and meshes are possible (with larger constants), and are discussed in sections 2.4.3

and 2.4.4.

Lemma 6 Let T

n

be a n� n torus, where n = 3 � 2

l

, for arbitrary l > 0. Then there

exists a family F = f�

1

; �

2

; �

3

g of 3 Hamiltonian cycles on T

n

, such that

8x; y min

i=1;2;3

fd

1

(�

i

(x); �

i

(y))g � 36(d

2

(x; y))

2

where d

1

denotes distance on the (one dimensional) cycle, and d

2

denotes Manhattan

distance on the (two dimensional) torus.

Proof. First denote each torus node as a pair (i; j) where 1 � i; j � n. Following,

we construct a Hamiltonian cycle �, similar to the one used by Lempel and Ziv for

compressing two-dimensional data, in [19]. Consider the torus T

n

as a n�n meshM ,
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and we shall show a Hamiltonian path on M from (1; 1) to (n; 1). This Hamiltonian

path on M is de�ned recursively, by partitioning M to 2 segments in each axis, to

get 4 equal size sub-meshesM

1

;M

2

;M

3

;M

4

, as in �gure 2.6. The path starts at (1; 1)

which is in M

1

, and ends up at (n; 1) which is in M

4

. Therefore, the path shall be

M

1

!M

2

!M

3

!M

4

, as in �gure 2.6.

Constructing the path inside M

1

is done by breaking M

1

into 4 sub-meshes

M

11

;M

12

;M

13

and M

14

. The path has to travel from M

11

, recursively cover all

M

1

sub-meshes, and �nally move to M

2

. The only way to do it (see �gure 2.6),

is M

11

!M

14

!M

13

!M

12

.

Horizontal
Facets

Vertical
Facets

M4

M1

1

n

M2

M3

n1

M4

M2

M3

M14 M13

M12M11

n

1

n1

Figure 2.6: The Hamiltonian path and Re�ning it inside M

1

Formally, at each phase we break our mesh M into 2 segments at each axis, get

4 equal size sub-meshesM

1

;M

2

;M

3

;M

4

, and consider this high-level description as a

2 � 2 mesh. We de�ne a d-facet to be a virtual border line between adjacent d � d

sub-meshes (i.e. face/edge of the square, see �gure 2.6).

By de�nition, transitions between successive sub-meshes are made only through

the sub-meshes corner nodes (i.e. one of (1; 1); (1; n); (n; 1); (n; n)). In addition, in

each sub-mesh, the entrance (corner) node and the exit (corner) node are necessarily

adjacent corners. W.l.o.g. we assume the entrance node is (1; 1), and thus the exit

node is either (1; n) or (n; 1). A corresponding Hamiltonian path is always feasible

by recursion, as shown in �gure 2.7.

The path is constructed recursively, until we get down to a 3� 3 mesh, in which

a similar construction is also feasible (see �gure 2.8).

Basic path properties:

1. After i recursion phases, meshM

n

is partitioned into 2

i

equal segments in each

axis, total of (2

i

)

2

= 2

2i

sub-meshes, each of size

n

2

i

�

n

2

i

.

2. Each of the construction sub-meshes is traversed as a whole (i.e. it is covered

sequentially without any jumps outside).
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1

n

1

1

n

1n n

Figure 2.7: Demonstrating feasibility of 2� 2 path

1 n
1

n

1 n
1

n

Figure 2.8: Feasibility of 3� 3 Hamiltonian paths

3. The distance on � of any two nodes in the same sub-mesh, sayM

0

from the i-th

phase, is less then the size of the sub-mesh, i.e. d

1

(�(x); �(y))< (

n

2

i

)

2

4. The path visits each node once, and not more. Therefore, it is Hamiltonian.

5. The path starts in (1; 1) and ends up in (n; 1), which are neighbors in the original

torus T

n

. Hence, � is a Hamiltonian cycle on the torus.

We de�ne �

1

to be exactly �, as described above. Since the torus is cyclic, any

path on it can be moved (shifted) using an additive transformation modulo n. So let

�

2

be the same cycle as � shifted

n

3

units in each axis (say right and down), and �

3

the

same with

2n

3

units shift. This can be alternatively viewed as �xing the mesh (on the

torus) with a

n

3

(or

2n

3

) shift in each axis, and then constructing the path recursively.

Let x; y be arbitrary nodes on the torus, and we will bound their distance on the

�

i

's. Denote d

0

= d

2

(x; y) their distance on the torus, and let d = 3 �2

j

be the smallest

such that d > 3d

0

, so clearly, d � 6d

0

.

We now partition the torus into sub-meshes of size d � d (i.e. by log

2

n

d

= l � j

phases of the construction), once for each path �

i

(totally 3 sets of sub-meshes).

Let f

1

be a horizontal facet in the d�d partitioning of �

1

, and f

2

a horizontal facet

in the d� d partitioning of �

2

. We claim that the distance between these facets is at

least

d

3

mesh nodes. Indeed, the partitioning of n to

1

2

;

1

4

;

1

8

; : : : does not coincide with

the shift by a

1

3

, and n is chosen to be divisible by all these denominators. Speci�cally,

f

1

appears every d rows, and f

2

appears at

n

3

plus multiples of d. Consider the location
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of f

2

relatively to f

1

, i.e. its location modulo d (since f

1

appears at multiples of d).

It comes down to resolve

n

3

modulo d, and

n

3

= 2

l

= d �

2

l�j

3

. Since 3 does not divide

2

l�j

, we conclude that the di�erence between adjacent f

1

and f

2

is

d

3

.

By symmetry considerations, we conclude an important property that any two

d-facets of di�erent cycles (�

i

6= �

i

0

) but with the same orientation (either horizontal

or vertical) are separated by at least

d

3

torus nodes.

We now claim that x; y belong to the same d� d sub-mesh in some Hamiltonian

cycle �

i

, and hence their distance on this �

i

is less than the sub-mesh size, and we're

done:

d

1

(�

i

(x); �

i

(y)) < d

2

� (6d

0

)

2

= 36(d

2

(x; y))

2

Assume to the contrary, that x and y are in di�erent d � d sub-meshes in all 3

Hamiltonian cycles. Thus, x; y are separated from each other by at least one facet in

any �

i

. These 3 facets are either horizontal or vertical, so at least two must be of the

same orientation (by the pigeon-hole principle), w.l.o.g. say horizontal. Therefore,

moving from x to y, one must cross these two horizontal facets, which are separated

from each other by at least

d

3

rows, so d

2

(x; y) �

d

3

> d

0

= d

2

(x; y). Contradiction.

2

The speci�c paths used in this construction have yet another property which is

complementary to our requirement of bounding the neighborhoods expansion. In each

path, distances on the path shrink to their square roots when placed on the torus.

Lemma 7 Let � be the path constructed recursively in the proof of Lemma 6. Then

� is a (

1

2

; 6)-shrinkable numbering of vertices. That is

8x; y d

2

(x; y) � 6

q

d

1

(�(x); �(y))

Proof. Denote d = d

1

(�(x); �(y)). Then there is some d

0

�d

0

square in the construction

such that

p

d � d

0

< 2

p

d. Assume w.l.o.g. that x appears before y on the path.

Then traveling on the path from x to y (total of d � 1 steps), one can either stay in

the same d

0

�d

0

square or advance to a neighboring one, but not further (because the

square's size is (d

0

)

2

� d). Either case, x and y are in the same 2d

0

� d

0

rectangle on

the mesh, and thus

d

2

(x; y) � d

0

+ 2d

0

� 6

p

d

2

In other words, F always expands distances at least to their quadratics. Therefore,

routing along the paths would always require �(d

2

p

) steps.
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2.4.3 Extending the Upper Bound to Arbitrary Meshes

Lemma 6 constructs three paths on the n�n torus, where n = 3�2

l

. This construction

can be adjusted to support any rectangular (n

1

� n

2

) mesh. It will be less elegant

and the constants become larger. We push the problem to the mesh sideways, by

building the original construction in the center (with d� d squares for all d = 3 � 2

j

),

and adjusting each path in its marginal rectangles, as follows.

The important property to maintain is that facets of each path �

i

will appear

exactly every 3 � 2

j

nodes (for all j). This will guarantee distance of

d

3

between d-

facets of di�erent paths. Thus, any pair of nodes x; y, whose is distance d

0

= d

2

(x; y),

will still be connected by some �

i

within (6d

0

)

2

.

For each path �

i

we �rst draw the facets lines for every possible d = 2

j

, starting

from the upper left corner (plus the appropriate shift). This creats d� d squares for

d's at all levels. Figure 2.9 shows an example for setting the facets on a rectangle.

Secondly, we build the path �

i

inside each square, recursively. In the marginal rect-

angles, it might happen that the d-facets create a rectangle, not completing a d � d

square because of the mesh ends. Figure 2.9 illustrates the path construction, and

several rectangles are further re�ned.

Figure 2.9: Creating facets exactly at d = 3 � 2

j

nodes

The path �

i

can still be constructed recursively according to our original guide-

lines. Consider a rectangle bounded by d-facets on some sides and the mesh ends on

others, and check how it is divided by the

d

2

-facets:

� If no

d

2

-facet appears inside the rectangle, we do nothing and build the path

recursively (the d-facets are also

d

2

-facets).

� If only one

d

2

-facet appears inside the rectangle, only one exit node is reasonable,

and the path can be constructed recursively, as in �gure 2.10.

33



� If two

d

2

-facets appear inside the rectangle, they partition it to 4 sub-rectangles

and we can follow the original scheme of recursing into each one of them, through

adjacent entrance and exit corners. Two example are shown in �gure 2.11.

d

d

d

d/2

Mesh End

Mesh End

d

d

Mesh End

Mesh End

Mesh End

d/2

Figure 2.10: Rectangles with 1 internal

d

2

-facet

d

d

d

d

d

d/2

d/2

d/2

Mesh End

Mesh End Mesh End

Mesh End

Mesh End

d/2

d/2

d/2

Figure 2.11: Rectangles with 2 internal

d

2

-facets

At the lowest level, the required Hamiltonian paths (with entrance and exit nodes

at adjacent corners) can be constructed, unless the rectangle is of the type odd�even

(or even� odd). Since we have facets every 3 nodes, this can only happen at 3 � 2

rectangles and 1 � 2 rectangles. For example, if 3 divides n this rectangles do no

occur. Anyway, on this lowest level, local �xes can be made, and the constants might

increase.
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2.4.4 Extending the Upper Bound to Arbitrary Tori

Torus graphs require di�erent adjustments. The concept used to adjust the paths

in meshes fail in the wrap-around, because d-facets from di�erent paths might be

close to each other (closer than

d

3

nodes). Lemma 6 has to be adjusted in a di�erent

approach to support arbitrary n � n tori.

The important property for torus graphs is to keep the facets equally spread all

over the n nodes, so going through the wrap-around will be smooth. We de�ne the

facets at the j-th phase of the recursion to appear after approximately (it might be

non-integer)

n

2

j

. That is, the i-th facet will appear after bi

n

2

j

c. First note that the

distance between successive facets of the same phase (in the same path) is more or

less uniform (

n

2

j

�1). Second, each phase re�nes the previous one, so facets of the j-th

phase are also facets in phase j + 1, and each interval is partitioned to 2. Third and

most important, the facets are aligned to the center, and not shifted to the sideways.

For example, the facet of the �rst phase is right in the middle, and not shifted to

the sides, as might happen when concentrating all the small facets in one side. So

14 is divided to 7+7, which in turn is divided to 3+4+3+4. Had we divided it to

3+3+4+4, the

1

2

n (middle) facet would be shifted from the center to the left (see

�gure 2.12).

3 4 3 4

3

4

3

4

3 3 4 4

3

3

4

4

Figure 2.12: Example of aligned facets (on the left) and not-aligned (on the right).

So the torus is divided to 4 rectangles whose sides are more or less equal (�

n

2

j

).

Each rectangle is divided in turn to 4 smaller rectangles, whose sides are also more

or less equal, and so on. The path is constructed recursively in each of the 4 sub-

rectangles, as in the original construction of � in Lemma 6 (see �gure 2.6). The

recursion stops at rectangles whose both sides are smaller than 4. Rectangles of the

type odd � even (and even � odd) do not necessarily support a Hamiltonian path
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between adjacent corners (our entrance and exit nodes). Local �xes are made by

taking another corner to be the entrace (or exit) node. The neighboring rectangle

has to be altered accordingly, see �gure 2.13 for illustration. The local �xes might be

required on all levels, so we do them in a top down fashion, starting with the largest

\bad" rectangles (odd � even or even� odd).

A

C

H

D E

F

GB

A

C D E F

H

B G

Figure 2.13: Example of bad rectangles (see nodes D and H on the left) and adjusting

them (on the right)

The paths �

1

; �

2

; �

3

are constructed by shifting the path � by b

n

3

c in each axis,

as in the original proof. Since the facets occur at �

n

2

;�

n

4

;�

n

8

;�

n

16

; : : : and the

paths are shifted by �

n

3

, two d-facets of di�erent paths but with the same orientation

(horizontal or vertical), are at least �

d

3

far from each other. Therefore, the proof of

Lemma 6 still holds, with larger constant factors.

Similar methods can be applied to extend the construction to rectangular tori of

the type n � �n. The torus is divided not to 4 smaller rectangles, but rather to

2� �̂ rectangles. One would like �̂= �� to be even in order to avoid problems with

entrance and exit nodes at adjacent corners, and so on.

2.4.5 Three Paths Lower Bound

We saw that three paths su�ce to preserve quadratic distances (see section 2.4.2),

but a single path is de�nitely not enough (see section 2.3.3). We will now address

the question of preserving quadratic distances with two paths.

De�nition 9 Let � be a path. A segment s of � is a restriction of � resulting with

the image set [a; b], i.e. � restricted to the domain �

�1

([a; b]).
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Observation 8 Let s be a segment of path � on the n � n mesh M

n

(or torus T

n

where jsj < n). Then

1. The projection of the path on every single axis is a segment.

2. At least one of these segments is of size �

q

jsj.

Proof.

1. Since the path is \continuous" (cannot jump more than 1 unit at a time), the

projection on any axis is a segment.

2. Assume these segments (projections on x and y) are of sizes a and b, respectively,

then clearly ab � jsj. Hence maxfa; bg �

q

jsj.

2

De�nition 10 Let U be a n�n mesh or torus universe. Then � : U 7! f1; 2; : : : ; n

2

g

is a diagonal neighbors path if for all i, �

�1

(i) and �

�1

(i+1) are either neighbors

or diagonal neighbors (see �gure 2.14 for illustration).

Figure 2.14: Diagonal neighbors path

Lemma 9 Let T

n

be the n� n torus (or mesh), and �

1

; �

2

be Hamiltonian paths on

T

n

. Then for any constant c > 0 and su�ciently large n,

9x; y min

i=1;2

fd

1

(�

i

(x); �

i

(y))g > c(d

2

(x; y))

2

where d

1

denotes distance on the (one dimensional) cycle (or line), and d

2

denotes

Manhattan distance on the (two dimensional) torus (or mesh).
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Sketch of Proof. We �rst consider a segment of �

1

, and show that it must have some

\boundary" (frontier), which is wide enough (see �gure 2.15). This path, �

1

, does

not connect nodes in the frontier to their neighbors just outside the frontier with a

quadratic expansion. Thus, the other path, �

2

, must handle these pairs. It follows

that �

2

must oscillate along this boundary, and cannot get too far from it in this

section (the oscillations have a small amplitude). We then take a node x in the center

of the frontier and a node y just beyond the oscillations of �

2

. It follows that both

paths visit x but do not visit y in this section, so neither path handles the pair x; y.

π

x = E’

y

π
2

1

x=x
r

F’ = x
q

0

Figure 2.15: �

2

oscillates along the border of �

1

.

Proof. Assume n is large enough, so that for example

1

4

4

p

n > c and w.l.o.g. c � 1.

From now on, we deal only with respectively small objects (segments of paths, etc.),

up to size

1

2

n. Therefore we can consider our torus to be a mesh, assuming w.l.o.g.

that the following construction takes place in the center of the mesh.

Let s

1

be a segment of length k =

p

n of �

1

(in the center of the mesh), whose

endpoints are E;F . W.l.o.g. the projection of �

1

on the x-axis (horizontal) is larger

than on the y-axis. Denote this projected interval by I, thus jIj �

p

k. Let I

E

; I

F

be

1

10

p

k intervals around the x-axis projection of E and F , respectively. Removing

I

E

and I

F

from I, we get at most 3 sub-intervals of total size jI n (I

E

[ I

F

)j >

1

2

jIj,

so at least one sub-interval I

0

is of size jI

0

j >

1

3

(

1

2

jIj) �

1

6

p

k. Denote this interval as

I

0

= [a; b], and let E

0

; F

0

be the highest nodes in the columns a and b, respectively,

which are on s

1

(see �gure 2.16). E

0

; F

0

de�ne a sub-segment of s

1

, denote it as t

1

. Let

y be a node in the central column of I

0

, above t

1

in this column and whose distance

from t

1

is l = 6c. Trivially, such y must exist and let x be its closest node on t

1

, so

d

2

(x; y) = l.

We now want to �nd the boundary (contour) of t

1

w.r.t. y (i.e. from above). In

order to do so we de�ne a border line R starting at E

0

and going 2k nodes vertically

38



s
1

s
1

I
E

I’ I
F

E

F

E’

F’

I

ba

1
t

Figure 2.16: Removing endpoints intervals I

E

; I

F

from s

1

, we get t

1

and I

0

= [a; b]

upwards, then horizontally right (or left) until the column of F

0

, and then vertically

down to F

0

(see �gure 2.17). Let C = C

y

(t

1

) be all nodes reachable from y without

using (crossing) nodes from the border line R nor the path t

1

.

Let B = B

y

(t

1

) be all nodes in t

1

which have a neighbor in C. We claim that

B is a diagonal neighbors path connecting E

0

and F

0

. Indeed, consider the nodes as

squares in a continuous plane, then C is actually a connected set of these squares

(add the squares one by one), whose boundary is thus a closed polygonal line. In

particular, this line connects E

0

and F

0

and corresponds to B above, proving B's

nature (see �gure 2.18).

We also claim that x 2 B as follows. By de�nition, x 2 t

1

. Consider a shortest

path from x to y. No node in this path is in t

1

, or otherwise the distance from y to

t

1

would be less than l = d

2

(x; y). No node in this path is neither in R because the

boundary R is much further than l from y. For example, l = 6c << 
(

p

k) �

1

2

jI

0

j.

Therefore, every single node in this path is in C, and thus x has a neighbor in C.

Consider now going from E

0

to F

0

along B and visiting x on the way, denoted as

E

0

=x

0

; x

1

; x

2

; : : : ; x=x

r

; : : : ; x

q

=F

0

. Recall B is a diagonal neighbors path, thus

d

2

(x

j

; x

j+1

) � 2. By de�nition of B, any x

j

has a neighbor x

0

j

2 C, and thus x

0

j

is

not in s

1

.

Note that d

2

(x

0

j

; x

j+1

) � 3, so they must be connected by some �

i

within c�3

2

= 9c

steps. But x

0

j

is not on s

1

, so their distance on �

1

must be at least

1

10

p

k > 9c.

Therefore, their distance on �

2

must be at most 9c. The same argument applies

also to x

j

and x

0

j

, which are neighbors and therefore must be connected by �

2

with

distance c � 1

2

= c. Hence,

d

1

(�

2

(x

j

); �

2

(x

j+1

)) � c+ 9c = 10c
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Figure 2.17: Border line R and boundary B

y

(t

1

)

Consider now �

2

visiting E

0

=x

0

. It must get to x

1

within 10c steps, to x

2

within

the following 10c steps and so on, until reaching x

q

=F

0

(see �gure 2.15). Therefore,

the maximal distance it can get far from t

1

is 5c < l. So although �

2

visits x = x

r

, it

cannot visit y in this section (from x

0

to x

q

), and thus the distance between x and y

on �

2

is at least

1

4

jI

0

j (x is close to the central column of I

0

).

The distance of x and y on �

1

is also at least

1

4

jI

0

j. However, at least one of the

paths must connect x; y within c � l

2

= 36c

3

<< 
(

p

k) �

1

4

jI

0

j steps. Contradiction.

2

The proof method used in this lower bound, can be enhanced to any expansion

function, and not only a quadratic one. Improving the lower bound to hold for

arbitrary expansion g : N 7! N, implies that n is necessary and no bound of d alone

holds for family of two Hamiltonian paths.

Corollary 10 Let T

n

be the n� n torus (or mesh), and �

1

; �

2

be Hamiltonian paths

on T

n

. Then for any expansion function g : N 7! N and su�ciently large n,

9x; y min

i=1;2

fd

1

(�

i

(x); �

i

(y))g > g(d

2

(x; y))

where d

1

denotes distance on the (one dimensional) cycle (or line), and d

2

denotes

Manhattan distance on the (two dimensional) torus (or mesh).

Proof. Follow the proof of Lemma 9. Once again we assume n is large enough, so

4

p

n <<

p

n and so on.
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Figure 2.18: Diagonal neighbors path B

y

(t

1

), connecting E

0

and F

0

.
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We set k =

1

4

n and use l = g(1) + g(3) = O(1). The path �

2

must connect each

pair x

j

; x

0

j

and x

0

j

; x

j+1

within g(1) and g(3), respectively, since �

1

connects them

within

1

2

jI

0

j = 
(

p

n), which is much more than g(1) and g(3). Therefore, �

2

must

connect each x

j

to x

j+1

within g(1)+g(3) steps, and traveling from x

0

to x

q

(through

every x

j

, as in �gure 2.15), �

2

cannot visit y in this section. Therefore, the distance

between x and y on �

2

is at least

1

4

jI

0

j = 
(

p

n). Clearly, the distance between x and

y on �

1

is also at least

1

4

jI

0

j = 
(

p

n).

However, d

2

(x; y) = l and thus x and y must be connected by some path within

g(l) = O(1) < 
(

p

n) �

1

4

jI

0

j. Contradiction. 2

2.4.6 Enhancing the Lower Bound

The proof method of Lemma 9, can be extended to the case where permutations are

not paths, but rather a \bounded jumps" path, in which successive elements in the

path are not necessarily neighbors but might be at some distance from each other.

Recall that we de�ned a �-bounded jumps permutation as one whose jumps on

the mesh are bounded by �. For example, a Hamiltonian path is a �-bounded jumps

permutation with � = 1, and a diagonal neighbors path is, in particular, a 2-bounded

jumps permutation.

Lemma 11 Let T

n

be the n�n torus (or mesh), and �

1

; �

2

be �

n

-bounded jumps per-

mutations on T

n

. For any expansion g(d)� d satisfying �

3

n

(g(3�

n

�g(3�

n

)))

2

= o(n)

and large enough n,

9x; y d

2

(x; y) � 3�

n

� g(3�

n

) and min

i=1;2

fd

1

(�

i

(x); �

i

(y))g > g(d

2

(x; y))

where d

1

denotes distance on the (one dimensional) cycle (or line), and d

2

denotes

Manhattan distance on the (two dimensional) torus (or mesh).

Proof. Assume n is large enough, such that

4

p

n <<

p

n and so on.

As in the proof of Lemma 9, we deal only with respectively small objects (paths,

segments etc.), up to size

1

2

n, so we can view our torus as a mesh, and assume w.l.o.g.

that the construction takes place in the center of the mesh.

Let s

1

be a segment of �

1

of length k =

1

4�

n

n (located in the center of the mesh),

whose endpoints are E;F (i.e. take a node in the center and a segment of size

1

8�

n

n

to each direction). W.l.o.g. the projection of �

1

on the x-axis (horizontal) is larger

than on the y-axis. Denote this projected interval by I, thus, jIj �

p

k. Let I

E

; I

F

be

1

10

p

k intervals around the projection of E and F , respectively. Removing I

E

and I

F

from I, we get at most 3 sub-intervals of total size jI n (I

E

[ I

F

)j >

1

2

jIj, so at least

one sub-interval I

0

is of size jI

0

j >

1

3

(

1

2

jIj) �

1

6

p

k. Denote this interval as I

0

= [c; d].

We adjust each of c and d by at most �

n

to get an adjusted interval I

00

= [a; b], as

follows. Let E

0

and F

0

be the highest s

1

nodes in the �

n

-neighborhoods of c and d,

respectively. Then a and b would be the x-axis projection of E

0

and F

0

, respectively.
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So jI

00

j � jI

0

j � 2�

n

>

1

7

p

k =

1

14

q

n

�

n

. Figure 2.19 illustrates the choice of E

0

and F

0

,

(similar to �gure 2.16 but with adjustment of I

0

= [c; d] to get I

00

= [a; b]). E

0

and F

0

de�ne a sub-segment of s

1

, denote it by t

1

. Let y be a node in the central column of

I

00

, above t

1

in this column and whose distance from t

1

is l = 2�

n

� g(3�

n

). Trivially,

such y must exist and let x be its closest node on t

1

, so d

2

(x; y) = l.

s
1

s
1

E

F

E’

F’
1

t

a

c I’

I’’ b

I
F

I

I
E

d

Figure 2.19: Removing endpoints intervals I

E

; I

F

from s

1

, we get t

1

and I

00

= [a; b].

We now want to �nd the boundary of t

1

w.r.t. y (from above). In order to do so

we de�ne a border line R starting at E

0

and going upwards vertically for 2�

n

k nodes,

then horizontally right (or left) until the column of F

0

, and then vertically down to

F

0

. Let C = C

y

(t

1

) be all nodes reachable from y without using nodes from the

border line R nor N

�

n

(t

1

), a neighborhood of t

1

, de�ned as a �

n

� �

n

square around

each node in t

1

, (see �gure 2.20).

Let B = B

y

(t

1

) be all nodes in t

1

in which some node of their �

n

-neighborhood

is adjacent to a node in C. We claim that B contains a 2�

n

-bounded jumps path

connecting E

0

and F

0

. Indeed, if we consider the nodes as squares in a continuous

plane, then C is actually a connected set of these squares (add the squares one by

one), whose boundary is thus a closed polygonal line. B is all the nodes in t

1

, whose

�

n

-neighborhood is adjacent to the polygonal line. Going along this closed polygonal

line, nodes in B are at most 2�

n

far from each other (see �gure 2.21). In particular,

this line connects E

0

and F

0

.

We now make sure that x 2 B, as follows. Go along a shortest path from y to x,

and let z be the �rst node not in C. Node z cannot be in R because the boundary

R is much further than l from y, namely, l << 
(

p

k) �

1

2

jI

00

j. So z must be in the

�

n

-neighborhood of some x

0

2 t

1

. If x

0

6= x, we take x

0

instead of x. It is easy to

check that changing x with x

0

is harmless since d

2

(x

0

; x) � �

n

<<

1

2

l so, for example,
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.y

CR

Figure 2.20: Boundary B of t

1

w.r.t. y and neighborhoods of �

n

= 3.
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w

R C

.y

z

Figure 2.21: Going along the boundary of C (closed polygonal line), the nodes from

t

1

are at most 2�

n

far from each other (in this example � = 4). Note that z;w is the

worst case, in which d

2

(z;w) = 2�

n

.

d

2

(x

0

; y) > �

n

� g(3�

n

). Now x has a node z in its �

n

-neighborhood which is adjacent

to a node in C.

Consider a tour along B, going from E

0

to F

0

with jumps of no more than 2�

n

and visiting x on the way. Denote the central segment of this tour (spreading

1

4

jI

00

j

wide for each side of x) as x

0

; x

1

; x

2

; : : : ; x

r

=x; : : : ; x

q

. It is a 2�

n

-bounded jumps

path, so for all j, d

2

(x

j

; x

j+1

) � 2�

n

. By de�nition of B, any x

j

has a �

n

-neighbor

x

0

j

2 C, which is not on t

1

.

Obviously, d

2

(x

0

j

; x

j+1

) � 2�

n

+ �

n

� 3�

n

, so they must be connected by some

�

i

within g(3�

n

) steps. But x

0

j

is not on s

1

, so their distance on �

1

is at least

1

�

n

1

4

jI

00

j � 
(

q

n=�

3

n

) >> g(3�

n

) step (we took only the central segment of I

000

).

Therefore, their distance on �

2

must be at most g(3�

n

). The same argument applies

also to x

j

and x

0

j

, which are even �

n

-neighbors and therefore must be connected by

�

2

with distance g(3�

n

). Combine the two results (recall an expansion function is

monotonic),

d

1

(�

2

(x

j

); �

2

(x

j+1

)) � 2g(3�

n

)

Consider now �

2

visiting x

0

. It must get to x

1

within 2g(3�

n

) steps, to x

2

within

the following 2g(3�

n

) steps and so on, going through x = x

r

and until reaching

x

q

. Therefore, the maximal distance it can get far from the border in this section

(from x

0

to x

q

) is

1

2

�

n

�2g(3�

n

) < l. So the minimal distance from x to y on �

2

is
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1

�

n

(

1

4

jI

00

j � �

n

) �

1

5�

n

jI

00

j (recall y is close to the central column of I

00

).

The distance of x and y on �

1

is also at least

1

�

n

1

2

(jI

00

j � �

n

) >

1

5�

n

jI

00

j. However,

our assumption requires that some path connects x; y within

g(3�

n

� g(3�

n

)) << 
(

q

n=�

3

n

) �

1

5�

n

jI

00

j

steps. Contradiction.

2

The result of Lemma 11 is that either we use large jumps and then some dis-

tance shrinks considerably, or some distance expand by more than squaring. But for

permutation families F of cardinality two, d

line

= �(d

2

mesh

) is impossible.

2.5 Upper Bound for Higher Dimensional Torus

Observation 12 Let F be a stereoscopic family of permutations on the m-dimensional

mesh (or torus). If jFj = O(1) then g

N

(d) = 
(d

m

).

Proof. Consider the following counting argument. Let x be some �xed node on the

m-dimensional mesh (or torus). Then the number of nodes on the mesh (or torus)

in radius R from x is �(R

m

). Since the number of paths in F is constant, at least

one of these nodes must be 
(R

m

) steps far from x on every single path. Therefore

g

N

(d) = 
(d

m

). 2

De�nition 11 A Gray code of f0; 1g

m

, denoted G

m

, is a permutation of f0; 1g

m

,

such that the Hamming distance (L

1

norm) between any two successive elements is 1.

Let G

m

be a Gray code on f0; 1g

m

, say from (0; 0; : : : ; 0) to (1; 0; 0; : : : ; 0). We

shall denote it by: (0; 0; : : : ; 0)

G

m

�! (1; 0; : : : ; 0). Clearly, G

�1

m

(same code in reverse

order) is also a Gray code, and it will be denoted as: (1; 0; : : : ; 0)

G

�1

m

�! (0; 0; : : : ; 0).

Lemma 13 Let T

n

be an m-dimensional torus (n�n�� � ��n), for n = s �2

l

, arbitrary

l > 0 and odd s 2 fm+1;m+2g. Then there exists a stereoscopic family of permutations

F

(m)

= f�

1

; �

2

; : : : ; �

m+1

g of Hamiltonian cycles on T

n

, such that

8x; y min

i=1;2;:::;m+1

fd

1

(�

i

(x); �

i

(y))g � (2(m+ 2)d

m

(x; y))

m

where d

1

denotes distance on the (one dimensional) cycle, and d

m

denotes Manhattan

distance on the (m-dimensional) torus.
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Proof. Denote each torus node as a tuple (x

1

; x

2

; : : : ; x

m

) where 1 � x

1

; x

2

; : : : ; x

m

�

n. We generalize the two-dimensional proof of Lemma 6 and show a speci�c Hamilto-

nian cycle �. In fact, we construct a Hamiltonian path from (1; 1; : : : ; 1) to (n; 1; 1; : : : ; 1)

on the corresponding mesh M

n

, giving rise to a cycle on the torus.

The Hamiltonian path � on M

n

is constructed recursively, as follows. At each

phase we partition M

n

to 2 segments in each axis, producing 2

m

equal size sub-

meshes. Alternatively, one can view the partitioning to be a high-level description of

M

n

as a cube broken into 2

m

sub-cubes. A hyperplane separating adjacent sub-cubes

of size d�d �� � ��d in this description will be called a d-facet. The recursion stops

when reaching sub-meshes whose size is s�s�� � ��s.

At each phase, we are also given entry and exit nodes (placed in adjacent corners

in the mesh), and we compose accordingly a simple path from the entry node to the

exit node, traversing each sub-mesh exactly once. We only select entrance and exit

nodes for each sub-mesh (with the requirement that they reside in adjacent corners),

and the exact traversal in the each sub-mesh is constructed by successive phases of

recursion.

We have to show that the path de�ned at each phase of the recursion is indeed

feasible. Namely, given entrance and exit nodes at adjacent corners of the mesh, one

can always de�ne a traversal order on the sub-meshes. Let us denote the partitioning

to sub-meshes as f0; 1g

m

, where each sub-mesh is named as a binarym-tuple. W.l.o.g.

the entrance node is the corner of sub-mesh (0; 0; : : : ; 0) and the exit is a corner of

sub-mesh (0; 0; : : : ; 0; 1). Then the following recursive de�nition of Gray code, is a

feasible path:

G

m

: (0; : : : ; 0; 0)

G

m�1

�f0g

�! (1; 0; : : : ; 0; 0)! (1; 0; : : : ; 0; 1)

(G

m�1

)

�1

�f1g

�! (0; : : : ; 0; 1)

The adjacent corners requirement is easy to satisfy, since every adjacent sub-mesh

can be reached through some adjacent corner.

De�ne �

i

(i = 0; : : : ;m) to be a

i�n

s

units shift of � in each axis (coordinate) on

the torus T

n

(a linear transformation modulo n).

Let x; y be arbitrary nodes on the torus, and we will bound their distance on the

�

i

's. Denote d

0

= d

m

(x; y) their distance on the m-dimensional torus. Let d = s �2

j

be

the smallest possible such that d > s�d

0

, so clearly d � 2sd

0

. Consider the partitioning

of the torus into sub-meshes of size d�d�� � ��d (i.e. after log

2

n

d

= l � j phases of

the recursive construction).

Observe that no two d-facets of di�erent paths are closer than

d

s

. Note that

partitioning of n to

1

2

;

1

4

;

1

8

; : : : does not coincide with the shift by

1

s

, and n is chosen

to be divisible by all these denominators. Formally, assume w.l.o.g. that f

1

is a d-

facet of �

1

located at indices which are multiples of d, and f

2

is a d-facet of �

i

located

at indices which are

in

s

plus multiples of d. Consider the location of �

i

relatively to

f

1

, i.e. its location modulo d (since f

1

appears at multiples of d). It comes down

to resolve

in

s

modulo d, and

in

s

= i2

l

= d

i2

l�j

s

. Since i2

l�j

is not a multiple of s, we

conclude that the di�erence between adjacent f

1

and f

2

is some multiple of

d

s

.
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Finally, we claim that x and y belong to the same d�d �� � ��d sub-mesh in at

least one cycle �

i

. Hence their distance on this �

i

is at most the size of the sub-mesh,

and we're done:

d

1

(�

i

(x); �

i

(y)) < d

m

� (2sd

0

)

m

� (2(m+ 2)d

m

(x; y))

m

Otherwise, x and y are in di�erent d�d �� � ��d sub-meshes in all Hamiltonian

cycles. In other words, x; y are separated from each other by at least one facet in

any �

i

(i = 0; : : : ;m). But since there are only m possible facet orientations, at least

two must be of the same orientation. However the minimal distance between any two

such facets is

d

s

, and therefore d

m

(x; y) �

d

s

> d

0

= d

m

(x; y). Contradiction. 2

The paths used in this construction also have a complementary property. When

the nodes of the line are placed on the mesh along the path, their distances on the

line shrink to their m-th root.

Lemma 14 Let � be the path constructed recursively in the proof of Lemma 13. Then

� is a shrinkable numbering of vertices with � =

1

m

, and � = 2(m+ 1). That is

8x; y d

m

(x; y) � 2(m+ 1)

m

q

d

1

(�(x); �(y))

Proof. Denote d = d

1

(�(x); �(y)). Then there is some d

0

�d

0

�� � � �d

0

square in the

construction such that

m

p

d � d

0

< 2

m

p

d. Assume W.l.o.g. that x appears before y

on the path. Then traveling on the path from x to y (total of d � 1 steps) one can

either stay in the same d

0

�d

0

�� � � �d

0

square, or advance to a neighboring one, but

not further (because the square's size is (d

0

)

m

� d). Either case, on the mesh x and

y share a rectangle with m� 1 sides of length d

0

and one of 2d

0

, thus

d

m

(x; y) � (m� 1)d

0

+ 2d

0

� 2(m+ 1)

m

p

d

2

2.6 Stereoscopic Families for Arbitrary Dimen-

sions

In this section we �nally relate to the most general notion of stereoscopic families of

permutations, used to map an m-dimensional universe to a q-dimensional one. So far

we discussed only the case where q = 1, although our de�nition refers to the general

form, allowing any one-to-one functions (see De�nition 8).

We present an explicit construction, based on previous sections. The construction

is basically a composition of mapping to the one-dimensional universe (supported

by Lemma 13), and then mapping to the q-dimensional universe by a shrinkable

numbering of vertices.
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On the one hand, the mapping to one-dimension requiresm+1 permutations, and

a direct mapping could possibly do better. Consider the degenerate case wherem = q,

and �

�1

1

is composed on each of �

1

; : : : ; �

m+1

. The composition of �

�1

1

on �

1

, yields

the identity function, which su�ces by itself. The point is that although some pairs of

vertices were not handled by �

1

, and their distance on the one dimensional universe

might be very large, �

�1

1

shrinks their distance back so good, that the remaining

permutations �

2

; : : : ; �

m+1

are not needed. This phenomena might indicate that also

in the general case, some of the permutations are redundant.

On the other hand, passing through the one-dimensional universe can be very

useful, as in the problem of hashing noisy data (see section 2.8).

Observation 15 Let F be a stereoscopic family of permutations from them-dimensional

mesh (or torus) to the q-dimensional mesh (or torus). If jFj = O(1) then g

N

(d) =


(d

m

q

).

Proof. Consider the following counting argument. Let x be some �xed node on the

m-dimensional mesh (or torus). Then the number of nodes on this mesh (or torus)

in radius R from x is �(R

m

). Since the number of functions in F is constant, at

least one of these nodes must be 
(R

m

q

) steps far from x in the image of every single

function of F . Therefore g

N

(d) = 
(d

m

q

). 2

Lemma 16 Let T

(m)

n

be an m-dimensional torus (n�n�� � ��n), for n = s�2

l

, arbitrary

l > 0 and odd s 2 fm+1;m+2g. Let T

(q)

n

0

be a q-dimensional torus (n

0

�n

0

�� � ��n

0

),

such that jT

(m)

n

j = n

m

= (n

0

)

q

= jT

(q)

n

0

j. Then there exists a stereoscopic family of

permutations F

(m)

q

= f�

1

; �

2

; : : : ; �

m+1

g of permutations �

i

: T

(m)

n

7! T

(q)

n

0

, such that

8x; y min

i=1;2;:::;m+1

fd

q

(�

i

(x); �

i

(y))g � O

�

(d

m

(x; y))

m

q

�

where d

q

denotes Manhattan distance on the q-dimensional torus T

(q)

n

0

, and d

m

denotes

Manhattan distance on the m-dimensional torus T

(m)

n

.

Proof. Let G

(m)

= f�

1

; �

2

; : : : ; �

m+1

g be the stereoscopic family of Hamiltonian

paths guaranteed by Lemma 13. Let �

�1

be a shrinkable numbering of vertices (by

Lemma 14, for example) with � =

1

q

and some constant �, on the q-dimensional torus

T

(q)

n

0

.

De�ne �

i

= � ��

i

. Then F

(m)

q

= f� ��

1

; : : : ; � ��

m+1

g is the requested stereoscopic

family. To see this, let x and y be arbitrary nodes in the m-dimensional torus. By

Lemma 13,

9i; d

1

(�

i

(x); �

i

(y)) � (2(m+ 2)d

m

(x; y))

m

By de�nition of �,

8i; d

q

(�(�

i

(x)); �(�

i

(y))) � �(d

1

(�

i

(x); �

i

(y))

1

q
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So we're done:

9i; d

q

((� � �

i

)(x); (� � �

i

)(y)) � �(2(m+ 2)d

m

(x; y))

m

q

2

2.7 Routing along Stereoscopic Families

We relate to hot-potato routing paradigm on the two dimensional mesh (or torus),

where each link (edge) has capacity of 3 channels, i.e. each link can transfer 3 packets

in a single time step. Such networks can be implemented by multiplexing 3 packets

on each link.

In this network model, packets travel only along the 3 Hamiltonian paths of a cor-

responding stereoscopic family of permutations, F = f�

1

; �

2

; �

3

g. Since the capacity

of each link is 3, packets traveling along di�erent paths do not interfere with each

other. Obviously, each packet prefers the path on which its distance to destination

is the shortest among F . So at the time of injection, every source node assigns its

packet to this preferred path, and the packet will travel along this path until reaching

its destination.

Consider batch routing scenario where each node is the source of at most one

packet. Then each packet will be injected to the network on its preferred path �

i

2 F ,

and travel along this path. The routing is collision-free since the 3 channels enable

the coexistence of the 3 paths, without any contentions. According to Lemma 13,

each packet will reach its destination after 36d

2

p

steps and with no de
ections.

The batch routing can be easily extended to dynamic routing by allowing packets

injection, on a vacancy basis. A node generating a new packet, �nds the preferred

(best) path according to its destination, and waits for an opportunity to inject the

packet to this path. From the moment the packet is injected, it travels with no further

delays, reaching its destination within the next �(d

2

p

) steps.

The main advantage of routing along stereoscopic families is its simplicity. Ini-

tially, the injecting node assigns a path to the packet (possibly by a �xed table

prepared in advance). At intermediate nodes, the assignment labor of packets to

outgoing edges is almost trivial. If the packet is destined to the current node, no

routing needs to be done. Otherwise, the incoming edge alone de�nes the assignment

to an outgoing edge, according to prede�ned decisions (which re
ect the Hamiltonian

paths). There is no need to consider the destination of the packet, nor make any cal-

culations. The trivial routing table requires minimal computational resources (both

time and memory).
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2.8 Other Applications (Hashing)

A dictionary is a data structure for storing elements from universe U in memoryM .

It has to be capable of storing any subset D � U whose cardinality is not too big,

and provide e�cient implementation of the following operations:

� Queries: Membership (Given x 2 U decide whether x 2 D) and Find (determine

where x is stored in M).

� Update operations: Add/Delete/Change elements in D.

We relate to the \noisy" version of the problem, suggested by Linial and Sasson

[20], where inputs might have uncertainty, allowing several instances of the same input

to be similar (rather than identical). For completeness, we repeat their de�nition.

Let U be a metric space with distance function d

U

, re
ecting the structure of the

inputs. Then the dictionary has to provide the following operations:

� Queries: Membership (Given x 2 U and � > 0 (noise/uncertainty), list all

items y 2 D which are close to x, namely d

U

(x; y) � �); and Find (determine

where are these items stored in M).

� Update operations: Add/Delete/Change elements in D.

Any dictionary can be adapted to deal with noisy data as well. Given x 2 U ,

check for every y in the �-neighborhood of x (denoted by �

x

), whether it is stored

in the dictionary. However, this procedure has two 
aws:

1. Each check of y 2 �

x

requires an application of the hashing function. Overall,

the procedure may require 
(j�

x

j) applications of the hashing function.

2. Elements y 2 �

x

might be hashed to distant locations in the memory. Large

memory is usually paged, in which case the procedure might require access to


(j�

x

j) di�erent pages.

The problem of hashing noisy data appears in several variants in many applica-

tions. Minsky and Papert [22] de�ne the Best Match problem, where D is a dictionary

of strings over some alphabet �, and it is required to store D in such as way that

on query q, the member of D closest to q in Hamming distance be retrieved. The

version where all members in D of distance d or less from q need to be retrieved is

the Approximate Query (AQ) problem of [14]. Most of the work on these problems

(see [24] and the references therein) focuses on deterministic schemes.

Linial and Sasson [20], devise a \noisy" hashing scheme for a one dimensional

universe U and a one dimensional memoryM , with any noise measure �. It is a non-

expansive hashing scheme, i.e. one which translates every �-neighborhood in U to a

constant number of �-neighborhoods inM . Linial and Sasson de�ne a speci�c family

H of functions with the property that for every x 2 U , either f(x + 1) = f(x) + 1
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or f(x + 1) = f(x) � 1. Such function is a long path with \turning points" on the

interval U , and can be speci�ed by its \starting point" and its \turning points". They

restrict H to functions f whose \turning points" are selectively chosen. Hashing the

dictionary D then uses several hashing tables, each corresponding to a di�erent hash

function f 2 H.

We introduce the following notation:

H

1;1

hashing scheme for the one dimensional universe and one dimensional memory.

H

d;q

hashing scheme for d-dimensional universe and q-dimensional memory, with

Manhattan distance (L

1

norm).

C

Member

d;q

(N;�) number of pages (blocks of size j�

x

j) accessed by a Membership

query of the H

d;q

scheme.

C

Update

d;q

(N) number of pages accessed by an Update operation (such as Add, Delete

and Change) of the H

d;q

scheme.

jM

d;q

j memory complexity of the H

d;q

hashing scheme.

The non-expansive hashing scheme [20] is a H

1;1

scheme. For arbitrary � > 0, it uses

O(log

1

�

) hashing tables, each of size jDj

1

1��

, with the following complexity:

C

Member

1;1

(N;�) = O(log

1

�

)

C

Update

1;1

(N) = O(log

1

�

)

jM

1;1

j = O(log

1

�

� jDj

1

1��

)

Our results on stereoscopic families of permutations combined with any dictio-

nary scheme for the one dimensional universe create a dictionary for universe U and

memory M of arbitrary dimensions, each with Manhattan distance (L

1

norm). In

particular, we extend the non-expansive hashing scheme devised by Linial and Sas-

son (denoted here as H

1;1

). In the spirit of Lemma 16, we show how to construct a

scheme for d-dimensional universe with q-dimensional memory (H

d;q

).

The general scheme,H

d;q

, is based on a stereoscopic family of permutations on the

d-dimensional torus, and a shrinkable numbering of vertices in the q-dimensionalmesh

(or torus). Lemma 13 guarantees the existence of such a family F = f�

1

; : : : ; �

d+1

g

of cycles, which are, in particular, permutations. Lemma 14 shows how to construct

shrinkable numbering of vertices.

The dictionaryD is �rst mapped to d+1 separate images on the (one dimensional)

interval, one for each cycle �

i

(i = 1; : : : ; d+ 1). Each of these d+ 1 intervals is then
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hashed by the non-expansive hashing H

1;1

to another one dimensional representation.

Finally, the one dimensional tables are, in turn, mapped by the shrinkable numbering

of vertices to the q-dimensional mesh (or torus).

Membership query is straightforward. Given an input x 2 U , �nd its d+1 images

in the q-dimensional memory, and check their corresponding neighborhoods. The

stereoscopic family of permutations F enlarges distances (the noise) polynomially to

O(�

d

). In the non-expansive hashing distances do not expand, and the shrinkable

numbering shrinks distances polynomially to O(�

d=q

). So,

C

Member

d;q

(N;�) = (d + 1) � C

Member

1;1

(N;O(�

d=q

))

Update operations (such as Add, Delete and Change) require a corresponding update

in each of the d + 1 segments, therefore

C

Update

d;q

= (d + 1) � C

Update

1;1

The stereoscopic family of permutations F copies d + 1 times each dictionary

element (or its index or a pointer to the element). The shrinkable numbering of

vertices requires the same size of memory as its domain. Hence, the H

d;q

scheme

requires memory complexity of jM

d;q

j = (d + 1)jM

1;1

j.

2.9 Conclusion and Open Problems

We presented the concept of stereoscopic families of permutations and its relevance to

hot-potato routing, and demonstrated an additional application of this concept. We

saw a construction for the two dimensional mesh and torus, and proved a matching

lower bound for stereoscopic family of 3 Hamiltonian paths. Nevertheless, several

related problems remain open.

� Unbounded Permutations.

We showed a lower bound for �

n

-bounded jumps permutations, with �

n

=

o(

11

p

n). What is the minimal possible cardinality of stereoscopic families, if the

jumps are unbounded (arbitrary permutations) ?

� One Sequence with Several Appearances.

Assume that the t independent permutations are incorporated into one long

sequence, such that each element appears t times in the sequence. What would

be the minimal t needed to bound expansion to quadratic order ?

� Undirected Paths.

Our interpretation of routing by stereoscopic families of permutations uses 6

directed paths to implement the 3 undirected ones, due to the directed nature

of routing. How many directed paths (or permutations) are needed to attain

quadratic expansion ?
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The two dimensional construction was generalized to a stereoscopic family with

m+ 1 Hamiltonian cycles on an arbitrary m-dimensional universe. This was used to

present a speci�c construction for the general case, where an m-dimensional universe

is mapped to a q-dimensional one through an intermediate one dimensional universe.

The mapping is achieved by a stereoscopic family of m + 1 permutations. In both

situations, we reach the optimal expansion g, but not necessarily the optimal car-

dinality of the stereoscopic family. Thus, important questions regarding the general

case remain open.

� Higher Dimension Lower Bound.

Is it possible to �nd a stereoscopic family of permutations for an m-dimensional

universe with less than m+ 1 permutations ?

� Direct Mapping between Arbitrary Dimensions.

We indicated that a direct mapping between arbitrary dimensions might use

fewer permutations than our indirect construction.

54



Chapter 3

Minimum Advance Algorithms on

Trees

In this chapter we discuss minimumadvance algorithms on tree networks. Our work in

this area focuses on the minimal requirement needed to guarantee livelock avoidance

on tree networks.

We show that the minimum advance principle su�ces to ensure evacuation of any

routing problem on any tree networks. However, we also show an example where this

principle is not enough to guarantee t

p

� d

p

+ 2(k � 1).

Note that the high-end class of maximum advance algorithms is known to achieve

t

p

� d

p

+ 2(k � 1) on trees (see [11, 8]). The question whether the mid-range classes,

namely weakly stable and stable algorithms, achieve this bound remains open.

De�nition 12 A con�guration of packets in a network is any placement (mapping)

of the packets to the nodes of the network.

We denote by � the set of all possible con�gurations of packets in the network. So

for k packets on a network with n nodes, j�j � n

k

.

Lemma 17 Any minimum advance routing algorithm delivers at least one packet to

its destination (without livelock).

Proof. Let T be a tree network consisting of n > 0 nodes, and k > 0 packets, and let

� = c

1

; c

2

; c

3

; : : : be a sequence of con�gurations (c

i

2 �) describing the execution of

a minimum advance routing. Let C be the set of all con�gurations participating in

the sequence �, i.e. C = fc

1

; c

2

; : : :g.

Proceed by induction on jCj.

(i) If jCj = 1 then the network does not change, and this is impossible.

(ii) We assume that the sequence cannot livelock for any C

0

� C, and show it holds

also for C. Consider c

1

, the �rst con�guration in the sequence. If it does not
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appear anywhere else in the sequence, we can use the induction hypothesis with

�

0

= c

2

; c

3

; : : : and C

0

= C n fc

1

g, to conclude that some packet is delivered to

its destination.

Otherwise, c

1

appears later on in the sequence, say at time j (c

1

= c

j

). In the

�rst step (c

1

7! c

2

) there is some advancing packet, say p going from u to v. The

edge (u; v) separates T to two subtrees, T

1

(which includes both p's destination

and v) and T

0

1

(which includes u). Hence, p advances from T

0

1

to T

1

, as shown

in �gure 3.1.

Consider now the next time step (c

2

7! c

3

).

1
T

T
2

T

1
p+

u  v
T ’

Figure 3.1: Packet p separates the tree

1. If p advances again, then this advance similarly de�nes T

2

; T

0

2

, such that

T

2

� T

1

.

2. Otherwise, p is de
ected from v, so some other packet, p

0

, must advance

from v.

(a) If p

0

advances but not on edge (v; u), then it similarly de�nes T

2

; T

0

2

,

such that T

2

� T

1

.

(b) If p

0

advances on edge (v; u), then p is assigned to some other edge and

in T

1

. Since con�guration c

1

is repeated at time j, p must traverse the

edge back from v to u at some time before time j. By the minimum

advance principle, if p is de
ected from v to u, then some other packet

p

00

must advance into T

1

. Hence p

00

similarly de�nes T

2

; T

0

2

, such that

T

2

� T

1

.

We repeat this argument, unless we reach a con�guration that does not appears

later on in the sequence �. If we do reach such a con�guration, we can remove

it and use the induction hypothesis with C

0

� C, to conclude that some packet

is delivered to its destination.

Otherwise, we �nd T

2

; T

3

; : : : ; T

l

, and within n iterations we must reach some

jT

l

j = 1. In this case, we're done because the packet advancing into T

l

has just

reached its destination.
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2

Corollary 18 Any minimum advance routing algorithm evacuates any tree network

within n

k

steps.

Proof. No con�guration can repeat itself or a livelock would have been possible.

Hence, the routing terminates in at most j�j � n

k

steps. 2

Observe that the proof of Lemma 17 does not assume any kind of local decisions.

An adversary may control the behavior of the algorithm based on global information,

as a node is allowed to act inconsistently in case of similar or repeating situations. The

only constraint used in the proof is that the execution sequence obeys the minimum

advance principle.

Observation 19 Minimum Advance algorithm on a tree network does not necessarily

deliver packets within d

p

+ 2(k � 1) steps.

Proof. We show a counter example of routing 3 packets (denoted a; b and c) on a

small tree network. The routing complies to the Minimum Advance principle, but

packet a is de
ected 3 times, and thus delivered only after d

p

+ 6 > d

p

+ 2(k � 1)

steps. The exact steps sequence is described in �gure 3.2. Circles denote packets

destinations and arrows represent the traversal of a packet. 2
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a

b c

a

b c

a

b c

a

b c

a

Legend:

packet advances

destination of a packet

packet is deflected

a+

b+

c+

a-

b+

a-

a-
c+

b+

b-
c+

a+

t = 0:

t = 3:

t = 2:

t = 1:

a-

Figure 3.2: An example of minimumadvance routing on a tree network, where delivery

of packet a takes more than d

p

+ 2(k � 1).
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Chapter 4

Potential Guided Routing

Algorithms

4.1 Motivation and Main Results

We de�ne a class of simple and natural hot-potato routing algorithms, called potential

guided algorithms. Each packet p has its \own" potential function, which de�nes the

packet's potential value at each of the network nodes �

p

: V 7! R

+

0

. The potential at

a node depends on the current location (this node) and the packet's destination. The

sole constraint on the potential function �

p

is that every node, except the destination,

has a neighbor with lower potential value.

The routing algorithm in each node tries to minimize the potential locally. The

node assigns each incoming packet to an outgoing edge such that its potential will be

minimal (if possible under congestion restrictions). Hence, the route selected for a

packet is \guided" by the packet's potential function, with deviations occurring due

to contentions and de
ections.

We consider a whole set of simple and natural algorithms in which the potential

depends only on the two basic arguments, the packet's destination and the current

location. This also enables to compute in advance for each node a table of potentials

for each possible destination and each neighbor (outgoing edge). More sophisticated

potential functions might take into account the packet's origin, the current time step

and so on, but are beyond the scope of this work.

We also restrict ourselves to a speci�c contention resolution scheme. Namely,

each node assigns the incoming packets to outgoing edges, such that the sum of their

potentials in the next step will be the minimumpossible (minimum sum of potentials).

We ignore other possible contention resolution schemes such as �xed priorities, closest

�rst, etc.

The routing performance is highly dependent on the choice of the potential func-

tions. A clever choice of the potential functions may lead to good performance. Our

goal is to �nd out what conditions (properties) are su�cient to ensure good perfor-

59



mance. Note, for example, that de�ning the potential of a packet to be its distance

from its destination, results with a maximum advance algorithm.

The following property of potential guided algorithms avoids livelocks on any

network. For every packet at every node, the potential (of the packet) at the current

node is higher than the average potential (of the packet) at the node's neighbors.

When this property holds, even a random assignment is expected to strictly reduce the

sum of potentials. Hence, there always must exist some assignment which improves

the sum of potentials. At each step of the routing the overall sum of potentials in the

network is strictly reduced, and hence the network cannot enter a livelock.

In section 4.5 we show that on tree networks any potential guided algorithm

is stable and, in particular, minimum advance. By Chapter 3, such routing cannot

livelock. However, potential guided algorithms are not necessarily maximumadvance,

even not on tree networks.

We suggest a speci�c potential function which is the expected hitting time of a

random walk from the packet's current location to its destination. We refer to this

algorithm as the expected hitting time routing algorithm. The expected hitting time

potential at a node is higher than the average potential at its neighbors, unless this

is the destination node. As mentioned before, this property guarantees termination

of any problem in any network (for details see section 4.6.1).

On general networks, we show that the expected hitting time routing algorithm

evacuates any problem within 2H

max

log k steps, where H

max

is the maximum hitting

time between any pair of nodes in the graph. We show that the expected hitting

time routing algorithm is maximum advance on tree networks, and therefore achieves

t

p

� d

p

+ 2(k � 1). On cycles, this algorithm is maximum advance with closest �rst

priority, and also achieves this bound. The expected hitting time routing algorithm

on mesh networks does not use shortest paths, so it de�nitely cannot achieve t

p

�

d

p

+ 2(k � 1). Our upper bound, based on the general case, is evacuation within

O(n

2

log n log k) steps.

4.2 De�nitions

We introduce terminology which we will use throughout this chapter.

De�nition 13 A schedule is a mapping S of every packet and every time step to

a node in the graph (its location at that time). A Schedule is proper if it routes all

packets to neighbors (packets cannot jump and cannot stay in their place), and always

keeps the capacity of each link at most 1.

De�nition 14 A potential function for packet p, whose destination is v

0

2 V , is

a function �

p

: V 7! R

+

0

such that every node other than the destination v

0

has a

neighbor with lower potential. Namely,

8v 2 V n fv

0

g; 9(v; u) 2 E; �

p

(u) < �

p

(v)
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De�nition 15 The potential of an assignment A at a node v, denoted by �

v

(A),

is the sum of potentials of the packets in v after applying assignment A (i.e. at the

next time step).

De�nition 16 Assume that every packet in some network has a corresponding po-

tential function. A potential guided algorithm is one which satis�es the following

rule at every time step. Each node chooses the assignment with the minimum po-

tential. That is, incoming packets are assigned to outgoing edges such that the sum

of the packets' potentials in the next time step (after traversing their edges), will be

minimum.

De�nition 17 A random walk on a �nite graph is an in�nite path, where at each

step the random walk moves to a vertex chosen at random with uniform probability

from the neighbors of the current vertex.

De�nition 18 The expected hitting time from node u to node v, denoted by

H(u; v) is the expected number of steps in a random walk starting at u until �rst time

to reach node v.

De�nition 19 The commute time between nodes u and v is the expected number

of random walk steps required to go from u to v and back. That is

C(u; v) = H(u; v) +H(v; u)

Notation: We denote by H

max

the maximum expected hitting time between any

pair of nodes in a network. That is

H

max

= max

u;v

H(u; v)

De�nition 20 Given a network graph, the underlying electrical network is the

network obtained by replacing vertices by nodes and edges by electrical resistances of

a unit resistance. The e�ective resistance between any two nodes u and v, denoted

by R(u; v), can be de�ned as the voltage that develops between u and v when a unit

current is maintained through them (i.e. enters one and leaves the other).

4.3 Observations on General Networks

4.3.1 Two Packets to a Single Destination

Lemma 20 Consider an arbitrary potential guided algorithm on any network, with

two packets destined to the same node, each injected at an arbitrary time. Then each

packet is delivered to its destination within n+ 1 steps from its time of injection.
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Proof. Consider a path � of packet p in the network. Assume the packet was de
ected

at some time t, but met the other packet later on at some vertex (say at time t

0

> t).

We can replace the interval [t; t

0

] in the path by the corresponding interval in the

de
ecting packet's path. Note that the two intervals are of the same length, but the

de
ection behavior is replaced by advancing one (since both packets are guided by

the same potential function).

Let us repeat this procedure for all but the last de
ection (which might have no

posterior meeting), and denote this path �

0

.

Assume the last de
ection (if any) occurs at time T . Then at time T + 1 (after

the de
ection) p advances back to the de
ecting node, or to one with lower potential.

So �(�

0

(T + 3)) < �(�

0

(T + 2)) � �(�

0

(T )).

Removing nodes �

0

(T + 1); �

0

(T + 2) yields a (strictly) decreasing potential se-

quence, which therefore, can consist of at most n nodes. Hence, j�j = j�

0

j � n + 2,

so its length is no more than n + 1 steps. 2

4.3.2 The General Case of Two Packets

In this section we investigate the performance of a general potential guided algorithm

in problems with only two packets. In this case, we can show the routing terminates

in n steps, by charging de
ections appropriately. The reader may wish to skip the

proof, as it comes down to case analysis.

Throughout this proof, we say that the packet advances if it get its most preferred

edge. Otherwise we say that the packet is de
ected.

Observation 21 Any potential guided algorithm on any network with only 2 packets

satis�es the following:

1. The packets cannot meet at two successive time steps.

2. A packet is always de
ected either to the node it came from, or to one with

lower potential.

3. Every two steps, the potential of each packet either improves or remains un-

changed.

4. If a packet has two successive advances after visiting some node, it cannot return

to this node later on.

5. A packet can visit the same node only twice, in a time di�erence of two steps.

Lemma 22 Let T

i

be the time packet p

i

is delivered to its destination. Then, there

exists a function G : f0; : : : ; T

i

g 7! 2

V

such that t � jG(t)j+ 2 for all 0 � t � T

i

.

Proof. By induction on t. (Throughout this proof, the term potential at a node refers

to the potential of packet p

i

).
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(i) For t = 0 de�ne G(0) = fg, so it holds trivially.

(ii) Assume it holds for t � 0, and we shall see it holds also for t+ 1. Note that it

su�ces to show that jG(t)j + 1 � jG(t+1)j, or alternatively, jG(t�1)j + 2 �

jG(t+1)j.

De�ne G(t + 1) inductively, as follows (recall that S(p; t) denotes the location

of packet p at time t):

1. If p

i

advances at time t, de�ne G(t+ 1) = G(t) [ fS(p

i

; t)g.

2. If p

i

is de
ected at time t for the �rst time in its route, de�ne G(t+ 1) =

G(t� 1).

3. If p

i

is de
ected at time t but was previously de
ected at time t

0

< t, then

we de�ne G(t + 1) as follows. Assume that packet p

j

was the de
ecting

packet at time t

0

, i.e. v = S(p

i

; t

0

) = S(p

j

; t

0

).

Let w

i

; w

j

be the nodes from which the two packets p

i

; p

j

advance to the

meeting point at time t, respectively (i.e. w

i

= S(p

i

; t� 1) and w

j

=

S(p

j

; t�1)). Clearly, w

i

6= w

j

, or we would have two successive meetings

of the two packets. Let w be one of the w

i

; w

j

such that p

i

is not de
ected

to it at time t (e.g. take the one with the higher potential w.r.t. p

i

), as in

�gure 4.1.

In the case that S(p

i

; t

0

) = S(p

i

; t

0

+2), we de�ne another node, u. Consider

the paths that p

i

and p

j

travel between their meeting at time t

0

and the

next one at time t. Let u be the �rst node visited by p

j

in the interval

[t

0

; t], but not visited by p

i

in the interval [t

0

+2; t], say u = S(p

j

; t

1

) (see

�gure 4.1). Such a node must exist before w

j

by a counting argument.

This node u cannot be v since v is visited by p

i

at time t

0

+2. Note that p

i

advances with no interference in the interval [t

0

+ 2; t � 1]. Then at some

time step, p

i

had the option to advance to u, but chose to advance to some

other node. Note that p

j

is two steps ahead of p

i

on their journey from v

to u.

Finally, we conclude the de�nition:

G(t+ 1) =

8

>

>

>

<

>

>

>

:

G(t� 1) [ fv;w

j

g if v 6= S(p

i

; t

0

+ 2) and w = w

j

G(t) [ fvg if v 6= S(p

i

; t

0

+ 2) and w = w

i

G(t� 1) [ fu;w

j

g if v = S(p

i

; t

0

+ 2) and w = w

j

G(t) [ fug if v = S(p

i

; t

0

+ 2) and w = w

i

Observe the following simple properties:

(a) If v is added to G(t) at time t, then p

i

visits v only at time t

0

.

Indeed, v is added only if it is not visited at time t

0

+ 2.

(b) If u is added to G(t) at time t, then p

i

never visits u.
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Figure 4.1: Nodes w

i

; w

j

(on the left) and u (on the right)

Indeed, p

i

had the option to go to u, but advanced to another node,

from which it advanced once again. It is therefore impossible for p

i

to

get to u later on.

(c) If w

j

is added to G(t) at time t, then p

i

never visits w

j

.

Indeed, w

j

is added only if packet p

i

is de
ected to some other node,

whose potential is lower.

(d) p

j

visits w

j

only at time t� 1.

Indeed, p

j

advances from w

j

two successive steps.

Now that we have de�ned G(t) properly, we can show the inductive phase. Note

that in Case (2) above, G(1); : : : ; G(t� 1) are all de�ned by Case (1), hence

G(t+ 1) = G(t� 1) = fS(p

i

; 0); : : : ; S(p

i

; t� 2)g

But since �

p

i

(S(p

i

; 0)) > � � � > �

p

i

(S(p

i

; t � 2)), all these nodes are distinct.

Therefore, jG(t+ 1)j = t� 1.

All that remains to prove now is the induction hypothesis in cases (1) and (3).

We will do that by proving that each element introduced to G(� ) in these cases,

is indeed new to G(� ).

Let x be an arbitrary node which is introduced to G(� ) at some time � . Assume

to the contrary that x is not new in G(� ), but it is already in G, and was

introduced at a previous time t < � . Case (3) introduces 3 types of elements:

v, u and w

j

. So together with Case (1), we have a total of 4 ways to introduce

a new element to G. This sums up to 16 possibilities to introduce x to G twice,

at times t and at time � , and we will see that each of them is impossible.
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Suppose that x is added to G(� ) according to Case (1), so p

i

advances from

S(p

i

; � ) at time � . In particular, p

i

visited x at time � . We consider all 4 types

of elements in which x could have been added to G previously, at time t < � .

� Assume that x was previously added (at time t < � ) according to Case (1).

Then p

i

advances twice from the same node, which can happen (Observa-

tion 21) only if t = � � 2 and p

i

was de
ected at time � � 1. But, in this

de
ection the node x which was added at time � � 2 is removed from G,

so it is new to G(� ). Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as v. By Property (3a), this node x is visited by p

i

only at the corre-

sponding time t

0

< t < � . It clearly cannot be visited by p

i

at time � .

Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as u. By Property (3b), this node x is never visited by p

i

. It clearly cannot

be visited by p

i

at time � . Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as w

j

. By Property (3c), this node x is never visited by p

i

. It clearly

cannot be visited by p

i

at time � . Contradiction.

Suppose that x is added to G(� ) according to Case (3) as v

�

= S(p

i

; �

0

). Then,

p

i

was de
ected from x at time �

0

, and by Property (3a), this is the only visit of

p

i

to x. We consider all 4 types of elements in which x could have been added

to G previously, at time t < � .

� Assume that x was previously added (at time t < � ) according to Case (1).

Then p

i

advances from x at time t

0

6= �

0

. But the only visit of p

i

to x is at

time �

0

. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as v. Then p

i

was de
ected from x at time t

0

6= �

0

. But the only visit of p

i

to x is at time �

0

. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as u. By Property (3b), this node x is never visited by p

i

. It clearly cannot

be visited by p

i

at time �

0

. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as w

j

. By Property (3c), this node x is never visited by p

i

. It clearly

cannot be visited by p

i

at time �

0

. Contradiction.

Suppose that x is added to G(� ) according to Case (3) as u

�

. Then by Prop-

erty (3b), x is never visited by p

i

. We consider all 4 types of elements in which

x could have been added to G previously, at time t < � .
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� Assume that x was previously added (at time t < � ) according to Case (1).

Then p

i

advances from x at time t

0

6= �

0

. But x is never visited by p

i

.

Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as v. Then p

i

was de
ected from x at time t

0

6= �

0

. But x is never visited

by p

i

. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

also as u.

By the de�nition of u, p

j

visited x twice. By Observation 21, the second

visit must be two steps after the �rst one, i.e. �

1

= t

1

+ 2. From time t

0

up to the �rst visit at node u at time t

1

, packet p

j

is 2 steps ahead of p

i

.

Thus, p

j

cannot meet p

i

at time t

1

(at node u) nor in the following time

step. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as w

j

. By Property (3d), p

j

visits x only at time t�1. So by the de�nition

of u, t = � is the same de
ection. Contradiction.

Suppose that x is added to G(� ) according to Case (3) as w

j;�

= S(p

j

; � � 1).

Then by Property (3c), x is never visited by p

i

. We consider all 4 types of

elements in which x could have been added to G previously, at time t < � .

� Assume that x was previously added (at time t < � ) according to Case (1).

Then p

i

advances from x at time t

0

6= �

0

. But x is never visited by p

i

.

Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (1).

Then p

i

advances from x at time t

0

6= �

0

. But x is never visited by p

i

.

Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as u. By Property (3d), x is visited by p

j

only at time � � 1. But by the

de�nition of u, this implies that t = � is the same de
ection. Contradiction.

� Assume that x was previously added (at time t < � ) according to Case (3)

as w

j

. By Property (3d) for t, p

j

visits x only at time t � 1. By Prop-

erty (3d) for � , p

j

visits x only at time � � 1. Then t = � is the same

de
ection. Contradiction.

2

Corollary 23 Let T

i

be the time packet p

i

is delivered to its destination. Then there

exists a function H : f0; : : : ; T

i

g 7! 2

V

such that t � jG(t)j+ 1 for all 0 � t � T

i

.

66



Proof. Follow the proof of Lemma 22, and change Case (2) in the de�nition of G(t+1)

to G(t+1) = G(t� 1)[fwg, where w is de�ned as in Case (3). The rest of the proof

still holds. 2

Corollary 24 Any potential guided algorithm routes any problem with two packets,

in (n� 1) + 1 = n steps.

4.4 Livelock Free Algorithms

Recall that if for every packet, the potential at a node is higher than the average

potential at its neighbors (except for the destination node), then the potential guided

algorithm is guaranteed to terminate.

In this section we show that although this property avoids livelocks, it does not

ensure t

p

� d

p

+ 2(k � 1). We demonstrate such a potential guided algorithm with a

problem consisting of 4 packets.

Observation 25 There are certain networks of n nodes (n � 13), satisfying the

property that the potential at each node is higher than the average potential at its

neighbors, such that a potential guided algorithm routing a permutation problem of 4

packets (k = 4) achieves t

p

= 2n � 7, for some packet p.

Proof. Consider a pendulum network with n�2 nodes on a cycle (say v

1

; v

2

; : : : ; v

n�2

),

and 2 nodes (say v

n�1

; v

n�2

) connected to the cycle one after the other, as in �gure 4.2.

Denote the four packets as p

1

; p

2

; p

3

; p

4

. Let p

1

originate at v

n�7

, and be destined

to v

n

(see �gure 4.2). Assume p

1

's potential function is the following:

�

1

(v

i

) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

11 +

p

i if i � n� 4

12 if i = n� 3

11 if i = n� 2

6 if i = n� 1

0 if i = n

Note that the potential �

p

1

at each node is higher than the average potential at its

neighbors.

Let p

2

; p

3

and p

4

originate at v

5

; v

3

and v

1

and be destined to v

n�1

; v

n�2

and

v

n�3

, respectively. Assume the potential functions for p

2

; p

3

and p

4

decreases along

the cycle in the direction that i grows, until v

n�2

. So each packet will go to its

destination along the longer side of the cycle. The property of higher potential at a

node than the average of its neighbors is easy to satisfy by using an arbitrary convex

function (like square root). Finally, we make sure that p

2

; p

3

and p

4

have \priority"

over p

1

by stronger potential di�erences (say multiples of 1000n).

Packets p

2

; p

3

; p

4

travel along the cycle one after the other with 2 nodes di�erence

between each pair of successive packets, and they never meet each other. Packet p

1
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Figure 4.2: Four packets on an upside down pendulum

travels in the opposite direction, until meeting p

2

at v

n�2

after n�7 steps. Here, they

both want to advance to v

n�1

, but p

2

has higher \priority", so p

2

advances, and p

1

is

de
ected to v

n�3

, where it meets p

3

(after n�6 steps). Since p

3

has higher \priority",

it advances to v

1

, and p

1

is de
ected to v

n�4

, where it meets p

4

(after n � 5 steps).

Since p

4

has higher \priority" it advances to v

n�3

, and p

1

is de
ected to v

n�5

.

After the 3 successive de
ections (see the dashed arrow in �gure 4.2), p

1

will choose

to go once again down the v

i

's, namely v

n�5

; v

n�6

; : : : ; v

2

; v

1

; v

n�2

; v

n�1

; v

n

. Hence, the

total time required for p

1

to reach its destination is (n � 7) + (n � 2) + 2 = 2n � 7.

2

4.5 Tree Networks

In this section we investigate the performance of potential guided algorithms on tree

networks. The de�nite structure of tree graphs (no cycles) enable us to analyze some

characteristics of potential guided algorithms.

Observation 26 Any potential function on a tree network is monotonic w.r.t. the

distance to destination, i.e. the potential decreases i� one advances towards its des-

tination.
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Proof. Assume to the contrary that for some packet, the node u is closer to destination

than v, but has higher potential. Then v must have a neighbor v

1

with even lower

potential (by the potential function de�nition). If v

1

is not the destination node, it

must also have a neighbor v

2

with even lower potential, and so on. As long as the

destination is not reached, we can �nd a neighbor with lower destination. However,

each v

i

has a lower potential then the previous one, and de�nitely lower than u's

potential. So 8i; v

i

6= u and the process never reaches u. Every path from v to the

destination must go through u. Thus, the destination node is never reached. Since

the graph size is �nite, some node must be repeated, contradicting the decrease in

potential. 2

Corollary 27 In any potential guided algorithm on any tree network, every packet

has exactly one preferred edge, and all other outgoing edges are de
ections.

Observation 28 There are potential guided algorithms on tree networks which are

not maximum advance.

Proof. We show an example of applying the \minimum sum of potentials" rule, where

the number of packets which improve their potential is not maximal (see �gure 4.3).

Recall that advancing a packet on a tree network is equivalent to improving its po-

tential (by Corollary 27). Hence, this assignment is not maximum advance. 2

a,b: 80

a,b: 10 c: 40

c: 5a,b: 20c: 30

b ca Maximum Advance: 10+80+5

10+20+30

a,b: 15

c: 25

Minimum Sum of Potentials:

Figure 4.3: A potential guided algorithm on tree network which is not maximum

advance.

Observation 29 Any potential guided algorithm on any tree network is stable.
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Proof. Let A be the optimal assignment of outgoing edges in some node, i.e. it

achieves the minimum sum of potentials. Assume to the contrary that there is a

possibility to change the assignment of some of the packets in A, such that all those

packets strictly gain from the change, meaning that they get an edge that leads them

closer to their destination. By Corollary 27, advancing in this network is equivalent

to improving the potential, so the potential of each of these packets can be improved.

Clearly, the \sum of potentials" can be improved by this change, contradicting the

optimality of assignment A. 2

Corollary 30 Any potential guided algorithm evacuates a tree network, without en-

tering a livelock.

Proof. Follows immediately from Corollary 18, regarding Minimum Advance algo-

rithms on tree networks. 2

4.6 Expected Hitting Time Potential

In this section we consider a speci�c potential function, which is the expected hitting

time (of a random walk) form the packet's current location to its destination. We

refer to this algorithm as the expected hitting time routing algorithm, and investigate

its performance on general networks as well as on speci�c networks, particularly, trees

and cycles.

4.6.1 General Case Analysis

The hitting time of random walks on general graphs was analyzed by Aleliunas et

al. [2]. One of their results is a bound for the expected hitting time in general graphs,

H

max

� 2mD, where m is the number of edges in the graph, and D is its diameter.

An improved bound for H

max

was presented by Chandra et al. [10]. Their work

links the commute time between two nodes to the e�ective resistance between them

(in the underlying electrical network), C(u; v) = 2m � R(u; v). Since the commute

time bounds the expected hitting time, this yields that H

max

� 2m �R

max

.

On a general graph of n vertices, these results can be bounded as a function of n

alone. The diameter D (and also the maximum electrical resistance R

max

) is at most

n, and m <

1

2

n

2

, yielding the upper bound H

max

� n

3

.

Lemma 31 Consider a routing problem on any network with k packets. Then the

expected hitting time routing algorithm evacuates at least half of the packets in the

network, every 2H

max

steps.

Proof. By the de�nition of the expected hitting time potential, the potential at

node is exactly 1 more than the average potential at its neighbors. Hence, a random
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assignment of a packet to an outgoing edge is expected to reduce the potential by 1. A

random assignment of l packets in a node is expected to reduce the sum of potentials

by l. Therefore, there must exist some assignment of the l packets which reduces the

sum of potentials by at least l. The expected hitting time routing algorithm chooses

the assignment with lowest sum of potentials, and thus reduces the sum of potentials

by at least l.

Consider the sum of potentials of all packets in the network. Initially, it is bounded

by k �H

max

since the potential of each packet is no more than H

max

. At each step, the

overall sum of potentials is reduced at least by the current total number of packets

in the network.

Assume to the contrary, that after 2H

max

steps, the number of packets in the

network is still more than

1

2

k. At each of the 2H

max

steps, the sum of potentials is

reduced by at least

1

2

k. So the total sum of potentials after the H

max

steps will be at

most kH

max

�

1

2

k � 2H

max

= 0, contradicting the existence of packets in the network.

2

Corollary 32 The expected hitting time routing algorithm evacuates any problem of

k packets on any network within 2H

max

log k steps.

4.6.2 Tree Networks

Tree graphs have a simple layout, which is easier to analyze. We show that the

expected hitting time is maximum advance, and thus delivers any packet to its des-

tination within d

p

+ 2(k � 1) steps.

Any two vertices on a tree graph are connected by only one simple path. Therefore,

a packet entering a node has exactly one advancing direction. That is, one neighbor

is closer to destination, and all other neighbors are further away from the packet's

destination.

Observation 33 (triangle equality) If v is located on a simple path from u to w,

then

H(u; v) +H(v;w) = H(u;w)

Proof. Trivially, every path (walk) from u to w must go through v. The proof follows

by linearity of expectation. 2

Corollary 34 In an expected hitting time routing algorithm on a tree network, every

packet prefers only the edge on which it advances towards its destination.

Remark: Corollary 34 is a private case of Corollary 27 with expected hitting time

as the potential function.

Lemma 35 The expected hitting time routing algorithm is maximum advance on tree

networks.

71



Proof. Assume to the contrary that the expected hitting time routing algorithm is not

maximum advance on trees. Then there is a node u in a tree network T , where the

assignment with the minimum sum of potentials, A

eht

, advances fewer packets than

the maximum advance assignment, A

max

. Assume that A

eht

advances s�0 packets,

and A

max

advances r > s packets.

Note that the number of outgoing edges assigned with advancing packets is r by

assignment A

max

, and only s < r by A

eht

. By the pigeon-hole principle, there must be

some edge e

1

= (u;w

1

) which is assigned with an advancing packet (say p) in A

max

,

but it is not assigned with an advancing packet in A

eht

. Since A

eht

does not assign p

to e

1

(it would be an advancing assignment), then p must be assigned to some other

edge e

2

= (u;w

2

), which is a de
ection. See �gure 4.4 for illustration of A

max

vs.

A

eht

.

max
A     :

eht
A    :

e e e

q-

1
1 2

2
1

1
2

2

p-
uu

e

p+

w w w w

Figure 4.4: A

max

(on the left) vs. A

eht

(on the right).

A

eht

must assign some packet to this e

1

, or otherwise A

eht

could be improved by

assigning p to advance on e

1

instead of being de
ected on e

2

. This would contradict

the optimality of A

eht

. Let q be the packet assigned by A

eht

to e

1

. It is a de
ection

since e

1

is not one of the r edges which are assigned with an advancing packet by

A

eht

.

Swap the assignments of p and q in A

eht

and denote this new assignment A

0

. We

will see that A

0

has better \sum of potentials" then A

eht

, contradicting the optimality

of A

eht

. If q advances on e

2

, then A

0

is clearly better than A

eht

(the swap improves

both p and q). So we assume that q is de
ected in A

0

(on e

2

).

�

u

(A

eht

) = �

p

(w

2

) + �

q

(w

1

) +

X

p

0

6=p;q

�

p

0

(A

eht

(p

0

))

�

u

(A

0

) = �

p

(w

1

) + �

q

(w

2

) +

X

p

0

6=p;q

�

p

0

(A

eht

(p

0

))
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By Observation 33, we get that

�

p

(w

2

) = H(w

2

; u) +H(u;w

1

) + �

p

(w

1

)

�

q

(w

1

) = H(w

1

; u) + �

q

(u)

�

q

(w

2

) = H(w

2

; u) + �

q

(u)

and we're done:

�

u

(A

eht

)� �

u

(A

0

) = H(u;w

1

) +H(w

1

; u) > 0

2

Corollary 36 The expected hitting time routing algorithm on tree networks delivers

any packet to its destination within d

p

+ 2(k � 1) steps.

Proof. Delivery time of d

p

+ 2(k � 1) is guaranteed by Feige [11], in any maximum

advance hot-potato routing algorithm on tree networks, and, in particular, for the

expected hitting time routing algorithm. 2

4.6.3 Cycle Networks

In this section we analyze the performance of the expected hitting time routing al-

gorithm on cycle networks. The simple structure of cycles enables to compute the

expected hitting time between any two nodes in the cycle. Directions of advance and

de
ection are easy to analyze, due to the simple layout of the cycle network.

We link the di�erence in the packet's potential to these directions, (i.e. potential

decreases on advances and increases on de
ections). This is used to show that the

expected hitting time routing algorithm on a cycle network is maximum advance

with priority to close destinations, and thus, delivers each packet to its destination

in t

p

� d

p

+ 2(k � 1) steps.

Commute times on the cycle are easy to compute using the rule devised by Chan-

dra et al. [10]. Applying symmetry argument yields that H(u; v) =

1

2

C(u; v) =

d(n� d) for any two nodes u and v whose distance on the cycle is d.

Observation 37 The expected hitting time potential function on cycle networks is

monotonic w.r.t. distance from destination, i.e. the potential decreases i� one ad-

vances towards its destination.

Proof. Consider a cycle of n nodes. Then, for any two nodes u and v on the cycle,

d(u; v) �

n

2

. The function f(d) = d(n � d) is (strictly) monotonic on the interval

[0;

d

2

], so the packet's potential and the distance to destination increase and decrease

together. 2
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Corollary 38 The expected hitting time routing algorithm is maximum advance on

cycle networks.

Proof. The number of packets in each node is at most 2, since the degree of a node

is 2. A single packet will always advance towards its destination, since an advancing

edge always has smaller potential than a de
ecting one.

Consider a node with two packets to assign. Let A

eht

be the assignment of the

expected hitting time routing algorithm in this case, and let p be a de
ected packet

in A

eht

. The other packet, p

0

, strictly prefers the same edge as p, or otherwise it

would be possible to improve the assignment by swapping the packets (note that the

assignment is improved even when p is at an equilibrium node where d =

n

2

). Hence,

the two packets contest on the same edge. But only one packet can be assigned to

this preferred edge, so A

eht

is maximum advance. 2

Corollary 39 The expected hitting time routing algorithm on a cycle prefers close

destinations.

Proof. At any time no more than two packets can enter a node in the network, since

the degree of each node is 2. Let u be a node with 2 packets p

1

and p

2

, who both

prefer the same outgoing edge, e = (u; v). Let d

1

; d

2

be the distances from u to p

1

's

and p

2

's destinations, respectively, and suppose that d

1

< d

2

. We will show that p

1

has priority over p

2

.

Let A

1

be the assignment which advances p

1

on e, and de
ects p

2

. Let A

2

be

the assignment which advances p

2

on e, and de
ects p

1

. So our goal is to show that

�(A

2

) > �(A

1

).

When p

i

advances, its distance from destination is shortened by 1, and it's poten-

tial will be �

p

i

(d

i

� 1). However, when p

i

is de
ected, its distance from destination

either increases by 1 or remains unchanged (in the case where d

i

=

n�1

2

). The formula

for the expected hitting time on the cycle, H(u; v) = d(n�d), holds also in the latter

case because it is symmetric with d and n � d. So in any case, the potential of p

i

after the de
ection will be �

p

i

(d

i

+ 1).

�(A

1

) = �

p

1

(d

1

� 1) + �

p

2

(d

2

+ 1)

= (d

1

� 1)(n � d

1

+ 1) + (d

2

+ 1)(n � d

2

� 1)

�(A

2

) = �

p

1

(d

1

+ 1) + �

p

2

(d

2

� 1)

= (d

1

+ 1)(n � d

1

� 1) + (d

2

� 1)(n � d

2

+ 1)

and we're done:

�(A

2

)� �(A

1

) = 4(d

2

� d

1

) > 0

2

Lemma 40 The expected hitting time routing algorithm on cycle networks routes a

packet p to its destination in t

p

� d

p

+ 2(k � 1).
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Proof. We �rst claim that a packet can be de
ected no more than k � 1 times,

using the \chain of de
ections" argument. If a packet p is de
ected, then there is

another packet which advances in p's preferred direction and so on, creating a chain

of de
ections along a simple path.

Since the algorithm gives priority to close destinations, the destinations of packets

in the chain cannot get further away (only stay in place or get closer). In particular,

all destinations are not beyond

1

2

n far from the beginning of the chain. Therefore,

the chain length is bounded by

n

2

, ensuring uniqueness of the last packet in the chain.

Hence, each packet can su�er no more than k � 1 de
ections.

Consider the route traveled by a packet p for d

p

+2(k�1) steps. At most k�1 of

these steps can be de
ections. Each de
ection increases the distance to destination by

at most 1. The remaining steps are advances, which reduce the distance to destination

by 1. Therefore, the distance of p from its destination after traveling d

p

+ 2(k � 1)

steps, is bounded by:

d

p

+ (k � 1)

| {z }

deflections

�1� (d

p

+ 2(k � 1) � (k � 1))

| {z }

advances

�1 = 0

so p must have reached its destination within t

p

� d

p

+ 2(k � 1) steps. 2

4.6.4 Mesh Networks

The expected hitting time is guaranteed to evacuate any network, and in particular,

an n�n mesh within 2H

max

log k steps. Chandra et al. [10] show that on mesh graphs

R

max

= O(log n), ensuring evacuation within O(n

2

log n log k) steps.

Figure 4.5 demonstrates the potential (expected hitting time) of a packet p des-

tined to node (3; 5), at each node of the 11 � 11 mesh. Arrows denote the preferred

outgoing edges from each node to this destination, (3; 5). A single packet destined to

(3; 5) will travel along these edges with no interference, until reaching its destination.

However, traveling along these edges is not always the shortest possible. For exam-

ple, the preferred path of a packet generated at (11; 11) is de�nitely not the shortest

possible to (3; 5).

A packet's route in a expected hitting time routing algorithm on a two dimensional

mesh network is not necessarily a shortest path, even if the packet is traveling alone

in the network. Although the expected hitting time routing algorithm achieves t

p

�

d

p

+ 2(k � 1) on trees and cycles, it does not achieve this bound on other simple

networks such as meshes. We also see that the expected hitting time routing algorithm

is maximum advance on tree and cycle networks, but is not even minimum advance

on mesh networks.

4.6.5 Open Problems

Several interesting open questions remain. One major goal is to further investigate

the behavior of the expected hitting time routing algorithm on general networks. Our
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Figure 4.5: Expected hitting times to destination (3; 5) on the 11 � 11 mesh
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lower and upper bounds (e.g. on meshes) leave a gap which contains some interesting

bounds, such as O(D + k) and (n + k). The cases of one and two packets suggest

that the general case upper bound (2n

3

log k) can be improved.

Another interesting problem is the behavior of a single packet on speci�c networks.

It is not well understood why a single packet does not follow a shortest path, and the

question of bounding the path traveled by a single packet in a network (in terms of

d

p

or D) remains open.

Finally, it would be interesting to devise other potential functions which can be

shown to perform well on speci�c or general networks.
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